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Abstract:
Acute myeloid leukemia (AML) is a complex hematological malignancy with multiple disease sub-groups
defined by somatic mutations and heterogeneous outcomes. Although genome-wide association studies
(GWAS) have identified a small number of common genetic variants influencing AML risk, the
heritable component of this disease outside of familial susceptibility remains largely undefined.
Here we perform a meta-analysis of four published GWAS plus two new GWAS, totalling 4710 AML cases
and 12938 controls. We identify a new genome-wide significant risk locus for pan-AML at 2p23.3
(rs4665765; P=1.35x10-8; EFR3B, POMC, DNMT3A, DNAJC27) which also significantly associates with
patient survival (P=6.09x10-3). Our analysis also identifies three new genome-wide significant risk
loci for disease sub-groups, including AML with deletions of chromosome 5 and/or 7 at 1q23.3
(rs12078864; P=7.0x10-10; DUSP23) and cytogenetically complex AML at 2q33.3 (rs12988876; P=3.28x10-
8; PARD3B) and 2p21 (rs79918355; P=1.60x10-9; EPCAM). We also investigated loci previously
associated with risk of clonal hematopoiesis (CH) or clonal hematopoiesis of indeterminate
potential (CHIP) and identified several variants associated with risk of AML. Our results further
inform on AML etiology and demonstrate the existence of disease sub-group specific risk loci.
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numbers GCST90707271, GCST90707272, GCST90707273, GCST90707274). Data availability for 107 

cases and controls recruited to GWAS1, GWAS2, GWAS3 and GWAS4 has been reported 108 
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National Institute for Health and Welfare (THL) Biobank of Finland (https://thl.fi/en/research-and-111 

development/thl-biobank). Genotyping data for GWAS6 cases are available via the NCBI Gene 112 

Expression Omnibus under accession numbers GSE211078 113 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM527831, GSE6132310 114 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61323, GSE234529 115 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23452. 116 

Genotyping data for GWAS6 controls are available via application to the database of Genotype and 117 

Phenotype (dbGAP)(10.1038/ng1007-1181) under accession number phs000021 (GAIN: Genome-118 

Wide Association Study of Schizophrenia). 119 

 120 

eQTL data is available from the eQTLGen consortium via http://www.eqtlgen.org/cis-eqtls.html.  121 

URLs: Michigan Imputation Server, https://imputationserver.sph.umich.edu/index.html#!; Haplotype 122 

Reference Consortium, http://www.haplotype-reference-consortium.org/; eQTLGen Consortium, 123 

http://www.eqtlgen.org/cis-eqtls.html; 1000 Genomes Project, https://www.internationalgenome.org/; 124 

PLINK, https://www.cog-genomics.org/plink2/; SNPTEST2, https://www.well.ox.ac.uk/~gav/snptest/ 125 

 126 

 127 

Key points 128 

 Discovered novel susceptibility loci for pan-AML and disease subtypes, including risk 129 

variants common to both clonal hematopoiesis and AML. 130 

 Discovered a novel AML susceptibility variant on chromosome 2p23.3 (localised to 131 

DNMT3A) that also associates with patient survival.  132 
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Abstract 133 

Acute myeloid leukemia (AML) is a complex hematological malignancy with multiple disease sub-134 

groups defined by somatic mutations and heterogeneous outcomes. Although genome-wide 135 

association studies (GWAS) have identified a small number of common genetic variants influencing 136 

AML risk, the heritable component of this disease outside of familial susceptibility remains largely 137 

undefined. Here we perform a meta-analysis of four published GWAS plus two new GWAS, totalling 138 

4710 AML cases and 12938 controls. We identify a new genome-wide significant risk locus for pan-139 

AML at 2p23.3 (rs4665765; P=1.35x10-8; EFR3B, POMC, DNMT3A, DNAJC27) which also 140 

significantly associates with patient survival (P=6.09x10-3). Our analysis also identifies three new 141 

genome-wide significant risk loci for disease sub-groups, including AML with deletions of 142 

chromosome 5 and/or 7 at 1q23.3 (rs12078864; P=7.0x10-10; DUSP23) and cytogenetically complex 143 

AML at 2q33.3 (rs12988876; P=3.28x10-8; PARD3B) and 2p21 (rs79918355; P=1.60x10-9; EPCAM). 144 

We also investigated loci previously associated with risk of clonal hematopoiesis (CH) or clonal 145 

hematopoiesis of indeterminate potential (CHIP) and identified several variants associated with risk of 146 

AML. Our results further inform on AML etiology and demonstrate the existence of disease sub-147 

group specific risk loci.  148 
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Introduction 149 

Acute myeloid leukemia (AML) is the most common acute leukemia in Europeans and comprises 150 

multiple sub-groups defined by somatic genetic/epigenetic alterations and heterogenous clinical 151 

outcomes1. The existence of rare constitutional genetic variants predisposing to AML with high 152 

penetrance demonstrates a role for genetics in disease susceptibility2,3. However, strong familial 153 

susceptibility to AML is rare, and the prevailing evidence suggests that for the majority of individuals 154 

the genetic risk for AML is determined by co-inheritance of multiple independent low penetrance 155 

genetic variants4–6. 156 

 157 

To identify novel AML risk loci we conducted a meta-analysis of four published genome-wide 158 

association studies (GWAS)6 and two new GWAS, incorporating 4710 AML cases and 12938 159 

controls of European ancestry, and report the identification of new pan-AML and AML sub-group 160 

specific risk loci. This is the largest AML GWAS to date and provides further evidence for the 161 

existence of common low-penetrance susceptibility alleles, as well as evidence for heterogeneity in 162 

genetic risk across disease sub-groups. 163 

 164 

Methods 165 

Study Participants 166 

GWAS1, GWAS2, GWAS3 and GWAS4 comprised 1119, 931, 991 and 977 AML cases, 167 

respectively, and 2671, 2477, 1612 and 3728 controls, respectively, as described previously6. GWAS5 168 

comprised 351 cases from the Finnish Hematology Registry and Clinical Biobank genotyped on the 169 

Illumina Omni Express Exome BeadChip. For controls, we used publicly available Illumina Omni 170 

Express Exome BeadChip data on 1055 individuals from The National Institute for Health and 171 

Welfare (THL) Biobank of Finland (Health 2000 and Health 2011 studies). GWAS6 comprised 172 

Affymetrix SNP6.0 array data on 341 AML cases of European ancestry recruited to The Cancer 173 

Genome Atlas (TCGA) project (phs000178/GRU)7 or via hematology clinics at the University of 174 

Michigan Comprehensive Cancer Center8–10. For controls, we used Affymetrix SNP6.0 array data on 175 

1395 healthy individuals of European ancestry from the GAIN: Genome-Wide Association Study of 176 

Schizophrenia project (phs000021/GRU). 177 

 178 

Collection of patient samples and associated clinico-pathological information was undertaken with 179 

written informed consent. All studies were conducted in accordance with the Declaration of Helsinki 180 

and received local institutional review board or national research ethics approval. For GWAS5, ethical 181 

approval was granted by the Finnish Hematology Registry and Clinical Biobank (FHRB) and by the 182 

THL biobank (BB2018_63). For GWAS6, AML cases recruited via the University of Michigan 183 

Comprehensive Cancer Center was approved by the University of Michigan Institutional Review 184 
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Board (IRBMED #2004-1022). Access to the TCGA AML cases and GAIN controls was approved by 185 

the National Institute of Health (#9683). Information on ethical approvals for all other studies has 186 

been reported previously
6
 187 

 188 

Genotyping and genome-wide quality-control procedures 189 

Genotype calling was performed using Illumina GenomeStudio software or Affymetrix Genotyping 190 

Console software v4.2.0.26. Data handling and analysis was performed using R v4.2.1, PLINK 191 

v1.9b4.4 and SNPTEST v2.5.6. Rigorous variant and sample quality control metrics were applied to 192 

all six GWAS (Supplementary Figure 1). Specifically, we excluded variants with a call rate less than 193 

95%, with departure from Hardy-Weinberg equilibrium (HWE; P<10-3) or with significant differences 194 

(P<0.05) in missingness between cases and controls. Individual samples with a call rate of <95% or 195 

with extreme heterozygosity rates (+/- 3 standard deviation) were also excluded. Individuals were 196 

removed with estimated relatedness pihat >0.1875, both within and across GWAS. Ancestry was 197 

assessed using principal component analysis and super-populations from the 1000 genomes project as 198 

a reference, with individuals of non-European ancestry excluded based on the first two principal 199 

components (Supplementary Figures 2, 3 and 4)6. 200 

 201 

The majority of AML cases were genotyped using DNA extracted from cell/tissue samples (blood and 202 

bone marrow) taken during AML remission. For GWAS5, AML cases were primarily genotyped 203 

using DNA extracted from cell/tissue samples (blood and bone marrow) taken during disease 204 

presentation. We employed a stringent HWE cut-off in order to eliminate SNPs potentially affected by 205 

somatic copy number alterations. Furthermore, we also used Nexus Copy Number v10 (Bionano 206 

Genomics, California) data from 351 AML cases genotyped using samples with high somatic cell 207 

content to interrogate Log R ratio and B allele frequency at loci carrying risk variants for AML 208 

susceptibility. We found no significant evidence of somatic alterations affecting the risk loci at 209 

11q13.2 (rs11421) or 6p21.32 (rs3916765)6. For the risk locus at 2p23.3 (rs4665765; EFR3B, POMC, 210 

DNMT3A, DNAJC27) we identified 4 cases with deletions and one case with gain. For the risk locus 211 

at 1q23.2 (rs12078864; DUSP23) we identified 3 cases with trisomy 1 and one case with a 1q gain. 212 

For the risk locus at 2p21 (rs79918355; EPCAM) we identified one case with a gain and one case with 213 

a deletion. For the risk variant at 2q33.3 (rs12988876; PARD3) we identified 1 case with a deletion. 214 

These data suggest that significant genotyping errors due to somatically acquired allelic imbalance in 215 

AML cases are unlikely. 216 

 217 

Imputation, genome-wide association testing and meta-analysis 218 

Genome-wide imputation was performed using the Michigan Imputation Server 219 

(https://imputationserver.sph.umich.edu/index.html) and the Haplotype Reference Consortium 220 

reference haplotype panel (http://www.haplotype-reference-consortium.org/) following pre-phasing 221 
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using ShapeIT (v2.r790)11. All variants with an INFO score <0.6 or a MAF <0.02 were excluded from 222 

subsequent analysis.  223 

 224 

For each GWAS, association tests were performed for all cases (pan-AML), cytogenetically normal 225 

AML, complex karyotype AML and AML with deletions of chromosome 5 and/or 7, assuming an 226 

additive genetic model with nominally significant (P<0.05) principal components included in the 227 

analysis as covariates. Association summary statistics were combined for all six GWAS, in fixed 228 

effects models. Individual GWAS with less than 50 cases in any sub-group were excluded from 229 

subtype specific analyses. Cochran’s Q statistic was used to test for heterogeneity and the I2 statistic 230 

was used to quantify variation due to heterogeneity. Conditional analysis was conducted using the 231 

GCTA conditional and joint analysis (COJO) pipeline v1.94.4. A stepwise model selection with a 232 

GWAS P value cut-off of 5x105 and collinearity cutoff of 0.9 was used to select independent 233 

associations from the summary statistics. 234 

 235 

Fine mapping and functional annotation of causal SNPs 236 

Sum of single effects (SuSiE) model was used in conjugation with PolyFun, to incorporate functional 237 

annotations as precomputed prior causal probabilities to improve statistical fine-mapping accuracy. 238 

Five GWAS significant loci from three AML subtypes were run through the pipeline to deduce 95% 239 

credible sets assuming a maximum of five causal variants per locus (K=5). In-sample LD was 240 

calculated from the controls (N=12938) using LDstore 2.0. The SNP2GENE tool within the FUMA 241 

pipeline (https://fuma.ctglab.nl) was used for functional annotation of fine-mapped causal variants, 242 

which included positional mapping, functional consequences on genes using ANNOVAR and 243 

chromatin interaction mapping.  244 

 245 

Relationship between AML susceptibility variant genotype and patient survival 246 

The relationship between AML risk variants and overall survival was evaluated in a total of 1725 247 

AML patients (excluding acute promyelocytic leukemia) from the UK
12,13

, Germany
14,15

, Hungary, 248 

Finland (https://www.fhrb.fi/) and the United States7–10. Patients were treated with conventional 249 

intensive AML therapy including ara-C, daunorubicin and best supportive care. A subset of high-risk 250 

patients in the German cohort were treated with stem cell transplantation15. Overall survival was 251 

defined as the time from diagnosis to the date of last follow-up or death from any cause. Cox 252 

regression analysis was used to estimate allele specific hazard ratios and 95% confidence intervals. In 253 

order to control for index (collider) bias potentially introduced during the selection of cases for the 254 

survival analysis, we applied the corrected weighted least squares (CWLS) method16, which uses the 255 

slope of a weighted regression of prognostic variants on risk variant associations as the bias correction 256 

factor to re-estimate the effects of variants on disease progression. We used 52408 LD pruned 257 
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(r2<=0.1, 250 kb SNP window) post-imputation variants with ≥0.98 imputation score as independent 258 

instrument variables from the GWAS summary statistics. 259 

 260 

Interrogation of previously reported CH/CHIP variants as AML susceptibility variants 261 

A total of 59 statistically significant (P<5x10-8) variants were identified from published GWAS 262 

analyses of clonal haematopoiesis (CH), clonal haematopoiesis of indeterminate potential (CHIP) and 263 

their subtypes stratified by the two primary CH genes, DNMT3A and TET2. From Kar et al. (2022)17, 264 

15 independent lead variants that replicated in the UK Biobank cohort and that retained significance 265 

after conditioning on the lead variants were identified from analyses of pan-CH, DNMT3A mutation-266 

positive CH and TET2 mutation-positive CH. From Kessler et al (2022)18, 52 lead variants were 267 

identified by LD thresholding and then by replication in the Geisinger MyCode Community Health 268 

Initiative (GHS) cohort from analyses of pan-CHIP, DNMT3A mutation-positive CHIP and TET2 269 

mutation-positive CHIP. We also included the independent lead variant at the TCL1A locus 270 

(rs2887399) from the CHIP GWAS reported by Weinstock et al (2023)19. Pan-AML and 271 

cytogenetically normal AML association P values were adjusted for multiple testing using Bonferroni 272 

correction. 273 

 274 

We also interrogated the lead AML susceptibility variants identified in our study in the CH/CHIP 275 

datasets reported Kar et al (2022)17 and Kessler et al (2022)18.   276 

 277 

 278 

Results 279 

Meta-analysis of AML genome-wide association studies (GWAS) 280 

We conducted 6 independent genome-wide association studies with AML cases and controls of 281 

European ancestry (GWAS1-6), four of which (GWAS1-4) have been reported previously6. A total of 282 

4710 AML cases and 12938 healthy controls passed the study level quality control (Supplementary 283 

Figures 1-4) with common autosomal single nucleotide variants numbering between 250880 to 284 

436068 genotyped across the 6 GWAS. We further improved the genomic resolution by imputing >7 285 

million variants using the Haplotype Reference Consortium panel20. After excluding variants with an 286 

INFO (imputation quality) score of <0.6 and a minor allele frequency (MAF) <0.02, association tests 287 

were conducted for 5646403 autosomal variants common to all 6 GWAS. Considering the genetic and 288 

biological heterogeneity of AML, we calculated odds ratios (OR) for all AML cases (pan-289 

AML)(N=4710) and three major AML subtypes; cytogenetically normal AML (N=1580), complex 290 

karyotype AML (N=358) and AML with deletions affecting chromosome 5 and/or chromosome 7 291 

(del(5/7) AML)(N=319)21. Nominally significant (P<0.05) principal components in each GWAS were 292 

used as covariates to control inflation of the test statistic (0.99>λGC<1.07) for each analysis 293 

(Supplementary Figures 5–8).  294 

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2025031266/2501812/blood.2025031266.pdf by guest on 12 February 2026



 

 

 

10 

 295 

Meta-analysis of six GWAS identified the previously reported signal for pan-AML at 11q13.2 296 

(KMT5B, CHKA, ALDH3B1, NDUFS8, TCIRG1)
6
, although with a new lead variant at this locus 297 

(rs11481 (MAF 0.34, INFO scores 0.83-0.96), P = 3.58 x 10-8) located 100 kb centromeric to the 298 

previous lead variant (rs4930561) (r2=0.26) (Figures 1 and 2)6. Meta-analysis also identified a new 299 

signal for pan-AML surpassing genome-wide significance at 2p23.3 (rs4665765 (MAF 0.46, INFO 300 

scores 0.98-0.99); P =1.35x10-8; EFR3B, POMC, DNMT3A, DNAJC27) (Figures 1 and 2). Meta-301 

analysis of cytogenetically normal AML across six GWAS studies identified the previously reported 302 

signal at 6p21.32 (rs3916765 (MAF 0.12, INFO scores 0.90-0.99), HLA-DQA2)6 (Figures 1 and 2), 303 

which has also been validated in an independent study22. However, our analysis did not reveal any 304 

new signals for cytogenetically normal AML surpassing the threshold for genome-wide significance. 305 

Meta-analysis of GWAS with sufficient cases in each sub-group identified genome-wide significant 306 

association signals for del(5/7) AML at 1q23.2 (rs12078864 (MAF 0.31, INFO score 0.83-0.96), P = 307 

7.0 x 10−10, DUSP23) and for complex karyotype AML at 2p21 (rs79918355 (MAF 0.028, INFO 308 

score 0.62-0.96), P = 1.6 x 10-9, EPCAM) and 2q33.3 (rs12988876 (MAF 0.042, INFO score 0.82-309 

0.94), P = 3.28 x 10-8, PARD3B) (Figures 1 and 2). 310 

There was no significant evidence of heterogeneity (P<0.05) for association with AML for any of the 311 

risk variants across the GWAS included in each meta-analysis (Figure 2). Analysis conditioning on 312 

the top variant at each susceptibility locus did not identify any evidence of additional associations 313 

(P<10−4), with the exception of the signal at 6p21.32 (HLA-DQA2) for cytogenetically normal AML 314 

(rs1794275, P=1.92x10-5) (Supplementary Figures 9-14). 315 

Statistical fine-mapping of AML association signals 316 

To determine the most credible causal variant at each association signal we conducted statistical fine-317 

mapping using sum of single effects (SuSiE) model incorporating functional annotations of variants as 318 

prior probabilities to improve fine-mapping accuracy.  319 

Fine-mapping indicated one 95% credible set for the pan-AML signal at 2p23.3, which captured the 320 

lead variant rs4665765 at this locus (OR 1.16, 95% CI 1.10-1.22; P=1.35x10−8) in high LD (r2>0.8) 321 

with rs2164808 (OR 1.16, 95% CI 1.10-1.22; P=1.38x10−8). Based on the posterior inclusion 322 

probability (PIP), rs2164808 (PIP=0.75) was considered the most likely causal SNP over the lead 323 

SNP (PIP=0.24) at 2p23.3 (Supplementary Figure 15a, Supplementary Table 7). rs2164808 maps to 324 

exon 23 of EFR3B and is a nonsense variant with a CADD score of 16.5 (Supplementary Table 1). Of 325 

note, this variant is located within 200 kb of DNMT3A (Figure 2), which is frequently somatically 326 

mutated in AML1,23. Interrogation of data from the eQTLGen consortium identified rs2164808 as a 327 

significant cis-expression quantitative trait locus (eQTL) for DNMT3A (P=2.867x10-4) as well as 328 

DNAJC27 (P=7.27x10-28), CENPO (P=3.09x10-5), POMC (P=1.98x10-3) and ADCY3 (P=3.66x10-3) 329 
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(Supplementary Table 2), suggesting that this variant (or genetically linked variants in linkage 330 

disequilibrium) affects expression of numerous local genes. 331 

Fine mapping of the pan-AML signal at 11q13.2 indicated one credible set, with lead variant rs11481 332 

(OR 1.17, 95% CI 1.11-1.24; P=3.58x10-8) also identified as the most credible causal variant 333 

(PIP=0.87) (Supplementary Figure 15b, Supplementary Table 7). rs11481 maps to RP11-802E16.3 334 

(ENSG00000255031), a noncoding natural antisense transcript (ncNAT) to CHKA with a CADD 335 

score of 11.2 (Supplementary Table 1). rs11481 is a significant cis-eQTL for ALDH3B1 (P=4.86x10-336 

44), RP5-901A4.1 (P=4.56x10-41), RP11-802E16.3 (P=1.84x10-20) CHKA (P=7.14x10-11), NDUFS8 337 

(P=4.05x10-10), DOC2GP (P=3.01x10-5), TBC1D10C (P=3.47x10-3) and MRPL21 (P=4.45x10-2) 338 

(Supplementary Table 3).  339 

Two variants were included in the 95% credible set for the complex karyotype signal at 2p21. The 340 

lead variant at this locus (rs79918355, OR 2.80, 95% CI 2.0-3.91; P=1.6x10-9) was implicated as the 341 

most credible causal variant (PIP=0.91) (Supplementary Figure 16a, Supplementary Table 7), which 342 

localises to an intronic region of the AC073283.4 long non-coding RNA and is a significant cis-eQTL 343 

for MCFD2 (P=1.04x10-5) and MSH2 (P=7.23x10-3)(Supplementary Table 4).  344 

The complex karyotype AML signal at 2q33 fine-mapped to one credible set only including the lead 345 

variant at this locus (rs12988876, OR 2.29, 95% CI 1.71-3.08; P=3.28x10-9, PIP=0.99) 346 

(Supplementary Figure 16B), which maps intronic to and is a significant eQTL for PARD3B (P=0.03) 347 

(Supplementary Table 5). 348 

One 95% credible set was deduced from the del(5/7) AML association signal on chromosome 1q23.2, 349 

capturing the top 8 SNPs at this locus. The lead variant at this locus (rs12078864, OR 1.72, 95% CI 350 

1.45 – 2.04; P=7x10−10) was identified as the most credible causal variant (PIP=0.46) (Supplementary 351 

Figure 17 and Table 7) and is a significant cis-eQTL for DUSP23 (P=7.99x10-84), SLAMF8 352 

(P=3.56x10-11), PEX19 (P=1.82x10-3), DARC (P=6.01x10-3), FCRL6 (P=1.49x10-2), C1orf204 353 

(P=2.23x10-2), FCER1A (P=2.23x10-2), RP11-404F10.2 (P=4.78x10-2) and CD84 (P=4.91x10-354 

2)(Supplementary table 6). 355 

Reported risk variants for clonal hematopoiesis (CH), Clonal haematopoiesis of indeterminate 356 

potential (CHIP) and their association with AML. 357 

Clonal haematopoiesis (CH) is an age-related non-malignant condition defined by the expansion of 358 

haematopoietic stem cells (HSC) and progenitor cells in healthy individuals following the acquisition 359 

of somatic driver mutations. Clonal haematopoiesis of indeterminate potential (CHIP) is CH driven by 360 

a somatic mutation in a gene recurrently mutated in myeloid malignancy (variant allele frequency 361 

≥0.02), with DNMT3A, TET2 and ASXL1 being the most commonly affected24. The presence of CH 362 
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identifies individuals with an increased risk of developing AML25 and recent studies have reported 363 

constitutional genetic variants associated with risk of developing CH17–19,26,27.  364 

A total of 59 CH/CHIP risk variants reported by Kar et al. 202217, Kessler et al. 202218 and Weinstock 365 

et al. 202319 were annotated in our AML GWAS. Of these, 7 CH/CHIP variants were significantly 366 

associated with risk of either pan-AML or CN-AML after correction for multiple testing, including 367 

variants at the TERT locus (rs2736100, rs2853677, rs7705526), the ATM locus (rs10890839, 368 

rs11212666, rs228606) and the MSI2 locus (rs188761458) (Figure 4). The risk of AML for all 7 369 

variants was in the same direction as the reported risk of CH/CHIP. A further 18 reported CH/CHIP 370 

variants were nominally significantly associated with risk of either pan-AML or CN-AML (P<0.05), 371 

but these did not retain significance after correction for multiple testing (Supplementary Table 8). For 372 

14 of these 18 variants, the risk of AML was in the same direction as the reported risk of CH/CHIP 373 

(Supplementary Table 8). The remaining 4 variants were all at the TCL1A locus and the reported risk 374 

of CH/CHIP was in opposing directions for TET2-mutated and DNMT3A-mutated CH/CHIP17,18. 375 

However, the risk of AML was in the same direction as the risk of TET2-mutant CH/CHIP for all 4 376 

variants (Supplementary Table 8). In summary, 7 risk variants for CH/CHIP were significantly 377 

associated with AML, providing further evidence for shared genetic susceptibility between these 378 

conditions. 379 

 380 

All 6 AML susceptibility variants reported in our study were annotated in the CH/CHIP datasets 381 

published by Kar et al (2022)17 and/or Kessler et al (2022)18, but none were significantly associated 382 

with risk of CH/CHIP after multiple testing correction (Supplementary Table 9). However, one 383 

variant at the 11q13.2 risk locus for pan-AML (rs11481, CHKA) was nominally significantly 384 

associated with risk of CH (OR 1.04, 95% CI 1.00-1.07, P=0.024)17, but this did not retain 385 

significance after correction for multiple testing (Supplementary Table 9). 386 

 387 

Risk variants for AML and their impact on patient survival 388 

The relationship between the identified AML risk variants and survival was evaluated in 1725 AML 389 

patients from the UK, Germany, Hungary, Finland and the United States of America. Five of the six 390 

AML susceptibility variants identified via GWAS (rs11481 (11q13.2, CHKA), rs3916765 (6p21.32, 391 

HLA-DQA2), rs12078864 (1q23.2, DUSP23), rs79918355 (2p21, EPCAM), rs12988876 (2q33.3, 392 

PARD3)) were not significantly associated with overall survival in univariate analysis (Supplementary 393 

Figure 18) prior to or after index bias correction (Supplementary Figure 18). However, the pan-AML 394 

risk variant at 2p23.3 (rs4665765, EFR3B, POMC, DNMT3A, DNAJC27) was nominally significantly 395 

associated with overall survival (HR 1.13, 95% CI 1.04-1.24, P=6.09x10-3), with the risk allele for 396 

AML being associated with inferior outcome. This variant retained significance with an increased 397 
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effect size after index bias correction (HR 1.25, 95% CI 1.14-1.38, P=3.89x10-6) and after adjustment 398 

for multiple testing (P=2.33x10-5) (Supplementary Figure 18).  399 
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Discussion 400 

By conducting a meta-analysis of six independent genome-wide association studies we report two 401 

pan-AML susceptibility loci and four AML sub-group-specific loci, two of which are reported 402 

previously6. We used statistical and functional fine-mapping methods to identify the most credible 403 

causal variant at each locus and were able to prioritize high confidence genes which could serve as 404 

strong candidates for functional validation experiments. 405 

We explored three genes localised to the pan-AML susceptibility signal at 2p23.3. The most credible 406 

causal variant (rs2164808) at this locus introduces a premature stop codon in EFR3B. The EFR3A/B 407 

family are paralogous proteins that contribute to AT1 signalling regulating G-protein-coupled 408 

receptors28. EFR3B and EFR3A also form a complex to recruit phosphatidylinositol 4-kinase (PI4K) 409 

to the plasma membrane, with high expression of PI4K associated with inferior survival in myeloid 410 

leukemia29. The lead variant and most credible causal variant at this locus are both cis-eQTL for 411 

DNAJC27 (RBJ), which encodes small GTPase that promotes development of numerous human 412 

cancers via MEK/ERK signalling30–32. Of note, the most credible causal variant is located within 200 413 

Kb of DNMT3, encoding a DNA methyltransferase that is frequently somatically dysregulated in 414 

AML1, where loss of function disrupts global genomic methylation in hematopoietic progenitor cells 415 

leading to leukemogenesis23,33. Intriguingly, the AML risk variant is also significantly associated with 416 

inferior overall survival.  417 

The new lead variant at the 11q13.2 pan-AML association signal (rs11481) localises to the CHKA 418 

gene and is in modest genetic linkage with the variant (rs4930561) (linkage disequilibrium r2=0.26) 419 

previously reported to be associated with pan-AML localised to the KMT5B gene6. Analysis 420 

conditioning on rs11481 did not identify any evidence of additional associations (P<10-4) at this locus, 421 

suggesting that both variants are part of the same association signal. rs11481 maps to a noncoding 422 

exonic region of CHKA, and specifically to a noncoding natural antisense transcript (ncNAT) RP11-423 

802E16.3 (ENSG00000255031). Although ncNATs are regulatory RNA molecules that modulate 424 

cellular processes such as growth and differentiation, their role in cancer pathogenesis remains 425 

unknown. However, there is evidence that RP11-802E16.3 regulates expression of CHKA34. 426 

Consistent with this model, rs11481 is a significant cis-eQTL for CHKA (P=7.14x10-11), where high 427 

expression drives tumour progression and metastasis of several human cancer35–37. Moreover, 428 

expression of CHKA is implicated in the pathogenesis of B-cell malignancies and T-ALL via 429 

promotion of cell survival and proliferation38. rs11481 is also a significant cis-eQTL for ALDH3B1 430 

(P=4.86x10-44) and NDUFS8 (P=4.05x10-10). ALDH3B1 encodes a member of the aldehyde 431 

dehydrogenase superfamily that protects cells from oxidative stress by catalysing the reversible 432 

oxidation of endogenous and exogenous aldehydes39. High expression of aldehyde dehydrogenase 433 

family members is associated with chemotherapy resistance and inferior survival in AML40. 434 
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Furthermore, AML stem cells are acutely sensitive to small molecule inhibitors of aldehyde 435 

dehydrogenases, identifying this family of enzymes as a therapeutic vulnerability in AML41. NDUFS8 436 

encodes a subunit of the mitochondrial NADH:ubiquinone oxidoreductase complex I, responsible for 437 

NADH oxidation as part of the respiratory chain42. Rare constitutional variants in NDUFS8 are 438 

associated with attenuated mitochondrial respiration in AML cells and are mutually exclusive with 439 

somatically acquired mutations in isocitrate dehydrogenase 1 (IDH1)43, suggesting two alternative 440 

genetic mechanisms via which mitochondrial function is dysregulated in AML pathogenesis. 441 

Although rs11481 is not a cis-eQTL for KMT5B (SUV420H1), a role for this lysine methyltransferase 442 

cannot be excluded.  KMT5B is frequently silenced via hypermethylation in numerous human 443 

cancers44–46 and somatic mutation is reported in transformation of myelodysplastic syndrome to 444 

AML47. 445 

We report two signals significantly associated with risk of complex karyotype AML, at 2p21 and 446 

2q33. The most likely causal variant at 2p21 (rs79918355) is a cis-eQTL for MCFD2, which encodes 447 

a protein that, along with LMAN1, forms a cargo receptor complex for transport of coagulation 448 

factors48. Rare constitutional variants in MCFD2 cause combined deficiency of coagulation factor V 449 

and VIII, a recessive bleeding disorder49. MCFD2 also has a role in the regulation of stem cell 450 

survival and pluripotency50,51 and somatic mutations have been reported in leukemic cells from 451 

Fanconi anemia patients who developed AML52, a disease which often presents with a complex 452 

karyotype due to inherent chromosome instability53. The lead variant at the 2q33 signal for complex 453 

karyotype AML (rs12988876) maps intronic to PARD3B and is an eQTL for this gene (P=0.03).  454 

PARD3B encodes a member of the PARD3 family of proteins that regulate cell polarity and 455 

centrosome localization54. PARD3B is a homologue of PARD3, which also functions as a scaffolding 456 

protein that interacts with numerous intracellular signalling molecules, many of which are 457 

dysregulated in cancer, including members of the PI3K/AKT and MAPK pathways such as PTEN and 458 

JNK54. PARD3B is implicated in prostate cancer aetiology and expression levels have been associated 459 

with survival in both colorectal and breast cancer 55,56, suggesting a potential role in numerous human 460 

cancers. 461 

The lead variant at the 1q23.2 signal for del(5/7) AML is a significant cis-eQTL for DUSP23 and 462 

SLAMF8. DUSP23 encodes a dual specific phosphatase that regulates MAP kinase signalling, 463 

impacting cell proliferation, growth and survival57. DUSP23 also plays a role in regulating cell 464 

adhesion/migration58 and high expression in blast cells is as an independent prognostic marker for 465 

inferior survival in AML59. High DUSP23 expression is also reported in CD4+ T-cells from patients 466 

with systemic lupus erythematosus, where it is thought to regulate DNA methyltransferase activity, 467 

including DNMT3A, which is frequently dysregulated in AML via somatic mutation1,23. SLAMF8 468 

encodes a cell surface glycoprotein that is a member of the signalling lymphocytic activation 469 

molecule (SLAM) family involved in regulating the development and function of a wide range of 470 

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2025031266/2501812/blood.2025031266.pdf by guest on 12 February 2026



 

 

 

16 

immune cells, such as T lymphocytes, B cells, neutrophils, dendritic cells, macrophages and 471 

eosinophils60,61. SLAMF8 is upregulated in AML with KMT2A (MLL) gene partial tandem duplication 472 

(an alteration reported in AML) and knockdown significantly decreased leukemic cell growth
62

, 473 

implicating SLAMF8 as having oncogenic function in AML. 474 

We identify genetic variants at 5p15.3, 11q23 and 17q22 previously associated with risk of CH/CHIP 475 

as also being associated with risk of AML, with functionality predicted to operate via effects on local 476 

genes TERT, ATM and MSI2, respectively17,18,63.  477 

In conclusion, we performed a genome-wide meta-analysis incorporating six AML GWAS of 478 

European ancestry and report four new susceptibility loci for pan-AML or subtype specific disease. 479 

We also identify a common variant at 2p23.3 that significantly associates with patient survival and 480 

several genetic variants that associate with both CH/CHIP and AML. Functional interrogation is 481 

warranted to decipher the molecular mechanisms by which the loci identified in this study modify 482 

AML risk and patient outcome.  483 
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Figure Legends 685 

Figure 1 – Manhattan plots from acute myeloid leukemia meta-analysis of genome-wide 686 

association studies. For each GWAS, association tests were performed for all AML cases (pan-687 

AML), cytogenetically normal AML, del(5/7) AML and complex karyotype AML assuming an 688 

additive genetic model, with nominally significant principal components included in the analysis as 689 

covariates. Association summary statistics were combined for variants common to all GWAS, in fixed 690 

effects models using PLINK (GWAS5 was excluded from the meta-analysis of del(5/7) AML and 691 

cytogenetically complex AML due to low case numbers). Manhattan plots show negative log10 (fixed 692 

effects meta P values, Y axis) for pan-AML (a), cytogenetically normal AML (b), del(5/7) AML (c) 693 

and cytogenetically complex AML (d) over 22 autosomal chromosomes. Risk loci are annotated with 694 

chromosome position and local genes. All statistical tests were two-sided and no adjustments were 695 

made for multiple comparisons. The horizontal red line denotes the threshold for statistical 696 

significance in a genome-wide association study (P < 5.0 x 10-8). 697 

 698 

Figure 2 – Forest plots for loci associated with acute myeloid leukemia. Study cohorts, sample 699 

sizes (case and controls (con)), imputation (info) score, effect allele, effect allele frequencies (EAF) 700 

and estimated odds ratios (OR) for rs11481 (pan-AML) (a), rs4665765 (pan-AML) (b), rs3916765 701 

(cytogenetically normal AML) (c), rs12078864 (del(5/7) AML) (d), rs79918355 (complex karyotype 702 

AML) (e) and rs12988876 (complex karyotype AML) (f). The vertical line corresponds to the null 703 

hypothesis (odds ratio (OR) = 1). The horizontal lines and square brackets indicate 95% confidence 704 

intervals (95% CI). Areas of the boxes are proportional to the weight of the study. Diamonds 705 

represent combined estimates for fixed‐effect and random‐effect analysis. Cochran’s Q statistic was 706 

used to test for heterogeneity where PHET>0.05 indicates non-significant heterogeneity. The 707 

heterogeneity index, I2 (0-100) was also measured which quantifies the proportion of the total 708 

variation due to heterogeneity. All statistical tests were two-sided and no adjustments were made for 709 

multiple comparisons. 710 

 711 

Figure 3 – Regional association and linkage disequilibrium plots for loci associated with acute 712 

myeloid leukemia. For each GWAS, association tests were performed for pan-AML cases, 713 

cytogenetically normal AML, del(5/7) AML and cytogenetically complex AML assuming an additive 714 

genetic model, with nominally significant principal components included in the analysis as covariates. 715 

Association summary statistics were combined for variants common to all 6 GWAS, in fixed effects 716 

models using PLINK. Negative log10-transformed P values (left Y axis) from the meta-analysis of 6 717 

GWAS are shown for variants at 11q13 (a) and 1p31.1 (b) for pan-AML, and at 6p21.32 (c) for 718 

cytogenetically normal AML. Negative log10-transformed P values (left Y axis) from the meta-719 

analysis of 5 GWAS are shown for variants at 1q23.2 (d) for del(5/7) AML, and at 2p21 (e) and 720 

2q33.3 (f) for cytogenetically complex AML. All statistical tests were two-sided and no adjustments 721 
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were made for multiple comparisons. The lead variant at each location is indicated by a purple 722 

diamond and the blue line shows recombination rate (right Y axis). All plotted variants were either 723 

directly genotyped or had an imputation score of >0.6 in all GWAS datasets. R
2
 values were derived 724 

from the 1000 genomes project. 725 

 726 

Figure 4 – Forest plots for variants reported to be associated with risk of clonal hematopoiesis 727 

(CH) and/or clonal hematopoiesis of indeterminate potential (CHIP) and their association with 728 

risk of AML. Forest plots show 7 variants reported by Kar et al (2022)16 and Kessler et al (2022)17 to 729 

be associated with risk of CH or CHIP at GWAS significance (P < 5 × 10−8) and their significant 730 

association with pan-AML and/or cytogenetically normal AML (CN-AML) after correction for 731 

multiple testing. SNP, Single nucleotide polymorphism; CHR, Chromosome; Gene, nearest gene; 732 

OA/EA, Non-effect allele/Effect allele; Case/Con, Number of cases/Number of controls; Trait, tested 733 

phenotype (CN-AML; CHIP, clonal hematopoiesis of indeterminate potential; CHIP-DNMT3A, 734 

DNMT3A mutation-positive CHIP; CHIP-TET2, TET2 mutation-positive CHIP; CH, clonal 735 

hematopoiesis; CH-DNMT3A, DNMT3A mutation-positive CH; CH-TET2, TET2 mutation-positive 736 

CH); Study, GWAS study; OR (95% CI), Odds ratio and 95% confidence intervals; P value 737 

(unadjusted), fixed effect P value of the association test; P value (adjusted), fixed effect P value 738 

adjusted for multiple testing using the Bonferroni method. 739 

 740 
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Role of  common variation at 1q23.3, 2p23.3, 2q33.3 and 2p21 in risk of                               
acute myeloid leukemia 

Context of  Research 

CONSLUSIONS: We identify a new genome-wide significant risk locus for pan-AML and three new risk loci for 
disease sub-groups, including AML with deletions of  chromosome 5 and/or 7 and cytogenetically complex AML. 
We also identify variants previously associated with risk of  clonal hematopoiesis (CH) that also associate with risk of  
AML. Our results further inform on AML etiology and demonstrate the existence of  disease sub-group specific risk 
loci and shared genetic susceptibility with CH. 

• We identify 4 new risk alleles for AML, including one close to DNMT3A that is also 

prognostic. 

 

• Acute myeloid leukemia (AML) is a                   

complex hematological malignancy with 

multiple disease sub-groups. 

• The genetic risk of  AML is unclear. 

• 4710 AML patients and 12938 controls of  European 

ancestry genotyped using SNP arrays. 

 

 

 

 

 

 

 

 

 

 

• We performed a meta-analysis of  six GWAS to identify 

risk alleles for pan-AML and sub-groups. 

Risk 

Prognosis 
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