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Abstract:

Acute myeloid leukemia (AML) is a complex hematological malignancy with multiple disease sub-groups
defined by somatic mutations and heterogeneous outcomes. Although genome-wide association studies
(GWAS) have identified a small number of common genetic variants influencing AML risk, the
heritable component of this disease outside of familial susceptibility remains largely undefined.
Here we perform a meta-analysis of four published GWAS plus two new GWAS, totalling 4710 AML cases
and 12938 controls. We identify a new genome-wide significant risk locus for pan-AML at 2p23.3
(rsd4665765; P=1.35x10-8; EFR3B, POMC, DNMT3A, DNAJC27) which also significantly associates with
patient survival (P=6.09x10-3). Our analysis also identifies three new genome-wide significant risk
loci for disease sub-groups, including AML with deletions of chromosome 5 and/or 7 at 1g23.3
(rsl2078864; P=7.0x10-10; DUSP23) and cytogenetically complex AML at 2933.3 (rsl2988876; P=3.28x10-
8; PARD3B) and 2p2l1 (rs79918355; P=1.60x10-9; EPCAM). We also investigated loci previously
associated with risk of clonal hematopoiesis (CH) or clonal hematopoiesis of indeterminate
potential (CHIP) and identified several variants associated with risk of AML. Our results further
inform on AML etiology and demonstrate the existence of disease sub-group specific risk loci.
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Data availability

Full summary-level association data from meta-analyses of pan-AML, complex AML, del5/7 AML
and cytogenetically normal AML are available via the GWAS catalog (study accession
numbers GCST90707271, GCST90707272, GCST90707273, GCST90707274). Data availability for
cases and controls recruited to GWAS1, GWAS2, GWAS3 and GWAS4 has been reported

920z Arenigad z| uo ysenb Aq 4pd 99z | £0520Z POOIA/ZL81L0SZ/99ZLE0SZ0Z POOIA/Z8L L 0 L/10p/pd-ajoie/poolq/Bio°suoesligndyse//:dny woly papeojumoq


mailto:james.allan@newcastle.ac.uk

109
110
111
112
113
114

115
116

117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132

previously®. Genotyping data and/or samples for GWAS5 cases and controls are available by
application to the Finnish Hematology Registry and Clinical Biobank (https://www.fhrb.fi/) and The
National Institute for Health and Welfare (THL) Biobank of Finland (https://thl.fi/en/research-and-
development/thl-biobank). Genotyping data for GWAS6 cases are available via the NCBI Gene

Expression Omnibus under accession numbers GSE211078
(https://www.nchi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM527831, GSE61323°

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61323, GSE23452°
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23452.

Genotyping data for GWAS6 controls are available via application to the database of Genotype and
Phenotype (dbGAP)(10.1038/ng1007-1181) under accession number phs000021 (GAIN: Genome-
Wide Association Study of Schizophrenia).

eQTL data is available from the eQTLGen consortium via http://www.eqtlgen.org/cis-eqgtls.html.

URLSs: Michigan Imputation Server, https://imputationserver.sph.umich.edu/index.html#!; Haplotype
Reference Consortium, http://www.haplotype-reference-consortium.org/; eQTLGen Consortium,
http://www.eqgtlgen.org/cis-eqtls.html; 1000 Genomes Project, https://www.internationalgenome.org/;

PLINK, https://www.cog-genomics.org/plink2/; SNPTEST2, https://www.well.ox.ac.uk/~gav/snptest/

Key points

o Discovered novel susceptibility loci for pan-AML and disease subtypes, including risk
variants common to both clonal hematopoiesis and AML.
o Discovered a novel AML susceptibility variant on chromosome 2p23.3 (localised to

DNMT3A) that also associates with patient survival.
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Abstract

Acute myeloid leukemia (AML) is a complex hematological malignancy with multiple disease sub-
groups defined by somatic mutations and heterogeneous outcomes. Although genome-wide
association studies (GWAS) have identified a small number of common genetic variants influencing
AML risk, the heritable component of this disease outside of familial susceptibility remains largely
undefined. Here we perform a meta-analysis of four published GWAS plus two new GWAS, totalling
4710 AML cases and 12938 controls. We identify a new genome-wide significant risk locus for pan-
AML at 2p23.3 (rs4665765; P=1.35x10% EFR3B, POMC, DNMT3A, DNAJC27) which also
significantly associates with patient survival (P=6.09x10%). Our analysis also identifies three new
genome-wide significant risk loci for disease sub-groups, including AML with deletions of
chromosome 5 and/or 7 at 1923.3 (rs12078864; P=7.0x10"'%; DUSP23) and cytogenetically complex
AML at 2033.3 (rs12988876; P=3.28x10"%; PARD3B) and 2p21 (rs79918355; P=1.60x10°; EPCAM).
We also investigated loci previously associated with risk of clonal hematopoiesis (CH) or clonal
hematopoiesis of indeterminate potential (CHIP) and identified several variants associated with risk of
AML. Our results further inform on AML etiology and demonstrate the existence of disease sub-

group specific risk loci.
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Introduction

Acute myeloid leukemia (AML) is the most common acute leukemia in Europeans and comprises
multiple sub-groups defined by somatic genetic/epigenetic alterations and heterogenous clinical
outcomes’. The existence of rare constitutional genetic variants predisposing to AML with high
penetrance demonstrates a role for genetics in disease susceptibility?®. However, strong familial
susceptibility to AML is rare, and the prevailing evidence suggests that for the majority of individuals
the genetic risk for AML is determined by co-inheritance of multiple independent low penetrance

genetic variants*®.

To identify novel AML risk loci we conducted a meta-analysis of four published genome-wide
association studies (GWAS)® and two new GWAS, incorporating 4710 AML cases and 12938
controls of European ancestry, and report the identification of new pan-AML and AML sub-group
specific risk loci. This is the largest AML GWAS to date and provides further evidence for the
existence of common low-penetrance susceptibility alleles, as well as evidence for heterogeneity in

genetic risk across disease sub-groups.

Methods

Study Participants

GWAS1, GWAS2, GWAS3 and GWAS4 comprised 1119, 931, 991 and 977 AML cases,
respectively, and 2671, 2477, 1612 and 3728 controls, respectively, as described previously®. GWAS5
comprised 351 cases from the Finnish Hematology Registry and Clinical Biobank genotyped on the
[llumina Omni Express Exome BeadChip. For controls, we used publicly available Illumina Omni
Express Exome BeadChip data on 1055 individuals from The National Institute for Health and
Welfare (THL) Biobank of Finland (Health 2000 and Health 2011 studies). GWAS6 comprised
Affymetrix SNP6.0 array data on 341 AML cases of European ancestry recruited to The Cancer
Genome Atlas (TCGA) project (phs000178/GRU)’ or via hematology clinics at the University of
Michigan Comprehensive Cancer Center®*°. For controls, we used Affymetrix SNP6.0 array data on
1395 healthy individuals of European ancestry from the GAIN: Genome-Wide Association Study of
Schizophrenia project (phs000021/GRU).

Collection of patient samples and associated clinico-pathological information was undertaken with
written informed consent. All studies were conducted in accordance with the Declaration of Helsinki
and received local institutional review board or national research ethics approval. For GWASS5, ethical
approval was granted by the Finnish Hematology Registry and Clinical Biobank (FHRB) and by the
THL biobank (BB2018 63). For GWAS6, AML cases recruited via the University of Michigan

Comprehensive Cancer Center was approved by the University of Michigan Institutional Review
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Board (IRBMED #2004-1022). Access to the TCGA AML cases and GAIN controls was approved by
the National Institute of Health (#9683). Information on ethical approvals for all other studies has

been reported previously®

Genotyping and genome-wide quality-control procedures

Genotype calling was performed using Illumina GenomeStudio software or Affymetrix Genotyping
Console software v4.2.0.26. Data handling and analysis was performed using R v4.2.1, PLINK
v1.9b4.4 and SNPTEST v2.5.6. Rigorous variant and sample quality control metrics were applied to
all six GWAS (Supplementary Figure 1). Specifically, we excluded variants with a call rate less than
95%, with departure from Hardy-Weinberg equilibrium (HWE; P<107®) or with significant differences
(P<0.05) in missingness between cases and controls. Individual samples with a call rate of <95% or
with extreme heterozygosity rates (+/- 3 standard deviation) were also excluded. Individuals were
removed with estimated relatedness pihat >0.1875, both within and across GWAS. Ancestry was
assessed using principal component analysis and super-populations from the 1000 genomes project as
a reference, with individuals of non-European ancestry excluded based on the first two principal

components (Supplementary Figures 2, 3 and 4)°.

The majority of AML cases were genotyped using DNA extracted from cell/tissue samples (blood and
bone marrow) taken during AML remission. For GWAS5, AML cases were primarily genotyped
using DNA extracted from cell/tissue samples (blood and bone marrow) taken during disease
presentation. We employed a stringent HWE cut-off in order to eliminate SNPs potentially affected by
somatic copy number alterations. Furthermore, we also used Nexus Copy Number v10 (Bionano
Genomics, California) data from 351 AML cases genotyped using samples with high somatic cell
content to interrogate Log R ratio and B allele frequency at loci carrying risk variants for AML
susceptibility. We found no significant evidence of somatic alterations affecting the risk loci at
11q13.2 (rs11421) or 6p21.32 (rs3916765)°. For the risk locus at 2p23.3 (rs4665765; EFR3B, POMC,
DNMT3A, DNAJC27) we identified 4 cases with deletions and one case with gain. For the risk locus
at 1923.2 (rs12078864; DUSP23) we identified 3 cases with trisomy 1 and one case with a 1q gain.
For the risk locus at 2p21 (rs79918355; EPCAM) we identified one case with a gain and one case with
a deletion. For the risk variant at 2q33.3 (rs12988876; PARD3) we identified 1 case with a deletion.
These data suggest that significant genotyping errors due to somatically acquired allelic imbalance in

AML cases are unlikely.

Imputation, genome-wide association testing and meta-analysis
Genome-wide imputation was performed using the Michigan Imputation  Server
(https://imputationserver.sph.umich.edu/index.html) and the Haplotype Reference Consortium

reference haplotype panel (http://www.haplotype-reference-consortium.org/) following pre-phasing
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using ShapelT (v2.r790)™. All variants with an INFO score <0.6 or a MAF <0.02 were excluded from

subsequent analysis.

For each GWAS, association tests were performed for all cases (pan-AML), cytogenetically normal
AML, complex karyotype AML and AML with deletions of chromosome 5 and/or 7, assuming an
additive genetic model with nominally significant (P<0.05) principal components included in the
analysis as covariates. Association summary statistics were combined for all six GWAS, in fixed
effects models. Individual GWAS with less than 50 cases in any sub-group were excluded from
subtype specific analyses. Cochran’s Q statistic was used to test for heterogeneity and the I? statistic
was used to quantify variation due to heterogeneity. Conditional analysis was conducted using the
GCTA conditional and joint analysis (COJO) pipeline v1.94.4. A stepwise model selection with a
GWAS P value cut-off of 5x10° and collinearity cutoff of 0.9 was used to select independent

associations from the summary statistics.

Fine mapping and functional annotation of causal SNPs

Sum of single effects (SuSIiE) model was used in conjugation with PolyFun, to incorporate functional
annotations as precomputed prior causal probabilities to improve statistical fine-mapping accuracy.
Five GWAS significant loci from three AML subtypes were run through the pipeline to deduce 95%
credible sets assuming a maximum of five causal variants per locus (K=5). In-sample LD was
calculated from the controls (N=12938) using LDstore 2.0. The SNP2GENE tool within the FUMA
pipeline (https://fuma.ctglab.nl) was used for functional annotation of fine-mapped causal variants,
which included positional mapping, functional consequences on genes using ANNOVAR and

chromatin interaction mapping.

Relationship between AML susceptibility variant genotype and patient survival

The relationship between AML risk variants and overall survival was evaluated in a total of 1725
AML patients (excluding acute promyelocytic leukemia) from the UK'**3 Germany***®, Hungary,
Finland (https://www.fhrb.fi/) and the United States”'®. Patients were treated with conventional
intensive AML therapy including ara-C, daunorubicin and best supportive care. A subset of high-risk
patients in the German cohort were treated with stem cell transplantation’. Overall survival was
defined as the time from diagnosis to the date of last follow-up or death from any cause. Cox
regression analysis was used to estimate allele specific hazard ratios and 95% confidence intervals. In
order to control for index (collider) bias potentially introduced during the selection of cases for the
survival analysis, we applied the corrected weighted least squares (CWLS) method®®, which uses the
slope of a weighted regression of prognostic variants on risk variant associations as the bias correction

factor to re-estimate the effects of variants on disease progression. We used 52408 LD pruned
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(r2<=0.1, 250 kb SNP window) post-imputation variants with >0.98 imputation score as independent

instrument variables from the GWAS summary statistics.

Interrogation of previously reported CH/CHIP variants as AML susceptibility variants

A total of 59 statistically significant (P<5x10®) variants were identified from published GWAS
analyses of clonal haematopoiesis (CH), clonal haematopoiesis of indeterminate potential (CHIP) and
their subtypes stratified by the two primary CH genes, DNMT3A and TET2. From Kar et al. (2022)",
15 independent lead variants that replicated in the UK Biobank cohort and that retained significance
after conditioning on the lead variants were identified from analyses of pan-CH, DNMT3A mutation-
positive CH and TET2 mutation-positive CH. From Kessler et al (2022)', 52 lead variants were
identified by LD thresholding and then by replication in the Geisinger MyCode Community Health
Initiative (GHS) cohort from analyses of pan-CHIP, DNMT3A mutation-positive CHIP and TET2
mutation-positive CHIP. We also included the independent lead variant at the TCL1A locus
(rs2887399) from the CHIP GWAS reported by Weinstock et al (2023). Pan-AML and
cytogenetically normal AML association P values were adjusted for multiple testing using Bonferroni

correction.

We also interrogated the lead AML susceptibility variants identified in our study in the CH/CHIP
datasets reported Kar et al (2022)'" and Kessler et al (2022)".

Results

Meta-analysis of AML genome-wide association studies (GWAS)

We conducted 6 independent genome-wide association studies with AML cases and controls of
European ancestry (GWAS1-6), four of which (GWAS1-4) have been reported previously®. A total of
4710 AML cases and 12938 healthy controls passed the study level quality control (Supplementary
Figures 1-4) with common autosomal single nucleotide variants numbering between 250880 to
436068 genotyped across the 6 GWAS. We further improved the genomic resolution by imputing >7

million variants using the Haplotype Reference Consortium panel®

. After excluding variants with an
INFO (imputation quality) score of <0.6 and a minor allele frequency (MAF) <0.02, association tests
were conducted for 5646403 autosomal variants common to all 6 GWAS. Considering the genetic and
biological heterogeneity of AML, we calculated odds ratios (OR) for all AML cases (pan-
AML)(N=4710) and three major AML subtypes; cytogenetically normal AML (N=1580), complex
karyotype AML (N=358) and AML with deletions affecting chromosome 5 and/or chromosome 7
(del(5/7) AML)(N=319)*. Nominally significant (P<0.05) principal components in each GWAS were
used as covariates to control inflation of the test statistic (0.99>Ac<1.07) for each analysis

(Supplementary Figures 5-8).
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Meta-analysis of six GWAS identified the previously reported signal for pan-AML at 11q13.2
(KMT5B, CHKA, ALDH3B1, NDUFS8, TCIRG1)®, although with a new lead variant at this locus
(rs11481 (MAF 0.34, INFO scores 0.83-0.96), P = 3.58 x 10®) located 100 kb centromeric to the
previous lead variant (rs4930561) (r’=0.26) (Figures 1 and 2)°. Meta-analysis also identified a new
signal for pan-AML surpassing genome-wide significance at 2p23.3 (rs4665765 (MAF 0.46, INFO
scores 0.98-0.99); P =1.35x10®%; EFR3B, POMC, DNMT3A, DNAJC27) (Figures 1 and 2). Meta-
analysis of cytogenetically normal AML across six GWAS studies identified the previously reported
signal at 6p21.32 (rs3916765 (MAF 0.12, INFO scores 0.90-0.99), HLA-DQA2)® (Figures 1 and 2),
which has also been validated in an independent study?. However, our analysis did not reveal any
new signals for cytogenetically normal AML surpassing the threshold for genome-wide significance.
Meta-analysis of GWAS with sufficient cases in each sub-group identified genome-wide significant
association signals for del(5/7) AML at 1923.2 (rs12078864 (MAF 0.31, INFO score 0.83-0.96), P =
7.0 x 10™%°, DUSP23) and for complex karyotype AML at 2p21 (rs79918355 (MAF 0.028, INFO
score 0.62-0.96), P = 1.6 x 10, EPCAM) and 2033.3 (rs12988876 (MAF 0.042, INFO score 0.82-
0.94), P = 3.28 x 10°®, PARD3B) (Figures 1 and 2).

There was no significant evidence of heterogeneity (P<0.05) for association with AML for any of the
risk variants across the GWAS included in each meta-analysis (Figure 2). Analysis conditioning on
the top variant at each susceptibility locus did not identify any evidence of additional associations
(P<10%), with the exception of the signal at 6p21.32 (HLA-DQA2) for cytogenetically normal AML
(rs1794275, P=1.92x10"°) (Supplementary Figures 9-14).

Statistical fine-mapping of AML association signals
To determine the most credible causal variant at each association signal we conducted statistical fine-
mapping using sum of single effects (SuSiE) model incorporating functional annotations of variants as

prior probabilities to improve fine-mapping accuracy.

Fine-mapping indicated one 95% credible set for the pan-AML signal at 2p23.3, which captured the
lead variant rs4665765 at this locus (OR 1.16, 95% CI 1.10-1.22; P=1.35x10 ®) in high LD (r*>0.8)
with rs2164808 (OR 1.16, 95% CI 1.10-1.22; P=1.38x10 ®). Based on the posterior inclusion
probability (PIP), rs2164808 (PIP=0.75) was considered the most likely causal SNP over the lead
SNP (PIP=0.24) at 2p23.3 (Supplementary Figure 15a, Supplementary Table 7). rs2164808 maps to
exon 23 of EFR3B and is a nonsense variant with a CADD score of 16.5 (Supplementary Table 1). Of
note, this variant is located within 200 kb of DNMT3A (Figure 2), which is frequently somatically
mutated in AML>®. Interrogation of data from the eQTLGen consortium identified rs2164808 as a
significant cis-expression quantitative trait locus (eQTL) for DNMT3A (P=2.867x10™) as well as
DNAJC27 (P=7.27x10"%®), CENPO (P=3.09x10"), POMC (P=1.98x10) and ADCY3 (P=3.66x10")
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(Supplementary Table 2), suggesting that this variant (or genetically linked variants in linkage

disequilibrium) affects expression of numerous local genes.

Fine mapping of the pan-AML signal at 11g13.2 indicated one credible set, with lead variant rs11481
(OR 1.17, 95% CI 1.11-1.24; P=3.58x10®) also identified as the most credible causal variant
(PIP=0.87) (Supplementary Figure 15b, Supplementary Table 7). rs11481 maps to RP11-802E16.3
(ENSG00000255031), a noncoding natural antisense transcript (ncNAT) to CHKA with a CADD
score of 11.2 (Supplementary Table 1). rs11481 is a significant cis-eQTL for ALDH3B1 (P=4.86x10"
“), RP5-901A4.1 (P=4.56x10"""), RP11-802E16.3 (P=1.84x10%") CHKA (P=7.14x10™""), NDUFS8
(P=4.05x10"%), DOC2GP (P=3.01x10°), TBC1D10C (P=3.47x10% and MRPL21 (P=4.45x10?)
(Supplementary Table 3).

Two variants were included in the 95% credible set for the complex karyotype signal at 2p21. The
lead variant at this locus (rs79918355, OR 2.80, 95% CI 2.0-3.91; P=1.6x10"°) was implicated as the
most credible causal variant (PIP=0.91) (Supplementary Figure 16a, Supplementary Table 7), which
localises to an intronic region of the AC073283.4 long non-coding RNA and is a significant cis-eQTL
for MCFD2 (P=1.04x10"°) and MSH2 (P=7.23x107)(Supplementary Table 4).

The complex karyotype AML signal at 2g33 fine-mapped to one credible set only including the lead
variant at this locus (rs12988876, OR 2.29, 95% CI 1.71-3.08; P=3.28x10"°, P1P=0.99)
(Supplementary Figure 16B), which maps intronic to and is a significant eQTL for PARD3B (P=0.03)
(Supplementary Table 5).

One 95% credible set was deduced from the del(5/7) AML association signal on chromosome 1923.2,
capturing the top 8 SNPs at this locus. The lead variant at this locus (rs12078864, OR 1.72, 95% ClI
1.45 — 2.04; P=7x10""°) was identified as the most credible causal variant (P1P=0.46) (Supplementary
Figure 17 and Table 7) and is a significant cis-eQTL for DUSP23 (P=7.99x10%%), SLAMF8
(P=3.56x10"), PEX19 (P=1.82x107), DARC (P=6.01x107), FCRL6 (P=1.49x10?), Clorf204
(P=2.23x10%), FCER1A (P=2.23x10?), RP11-404F10.2 (P=4.78x10?) and CD84 (P=4.91x10
%)(Supplementary table 6).

Reported risk variants for clonal hematopoiesis (CH), Clonal haematopoiesis of indeterminate
potential (CHIP) and their association with AML.

Clonal haematopoiesis (CH) is an age-related non-malignant condition defined by the expansion of
haematopoietic stem cells (HSC) and progenitor cells in healthy individuals following the acquisition
of somatic driver mutations. Clonal haematopoiesis of indeterminate potential (CHIP) is CH driven by
a somatic mutation in a gene recurrently mutated in myeloid malignancy (variant allele frequency
>0.02), with DNMT3A, TET2 and ASXL1 being the most commonly affected®. The presence of CH
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identifies individuals with an increased risk of developing AML? and recent studies have reported

constitutional genetic variants associated with risk of developing CH* %27,

A total of 59 CH/CHIP risk variants reported by Kar et al. 2022*", Kessler et al. 2022'® and Weinstock
et al. 2023" were annotated in our AML GWAS. Of these, 7 CH/CHIP variants were significantly
associated with risk of either pan-AML or CN-AML after correction for multiple testing, including
variants at the TERT locus (rs2736100, rs2853677, rs7705526), the ATM locus (rs10890839,
rs11212666, rs228606) and the MSI2 locus (rs188761458) (Figure 4). The risk of AML for all 7
variants was in the same direction as the reported risk of CH/CHIP. A further 18 reported CH/CHIP
variants were nominally significantly associated with risk of either pan-AML or CN-AML (P<0.05),
but these did not retain significance after correction for multiple testing (Supplementary Table 8). For
14 of these 18 variants, the risk of AML was in the same direction as the reported risk of CH/CHIP
(Supplementary Table 8). The remaining 4 variants were all at the TCL1A locus and the reported risk
of CH/CHIP was in opposing directions for TET2-mutated and DNMT3A-mutated CH/CHIP*"*&,
However, the risk of AML was in the same direction as the risk of TET2-mutant CH/CHIP for all 4
variants (Supplementary Table 8). In summary, 7 risk variants for CH/CHIP were significantly
associated with AML, providing further evidence for shared genetic susceptibility between these

conditions.

All 6 AML susceptibility variants reported in our study were annotated in the CH/CHIP datasets
published by Kar et al (2022)*" and/or Kessler et al (2022)", but none were significantly associated
with risk of CH/CHIP after multiple testing correction (Supplementary Table 9). However, one
variant at the 11g13.2 risk locus for pan-AML (rs11481, CHKA) was nominally significantly
associated with risk of CH (OR 1.04, 95% CI 1.00-1.07, P=0.024)"", but this did not retain

significance after correction for multiple testing (Supplementary Table 9).

Risk variants for AML and their impact on patient survival

The relationship between the identified AML risk variants and survival was evaluated in 1725 AML
patients from the UK, Germany, Hungary, Finland and the United States of America. Five of the six
AML susceptibility variants identified via GWAS (rs11481 (11913.2, CHKA), rs3916765 (6p21.32,
HLA-DQA?2), rs12078864 (1g23.2, DUSP23), rs79918355 (2p21, EPCAM), rs12988876 (2933.3,
PARD3)) were not significantly associated with overall survival in univariate analysis (Supplementary
Figure 18) prior to or after index bias correction (Supplementary Figure 18). However, the pan-AML
risk variant at 2p23.3 (rs4665765, EFR3B, POMC, DNMT3A, DNAJC27) was nominally significantly
associated with overall survival (HR 1.13, 95% CI 1.04-1.24, P=6.09x10), with the risk allele for

AML being associated with inferior outcome. This variant retained significance with an increased
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effect size after index bias correction (HR 1.25, 95% CI 1.14-1.38, P=3.89x10®) and after adjustment
for multiple testing (P=2.33x10") (Supplementary Figure 18).
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Discussion

By conducting a meta-analysis of six independent genome-wide association studies we report two
pan-AML susceptibility loci and four AML sub-group-specific loci, two of which are reported
previously®. We used statistical and functional fine-mapping methods to identify the most credible
causal variant at each locus and were able to prioritize high confidence genes which could serve as

strong candidates for functional validation experiments.

We explored three genes localised to the pan-AML susceptibility signal at 2p23.3. The most credible
causal variant (rs2164808) at this locus introduces a premature stop codon in EFR3B. The EFR3A/B
family are paralogous proteins that contribute to AT1 signalling regulating G-protein-coupled
receptors®®. EFR3B and EFR3A also form a complex to recruit phosphatidylinositol 4-kinase (PI14K)
to the plasma membrane, with high expression of PI4K associated with inferior survival in myeloid
leukemia®. The lead variant and most credible causal variant at this locus are both cis-eQTL for
DNAJC27 (RBJ), which encodes small GTPase that promotes development of numerous human
cancers via MEK/ERK signalling® . Of note, the most credible causal variant is located within 200
Kb of DNMT3, encoding a DNA methyltransferase that is frequently somatically dysregulated in
AML?, where loss of function disrupts global genomic methylation in hematopoietic progenitor cells
leading to leukemogenesis®®®, Intriguingly, the AML risk variant is also significantly associated with

inferior overall survival.

The new lead variant at the 11913.2 pan-AML association signal (rs11481) localises to the CHKA
gene and is in modest genetic linkage with the variant (rs4930561) (linkage disequilibrium r*=0.26)
previously reported to be associated with pan-AML localised to the KMT5B gene®. Analysis
conditioning on rs11481 did not identify any evidence of additional associations (P<10™) at this locus,
suggesting that both variants are part of the same association signal. rs11481 maps to a noncoding
exonic region of CHKA, and specifically to a noncoding natural antisense transcript (\cNAT) RP11-
802E16.3 (ENSG00000255031). Although ncNATSs are regulatory RNA molecules that modulate
cellular processes such as growth and differentiation, their role in cancer pathogenesis remains
unknown. However, there is evidence that RP11-802E16.3 regulates expression of CHKA¥.
Consistent with this model, rs11481 is a significant cis-eQTL for CHKA (P=7.14x10""), where high

%537 Moreover,

expression drives tumour progression and metastasis of several human cancer
expression of CHKA is implicated in the pathogenesis of B-cell malignancies and T-ALL via
promotion of cell survival and proliferation®. rs11481 is also a significant cis-eQTL for ALDH3B1
(P=4.86x10") and NDUFS8 (P=4.05x10"°). ALDH3B1 encodes a member of the aldehyde
dehydrogenase superfamily that protects cells from oxidative stress by catalysing the reversible
oxidation of endogenous and exogenous aldehydes®. High expression of aldehyde dehydrogenase

family members is associated with chemotherapy resistance and inferior survival in AML™.
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Furthermore, AML stem cells are acutely sensitive to small molecule inhibitors of aldehyde
dehydrogenases, identifying this family of enzymes as a therapeutic vulnerability in AML*. NDUFS8
encodes a subunit of the mitochondrial NADH:ubiquinone oxidoreductase complex I, responsible for
NADH oxidation as part of the respiratory chain*. Rare constitutional variants in NDUFSS8 are
associated with attenuated mitochondrial respiration in AML cells and are mutually exclusive with
somatically acquired mutations in isocitrate dehydrogenase 1 (IDH1)*, suggesting two alternative
genetic mechanisms via which mitochondrial function is dysregulated in AML pathogenesis.
Although rs11481 is not a cis-eQTL for KMT5B (SUV420H1), a role for this lysine methyltransferase
cannot be excluded. KMTS5B is frequently silenced via hypermethylation in numerous human
44-46

cancers
AMLY.

and somatic mutation is reported in transformation of myelodysplastic syndrome to

We report two signals significantly associated with risk of complex karyotype AML, at 2p21 and
2033. The most likely causal variant at 2p21 (rs79918355) is a cis-eQTL for MCFD2, which encodes
a protein that, along with LMAN1, forms a cargo receptor complex for transport of coagulation
factors®®. Rare constitutional variants in MCFD2 cause combined deficiency of coagulation factor V
and VIII, a recessive bleeding disorder*. MCFD2 also has a role in the regulation of stem cell

survival and pluripotency®>™"

and somatic mutations have been reported in leukemic cells from
Fanconi anemia patients who developed AML®, a disease which often presents with a complex
karyotype due to inherent chromosome instability®®. The lead variant at the 2933 signal for complex
karyotype AML (rs12988876) maps intronic to PARD3B and is an eQTL for this gene (P=0.03).
PARD3B encodes a member of the PARD3 family of proteins that regulate cell polarity and
centrosome localization®. PARD3B is a homologue of PARD3, which also functions as a scaffolding
protein that interacts with numerous intracellular signalling molecules, many of which are
dysregulated in cancer, including members of the PISK/AKT and MAPK pathways such as PTEN and
JNK®. PARD3B is implicated in prostate cancer aetiology and expression levels have been associated

55,56

with survival in both colorectal and breast cancer >°, suggesting a potential role in numerous human

cancers.

The lead variant at the 1g23.2 signal for del(5/7) AML is a significant cis-eQTL for DUSP23 and
SLAMF8. DUSP23 encodes a dual specific phosphatase that regulates MAP kinase signalling,
impacting cell proliferation, growth and survival®’. DUSP23 also plays a role in regulating cell
adhesion/migration®® and high expression in blast cells is as an independent prognostic marker for
inferior survival in AML®. High DUSP23 expression is also reported in CD4" T-cells from patients
with systemic lupus erythematosus, where it is thought to regulate DNA methyltransferase activity,
including DNMT3A, which is frequently dysregulated in AML via somatic mutation>?. SLAMF8
encodes a cell surface glycoprotein that is a member of the signalling lymphocytic activation

molecule (SLAM) family involved in regulating the development and function of a wide range of
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immune cells, such as T lymphocytes, B cells, neutrophils, dendritic cells, macrophages and
eosinophils®®'. SLAMFS is upregulated in AML with KMT2A (MLL) gene partial tandem duplication
(an alteration reported in AML) and knockdown significantly decreased leukemic cell growth®,

implicating SLAMF8 as having oncogenic function in AML.

We identify genetic variants at 5p15.3, 11923 and 17g22 previously associated with risk of CH/CHIP
as also being associated with risk of AML, with functionality predicted to operate via effects on local
genes TERT, ATM and MSI2, respectively"*#%,

In conclusion, we performed a genome-wide meta-analysis incorporating six AML GWAS of
European ancestry and report four new susceptibility loci for pan-AML or subtype specific disease.
We also identify a common variant at 2p23.3 that significantly associates with patient survival and
several genetic variants that associate with both CH/CHIP and AML. Functional interrogation is
warranted to decipher the molecular mechanisms by which the loci identified in this study modify

AML risk and patient outcome.
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Figure Legends

Figure 1 — Manhattan plots from acute myeloid leukemia meta-analysis of genome-wide
association studies. For each GWAS, association tests were performed for all AML cases (pan-
AML), cytogenetically normal AML, del(5/7) AML and complex karyotype AML assuming an
additive genetic model, with nominally significant principal components included in the analysis as
covariates. Association summary statistics were combined for variants common to all GWAS, in fixed
effects models using PLINK (GWAS5 was excluded from the meta-analysis of del(5/7) AML and
cytogenetically complex AML due to low case numbers). Manhattan plots show negative logs, (fixed
effects meta P values, Y axis) for pan-AML (a), cytogenetically normal AML (b), del(5/7) AML (c)
and cytogenetically complex AML (d) over 22 autosomal chromosomes. Risk loci are annotated with
chromosome position and local genes. All statistical tests were two-sided and no adjustments were
made for multiple comparisons. The horizontal red line denotes the threshold for statistical

significance in a genome-wide association study (P < 5.0 x 10'®).

Figure 2 — Forest plots for loci associated with acute myeloid leukemia. Study cohorts, sample
sizes (case and controls (con)), imputation (info) score, effect allele, effect allele frequencies (EAF)
and estimated odds ratios (OR) for rs11481 (pan-AML) (a), rs4665765 (pan-AML) (b), rs3916765
(cytogenetically normal AML) (c), rs12078864 (del(5/7) AML) (d), rs79918355 (complex karyotype
AML) (e) and rs12988876 (complex karyotype AML) (f). The vertical line corresponds to the null
hypothesis (odds ratio (OR) = 1). The horizontal lines and square brackets indicate 95% confidence
intervals (95% CI). Areas of the boxes are proportional to the weight of the study. Diamonds
represent combined estimates for fixed-effect and random-effect analysis. Cochran’s Q statistic was
used to test for heterogeneity where Pper>0.05 indicates non-significant heterogeneity. The
heterogeneity index, 1> (0-100) was also measured which quantifies the proportion of the total
variation due to heterogeneity. All statistical tests were two-sided and no adjustments were made for

multiple comparisons.

Figure 3 — Regional association and linkage disequilibrium plots for loci associated with acute
myeloid leukemia. For each GWAS, association tests were performed for pan-AML cases,
cytogenetically normal AML, del(5/7) AML and cytogenetically complex AML assuming an additive
genetic model, with nominally significant principal components included in the analysis as covariates.
Association summary statistics were combined for variants common to all 6 GWAS, in fixed effects
models using PLINK. Negative logjo-transformed P values (left Y axis) from the meta-analysis of 6
GWAS are shown for variants at 11913 (a) and 1p31.1 (b) for pan-AML, and at 6p21.32 (c) for
cytogenetically normal AML. Negative logio-transformed P values (left Y axis) from the meta-
analysis of 5 GWAS are shown for variants at 1923.2 (d) for del(5/7) AML, and at 2p21 (e) and

2033.3 (f) for cytogenetically complex AML. All statistical tests were two-sided and no adjustments
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were made for multiple comparisons. The lead variant at each location is indicated by a purple
diamond and the blue line shows recombination rate (right Y axis). All plotted variants were either
directly genotyped or had an imputation score of >0.6 in all GWAS datasets. R* values were derived

from the 1000 genomes project.

Figure 4 — Forest plots for variants reported to be associated with risk of clonal hematopoiesis
(CH) and/or clonal hematopoiesis of indeterminate potential (CHIP) and their association with
risk of AML. Forest plots show 7 variants reported by Kar et al (2022)* and Kessler et al (2022)* to
be associated with risk of CH or CHIP at GWAS significance (P < 5 x 107°) and their significant
association with pan-AML and/or cytogenetically normal AML (CN-AML) after correction for
multiple testing. SNP, Single nucleotide polymorphism; CHR, Chromosome; Gene, nearest gene;
OAJ/EA, Non-effect allele/Effect allele; Case/Con, Number of cases/Number of controls; Trait, tested
phenotype (CN-AML; CHIP, clonal hematopoiesis of indeterminate potential; CHIP-DNMT3A,
DNMT3A mutation-positive CHIP; CHIP-TET2, TET2 mutation-positive CHIP; CH, clonal
hematopoiesis; CH-DNMT3A, DNMT3A mutation-positive CH; CH-TET2, TET2 mutation-positive
CH); Study, GWAS study; OR (95% CI), Odds ratio and 95% confidence intervals; P value
(unadjusted), fixed effect P value of the association test; P value (adjusted), fixed effect P value

adjusted for multiple testing using the Bonferroni method.
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Role of common variation at 1q23.3, 2p23.3, 2q33.3 and 2p21 in risk of

acute myeloid leukemia
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CONSLUSIONS: We identify a new genome-wide significant risk locus for pan-AML and three new risk loci for
disease sub-groups, including AML with deletions of chromosome 5 and/or 7 and cytogenetically complex AMEL.
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We also identify variants previously associated with risk of clonal hematopoiesis (CH) that also associate with risk pf
. . . . . Cea
AML. Our results further inform on AML etiology and demonstrate the existence of disease sub-group specific rigk
. . ef e . 3
loci and shared genetic susceptibility with CH. N
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Figure 1
(a) Pan-AML (b) Cytogenetically normal AML
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(a) Pan-AML 2p23.3

No Info Effect EAF

GWAS case/con score allele  case/con OR [95% ClI]
GWAS 1 1119/2671 Genotyped C 0.57/0.55 2 gl 1.14[1.03, 1.26]
GWAS 2 931/2477  Genotyped C 0.55/0.55 - 1.06 [0.94, 1.19]
GWAS 3 991/1612 0.98 (o} 0.55/0.51 o 1.19[1.04,1.35]
GWAS 4 97713728 0.99 (o} 0.58/0.55 (v 1.20[1.08, 1.34]
GWAS5  351/1055 0.99 (e 0.59/0.56 ——i 1.16[0.97, 1.37]
GWAS 6  341/1395 0.98 C 0.60/0.54 +—e—  1.30[1.10, 1.54]
Random-—effect (p=1.35e-08) - 1.16 [1.10, 1.22]
Fixed-effect (p=1.35e-08) 4 1.16 [1.10, 1.22

T

05 1 2

(c) Cytogenetically normal AML 6p21.32

154665765;2:25362515_T_C (ppei=0.429; 1°=0%)

No Info Effect EAF
GWAS case/con score allele  case/con OR [95% ClI]
GWAS 1 387/2671 0.99 G 0.93/0.88 —— 1.70[1.28, 2.26]
GWAS 2 17712477 0.99 G 0.94/0.89 ——e——=2.05[1.29, 3.25]
GWAS 3 286/1612 0.90 G 0.94/0.88 ———e—=2.43[1.57, 3.76]
GWAS 4  465/3728 Genotyped G 0.920089 ' —— 1.51[1.16, 1.96]
GWAS 5 128/1055 0.99 G 0.87/0.86 +—e— 1.10[0.74, 1.63]
GWAS 6 137/1395 Genotyped G 0.90/0.89 +—e— 1.13[0.74,1.72]

Random-—effect (p=5.82e-05)
Fixed-effect (p=9.65e-10)

(e) Complex karyotype 2q33.3

- 1.57[1.26, 1.96

;- 1.56 [1.35, 1.80
T
0.5 2 3

153916765;6:32685550_G_A (Pne=0.0519; 1>=54%)

No Info  Effect EAF
GWAS  case/con score allele case/con OR [95% ClI]
GWAS 1 75/2671 0.88 T 0.09/0.05 —@—— 2.36[1.29,4.31]
GWAS 2 61/2477  0.90 T 0.13/0.05 —————@—3.73[2.07,6.73]
GWAS 3  89/1612 0.82 T 0.07/0.04 -—0—- 2.06 [1.09, 3.89]
GWAS 4 82/3728 0.94 T 0.07/0.04 +—@—— 1.73[0.88, 3.40]
GWAS 6 51/1395 0.88 T 0.05/0.04 ~—+—— 1.42[0.58, 3.47]
Random-effect (p=2.68e-07) ——— 2.28[1.66, 3.12]
Fixed-effect (p=3.28e-08) : ——— 2.29[1.71, 3.08]
e |
0.8 3 4.5

1512988876;2:206022696_C_T (Pye=0.342; 1>=11%)

(b) Pan-AML 11q13.2

No Info Effect EAF

GWAS case/con score allele  case/con OR [95% ClI]
GWAS 1  1119/2671 0.90 A 0.68/0.65 g 2 1.20[1.07, 1.34]
GWAS 2  931/2477 0.94 A 0.71/0.65 o 1.27[1.12, 1.44]
GWAS3  991/1612 0.83 A 0.68/0.66 e 1.13[0.97, 1.31]
GWAS 4 977/3728 0.92 A 0.68/0.66 o 1.15[1.02, 1.30]
GWAS5  351/1055 0.97 A 0.68/0.66 e 1.13[0.94, 1.36]
GWAS 6  341/1395 0.83 A 0.67/0.66 .—i 1.06 [0.87, 1.29]
Random-effect (p=3.58e-08) - 1.17 [1.11, 1.24]
Fixed-effect (p=3.58e-08) R g 1.17[1.11, 1.24

T

05 1 2

(d) Complex karyotype AML 2p21

1511481;11:67820335_T_A (Pye=0.689; 1>=0%)

No Info  Effect EAF
GWAS  case/con score allele case/con OR [95% CI]
GWAS 1 75/2671 0.89 A 0.08/0.03 ——@— 3.69[1.90, 7.14]
GWAS 2 61/2477  0.96 A 0.07/0.03 ;| ———@—= 2.74[1.35,5.60]
GWAS 3 89/1612 0.62 A 0.04/0.03 4_.—. 1.33[0.50, 3.50]
GWAS 4 82/3728  0.95 A 0.08/0.03 ————@— 2.88[1.49,557]
GWAS 6 51/1395 0.80 A 0.07/0.03 ————e—= 3.09[1.29, 7.36]
Random-effect (p=1.6e-09) —— 2.80[2.00, 3.91]
Fixed-effect (p=1.6e-09) : ——mmm—  2.80[2.00, 3.91]
| m—
0.8 3 4.5
1579918355;2:47500410_G_A (phe=0.557; 1>=0%)
(f) Del(5/7) AML 1q23.2
No Info Effect EAF
GWAS case/con score  allele  case/con OR [95% ClI]
GWAS 1 72/2671 0.90 T 0.48/0.34 —@—= 192[136,2.72]
GWAS 2  58/2477 0.95 T 0.46/0.34 —e—  174[118,256]
GWAS 3  68/1612 0.82 T 0.40/0.36 -—o—c 1.25[0.85, 1.84]
GWAS 4 57/3728 0.90 T 0.52/0.34 ——e—— 1.70[1.12, 2.60]
GWAS 6  64/1395 0.85 T 0.50/0.35 ——e—=  2.04[1.38, 3.00]
Random-effect (p=7e-10) — 1.72 [1.45, 2.04]
Fixed-effect (p=7e-10) P - 1.72[1.45,2.04]
| e—
05 1 25

1512078864;1:159744792_C_T (ppe=0.442; 1>=0%)
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(a) Pan-AML 2p23.3

(b) Pan-AML 11q13.2
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(c) Cytogenetically normal AML 6p21.32
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