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ABSTRACT
Ultra-low-field (ULF) MRI is emerging as an alternative modality to high field (HF) MRI due to its lower cost, minimal siting 
requirements, portability and enhanced accessibility—factors that enable large-scale deployment. Although ULF-MRI exhibits 
a lower signal-to-noise ratio (SNR), advanced imaging and data-driven denoising methods enabled by high-performance com-
puting have made contrasts like diffusion-weighted imaging (DWI) feasible at ULF. This study investigates the potential and 
limitations of ULF tractography, using data acquired on a 0.064 T commercially available mobile point-of-care MRI scanner. The 
results demonstrate that most major white matter bundles can be successfully retrieved in healthy adult brains within clinically 
tolerable scan times. This study also examines the recovery of diffusion tensor imaging (DTI)-derived scalar maps, including 
fractional anisotropy and mean diffusivity. Strong correspondence is observed between scalar maps obtained with ULF-MRI and 
those acquired at high field strengths. Furthermore, fibre orientation distribution functions reconstructed from ULF data show 
good agreement with high-field references, supporting the feasibility of using ULF-MRI for reliable tractography. These findings 
open new opportunities to use ULF-MRI in studies of brain health, development and disease progression—particularly in popu-
lations traditionally underserved due to geographic or economic constraints. The results show that robust assessments of white 
matter microstructure can be achieved with ULF-MRI, effectively democratising microstructural MRI and extending advanced 
imaging capabilities to a broader range of research and clinical settings where resources are typically limited.

1   |   Introduction

Diffusion MRI and tractography are widely used in neurosci-
ence for developmental studies, tracking disease progression 
and examining tract spatial properties across various popula-
tions (Dell'Acqua et al. 2024). This broad interest in microstruc-
tural assessment and virtual dissection (Catani et al. 2002) has 
driven significant advances in MRI methods at high field, and in 
this work we seek to demonstrate the useful application of some 
of these techniques at ultra-low fields.

In contrast to high field (> 1 T) MR systems, ULF systems 
(< 0.1 T) are free from numerous constraints imposed by su-
perconducting systems, including non-reliance on cryogenic 
cooling or high voltage power supplies, and tolerance of 
power supply interruptions. Alongside significant reductions 
in weight, B0 fringe fields and RF heating, ULF systems often 
have exceptional mobility. They can be easily moved between, 
for example, ICU settings, remote locations or directly to emer-
gency sites—and in many cases, they only need to be plugged 
into the local mains circuit or a battery supply to operate. As 
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well, the reduced size, power and siting requirements and cost 
of ULF-systems make them attractive in research contexts, 
where a high-field system may represent an unacceptable cost 
burden to a research endeavour. The majority of contempo-
rary diffusion-based tractography studies are conducted using 
data acquired on high-field MRI systems (e.g., 3 T) with mod-
erate to high gradient amplitudes 40–80 mT m−1, enabling 
rapid diffusion weighted single-shot (spin) echo planar imag-
ing (ssDW-EPI) (Tax et  al.  2022). While ssDW-EPI is robust 
and insensitive to motion within each shot, numerous factors 
complicate its use at ULF. ULF DTI was first demonstrated 
employing non-EPI readouts (Plumley et al. 2022), and subse-
quently using DW-EPI (Ding 2024). The performance of fast 
EPI readouts are limited by low gradient strength and high 
B0 inhomogeneity in ULF systems, causing significant distor-
tions at higher resolutions and significant signal dephasing 
arising from low bandwidth in phase encoding directions. 
Long echo trains combined with slower and weaker gradients 
require long echo times. This produces significant T2-related 
signal loss, and while this may be mitgated by high readout 
bandwidth, this further degrades SNR. Additionally, at ULF, 
Johnson noise in inductive detector coils is the dominant noise 
component over body noise. This results in 3D imaging offer-
ing higher SNR at the point of detection due to the larger vol-
ume excited over 2D imaging. In contrast, the minimal SAR 
produced by short RF pulses at ULF allow 3D fast, multi-echo 
sequences to be run without exceeding SAR limits, and mit-
igate field inhomogeneity induced dephasing and distortion 
while maximising SNR.

The principal challenge hindering widespread use of ULF 
systems for DWI is the SNR available per unit time. As the 
contrast mechanism of DWI relies on signal attenuation 
(Jones  2010), obtaining acceptable data at the SNRs typical 
of ULF systems is particularly challenging. Though clinically 
viable ULF diffusion imaging protocols for diagnosis of cere-
bral ischemia and infarction (Cahn et al. 2020; Sorby-Adams 
et  al.  2024) have recently become available, extending this 
to tractography is challenging as it requires high accuracy, 
which diagnostic DWI may not, in order to be clinically useful. 
Diffusion-based tractography relies upon unbiased measures 
with sufficient resolution to discriminate between regions 
containing white matter and those containing grey matter or 
CSF. Noise biases diffusion measurement, with Rician noise 
resulting in reduced apparent fractional anisotropy and mean 
diffusivity in DTI (Jones and Basser 2004), or, in spherical de-
convolution, offsets and increased variance in volume fraction 
measures and relative fibre angles in mixed fibre populations 
(Canales-Rodríguez et  al.  2015). Non-uniformity of gradient 
encoding and/or the static B0-field also complicates the unbi-
ased interpretation of the diffusion signal.

While advances in signal detection, filtration, digitisation, re-
construction and downstream processing have enabled accel-
erated single-volume ULF diffusion acquisitions, significant 
technical obstacles remain to the implementation of a robust 
tractography protocol at ULF. In this work, we address some 
of these obstacles, and demonstrate that tractography may 
be performed with data acquired in feasible scan times at a 
magnetic field strength of 64 mT on a commercial ULF-MRI 
system.

2   |   Methodology

2.1   |   Participants

Five healthy adult volunteers were recruited for this study, 
with ethical approval from the Cardiff University School of 
Psychology ethics committee. We targeted a protocol length of 
1 h (standard protocol length for research studies in our cen-
tre), additionally aiming to prevent overheating of the passively 
cooled gradient hardware, which is particularly stressed by the 
demands of diffusion-encoding pulsed gradients.

2.2   |   Data Acquisition

The scanner employed was a 64 mT Swoop (hardware version 
1.7, software version rc9.0 beta 1) permanent-magnet ULF-
MRI system from Hyperfine Inc., equipped with a 3-axis gra-
dient set with peak gradient amplitudes of X: 24.9 mT m−1, Y: 
24.4 mT m−1 and Z: 25.7 mT m−1, at slew rates of 23, 22 and 
67 T m−1 s−1 respectively. Prior to imaging, the scanner was B1 
power calibrated using the manufacturer's standard pre-scan 
calibration, and B0 shimmed, using linear (gradient) B0 shim-
ming and measured to have a B0 homogeneity of 1100 ppm in a 
16 cm diameter spherical volume. The single-yoke permanent 
magnet array is asymmetric in the RL-direction, producing a 
spatially non-uniform B0 field.

The DWI sequence employed for this study was a 3D multi-shot 
diffusion weighted, non-Carr-Purcell-McGill-Bloom (CPMG), 
self-navigated fast-spin-echo, employing a non-Cartesian k-
space trajectory, with centre-out phase encoding ordering 
(O'Halloran 2022). 212 shots were used for each volume, using 
a split echo train with 70 echoes across a TR of 800 ms, span-
ning 35 unique phase encodings per TR. The effective echo time 
was 84 ms. The field of view (FOV) was 220 × 200 × 180 mm, in 
AP/SI/RL directions respectively. Data were reconstructed at a 
resolution of 3 × 3 × 3 mm. The readout was fully sampled and 
oriented in the RL direction, whereas the phase encoding di-
rections were oversampled by 166%. Oversampling ratios from 
400% to 100% (Nyquist limit) were tested. Higher oversampling 
ratios were found to increase sensitivity to subject motion, man-
ifesting as diffuse blurring and linearly increased scan time. 
Minimal oversampling resulted in regions of uniform signal and 
artificially sharp edges that did not correspond to anatomical 
tissue boundaries.

Diffusion sensitisation utilised a monopolar pulsed-gradient 
spin-echo scheme, with b = 945 s/mm2 at isocentre, with diffu-
sion encoding gradients of duration � = 35 ms and separation 
Δ = 42 ms. The non-diffusion weighted sequence employed 
2× phase oversampling to provide a high SNR for apparent 
diffusion coefficient (ADC) calculation, and lasted 94 s. Each 
diffusion-weighted volume (DWI), to collect all 212 shots, 
required 170 s of acquisition. Eighteen diffusion encoded vol-
umes were acquired with isotropically distributed axes or-
ganised into three groups of six. The encoding axes in each 
group of six were arranged using an electrostatic repulsion 
algorithm (Jones and Basser 2004), enabling early scan termi-
nation if necessary while still permitting N estimation of the 
full diffusion tensor.
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Within the same protocol, a T2-weighted split-echo fast-spin echo 
sequence was collected at a resolution of 2 × 2 × 2 mm across 
the same FOV to provide complementary structural information 
to diffusion measures. The TE was 180 ms, the TR was 1600 ms, 
readout bandwith 120 kHz and echo train length 64. The data were 
reconstructed, denoised, debiased and distortion corrected, using 
the manufacturer methods. The sequence duration was 9 min 15 s, 
and these data (which placed less demands on the gradient hard-
ware than DWI) were collected amongst the DW volumes to pro-
vide an opportunity for the gradient hardware to cool.

Between every set of 2 DWIs, the scanner centre frequency f0 
was recentered following a short calibration scan to account for 
B0 drift induced by gradient heating. Images were reconstructed 
using the vendor-provided reconstruction. Electromagnetic in-
terference is removed from raw k-space data using a Kalman-
filter-based algorithm and measurements acquired concurrently 
from 8 noise detectors. The filtered k-space data was trans-
formed to image space using a Plug-and-Play FISTA (Sinha and 
Chaudhury 2024) reconstruction algorithm with a DL-based de-
noiser. Its data consistency step incorporated estimated 3D nav-
igator maps into the k-space encoding operator to compensate 
motion.

Due to eddy-current based artifacts, the even and odd echoes of 
the echo train were reconstructed separately. After reconstruc-
tion, the 2 echo parities and 8 signal channels were combined in 
the complex domain Adaptive Reconstruction of MRI array data 
(Walsh et al. 2000; Griswold et al. 2002). The combined magni-
tude image was then corrected for geometric distortion due to 
gradient non-linearity and B0 inhomogeneity, and also for the 
bias field based on a calibration measurement made with a flood 
fill phantom.

The models were trained using images from both high field 
and low-field MRI acquisition data across a range of image 
contrasts and indications. The training images were passed 
through a synthetic image generation pipeline that included a 
range of spatial, intensity and geometrical transformations to 
increase the variability of the training set. Finally, retrospec-
tive k-space data was generated from the augmented training 
image dataset by applying the forward operator to each exam-
ple, simulating the effects of for example multicoil acquisition, 
random noise and phase. Training was performed by mini-
mizing the L1 loss between the reconstructed image and the 
original target image.

The built-in bias correction was disabled to facilitate estimation 
of the bias field using the b = 0 s/mm2 image. The diffusion im-
ages were denoised by the vendor deep-learning algorithm sepa-
rately to reconstruction.

As a result of the highly inhomogeneous B0 field, in the scan-
ner employed, a large permanent magnetic field gradient was 
present in FOV. Modelling of this gradient predicted a signif-
icant contribution to the diffusion encoding, which if charac-
terised could be retrospectively corrected for. A prospective 
fieldmap was obtained prior to in vivo scanning using a gra-
dient recalled echo image of a flood fill phantom, measured at 
2 different echo times to characterise the major B0 field varia-
tions (Figure 1).

2.3   |   Data Analysis

2.3.1   |   B1-Bias Field Correction

Reconstructed DWIs were first corrected for B1 bias by estima-
tion of the field on the b = 0 s/mm2 image using the N4 bias field 
correction algorithm (Tustison et  al.  2010), and the inverse of 
this field applied to the b = 0 s/mm2 and all DWIs in the series 
(Tax et al. 2022).

2.3.2   |   Correction for Background Field Gradient (B2 
Inhomogeneity)

Images were retrospectively corrected to account for the large 
permanent magnetic field gradient, using the b = 0 s/mm2 image 
as a reference to separate encoding from other contrast effects 
(see Appendix A). In the scanner employed in the current work, 
at positions 8 cm from the isocentre, this gradient may be up to 
1.4 mT m−1, that is up to 7% of the specified diffusion encoding 
gradient. This can lead to errors of 16.1% in the ADC. The con-
tribution of this field inhomogeneity may be modelled as an ad-
ditive magnetic field gradient producing a spatially dependant 
linear scaling to the prescribed b value by a factor a(r). The 
diffusion-weighted signal S′ from a voxel with apparent diffu-
sion coefficient (ADC) D, with the contribution from the spuri-
ous field may be modelled as

with a correction depending on a and the signal from the b = 0 s/
mm2 image S0. The correction may be represented as a simple 
multiplication:

where S(r) is the corrected signal at a given position.

2.3.3   |   Registration and Super-Resolution

The diffusion-weighted volumes were affinely registered to the 
non-diffusion-weighted volume using the hierarchical ANTs 
implementation using a mutual information cost function, 
and the rotation component of the affine transform applied to 
the respective volumes b-vectors (Leemans and Jones,  2009). 
The structural T2 weighted scan was registered to the b = 0 s/
mm2 image, then super-resolved (SR) to a T1 weighted contrast 
using SynthSR (Iglesias et al. 2021, 2023; Iglesias et al. 2022) to 
1 × 1 × 1 mm resolution. This structural image used as the basis 
for masking, partial volume calculations and in anatomically 
constrained tractography (Smith et al. 2012).

2.3.4   |   Tissue Segmentation

The SR T1-weighted image was segmented using Freesurfer's 
recon-all pipeline (Collins et  al.  1994; Dale et  al.  1999; Fischl 
et al. 1999, 2001, 2002, 2004) to give masks of all major struc-
tures in the brain in the same space as the diffusion data. The 

(1)S�(r) = S0(r) exp( − a(r)bD(r))
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high-resolution information afforded by this approach is desir-
able for the creation of grey- and white-matter masks that allow 
inference of the partial volumes present in the lower resolution 
diffusion data. A 5 tissue-type (5tt) segmentation was con-
structed from this, as was a grey-matter white-matter interface 
(GMWMI) mask. Manual voxel selection in the corpus callosum 
midline was used to estimate single-fibre response functions 
with spherical harmonic order 4 (to match the number of equa-
tions solved by constrained spherical deconvolution (CSD) to the 
number of DWIs) using mrtrix3 (Tournier et al. 2019).

2.3.5   |   DTI, Fibre Orientation and Tractography

Diffusion tensors were fitted to the observed data using the 
RESTORE method (Chang et al. 2005; Chung et al. 2006; Yendiki 
et  al.  2014) implemented in DIPY Version 1.11 (Garyfallidis 
et  al.  2014). Noise levels were initially estimated with the 
DIPY “estimate_sigma” method (Koay and Basser  2006; Park 
et  al.  2009), then manually adjusted to maximise visual 
consistency.

The response functions permitted estimation of fibre-
orientation distributions for each tissue type using the MSMT-
CSD (Jeurissen et al. 2014) method given in mrtrix3. This was 
then used alongside the 5tt masks and the GMWMI masks to 
perform anatomically constrained tractography using the mr-
trix3 implementation of the iFoD2 algorithm. Final tractograms 
were computed using three methods:

1.	 Manual definition of inclusion and exclusion ROIs for 
major WM bundles, using the super-resolved T1 to esti-
mate anatomically informed regions of interest (Catani 
et al. 2002; Conturo et al. 1999). These ROIs were used to 
filter a 2 million streamline wholebrain iFoD2-ACT trac-
togram, only including fibres within inclusion ROIs, and 
trimming fibres within exclusion ROIs.

2.	 Filtering of a 10-million streamline iFoD2-ACT tracked 
brain using TractSeg ROIs. Bundle ending segmenta-
tions (i.e., spatial estimates of the cortical terminations 
of WM bundles) were generated using the tool TractSeg 
(Wasserthal et al. 2018a), using previously computed fODF 
peaks in WM. Only tracts that started and ended in bundle 
endings, and remained within bundle ROIs were retained, 
using the corresponding ROIs generated using TractSeg.

3.	 Tract-orientation mapping (TOM) (Wasserthal et al. 2018b) 
using TractSeg derived ROIs and fODF peaks in WM.

2.3.6   |   Visualisation

The ultra-low-field MRI data was visualised using Cinematic 
Rendering (Comaniciu et al. 2016; Dappa et al. 2016), a Monte-
Carlo path tracing engine developed by Siemens Healthineers, 
which integrates various data sources from medical imag-
ing to generate photorealistic images and animations. Fibre 
data was processed with 3D Slicer (Fedorov et  al.  2012) and 
MRtrix3 (Tournier et al. 2019), transforming MRtrix.tck files 

FIGURE 1    |    Top right, Schematic description of the processing pipeline employed to generate corrected and combined anatomical and DW im-
ages used for subsequent tractography (indented bottom left). Acquisition scheme for imaging showing pre-scan calibration, DWI acquired in three 
blocks, with the subdivisions within each block shown (right of indent).
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into VTK (Schroeder et al. 2006) polygonal data. Fibre prob-
ability density maps were generated using MRtrix3's tckmap 
command, producing directionally encoded colour space fibre 
data and fibre density volume data. Polygonal fibre data was 
integrated with T2 volume data using a unified path tracing 
approach, constructing a bounding volume hierarchy for fast 
intersection of rays with fibre representations. The Cinematic 
Rendering engine registers T2-weighted MRI sequences 
with volumetric fibre representations, applying a brain mask 
signed distance field to reveal anatomical structures. Users 
can adjust fibre data density and colour through interactive 
transfer functions. During path tracing, samples from all vol-
umes and meshes are composited in the shader, using high-
dynamic range lighting and tone-mapping for final output. 
The polygonal fibre method generates many primitives, lim-
iting visualisation to specific bundles, while the volumetric 
method allows visualisation of the entire fibre set, offering 
sharper representation and comprehensive coverage. Both 
methods can be combined for comprehensive coverage while 
highlighting selected fibre bundles with a precise polygonal 
representation.

2.3.7   |   High-Field Validation Dataset

High field measurements were also collected to serve as a high 
SNR reference standard against ULF measurements. Data 
were collected on the same participants as for ULF at 3 T on a 
Siemens Connectom MR system with 300 mT m−1 gradients 
using a multiband DW-echo-planar imaging sequence, follow-
ing a high-angular-resolution diffusion imaging (HARDI) pro-
tocol with 253 directions at b-values of 0, 200, 500, 1200, 2400, 
4000 and 6000 s mm−2 with shells containing 13, 20, 20, 30, 
61, 61 and 61 isotropically distributed directions respectively. 
Imaging resolution was 2 × 2 × 2 mm, TR 3000 ms, TE 59 ms, 
FOV 220 × 220 × 132 mm3. Diffusion encoding used gradients of 
duration � = 7 ms and separation Δ = 24 ms. The total readout 
duration was 29 ms. Data were corrected for drift using an in 
house method (Vos et al. 2017), and similarly for gradient non-
uniformity induced distortions. Data were further corrected 
for susceptibility and eddy current induced distortions using a 
reverse-phase encoding method (Andersson et  al.  2003, 2016; 
Andersson and Sotiropoulos  2016; Smith et  al.  2004), and de-
noised with MP-PCA (Veraart et al. 2016). Gibbs deringing using 
a subvoxel shift method was additionally employed (Kellner 
et  al.  2016). A T1 weighted MP-RAGE structural scan was ac-
quired and processed with Freesurfer's recon-all and mrtrix3 
to produce a 5tt segmentation and corresponding grey-matter 
white-matter interface masks, and these were affinely coregis-
tered to the diffusion data.

The diffusion data were used to compute fODFs, mirroring 
the methods employed at ULF, though with maximum spheri-
cal harmonic l = 8, and the Dhollander algorithm (Dhollander 
et al. 2016) was used to estimate the tissue response functions. 
Lastly, fODFs were also calculated using MSMT-CSD, restrict-
ing the b values to those above 2400 s/mm2 to benefit from 
the improved resolution of orientation offered at these weight-
ings. As well, 2 b = 0 s/mm2 and 30 b = 1200 s/mm2 volumes 
were extracted from the data and fitted to spherical harmonic 
lmax = 4, identically to the ULF data. This high SNR but low 

direction count dataset was used to inform on the impact of 
SNR on fODF measures versus the ULF data. The high direction 
count and high b-value dataset was used as a “silver standard” 
measurement.

3   |   Results

3.1   |   Diffusion and Fibre Orientation Measures

Diffusion measures at ULF visually corresponded with HF 
measures taken with small numbers of directions and a single 
shell. Diffusion encoded colour maps (Figure  2A,B) showed 
good agreement in major tracts; however, anisotropic tissue 
further from the mid-sagittal axis plane (and hence isocentre) 
was not fully recovered, likely due to the high noise floor sup-
pressing apparent fractional anisotropy. This was more visible 
in ULF FA maps directly (Figure  2C,D), where subcortical fi-
bres were generally not observed, though were highly visible at 
HF. Imperfection and inconsistency in the shape of some major 
fibre bundles was observed, for example in the major forceps, 
where one side was measured to be more anisotropic than the 
other. Mean diffusivity maps (Figure  2E,F) showed generally 
good correspondence. Image quality and subsequent DTI mea-
sures and tracking quality were not found to vary substantially 
between individuals, and the results shown herein are a rep-
resentative result of a compliant subject. All participants were 
compliant and tolerated scanning of this duration well, and no 
subjects displayed any badly motion-corrupted volumes, with 
the navigated multi-shot DWI employed offering tolerance to 
isolated incidental movements.

Fibre orientation measures were also broadly comparable be-
tween HF and ULF (Figure 3), though limitations in effective 
resolution were marked, with large fODF lobes spuriously at-
tributed to grey matter and CSF. Reducing the number of direc-
tions and shells available to the HF measurement (Figure 3B) 
demonstrated that the quality of fODF estimation is highly de-
pendent on large numbers of diffusion directions and multiple 
shells. Despite these limitations, CSD correctly estimated the 
orientation of some subcortical fibres, even though DTI metrics 
failed to assign anisotropy to these regions.

3.2   |   Tractography

Tractography derived from orientation maps using manual ROI 
selection showed good coherence in the core of the fasciculus 
(where anisotropy is high), but rapid dispersion when moving 
into more cortical regions (as in Figure 4D). Gradual curvature 
within tracts such as the superior longitudinal fasciculus, arcu-
ate fasciculus and corpus callosum (Figure 4B,F) was correctly 
recovered, suggesting that diffusion data has sufficient SNR to 
produce stable orientation estimates.

A significant fraction of major WM tracts were recon-
structed, including the arcuate, inferior longitudinal, in-
ferior fronto-occipital, uncinate and superior longitudinal 
fasciculi. As well, the cingulum, the upper portion of the for-
nix and the pontine and corticospinal tracts were well recon-
structed. The major interhemispherical corpus callosum was 
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FIGURE 2    |     Legend on next page.
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generally well recovered but showed pronounced morpholog-
ical differences to expected anatomy in the proximity of the 
ventricles, where motion artifacts are expected to be more 
severe.

Application of deep-learning priors through TractSeg resulted in 
much smoother fibre trajectory reconstruction that conformed 
closer to prior expectations of white matter anatomy (as in 

Figure 5), and qualitatively resembled results obtained using the 
semi-automated approach using the same ROIs. Tracts obtained 
using TOM were highly coherent, but the major trunks of bun-
dles still followed approximately the same courses as for CSD-
ACT (see Figure 6). Tracts such as the SLF were reconstructed 
well by TOM (see Figure 7), but semi-automated approaches did 
not perform as well in this large tract with numerous complex 
features.

FIGURE 2    |    Comparison of quantitative diffusion between high- (B, D and F) and ultra-low-field (A, C and E) measures obtained in the same sub-
ject in sagittal, coronal and axial planes. High field measures used 30 directions at b = 1200 s/mm2. (A, B) Diffusion encoded colour maps, weighted 
by FA. Distinct asymmetry is observed between left and right hemispheres in ULF data (arrow 2). This may arise from different spatial noise depen-
dence, or from uncorrected diffusion encoding nonuniformity. (C, D) Fractional anisotropy—FA is noticeably lower in ULF measurements, again 
likely due to the elevated noise floor. Transverse WM is distinctly darker in FA measurements at ULF than in HF (arrow 1), possibly due to the broad 
PSF and partial volume effects causing thinner bundles to appear more diffuse. (E, F) Mean diffusivity—shading is observed in ULF measurements, 
but otherwise there is good correspondence between HF and ULF measures.

FIGURE 3    |    Comparison of fibre orientation distribution plots computed in the same representative subject for the ULF (A), HF with 30 direc-
tions and one shell (B), and HF with 253 diffusion volumes across 6 shells (C). Substantial blurring is apparent in A, with margins of WM structures 
being less well defined and adjacent structures averaging together. Conspicuously this leads to large assigned fibre populations in GM, particularly 
in highly convoluted regions. Comparing A with C shows there is generally good correspondence between ULF and the gold standard measurement. 
Comparing B and C shows the significant impact of a reduced direction count on an otherwise high SNR measurement, with B showing smaller 
bundles having erroneously large lobes, and grey matter with significant anisotropy that is not corroborated by C.
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TractSeg generates vector-valued data at each voxel, for each 
tract considered. This is generated using DL segmentation of 
fibre bundles alongside the voxel-wise vectors describing the 
orientation of the three largest spherical harmonic peaks in 
an input fODF. Consequently, TOM may be viewed as a tract-
specific synthesis of the three largest fibre populations in each 

voxel based on learned priors. For large tracts with dominant 
single-fibre regions, it is expected that the largest SH peak cor-
responds to the tract orientation. Figure 9 shows the orientation 
of the CSD fODF peaks alongside the orientations predicted by 
TOM, as well as the angular difference between the two. This is 
shown for two large tracts with significant single-fibre content, 

FIGURE 4    |    Fibre ODFs and major association tracts retrieved at ULF using manual ROI selection; (A, B) arcuate fasciculus; (C, D) upper portion 
of cingulum; (E, F) SLF I and II. Tracts shown are not cropped to the displayed slice.
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FIGURE 5    |    Whole-brain automated tracking conducted with TractSeg for the five subjects imaged during this study. Major tracts were consis-
tently recovered for all subjects, however some smaller tracts were not.

FIGURE 6    |    Selection of major WM tracts in a single hemisphere of the brain retrieved using automated ROI filtering of the wholebrain tracto-
gram generated with iFoD2 and ACT (left column) and TOM tracking with TractSeg (right column). Visible tracts are the inferior longitudinal fas-
ciculus (ILF), inferior occipito-frontal fasciculus (IFO), parieto-occipital pontine (POPT), uncinate fasciculus (UF), fronto-pontine tract (FPT), cor-
ticospinal tract (CST), arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). TOM and automated filtering show close correspondence, 
though TOM measures are smoother, and truncated upon reaching the cortex.
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the corticospinal tract and the arcuate fasciculus. Deviations are 
below 20 degrees in the majority of the trunk of both tracts, with 
errors increasing in tissues closer to the cortex.

Tracking was broadly consistent across scans, with similar qual-
ity for all 5 subjects (Figure 5). TractSeg was always able to seg-
ment and assign tracking to the corticospinal tract, the arcuate, 
longitudinal, medial lateral, inferior occipito-frontal and unci-
nate fasciculi, both cingula, the anterior thalamic radiation and 
the corpus callosum. As well, most striatal and thalamic tracts 
were retrieved, along with the cerebral peduncles, though not all 
segments were recovered. The fornix and commissure anterior 
were never retrieved by TractSeg.

3.3   |   Artifacts

Significant artifacts were observed in all ULF scans conducted, 
and were of varying consequence in subsequent post-processing. 
Major artifacts and their remediation (if available) were:

•	 Partial voluming arose from the large voxel size employed 
in this study—this was controlled through the application 
of the multi-tissue CSD technique, allowing large voxels to 
remain informative of fibre behaviour.

•	 Diffusion encoding nonuniformity arising from the large 
inhomogeneous B0 field gradient relative to the encoding 
gradients. This was addressed with the magnitude correc-
tion approach outlined in Methods and Appendix A.

•	 Broad point spread functions from T2 attenuation during 
long readouts—these were addressed solely by measures to 
shorten the readout duration.

•	 Smoothly spatially varying intensity modulation, which 
differed between volumes, possibly due to eddy currents or 
motion. These were not addressed in the present study.

Partial voluming in the large voxels used is inevitable, an issue 
exaggerated by movement during the long acquisition. The ef-
fect of this is apparent in the reduced fractional anisotropy in 
narrow fibres measured at ULF vs. HF, as well as in defects 
visible in for example the splenium where the narrow tract co-
incides with the adjacent ventricle (see Figure 2). Regions with 
high CSF content showed apparent fibre content inconsistent 
with high field reference scans and known anatomy (e.g., the 
midsagittal surface as in Figure 8A).

The poor spatial localisation was exacerbated by the broad 
PSF displayed by FSE sequences with high ETL and low band-
width, and resulted in FA values near to zero in fibres distant 
from the medial plane, as well as ambiguous estimates of the 
principal orientation of the diffusion tensor (as in Figure 2A). 
As well, fODFs in thinner tracts such as the cingulum were 
visibly diverted by signal contamination from adjacent voxels 
(Figure 3).

Major artifacts were observed in ODF maps in the form of 
spatially nonuniform responses, and are immediately vis-
ible as an asymmetric response between hemispheres (see 
Figure  8A). This varies spatially over relatively large length 
scales (15–40 mm). This artifact also occurs in DTI-based 
diffusion-encoded colour (Figure  2C) and mean diffusivity 
maps (Figures 2E and 8B), suggesting that nonuniformity in re-
sponse is not related to multi-tissue CSD. This artifact resulted 
in a pronounced drop in tract density within the affected region 
(Figure 8, lower left and right).

4   |   Discussion

This work demonstrates that tractography is achievable even 
on portable, ULF point-of-care systems. Furthermore, it es-
tablishes the viability of 3D diffusion-weighted fast spin echo 
(DW-FSE) as a tractography sequence at ULF, overcoming 

FIGURE 7    |    TractSeg-derived tracking of the superior longitudinal fasciculus, reconstructing the SLF I (blue), II (red) and III (green) bundles.
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significant challenges such as low signal-to-noise ratio (SNR), 
poor magnet homogeneity and long, motion-sensitive read-
outs. The utility of ULF-derived tractography is likely in 
providing lower-cost, low SAR research imaging at scale, for 
instance to provide tract specific quantitative measures suit-
able for measurement at ULF such as magnetisation transfer 
(Balaji et al. 2025) and quantitative T2 and T1 (Lena 2025) met-
rics, as well as diffusion measures that are available by nature 
of the experiment.

While we report the best results to date, errors in computed 
mean diffusivity, fractional anisotropy and ODF scale and shape 
parameters highlight that artifacts as well as noise may con-
found downstream metrics. More artifact-immune sequences 
employing, for example, more sophisticated navigation or mo-
tion correction may reduce these issues to being restricted to 
noise alone. While the results demonstrated are encouraging, 
they also highlight the scale of the challenge facing ULF-based 
tractography. Many tools designed for high-field diffusion pre- 
and post-processing are employed in this work and found to 
translate well to ULF (such as registration, bias correction, auto-
mated segmentation and multi-tissue CSD), whereas other tools 
(such as nonlinear registration schemes and Gibbs deringing) 
were found to work inconsistently.

Several techniques employed in diffusion registration were 
tested in the development of this pipeline. Affine registration 
was found to be effective and robust, with common hierarchi-
cal approaches functioning as intended. The low resolution of 
the base DWIs masked poor registration to a significant degree, 
and indications of thermal drift producing nonidentical defor-
mations were observed. The low consistency between DWIs 
from for example variation in the presentation of motion or eddy 
current artifacts likely exacerbated the other issues with regis-
tration. Registration of structural images to FA template images 
was found to produce non-overlapping skull outlines. Nonlinear 
registration schemes resulted in non-smooth normalisations, 
particularly in the skull and brain boundaries. Highly regula-
rised nonlinear registration to enforce the constraint of long-
range spatially smooth distortions may improve the robustness 
of these methods.

Signal hyperintensities in the DWI data led to underestima-
tion of mean diffusivity and issues with fODF estimates. The 
broad spatial extent of these effects points to several potential 
sources. One candidate is magnetic field nonuniformity—either 
in the gradient fields, B1, or B0—which typically varies smoothly 
across the image. Another possibility is the presence of uncor-
rected gradient moments resulting from eddy currents. These 

FIGURE 8    |    Localised artifact (white arrow) in fODF maps (A) and corresponding hypointensity visible in mean diffusivity images (B). The hy-
pointensity visible in MD maps is diffuse but well localised, suggesting this defect may be readily characterised and corrected. The artifact produced 
pronounced asymmetry in iFOD/ACT tracking of the CST (C), and corresponding wholebrain track density maps (D) corroborate the defect.
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can induce signal loss through residual gradient spoiling, with 
their impact expected to vary depending on the relative orien-
tation of the diffusion-encoding direction and the readout di-
rection. Notably, the artifact produces directional biases in the 
diffusion signal that are most pronounced in the lateral direc-
tions—coincidentally, also the readout direction—suggesting a 
systematic interaction between the acquisition scheme and un-
derlying hardware imperfections.

Constrained spherical deconvolution proved highly effective 
as a model of fibre orientation vs. tensor approaches (Plumley 
et  al.  2022), even when employing relatively sophisticated 
tensor fitting schemes such as RESTORE (Chang et al. 2005, 
2012), and permitted the occurrence of crossing and disper-
sion fibres, which contributed to the quality of the tractogra-
phy possible.

Despite the apparent effectiveness of CSD, the use of low b-
values significantly constrains the effective resolution of fibre 
orientation, particularly in cases with crossing fibres with low 

incidence angles (Tournier et al. 2008, 2013). Comparing CSD 
as a measure of orientation vs. DTI, CSD generally outperforms 
DTI even at a b value of 1000 s mm−2 (Calamuneri et al. 2018), 
and is able to resolve crossing fibres at an 45◦ angle even at this 
b value for a 80-direction scheme at an SNR of 35 (Tournier 
et  al.  2008). Our substantially lower direction count and SNR 
likely significantly impinges on both the accuracy of fibre ori-
entation estimates, and of the resolution of multiple fibre popu-
lations in voxels with complex content. Despite this, prior work 
demonstrates successful resolution of crossing fibres with high 
incidence angles even in this challenging condition (Gholam 
et  al.  2024). This is particularly likely to impact complex and 
smoothly diverging fibre bundles such as those in the associa-
tion pathways depicted in Figure 7. In these, separation of white 
matter pathways is likely driven more by anatomical priors than 
directly by CSD.

Compatibility of the data with automated tractography ap-
proaches would be desirable, as it standardises an other-
wise subjective workflow, as well as greatly speeding up an 

FIGURE 9    |    Visualisations of the angular perturbation produced by tract orientation mapping for two major tracts, the corticospinal tract (top 
row) and the arcuate fasciculus (bottom row). The left column shows the voxel-wise map of the direction of the largest spherical harmonic peak 
(which is used by TractSeg as a basis for TOM alongside higher-order peaks), while the middle column shows the revised, tract-specific orientation 
estimate computed by TOM. The rightmost column shows the angular difference between the two pseudovectors.
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otherwise technical and slow process; however, the encourag-
ing results shown must be validated against high field data in 
a range of populations before this approach can be endorsed. 
Visual inspection suggests a high degree of correspondence 
with more traditional approaches to tractography like ACT, 
with the prior information that tracts are large coherent 
bundles clearly acting to regularise otherwise diffuse track-
ing. How these approaches may bias results, though, is as yet 
untested.

The role of AI in obtaining high quality tractography is sig-
nificant, with these priors occurring in two stages: the first in 
bundle and endpoint segmentations, and the second in tract ori-
entation mapping. Bundle segmentation restricts tracts to begin 
and end in particular regions, and the impact of this prior is vis-
ible comparing Figure 6 with Figure 4B,D,F. In Figure 4, man-
ual ROI selection (itself a prior) correctly recovers the curved 
trajectory of the arcuate (B) and longitudinal fasciculus. These 
two features are similarly visible in Figure 6, though as these are 
derived from endpoint segmentation-filtered ACT rather than 
manual ROI ACT, they show more dispersion as they addition-
ally select fibres in more cortical regions, away from the main 
trunk of the bundle.

Tract orientation mapping also substantially impacts tractog-
raphy, with the strong priors asserted by TractSeg serving to 
regularise incoherency in the vector fields which embody tracts 
(Figure 9). This can be seen to only slightly deflect orientation 
vectors within the central trunk of larger tracts, with angular 
corrections appearing more aggressive in more peripheral and 
more cortical regions of tracts. As TractSeg is also able to use 
higher-order spherical harmonic peaks, it is difficult to extend 
this analysis to finer tracts, as it is less clear which peak (first, 
second or third largest) should be used to compare against.

Overall, it appears that for segmentation of major tracts, man-
ual ROI approaches appear satisfactory; however, the use of 
AI-assisted approaches both simplifies and standardises seg-
mentation while regularising inconsistencies in apparent tract 
orientation arising from noise or uncorrected artifacts. Despite 
promise, the impact of these DL approaches must be carefully 
and quantitatively evaluated for bias and accuracy before being 
incorporated in studies at scale.

While the cinematic rendering shown provides improved vi-
sual clarity and disambiguates complex topologies, it is import-
ant to note that we are still visualising the same interpolated 

FIGURE 10    |    Cinematic renderings of wholebrain tractography obtained using TractSeg, showing how they intersect with the cortical parcel-
lation from FreeSurfer. The combination of tractography and functional parcellation allows estimation of whole-brain connectivity (Planchuelo-
Gomez 2024). Coronal 3D views such as (A) highlight that corticospinal structure is inherently retrieved when using large FOV 3D imaging. (D) 
shows even cerebellar white matter pathways are mapped despite their relatively low diffusion anisotropy. (B) shows detailed depiction of associa-
tion, projection and commissural pathways, while (C) clearly demonstrates the separation of the cingulum from the callosum.
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streamlines that have been presented in tractography studies 
since the late 1990s. The underlying data remain unchanged; 
what differs here is only the rendering style, which improves 
interpretability but does not alter or enhance the tractography 
estimates themselves.

The low inherent SNR and B0 homogeneity of ULF-MRI re-
quires the use of multi-shot imaging methods. DW-FSE provides 
interpretable, relatively robust diffusion encoded imaging with 
long echo trains providing many measurements per excitation. 
T2 attenuation, which occurs during long readouts results in sig-
nificant blurring arising from the reduced echo amplitude at the 
k-space periphery. This results in an echo-train length (ETL) de-
pendant point-spread function (Zhou et al. 1993), which, along-
side the low spatial resolution, prevents the recovery of smaller 
tracts or those in dense WM regions.

While diagnostic ULF-DWIs typically use high-resolution 
in-plane and thick slices, diffusion tractography instead ben-
efits from isotropic resolution so as not to produce biased 
results in certain directions (Oouchi et  al.  2007). Reduction 
of the in-plane resolution to make voxels isotropic benefits k-
space SNR, as this is higher at more central k-space locations 
than more peripheral ones. This facilitates the use of longer 
echo trains than might otherwise be used for diagnostic se-
quences, and this work found extended ETLs significantly 
beyond those typical at ULF conferred substantial benefit to 
SNR-per-unit-time.

Corrections are demonstrated that address some of the issues 
that prevent immediate use of data for quantitative DWI and 
identify other issues that remain to be addressed. Significant 
work is still required to address some of the defects observed 
in the data, particularly spatial variation from gradient nonuni-
formity and static field gradients. Expectations of encoding uni-
formity that are typical at high field are shown to be erroneous 
in DW-ULF, and current tools for signal analysis fail to address 
this concern.

In conclusion, this study represents the first successful demon-
stration of anatomically faithful reconstructions of white matter 
pathways at ultra-low (64mT) field strength. With the rapid pro-
liferation of low-field MRI systems in low- and middle-income 
countries (LMICs), this breakthrough has the potential to rev-
olutionize neuroimaging, enabling the study of white matter 
architecture in regions where it was previously inaccessible. 
Having established the feasibility of tractography at ultra-low 
field strengths, future research will focus on enhancing the ro-
bustness of microstructural parameter quantification (tractom-
etry) within these tracts. This is where we foresee the greatest 
impact, as it will enable truly democratized access to advanced 
neuroimaging techniques, facilitating broad applications in 
both research and clinical settings.
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Appendix A

Presuming the spatially dependent inhomogeneous field B0(r) contrib-
utes a significant spatially dependent gradient:

we may consider an expression for a perturbation to the effective b-
value and direction of the gradient during diffusion encoding. The ef-
fective encoding direction is given by

where GD(t) is the prescribed, time-varying diffusion gradient and 
Ge(r, t) is the effective diffusion gradient. Assuming encoding is dom-
inated by that which occurs while GD(t) plays, we can readily model 
the contribution to individual terms of the spatially dependent b-matrix 
bij(r). We describe the spatially varying phase encoding given a gradient 
vector G(r, t) as F(r, t):

which is used to compute the pairwise components of the b-matrix in 
the scanner's frame of reference:

We can see from this that the effect of a static field gradient on typi-
cal Stejskal-Tanner encoding is to both rotate and scale the encoding 
gradient. Rotation effects are relatively small for large ratios of GD to 
G(r), even for orthogonal gradients. A large inhomogeneity field with 
the static gradient orthogonal to the prescribed gradient, with a length 
ratio of 20:1 would produce a rotation of the effective encoding of 2.9◦. 
Comparatively, scaling effects on the interpretation of diffusion encod-
ing are comparatively significant and more pronounced when the pre-
scribed and static gradients are colinear. Using the G2 scaling implied 
by Equation (A4), the true encoding magnitude will vary with the qua-
dratic of Equation (A2). The effective scaling of the encoding magnitude 
from that prescribed may be considered as a scalar a multiplying the b 
value that is

And this expression is used to modify the Stejskal-Tanner signal 
equation:

it is possible to modify the measured signal given knowledge of S0 
and  the scaling factor a, which scales approximately with the ratio 
(

1+
GD

G(r)

)2

. The actual impact of this effect then is highly dependent on 

both the diffusion encoding gradient used and the severity of the 
inhomogeneity.

Though the correction demonstrated is suitable for magnitude correc-
tion of encoding errors, we may alternatively solve for a spatially de-
pendent b-matrix, as is used for magnetic field gradient inhomogeneity 
correction. Though this method is more general, it does not readily 
extend to CSD where a single response function representative of all 
voxels is required.

(A1)G(r) =
�B0(r)

�x
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�B0(r)

�y
+
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TE
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0
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dt�

(A4)bij(r) =
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)
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