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THESIS SUMMARY

Wildlife disease surveillance is often limited by the scale, cost, and logistical challenges

of traditional methods. This thesis aimed to investigate the potential of using computer
vision to classify visible signs of disease in wildlife from digital imagery. In Chapter 1, we
introduced the challenges of traditional surveillance and the potential for computer vision,
while in Chapter 2, we provided an overview of the precedents for using computer vision in
related fields. In Chapter 3, we analysed the WOAH animal disease database and found that
over two-thirds (67%) of major infectious diseases present with externally visible signs, and
that diseases spread by direct contact were significantly more likely to have them,
confirming a broad scope for image-based monitoring. Chapter 4 then investigated wildlife
imagery availability in online repositories, using salmonids as a case study. Our analysis of
nearly 70,000 images showed that platforms like iNaturalist are a vast and growing data
source, and that a consistent 14-18% of images displayed signs of disease or damage,
highlighting an underused resource for health monitoring. In Chapter 5, we developed deep
learning models to classify Saprolegnia spp. infection in salmonids. The best model
achieved a high macro-average F1-score (0.930), with performance strongly influenced by
dataset composition, as taxonomically focused and balanced datasets yielded the best
results. Chapter 6 used rumpwear in common brushtail possums as a second case study to
explore disease severity assessment. We showed a model's output probability for the
'Disease’ class served as a robust, well-calibrated proxy for severity, distinguishing between
mild and obvious signs, and found that semi-supervised learning provided minimal benefit.
Finally, Chapter 7 discusses how these results show computer vision is a viable tool to
complement traditional surveillance, providing a framework to understand disease

dynamics and support more timely and effective conservation responses.
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CHAPTER 1 :

INTRODUCTION



1.1 BACKGROUND

1.1.1 WILDLIFE DISEASE MONITORING

Effective wildlife disease surveillance represents a critical component of global health
security, serving as an early warning system for emerging infectious diseases and
zoonotic threats (Daszak et al. 2000; Jones et al. 2008a; Cunningham et al. 2017).
Traditional approaches to wildlife disease monitoring rely heavily on resource-intensive
field sampling, laboratory diagnostics, and expert pathological assessments (Phelps et
al. 2019; Watsa 2020; WOAH 2023). These methods, while effective, face significant
limitations in scale, timeliness, and geographical coverage, often exacerbated

by funding constraints, lack of harmonised systems, and variable capacity, particularly
in remote or resource-limited regions where wildlife health expertise may be scarce

(Delgado et al. 2023; Barroso et al. 2024).

The increasing frequency of wildlife disease outbreaks, particularly Emerging Infectious
Disease (EID) events, and their potential impacts on biodiversity, ecosystem function,
and human health, underscores the urgent need for innovative, scalable, monitoring
approaches (Daszak et al. 2000; Jones et al. 2008a; Cunningham et al. 2017). Recent
advances in digital technologies, coupled with the proliferation of citizen science
initiatives and online biodiversity platforms, offer promising opportunities to
complement traditional surveillance methods with novel data streams (August et al.

2020a).

1.1.2 THE POTENTIAL TARGET: VISIBLE SIGNS OF WILDLIFE DISEASE

A potential avenue for innovative surveillance lies in detecting the externally visible signs of
wildlife disease. Veterinary medicine distinguishes between clinical ‘signs’, which are
objective indicators noticeable to an observer, and ‘symptoms’, which represent the
subjective sensation of illness experienced by the patient. Because animals cannot describe
subjective feelings, disease assessment necessarily relies on identifying these observable

clinical signs (Constable et al. 2017).

Many wildlife diseases manifest through such externally visible signs, which can include

morphological abnormalities (e.g., lesions, tumours, deformities), behavioural changes (e.g.,



lethargy, disorientation), and physiological indicators (e.g., discharge, emaciation) (Ford and

Mazzaferro 2012), see

Figure 1.1. Fish species, for instance, exhibit numerous externally visible disease indicators
such as skin lesions, fin erosion, exophthalmia (popeye), haemorrhaging, and abnormal
growths (Noga 2010). However, the utility of visible signs for monitoring depends heavily on
the specific disease and host. Visibility can vary considerably across taxonomic groups,
disease causes (aetiologies), and stages of infection. Furthermore, the severity of a disease
can alter how subtle its signs are; for example, mild mange may only cause minor fur
disruption while severe cases lead to obvious and extensive hair loss. Some conditions, such
as prion wasting diseases (e.g., chronic wasting disease), may show no obvious clinical signs
until late in infection, making early cases challenging to detect visually (Haley and Hoover
2015). Conversely, diseases such as devil facial tumour disease or white-nose syndrome in
bats produce distinctive visual signatures readily documented through photography.
Therefore, understanding the spectrum of visually detectable disease manifestations across
wildlife taxa is crucial when considering image-based monitoring approaches. The diagnostic
value and suitability of targeting visible signs ultimately depend on their specificity,
consistency, severity and correlation with underlying disease processes (Stephen and Karesh

2014) — factors which determine their potential for reliable detection in imagery.



Figure 1.1. Animals presenting with visible signs of disease. A) Tasmanian devil with visible
signs of Devil Facial Tumour Disease; B) Blue tit with visible signs of Avian pox; C) Bat with
visible signs of White-nose syndrome; D) Woodlouse with visible signs of infection with
isopod iridovirus; E) Brown trout with visible signs of infection with Saprolegnia spp.; F)
Amphibian with visible signs of Amphibian Chytrid. Image Credits: A) Photo 61996475, ©
Brett Vercoe, some rights reserved (CC BY-NC), uploaded by Brett Vercoe, cropped from the
original; B) Photo 180916919, © ingridaltmann, some rights reserved (CC BY-NC); C) Photo
488589421, © Eric C. Maxwell, some rights reserved (CC BY-NC), uploaded by Eric C.
Maxwell, cropped from the original; D) Photo 450094682, © Felix Riegel, some rights
reserved (CC BY-NC), uploaded by Felix Riegel; E) Photo 337522384, © Sean Cozart, some



rights reserved (CC BY-NC), uploaded by Sean Cozart; F) Photo 7693670, © thesoulflowers,

some rights reserved (CC BY-NC), cropped from the original.

1.1.3 DIGITAL IMAGERY: ABUNDANCE, SOURCES, AND THE DISEASE DATA CHALLENGE

The digital revolution has generated an unprecedented volume of wildlife imagery, with
millions of photographs uploaded annually to diverse online platforms (Nazir and Kaleem
2021; Depauw et al. 2022). These images originate from varied sources, including dedicated
citizen science initiatives (e.g., iNaturalist), social media platforms, wildlife photography
communities, and institutional repositories (Toivonen et al. 2019). The sheer scale
represents a potentially vast resource; for example, analysis conducted for this thesis
demonstrates exponential growth in salmonid image submissions to platforms like

iNaturalist between 2008 and 2023 (detailed in Chapter 4).

Despite this abundance of wildlife imagery, finding images that document disease within
these digital repositories is a significant challenge. This apparent scarcity may stem

from several factors. First, the disease itself may be genuinely rare in the wild population.
Second, observer biases can play a strong role; societal preferences for charismatic species
are well-documented (Troudet et al. 2017), and it is plausible that observers also
preferentially photograph or share images of healthy-looking animals. Furthermore, limited
awareness of disease indicators among non-specialists and platform designs not focused on
disease reporting likely exacerbate this scarcity. Nevertheless, these digital repositories
likely contain valuable, largely untapped information for wildlife health monitoring, as
platforms not explicitly focused on disease may still inadvertently capture visual evidence of
health abnormalities. However, harnessing this potential requires overcoming significant
inherent challenges. Extracting reliable ecological insights from such vast, non-
systematically generated online datasets necessitates careful consideration of data biases,
validation requirements, and interpretation difficulties (Jari¢ et al. 2020). Applied to wildlife
health, this manifests as the core challenge of efficiently identifying potentially rare disease-
relevant images, validating the presence of visible signs (often from limited visual
information and non-expert sources), and analysing these findings amidst data

heterogeneity (Jari¢ et al. 2020), a task further complicated by the fact that most visible



signs are not pathognomonic and could indicate multiple conditions (Stephen and Karesh
2014). Addressing this complex task necessitates powerful automated tools capable of

processing images at scale.

1.2 COMPUTER VISION: A TOOL FOR SCALABLE IMAGE ANALYSIS

Addressing the challenge of analysing vast repositories of wildlife imagery for rare disease
signs requires powerful automated tools. Computer vision is the field that develops
computational methods to extract information from digital images and video. Some
computer vision approaches use rule-based image processing, while others use artificial
intelligence methods. This thesis focuses on artificial intelligence approaches to computer
vision, mainly machine learning. These methods learn patterns from data rather than relying
on hand-designed rules. A particular focus is deep learning, which uses neural networks with
many layers to learn useful image features directly from pixel data (LeCun et al. 2015). See

Figure 1.2 for a visual representation of these related fields.

Artificial Intelligence
Technology designed to perform tasks
that typically require human intelligence

Computer Visio
Technology designed t
computationally gain high-leve
understanding from digital
images or videos

Figure 1.2. Conceptual relationship between Artificial Intelligence, Machine Learning, Deep

Learning, and Computer Vision.



These technologies, especially deep learning approaches like Convolutional Neural Networks
(a type of neural network particularly adept at processing grid-like data such as images),
have revolutionised automated image analysis across numerous domains. Their success in
core tasks such as object detection, image classification, and semantic segmentation makes
them highly promising for application to wildlife disease monitoring through automated

analysis of visual data.

Employing computer vision for wildlife health assessment presents several key advantages
over manual inspection. These include the scalability required to process massive image
datasets often generated by camera traps and citizen science efforts (Green et al. 2020), the
potential for near real-time analysis of incoming data streams (Arshad et al. 2020), and the
ability, demonstrated prominently in medical imaging, to potentially detect subtle visual
patterns indicative of early-stage disease that might elude human observers (Esteva et al.
2017). Furthermore, these systems can theoretically improve over time through continuous
learning as more validated training data becomes available. However, applying these
technologies effectively to wildlife disease detection faces significant hurdles. Key
challenges include severe class imbalance issues stemming from the relative scarcity of
disease images compared to healthy ones, a well-documented problem in ecological
datasets (Cunha et al. 2023), the critical need for substantial amounts of high-quality,
expertly labelled training data, which is laborious and costly to obtain for wildlife disease
imagery (Green et al. 2020; Cunha et al. 2023), the presence of numerous confounding
factors inherent in field photography such as variable illumination, pose, distance, and
background complexity (Cunha et al. 2023), and the inherent complexity, similar to
challenges in medical imaging, of reliably distinguishing subtle pathological conditions from
normal biological variation or environmental artefacts (Wei et al. 2022). Overcoming these

challenges is central to the research presented in this thesis.

1.3 RESEARCH AIM AND QUESTIONS

The aim of this thesis is to investigate the potential and challenges of using computer vision
technologies to classify visible signs of disease in wildlife through the analysis of digital

imagery. To achieve this aim, the following specific research questions are addressed:



1: Which wildlife diseases, particularly those subject to existing monitoring efforts, present

with externally visible signs suitable for detection via computer vision?

2: What is the availability, quality, and ecological information content of wildlife imagery,
particularly for fish species (salmonids), accessible from online digital repositories, and what

is the prevalence of visible disease signs within these data?

3: How effectively can deep learning algorithms be developed and trained to classify
specific, visible signs of disease in wildlife images, using Saprolegnia spp. in salmonids and
‘rumpwear’ in common brushtail possums (Trichosurus vulpecula) as case studies, and how

does dataset composition influence model performance?

4: Can the outputs of computer vision classification models serve as a proxy for disease
severity assessment, and can semi-supervised learning approaches help mitigate labelled

data limitations in this context?

1.4 RESEARCH DESIGN

To address the research aim and questions, this thesis employs a multi-faceted research
design integrating literature synthesis, database analysis, and empirical computer vision

case studies.

Initially, a foundation is established through reviews of relevant literature, exploring the
application of computer vision for disease detection in related fields and outlining key
methodological considerations (Chapter 2). Building on this, a systematic analysis of the
WOAH animal diseases databases is conducted to identify and characterise diseases
presenting with externally visible signs, thereby assessing the scope for computer vision-
based monitoring (addressing Question 1 in Chapter 3). This involves collating disease

metadata and classifying visible signs according to defined criteria.

The practical feasibility is then investigated through quantitative assessment of data

availability, focusing on the characteristics and potential utility of wildlife imagery sourced



from online digital repositories (such as Flickr and iNaturalist), exemplified by a detailed

case study on salmonids (addressing Question 2 in Chapter 4).

Finally, the core potential of the approach is evaluated empirically through the
development, training, and assessment of deep learning-based computer vision pipelines.
Two distinct case studies are presented: one focusing on the classification of Saprolegnia
spp. in salmonids using different dataset compositions (addressing Question 3 in Chapter 5),
and another exploring disease severity assessment and semi-supervised learning techniques
for possum rumpwear (addressing Question 4 in Chapter 6). Statistical analyses, including
General Linear Models and goodness-of-fit tests where appropriate, are used to analyse

results from the database and case study investigations.

This sequential design allows the research to move from defining the theoretical potential
and scope (Chapters 2 and 3), through understanding data limitations (Chapter 4), to
demonstrating practical implementation and methodological refinement using specific

wildlife disease examples (Chapters 5 and 6).

1.5 THESIS STRUCTURE

This thesis is structured into seven chapters, including this introduction, to systematically
address the research aim and questions. The four data chapters (Chapters 3-6) are
presented as self-contained studies, each written with the intention of publication in a peer-

reviewed journal.

Chapter 1: Introduction (this chapter) introduces the research context, defines the problem
of wildlife disease surveillance, outlines the potential of computer vision, establishes the
research aim and specific questions, describes the research design, and provides this

roadmap.

Chapter 2: Seeing Sickness: Computer Vision Precedents and Principles for Wildlife Disease
Surveillance provides essential context by reviewing the application of computer vision for
disease detection in related fields (human medicine, livestock, plant pathology), critically

discusses the unique challenges and opportunities presented by wildlife disease ecology,



and outlines foundational methodologies for data handling and computer vision pipeline

development relevant to this thesis.

Chapter 3: From Pixels to Pandemics: Quantifying the Potential for Image-Based Wildlife
Disease Detection conducts a systematic analysis of the WOAH animal disease database to
identify and characterise wildlife diseases that present with externally visible signs, thereby
assessing their suitability as potential targets for computer vision-based detection

approaches.

Chapter 4: The Extended Image: the Value of Online Images for Ecological Research
investigates the availability, characteristics, and potential utility of wildlife imagery from
online digital repositories (e.g., iNaturalist, Flickr) for disease monitoring, focusing
specifically on salmonid fishes as a case study to understand data landscapes and

limitations.

Chapter 5: Computer Vision for Infectious Disease Surveillance; Saprolegnia spp. in
Salmonids presents the development, training, and evaluation of a deep learning pipeline
designed to classify visible signs of Saprolegnia spp. infection in salmonids, exploring the

influence of dataset composition and taxonomic specificity on model performance.

Chapter 6: Deep Learning Model Confidence as a Proxy for Disease-Severity: a Case Study
of Rumpwear in Possums explores the application of computer vision beyond simple

detection, investigating its potential for assessing disease severity using possum rump wear
as a case study and examining the utility of semi-supervised learning techniques to mitigate

labelled data limitations.

Chapter 7: General Discussion and Conclusions synthesises the key findings from the
preceding chapters, discusses the overall implications and limitations of using computer
vision for wildlife disease surveillance based on this research, and proposes directions for

future work in this emerging field.
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CHAPTER 2 :
SEEING SICKNESS - COMPUTER VISION
PRECEDENTS AND PRINCIPLES FOR WILDLIFE

DISEASE SURVEILLANCE
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Abstract

Computer vision can improve wildlife disease surveillance by allowing for the non-invasive,
large-scale analysis of images from sources such as camera traps and citizen science.
However, applying computer vision methods that have worked well in controlled settings
like human medicine and agriculture to wildlife in natural environments presents specific
challenges. This review provides a practical introduction for ecologists, synthesising the
opportunities, challenges, and key steps for developing and evaluating computer vision
systems for this purpose. We outline a workflow from data acquisition and labelling to
model development and validation, using sarcoptic mange in red foxes as a recurring
example. While the main opportunity lies in using large, opportunistic image archives to
augment traditional surveillance, the most significant challenges are data centric. These
include the scarcity of disease images, high variability in image quality, and the difficulty of
obtaining reliable ground-truth labels for training and validation. We conclude that effective
implementation requires a tailored, end-to-end workflow addressing these specific data

hurdles.

2.1 INTRODUCTION

Computer vision (CV), powered by advances in machine learning and the increasing
availability of visual data, offers transformative potential for ecological research and wildlife
monitoring (Weinstein 2018; Tuia et al. 2022). Beyond established applications in species
identification and behavioural analysis, a burgeoning area of interest lies in leveraging CV
for non-invasive wildlife disease surveillance, aiming to augment traditional epidemiological
methods that can be resource-intensive and challenging to implement at scale in wild
populations (Delgado et al. 2023; Barroso et al. 2024). Detecting visible signs of disease
through automated image analysis could provide valuable insights into disease prevalence,

distribution, and host impacts.

Translating CV techniques successfully to the complexities of wildlife disease, however,
requires careful consideration. While applications in related fields like human medicine
(Esteva et al. 2021), livestock health (Fuentes et al. 2022) and plant disease (Ferentinos
2018) offer valuable precedents, the unique challenges of working with wild animals in

uncontrolled environments necessitate a tailored approach. Therefore, before delving into
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the specific wildlife disease applications explored later in this thesis, this chapter aims to
provide a foundational overview essential for developing and evaluating CV systems in this
context. To achieve this, the chapter is structured as follows: we first highlight the existing
gaps in wildlife disease surveillance and introduce the rationale for image-based monitoring
(Section 2.2). Next, we explain the core foundational concepts of computer vision, machine
learning, and deep learning relevant to understanding the subsequent discussions (Section
2.3). We then briefly survey the established uses of CV within the broader field of animal
ecology (Section 2.4) before examining precedents for disease detection in the related
domains of human medicine, plant pathology, and livestock/aquaculture health (Section
2.5). The core of the chapter (Section 2.6) then critically analyses the specific opportunities
and inherent challenges of applying computer vision to wildlife disease surveillance,
integrating discussion of the key practical considerations involved in implementation; from
data acquisition and labelling to model development and evaluation. To ground these
technical discussions in a practical context, we will use sarcoptic mange in red foxes (Vulpes
vulpes) as a recurring case example throughout the chapter to illustrate key concepts and
challenges. Finally, this chapter concludes with a summary and forward look, outlining a

conceptual framework for future work in this emerging field (Section 2.7).

2.2 THE WILDLIFE DISEASE SURVEILLANCE GAP AND THE POTENTIAL ROLE

OF IMAGE-BASED MONITORING

Despite the recognised importance of monitoring animal diseases, global surveillance efforts
remain inconsistent. While frameworks exist for reporting notifiable diseases, particularly in
livestock (e.g., through World Organisation for Animal Health, WOAH), implementation is
often patchy, and systematic surveillance for diseases in wildlife populations is generally
considered ad hoc (Phelps et al. 2019; Watsa et al. 2020). Gathering diagnostic samples
from wildlife presents significant logistical challenges, contributing to these surveillance
gaps (Watsa 2020; Delgado et al. 2023; Barroso et al. 2024). Consequently, the initial
detection of wildlife disease outbreaks often relies heavily on opportunistic observations by
the public — including hunters, anglers, wildlife enthusiasts, and photographers — who report
sightings of sick or deceased animals. Several significant epizootics were first identified

through such observations of externally visible signs. For example, an epidemic of

13



trichomonosis in British finches was identified following unsolicited reports from the public
of sick and dead birds at garden feeders (Robinson et al. 2010), while the spread of
mycoplasmal conjunctivitis in North American house finches was monitored through a large-

scale citizen-science survey of feeder birds (Dhondt et al. 1998).

The critical role of visible signs of disease highlights a potential pathway for enhancing
surveillance. If disease signs are visually apparent to observers, they can, in principle, be
captured in photographs or videos. This motivates the exploration of image-based
monitoring, leveraging the increasing abundance of digital imagery alongside CV tools, as a

non-invasive approach to help bridge existing gaps in wildlife disease surveillance.

2.3 COMPUTER VISION: FOUNDATIONAL CONCEPTS

Ecological research increasingly uses image and video data for non-invasive monitoring,
generating vast datasets that require efficient analysis methods (Tuia et al. 2022; Pollock et
al. 2025). CV is the field of computer science focused on enabling machines to "see" and
interpret visual information from the world, much like human vision. It offers powerful tools
to automate tasks like identifying species, counting individuals, or, pertinent to this thesis,
detecting signs of disease within these large image collections (Weinstein 2018; Pollock et
al. 2025). While applying these methods effectively often benefits from collaboration with
computer scientists (Weinstein 2018; Ditria et al. 2020; Vidal et al. 2021), understanding the
core concepts is essential for ecologists seeking to use these techniques. Here, we provide a

primer on key CV concepts, particularly those relevant to image-based disease detection.

2.3.1 MACHINE LEARNING CONCEPTS FOR COMPUTER VISION

At its heart, much of modern CV relies on Machine Learning (ML), a branch of Artificial
Intelligence (Al) where systems learn to perform tasks from data without being explicitly
programmed for every step (Braga-Neto 2024). Instead of defining rigid rules, ML models
identify patterns within data to make predictions or decisions. Learning techniques are
broadly categorised as supervised or unsupervised. In supervised learning, the most
common approach for tasks like disease classification, the model is trained on labelled
training data; images that have been manually annotated with the correct answer or class
(e.g., explicitly labelled as, for example, "mange present" or "mange absent"). During an
iterative process called training, the model learns to associate visual patterns, often called
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features; informative image characteristics based on aspects like colour, texture, edges, or
corners - with the correct labels by comparing its predictions to the provided ground truth
labels. In contrast, unsupervised learning algorithms attempt to discover inherent structures
or patterns within unlabelled data. While evaluating the intrinsic success of purely
unsupervised pattern discovery (like clustering) can be less direct than measuring accuracy
against known labels (Valletta et al. 2017), techniques that learn representations from
unlabelled data (such as self-supervised learning; He et al. 2020) have become extremely
powerful. These learned representations can then be effectively adapted for specific tasks,
like classification, using smaller amounts of labelled data. However, given the primary goal
of identifying and classifying specific, known disease conditions in this thesis, this chapter
focuses mainly on supervised learning approaches, while acknowledging the growing

importance of methods that leverage unlabelled data.

2.3.2 FROM FEATURE ENGINEERING TO DEEP LEARNING

Historically, supervised machine learning in CV often involved a two-step process (Figure
2.1a). First, a human expert, the "feature engineer," would carefully select and design
algorithms known as feature descriptors. These algorithms automatically detect relevant
visual patterns (features) and encode them, often into a series of numbers that could be
used to differentiate one feature type from another. These hand-crafted features were then
fed into a separate classifier algorithm (e.g., a Support Vector Machine) which learned to
distinguish between classes based on those predefined features (Szeliski 2022). This
traditional approach required significant domain expertise and laborious fine-tuning to

identify the most effective features for a given task (O’Mahony et al. 2020).
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Healthy: 7%
Mange: 93%

Feature Engineering Features Classifier Output

N Healthy: 3%
Mange: 97%

Feature learning + classifier Output

(b)
Figure 2.1 Comparison of traditional and deep learning computer vision classification
workflows. (a) Traditional computer vision classification workflow. Features hand-crafted by
a feature engineer are extracted from the input data and used as input for a classifier. This
requires detailed knowledge of feature descriptors. (b) Deep learning classification workflow.
The deep learning model performs feature learning and classification directly from the input
images and their corresponding labels in an end-to-end manner. The output percentages are
included as examples to illustrate potential model outputs. Image copyright: Mangey fox in
my garden, © Paul Williams, some rights reserved (CC BY-NC), uploaded by Paul Williams,

cropped from the original image.

A major shift occurred with the rise of Deep Learning (DL), a subfield of ML (LeCun et al.
2015). DL models, particularly those based on Artificial Neural Networks (ANNs), enable
"end-to-end" learning (Figure 2.1b) (LeCun et al. 2015). Instead of relying on hand-crafted

features, DL algorithms automatically learn the most relevant descriptive features directly
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from the labelled input data during training (O’Mahony et al. 2020). ANNs are inspired by
the structure of biological brains, composed of interconnected processing units called
artificial neurons, typically organised in layers (LeCun et al. 2015). Information flows from an
input layer, through one or more ‘hidden’ layers, to an output layer. Connections between
neurons have associated weights that are adjusted during training, strengthening or
weakening signals based on how well the network performs the target task (LeCun et al.

2015).

For image analysis, Convolutional Neural Networks (CNNs) have become the dominant DL
architecture (LeCun et al. 2015). CNNs incorporate specialised ‘convolutional’ layers that are
good at detecting spatial hierarchies of patterns within images. Early layers might detect
simple features like edges or corners, while deeper layers combine these to recognise more
complex shapes, textures, and eventually objects (e.g., parts of an animal, specific lesion
types or severity of disease). The development of the ‘AlexNet’ CNN (Krizhevsky et al. 2012),
which significantly outperformed previous methods on a major image recognition challenge
(ImageNet), spurred rapid advancements. Since then, numerous CNN architectures have
been developed, such as VGG (Simonyan and Zisserman 2014), ResNet (He et al. 2016),
Inception (Szegedy et al. 2016), and EfficientNet (Tan and Le 2019), offering different trade-
offs in performance, size, and computational cost (Khan et al. 2020). More recently,
architectures based on the Transformer model, originally developed for natural language
processing, have also shown strong performance on image analysis tasks (Dosovitskiy et al.

2021).

2.3.3 COMPUTER VISION TASKS AND ANNOTATION REQUIREMENTS

These DL models can be trained for various CV tasks relevant to disease ecology, differing
primarily in the type of information extracted and the required labelling (Figure 2.2) (Szeliski
2022). The simplest task is image classification, where the entire image is assigned a single
label (e.g., "mange", "healthy"). This requires only image-level labels (Figure 2.2a), but a
potential pitfall is that the model might learn to associate the label with irrelevant
background features if there are systematic differences between classes (e.g., if most
mange photos are taken in urban areas and healthy ones in rural areas) (Miao et al. 2019). A
more advanced task is object detection, which involves not only classifying objects within an
image but also localising them, typically by drawing a bounding box around each instance
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(Figure 2.2b). This requires more detailed labelling but allows for detecting multiple animals
or lesions in one image and can help mitigate background dependence issues. Common
architectures used for this include Faster R-CNN (Ren et al. 2015) and YOLO (Redmon et al.
2015; Bochkovskiy et al. 2020). For the most detailed spatial information, semantic
Segmentation assigns a class label to every pixel in the image, effectively creating a mask
outlining the object (Figure 2.2c) or affected area (Figure 2.2d). This requires intensive pixel-
level annotation but can be valuable for quantifying the extent of lesions, for example.
While models like Mask R-CNN (He et al. 2017) are popular architectures for this task, the
manual annotation burden often makes a human-in-the-loop process more practical. In such
workflows, a model generates a draft segmentation that a human expert can quickly
approve or refine. This interactive approach not only accelerates the creation of new
training data but also facilitates continuous model improvement by using the corrections to

retrain the model, a strategy also known as active learning.

Fox with mange

X
Hi

3

*Fox with mange
Figure 2.2. Different levels of image annotation for training Convolutional Neural Networks.
(a) Image-level label for classification (e.g., ‘Fox with mange’). (b) Object detection using
bounding boxes to localise and classify regions of interest. (c) Semantic segmentation using
polygons (or masks) to classify each pixel belonging to the region of interest ‘Fox with
mange’. (d) Semantic segmentation using polygons (or masks) to classify each pixel

belonging to the region of interest ‘Visible signs of mange’. Image copyright: Mangey fox in
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my garden, © Paul Williams, some rights reserved (CC BY-NC), uploaded by Paul Williams,

cropped and edited from the original image.

2.3.4 EVALUATING MODEL PERFORMANCE

Evaluating the performance of these different tasks requires specific metrics tailored to
what is being measured. For image classification, where the task is a binary decision,
labelling a whole image as either ‘fox with mange’ or ‘healthy fox’, common metrics derive
from a confusion matrix comparing predictions to these ground truth labels. This matrix
counts: True Positives (TP) where the model correctly identifies a fox with mange; True
Negatives (TN) where it correctly identifies a healthy fox; False Positives (FP) where it
wrongly labels a healthy fox as having mange; and False Negatives (FN) where it misses
mange in a fox that actually has it. While overall Accuracy ((TP+TN)/Total) provides a general
sense of correctness, it can be misleading if, as is common in disease studies, one class (e.g.,
healthy foxes) is much more frequent than the other. Therefore, Precision (TP/(TP+FP)) is
crucial: it tells us, out of all the foxes that the model claimed had mange, the proportion
that did, indicating the rate of false alarms. Recall (or Sensitivity, TP/(TP+FN)) is equally
important, measuring the proportion of all foxes that genuinely had mange that the model
successfully identified. The F1-score, a harmonic mean of Precision and Recall, offers a
single metric balancing the risk of false alarms against the risk of missing cases. Specificity
(TN/(TN+FP)) measures how well the model correctly identifies the healthy foxes. Crucially,
from a disease surveillance perspective, the relative importance of metrics like Precision and
Recall depends on the ecological or management context; a high rate of false negatives (low
Recall) might mean missing critical early warnings, while excessive false positives (low

Precision) could lead to unnecessary and costly interventions.

For object detection, where the goal might be to specifically localise the visible signs of
mange by drawing a bounding box around affected areas (rather than just the whole fox),
evaluation must consider both the classification correctness (is it mange?) and the
localisation accuracy (is the box placed correctly?). The overlap between the predicted
bounding box around the mange signs and the ground truth box is typically quantified using
Intersection over Union (loU) calculated as the area of overlap between the predicted and

ground truth boxes divided by the total area encompassed by both boxes. Standard metrics
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like mean Average Precision (mAP) then summarise the detection performance across
different confidence thresholds, integrating both how well the mange signs were classified
and how accurately they were localised via the bounding box, judged against a specific loU

threshold.

Finally, for semantic segmentation, which aims to create a precise pixel-level mask outlining
only the fox, or the mange-affected skin areas on the fox, evaluation focuses on the
accuracy of this mask. Metrics commonly used are again loU (sometimes called the Jaccard
Index in segmentation) or the Dice Coefficient (closely related to the F1-score but calculated
at the pixel level). These quantify how well the pixels predicted by the model as being part
of a mange lesion overlap with the true lesion pixels defined in the ground truth mask.
Understanding the specific information provided by these different metrics is crucial for
interpreting model performance and selecting or developing models appropriate for specific

ecological or epidemiological questions related to wildlife disease.

2.3.5 PRACTICAL APPROACHES AND EMERGING METHODS

Training deep CNNs from scratch typically require vast amounts of labelled data and
substantial computational resources (Zhuang et al. 2020). Transfer Learning offers a
practical solution. It uses models pre-trained on large, general-purpose datasets (like
ImageNet, containing millions of diverse images). By adapting these pre-trained models and
fine-tuning only some layers on a smaller, task-specific dataset (e.g., wildlife disease
images), researchers can often achieve high performance with significantly less data and
computational effort, essentially transferring the general visual knowledge learned from the

large dataset to the new problem (Yosinski et al. 2014).

Meta Learning, or "learning to learn," represents another advanced area of machine
learning (Hospedales et al. 2022). Instead of learning to classify specific objects directly,
these methods learn a process for comparing images or learning new classes quickly from
very few examples (few-shot learning). Techniques like metric learning (e.g., Siamese
networks, triplet loss) learn similarity functions, which can be useful for tasks like identifying
new or unseen anomalies (Hospedales et al. 2022). This ability to handle previously unseen
classes relates to the concept of Open Set Recognition, where a model must not only classify

known categories but also identify inputs that do not belong to any of the known classes,
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which is relevant when encountering unexpected diseases or conditions in surveillance data

(Barcina-Blanco et al. 2024).

Beyond these learning paradigms, recent advances in Vision-Language Models (VLMs) offer
new ways of interacting with and analysing image data (Radford et al. 2021; Liu et al.
2023b). These models, often built upon Large Language Model architectures, learn joint
representations of images and text, enabling tasks like zero-shot classification, visual
question answering, and text-to-image retrieval. The ability to query large image datasets
using natural language descriptions holds significant potential for ecological research,
allowing scientists to search for specific visual concepts (e.g., behaviours, interactions,
visible signs) that may not be captured by standard metadata or classification labels.
However, evaluating the effectiveness of these models for complex, domain-specific queries
remains an active area of research, with benchmarks specifically designed for ecological
applications highlighting current limitations, particularly with expert-level concepts and fine-

grained visual details (Vendrow et al. 2024).

Understanding these fundamental concepts, which include supervised learning, the shift
from feature engineering to deep learning with CNNs and Transformers, the different CV
tasks and their labelling requirements, practical techniques like transfer learning, and
emerging capabilities like meta-learning and vision-language interaction, provides the
necessary foundation for evaluating the application of CV in related fields (Section 2.5) and
understanding the specific opportunities and challenges within wildlife disease ecology

(Section 2.6).

2.4 COMPUTER VISION APPLICATIONS IN ANIMAL ECOLOGY

The application of computer vision in ecological research involving animals has grown
exponentially, particularly over the past decade, driven by the increasing availability of
digital visual data and the need to automate its processing and analysis (Jari¢ et al. 2020;
Pollock et al. 2025). A Scopus search for publications combining terms related to computer
vision and animals shows a marked increase over time (Figure 2.3a). In contrast, the number
of publications linking computer vision, animals, and disease is much lower, although it has
also increased in recent years (Figure 2.3a). To account for background growth in computer

vision, Figure 2.3b shows these trends normalised by the annual number of “computer
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vision” publications. In an offset regression with a negative binomial robustness check, the
rate of “computer vision AND (wildlife OR animal*)” increased by about 3.8% per year, while
“computer vision AND (wildlife OR animal*) AND disease” increased by about 10.7% per
year. An interaction model indicated that the disease-related subset increased faster than
the broader animals subset (p = ). Broad search terms such as “animal*” may include
laboratory animal studies rather than wildlife research, which may inflate the apparent
volume of general “CV Animals” work. Nonetheless, the trend indicates increasing use of
these methods in animal-related research, alongside a growing but smaller body of work

applying computer vision to disease.
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Figure 2.3. Scopus publication trends. (a) The annual number of publications (articles,
reviews, conference papers and data papers) returned for the search terms ‘“computer
vision” AND (wildlife OR animal*)’ and “’computer vision” AND (wildlife OR animal*) AND
disease’ on Scopus from 1984- 2025. (b) The same trends expressed as records per 1,000

background ‘computer vision’ publications per year. The background rate is the annual
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number of publications returned for the search term ‘computer vision’ using the same

document type filters and time period.

Within ecology, CV powered by deep learning is now routinely leveraged for a wide range of
monitoring tasks previously reliant on manual effort (Tuia et al. 2022; Pollock et al. 2025).
Key applications include automating the description, counting, and classification of animal
species from images and video, crucial for biodiversity assessments and species
management (Weinstein 2018; Willi et al. 2019; Norouzzadeh et al. 2021). Beyond species
identification, CV is also widely employed for analysing animal behaviour, such as social
interactions, quantifying activity patterns, facilitating the re-identification of individuals
based on unique markings, and tracking animal movements (Robie et al. 2017; Schneider et

al. 2019; Ravoor and Sudarshan 2020; Ratnayake et al. 2021).

The visual data used is highly diverse, spanning scales from satellite and drone imagery
down to microscopy, and originating from sources as varied as smartphones used in
controlled settings or by citizen scientists (Spiesman et al. 2021), camera traps
(Norouzzadeh et al. 2021), and specialised sensors operating beyond the human visual
spectrum, such as infrared cameras (Dunbar et al. 2009). The adoption of deep learning
algorithms, particularly Convolutional Neural Networks (CNNs) discussed in Section 2.3.2,
has significantly advanced these applications, often achieving classification accuracies
similar to, or even exceeding, human expert performance for tasks like species identification

(Swanson et al. 2015; Gémez-Villa et al. 2016; Torney et al. 2019; Ditria et al. 2020).

Given this demonstrated success of CV in extracting diverse ecological information from
various image types, yet the comparatively limited focus on disease applications evident in
the literature trends (Figure 2.3), its potential application specifically for detecting signs of
disease warrants detailed investigation, building upon techniques established in other

health-related domains.
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2.5 COMPUTER VISION FOR DISEASE DETECTION IN RELATED DOMAINS

While the application of CV specifically to wildlife disease surveillance is nascent,
considerable progress has been made in using these techniques for disease detection and
diagnosis in the related fields of human medicine, plant disease, and livestock/aquaculture
health. Examining these precedents provides valuable insights into established

methodologies, potential capabilities, and challenges relevant to wildlife applications.

In human medicine, CV is now well-integrated into many areas of diagnostics, analysing a
wide range of imaging modalities (Esteva et al. 2021). Numerous Al-based medical
technologies using CV have received regulatory approval (e.g., at least 29 by the US FDA
between 2012-2020), aiding image reconstruction, analysis, and diagnosis (Benjamens et al.
2020). These tools are applied across fields including radiology (analysing X-rays, CT, MRI)
(Rajkomar et al. 2017; Weston et al. 2019; Jain et al. 2021), cardiology (Wehbe et al. 2023),
and ophthalmology (analysing retinal scans) (Kucur et al. 2018; Panda et al. 2018; Hemelings
et al. 2020). Particularly relevant to monitoring visible signs in wildlife, CV systems analysing
standard clinical photographs in dermatology have achieved diagnostic abilities comparable
to, or even exceeding, those of human specialists for tasks like classifying skin lesions
(Esteva et al. 2017; Haenssle et al. 2018; Liu et al. 2020). Beyond diagnosis, CV assists in
diverse clinical tasks such as population screening, predicting patient outcomes, segmenting
pathological structures (at organ or cellular levels), and monitoring disease progression over
time (Esteva et al. 2021). The success in medicine is often driven by the availability of large,
curated datasets and the relatively standardised nature of many medical images (Esteva et
al. 2021). However, the fundamental pattern recognition capabilities demonstrated,
especially in analysing photographic images for conditions like skin diseases, highlight the
potential for similar approaches in animals, while acknowledging the significant differences

in image quality and consistency expected from wildlife data.

Similarly, automated disease identification using CV has gained significant traction in
agriculture for crop protection. Numerous studies have applied techniques, often deep
learning, to classify diseases based on images of plant leaves, stems, or fruits (Mohanty et
al. 2016; Sladojevic et al. 2016a; Amara et al. 2017; Gui et al. 2021). High classification

accuracies, sometimes exceeding 99% under specific conditions, have been reported for
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identifying multiple diseases across various plant species, demonstrating the potential for
automated systems in field or controlled environments (Ferentinos 2018; Bhagwat and
Dandawate 2021). This success underscores the utility of CV for detecting visual disease
signs (like spots, lesions, wilting, colour changes) in biological organisms using standard

imagery, albeit typically under more controlled conditions than wildlife monitoring.

Image-based disease detection is comparatively less developed for monitoring the health of
mobile animals like livestock or wildlife, but research is growing. In livestock farming, efforts
include using CV for automated lameness detection in cattle based on gait analysis (Barney
et al. 2023; Myint et al. 2024), monitoring respiratory diseases through behavioural or
thermal changes (Jorquera-Chavez et al. 2020; Wu et al. 2023), or identifying skin conditions
(Rony et al. 2021) and external parasites (Barbedo et al. 2017). In aquaculture, disease-
related applications often focus on controlled environments, targeting issues like external
parasite detection (e.g., sea lice on salmon) or identifying visible lesions indicative of
bacterial or fungal infection (Liu et al. 2023a). While progress has been made, some studies
in this area have faced limitations related to dataset size, image quality, or methodological

validation (see Chapter 5, this thesis; Liu et al. 2023).

Commercial aquaculture has also developed imaging systems for fish health and welfare
monitoring, particularly in salmon farming where external parasites such as sea lice are
routinely assessed. A number of commercial suppliers now market camera-based and

computer-vision systems for salmon aquaculture (e.g., Aquabyte and OptoScale), with

applications that commonly include automated sea-lice assessment, fish sizing, and
welfare/condition scoring. These systems typically use fixed in-cage or underwater cameras
to capture images or video of fish as they pass and then apply automated image analysis to
produce operational metrics. Such outputs are also relevant to ecological and behavioural
guestions. However, much of the underlying imagery, derived data streams, and
implementation detail from commercial deployments are proprietary or otherwise not
publicly accessible, which limits independent evaluation, reproducibility, and reuse in

academic research.

While still limited, some studies have demonstrated the potential of CV for detecting visible

disease signs specifically in wildlife contexts. For instance, photographic analysis has been
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explored for monitoring the progression of Devil Facial Tumour Disease (DFTD) based on
lesion characteristics (Nurgin et al. 2024), and researchers have applied image analysis
techniques to assess skin conditions in marine mammals like bottlenose dolphins (Tursiops
erebennus) (Murphy et al. 2025). Similarly, computer vision techniques have been used to
classify images of brushtail possums based on the presence and severity of 'rumpwear’ a
condition involving fur loss (Chapter 6, this thesis). Work detailed in this thesis (Chapter 5)
also demonstrates the application of deep learning to classify visible signs of Saprolegnia
spp. infection in salmonids from photographic images. These examples, though fewer than
in human medicine or plant disease, serve as important precedents validating the
exploration of CV for detecting visually distinct signs of disease or abnormal conditions in

diverse animal taxa, including wildlife.

Synthesising these applications shows that computer vision can classify visible signs of
disease from images, sometimes reaching expert-level performance with large, curated
datasets from controlled settings. The main CV tasks used, which we described in Section
2.3.3, include classification, detection, and segmentation. While supervised learning is
common, research in these fields is also exploring advanced techniques like few-shot
learning and open-set recognition to address data limitations (Singh et al. 2021; Dong et al.
2024). These methods are relevant to the data scarcity and potential for new conditions
found in wildlife surveillance. However, translating this success to wildlife disease
monitoring is not straightforward. The main difficulties come from the uncontrolled nature
of wildlife imagery and the challenge of obtaining enough accurately labelled images (Green
et al. 2020; Cunha et al. 2023). Therefore, while these precedents are encouraging, we
cannot directly transfer the methods. Developing effective tools requires tailored

approaches to address these data challenges, which we explore in the following section.

2.6 APPLYING COMPUTER VISION TO WILDLIFE DISEASE SURVEILLANCE:

OPPORTUNITIES, CHALLENGES, AND PRACTICAL CONSIDERATIONS

Having established the potential of CV in ecological research (Section 2.3.4) and its
demonstrated utility in disease detection within different fields (Section 0), this section
focuses on the application of these technologies to wildlife disease surveillance. It examines

the significant opportunities presented by CV in this context, addresses the substantial
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challenges inherent in working with wildlife populations and data, and outlines the key

practical considerations necessary for successful implementation.

2.6.1 OPPORTUNITIES IN CV-BASED SURVEILLANCE

The integration of CV into wildlife disease surveillance offers several compelling advantages
compared to traditional methodologies, which often rely on invasive sampling or
opportunistic carcass discovery (Watsa 2020; Delgado et al. 2023), limiting scalability and
timeliness. A primary benefit is the potential for enhanced non-invasive monitoring. CV
allows for the assessment of visible disease signs from digital imagery (photographs and
videos) without requiring the physical capture or handling of animals. This significantly
reduces potential stress to wildlife and alleviates the considerable logistical challenges and
costs associated with capturing and sampling free-ranging, often elusive, species (Burton et
al. 2015). Examples include identifying skin lesions in cetaceans from photographic surveys
(Murphy et al. 2025) and monitoring visible signs of poor health or external lesions in

terrestrial mammals using camera-trap imagery (Muneza et al. 2019; Murray et al. 2021).

CV also enables greater scalability in monitoring efforts. Ecological studies using camera
traps or citizen science platforms can generate enormous volumes of visual data; for
instance, the Snapshot Serengeti project amassed over 1.2 million image sets within three
years (Swanson et al. 2015). Manual review of such datasets is prohibitively time-
consuming. CV provides the necessary tools to automate the processing of these large
image collections, facilitating tasks like species identification and potentially flagging images
exhibiting disease indicators, thereby transforming data analysis from a bottleneck into a

more tractable process (Norouzzadeh et al. 2018; Green et al. 2020).

Automation, in turn, allows for an expanded scope of surveillance. Monitoring can be
extended across larger geographical areas and sustained over longer durations than is often
feasible using traditional field-based methods alone. Furthermore, CV techniques offer the
exciting potential for application to retrospectively analyse archived image collections,
potentially uncovering historical disease patterns or tracking pathogen spread over
timeframes previously inaccessible. The frequent availability of metadata associated with
digital images, such as time, date, and location information (from EXIF data or camera

deployment records), adds significant value (Biggs et al. 2009; Daume 2016). Integrating
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these spatio-temporal data points with CV-derived health classifications facilitates
epidemiological analyses, including mapping disease distributions, tracking potential spread,

and investigating associations with environmental variables (Toivonen et al. 2019).

Finally, there is potential for earlier detection of disease outbreaks or changes in prevalence.
Continuous or wide-scale monitoring using automated image analysis might identify subtle
visual signs across a population before they become apparent through more limited
traditional surveillance approaches. Citizen science initiatives, where numerous observers
contribute images, represent a particularly promising avenue for broad-scale detection if
participants can be effectively guided in recognising and reporting relevant signs (Scott et al.

2020).

2.6.2 CHALLENGES AND PRACTICAL STEPS
Despite the significant potential, the effective application of CV to wildlife disease
surveillance necessitates addressing several substantial challenges related to data,

methodology, and implementation.
Getting the Right Ingredients: Data Acquisition and Curation

A fundamental difficulty lies in obtaining sufficient high-quality image data depicting the
target disease(s). While digital wildlife imagery is abundant overall, images clearly showing
specific disease signs are often scarce (Green et al. 2020). This rarity may stem from the low
prevalence of certain diseases, the subtle nature of early-stage signs, or potential observer
bias against photographing unhealthy-appearing animals. This frequently results in highly
imbalanced datasets, where healthy individuals vastly outnumber diseased ones, posing a

significant challenge for training unbiased machine learning models.

Overcoming this data scarcity necessitates a strategic and often multi-faceted approach to
image sourcing. Several potential avenues exist, each presenting distinct opportunities and
limitations. Large camera trap archives such as Wildlife Insights (wildlifeinsights.org), LILA
(lila.science) and Agouti (Casaer et al. 2019), for instance, offer extensive systematic data,
though isolating relevant disease images might require targeted searches or specialised
analytical techniques (Murray et al. 2021). Citizen science platforms such as iNaturalist

provide large quantities of geo-referenced, opportunistic data (Van Horn et al. 2018).Their
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value for ecological research, including health assessment, is increasingly recognised
(Vendrow et al. 2024). These data are particularly relevant for monitoring species that
interact frequently with the public or recreational users, such as fish observed by anglers or
boaters. However, using these platforms for disease monitoring may depend on project
designs that encourage relevant reporting(Scott et al. 2020). While social media yields
immense image quantities (Durso et al. 2021; Edwards et al. 2021), researchers must
grapple with significant challenges related to data noise, inherent biases, and ethical usage
(Morcatty et al. 2024). In contrast, collaborations with veterinary or rehabilitation facilities
can provide high-quality images of confirmed cases, offering valuable ground truth, albeit
potentially lacking natural ecological context. Given these varied characteristics, integrating
data from multiple sources is often the most pragmatic strategy. Regardless of the source(s),
even when employing transfer learning (Section 2.3.5) to reduce data requirements
(Yosinski et al. 2014), securing several hundred labelled examples per class (including
‘healthy’) is generally advisable for robust model development (Christin et al. 2019).
Furthermore, careful management and utilisation of associated metadata, such as location
and time, is crucial throughout the acquisition and curation process to maximise the

potential for subsequent ecological analysis (Toivonen et al. 2019).
Seeing Clearly: Data Quality and Labelling

Beyond the initial acquisition, the inherent quality and subsequent labelling of wildlife
imagery present further significant hurdles for computer vision applications. Images
captured in natural environments typically exhibit extreme variability in factors such as
lighting, animal pose, distance, occlusion, and background complexity (Figure 2.4). This
often results in a low signal-to-noise ratio, where subtle disease signs can be difficult to
discern amidst visual clutter (Lurig et al. 2021; Cunha et al. 2023). These challenges can be
particularly acute in aquatic environments, where factors such as water turbidity, surface
reflections, rapid subject movement, and the inherent difficulties of underwater imaging
further reduce image clarity and the visibility of subtle signs. Compounding this issue, visual
diagnosis from images alone can be inherently ambiguous; differentiating visual signs of
disease from natural variation or injuries can prove challenging, even for experts. Such
ambiguity inevitably complicates the creation of reliable ground truth labels necessary for

training supervised models (Murray et al. 2021).
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Addressing these combined challenges requires meticulous attention to data quality control
and the establishment of robust labelling procedures. Paramount among these is the
development of clear, objective definitions for disease categories coupled with consistent
labelling protocols applied across the dataset. The specific type of annotation required must
also align carefully with the intended analytical goal: simple image-level labels suffice for
basic classification tasks, whereas object detection necessitates bounding boxes to localise
signs, and semantic segmentation demands detailed pixel-level masks for precise spatial
delineation (Figure 2.2). Selecting appropriate labelling software (such as CVAT or
Zooniverse) can facilitate this process. Critically, given the diagnostic difficulty inherent in
identifying wildlife diseases visually, ensuring high label quality typically necessitates
significant domain expertise (veterinary or ecological) (Murray et al. 2021). This contrasts
sharply with tasks like species identification, where non-expert citizen scientists can often
achieve high accuracy (Swanson et al. 2015). To further improve reliability and quantify
uncertainty, best practice involves employing multiple annotators for each image (or at least
a subset) and assessing consistency through metrics like Inter-Annotator Agreement (IAA)
(Artstein 2017; Ditria et al. 2020; Palmer et al. 2021). While comparison against a ‘gold
standard’ set with clinically confirmed diagnoses represents the ideal for label validation,

this approach is unfortunately rarely feasible in free-ranging wildlife contexts, underscoring

the importance of rigorous protocol design and expert involvement.
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Figure 2.4. Examples of photographs of red foxes (Vulpes vulpes) with clinical signs of
sarcoptic mange, sourced from the citizen science platform iNaturalist. The panels illustrate
common challenges and characteristics, such as: (A) a blurry, low-light camera trap image;
(B) a clear, high-quality photograph suitable for detailed assessment; (C) a subject that is
distant in an image that has been edited; (D) a subject that is both blurry and partially
occluded by foliage; (E) an image clearly showing clinical signs of mange along the flank and
tail; and (F) a subject at a significant distance from the camera. Image Credits: (A) Photo
401908233, © Nova Patch, CC BY-SA; (B) Photo 248359548, © Lori A Owenby, CC BY-NC; (C)
Photo 61922852, © Juan C. Espinosa, CC BY; (D) Photo 333198287, © Erin O’Connor, CC BY-
NC; (E) Photo 360827452, © Lyla R. Meader, CC BY-NC; (F) Photo 223123668, © Cole Wolf,

CC BY. All images were uploaded by their respective owners to iNaturalist.
Building the Engine: Model Development and Methodological Complexity

Developing effective computer vision models for wildlife disease classification or detection
presents considerable methodological challenges beyond data acquisition and labelling. The
visual signs themselves can be subtle, non-specific, mimic normal variation, or change
significantly with disease stage, making automated detection intrinsically difficult (Wei et al.
2022). A further complication arises from the risk of models learning spurious correlations;
they might associate disease labels with irrelevant background elements present in the
training data rather than the relevant disease features, thereby severely limiting their ability
to generalise to new images or environments (Miao et al. 2019). Even advanced Vision-
Language Models (VLMs), despite their potential for flexible data interaction, currently face
hurdles in this domain, often struggling with the fine-grained visual distinctions required for
accurate disease identification and lacking comprehension of specialised terminology used
in expert queries (Vendrow et al. 2024). Looming over these technical difficulties is the
fundamental challenge of rigorously validating model outputs against confirmed (‘gold
standard’) disease status in free-ranging wildlife populations. This is a significant, often
challenging, obstacle given the inability to capture and clinically assess most individuals

observed remotely.

Mitigating these complex challenges requires a thoughtful and rigorous approach to model

development and training. Careful workflow design is crucial, involving the selection of
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appropriate computer vision tasks (classification, detection, or segmentation) tailored to the
specific research questions and potentially employing multi-stage pipelines, for instance,
using an initial general animal detector like MegaDetector (Beery et al. 2019) before
applying a specialised disease classifier. To leverage existing knowledge when specialised
datasets are small or scarce, transfer learning (Yosinski et al. 2014) is a standard approach
where models pre-trained on large, general datasets are adapted for the specific wildlife
disease task. Furthermore, advanced learning paradigms offer promising avenues to
capitalise on potentially abundant unlabelled imagery alongside limited labelled examples.
Active learning strategies, for example, can intelligently prioritise the most informative
images for expert annotation, maximising model improvement while minimising labelling
effort. Techniques like semi-supervised learning explicitly incorporate unlabelled data into
the training process to improve model generalisation, while self-supervised learning
methods can first learn rich visual representations from unlabelled data alone, which are
then fine-tuned using the available labels (He et al. 2020). Such approaches, along with few-
shot learning strategies designed to learn effectively from minimal labelled examples
(Section 2.3.5), are particularly pertinent given the typical constraints of wildlife disease
datasets. Essential pre-processing steps, such as image resizing and pixel value
normalisation, ensure data consistency for model input. Furthermore, data augmentation,
applying random transformations like flips, rotations, and brightness adjustments to training
images, is critically important for enhancing model robustness against the inherent
variability in wildlife photographs (Shorten and Khoshgoftaar 2019). Emerging generative Al
techniques also offer a potential, though still developing, avenue for synthesising data for
particularly rare classes (Rafiq et al. 2025). Finally, the model training process itself demands
careful management. This includes using distinct training and validation data splits, ideally
incorporating spatial or temporal separation to rigorously test generalisation capabilities
(Beery et al. 2018; Tabak et al. 2019; Schneider et al. 2020), which helps monitor learning
progress and prevent the common problem of overfitting where the model performs well
on training data but poorly on unseen data. This entire workflow, from data acquisition and

annotation through to model evaluation and interpretation, is outlined in Figure 2.5.
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Figure 2.5. Schematic overview of the computer vision pipeline for wildlife disease detection
from online images. Data are collected and annotated, undergo initial quality control, and
are dynamically pre-processed during model training. Optional animal detection can be
applied before disease classification or segmentation. Model outputs are evaluated and

interpreted in an ecological context.

Checking the Results: Evaluation, Interpretation and Deployment

Once a model is trained, evaluating its performance presents its own set of challenges,
particularly within ecological contexts. Relying solely on overall accuracy can be highly
misleading, especially given the class imbalance typically encountered in disease datasets
where healthy individuals vastly outnumber diseased ones. Furthermore, demonstrating
that a model achieves high statistical performance on standard metrics (as defined in
Section 2.3.4) does not automatically guarantee that its outputs provide meaningful

ecological insights or accurately reflect real-world disease dynamics.

Consequently, a nuanced and comprehensive evaluation strategy is essential. This involves
selecting performance metrics appropriate for the specific task and sensitive to data

characteristics, particularly the class imbalance inherent in many disease studies (Blair et al.
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2024). Beyond calculating these core metrics, evaluation should include comparing model
performance to human expert benchmarks where feasible, providing valuable context for its
capabilities (Esteva et al. 2017). Robustness and generalisability must also be rigorously
assessed, ideally by testing the model on data collected under different conditions or from
different locations than those represented in the training set (Beery et al. 2018; Ditria et al.
2020). Ideally, evaluation should extend beyond standard computer vision metrics to assess
whether model performance translates into the accurate estimation of relevant
downstream ecological variables, such as prevalence estimates, as this link is not always
direct (Pantazis et al. 2024). To gain further confidence in the model reasoning, model
interpretation techniques, such as saliency heat maps which highlight image regions
influencing predictions, can help verify that the model is focusing on relevant pathological
features rather than spurious background cues (Selvaraju et al. 2020; see Figure 2.6). Only
through thorough evaluation can the suitability of a model for deployment and

interpretation be confidently determined.

Figure 2.6. lllustration of a saliency-style heatmap for post-hoc model interpretation. The
image on the left shows a red fox (Vulpes vulpes) with visible signs consistent with sarcoptic
mange. The panel on the right shows a heatmap overlay created manually in Affinity

Designer (using a semi-transparent colour layer) to illustrate how saliency visualisations are
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commonly presented. Warmer colours indicate regions of higher apparent importance. This

figure is illustrative only and is not an output from any model used in this thesis.

Putting it Together: Resource and Ethical Considerations

Finally, successfully implementing computer vision for wildlife disease surveillance involves
navigating significant resource constraints and ethical responsibilities. Deep learning
workflows typically demand considerable computational power for training and inference
and require specialised technical expertise in data science and programming. These
requirements can present substantial barriers for ecology research groups operating with
limited budgets or lacking dedicated technical staff (Ditria et al. 2020; Vidal et al. 2021).
Concurrently, the handling of wildlife health data necessitates careful consideration of
ethical issues, particularly regarding data sensitivity and potential impacts on conservation

efforts or public perception.

Addressing these practical hurdles often requires interdisciplinary collaboration.
Partnerships between ecologists and computer or data scientists can bridge expertise gaps
and are frequently essential for project success (Weinstein 2018). Effective project planning
must explicitly account for computational requirements, potentially exploring options like
cloud computing resources or shared infrastructure. Importantly, all stages of the research,
from data acquisition through to analysis and dissemination, must adhere to ethical
protocols (Wilkinson et al. 2016). This includes ensuring appropriate permissions for data
collection, implementing secure data storage, and carefully managing the sharing of
potentially sensitive information, such as precise locations of vulnerable species or graphic
images depicting specific disease conditions (Morcatty et al. 2024). Careful attention to both
resource management and ethical conduct is fundamental to the responsible application of

computer vision in this sensitive field.

2.7 SUMMARY AND FORWARD LOOK

This review has provided a foundational overview of the potential for using computer vision

in wildlife disease surveillance. We have seen that while precedents from human medicine,
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agriculture, and livestock health demonstrate the considerable capabilities of CV for
analysing visual signs of disease (Section 0), the successful application to wildlife requires
careful navigation of unique challenges (Section 2.6). Key opportunities include the potential
for non-invasive monitoring at large scales, leveraging the vast amounts of available digital
imagery (Section 2.6.1). However, significant hurdles exist concerning data availability and
quality, the inherent ambiguity of visual diagnosis in variable field conditions,
methodological complexities in model development, and practical considerations regarding

resources and ethics (Section 2.6.2).

Successfully applying CV effectively to wildlife disease monitoring, therefore, requires more
than adopting off-the-shelf tools. It necessitates a nuanced, integrated approach that
addresses these specific challenges. Success hinges on developing targeted data curation
strategies, selecting appropriate model architectures and workflows, employing robust
validation methods that consider ecological relevance beyond model accuracy, and fostering
strong interdisciplinary collaboration. Future advancements, perhaps leveraging the
capabilities of Vision-Language Models, might even open new avenues for detecting novel
or unexpected disease signs that have not been explicitly trained for. The groundwork laid in
this chapter provides the necessary context for the subsequent chapters of this thesis,
which explore these elements through the development and evaluation of CV tools

designed for specific wildlife disease case studies.
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ABSTRACT

Animal disease surveillance is dependent on early detection for an optimal response to both
emerging and known pathogens. For wildlife, diseases are often reported ad hoc presenting
a challenge for both conservation and public health. Images acquired via smartphones,

camera traps, and open-access websites, however, present an opportunity for non-invasive

surveillance of diseases with visible signs that could supplement existing, sparse knowledge.

Here, we quantify the visible signs associated with animal diseases listed on the World
Organisation for Animal Health (WOAH) animal diseases portal. From a database of 204
unique infectious diseases, we found that 137 (67.2%) have at least one visible sign. These
signs were most frequently associated with viral pathogens and mammalian hosts, with
'lesion' being the most commonly recorded sign. Diseases that spread by direct contact
were significantly more likely to have visible signs than those transmitted indirectly or by
vectors. To assess the feasibility of image-based surveillance, we interrogated ‘Flickr’, an
open access image sharing website and found public images for 74 of the 137 diseases with

visible signs.

While we show the potential for image-based disease detection in a range of host-pathogen
systems, challenges remain in acquiring sufficient number and diversity of images and
associated metadata for comprehensive spatial and temporal surveillance. Actively
acquiring images via a camera or sensor networks, or from stakeholder citizen science
groups, are likely the most fruitful means to acquire sufficient spatiotemporal coverage for
surveillance. Thereafter, sufficient images could provide an opportunity to train a computer

vision model for surveillance. These data could enable near real-time feedback and generate

38



novel spatiotemporal data for determining, together with location data, when, where, and

why disease occurs in animals.

3.1 INTRODUCTION

Epizootics cause significant animal welfare issues, lead to population declines, and in wildlife
can threaten species viability (McCallum 2008). Widespread disease and high mortality are
obvious conservation concerns, especially when coupled with pervasive environmental
stressors such as climate change and pollution (Smith et al. 2009). Up to 80% of the range of
the northern long-eared bat (Myotis septentrionalis) in North America, for example, is at risk
from white-nose syndrome, with widespread mortality occurring (Cheng et al. 2021).
Similarly, devil facial tumour disease (DFTD) has spread rapidly throughout the Tasmanian
devil (Sarcophilus harrisii) population in Australia, causing up to 90% mortality (Jones et al.
2008b). Infectious diseases that spill over into humans (zoonoses) can yield devastating
societal health and socio-economic impacts (Morens et al. 2004; Karesh et al. 2012). Over
70% of emerging human infectious diseases originate from wildlife (Jones et al. 2008a)
which provides strong motivation for animal disease surveillance. The impact of animal
disease on conservation, food security, animal welfare and human health therefore renders
surveillance vital (Dobson et al. 2006; Muneza et al. 2019; Savary et al. 2019). The economic
incentive for zoonotic surveillance is obvious: the SARS-CoV-2 pandemic resulted in
estimated economic losses of $14 trillion in the US alone (Walmsley et al. 2021). Despite
considerable potential for harm and these clear incentives for surveillance, our
understanding of where and when animal diseases occur, especially within wild species, is
sporadic and incomplete (Watsa 2020), a gap highlighted in the most recent international

guidelines on the topic (WOAH and IUCN 2024).

One promising avenue for closing this surveillance gap is through non-invasive, image-based
methods. Many infectious diseases produce externally visible signs, which can be captured

in photographs.

3.1.1 DISEASE SURVEILLANCE OF ANIMALS

While global infrastructure for animal disease surveillance exists, it is primarily focused on
livestock and commercially important species, with comparatively limited surveillance in

wildlife (WOAH and IUCN 2024). Member countries of the World Organisation for Animal
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Health (WOAH) have a duty to report ‘listed’ terrestrial and aquatic animal diseases; those
considered of international concern by WOAH. Reports typically stem from clinical
surveillance (veterinary observations), syndromic surveillance (systematic analysis of health
data), ante- and post-mortem inspections (including in slaughterhouses/abattoirs) and
surveillance of sentinel animals (WOAH 2023). Coordinated pathogen screening is clearly an
important tool to prevent epizootics/pandemics, but depends on having animals ‘in-hand’
and available for inspection, and while this may be relatively straightforward for livestock or
domestic animals, ‘point of care diagnostics’ remains a significant challenge for wildlife

(Bora et al. 2022; WOAH and IUCN 2024).

Surveillance and disease detection in wildlife are typically ad hoc (Phelps et al. 2019; Watsa
2020) and often reports originate from the general public. Individuals that interact with
animals, such as hunters, anglers and wildlife enthusiasts, are likely to report disease
outbreaks or sick animals due to their understanding of what is unusual (Morner et al.
2002). Take, for example, the emergence of white nose syndrome, where the pathogen
itself is often visible on the face and was first noticed by recreational cavers in bat
hibernacula (Hoyt et al. 2021). Similarly, DFTD causes large lesions, typically on the face, and
was first detected by a wildlife photographer (Hawkins et al. 2006). These diseases illustrate
that where signs are visible to the human eye then it is theoretically possible to use image-

based disease detection for surveillance (Figure 3.1).
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Figure 3.1. Photographs from online sources showing wildlife species infected with diseases
with visible signs. (A) Red fox, Vulpes vulpes, with visible signs of mange. (B) Green sea
turtle, Chelonia mydas, with visible signs of myxomatosis. (C) Common raven, Corvus corax,
with visible signs of avian pox. (D) Rabbit, Oryctolagus cuniculus, with visible signs of
myxomatosis. (E) Limosa harlequin frog, Atelopus limosus, with visible signs of
chytridiomycosis. (F) Coho salmon, Oncorhynchus kisutch, with visible signs of Saprolegnia

spp. See Supplementary Material, Chapter 3, for photograph attributions.

3.1.2 IMAGE-BASED INFECTIOUS DISEASE DETECTION IN ANIMALS

Non-invasive imaging offers a promising avenue for wildlife disease surveillance. Infrared
thermography (IRT), for example, has previously been used as a non-invasive method to

measure spatial variation in body surface temperature as a proxy for host health (Schilling et
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al. 2022). This has been used to successfully detect disease, notably sarcoptic mange
(Sarcoptes scabiei) that results in heterogenous fur loss and so is associated with heat loss
(Escobar et al. 2022). Such imaging, however, requires specialist equipment, is labour
intensive, and disease detection performance is comparable to visual observation (Arenas et
al. 2002). In contrast, standard photographs offer a simple, versatile method for collecting
what the latest international guidelines term "non-biological samples" (WOAH and IUCN
2024). Smartphone images, which often contain valuable spatiotemporal metadata, and
images from camera traps or public photo-sharing platforms like Flickr, provide a rich source
of data (Fox et al. 2020; Terry et al. 2020; Edwards et al. 2021). Engaging citizen scientists to
contribute such images is a form of participatory surveillance that can help overcome
coverage gaps and detect spatial hotspots, as demonstrated with mange in red foxes
(Vulpes vulpes) (Scott et al. 2020). Yet, despite available infrastructure, image-based disease
surveillance in animals remains rare (Schilling et al. 2022). While manual screening is viable
at small scales, computer vision offers a scalable, cost-effective solution. Overall, this

approach provides a rapid, non-invasive method to help close surveillance gaps.

3.1.3 COMPUTER VISION FOR INFECTIOUS DISEASE DETECTION

Although many ecological studies now use computer vision for species classification
(Norouzzadeh et al. 2021) and to record species distributions (Beery et al. 2021), few have
applied it to animal disease detection in the wild. Outside ecology, however, computer
vision is already used operationally for health and welfare monitoring in managed animal
systems. In Precision Livestock Farming (Berckmans 2017), commercial vision systems such
as HerdVision provide automated body condition and mobility scoring (HerdVision 2021).
Similar camera-based approaches are also used in aquaculture and fisheries, for example to
support sea-lice monitoring in salmon production (Tidal 2025) and Al-assisted analysis of
catch imagery for sustainable management (Skirrow 2024). In research settings, the
relatively small number of existing studies nonetheless shows that computer vision can
screen large image datasets for health-related signals, motivating further development for
wildlife disease surveillance (Christin et al. 2019; Jari¢ et al. 2020; Poulin et al. 2021). For
example, Park et al. (2007) reported 80-90% identification accuracy for scuticociliates and
Trichodina spp. in the olive flounder (Paralichthys olivaceus). More recently, Olsen et al. in

press developed a computer vision pipeline to classify saprolegniasis-like infections in wild
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salmonids, achieving high performance using images compiled from citizen science
platforms. In contrast, plant pathology has more broadly adopted computer vision.
Automated systems for in situ crop disease detection have achieved high accuracy (Mohanty
et al. 2016; Sladojevic et al. 2016b; Amara et al. 2017; Boulent et al. 2019; Bischoff et al.
2021), with some studies reporting up to 99% accuracy for multiple diseases across a range
of plant species (Fuentes et al. 2017; Ferentinos 2018; Bhagwat and Dandawate 2021).
Medical image analysis is even more advanced, spanning multiple modalities and
demonstrating diagnostic performance rivalling or surpassing human experts (Esteva et al.
2017; Nishio et al. 2018; Jain et al. 2021). These successes are largely attributed to

the abundance of high-quality, well-annotated training images available in these domains.
The primary challenge for animal disease surveillance, therefore, lies in acquiring sufficient
images to develop and train similar models. This study represents a first step in that
direction by quantifying which diseases might be suitable for this approach and assessing

the current availability of images, providing a roadmap for future work in this area.

In this study, we quantify this potential by systematically assessing animal diseases of
international concern for visible signs that could be used for image-based detection. We
focus on infectious diseases because their capacity for transmission makes them a primary
target for early detection and large-scale surveillance. Specific aims are to: (1) identify and
guantify important animal diseases that have visible signs and therefore potential use in
image-based disease detection; (2) identify general characteristics of diseases and their
hosts by testing the association between visible signs and metadata on pathogen taxonomy,
host taxonomy, transmission mode, host context (wildlife or livestock), and zoonotic
potential; and (3) assess the availability of open-access digital imagery to evaluate the

feasibility of image-based surveillance for identified diseases.

3.2 METHODS

3.2.1 ANIMAL DISEASE DATABASE CONSTRUCTION

As no single comprehensive database of all animal infectious diseases exists, we first
compiled and curated a foundational list of infectious diseases from the World Organisation
for Animal Health animal diseases portal (WOAH, 2020). We selected this source for two
reasons: first, these diseases are subject to global attention and are typically well-
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documented, allowing for the reliable extraction of metadata on clinical signs. Second, these
diseases were more likely to have publicly available image data, relevant to our aim of

assessing the potential for image-based surveillance.

The list of diseases sourced from the WOAH portal (n=206) underwent a three-step curation
process to establish a consistent naming convention. First, we excluded three non-infectious
agents (e.g., botulism). Second, we disaggregated broad entries into their constituent
diseases (e.g., resolving the single entry for ‘Zoonoses transmissible from non-human
primates’ into 45 specific diseases listed within the WOAH Terrestrial Manual (WOAH 2023),
of which 23 did not already have entries for mammals in the database), yielding a total of
250 diseases. Third, we standardised disease names to create a single canonical label for
each disease (e.g., records for ‘Equine Influenza’ and ‘Equine Influenza, in wildlife” were
both mapped to the standardised entity ‘Equine Influenza’). This curation process yielded a

Master Disease List of 204 unique diseases.

For each of the 204 diseases in our Master Disease List, we systematically extracted detailed
information on hosts, pathogens, clinical signs, and transmission to create a Detailed
Disease-Host Database. Our primary source was the WOAH portal, which we supplemented
with the Merck Veterinary Manual (Kahn and Line 2005). Where information was
incomplete, we conducted targeted literature searches on Scopus. To capture the full
diversity of disease presentation, a separate record was created in the database whenever a
source provided distinct information for a specific host taxon, causative pathogen, or host
context (e.g., a specific WOAH entry for wildlife). For example, the single conceptual disease
‘Toxoplasmosis’ was expanded into four separate records to capture distinct clinical
information documented for mammals and birds, in both wildlife and general/livestock
contexts. This detailed extraction process resulted in a database of 295 unique records. The

full dataset is available at https://doi.org/10.5281/zenodo.17467038.

3.2.2 HOST AND DISEASE METADATA

For each of the 295 records, we collected the following metadata.

Pathogen, transmission and zoonotic potential
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The pathogen genus and species were recorded. To assess the relationship between visible
signs and pathogen, each pathogen was assigned to one of seven taxonomic divisions: prion,
virus, bacterium, protist, fungi, ectoparasite (parasitic arthropods), or helminth. We
categorised the primary mode of transmission for each disease into one of three groups:
direct (requiring close or direct contact between an infected and susceptible host), indirect
(including transmission via fomites, ingestion, or environmental reservoirs), or vector-borne
(requiring an intermediate organism, typically an arthropod, to transmit the pathogen).
Zoonotic potential was sourced from the WOAH portal and supplemented by Taylor et al.

(2001).
Host data

Hosts were classified into eight taxonomic groups: molluscs, insects, crustaceans,
amphibians, reptiles, fish, birds, and mammals. To provide a more nuanced understanding
of the host context, each disease-host association was further classified into one of three
categories based on its primary source and relevance to wildlife. The first category, 'WOAH-
designated Wildlife', comprises associations where the disease is formally designated by
WOAH as being of significant importance to wildlife health and conservation. The second
category, 'Other Wildlife Associated', includes associations not formally designated by
WOAH for wildlife but for which a wildlife host was identified through supplementary
literature sources. All other associations, primarily those concerning domestic animals, were
classified as ‘Livestock / General’. This classification reflects the host contexts described in
the sources reviewed; consequently, diseases in the 'Livestock / General' category may also

affect wildlife.
Visible signs data

For each record, clinical signs were first extracted verbatim from the source texts. For
example, the WOAH technical disease card for Elephant Endotheliotropic Herpesvirus states
that typical clinical signs include "lethargy, anorexia (...) oedema of the head, neck, trunk,
and thoracic limbs. Cyanosis of the tip of the tongue (...) and oral ulcers are also seen"
(Bucko and Gieger 2019). Two researchers (Perkins and Olsen) then independently reviewed
these textual descriptions to classify each of the 295 records as having either ‘visible’ or

‘non-visible’ signs. Initial independent agreement was observed for 96.6% of records
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(n=285). The remaining ten disagreements all concerned diseases where diarrhoea was the
only potentially visible sign; following discussion, we labelled these as ‘non-visible’. A record
was classified as ‘visible’ if the text described at least one external, physical sign that would
be observable on the animal itself. A record was classified as 'non-visible' if the

signs described were purely behavioural (e.g., ‘lethargy’), were not affixed to the host's
body (e.g., diarrhoea), or were secondary products (e.g., misshapen eggs). Thus, for the
EEHV example, descriptions like ‘oedema of the head’, ‘cyanosis’ and ‘oral ulcers’ led to

a ‘visible’ classification.

For further analysis, visible signs were grouped into eight categories based on their primary
visual characteristic. These categories were: external exudate (e.g., nasal discharge,
excessive mucus production); colour change (e.g., reddening of the body, dullness,
gangrene); fur/skin/feather change (e.g., ruffled feathers, protruding scales, fin rot, fur loss);
morphology (e.g., curling of the foot, protruding eyes); swelling/oedema (e.g., swollen
joints, bloating, enlarged lymph glands); lesion (e.g., haemorrhaging, necrosis, ulcers,
blisters); anorexia/weight loss (e.g., atrophy of the body); and conjunctivitis (e.g., swollen
eyes, lachrymation, blepharitis). Applying this framework to the EEHV example, ‘oedema of
the head’ was classified as swelling/oedema, ‘cyanosis of the tip of the tongue’ as colour

change, ‘oral ulcers’ as lesion, and the associated ‘anorexia’ as anorexia/weight loss.

3.2.3 ASSESSING IMAGE AVAILABILITY

We used the ‘Photosearcher’ package (Fox et al. 2020) in R v4.2.2 (R Core Team 2021) to
qguantify images showing signs of diseases using open access photo sharing website Flickr.
‘Photosearcher’ relies on appropriate labelling so will only detect diseases that are labelled
correctly with a text keyword. We use this method as a test bed to reflect the wider

availability of images across the internet.

For each disease in our database, we compiled a list of relevant search terms, including the
consolidated disease name based on the WOAH animal diseases database entry and the
scientific names of any associated pathogens (see Supplementary Table 1 for a full list). This
search did not separate different taxa or wildlife versus livestock. The total image count for
each disease was calculated by summing the search results from all its associated terms. Our

search included all images uploaded to Flickr between its launch (01/01/2004) and the
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search date (22/01/2026), but with no spatial filters. To reduce inflation from ambiguous or
widely used terms, we excluded a small set of search terms that returned large volumes of

clearly irrelevant content on brief manual inspection (MERS, glanders, plague and mange).

3.2.4 DATASET ANALYSIS

For statistical analysis, the 295 records from the Detailed Disease-Host Database were
consolidated to our primary analytical unit: the unique disease-host association. This
consolidation, which yielded a final dataset of 250 unique analytical units, was done to
ensure that each data point in the model was statistically independent. When a disease-host
pair had multiple entries (e.g., from different sources), we aggregated their metadata into a

single summary record.

To investigate factors associated with the presence of visible signs, we fitted a binomial
Generalised Linear Model (GLM). The binary response variable was the presence/absence
(1/0) of visible signs. The model included the following predictors: host taxa (8-level factor),
pathogen class (7-level factor), zoonotic (binary), wildlife disease (binary), WOAH-
designated Wildlife (binary), and transmission routes. As a disease can have multiple
transmission routes, we included direct, indirect, and vector transmission as separate binary
predictors. We set 'mammals' and 'virus' as the reference levels for host taxa and pathogen
class, respectively. We verified model assumptions using diagnostic plots from the
'performance' package (Lidecke et al. 2021). To determine the overall significance of each
predictor, we performed a sequential Analysis of Deviance (Type 1) using a Chi-squared test.
We then used the 'emmeans' package (Lenth 2024) to conduct post-hoc pairwise
comparisons. All statistical analyses were done in R v4.3.2 (R Core Team 2021), using a

significance level of 0.05.

3.3 RESULTS

We found that 137 (67.2%) of the 204 infectious diseases listed in the World Organisation
for Animal Health animal diseases portal have at least one visible sign. However, because
many pathogens are generalists, a single disease can manifest differently in different hosts.
Of the 250 disease-host associations, 162 (64.8%) had visible signs. Of these, 58 (35.8%)
presented with a single category of sign, while the remaining 104 presented with two or
more, with some showing as many as six distinct sign categories (Figure 3.2). After
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consolidating all signs for each unique disease-host unit, the three most common categories
of clinical signs were lesion (n=80), swelling/oedema (n=58), and colour change (n=58)

(Figure 3.2).
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Figure 3.2. The frequency distribution of diseases with visible signs (left) and the type of
visible signs (right) using data from the World Organisation for Animal Health animal

diseases portal and additional sources.

Among the 162 disease-host associations with visible signs, viruses were the most common
pathogen (n=86), followed by bacteria (n=37) and protists (n=19). Mammals were the most
common host taxa (n=89), followed by birds (n=29) (Figure 3.3). Of these 162 disease-host
associations, 79 (48.8%) involved a ‘WOAH listed’ disease. These visible associations were
most commonly found in hosts categorised as 'Other Wildlife Associated' (n=94), followed
by 'WOAH-designated Wildlife' (n=44), and 'Livestock / General' (n=24). Notably, of the 70
total associations involving 'WOAH-designated Wildlife', 44 (62.9%) had visible signs (Figure
3.3). Of the 137 unique diseases with visible signs, 55 (40.1%) are known to be zoonotic,

compared to 31 (46.3%) of the 67 unique diseases without visible signs.
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Figure 3.3. The number of diseases with visible signs, host category, and the number of
diseases with non-visible signs according to host taxa (top) and pathogen class (middle), and
World Organisation for Animal Health (WOAH) listed status (bottom) using data from the

WOAH animal diseases portal and additional sources.

The majority of diseases in the WOAH database were viruses associated with mammals, of
which over half had visible signs (Figure 3.4). Of all predictors tested, only direct
transmission was significantly associated with the presence of visible signs (x*> = 7.72, df = 1,
p = 0.005). We found no significant association for host taxonomic group (x> =9.33,df=7, p
=0.230), pathogen class (x*> = 7.93, df = 6, p = 0.243), zoonotic potential (x> = 1.58,df=1,p =
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0.209), or whether a disease affects wildlife (affects wildlife: x> =2.41, df = 1, p = 0.120;
WOAH_wild: x> =0.22, df = 1, p = 0.638).
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Figure 3.4. Co-occurrence and frequency of diseases associated with host, pathogen type
and visible signs using data obtained from the World Organisation for Animal Health animal

diseases portal.

These results confirmed that diseases with a direct transmission route were significantly more
likely to present with visible signs (Estimate = 0.94, p = 0.004). No other individual predictor
level was statistically significant, although diseases in crustaceans showed a marginal, non-
significant trend towards being more likely to have visible signs compared to the reference
taxon, mammals (Estimate = 2.05, p = 0.063). Full model coefficients are provided in

Supplementary Table 2. Post-hoc pairwise comparisons for both host taxa (Supplementary
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Table 3; Supplementary Figure 2) and pathogen class (Supplementary Table 4; Supplementary

Figure 3) confirmed that no single pair of levels was significantly different from another.

3.3.1 ASSESSING IMAGE AVAILABILITY

To quantify online image availability, we searched Flickr for the 137 diseases identified as
presenting with visible signs. We found images for 74 of them, although the number of
images found for each disease varied greatly. Six diseases returned over 1,000 images, 20
had between 100 and 999 images, 18 had between 10 and 99, and the remaining 30 had
fewer than 10 images (see Figure 3.5, Supplementary Table 5). Because Flickr counts are
keyword-based and some terms were dominated by non-disease content on brief manual
inspection, we excluded a small set of ambiguous terms (MERS, glanders, plague and
mange) from the summary; in the filtered results, diseases with the most images included

malaria (n=5,018), anthrax (n=3,789) and pox virus infections (n=3,147).
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Figure 3.5. The top 10 diseases with the highest image availability on Flickr, out of the 137

diseases from the World Organisation for Animal Health animal diseases portal identified as



having visible signs. The number of images for each disease is based on a search conducted

on 22 January 2026.

3.4 DISCUSSION

Our study shows that a substantial proportion (64.8%) of the 250 disease-host associations
of animals that we evaluated have visible signs of infection, confirming a broad potential for
image-based surveillance. These signs were most frequently found in diseases of mammals
caused by viruses, and the most common signs were lesions, colour changes, and swelling.
This initial classification provides a foundation for identifying suitable diseases and visual

characteristics that could be targeted by automated detection models.

Our statistical model revealed that after accounting for host and pathogen type, the only
significant predictor of sign visibility was transmission mode. This link between direct
transmission and visible signs aligns with the evolutionary framework of "transmission-
symptom" co-evolution (Antonovics et al. 2017). The theory posits that for pathogens
reliant on direct contact, external signs are not just by-products of infection but can evolve
to be integral to the transmission process itself. This may occur because signs that facilitate
shedding, such as lesions, increase the probability of a pathogen transferring to a new host.
Our data support this: two of the most frequent signs in directly transmitted diseases were
lesions and external exudates. Such signs can create a direct physical pathway for a
pathogen to exit an infected host and enter a susceptible one, for example via infectious
fluid from a sore. In this context, the visible sign could be a key component of the

pathogen's transmission route.

Our model found no significant link between visible signs and pathogen class, host taxa, or
zoonotic potential. These results, however, should be interpreted cautiously. Because we
used the disease-host pair as our analytical unit, some pathogen groups, particularly
generalist viruses, were over-represented in the dataset, which may have obscured weaker

underlying associations.
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While images offer opportunities for disease surveillance, the success of automated
detection depends not only on how conspicuous a sign is, but also on the diversity of its
presentation. Signs vary in appearance across hosts, individuals, stages of infection, and
environmental conditions. Our model showed no significant overall effect of host taxa but,
for some, the sample size was probably too small e.g. just 13 crustacean specific diseases. In
early-stage infections, visible signs such as slight fur thinning or faint skin discolouration may
be too subtle to detect reliably. Signs like fur loss from mange are often stark and manual
image-based disease detection has worked well (Scott et al. 2020; Murray et al. 2021).
Other signs, however, like minor texture changes or slight swelling, can be subtle and easily
missed. Although ‘external exudate’ was a common sign, and might seem visually subtle, it
has been used to detect Foot and Mouth disease from images of ‘ocular discharge’ (Hofstra
et al. 2023). Regardless, image-based surveillance will likely perform best for diseases with

bold, unmistakable visual hallmarks.

Most diseases in our study are not pathognomonic, so an image with visible signs cannot
provide a definitive diagnosis. They can, however, be used for disease surveillance, defined
by WOAH and IUCN (2024) as observing clinical signs to detect potential disease events.
Using images as non-biological samples is a non-invasive method for health assessment,
distinct from pathogen surveillance which requires collecting biological samples from
captured animals. Image-based methods may be less sensitive for detecting subtle, early-
stage infections, but they offer a low-cost, scalable way to screen for disease where no
surveillance previously existed. This approach can also be used to assess historic disease
emergence or outbreaks. For example, EImer et al. (2019) used archival images from Google
to trace the historical occurrence of black spot syndrome in Caribbean reef fishes back to
1985, demonstrating the value of public image repositories for long-term disease
surveillance. The methods for acquiring these non-biological samples align with established
surveillance strategies. Using public websites like Flickr or iNaturalist is a form of passive and
participatory surveillance, which relies on opportunistic reports from citizen scientists to
detect mortality events and unusual signs (Lawson et al. 2015). In contrast, using camera-
trap networks (e.g. Ringwaldt et al. 2025) or dedicated video transects (e.g. de Wit and

Johnson 2024) to monitor specific diseases is a form of active (targeted) surveillance.
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A key part of image-based surveillance is acquiring the images. In a livestock setting,
Precision Livestock Farming is growing the capability to collect many images for real-time
health monitoring (Berckmans 2017). The commercial aquaculture and fisheries sectors also
use automated imaging to monitor sea lice and track wild fish stocks (Skirrow 2024; Tidal
2025). Acquiring quality images in wildlife settings provides other challenges, but aligns with
a broader trend towards non-invasive methods in wildlife health research (Schilling et al.
2022). Here, we evaluated Flickr as a proxy for open-access imagery and found data for over
half of the diseases, affirming the potential of public photo-sharing platforms for filling in
gaps in disease surveillance. Our search returned substantial image counts for several
diseases with more specific terminology (e.g., anthrax, avian influenza, foot and mouth
disease, and chytridiomycosis; Supplementary Table 5), suggesting that for some conditions
sufficient public imagery may already exist to support model development. However, term
choice matters: broad or ambiguous search terms can return large volumes of mixed-
content imagery. For example, the term “mange” returned 42,260 images, but a brief
manual check suggested that many results were off-target, implying that such datasets
would require substantial verification and curation. A practical way forward is to use more
specific, context-rich queries (e.g., combining host and disease terms such as “fox” +
“mange”), which yields a more manageable candidate set. However, even with improved
queries, verification remains a standard requirement in wildlife disease research. For
example, Scott et al. (2020) manually analysed images sent in by the public to study mange,
while Ringwaldt et al. (2025) used computer vision on dedicated camera trap images.
Similarly, Szentivanyi and Vincze (2022) manually screened images from iNaturalist to track

toad myiasis.

Future image-based disease surveillance requires integrating these strategies within a One
Health framework. Further work should focus on creating better analytical pipelines for
public datasets and encouraging more targeted data collection. For example, stakeholder
groups like recreational anglers could help build expertly labelled training sets for fish
diseases. Existing ecological camera-trap networks could also be repurposed for health
monitoring. As accessible computer vision pipelines emerge (e.g. Blair et al. 2024; Brook et

al. 2025) these methods become more feasible for a wider range of users. Combining image
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data with other metadata, such as geolocation and environmental variables, can generate

data to better inform One Health actions.

3.5 CONCLUSION

Our findings confirm that a majority of animal diseases in the WOAH animal diseases
database present with externally visible signs, establishing a broad potential for image-
based surveillance. Realising this potential requires strategies that navigate the complexities
of disease ecology and the inherent noise in public image datasets. Our work aligns with the
principle that diseases with visible signs are ideal targets for citizen science (Lawson et al.
2015) and a wider trend towards non-invasive sampling in wildlife research (Schilling et al.
2022). While not a replacement for traditional diagnostics, these methods provide a
valuable tool for scalable, low-cost screening. For many diseases in remote settings where
surveillance is sparse, this approach can provide a mechanism for detection where
previously there was none. By combining proactive data collection with advanced computer
vision and integrating these efforts into existing One Health frameworks, image-driven tools

can improve near-real-time disease monitoring and contribute to more timely interventions.
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Abstract

Online digital images are a large and growing data source that can supplement traditional
ecological monitoring. Here we extend the concept of the ‘extended specimen’, traditionally
applied to physical specimens with associated data network, to include digital images.
Photographs reflect species occurrence, but we propose further ecological utility, such as
health indicators. Here, we use fish as a model species to assess image availability and
‘extendibility’. Fish are globally important with economic and cultural value, and many
images are shared online by anglers, making them a good case study. We systematically
assessed quantity, quality, and accessibility of ~70,000 salmonid images from four major
online repositories (iNaturalist, Flickr, GBIF, Wikimedia Commons). iNaturalist contributed
the most verified salmonid images with robust spatial and temporal metadata, followed by
GBIF for metadata completeness. Species-level identification was common, but reliability
varied; iNaturalist and GBIF offer structured verification, whereas taxonomy in Flickr and
Wikimedia Commons was derived from image search terms. We found strong support for
health monitoring, with visible signs of disease or damage in 17.4% of an annotated subset
of images. However, we identified key limitations for ‘extended’ analyses; restrictive
licensing hindered data reuse, and a lack of standardised size references made estimating
fish size impractical. This demonstrates the potential for opportunistic surveillance and that
repositories require evaluation of characteristics including data quality, licensing, and
taxonomic verification. Nevertheless, leveraging the distinct strengths of diverse platforms,
including using images with incomplete metadata for Al model training, is critical to

maximise ‘extended image’ ecological insights.

4.1 INTRODUCTION
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4.1.1 DIGITAL IMAGES AS AN ‘EXTENDED SPECIMEN’

The current global biodiversity crisis has severe implications for environmental and societal
wellbeing. Understanding species distributions is critical for biodiversity and environmental
management to mitigate these impacts (Pecl et al. 2017; Py3Sek et al. 2020). Traditional
monitoring is, however, resource-constrained (Yoccoz et al. 2001; Lindenmayer and Likens
2010; Amano et al. 2016), with systematic data often undermined by spatial, temporal, and
taxonomic gaps (Isaac and Pocock 2015; Speed et al. 2018). Here, we propose the ‘extended

image’ framework, harnessing massive image databases as a step-change to address this.

Digital technology has greatly increased ecological data availability, with citizen science in
particular collating image-based records at unprecedented scales (Nazir and Kaleem 2021;
Depauw et al. 2022). Dedicated platforms like eBird (eBird.org) and iNaturalist
(iNaturalist.org) have accumulated vast numbers of biodiversity records, many with
photographic evidence. In addition to these structured programmes, a large repository of
images exists on other online platforms, uploaded without specific scientific intent. The use
of such digital sources, generated for other purposes, to quantify ecological patterns and
processes is described as iEcology (Jari¢ et al. 2020). Within this broader iEcology space,
‘passive citizen science’ (see Edwards et al. 2021) specifically leverages social media content
that is unconnected to any particular citizen science programme, treating everyday uploads
as an untapped dataset for studying species trends, distributions, behaviour, and/or
phenology (Vardi et al. 2024). This parallels with the natural history concept of the
‘extended specimen’, where physical specimens are anchors for a rich network of associated
digital data (Webster 2017; Lendemer et al. 2020). Building on this, the ‘Digital Extended
Specimen’ (DES) framework aims to formalise these as interconnected, FAIR (Findable,
Accessible, Interoperable, and Reusable) digital objects on the internet (Hardisty et al.

2022).

Analogously, we can conceptualise the ‘extended image’ where all associated data are
linked to the image itself, rather than to a physical specimen. Online photographs and
videos are not merely species occurrence records but potential repositories of diverse
ancillary data such as behaviour, interactions, or health status. For example, species
distribution data from Flickr closely mirrors National Biodiversity Network Atlas records
(Edwards et al. 2021), and online photos enabled the rediscovery of a snake species
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previously thought extinct (Durso et al. 2021). Plant-pollinator interactions have been
extrapolated from citizen science wasp imagery (Pernat et al. 2024), YouTube videos
opportunistically revealed rare thanatological behaviours in Asian elephants (Elephas
maximus) (Pokharel et al. 2022) and online images have been used to document terrestrial
hermit crabs using artificial shells (Jagiello et al. 2024). The ‘extended image’ is also relevant
for wildlife health surveillance; the severity and drivers of Black Spot Syndrome in ocean
surgeonfish (Acanthurus tractus) have been investigated from videos (de Wit and Johnson
2024), while photographs from iNaturalist and Flickr can track nasal toad myiasis
(Szentivanyi and Vincze 2022). Applying these approaches to fish disease surveillance is

further explored in our own work (Olsen et al. submitted; Chapter 5).

4.1.2 APPLYING THE ‘EXTENDED IMAGE’: A SALMONID CASE STUDY

Fish are an ideal taxonomic group to explore extended image potential: global recreational
anglers number hundreds of millions (Arlinghaus et al. 2020), and many using digital tools to
share catch information generating a substantial repository of images with associated
ecological and social insights (Monkman et al. 2018; Skov et al. 2021; Lennox et al. 2022).
Salmonids warrant particular research attention, as keystone species and bioindicators
(Naiman et al. 2002; Schindler et al. 2003) with substantial economic value and deep
cultural importance, yet increasingly under environmental pressures (Reid et al. 2019). The
value of the ‘extended image’ is pertinent for fish health, as externally visible disease signs
are common (Noga 2010) and could be captured in publicly available images. Indeed,
computer vision (CV) for monitoring salmon populations is being explored (e.g. Atlas et al.
2023; Olsen et al. in review). Since infectious diseases threaten both wild and farmed
salmonid populations (Peeler et al. 2011; Thorstad et al. 2021), disease monitoring
through scalable image analysis could provide critical policy and risk mitigation insights
(Olsen et al. in review). Understanding fish distribution and health, therefore,

has conservation, socio-economic, and food security relevance (Lynch et al. 2016; FAO

2020).

The value of online images for biodiversity monitoring is recognised (Lynch et al. 2016; FAO
2020), yet no systematic assessment has evaluated availability, quality, or accessibility of
fish images across multiple platforms for comprehensive ecological analysis, i.e.
‘extendibility’. We therefore aimed to address this knowledge gap using salmonid images
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from four major open-access platforms. We conducted a systematic assessment of temporal
patterns, geographical coverage, taxonomic reliability, licensing restrictions, and the
prevalence of visible signs of disease or damage. Examining both structured citizen science
platforms and informal image-sharing websites, we aimed to identify strengths and
limitations of different data sources to guide researchers using online images as an
ecological tool. We hypothesised that online platforms would yield substantial

and geographically diverse salmonid image datasets. We further predicted that these would
be suitable for addressing ecological questions regarding distribution, seasonal and annual

occurrence patterns, and health.

4.2 METHODS

4.2.1 DATA SOURCE DESCRIPTIONS

Wildlife images are available from many sources, including social media feeds, angler fora,
and institutional archives. For this study, however, we focused on four major open-access
platforms designed for broad image sharing and/or biodiversity data aggregation: iNaturalist
(inaturalist.org), GBIF (gbif.org), Wikimedia Commons (commons.wikimedia.org), and Flickr
(flickr.com). These were selected for their high expected volume of relevant images and the
availability of metadata, which is often removed on general social media platforms (Steidl
2016). These metadata are essential for developing the ‘extended image’ for ecological

analysis.

iNaturalist is a citizen science platform with over 260 million observations

from approximately 9 million users as of July 2025. GBIF (Global Biodiversity Information
Facility) aggregates research data, with over 3.1 billion occurrences and 239 million images.
Wikimedia Commons contains over 123 million freely usable media files. Flickr is a photo-
sharing website hosting an estimated 10 billion images and is popular for wildlife
photography. Since 2019, Flickr has limited free accounts to 1,000 photos, which may affect
the availability of older content (Gartenberg 2018). For platforms without taxonomic
organisation (Flickr and Wikimedia), scientific and common names was compiled by
integrating data from FishBase, FishTreeOfLife, and NCBI. Common names in English were

sourced from NCBI, FishBase, and iNaturalist (Supplementary Table 6).
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We also originally considered other image sources. Previous research have used images
from platforms like X (formerly Twitter) and Facebook (Daume 2016; Durso et al. 2021) but
ultimately these were excluded due to API restrictions and subscription fees, which create
significant financial and technical barriers. In addition, these platforms remove EXIF

data from uploaded images restricting their value in ecology. CalPhotos, with 188,152
animal images, was also excluded due to the absence of an APl and requirements for

individual image download permissions.

4.2.2 DATA ACQUISITION, VERIFICATION, AND INITIAL DATASET COMPILATION
We collected images and metadata (e.g., date, location, user-provided tags and
descriptions, species identification, image licensing information, EXIF data) for the Family
Salmonidae from the selected platforms between December 2023 and February 2024. All
data acquisition and processing scripts were run using Python (v3.11.7) unless otherwise

specified.

For iNaturalist, we downloaded metadata files from the ‘iNaturalist Licensed Observation
Images’ dataset on 4 December 2023 using the AWS Command Line Interface. Using pandas
(v1.5.3) in Python, we filtered for observations classified as Salmonidae (taxon_id = 47520)
or lower taxonomic levels, which returned 49,040 unique image URLs. Of these, 40,569
were "Research Grade", indicating community consensus on the species identification for an
observation with date and coordinates. These images were downloaded on 12 December
2023 using the multiprocess package (v0.70.15); six images were unavailable due to removal

from the platform since the metadata download.

From GBIF, we searched using the following filters: BasisOfRecord is Human Observation",
"MediaType is Image", "OccurrenceStatus is Present", and "TaxonKey is Salmonidae".

To avoid duplication, we excluded the 94.5% of records that originated from iNaturalist. This
filtering resulted in a Darwin Core Archive containing 1,843 unique images from other
sources such as museum collections, which were subsequently downloaded using the gbif-dl

package (v0.1.1) in Python (v3.9.18).
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Using an adapted R script from Marshall et al. (2020) , we queried our compiled list of
salmonid names (Supplementary Table 6) to retrieve 183 unique images from Wikimedia

Commons via Python’s urllib3 (v1.26.16).

For Flickr, we queried the APl on 12 December 2023 using the flickrapi package (v2.4.0) in
Python. As the platform lacks formal taxonomic identification, we searched image titles,
descriptions, and user-supplied tags using a curated list of target names (see Supplementary

Table 6).

The search query was refined through preliminary testing to remove unproductive terms.
For example, the term ‘Peled’ was excluded as it returned images of the footballer Pelé but
no relevant images of the fish, Coregonus peled. The final, refined list of 43 search terms
yielded 19,610 licensed images. To remove exact digital duplicates arising from multiple
user uploads or tags, we generated a unique SHA-256 hash for each image file using
Python’s Hashlib library. This deduplication resulted in 18,101 unique images, although this
method does not account for near-duplicates such as sequential photographs from a single
event. When a unique image had multiple metadata records, we consolidated them by

retaining the record with the highest location accuracy and the earliest available date.

The combined dataset comprised 69,167 unique images. However, the images from Flickr
and Wikimedia Commons still required manual verification. This was necessary to filter
results from ambiguous search terms that, unlike 'Peled’, did yield a mixture of relevant and
irrelevant images. For example, a search for ‘Grayling’ returned images of the target fish
(Thymallus spp.) but also the non-target Grayling butterfly (Hipparchia semele). An initial sift
of the 18,284 images from Flickr and Wikimedia was performed by two annotators to
remove images that were obviously not fish. Following this, 9,773 images were evaluated in
detail on Labelbox by at least two annotators, who assessed for the presence of a fish and
confirmed it as a salmonid. We excluded images of cartoons, drawings, prepared food,

or fossils (see Figure 4.1 for examples of included and excluded images). This process
verified 91 of 183 images from Wikimedia Commons and 6,869 of 18,101 images from Flickr

as suitable for the final dataset.
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Figure 4.1. Examples of image search results highlighting classification challenges. (A)
Atlantic salmon (Salmo salar). (B) T-shirt with salmon design. (C) Arctic grayling (Thymallus
arcticus). (D) False positive: Grayling, a butterfly species, correctly labelled but incorrectly
returned in search for salmonids due to taxonomic name overlap. Image credits: (A) “Atlantic
Salmon”, © E. Peter Steenstra/USFWS, Public Domain; (B) “Student-made Atlantic salmon T-
shirts”, © Gillian Ball / USFWS, Public Domain; (C) “The next generation's parents?”, ©
USFWS Mountain-Prairie, some rights reserved (CC BY); “Tree Grayling. Neohypparchia

statilinus”, © gailhampshire, some rights reserved (CC BY)

4.2.3 METADATA CONSOLIDATION

To enable robust cross-platform analysis, we standardised key metadata fields across all
sources, as detailed in Supplementary Table 7. For iNaturalist and GBIF,

taxonomic classification was taken directly from the metadata fields provided in the
downloaded datasets. For Wikimedia Commons and Flickr, taxonomic information was
assigned based on the search term used to download the image; if an image was
downloaded under multiple terms, the lowest available taxonomic level was assigned.
Where images were downloaded using a common name (e.g., “European grayling”), the
corresponding scientific name and taxonomic level were determined using Supplementary

Table 6.
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Quality indicators were harmonised under a standardised 'quality’ column: iNaturalist
provided structured quality grades, GBIF included an ‘identificationVerificationStatus’ field,
and Flickr and Wikimedia Commons relied on manual verification labels. Spatial information
was standardised under 'longitude’, 'latitude’, and 'location_accuracy'. Flickr provided
coordinate data with an accuracy scale, while iNaturalist and GBIF expressed uncertainty as
a radius in metres. Wikimedia Commons generally lacked spatial metadata. Temporal data
were harmonised under a single 'date' field, drawing from observation, upload, or EXIF

dates.

Licensing information was mapped to ten standard categories to ensure consistent tracking
of usage rights. These included All Rights Reserved, Public Domain, Government Work,
Unknown, and six Creative Commons (CC) variants (CC BY, CC-BY-SA, CC BY-ND, CC BY-NC,
CC BY-NC-SA and CC BY-NC-ND). The CC licenses specify different permissions, such as
restricting for-profit use (-NC), preventing modifications (-ND), or requiring derivative works
to be shared under the same license (-SA). Data provenance was maintained by preserving
each image’s unique source identifier and repository of origin. In addition to these
standardised fields, GBIF provided the richest ecological metadata through the Darwin Core
standard. This included fields such as 'habitat’, 'samplingProtocol’, 'lifeStage', 'behaviour’,
'establishmentMeans', and 'organismQuantity'. Further contextual information, such as field
notes, taxonomic details, and environmental parameters (e.g.,
'minimumDistanceAboveSurfacelnMeters'), was also available for some records. These

additional fields were retained for reference and potential future analyses.

4.2.4 DATASET CHARACTERISATION: IMAGE QUALITY AND LICENSING

Image Quality Assessment

Image Quality Assessment (IQA) models are computational tools designed to predict the
perceived quality of an image. No-reference (or "blind") IQA models operate solely on the
input image, whereas full-reference models require a comparison to a pristine reference
image (Ding et al. 2021). To evaluate the quality of images collected for this study,

we applied three established no-reference methods: blur detection (Pech-Pacheco et al.
2000), BRISQUE (Mittal et al. 2012), and NIQE (Mittal et al. 2013). We selected these

methods to provide a comprehensive characterisation of the dataset. Blur detection
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specifically measures image sharpness, which is critical for the visual identification of
diagnostic features. BRISQUE and NIQE assess overall perceptual quality and are sensitive to
a wide spectrum of distortions, including noise, compression artefacts, and other deviations

from natural scene statistics.

Blur scores were calculated using the Laplacian variance method, which quantifies
sharpness by computing the variance of the image's Laplacian operator. BRISQUE scores
were obtained using the QualityBRISQUE class from the OpenCV library (opencv-contrib-
python 4.9.0.80). NIQE scores were calculated using a publicly available Python
implementation which also relies on OpenCV. Notably, this implementation of NIQE requires

a minimum image resolution of 192 x 192 pixels due to its patch-based analysis.

Because IQA metrics were non-normally distributed and sample sizes were highly
unbalanced among platforms, we compared metric distributions among repositories using
Kruskal-Wallis rank-sum tests and reported epsilon-squared () as an effect size. Where
global tests were significant, we used pairwise Mann—Whitney U tests with Holm correction
for multiple comparisons and reported rank-biserial correlation as an effect size. NIQE
scores could not be calculated for a small number of images (<0.3%) that did not meet
minimum requirements (e.g. resolution constraints), and these were excluded from NIQE-

specific tests.
License Information Analysis

To assess the reusability of the compiled salmonid dataset, we analysed the distribution of
image licenses. This analysis is essential as license agreements dictate how images can be
used, reproduced, modified, and shared for research, including in publications and for
training computational models. Our analysis categorised licenses based on their restrictions;
for example, ‘All Rights Reserved’ typically prohibits reuse without explicit permission from
the copyright holder. We analysed the license distribution across all source platforms for
verified salmonid images. This approach was designed to quantify the dataset’s potential for
scientific sharing and reuse, aligning with best practices for data stewardship and addressing

known challenges in citizen science data openness (Groom et al. 2017).

4.2.5 ANALYSIS OF SPATIAL AND TEMPORAL PATTERNS
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Location Information Analysis

The spatial distribution of verified salmonid observations was visualised using hexagonal
binning. The visualisation included all images of salmonids with coordinate data, which were
drawn from all sources except Wikimedia Commons as it generally lacks location-specific
metadata. Location uncertainty was recorded differently across platforms. Flickr uses a 16-
point accuracy scale ranging from 1 (world level) to 16 (street level), with intermediate
values representing broader regions (e.g., country at level ~3, city at level ~11). Notably,
Flickr defaults to the highest accuracy (level 16) when a user does not specify a value. In
contrast, iNaturalist and GBIF express uncertainty as a radius in metres, defining the circular

area in which the observation occurred.

Datetime Information Analysis

The temporal distribution of salmonid observations was analysed across the four image
repositories. To ensure data quality, observations were filtered to event dates between 1
January 1900 and 14 December 2023, which removed five records (<0.01%) with apparent
data entry errors. Following manual inspection, a small cluster of Flickr images dated to
1980 and attributed to two specific users were also identified as clear outliers and removed.
We assessed annual trends by tracking the number of observations per year and evaluated
seasonal patterns by aggregating observations by month across all years. To statistically
support seasonal descriptions, we tested (i) whether monthly observations deviated from a
uniform distribution using a Chi-square goodness-of-fit test (overall and per platform), and
(ii) whether month-by-platform patterns differed among repositories using a Chi-square test
of independence; we reported Cramér’s V as an effect size and inspected standardised

residuals to identify months contributing most strongly to differences.

4.2.6 ANALYSIS OF TAXONOMIC COMPOSITION

We analysed the taxonomic composition of the verified salmonid observations using
Python. The taxonomic resolution was assessed across eight hierarchical levels (family,
subfamily, genus, species, hybrid, subspecies, variety, and form), and the relative proportion
of observations at each level was calculated for each data source. For a more detailed

analysis, observations were organised into the three salmonid subfamilies (Coregoninae,
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Salmoninae, and Thymallinae), with each genus assigned to its subfamily based on

established taxonomic classifications.

4.2.7 IMAGE CONTENT ANNOTATION: SIZE AND HEALTH INDICATORS

We annotated a subset of 5,667 verified salmonid images (11.5% of the total) to check for
signs of disease or damage and for objects to estimate size. We selected this subset

using stratified random sampling by data source and the lowest available taxonomic
classification of genus or species to represent the different platforms and taxa. This mixed-
level approach ensured the inclusion of images where species-level identification was not
possible, which is a frequent occurrence in images of diseased or damaged fish. For this
assessment, we sampled all verified salmonid images from Flickr, Wikimedia and GBIF. We
sampled all iNaturalist images regardless of their quality grade. We did this because fish
with visible disease or damage can be harder to identify to species level, and excluding
images that were not 'Research Grade' could create a selection bias. Two annotators
independently examined the image subset in Labelbox. To check for disease or damage,
they recorded visible signs such as rashes, discolouration, parasites, growths, cuts, or
wounds. We recorded an image as positive if any fish within it showed these signs. To find
objects for size estimation, the annotators recorded standard references like rulers or coins
but ignored non-standard objects like hands or fishing rods. We excluded images from the

final analysis if poor quality or obstruction meant we could not reliably assess them.

4.3 RESULTS

4.3.1 DATASET OVERVIEW: IMAGE QUANTITY, QUALITY, AND LICENSING

Our cross-platform search and filtering process yielded a final dataset of 49,372 verified
salmonid images (Table 4.1). This dataset was distilled from an initial collection of 69,167
unique, deduplicated images. The verification pipeline was essential, removing 10,711
entirely irrelevant (non-fish) images and a further 9,084 images of other fish species. This
highlights a key challenge of using platforms without strict taxonomic controls. The
composition and metadata of the final dataset varied significantly between platforms.
iNaturalist was the primary contributor, providing the vast majority of verified salmonid

images (40,569) with high-quality taxonomic data. In contrast, Flickr provided the highest
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resolution images (median width 2560px) but had poor coverage for location data. GBIF

offered the most complete metadata, with 100% of its images having date, time, and

location information, though its images were the lowest resolution (median width 1000px).

Table 4.1. Summary of image counts and metadata availability across repositories. The table

shows the number of images at each stage of the data collection and filtering pipeline.

Columns illustrate the progression from initial downloads ('Total images'), through

deduplication ('Unique images'), to manual verification ('Fish images' and 'Salmonid

images'). * The 'Fish images' and 'Salmonid images' counts are subsets of the 'Unique

images' total. ** All subsequent metadata and dimension statistics are calculated from the

final 'Salmonid images' set.

Source Total Unique Fish Salmonid With With Median Median
images images images images’ Datetime™ location™  image image
* width [px]  height [px]
(1QR)** (1QR)**
iNaturalist 49,057 49,040 49,040 40,569 40,056 40,568 1861 1536
(1536- (1365-
2048) 2048)
Flickr 19,610 18,101 7,479 6,869 6,865 1,211 2560 1944
(1181- (890-2848)
3870)
GBIF 1,843 1,843 1,843 1,843 1,843 1,843 1000 752
(800-1280)  (600-1054)
Wikimedia 183 183 94 91 54 0 1600 965
Commons (800-2303) (538-1732)
Total 70,693 69,167 58,456 49,372 48,818 43,622 - -

The quality of salmonid images differed among repositories when assessed using three no-

reference IQA metrics (Figure 4.2). Median blur scores (Laplacian variance; higher values

indicate sharper images) ranged from 199.35 (iNaturalist) to 322.35 (GBIF), with Flickr

(216.20) and Wikimedia Commons (231.57) intermediate (Figure 4.2a). Median BRISQUE

scores suggested slightly better perceptual quality in GBIF (20.84) than in
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Wikimedia Commons (22.08), Flickr (26.10), and iNaturalist (26.81), although all medians
were <30 (Figure 4.2b). Median NIQE scores were tightly clustered (12.22-13.89), with
Wikimedia Commons lowest (12.22), GBIF 12.92, Flickr 13.33, and iNaturalist 13.89 (Figure
4.2c). Despite substantial within-platform variation (Figure 4.2), non-parametric tests
detected differences among platforms for all three metrics (Kruskal-Wallis, p<0.001), but
the magnitude of these differences was small (=0.0038-0.0071). Post-hoc pairwise
comparisons (Holm-adjusted Mann—Whitney tests) showed that sharpness differed

among iNaturalist, Flickr, and GBIF (all adjusted p<0.001), whereas Wikimedia did not

differ from other platforms; BRISQUE differed among most platform pairs except GBIF
versus Wikimedia; and NIQE differed only for iNaturalist versus the other platforms, with no

detectable differences among GBIF, Flickr, and Wikimedia after correction.
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Figure 4.2. Variation in image quality metrics across repositories for verified salmonid images
(n=49,372). Violin plots show the distribution of (a) blur score (Laplacian variance, a
sharpness proxy; higher values indicate sharper images, shown on a log scale), (b) BRISQUE,
and (c) NIQE (lower values indicate higher perceptual quality for BRISQUE/NIQE). Internal
horizontal lines indicate the median and interquartile range. NIQE scores could not be

computed for a small subset (<0.3%).

Two license types dominated the dataset of confirmed salmonid images. Most images
(73.4%; 36,252) had a Creative Commons Attribution-NonCommercial (CC BY-NC) license.

The 'All Rights Reserved' license was the second most common (11.6%; 5,736 images). The
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proportion of license types differed between platforms (Figure 4.2). Most iNaturalist images
were CC BY-NC (86.3%), while most Flickr images were 'All Rights Reserved' (83.5%).
Wikimedia Commons had a high proportion of Public Domain and Creative Commons
Attribution-ShareAlike (CC BY-SA) licenses, which together accounted for 81.4% of its
images. GBIF images were mainly CC BY-NC (56.4%) and Creative Commons Attribution

(CC BY) (25.4%).
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Figure 4.2 Image license distribution across data sources for confirmed salmonid images
(n=49,372), shown as percentages per source. Stacked bars represent proportion of different

license types within a source platform.

4.3.2 SPATIAL AND TEMPORAL DISTRIBUTION

The precision of location data for the salmonid images varied between the sources that
provided coordinates (Supplementary Figure 5). For iNaturalist and GBIF, the median
location uncertainty was about 100 m. For both platforms, half of the observations had a
reported uncertainty between 10 m and 1,000 m (Supplementary Figure 5a). Flickr data
showed a bias towards high precision; about 90% of its georeferenced images were
recorded at city-level accuracy (level 11) or higher, and 30.1% were recorded at the highest

precision of street-level (level 16) (Supplementary Figure 5b).
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Georeferenced salmonid observations were densest in North America and Europe (Figure
4.3). iNaturalist had the widest global coverage, with dense clusters in North America and
Europe, some observations in Russia and Japan, and a few records from South America,
Australia, and New Zealand. GBIF data were densest in Europe, and Flickr data were

concentrated in North America and Europe. We found few observations from the Southern

Hemisphere on any platform.
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Figure 4.3. Global distribution of salmonid observations across image repositories. a)
Combined observations from all sources, with hexagonal bins indicating observation density
on a logarithmic scale from 1 (yellow) to >1000 (red) observations per bin. Individual
distribution maps for b) iNaturalist, c) GBIF, and d) Flickr using the same binning and colour

scheme.

The annual submission trends differed between platforms (Figure 4.4). GBIF had the earliest
records, starting in the 1950s, and grew exponentially from around 2008. Flickr data showed
a small peak around 1980, rose again in the mid-2000s, and then declined after 2010.
iNaturalist showed rapid and sustained growth after its 2008 launch. Wikimedia Commons

had fewer than ten submissions each year.
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Figure 4.4. Temporal distribution of fish images across data sources from 1946 to 2023. The
plot shows the number of images (log scale) contributed annually from each platform using
their respective date fields: iNaturalist (observed_on), GBIF (eventDate), Flickr (datetaken),
and Wikimedia (EXIF data). Vertical dashed lines indicate platform launch dates: GBIF (2001),
Flickr and Wikimedia (2004), and iNaturalist (2008).

Seasonal patterns peaked in summer—autumn (June—October), which comprised 66.0% of
observations, and the monthly distribution differed from uniform (=14373.43, df=11,
p<0.001; Figure 4.5). Monthly patterns also differed slightly among platforms (=882.69,
df=33, p<0.001; Cramér’s V=0.077), with iNaturalist contributing the most observations in
every month and Flickr showing a disproportionate January peak (standardised residual =

21.2).
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Figure 4.5. Monthly distribution of salmonid observations across image repositories (log

scale).

4.3.3 TAXONOMIC COMPOSITION AND IDENTIFICATION PATTERNS

The taxonomic resolution — the most specific level of identification for an observation —
varied between the data sources. All salmonid observations on Wikimedia Commons were
identified to species level. Species-level identification was also the most common resolution
on iNaturalist (94%) and Flickr (91%). While most GBIF observations were also identified to
species (72%), it had the widest range of other resolutions, with 21% of its records identified
to subspecies and 4.4% to variety. A small number of records on Flickr could only be
identified to a broader level, such as genus (6%) or subfamily (3.4%). Identifications that

could not go beyond the family level were minimal on all platforms.

The hierarchical distribution of all salmonid observations shows that the
subfamily Salmoninae is dominant (Figure 4.6). The most frequent species
was Oncorhynchus mykiss (rainbow trout, 10,984 images), followed by Salmo trutta (brown

trout, 9,573 images), and Salvelinus fontinalis (brook trout, 5,870 images). Other numerous
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species included Oncorhynchus tshawytscha (Chinook salmon, 3,613 images)
and Oncorhynchus kisutch (coho salmon, 2,724 images). The subfamilies Thymallinae and
Coregoninae made up much smaller parts of the dataset. iNaturalist was the main source for

most species.
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Figure 4.6. Hierarchical distribution of salmonid observations. The horizontal bar chart
displays the taxonomic hierarchy, with genera indented under their respective subfamilies
and species indented under their parent genus. The length of each bar represents the total
number of images identified at that specific taxonomic level, plotted on a logarithmic scale
to accommodate the wide range of counts. The colour of each bar corresponds to its
taxonomic rank (Subfamily, Genus, or Species). For visual clarity, only the five most abundant

species within each genus are displayed.

4.3.4 IMAGE CONTENT ANALYSIS: SIZE AND HEALTH INDICATORS

We annotated a subset of 5,667 salmonid images. From this subset, we could not reliably
assess 696 images because of poor quality or obstructions. Of the remaining 4,971 images,
only 123 (2.5%) had standard size reference objects, which made systematic size estimation

impractical.

For health assessment, 866 (17.4%) displayed visible signs of disease or physical damage
(e.g., rashes, discolouration, parasites, growths, cuts, wounds, scarring), while 4,105 (82.6%)
depicted apparently healthy salmonids. The prevalence of disease or damage indicators was
largely consistent across platforms within the annotated subset: 18.0% for iNaturalist (755
of 4,203 images), 17.0% for GBIF (19 of 112 images), 16.7% for Wikimedia Commons (2 of 12
images), and 13.9% for Flickr (90 of 644 images).

4.4 DISCUSSION

Our study used salmonids as a case study to assess how online image repositories can be
used for ecological research. We showed that the choice of platform determines the quality
and type of data available, so researchers must select platforms based on their specific
needs. For studies needing rich metadata, iNaturalist and GBIF are the strongest sources.
iNaturalist supplied the most verified salmonid images, and GBIF had complete temporal
and spatial metadata for all its records. In contrast, Flickr gave many images initially but
fewer verified salmonids and had limited location data. Wikimedia Commons made a very

small contribution.
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Our work supports earlier findings that combining data from multiple sources increases the
number of available images (Heberling et al. 2021). However, we show that the usefulness
of each platform depends on the research question and the required data quality. These
repositories offer a large and growing visual dataset with wide spatial and temporal scope,
showing they can supplement traditional monitoring. The value of these images for more
advanced uses is limited by platform-specific problems. The high number of ‘All Rights
Reserved’ licenses, mostly on Flickr, limits data reuse. The lack of standard size references
on all platforms makes size estimation impractical. In contrast, our finding of a consistent
14-18% of images showing visible disease or damage suggests an opportunity for wildlife

health surveillance using the ‘extended image’ idea.

4.4.1 INTERPRETING THE DATASET: AVAILABILITY, QUALITY, AND USABILITY

The purpose of each platform and its user community likely explain the differences in the
data we found. The success of iNaturalist shows the power of dedicated citizen

science platforms for gathering verifiable observations. This contrasts with the challenges
posed by general-purpose platforms like Flickr and Wikimedia Commons, whose broader
aims likely explain their lower yield of relevant, verifiable data. Curated databases like GBIF
are valuable for collecting research-grade data from many sources. Although these online
repositories provide large datasets, other valuable collections may exist in less accessible
places like local archives or private collections. Making these hidden datasets usable
requires targeted outreach and adherence to data management principles that make them
Findable, Accessible, Interoperable, and Reusable (FAIR) (Wilkinson et al. 2016; Reyserhove
et al. 2020).

The image quality showed modest platform-specific tendencies. GBIF and Wikimedia
generally scored slightly better on perceptual metrics (lower BRISQUE/NIQE), and GBIF
tended to have sharper images on the Laplacian-variance metric (higher values), but
platform effects were small (<0.01) with substantial overlap among sources. Consequently,
image-level filtering is likely more useful than relying on platform-wide averages for

downstream analyses.

Licensing restrictions are prohibitive to data reuse for the extended image concept. The high

proportion of All Rights Reserved images (21.5%), mostly on Flickr, are barriers to curating
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and sharing datasets or the products of computational analyses, particularly Al models.
These activities involve copyright and the creation of derivative works (e.g. Vendrow et al.
2024), limiting potential for an image to be truly ‘extended’ through reprocessing.
Researchers using online imagery should therefore evaluate licensing terms at project
commencement, aligning with best research practices. This is particularly true for machine
learning and data sharing, where attention to image provenance, legal frameworks, and
community standards for data stewardship are essential (Wilkinson et al. 2016; Gebru et al.

2021; Hemphill et al. 2022; London School of Economics 2025).

4.4.72 SPATIAL AND TEMPORAL DYNAMICS OF ONLINE SALMONID IMAGERY: OPPORTUNITIES
AND BIASES

The opportunities and biases in the spatial data highlight the need for careful filtering and
interpretation. The median location uncertainty for iNaturalist and GBIF records is about
100 m, which suggests the data can be used for fine-scale distribution modelling. The
apparent high precision of Flickr data is promising, but its accuracy scale defaults to ‘street-
level’ when users give no information. This default means many records may not reflect
user-confirmed precision, misrepresenting the true accuracy. This issue, combined with the
wide uncertainty range in iNaturalist and the lack of explicit distance values for Flickr’s scale,
means the data must be filtered and interpreted carefully for precise spatial work. The small
number of georeferenced Flickr images further limits the use of this large image pool for

spatial analysis.

The geographical concentration of images in North America and Europe matches the known
native distribution of salmonids (Araneda et al. 2008). iNaturalist had the most extensive
global coverage, but observations from the Southern Hemisphere were sparse across all
platforms. This is consistent with salmonids being non-native to most of this region, with
some introduced populations in New Zealand, Australia, and South America (Klemetsen et
al. 2003). The dataset therefore captures native areas well but may underrepresent
introduced ranges or show gaps in citizen science monitoring. This shows the importance of
comparing image-derived distributions to established biogeographical

knowledge (Klemetsen et al. 2003; Araneda et al. 2008) and accounting for sampling effort

when inferring species distributions.
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The annual increase in submissions, particularly from iNaturalist, shows a growing data
stream that can be used for long-term studies, such as tracking changes in seasonal events.
The seasonal peaks in summer and autumn align with expected increases in fishing activity
and salmonid visibility (e.g., spawning runs) in the Northern Hemisphere. The unusual 1980
peak in Flickr data is also notable. Our inspection confirmed it was caused by incorrect
metadata from two users who likely uploaded old photos with the wrong date, as Flickr
launched in 2004. This shows a problem for temporal analysis, as the ‘date taken’ field may

not always be the true observation date and needs to be checked.

4.4.3 INTERPRETING TAXONOMIC PATTERNS IN THE SALMONID IMAGE DATASET

The high number of species-level identifications across platforms supports using online
images for species occurrence data (Theobald et al. 2015; Heberling et al. 2021; Szentivanyi
and Vincze 2022). The origin and reliability of these identifications vary, however. For Flickr
and Wikimedia Commons, we inferred species from the original search terms (e.g., ‘Rainbow
Trout’). While we confirmed these images showed salmonids, the species label (e.g.,
Oncorhynchus mykiss) was not validated with the same rigour as a ‘research grade’
iNaturalist observation. This uncertainty, along with challenges like poor image quality and
taxonomic ambiguity, can make species identification difficult even for experts (Marshall et
al. 2020). These data therefore need careful interpretation based on their source,

particularly for detailed ecological analysis.

The dominance of Oncorhynchus mykiss and other popular angling targets like Pacific and
Atlantic salmon (Figure 4.6) likely reflects their widespread distribution, popularity with
anglers, and how easy they are to identify from photos. This suggests human interests and
likelihood of observation, not systematic surveying, shape the dataset. The lower

representation of groups like Thymallinae and Coregoninae might also reflect these biases.

Despite these variations in taxonomic certainty, the dataset is valuable. Even images with
less certain species labels can be used for distribution maps at the family level. They are also
useful for training Al models when resources to re-check every image are limited (see
Heberling et al. 2021). Such models can be designed to learn from datasets with 'noisy'
labels, a term for labels that may be incorrect. The key is to use the strengths of each data

source for the specific research question. This could mean using iNaturalist’s community-
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vetted taxonomy, GBIF’s taxonomic depth, or the visual diversity from Flickr and Wikimedia

for Al development.

4.4.4 IMAGE CONTENT ANALYSIS: SIZE AND HEALTH INDICATORS

It was impractical to estimate fish size systematically because only 2.5% of images had
standard size references. Assessing health indicators was a more practical approach. Our
finding that 17.4% of suitable images showed visible signs of disease or damage confirms
that these platforms can be used as an opportunistic data source for fish health surveillance.
The prevalence of these signs was consistent across platforms, from 13.9% on Flickr to
18.0% on iNaturalist. This suggests the platforms capture these conditions uniformly,
regardless of their main purpose or user base. The types of indicators we saw are also
similar to those used in traditional fisheries health assessments, which implies these images
could supplement existing monitoring programmes. Building on this finding, the data
collected in this study on healthy salmonids and those with visible signs of disease formed
the basis of a subsequent study that successfully trained a computer vision model for the

automated classification of saprolegniasis-like infections (Olsen et al. submitted; Chapter 5).

However, using online images for scientific analysis faces challenges from image alterations,
such as the common use of watermarks. An emerging problem is Al-driven image editing.
Features like those in the Google Pixel 8 that automatically alter images (Berrada 2023),
undermines scientific integrity if the alterations are not transparently documented. While
metadata standards like those from the International Press Telecommunications Council
(IPTC) can record alterations, the consistent documentation of Al-driven changes is not yet
common (IPTC Photo Metadata Working Group 2024). This is a gap that initiatives like the
Coalition for Content Provenance and Authenticity (C2PA) are designed to address (Coalition

for Content Provenance and Authenticity 2025).

4.4.5 LIMITATIONS AND BIASES

While the ‘extended image’ concept offers opportunities, we must acknowledge several
limitations. These reflect challenges found in the extended specimen and digital extended
specimen literature, such as problems with data quality, standardisation, and integration
(Lendemer et al. 2020; Hardisty et al. 2022). Common challenges for online images include

geographical bias (e.g. Durso et al. 2021), limited taxonomic coverage, variable image
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quality, and incomplete metadata. Platform-specific biases from search algorithms or user
behaviour can also affect how representative the data is (Jari¢ et al. 2020; Vardi et al. 2024).
The Digital Extended Specimen framework (Hardisty et al. 2022) highlights further needs for
persistent identifiers, machine-actionable data, and clear provenance. These limitations,
while significant, can be addressed through methodological rigour, careful consideration

of sampling biases, and the adoption of best practices for data collection and analysis

(Callaghan et al. 2019; Di Cecco et al. 2021).

4.4.6 FUTURE RESEARCH AND RECOMMENDATIONS

Future work should use all available image data. Images with incomplete metadata,

like those from Flickr or Wikimedia Commons that lack precise locations, or those with
unverified taxonomic labels, should not be dismissed. These images are useful for training
robust Al and machine learning models. For example, such models can be built for general
salmonid detection using foundational models (Bommasani et al. 2021) or for species
identification systems that tolerate noisy labels (Sun et al. 2021). They could also be used for
visual assessment of health indicators across broader taxonomic groups (e.g. Siachos et al.

2024).

Several strategies could also improve online repositories for science. Standardising
metadata and image quality metrics would help when combining data from

different platforms. Automated verification tools could help process large numbers of
images, though they need carefully curated training data that accounts for platform
differences. Adopting open licensing policies across all platforms would improve research
access and reproducibility. Finally, engaging with contributor communities, such as anglers
and photographers, to teach best practices for taking scientifically useful images could

improve the quality of future data.
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Abstract

Effective disease surveillance in wild fish populations is essential for food security and
biodiversity conservation, but data acquisition can be limited by ad hoc reporting and
resource-intensive laboratory diagnostics, limiting the spatio-temporal scope. We developed
and evaluated a computer vision pipeline to detect saprolegniasis-like infections, a
devastating disease affecting wild and farmed salmonids that manifests as visible signs on

the fish.

Compiling a dataset of 4,526 images (494 infected, 4,032 healthy) from citizen science
platforms and stakeholders, we used data augmentation to address the significant class
imbalance. We then fine-tuned and compared four pre-trained convolutional neural
network architectures (EfficientNetV2S, EfficientNetV2B0, ResNet50, and MobileNetV3S),
chosen to represent a range of standard and efficient models, to classify healthy versus

infected fish across datasets of varying host taxonomic specificity.

The EfficientNetV2S model achieved the highest performance on a Salmo genus-specific
evaluation dataset, with a mean recall (proportion of infected fish images correctly
identified) of 0.918 (+ 0.038) and precision (proportion of correctly identified infected fish
among all fish identified as infected) of 0.862 (+ 0.056). Performance differed between
Salmo and Oncorhynchus evaluation sets and depended on the training data strategy, with
genus-specific training performing best on Salmo images, while broader training improved
recall on Oncorhynchus images at the expense of precision. Despite challenges including
variable image quality, water surface reflections, and inherent class imbalance, these results

show computer vision can support large-scale disease surveillance in wild fish populations.
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Computer vision-based surveillance could enable earlier outbreak detection and targeted
diagnostics, improving freshwater ecosystem health management. While successful
implementation hinges on acquiring sufficient high-quality imagery, this study highlights the
potential of applying tailored Artificial Intelligence tools for monitoring visually detectable

diseases across diverse wildlife species.

5.1 INTRODUCTION

The emergent field of iEcology (internet ecology) frequently uses image repositories to
generate insights into species distribution and occurrence, biogeographical patterns,
behaviour, species interactions, habitat use, and the impact of human activities on wildlife
(Weinstein 2018; Jari¢ et al. 2020; Tuia et al. 2022). Its application to wildlife disease
surveillance, however, remains sparse, despite the abundance of available data (Edwards et
al. 2021). While examples are emerging, such as automated classification of Devil Facial
Tumour Disease (DFTD) in Tasmanian devils (Sarcophilus harrisii) (Nurgin et al. 2024) and
lesions in bottlenose dolphins (Tursiops erebennus) (Murphy et al. 2025), the field is still
under-explored. Computer vision offers a promising tool for automating disease detection
from images where diseases have visible signs. Freshwater wild fish are an excellent test
bed for disease detection because they are a significant source of diseases (Shinn et al.
2014), including zoonoses (Gauthier 2015), they represent some of the most threatened
vertebrates on the planet (Collen et al. 2014; Shinn et al. 2014; Dias et al. 2017), and disease
control costs billions (Shinn et al. 2014). Many fish diseases present visible signs, making
them well-suited for image-based detection. Furthermore, fishers, especially recreational
anglers, have a culture of taking and sharing images online of their catch, therefore in
theory, both visible signs and the images from which to observe them exist. The advantages
of image-based disease detection over traditional surveillance include the ability to rapidly

screen thousands of images in a non-invasive manner.

Computer vision applications have demonstrated promising results for disease detection
across domesticated and livestock species. Deep learning models have shown success in
diagnosing ocular surface diseases in domestic dogs and cats (Nam and Dong 2023) and

detecting skin conditions like pododermatitis and neoplasia in dogs (Smith et al. 2024).

Computer vision has been used to detect early signs of respiratory diseases in pigs via
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changes in temperature using thermal imagery (Jorquera-Chavez et al. 2020). In cattle,
computer vision has been employed for tick detection and identification (Barbedo et al.
2017; Luo et al. 2022) and for real-time detection and scoring of digital dermatitis

(Aravamuthan et al. 2024).

While these advancements showcase the potential of computer vision in veterinary
medicine, research on wild species is limited. Previous studies in fish have primarily focused
on aquaculture settings using small datasets, often with limited information on the species
involved (Malik et al. 2017; Hasan et al. 2022; Mia et al. 2022; Yasruddin et al. 2022;
Rachman et al. 2023; Vijayalakshmi et al. 2023; Biswas et al. 2024; Kumaar et al. 2024;
Maruf et al. 2024). Ahmed et al. (2022), for example, classified ‘salmon disease’ in 266
images of salmon (83 healthy, 183 infected) with an accuracy of 91.4% using traditional
computer vision methods, but the disease and salmon species were not specified. Gupta et
al. (2022) achieved an accuracy of 96.7% using convolutional neural networks to classify
3,289 salmon images (augmented based on an initial dataset of 68 healthy, 71 wounded, 70
with fish-lice). Importantly, inclusion of augmented images during model validation and
testing may influence evaluation metrics (Huang and Khabusi 2023; Rachman et al. 2023;

Biswas et al. 2024; Maruf et al. 2024).

There is a paucity of surveillance of fish diseases, such as saprolegniasis, caused by the
oomycete Saprolegnia parasitica, which kills 1 in 10 farmed salmon (Dias et al. 2017). This
disease, characterised by fungal-like white growths on the fish’s body, head, and fins, has no
effective treatment. It causes significant morbidity and mortality in wild fish populations
(van West and Beakes 2014; Derevnina et al. 2016; Matthews 2019; Matthews et al. 2021)
and can infect other aquatic species (Costa and Lopes 2022). With widescale fish mortality
and inter-specific transmission, early detection of this disease is critical to assess risk to
aquatic species, and to help identify drivers of outbreaks (MacAulay et al. 2022). While
regular disease surveillance occurs in commercial fisheries, outbreaks in wild fish are often
detected by ad hoc reporting of diseased/dead fish to the relevant fisheries authorities (e.g.
Fish Health Inspectorate in the UK). Once an outbreak is recognised as such, identification of
Saprolegnia spp. may follow with direct sampling of animals (Tandel et al. 2021) or water
(Pavi¢ et al. 2022) using molecular methods or culturing. While these methods are highly

sensitive, they are time-consuming and damage to fish stocks has usually occurred by the
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time the pathogen is identified. Because Saprolegnia spp. cause visible signs of infection
there is potential for use of image-based disease surveillance. While visible signs alone
cannot confirm disease, these data could support large-scale surveillance and identify areas

for targeted investigation.

Here, we establish a computer vision pipeline to detect common infectious diseases
(Saprolegnia spp.) in wild salmonids. We use standard methods (Jari¢ et al. 2020; Edwards et
al. 2021) to collate a large database of images of wild fish, and assess the accuracy with
which computer vision classifiers detect infectious disease. Our ultimate aim is to assess if
we can move current practices from intermittent, episodic reports of disease towards
detailed real-time monitoring of wild freshwater fish. Doing so would provide a step
towards collating spatiotemporal information on disease and provide a framework from
which we can expand to other host-parasite systems. Our proposed pipeline offers a step-
change in monitoring infectious diseases, providing a technology-led framework for

understanding disease dynamics in wild fish and other species.

5.2 METHODS

5.2.1 DATA

Images of salmonids were acquired from photo-sharing websites, Flickr (www.flickr.com),

iNaturalist (www.iNaturalist.org), GBIF (www.GBIF.org) and Wikimedia Commons, between

December 2023 and February 2024. These data constitute ‘passive citizen science’; images
submitted without scientific intent: that nonetheless could contain important ecological
data (Edwards et al. 2021). These sites were accessed using Application Programming
Interfaces (APIs) that allow for keyword or taxonomic-level searches to download images

and associated metadata.
Image Acquisition

We focused our work on salmonids as the taxa most prone to saprolegniasis (Vieira da Silva
do Nascimento et al. 2020). GBIF and iNaturalist can be searched taxonomically for

‘Salmonidae’, returning observations linked to any subfamily, genus or species within this

1 Upon manual review of the images, titles and descriptions, it is clear that most images were taken by anglers.
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family. Flickr and Wikimedia Commons allow for keyword searches in text fields such as
titles and descriptions. To compile keywords, a comprehensive list of scientific and common
salmonid names was created by integrating subfamily, genus, and species data from

FishBase (https://www.fishbase.se/search.php), FishTreeOfLife

(https://fishtreeoflife.org/api/taxonomy/family/Salmonidae.json), and NCBI

(https://www.nchi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi). This list was enriched with

additional species and English common names from FishBase and iNaturalist (see
Supplementary Table 6 for a full list of taxa). This resulted in a final list of three subfamilies,

11 genera, 387 species and two hybrids.

We searched GBIF occurrence data using the following filters: “BasisOfRecord is Human
Observation”, “MediaType is Image”, “OccurenceStatus is Present”, “TaxonKey is
Salmonidae”. Of the returned occurrences, 94.5% were duplicated from iNaturalist and
these duplicates were excluded. We downloaded the Darwin Core Archive resulting from
our search and used the gbif-dl (v0.1.1) package in Python 3.9.18 to extract the

corresponding URLs and download the images.

For iNaturalist images we first downloaded the metadata files (observations, observers,
photos and taxa) from the ‘iNaturalist Licensed Observation Images’ open dataset
(https://registry.opendata.aws/inaturalist-open-data) using the AWS Command Line
Interface (CLI). We then used Python 3.11.7 and the pandas (v1.5.3) package to link taxa
information to observation, observer and photo metadata, allowing us to filter to images
identified as the Family ‘Salmonidae’ (taxon_id=47520) or lower associated taxonomic
levels. We used the multiprocess (v0.70.15) package to download the images. To ensure
comprehensive coverage, we incorporated iNaturalist observations regardless of their

quality grade.

We queried the Flickr API for images with tags, descriptions or titles containing the terms in
Supplementary Table 6 using the flickrapi (v2.4.0) package in python 3.11.7. We tested the
search terms in the Flickr user interface first and excluded terms that returned a very high
proportion of irrelevant images, such as the common name ‘salmon’ which returns over

400,000 images, mainly of salmon prepared for food. SHA-256 (Secure Hash Algorithm) from
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hashlib in the Python Standard Library of python 3.11.7 was used to create unique ids for

each image to locate and remove duplicate downloads.

To acquire images from Wikimedia Commons we followed the process implemented by
Marshall et al. (2020), amending their R script (SuppCode2_Wikimedia_query.R from

zenodo.org/records/4010155) to query for the terms listed in Supplementary Table 6.

Following removal of duplicate image URLs, the images were downloaded using urllib3

(v1.26.16) in Python 3.11.7.

In total, before ‘ground-truthing’ to check for salmonids, 69,158 photographs were collated
across online sources based on keyword or taxonomic-level searches: 49,057 from

iNaturalist, 1,843 from GBIF, 19,610 from Flickr and 183 from Wikimedia Commons.
Ground Truth - Images of Healthy and Diseased Salmonids

The Wikimedia Commons and Flickr image datasets contained a high proportion of
irrelevant images, as they were downloaded based on keywords (Supplementary Table 6)
that often had multiple meanings. For example, a Grayling is also a moth species. To address
this issue two labellers manually screened the dataset for the presence of salmonids (Figure
5.1), on Labelbox (Labelbox. 2025), leaving 91 relevant images from Wikimedia Commons
and 6,869 from Flickr which were added to the existing collection of 49,057 images from

iNaturalist and 1,843 images from GBIF.

Due to the time-consuming nature of expert annotation and the requirement of specific
expertise to identify Saprolegnia spp., two of the authors examined a subset of
approximately 10% (5,667) of the salmonid images, stratified by data source and taxonomic
classification, for visible signs of disease, outlined in Figure 5.1. This subset provided a
manageable starting point for the intensive labelling process, while still yielding a dataset
large enough to develop and validate our proof-of-concept pipeline. Due to poor image
quality or obstructions making it difficult to assess fish health, 696 images were excluded.
From this initial evaluation, 4,105 images were identified as containing healthy salmonids,
making up the first class in our binary classification problem. The remaining 866 images
were reviewed for visible signs of Saprolegnia spp. Where more than one salmonid was

visible in an image, the image would be labelled as part of the ‘Saprolegnia spp.’ class if at

88


https://zenodo.org/records/4010155

least one of them displayed visible signs of the disease. This process identified 217 potential

infections in salmonids, making up the second class in the classification problem.

The ‘Saprolegnia spp.’ class was supplemented following the creation of ground truth labels
by searching the iNaturalist and Flickr APIs using the keyword ‘Saprolegnia’ (‘Additional
Saprolegnia spp. images’ in Figure 5.1). The Flickr search returned 33 images with nine new
images showing salmonids with visible signs of Saprolegnia spp. infection while iNaturalist
returned 42 images of which 41 showed signs of saprolegniasis. Additionally, we
incorporated 198 images provided by the Environment Agency’s National Fisheries
Laboratory (EA), 120 images uploaded to the Fisheries Management Scotland (FMS) app for
fish disease (https://fms.scot/fish-health-and-disease), and 55 provided by the Fish
Pathobiology and Immunology Laboratory at Michigan State University. These photographs
were assumed, not verified, to show fish with Saprolegnia spp. based on visible signs. The

final count of images with Saprolegnia spp. infection was 630.
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Figure 5.1. Data pipeline for collating images and identifying disease (Saprolegnia spp.) in
salmonids. Images and metadata were downloaded from online sources using API searches
based on taxonomy or search terms and false positives removed. A 10% subset, stratified by
data source and taxonomic classification, of the data was labelled as ‘healthy’ or ‘disease’
and the ‘disease’ class was subsequently screened for visible signs of Saprolegnia spp.
Images with visible signs of Saprolegnia spp. infections were added from additional sources
(e.g. Environment Agency). Following cleaning, the data were split into tiered datasets based
on taxonomic classification and the number of available images in the ‘healthy’ and

‘Saprolegnia spp. classes per taxon.
Image Cleaning

All images were manually cropped to remove obvious watermarks, time stamps, duplicates
or borders. If this was not possible the image was excluded. The final dataset consisted of
4,032 images showing healthy salmonids, hereafter referred to as the ‘healthy’ class, and
494 images showing salmonids with visible signs of Saprolegnia spp. infection, hereafter

referred to as the ‘Saprolegnia spp.’ class (Table 5.1).

Table 5.1. The number of salmonid images classed as ‘healthy’ and ‘Saprolegnia’ spp. from

each image source.

Source ‘Healthy’ ‘Saprolegnia
count spp.’ count

iNaturalist 3,374 211

Flickr 556 22

GBIF 92 2

Wikimedia Commons 10 0

Environment Agency 0 130

Fisheries Management Scotland 0 98

Michigan State University 0 31
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Total 4,032 494

Metadata

Metadata associated with images was used to split the data into training and validation
partitions. iNaturalist, Flickr, FMS and Immunology Laboratory at Michigan State University
images were accompanied by detailed metadata, including user information, date, and
location. While Wikimedia Commons images were downloaded with user and date
information, location data was unavailable. EA images sourced from National Fisheries
Laboratory (NFL) image archives, encompassing those taken by EA field officers, NFL
employees, and anglers, included date and camera specifications as a proxy for user
information in the EXIF data. Although location information was missing for the EA images,

we knew that all were captured within England and Wales.
Dataset strategies

The ‘healthy’ and ‘Saprolegnia spp.’ dataset comprised images of salmonids classified to
different taxonomic levels, ranging from family to species. A total of 13 taxa had images of
both healthy and infected classes (Table 5.2) with the remaining taxa having images only in
one of the classes. To address the imbalance in Saprolegnia spp. infected and healthy
images across different taxonomic groups, we implemented a multi-tiered data preparation
strategy, based on taxonomic specificity and the number of available images for each

taxonomic classification.

Table 5.2. Count and ratio of images across host taxa for Healthy and Saprolegnia spp.
classes. Ratio represents the number of Saprolegnia spp. images divided by the number of
Healthy images. Only taxa with images in both classes are included. See Supplementary

Table 6 for a full list of taxa.

Host taxa Healthy Saprolegnia spp. Ratio
Salmo spp. 43 135 3.140
Salmo salar 91 110 1.209
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Host taxa Healthy Saprolegnia spp. Ratio
Oncorhynchus tshawytscha 180 54 0.300
Oncorhynchus spp. 181 45 0.249
Oncorhynchus keta 50 45 0.900
Oncorhynchus gorbuscha 85 27 0.318
Oncorhynchus nerka 132 25 0.189
Oncorhynchus mykiss 936 24 0.026
Oncorhynchus kisutch 214 11 0.051
Salmo trutta 836 10 0.012
Salvelinus fontinalis 529 2 0.004
Thymallus thymallus 44 2 0.045
Prosopium williamsoni 24 1 0.042

To address the imbalance in Saprolegnia spp. infected and healthy images across different
taxonomic groups, we implemented a multi-tiered data preparation strategy. The full
dataset, referred to as ‘All photographs’, included all 4,032 ‘healthy’ and 494 ‘Saprolegnia

spp.” images from 68 different taxa. We then created several tiered datasets (Table 5.3):

e ‘Taxa present in both classes’: This dataset included all images from taxa with images
present in both the ‘healthy’ and ‘Saprolegnia spp.’ classes (Supplementary Table 6).

e ‘Taxa with > 10 photographs in both classes’: This dataset restricted the inclusion
criteria to taxa with a minimum of 10 images in both classes. The 10-image threshold
was chosen to ensure a reasonable number of images for training, validation, and
testing, while also maintaining a balance between data quantity and quality.

e Genus specific datasets: To account for potential variations within specific genera,
we created separate datasets for species within Oncorhynchus and Salmo, each with
a minimum of 10 images per class, ‘Oncorhynchus’ with > 10 photographs in both

classes’ and ‘Salmo with > 10 photographs in both classes’.
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Both data quality and data quantity are important factors for model performance. While a
larger, more diverse dataset can improve model generalisation, addressing potential class
imbalance and intra-class variability is crucial. In our case, a larger dataset might introduce
samples that, while belonging to the same class, exhibit significant visual differences.
Conversely, a smaller, more focused dataset may lead to overfitting where the model starts
to ‘memorise’ the training data rather than learning real patterns. Our strategy aimed to
balance these trade-offs by focusing on taxa with adequate representation in both classes
and by creating genus-specific datasets to capture intra-genus variations, and therefore our
tiered datasets included a mixture of all photographs and taxa within and across broad taxa
(Table 5.3). It was not practical to look at one species in isolation in this study, as the
datasets would have been too small to be practically split into adequate training and

validation sets.
Table 5.3. Count and ratio of images for the ‘Saprolegnia spp.” and ‘Healthy’ classes in the
tiered datasets. The class ratio is calculated as the number of ‘Saprolegnia spp.” images

divided by the number of ‘Healthy’ images.

Saprolegnia Class
Dataset spp. Healthy ratio
All photographs 494 4,032 0.123
Taxa present in both classes 491 3,345 0.147
Taxa with 10 photographs in both classes 486 2,748 0.177
Oncorhynchus, 10 photographs in both 231 1,778 0.130
classes
Salmo, 10 photographs in both classes 255 970 0.263

Dataset Splits

The limited sample size of small validation sets can introduce high variance in performance
metrics, as the choice of validation samples can substantially impact the evaluation results

(Chollet 2021). The best practice with small datasets is to use k-fold cross-validation (Chollet

93



2021). This technique divides the data into k ‘folds’ (subsets), using each fold once as a
validation set while training on the remaining folds. We implemented this using the scikit-
learn package StratifiedGroupKFold function, with k=5 folds. To ensure robust evaluation,
we leveraged the metadata associated with each photograph to stratify by location and
taxonomic classification, and group by user information (for example, username for
iNaturalist submitted images) to prevent data leakage from user-specific patterns. These
patterns, which persist even after removing obvious duplicates, can include consistent
camera artifacts (such as sensor noise or colour profiles) or a characteristic photographic
style. If these user-specific signatures were present in both the training and validation sets,
the model's performance could be artificially inflated by learning to identify the
photographer rather than the disease. This grouping ensured that photographs from the
same user were kept within the same fold, to avoid data leakage from the training to
validation sets. This approach was crucial, as the smallest tiered dataset contained only 255
images in the ‘Saprolegnia spp.” class, with some users contributing as many as 31 of these
images. By using stratified group k-fold cross validation, we aimed to assess the stability of
each model across different data splits. The reported metrics for each model represent the

average performance across the 5 folds.

5.2.2 IMAGE CLASSIFICATION

We selected four neural network architectures to compare a range of common and state-of-
the-art approaches. We chose ResNet50 (He et al. 2016) because it is a widely recognised
architecture used as a standard baseline for image classification, providing a robust point of
comparison (Alom et al. 2019). ResNet-50 is a 50-layer residual network that uses skip
connections between convolutional blocks to ease optimisation of deep architectures (He et
al. 2016). We also included MobileNetV3S (Howard et al. 2019), a lightweight network
based on depth wise separable convolutions and squeeze-and-excitation blocks, which is
designed for high efficiency on less powerful devices. This is an important consideration for
future work, where the model could be integrated into a mobile application for in-field
analysis. Finally, we chose two models from the more modern EfficientNetV2 family (Tan
and Le 2021), which are known for their high accuracy and computational efficiency
compared to older models like ResNet50. This family of models uses compound scaling and

Fused-MBConv blocks to achieve high accuracy with relatively few parameters (Tan and Le
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2021). We specifically used two variants, EfficientNetV2B0 and EfficientNetV2S, to explore
the trade-off between model size and performance on our dataset. EfficientNetV2BO0 is the
smaller, more efficient model, while the slightly larger EfficientNetV2S offers potentially
higher accuracy at a greater computational cost. This selection allowed us to assess
performance across different model backbones, balancing a classic baseline with modern,

efficient alternatives.
Addressing Class Imbalance

Class imbalance is a common issue in machine learning, especially in image classification and
wildlife classification tasks, such as species classification, where distributions are often long-
tailed (Cunha et al. 2023). In this study, the datasets exhibit a clear imbalance, with a large
majority of ‘healthy’ samples and a minority of ‘Saprolegnia spp.” samples; this is an
expected feature of disease, reflecting the reality that for many diseases the number of
healthy individuals vastly outnumber those with disease. This imbalance can lead to model
bias towards the majority class. Because our goal is surveillance (minimising missed
infections), we explicitly applied class-imbalance mitigation during training (oversampling

and augmentation; see below) and report metrics that remain informative under imbalance.
Increasing the Sample Size

While oversampling (duplicating existing training samples) can potentially lead to overfitting
(Alkhawaldeh et al. 2023), we mitigated this risk by subsequently applying data
augmentation techniques to the expanded training dataset. Importantly, oversampling was
applied only to the training partition within each cross-validation fold (not to validation
data): after splitting images into a fold-specific training set and validation set, the minority
class (‘Saprolegnia spp.’) in the training set was randomly sampled with replacement to
increase its frequency. Data augmentation, a set of popular techniques to increase training
data size, especially when samples are limited (Shorten and Khoshgoftaar 2019; Mumuni
and Mumuni 2022), can create a more robust and varied dataset and enhance model
generalization capabilities. RandAugment, a data augmentation technique that applies a
combination of image transformations (Cubuk et al. 2020), was applied during training.
RandAugment was implemented in Keras-CV with the number of augmentations per image,

N = 3, and magnitude M = 0.5. Here, N controls how many random transformations are
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applied to each training image, while M controls the overall strength of those
transformations. Increasing N or M generally increases regularisation and robustness to
nuisance variation, but if set too high can introduce unrealistic artefacts that may reduce
performance; conversely, if set too low the regularisation effect may be insufficient. We
used these standard settings as a practical balance and did not perform an exhaustive

sensitivity analysis of N and M due to computational cost.
Transfer Learning

To leverage transfer learning, all models were instantiated with pre-trained weights from
training on ImageNet (Krizhevsky et al. 2012). In practical terms, the weights are the learned
numerical parameters of the network (convolutional filters and layer parameters) obtained
by optimising model predictions to minimise a loss function on the ImageNet classification
task. Initialising with these pre-trained parameters provides a strong starting point because
early and mid-level layers typically capture generic visual features (e.g., edges, textures and
shapes) that transfer well to many image tasks. The model can then be fine-tuned on this
new, often smaller dataset, adapting these generic features to the specific visual patterns

associated with, in our case, saprolegniasis-like infection in salmonid photographs.
Loss Function

The choice of loss function (a mathematical function that quantifies the difference between
model predictions and actual observations) is crucial for addressing class imbalance. Focal
Loss is a modified cross-entropy loss which down-weights the loss contributions of well-
classified examples, allowing the model to focus on the more challenging minority class (Lin
et al. 2020). We employed the Keras-CV implementation of Focal Loss with default
parameters, which are effective in various computer vision classification tasks (Nemoto et
al. 2018; Petmezas et al. 2022; Nie et al. 2023). We set the bias initialization of the final
classification layer to b=log((1-rt)/mt), with =0.01, as suggested by Lin et al. (2020), who

show that this prevents large destabilizing loss values at the start of the training process.
Training Pipeline

The training pipeline was implemented in Python 3.10.13 using Keras 3 with JAX as the back

end, and all models were trained on two Nvidia P100 GPUs. All four architectures shared the
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same transfer-learning pipeline (Figure 5.2). Each cropped salmonid image was resized to
the required input resolution (224x224 pixels for ResNet-50, MobileNetV3S and
EfficientNetV2-B0, 300x300 pixels for EfficientNetV2S) and, during training, RandAugment
(N =3, M =0.5) was applied to the training images. The augmented image was then passed
through the chosen convolutional backbone initialised with ImageNet weights, followed by a
custom classification head consisting of global average pooling, a fully connected layer (128
units for ResNet50 and MobileNetV3S, 256 for EfficientNetV2B0 and 512 for
EfficientNetV2S), dropout with rate 0.2, and a final dense layer with two sigmoid-activated
outputs (‘healthy’ and ‘Saprolegnia spp.’). The bias of the output layer was initialised to
reflect a low prior probability of disease (it = 0.01, B = -4.6) for the focal loss, and the Adam

optimiser was used to update model weights.
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Figure 5.2. Transfer-learning pipeline used for training models on binary classification task.
Each cropped salmonid photograph was resized and augmented using RandAugment (N = 3,
M = 0.5) before being passed through a pre-trained convolutional backbone (ResNet50,
MobileNetV3S, EfficientNetV2BO0 or EfficientNetV2S, initialised with ImageNet weights). The

backbone output was fed to a custom classification head consisting of global average
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pooling, a dense layer (128-512 units, ReLU) and a dropout layer (rate 0.2), followed by a
two-unit sigmoid output for the ‘healthy’ and ‘Saprolegnia spp. classes trained with focal

loss.

We used a typical transfer learning and fine-tuning approach (Chollet 2021). We instantiated
the base model backbone with pre-trained, ImageNet (Krizhevsky et al. 2012), weights. First,
the backbone layers were frozen and only the classification head was trained, using a
learning rate of 0.001, a common and effective starting point for this training phase (Chollet
2021). If the validation loss did not improve for five epochs, the learning rate was reduced
by a factor of 0.1. If the validation loss did not improve for 20 epochs, training in this frozen
phase was stopped and the model weights were restored to those from the epoch with the
lowest validation loss. In the second phase the last blocks of the backbone were unfrozen
(as specified for each model in Table 5.4) and the whole network was fine-tuned for 40
epochs with a lower learning rate of 0.00001. This much lower rate is a standard practice for
fine-tuning, as it prevents the general-purpose features learned on ImageNet from being
catastrophically forgotten during the update process (Yosinski et al. 2014). The patience
values of five epochs for learning rate reduction and 20 for early stopping were chosen as
common heuristics to balance efficient training time with allowing the model to fully

converge.

Table 5.4. Architecture and computational characteristics of the four convolutional models
trained to classify images of salmonids as ‘healthy’ or ‘Saprolegnia spp.’. For each backbone
we report the input resolution, the size of the added dense layer (Dense units), number of
model layers unfrozen during the fine-tuning phase, the number of total and trainable
parameters (at fine-tuning), and the approximate inference time per image measured on a

P100 GPU.

Backbone Input size | Dense units | Unfrozen Total Trainable Inference
[px] layers to | parameters | parameteres | time per
fine-tune image [ms]
ResNet50 224x224 128 98 23,850,242 15,216,002 104.35
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Backbone Input size | Dense units | Unfrozen Total Trainable Inference
[px] layers to | parameters | parameteres | time per
fine-tune image [ms]
MobileNetV3S 224x224 128 52 1,013,234 803,114 27.38
EfficientNetV2B0 | 224x224 256 198 6,247,762 5,707,446 105.05
EfficientNetV2S | 300x300 512 363 20,988,258 18,876,042 412.38

We used k-fold cross-validation with k=5 to train each model architecture 5 times. The
arithmetic mean and standard deviation for each evaluation metric were calculated using

the implementations of mean and std in NumPy.
Model Evaluation

We assessed models using common metrics: precision (Eq. 5.1), recall (Eq. 5.2) and F1 (Eq.
5.3). We also calculated the Matthews Correlation Coefficient (MCC) (Eq. 5.4) (Chicco and
Jurman 2020). These metrics denote relationships between the numbers of True Positives
(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). True positives for the
‘Saprolegnia spp.’ class represent the number of cases correctly identified as presenting
with Saprolegnia spp. and true negatives the number of cases correctly identified as not
presenting with Saprolegnia spp., as ‘healthy’. Similarly, false positives, or type 1 errors, are
images incorrectly classified as ‘Saprolegnia spp.” and false negatives, or type 2 errors, are

the number of disease cases incorrectly classified as ‘healthy’.
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Precision = TP+ FP (5.1
Recall = i (5.2)
T TP YN '

precision X recall
F1=2X — (5.3)
precision + recall

TP X TN — FP x FN
MCC =2 x (5.4)
J(TP + FP)(TP + FN) (TN + FP)(TN + FN)

Precision (Eq. 5.1) measures the proportion of correct positive predictions amongst all
positive predictions made by the model. For example, if the model identifies 100 images as
‘Saprolegnia spp.’, with 90 actually showing visible signs of Saprolegnia spp., the precision
would be 90%. High precision indicates that when the model predicts a particular condition
is present, it is usually correct. Recall (Eg. 5.2) measures the proportion of actual positive
cases correctly identified by the model. For instance, if there are 100 images of fish with
visible signs of Saprolegnia spp. in the dataset, and the model correctly identifies 80 of
them, the recall would be 80%. High recall indicates that the model is successfully detecting
most instances of the condition of interest. The F1 (Eq. 5.3) is the harmonic mean of
precision and recall, balancing both measures. For example, in disease monitoring, we want
to avoid both incorrectly identifying healthy fish as diseased (false positives, affecting
precision) and missing cases of actual disease (false negatives, affecting recall). A high F1
indicates that the model maintains both good precision and good recall. The MCC (Eq. 5.4)
produces a value between -1 and +1, representing the correlation between observed and
predicted classifications. A coefficient of +1 represents a perfect prediction, 0 is no better
than random guessing, and -1 indicates total disagreement. MCC calculates the correlation
using all four categories of the confusion matrix (true positives, true negatives, false

positives, and false negatives), making it robust for imbalanced datasets.

We focus on models with high recall for the ‘Saprolegnia spp.’ class to minimise missed

cases (false negatives), even if it might increase false positives. We also consider precision
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for the disease class. To account for the class imbalance, we use the macro-average F1-score
(the mean of both class-wise F1 scores) and MCC. From here on, we refer to class-wise
metrics as metriccass, where ‘metric’ is one of the metrics, and ‘class’ is either ‘healthy’ or

‘sapro’ for Saprolegnia spp.
Cross-Evaluation Strategy

To enable fair comparisons between training strategies, we performed a cross-evaluation in
which models trained on different tiered datasets were evaluated on identical held-out
folds of two genus-specific evaluation sets (Salmo and Oncorhynchus). For each architecture
and training strategy, we trained models using 5-fold stratified group cross-validation. For
each fold, we evaluated the resulting model not only on its within-fold held-out data, but
also on the corresponding held-out fold from the Salmo evaluation set and from the
Oncorhynchus evaluation set. This produced fold-paired performance estimates on the
same images, allowing direct comparison of training strategies when evaluated on a fixed

target genus.
Comparison to a Random Model

To establish a simple, unbiased benchmark, we implemented a random baseline classifier
that assigns each image to ‘healthy’ or ‘Saprolegnia spp.” with equal probability (p = 0.5). For
each dataset (and for each cross-validation fold’s held-out validation set), we generated
random predictions for all images and computed the same evaluation metrics as for trained
models (precisionsapro, recallsapro, macro-average F1 and MCC). Because the random baseline
is stochastic, we repeated this procedure 100 times. For each fold we then summarised the
baseline as the mean metric value across repeats (and report the mean and 95% interval

across repeats for descriptive purposes).

5.2.3 QUALITATIVE AND QUANTITATIVE ANALYSIS

We used saliency methods to visualise which parts of an image most influenced a model
classification decision and generated heatmaps that highlight those regions. We applied
Grad-CAM, (Selvaraju et al. 2020) in TensorFlow, following the implementation in Chollet
(2021) for the best performing model on all images in the Salmo genus-specific dataset. We

categorised images as: correctly identified ‘healthy’ or ‘Saprolegnia spp.’ images and
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incorrectly identified ‘healthy’ or ‘Saprolegnia spp.” images. Through manual inspection of
correctly (n=1208) and incorrectly (n=17) classified images and their corresponding Grad-
CAM heatmaps, we investigated whether systematic patterns existed in the regions of the
image that most influenced the model's classification decisions. To quantitatively investigate
how image characteristics influenced model performance, we calculated several image
quality and dimension metrics for each image. We then compared the distributions of these
metrics between correct and incorrect classifications. Full methodological details and

statistical analyses are provided in Supplementary Material, Chapter 5.

5.3 RESULTS

5.3.1 MoDeL COMPARISON

All performance comparisons below use the cross-evaluation in which models trained under
different dataset strategies were evaluated on the same held-out folds of the Salmo and
Oncorhynchus evaluation sets (Figures 5.3-5.4). The EfficientNetV2S architecture generally
demonstrated the strongest performance across both evaluation sets, achieving the highest
macro-average F1 and (in most cases) the highest MCC. EfficientNetV2BO0 consistently
ranked second, while the smaller MobileNetV3S and ResNet50 backbones generally

produced lower metric scores.

On the Salmo evaluation set, the highest overall performance was achieved when models
were trained on the genus-specific dataset (‘Salmo, 210 photographs’). Using this training
strategy, EfficientNetV2S attained a macro-average F1 of 0.930 + 0.026 and an MCC of 0.859
+0.051 (Figure 5.3b-c). It also achieved a recallsapro 0f 0.918 + 0.038 (Figure 3.5a) and a
precisionsapro 0f 0.862 + 0.056. This exceeded the performance of the same architecture
trained on the broader ‘All photographs’ dataset (macro-average F1 0.910 + 0.024; MCC
0.826 + 0.054). However, the combined training strategy (‘Taxa with 210 photographs in
both classes’) proved a competitive alternative, with EfficientNetV2S achieving the highest
precisionsapro (0.908 + 0.055) of all models, while maintaining comparable performance
across macro-average F1(0.922 + 0.036) and MCC (0.845 + 0.075). Across all architectures
and training strategies, performance on the Salmo evaluation set exceeded the random

baseline across recallsapro, macro-average F1 and MCC (Figure 5.3).
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Figure 5.3. Performance metrics on the Salmo data. Comparison of recallsapro, macro-average
F1 and MCC for different models trained on the different tiered datasets and tested on the
Salmo genus-specific data. A random model with 95% confidence level, in grey, for each

metric and dataset was calculated by running a model that randomly predicts the ‘healthy’
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or ‘Saprolegnia spp.’ class with equal probability 100 times. Box plots show median,
interquartile range, whiskers indicate 1.5 x IQR, with individual points for each model fold

run overlaid.

Performance was lower on the Oncorhynchus evaluation set, with greater variation between
training strategies (Figure 5.4). For EfficientNetV2S, genus-specific training (‘Oncorhynchus,
>10 photographs’) yielded the highest precisionsapro (0.478 + 0.073) and macro-average F1
(0.734 £ 0.044). In contrast, training on the broader ‘All photographs’ dataset increased
sensitivity, producing the highest recallsapro (0.674 £ 0.073), compared with 0.612 + 0.072 for
the genus-specific model. Regarding the random baseline, while recallsapro for the ResNet50
architecture overlapped with the random confidence interval across all training strategies
(Figure 5.4a), the MCC values for all trained models remained consistently positive and

above the random baseline band (Figure 5.4c).
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Figure 5.4. Performance metrics on the Oncorhynchus data. Comparison of recallsapro, macro-
average F1 and MCC for different models trained on the different tiered datasets and tested

on the Oncorhynchus genus-specific data. A random model with 95% confidence level, in
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grey, for each metric and dataset was calculated by running a model that randomly predicts
the ‘healthy’ or ‘Saprolegnia spp.’ class with equal probability 100 times. Box plots show
median, interquartile range, whiskers indicate 1.5 x IQR, with individual points for each

model fold run overlaid.

5.3.2 QUALITATIVE AND QUANTITATIVE ANALYSIS

Grad-CAM analysis revealed that surface reflections were consistently responsible for
misclassifications for EfficientNetV2S, particularly when surface reflections obscured fish
features (Figure 5.5). Manual inspection highlights that the model can correctly focus on
infection, with the strongest activation (shown in red to turquoise) around the dorsal fin and
midsection where the infection was visible (Figure 5.5e). Similarly, when correctly classifying
a healthy brown trout the model appropriately concentrated on the fish's body, with the
highest activation along the main body and adjacent areas (Figure 5.5f). However, where
water surface reflections created both bubbles above and reflective patterns below the fish
(Figure 5.5c-d) the corresponding heatmap (Figure 5.5g-h) reveals that the model focused
primarily on these water disturbances leading to misclassifying these healthy fish as

diseased.

Figure 5.5. Grad-CAM heatmaps. Comparison of a subset of images used for EfficientNetV2S

classification on the ‘Salmo, = 10 photographs in both classes’ dataset (a-d) and their
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corresponding Grad-CAM heatmap overlays (e-h). (a) Atlantic salmon (Salmo salar) correctly
classified as infected with ‘Saprolegnia spp., (b) Atlantic salmon (Salmo salar) correctly
classified as ‘healthy’, (c and d) Brown trout (Salmo trutta) incorrectly classified as
‘Saprolegnia spp., and corresponding Grad-CAM heatmap overlays (e-h). See

Supplementary Material, Chapter 5 for photograph attribution.

The quantitative analysis of image characteristics found no statistically significant
association between classification outcome and global image quality metrics. Comparing
correctly and incorrectly classified images using a Mann-Whitney U test on the full dataset
revealed no significant differences in sharpness (p=0.366), perceptual quality (BRISQUE,
p=0.266; NIQE, p=0.787), or image dimensions (p>0.9). Full details of this analysis are

provided in Supplementary Material, Chapter 5.

5.4 DISCUSSION

Our results demonstrate the potential for computer vision to support disease surveillance in
wild fisheries. By performing a rigorous cross-evaluation on held-out folds of the
Salmo/Oncorhynchus evaluation sets, we found that deep learning models outperformed
random classification on macro-average F1 and MCC across both evaluation sets (Figures
5.3-5.4), with the strongest performance on the Salmo genus-specific dataset. Our work
demonstrates the potential for rapid and extensive surveillance, mindful of potential

methodology pitfalls, with classification potentially improved with more training images.

Previous work has reported near-perfect classification of fish diseases, including
Saprolegnia spp. (models: VGG16, MobileNetV2 and InceptionV3 (Biswas et al. 2024).
However, manual inspection of the images used

(https://www.kaggle.com/datasets/subirbiswas19/freshwater-fish-disease-aquaculture-in-

south-asia), revealed potential overfitting due to augmented versions of images from the
training set constituting those in the test set. Kumaar et al. (2024) also achieved high
performance (models: InceptionV3, VGG16 and a custom FishNetCNN) on the same dataset,
expanded with additional images, but had inconsistent sample sizes and possible
augmented training samples in the test set. Although our best model (EfficientNetV2S)

achieved lower metrics for classification of Saprolegnia spp. than these works (Biswas et al.
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2024; Kumaar et al. 2024), we adhered to stricter validation protocols, reducing bias and

improving real-world application for monitoring diseases in the field.

5.4.1 MODEL PERFORMANCE AND TECHNICAL CONSIDERATIONS

The strong performance of EfficientNetV2S can most likely be attributed to its ability to
process higher resolution images (300x300 pixels versus 224x224 pixels) enabling detection
of subtle disease features. A key finding from our cross-evaluation was the influence of
training data composition. For the Salmo dataset, which benefitted from a more favourable
class balance (highest ratio of disease to healthy images), the specialist model performed
best, refuting the hypothesis that a generalist model trained on all available data would
necessarily outperform a specialist model due to volume alone. This suggests that when a
target taxon is well-represented, adding images from other genera introduces additional
visual variation that may degrade performance. However, the combined training strategy
(taxa with 210 photographs) proved highly competitive, achieving the highest precision,
which suggests that curated multi-taxa datasets can improve model robustness against false
positives. Conversely, for the Oncorhynchus dataset, which had fewer disease examples, the
generalist ‘All photographs’ model improved recall for the 'Saprolegnia spp.' class by
leveraging features learned from the Sa/lmo examples. This highlights a strategic trade-off
for surveillance: specialist models are preferable where data is more balanced to maximise
MCC and precision, while generalist models can boost sensitivity for data-poor taxa via

transfer learning, albeit with a trade-off in precision.

Grad-CAM visualisations suggested the model focused on relevant anatomical features in
correctly classified images, but when misclassifying did so most likely so due to water
surface reflections (Figure 5.5), thereby providing guidance for future work that model
performance, i.e. disease classification, could be improved by restricting the type of images

used.

All models, particularly MobileNetV3S, overpredicted ‘Saprolegnia spp.’ leading to higher
recallsapro (proportion of infected fish images that are correctly identified) but lower
precisionsapro (proportion of correctly identified infected fish among all fish identified as
being infected). Oversampling to address class imbalance changes the class distribution in

the training data and this can drive the models to overpredict the minority class. Although
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we mitigated this using image augmentation to increase the size of our training datasets,
alternative strategies like multi-branch networks, as suggested for visual recognition of

animal species in camera-trap images (Cunha et al. 2023), could enhance performance.

An important consideration for practical application is the trade-off between accuracy and
computational efficiency, as well as the intended use case. This tool could be deployed in
two main ways. First, for post-hoc analysis, automatically screening large image collections
from online repositories to flag potential cases for follow-up by managers. Where geotags
and timestamps are available, such screening could support spatiotemporal exploration of
apparent disease signals, although any inferred patterns would require careful adjustment
for uneven observation effort and reporting biases. Second, as an in situ mobile application
to support rapid field triage. Our model comparison was designed in part to explore such
deployment trade-offs: lightweight architectures such as MobileNetV3S offer fast inference,
while EfficientNetV2 variants provide improved performance. The inference times reported
here (Table 5.4) were measured on an Nvidia P100 GPU and therefore indicate relative
computational cost rather than expected mobile latency; real-world on-device performance
would require conversion to a mobile runtime (e.g., TensorFlow Lite/Core ML) and
device-specific benchmarking and optimisation (e.g., quantisation). In both deployment
modes, predictions should be treated as a screening signal rather than diagnosis, with
confirmatory diagnostics (e.g., molecular testing) required for case confirmation, and
decision thresholds selected to reflect the relative costs of false negatives and false

positives.

5.4.2 DATA CHALLENGES IN DISEASE DETECTION

Developing robust disease detection models is hindered by the difficulty of obtaining expert
annotations for images with confirmed disease. Citizen science data introduces noise and
geographic bias (Edwards et al. 2021) and in the current work, UK-based images were
overrepresented. Many images were shared by anglers, and although these stakeholders
offer an opportunity to acquire many images, they may be less likely to take ‘trophy’ images
of diseased fish or only share pictures of fish in advanced stages of disease, so creating bias.
Combined with inconsistent taxonomy across sources and variable image quality, the
complexities of building representative datasets are apparent using internet harvested
images. Computer vision techniques such as augmentation (making random changes to
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existing images to increase dataset size) increase sample size, but risk inadvertently
amplifying existing biases (Shorten and Khoshgoftaar 2019). For our study, an important
next step to improve model performance and generalisability could be to expand the
labelled dataset by annotating a larger portion of the thousands of unlabelled salmonid
images acquired during our initial data collection. With post-hoc image processing not being
a complete solution, engaging and training stakeholders (here, anglers) to submit images of
both healthy and unhealthy-looking fish could help overcome some biases and class
imbalances. Similar citizen science approaches have worked well for surveillance of other
wildlife diseases, such as sarcoptic mange in foxes, Vulpes vulpes (Scott et al. 2020),
although they did not use computer vision. Open access image repositories (iNaturalist,
Flickr, GBIF), offer great opportunities to develop structured citizen science programmes
with standardised imaging protocols (August et al. 2020b). Indeed, iNaturalist and Flickr
were valuable resources for collecting a large dataset of 4,526 salmonid images for our

study.

Online platforms offer great potential to collate a large number of images, providing a cost-
effective alternative to traditional field surveys; they capture valuable metadata, including
date, time, location, which is crucial for disease surveillance and ‘research grade’ images
have been taxonomically identified. An additional benefit of using online repositories is that
users have explicitly agreed to share their observations under Creative Commons licenses,
aligning with best practices including Findable, Accessible, Interoperable, and Reusable
(FAIR) data (Wilkinson et al. 2016). However, leveraging citizen science data still requires
careful curation and quality control due to the inherent biases in these data (Brown and

Williams 2019).

Academic or practitioner curated databases of confirmed disease cases, such as those used
in our study, offer a potential solution for training models. However, these databases are
often not open access. While there is a growing infrastructure for sharing images (e.g.,
Kaggle, Zenodo) and increasing calls for collaboration in building species-specific disease
databases (Nunes et al. 2020), challenges remain in transforming collated data into
resources that effectively meet researchers' needs. Good annotation practices and
standardised protocols are needed to make these datasets broadly useful. For example,

'SalmonScan' (Ahmed 2024), although a large dataset (1,208), constitutes augmented
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images from 24 uninfected and 91 infected fish, and lacks details about species

identification and infection types.

5.4.3 CHALLENGES IN WILD FISH DISEASE DETECTION

Specific to disease detection in wild fish, the Grad-CAM analysis revealed misclassification of
fish underwater due to water surface features. Incorporating fish detection using tools like
‘megafishdetector’ (Yang et al. 2023) could help isolate individual specimens in complex
images. Pre-processing techniques could reduce reflection effects crucial for minimally
invasive in situ monitoring. Furthermore, given the differing performance on Salmo versus
Oncorhynchus evaluation sets, a hierarchical model incorporating taxonomic data (Elhamod
et al. 2022), may improve classification accuracy by explicitly modelling the visual

differences between genera.

5.4.4 |MPLICATIONS FOR DISEASE SURVEILLANCE

Our results demonstrate the potential for computer vision to transform disease surveillance
in wild fish populations. While our models cannot replace traditional diagnostic methods, as
confirmation of Saprolegnia spp. infection requires a confirmed molecular diagnosis (van
West and Beakes 2014), they offer a valuable tool for rapid, large-scale screening. This
approach could help identify potential disease outbreaks earlier, enabling more targeted

application of confirmatory tests.

The success with Saprolegnia spp. suggests potential applications for other visually
distinctive diseases not only in fish but also in other animals, such as mange in Vulpes vulpes
(Scott et al. 2020). Integration with spatiotemporal metadata, available for all research
grade iNaturalist observations, could provide insights into disease dynamics and
environmental drivers of outbreaks if large enough datasets could be acquired. However,
such datasets would likely contain inherent biases, as observation frequency often
correlates with human population density and accessibility of sites (Geurts et al. 2023).
Additionally, temporal biases may arise from seasonal variations in observer effort and
species visibility. These sampling biases would need careful consideration when interpreting

any apparent patterns in disease occurrence or distribution.
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This work represents a significant step toward automated disease surveillance in wild fish
populations, demonstrating both the potential and challenges of computer vision
approaches. Overall, this work highlights the transformative potential of computer vision for
disease surveillance in fish, but also other visually distinct wildlife diseases, while also
underscoring the need for continued refinement and careful integration with existing

methods.
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Abstract

Traditional wildlife disease surveillance is often resource-intensive, and computer vision
offers a promising avenue for more efficient, automated monitoring. Here, we evaluate
deep learning models for classifying 'rumpwear’, an externally visible condition in common
brushtail possums (Trichosurus vulpecula), using camera trap images. Rumpwear ranges
from hair breakage to complete hair loss, and its visually gradable nature makes it an ideal
case study for moving beyond simple disease presence/absence detection. Our best-
performing supervised model achieved 95.2% classification accuracy. Importantly, we
demonstrate that the model's output probability for the 'Disease’ class correlates
significantly with expert-assigned severity scores on held-out test images, validating its use
as a proxy for a disease-severity index. Gradient-weighted Class Activation Mapping showed
the model concentrated on the rump, which was the relevant region for rumpwear clinical
signs. Developing deep learning models that can rapidly classify and quantify disease-
severity from images is a useful tool for enhancing existing disease monitoring projects and

offers vital infrastructure for future programmes.

6.1 INTRODUCTION

Effective disease surveillance is crucial globally. Yet achieving comprehensive monitoring
faces significant challenges, particularly for wildlife populations where efforts often rely on
opportunistic reporting rather than systematic surveys (Phelps et al. 2019; Watsa 2020).
While frameworks like the World Organisation for Animal Health (WOAH) collate reports on
notifiable diseases, primarily focusing on livestock and major epizootics through methods
like clinical observations and sentinel monitoring, obtaining comparable data for many wild

species remains difficult (Stallknecht 2007; Watsa 2020). Consequently, understanding
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disease dynamics in wildlife often depends on passive detection, such as reports of dead or

sick animals from the public, for example hunters, amateur naturalists or anglers.

Deep learning models have proven effective for image-based disease detection and
classification in agriculture, particularly plant pathology (Francis and Deisy 2019; Li et al.
2020), and medical diagnostics (Esteva et al. 2021; Rana and Bhushan 2023). Despite this
success, and the rapid growth of camera-trap image datasets (Swanson et al. 2015), few
studies apply these techniques to wildlife disease surveillance (Christin et al. 2019; Jari¢ et
al. 2020; Poulin et al. 2021). Many animal diseases manifest externally visible signs,
presenting a clear opportunity to leverage computer vision (CV) for automated detection
from photographs or videos. Encouragingly, specific applications are emerging: for instance,
CV has been used to classify skin lesions in bottlenose dolphins (Tursiops truncatus) from
photographic surveys (Murphy et al. 2025) and to detect Devil Facial Tumour Disease (DFTD)
in Tasmanian devils (Sarcophilus harrisii) from camera trap images (Nurcin et al. 2024).
Recently, Ringwaldt et al. (2025) also used a CNN to identify rumpwear in common brushtail
possums for broad-scale distribution mapping. Furthermore, the potential utility of image
repositories for assessing disease in aquatic species, such as salmonids, has found that
models can distinguish healthy from diseased animals (Olsen et al. 2026, Chapter 5). Despite
these advancements, broad application and methodological refinement across diverse
wildlife-disease systems are needed to fully realise the potential of image-based

surveillance.

One condition presenting with visually apparent signs in Australian marsupials is rumpwear,
also known as ‘rumpy possum’ or ‘rumpiness’. It affects common brushtail possums
(Trichosurus vulpecula) across Australia, including Tasmania (Ringwaldt et al. 2025).
Rumpwear has also been described in mountain brushtail possums (Trichosurus
cunninghami, see Hufschmid et al. 2010) and common ringtail possums (Pseudocherius
peregrinus, see Ringwaldt et al. 2022). Rumpwear manifests as bilateral hair damage on the
lumbosacral region, ranging from changes in fur colouration due to hair breakage to, in rare
cases, complete hair loss (Hufschmid et al. 2010; Ringwaldt et al. 2022). While the precise
aetiology remains unclear, it is hypothesised to involve hypersensitivity to an irritant,
possibly ectoparasites, leading to mechanical hair damage from overgrooming (Hufschmid

et al. 2010). The visually gradable nature of these signs, along with evidence suggesting links
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to host factors, seasonality, and population density (Hufschmid et al. 2010; Ringwaldt et al.
2025), makes rumpwear a suitable model syndrome for developing and evaluating
computer vision tools beyond simple presence/absence detection, particularly for assessing

varying levels of affliction.

Building on the epidemiological findings and initial image classification efforts of Ringwaldt
et al. (2025), this study used a dataset of 7780 images of common brushtail possums from
the same Tasmanian camera trap network (Vaughan et al. 2022; Brook et al. 2025;
Ringwaldt et al. 2025). These images were expertly scored for the presence and apparent
severity ('Mild signs' versus 'Obvious signs') of rumpwear by Ringwaldt and Brook, as
detailed in Ringwaldt et al. (2025). While Ringwaldt et al. (2025) developed a CNN for broad-
scale rumpwear detection and distribution mapping, our study provides a novel
methodological framework for moving beyond simple presence/absence classification.
Specifically, this paper aims to: 1) comprehensively evaluate different deep learning model
configurations (including pre-training and fine-tuning strategies) to accurately classify
rumpwear presence, comparing model performance to expert labels; 2) investigate whether
model outputs (e.g., prediction probabilities) can serve as a robust proxy for a nuanced,
expert-scored disease-severity index, aligning with the original multi-category expert scores;
and 3) explore the utility of semi-supervised learning techniques to potentially reduce the
reliance on extensive manual labelling for training effective classifiers in such wildlife-health

studies.

6.2 MATERIALS AND METHODS

6.2.1 DATA ACQUISITION AND PREPARATION

We sourced possum images from the University of Tasmania’s state-wide camera-trap
network. This network and its operational details (914 unique camera sites, active 2016-
2021) are described in Vaughan et al. (2022) and Ringwaldt et al. (2025). Most units
employed white-flash illumination, producing colour night images that allowed clearer
visual grading of rumpwear in this nocturnal species. Initial image processing, including
animal detection using MegaDetector (Beery et al. 2019) and subsequent species
classification to identify common brushtail possums was done using the "Mega-Efficient
Wildlife Classifier" (MEWC), as described by Brook et al. (2025).
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Two experienced observers (co-authors Ringwaldt and Brook) annotated 7779 images for
signs of rumpwear. Each image was assigned to one of four initial categories based on visual
evidence: 1) Healthy: no signs of rumpwear; 2) Mild signs: potential rumpwear indicated by
hair breakage or light grey/cream fur on the rump; 3) Obvious signs: clear breakage or loss

of fur on the rump; and 4) Occluded: rump not visible or image quality insufficient for

assessment (Figure 6.1).

Figure 6.1. Camera trap images of brushtail possums exemplars, corresponding to the classes
defined in this study. (A) Healthy (B) mild signs of rumpwear (C) obvious signs of rumpwear,

and (D) possum with rump occluded.

For the primary model training, the initial expert-annotated categories of ‘Mild signs’ and
‘Obvious signs’ were consolidated into a single ‘Disease’ class. This was done to ensure a
sufficient number of training examples for the overall diseased category, given the potential
for fewer samples in more granular severity sub-classes, and to account for the inherent
subjectivity and continuous nature of visual severity assessment. The original ‘Mild’ and
‘Obvious’ distinctions were, however, retained for a subsequent post-hoc analysis to
investigate whether model outputs could serve as a proxy for disease-severity (see Section

6.2.8).
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6.2.2 DATASET PARTITIONING AND DE-DUPLICATION

To ensure the integrity and independence of the dataset, we applied a multi-step
partitioning and de-duplication pipeline. For each class, image embeddings were first
computed for all images using the clip-ViT-B-32 model from OpenAl (Radford et al. 2021) via
the sentence-transformers library (Reimers and Gurevych 2019). We computed pairwise

cosine similarity within each class to flag duplicates.

Pairs with cosine similarity > 0.999 were treated as exact duplicates. Within each group of
identified exact duplicates (caused by overlapping object detections by MegaDetector), all
but one image were excluded from the final dataset, resulting in 7657 unique images after
duplicate removal. Near-duplicate sequences (scoring 0.97 —0.999) likely represented time
series of the same individual animal captured in quick succession. We placed all
near-duplicate sequences solely in the training set to prevent images from the same animal
encounter appearing in both the training and evaluation (validation or test) sets, thereby

reducing the risk of data leakage.

Following the removal of exact duplicates and the allocation of near-duplicate sequences to
the training set, the remaining unique images within each class were statically partitioned.
The target split was 80% for training, 10% for validation, and 10% for testing, based on the
post-duplicate-removal image count for each class. This procedure resulted in the final

dataset splits shown in Table 6.1.

Table 6.1. The number of images in the training, validation and test set for each of the

classes ‘Healthy’, ‘Disease’ and ‘Occluded’

Class Training Validation Test Total Proportion (%)
Healthy (no rumpwear) 3177 397 397 3971 51.9

Disease (signs of possible or obvious 1329 166 167 1662 21.7
rumpwear)

Occluded (rump of animal occluded) 1619 202 203 2024 26.4
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Class Training Validation Test Total Proportion (%)

Total 6125 765 767 7657 100.0

6.2.3 MODEL ARCHITECTURE AND PRE-TRAINING STRATEGIES

We chose EfficientNetV2S convolutional neural network (CNN) architecture (Tan and Le
2021) for its high accuracy to computational efficiency ratio in image recognition tasks. All
models were implemented using Keras 3 with a JAX backend in Python 3.10.13. A transfer
learning approach was adopted, with model weights initialised from two distinct pre-

training sources to enhance feature extraction.

First, we used ImageNet pre-training for generic visual features (Deng et al. 2009). The
second source involved custom wildlife pre-trained weights, generated to leverage domain-
specific features relevant to camera trap imagery. These custom weights were produced by
adapting the workflow from the MEWC pipeline (Brook et al. 2025), with the associated
codebase available on GitHub (http://github.com/zaandahl/mewc). The MEWC framework
is designed for customised wildlife image classification using deep learning. Brook et al.
(2025) demonstrated the MEWC workflow's capability by training models (including
EfficientNetV2S) on a dataset of 10 common Tasmanian wildlife species/classes, reportedly
achieving high classification accuracies (e.g., their EfficientNetV2S model achieved 99.48%

accuracy and a test loss of 0.0023 on this multi-species task).

To prevent leakage, we first fine-tuned MEWC on nine non-possum Tasmanian mammal
species. The resulting weights from this nine-species classification model then served as our
custom wildlife pre-trained weights, providing CNN features adapted to the specific camera

network and Tasmanian environmental context.

For all model configurations, we passed the features extracted by the pre-trained
EfficientNetV2-S base model to a custom classification head to map the learned feature
representations to the specific target classes. This comprised of a GlobalAveragePooling2D
layer to summarise the spatial feature maps, followed by a Dropout layer. Dropout layers
were included to reduce overfitting by randomly deactivating a subset of neurons during

training, encouraging the model to learn more generalisable feature representations. The
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subsequent layers included a Dense layer with 256 units, an Exponential Linear Unit (ELU)
activation layer, and then a second Dropout layer. The head terminated with a final Dense
classification layer with softmax activation, which predicted probabilities for the ‘Healthy’,

‘Disease’, or ‘Occluded’ categories.

6.2.4 SUPERVISED TRAINING PROTOCOL

We investigated four primary supervised training configurations, varying both the source of
pre-trained weights (ImageNet or custom wildlife) and the initial training strategy (frozen
base then fine-tune, or fine-tune only). This comparison allowed us to determine whether
the model benefits more from domain-specific prior knowledge (local wildlife) than generic
features (ImageNet), and to assess whether the entire network needs to be updated to

capture the fine-grained visual characteristics of rumpwear.

For the “frozen then fine-tuned” (fr_ft) configurations, the model was initialised with either
ImageNet or custom wildlife pre-trained weights. During the initial frozen training phase,
the weights of the base CNN were kept fixed, and only the custom classification head was
trained for 10 epochs. Following this, the top block of the EfficientNetV2S base was
unfrozen, and the entire model was fine-tuned for a further 28 epochs, divided into four

progressive stages of seven epochs each.

In the “fine-tuned only” (ft) configurations, the model was initialised with the respective
pre-trained weights, and the top block of the base model was unfrozen immediately. The

model was then fine-tuned for 28 epochs, also using progressive training stages.

All training runs used the AdamW optimiser with a learning rate of 1e-4 and weight
regularisation (1e-4), together with an exponential learning rate scheduler. To address class
imbalance, the training data was balanced by resampling (without replacement) 1300
images per class for each epoch. Input images were resized to 384 x 384 pixels, and data
augmentation was applied using RandAugment (Cubuk et al. 2020) with three
augmentations per image and progressive augmentation magnitudes across the four fine-
tuning stages (0.2, 0.4, 0.6, and 0.8, respectively). To further regularise the model during the
fine-tuning stages (mitigating overfitting), the rate for the top dropout layer (located after

the ELU activation in the classification head) was progressively increased across the four
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stages (0.1, 0.2, 0.3, and 0.4, respectively). Training was performed with a batch size of 16.

Model checkpoints were saved based on the lowest validation loss observed during training.

6.2.5 MODEL EVALUATION METRICS

We assessed performance with the standard quartet of metrics: accuracy, precision, recall,
and F1-score (definitions in Géron 2022, Chapter 3). Accuracy can be a misleading metric for
this task because the dataset is imbalanced; for instance, a model that only ever predicts
‘Healthy’ would still achieve 90% accuracy if just 10% of possums were diseased. In disease
surveillance, the cost of failing to identify a diseased animal (a false negative) is particularly
high. High recall for the ‘Disease’ class means the model successfully identifies most true
disease cases, generating few false negatives. As such, we treat accuracy as ancillary and

base our conclusions on F1 and recall.

6.2.6 MODEL SELECTION FOR SUBSEQUENT ANALYSIS

To ensure a fair and unbiased evaluation, we selected a single supervised model for all
subsequent analyses, including the semi-supervised learning protocol and the
disease-severity investigation. Model selection was based on a comparative evaluation of
the four trained models on a held-out validation set, a standard practice to prevent
information leakage from the test set during model development (Chollet 2021). We
considered both discrimination performance (including precision for the ‘Disease’ class) and
overall calibration, as reflected in the validation loss, because a key aim of the study was to
use the model’s continuous output probability as a proxy for disease severity. In particular,
we prioritised models with lower validation loss, as these are more likely to produce reliable
and interpretable probability scores across the severity spectrum, which is essential for
generating high-quality pseudo-labels and for analyses relying on model output probabilities

(Lin et al. 2020; Sohn et al. 2020).

6.2.7 SEMI-SUPERVISED LEARNING VIA PSEUDO-LABELLING

The scarcity of high-quality labelled data in ecological image analysis motivates the use of
semi-supervised and self-supervised learning approaches (van Engelen and Hoos 2020). To
investigate if model performance could be improved with unlabelled data, we adopted a
semi-supervised learning (SSL). Among the various semi-supervised learning strategies,

wrapper methods such as self-training (also known as iterative pseudo-labelling) are well-
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established and widely used due to their simplicity and flexibility. These methods allow
unlabelled data to be incorporated into model training with minimal modification to existing
supervised algorithms, making them especially attractive for practical applications where
ease of implementation and interpretability are important considerations (van Engelen and
Hoos 2020). While more complex semi-supervised learning methods exist, there is no single
best approach for all problems, and empirical evaluation is essential to determine the most
suitable method for a given research question. In this study, we adopted an iterative
pseudo-labelling strategy, balancing methodological rigour with practical feasibility, to
investigate its utility in training effective rumpwear classifiers with reduced reliance on

extensive manual labelling.

The iterative pseudo-labelling protocol was done with the elected supervised model over
three iterations. In each iteration, the current teacher model generated pseudo-labels for
the unlabelled dataset. Only images where the model's prediction confidence for a specific
class surpassed a given threshold were assigned pseudo-labels. This confidence threshold
was set to 0.99, 0.85, and 0.70 for the three successive iterations, gradually allowing more,

potentially less certain, pseudo-labels to be incorporated.

Following pseudo-label generation in each of the three iterations, the teacher model was
retrained using curriculum learning strategy (Bengio et al. 2009) where a model learns from
easier examples before proceeding to more difficult ones. In our implementation, prediction
confidence served as a proxy for example difficulty. Within each iteration, pseudo-labels
meeting that iteration's confidence threshold were sorted by confidence. Training then
proceeded through four curriculum stages: the expert-labelled data was first combined with
the top 25% of these pseudo-labels, then progressively with the top 50%, 75%, and finally all
100%. Each of these four curriculum-stage datasets was used to fine-tune the model for 10
epochs, employing the same progressive training settings (dropout, augmentation
magnitudes) as the supervised models. The model resulting from the final curriculum stage

of an iteration became the teacher for the next.

6.2.8 ASSESSING MODEL OUTPUT AS A PROXY FOR DISEASE-SEVERITY
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To investigate whether the outputs from the trained deep learning model could serve as
an automated proxy for expert-assigned disease-severity scores (categorised as 'Mild
signs' and 'Obvious signs'), a series of analyses were conducted. For severity, images
with a ground truth label of 'Occluded' were excluded; this was because the rump is not
visible in such images, meaning severity cannot be assessed by an expert, and

therefore cannot be assessed for health status.

First, to understand general model calibration, we examined the distribution of the
model's predicted softmax probability for its chosen class, grouped by the ground truth
label ('"Healthy', 'Disease’, 'Occluded') across all data splits. A similar confidence
analysis was also done on the large, unlabelled dataset by applying the final trained
model to generate predictions, to understand the model's output distribution on a

dataset representative of a real-world monitoring scenario.

To assess the relationship between model output and disease-severity more directly,
several visualisations focused on the model's softmax probability for the 'Disease’
class (P(Disease)). Violin plots were generated to compare the distribution of
P(Disease) across test set images with ground truth labels of 'Healthy', 'Mild signs', and
'Obvious signs'. To statistically test for differences in P(Disease) between these three
groups, we used a Kruskal-Wallis H test, a non-parametric approach suitable for
comparing multiple groups without assuming a normal distribution of the data. Post-
hoc analysis was subsequently performed using Dunn's test with Bonferroni correction
to identify which specific group pairs were significantly different. Complementing this, a
2D scatter plot visualised P(Healthy) against P(Disease) for each non-occluded test set
image, with points coloured by their ground truth label (‘"Healthy', 'Mild signs', 'Obvious

signs') to identify potential separation in this two-dimensional probability space.

Finally, to explore whether the model's learned internal representations inherently
captured severity-related information, dimensionality reduction techniques,
specifically Uniform Manifold Approximation and Projection (UMAP), t-distributed
Stochastic Neighbor Embedding (t-SNE; van der Maaten and Hinton 2008), and
Principal Component Analysis (PCA), were used. These techniques were applied to two

distinct sets of features from the non-occluded test set images: first, to the three-
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dimensional vector of softmax output probabilities ([P(Healthy), P(Disease),
P(Occluded)]), and second, to the 256-dimensional embeddings from the model's
'‘compression_bottleneck' layer. The resulting two-dimensional plots were coloured by
the ground truth label (‘Healthy', 'Mild signs', 'Obvious signs') to assess whether these
categories formed distinct clusters, which would indicate that the model had learned
separable features related to disease-severity. To quantitatively evaluate this
clustering, we calculated the silhouette coefficient (Rousseeuw 1987). The silhouette
score measures how similar a data pointis to its own cluster compared to other
clusters, where a higher score indicates that clusters are dense and well-separated. To
further validate the reliability of the model's 'Disease’ class probability, we also
performed a calibration analysis (Guo et al. 2017). For this, we evaluated the model's
performance on the binary task of distinguishing 'Healthy' from ‘Disease’ cases in the
non-occluded test set. We calculated the Brier score loss (Brier 1950) and Expected
Calibration Error (ECE), and generated a combined plot showing both the calibration

curve and a histogram of the prediction confidences.

We analysed the Gradient-weighted Class Activation Mapping (Grad-CAM; Selvaraju et al.
2020) heatmaps for all non-occluded test images (n=564) to provide a quantitative
assessment of the model's visual focus. Each heatmap was visually classified as either
'cohesive', where activation was clearly concentrated on the possum's rump, or
'‘fragmented’, where activation was diffuse, scattered, or focused on other image
elements. We then calculated the proportion of cohesive and fragmented heatmaps
across different groups, such as correct versus divergent classifications and different

levels of model confidence.

6.2.9 MODEL INTERPRETABILITY: IDENTIFYING KEY IMAGE REGIONS

To understand the visual basis for the classification decisions made by the wildlife_ft model,
we used Grad-CAM. Grad-CAM is a visualisation technique that produces a "heatmap"
highlighting the specific regions in an input image that were most influential in the model's

prediction for a given class (e.g., 'Disease’).

Rather than using a simple random sample, we implemented a targeted, scenario-based

strategy to select the most informative images from the test set. This approach allowed us
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to probe the model's behaviour under various conditions. We generated Grad-CAM
heatmaps for the model's predicted class by analysing several key situations. We examined
high-confidence (>0.95) correct classifications for 'Healthy', ‘Obvious signs’, and 'Occluded'
images to confirm the model's confident decisions were based on biologically relevant
features. We also investigated correctly identified 'Mild signs' cases where the model
exhibited lower confidence (0.5-0.75). Finally, we focused on divergent classifications:
instances where the model's prediction differed from the expert label, such as when

'Healthy' animals were labelled as 'Disease’ or vice versa.

It is important to recognise that expert labels are not an absolute ground truth, as no
physical verification of disease status was performed. Therefore, these divergent
classifications represent a disagreement between the model and the human expert,

not necessarily a model error. By overlaying heatmaps onto the original images, we could
qualitatively assess the features that led to a divergent prediction, providing deeper insight

into the model's decision-making process.

6.3 RESULTS

6.3.1 SUPERVISED CLASSIFICATION OF RUMPWEAR STATUS
The test set performance of the four supervised EfficientNetV2S model configurations is
detailed in Table 6.2. All models reached 93.9%—95.2% accuracy and weighted average F1-

score, confirming the architecture’s suitability.

Table 6.2. Performance metrics for four EfficientNetV2S model configurations on the
rumpwear test set. ImageNet_fr_ft: Pre-trained on ImageNet, frozen base then fine-tuned.
Wildlife_fr_ft: Pre-trained on custom wildlife dataset, frozen base then fine-tuned.
ImageNet_ft: Pre-trained on ImageNet, fine-tuned only. Wildlife_ft: Pre-trained on custom

wildlife dataset, fine-tuned only. Best values for each metric are shown in bold.

Metric ImageNet_fr_ft Wildlife_fr_ft ImageNet_ft Wildlife_ft
Accuracy 0.94 0.939 0.948 0.952
F1-score (Healthy) 0.95 0.949 0.958 0.958
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Fl-score (Disease) 0.903 0.904 0.927 0.926

Fl-score (Occluded) 0.953 0.949 0.945 0.96
Macro avg Fl-score 0.935 0.934 0.943 0.948
Macro avg Precision 0.929 0.929 0.948 0.947
Macro avg Recall 0.943 0.939 0.939 0.95
Precision (Healthy) 0.969 0.964 0.946 0.962
Precision (Disease) 0.863 0.881 0.939 0.913
Precision

(Occluded) 0.955 0.942 0.959 0.965
Recall (Healthy) 0.932 0.935 0.97 0.955
Recall (Disease) 0.946 0.928 0.916 0.94
Recall (Occluded) 0.951 0.956 0.931 0.956

Weighted avg F1-
score 0.941 0.939 0.948 0.952

Weighted avg
Precision 0.942 0.94 0.948 0.952

Weighted avg
Recall 0.94 0.939 0.948 0.952

The Wildlife_ft model, which used custom wildlife-specific pre-trained weights and was fine-
tuned directly, demonstrated the highest overall accuracy (0.952) and the best weighted-
average Fl-score (0.952). Comparing pre-training sources, models initialised with custom
wildlife weights (Wildlife_ft) showed a slight advantage over their ImageNet counterparts

(ImageNet_ft) in overall performance. Regarding the training strategy, directly fine-tuning
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the models (_ft) consistently resulted in better performance than including an initial frozen

base phase (_fr_ft).

For the crucial ‘Disease’ class, the ImageNet_ft configuration achieved the highest F1-score
(0.927) and precision (0.939), making it the most reliable for positive predictions. The
highest recall (0.946), indicating the best ability to identify all true disease cases, was

achieved by the ImageNet_fr_ft model.

All four models showed very similar classification performance, so the choice of final model
was driven by calibration rather than accuracy alone. Among the two strongest candidates,
the ImageNet_ft model performed best on the ‘Disease’ class, but the Wildlife_ft model
achieved the lowest validation loss, indicating better overall calibration. Given our focus on
using model probabilities as a proxy for disease severity, we selected the Wildlife_ft
configuration, accepting a small reduction in ‘Disease’ precision as a trade-off for more
reliable probability estimates. All subsequent analyses therefore use Wildlife_ft as the base

model.

6.3.2 SEMI-SUPERVISED CLASSIFICATION OF RUMPWEAR STATUS

We investigated whether a semi-supervised learning (SSL) protocol could improve upon the
supervised model's performance. The results were mixed: while the final SSL model
increased recall for the ‘Disease’ class, this gain came at the cost of lower precision and
overall accuracy. The detailed performance metrics are provided in the supplementary

material (Supplementary Table 13).

6.3.3 ASSESSING MODEL OUTPUT AS A PROXY FOR DISEASE-SEVERITY

We examined model confidence across all datasets. For images in the test set, the model
generally assigned high probabilities to its predicted class (Supplementary Figure 11). A
similar high-confidence pattern was observed in the predictions made on the unlabelled

dataset during the semi-supervised learning protocol (Supplementary Figure 12).

The model's predicted probability for the 'Disease’ class (P(Disease)) increased
systematically with expert-assigned disease severity (Figure 6.2). A Kruskal-Wallis
test confirmed a highly significant difference in the P(Disease) distributions across

the 'Healthy', 'Mild Signs', and 'Obvious Signs' groups (H = 348.29, p <0.001). Post-hoc
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analysis using Dunn's test showed that all three groups were statistically distinct

from one another. The separation was most pronounced between the 'Healthy' (mean =
0.09) and 'Obvious Signs' (mean = 0.96) groups (p < 0.001). The 'Mild Signs' group (mean
= 0.75) was also clearly distinguished from both the 'Healthy' group (p < 0.001) and,
more subtly but still significantly, from the 'Obvious Signs' group (p = 0.018). This
demonstrates a clear ordinal relationship where the model's confidence in its 'Disease’

prediction aligns directly with the visually assessed severity of the condition.
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Figure 6.2. Violin plots showing the distribution of model-predicted disease probability

(P(Disease)) for test set images, grouped by their expert-assigned ground truth label.

When visualised in a two-dimensional probability space, the 'Healthy', 'Mild Signs', and
'Obvious Signs' categories formed distinct regions (Supplementary Figure 13). 'Healthy'
images clustered where P(Healthy) was high and P(Disease) was low, while 'Obvious Signs'
clustered in the opposite corner. The 'Mild Signs' images were primarily located in the space

between these two groups.
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The separation of severity classes was also evident in dimensionality reduction visualisations
of the model's feature embeddings, projections showed moderate clustering. The UMAP
projection showed visually distinct clustering (Figure 6.3) with a silhouette score of 0.373,
while the PCA and t-SNE projections resulted in similar scores of 0.372 and 0.298,
respectively (Supplementary Figure 14 and Supplementary Figure 15). The first two principal
components of the PCA on these bottleneck features captured 70% of the variance. These
silhouette scores indicate that while some structure is present, the severity classes show
considerable overlap within the bottleneck feature space. The separability was stronger in
the model’s final three-dimensional softmax probability outputs. Here, a PCA projection
achieved a silhouette score of 0.648 with its first two components explaining nearly 100% of
the variance (Supplementary Figure 16). The corresponding t-SNE and UMAP projections
had lower scores of 0.342 and 0.255, respectively (Supplementary Figure 17 and

Supplementary Figure 18).
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Figure 6.3 UMAP projection of the 256-dimensional feature embeddings extracted from the
model's 'compression_bottleneck' layer for each image in the non-occluded test set. Points

are coloured by their expert-assigned ground truth label.

The reliability of the model’s confidence score as a severity proxy was confirmed with a
detailed calibration analysis (Figure 6.4). The model achieved a low Brier score of 0.034 and

a small ECE of 0.046.
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Figure 6.4. Calibration analysis of the model's 'Disease' class probability on the non-occluded
test set. The top panel compares the model's predicted probability (blue line) to a perfectly
calibrated model (dashed line). The model's Brier score and Expected Calibration Error (ECE)
are shown in the top-left corner. The bottom panel shows a histogram of these predicted

probabilities.

6.3.4 MODEL INTERPRETABILITY: IDENTIFYING KEY IMAGE REGIONS

A quantitative analysis of the Grad-CAM heatmaps for all non-occluded test images showed
a strong link between the model's focus and its performance. Correct classifications were
highly associated with cohesive heatmaps (94.0%), whereas this figure was much lower for
divergent classifications (60.7%). Heatmap cohesion also correlated directly with model
confidence: 99.7% of high-confidence predictions (>0.95) had cohesive heatmaps, compared

to only 67.1% for low-confidence predictions (<0.75).

The visual outputs in Figure 6.5 illustrate these quantitative patterns. For high-confidence
'Healthy' (Figure 6.5A) and 'Obvious Signs' (Figure 6.5B) classifications, the model's attention
was strongly and cohesively centred on the rump. When classifying an 'Occluded' animal
(Figure 6.5C), the model's focus was appropriately on the possum's head and face.
Additional examples for each scenario are provided in Supplementary Figure 19 to

Supplementary Figure 24.

In contrast, visualisations for uncertain or divergent classifications often showed a more
fragmented activation pattern. This was evident even for some correctly identified, but
challenging, 'Mild Signs' images, which had a lower proportion of cohesive heatmaps
(88.0%) than 'Obvious Signs' images (98.3%) (Figure 6.5D). This fragmented pattern was
most common in cases of divergent classification. When a healthy animal was classified as
'Disease’' (Figure 6.5E), or when a diseased animal was classified as 'Healthy' (Figure 6.5F),

the model's attention was often scattered and lacked a single, decisive point of focus.
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Figure 6.5. Grad-CAM visualisations of the trained wildlife_ft EfficientNetV2S model's class
activation maps for representative test images. Each panel shows the original image (top)
and the same image with the Grad-CAM heatmap overlay (bottom). The heatmap indicates
image regions of high importance for the model's final prediction; red signifies high

importance, while blue signifies low importance. The panels display six different
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classification scenarios: (A) A high-confidence 'Healthy' classification. (B) A high-confidence
correct ‘Disease’ classification belonging to the ‘Obvious signs’ ground truth class. (C) A high-
confidence 'Occluded’ classification. (D) A low-confidence, correct ‘Disease’ classification
belonging to the 'Mild signs' ground truth class. (E) A divergent classification of a healthy

animal as 'Disease’. (F) A divergent classification of a diseased animal as 'Healthy'.

6.4 DISCUSSION

This study demonstrates that our pipeline automates rumpwear detection and yields a well-
calibrated quantitative severity proxy. While our supervised classifier successfully learned
this severity continuum, attempts to further enhance its already high performance using

semi-supervised learning yielded mixed results.

Notably, the supervised model encoded the severity of rumpwear clinical signs as a
continuum, mirroring its gradual visual progression (Hufschmid et al. 2010; Ringwaldt et al.
2022). This was quantitatively demonstrated by the mean P(Disease) scores on the test set,
which progressed from 0.09 for 'Healthy' images, to 0.75 for 'Mild Signs', and 0.96 for
'Obvious Signs'. The model's learned feature space also reflected this: internal features
showed moderate class separation (silhouette scores 0.30-0.37), while the final softmax
outputs were more distinct (PCA silhouette score: 0.648). This suggests the final
classification layer functions to transform the more ambiguous, overlapping features into a
separable output. A detailed calibration analysis confirmed the reliability of this output as a

severity proxy (Figure 6.4).

Although the model was less reliable on rare, mid-range probability predictions, it was well-
calibrated overall (Brier score: 0.034). Importantly, most 'Mild Signs' cases were assigned
scores in a high-confidence range (IQR: 0.71-0.93), placing them outside the most uncertain
regions of the calibration curve. This validates the model's output probability not as a
perfectly calibrated measure of likelihood, but as a robust correlative proxy for severity,
suitable for fine-grained analysis and as a practical alternative to more complex ordinal

regression models (Niu et al. 2016). Furthermore, for these intermediate cases, the model
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may offer a more consistent assessment than human experts. It is plausible that the model
learns to identify subtle pixel-level patterns associated with early-stage rumpwear that are
difficult for the human eye to reliably classify. However, without a definitive ground truth
derived from physical examination, the hypothesis that the model may exceed human

performance on borderline cases cannot be verified.

Analysis of the model's decision-making process using Grad-CAM (Selvaraju et al. 2020)
helped to validate its predictions. For high-confidence, correct classifications, the model
focused its attention on cohesive, biologically relevant areas, specifically the rump and
posterior of the animal. In contrast, for divergent classifications or low-confidence
predictions, the model's focus became scattered and fragmented. This pattern suggests that
the cohesion of an activation map could serve as a simple visual indicator of model
uncertainty, an area that warrants further investigation. The visualisations also confirmed a
key limitation: the model, much like a human expert, performed less effectively on images
taken in low light or where the animal was distant. Image quality and posture strongly affect

performance — a pattern seen in other camera-trap studies (Tabak et al. 2019).

Pseudo-labelling increased ‘Disease’ recall at the cost of precision, with no improvement for
accuracy or F1. This outcome highlights the conditional success of SSL methods. Pseudo-
labelling is typically most effective when a small expert-labelled dataset is supplemented by
a much larger volume of unlabelled data, particularly when the initial supervised model's
performance is not yet saturated (Sohn et al. 2020). The high accuracy of our supervised
model meant the primary risk was confirmation bias, where the model iteratively amplifies
its own few prediction errors (or divergences from the human labels). This process can
introduce noise that negates the benefit of using more data (Arazo et al. 2020). Expanding
the expert-labelled dataset would likely provide clearer gains than applying this semi-

supervised approach.

Our work is a methodological advance, building upon previous studies that documented
rumpwear epidemiology through manual annotation (e.g. Ringwaldt et al. 2022). It also
complements the work of Ringwaldt et al. (2025), who first applied a CNN to much of the
same data for broad-scale presence/absence mapping. Our study extends this foundation by

demonstrating that a deep learning model can move beyond simple classification. By
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validating the model's output probability as a proxy for a nuanced severity index, we provide
a tool for more fine-grained eco-epidemiological analysis. This high-throughput, automated
scoring overcomes the primary bottleneck of manual data processing, enabling analysis on a
scale that would otherwise be infeasible. This tool does not replace the need for ecological
expertise, but its use should give researchers more time to focus on interpreting patterns
rather than labelling images. A caveat is that our model was developed using a single
camera-trap network; its performance in other ecological contexts or with different camera

setups would require further validation.

Looking forward, the validated supervised model can be applied to the full, unlabelled
camera trap image archive from the University of Tasmania’s camera network to conduct
landscape-level epidemiological studies. More broadly, the methodological framework
presented here can be adapted to other camera trap networks and wildlife disease systems.
This study is also a starting point for further technical refinement. For instance, while our
model's probabilities are well-calibrated, they could be further improved by applying post-
hoc calibration methods. Temperature scaling (Guo et al. 2017), a technique for correcting
for model overconfidence, could be a logical next step to fine-tune the reliability of the
output probabilities before their use in downstream epidemiological models. From a data
perspective, expanding the labelled dataset remains a key avenue for improving model

robustness and evaluation.

6.5 CONCLUSION

We show that deep learning can support wildlife disease surveillance by detecting externally
visible clinical signs and by providing a quantitative proxy for disease severity. Using
rumpwear in common brushtail possums as a case study, our EfficientNetV2S-based pipeline
achieved high classification performance on held-out test images and produced biologically

plausible attention patterns in Grad-CAM visualisations.

Beyond presence/absence detection, the model’s continuous output for the ‘Disease’ class
increased systematically with expert-assigned severity categories (‘Mild’ to ‘Obvious’),
supporting its use as a practical severity index for large image collections. This provides a
scalable alternative to manual grading and a transferable framework for other wildlife

conditions with gradable, externally visible signs. When combined with metadata (date and
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location), such severity scores can support finer-scale analyses of wildlife disease dynamics

and inform targeted follow-up monitoring.
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CHAPTER 7 :

GENERAL DISCUSSION



7.1 SYNTHESIS OF KEY FINDINGS

This thesis investigated the potential and challenges of using computer vision (CV) to classify
visible signs of disease in wildlife from digital images. The research moved from a broad
assessment of disease suitability and data availability to the empirical development and
evaluation of CV models for specific case studies. This multi-faceted approach addresses key

knowledge gaps in using modern technology for wildlife health surveillance.

Question 1: Which wildlife diseases, particularly those subject to existing monitoring
efforts, present with externally visible signs suitable for detection via computer vision?
Chapter 3 established the scope for CV-based monitoring by analysing the World
Organisation for Animal Health (WOAH) disease database. The analysis showed that many
animal diseases manifest with externally visible signs. Overall, 137 of the 204 unique
infectious diseases (67%) and 162 of 250 disease-host associations (65%) presented with
visible signs. The relevance to wildlife surveillance was clear: 85% of these visible disease-
host units (138 of 162) were associated with wildlife hosts. The most common signs were
lesions, swelling or oedema, and colour changes. This assessment confirmed that a
significant number of existing and emerging disease concerns present observable signs,

which supports using visual data to augment current surveillance methods.

Question 2: What is the availability, quality, and ecological information content of wildlife
imagery, particularly for fish species (salmonids), accessible from online digital

repositories, and what is the prevalence of visible disease signs within these data?

This question was addressed across two chapters. An initial broad assessment in Chapter 3
explored image availability on Flickr for the diseases in our database. This analysis showed a
trend for diseases with visible signs to have more associated images than those without
visible signs (a median count nearly three times higher), though this result was not
statistically significant (p=0.17), likely due to the inherent noise in such a broad search. To
investigate image availability and content in more detail, Chapter 4 then provided a critical
evaluation of online digital repositories as sources of wildlife imagery, focusing on salmonids
as a case study for data availability, quality, and content. Our comprehensive analysis of

nearly 70,000 images revealed these platforms, especially iNaturalist, offer a vast and
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rapidly expanding visual dataset with considerable spatial and temporal reach. While image
quality and metadata completeness varied notably across platforms, with iNaturalist
contributing a large and rapidly growing collection of high-sharpness images and GBIF
ensuring metadata consistency, the data were affirmed as robust for distribution and health
indicator analyses. A key finding was the consistent prevalence of 14-18% of images
showing visible signs of disease or physical damage across the platforms. This highlights a
significant, previously underused resource for broad-scale wildlife health surveillance. The
chapter also identified practical limitations, including restrictive "All Rights Reserved"
licenses (mainly on Flickr), the absence of standard size references, and temporal biases in

older data.

Question 3: How effectively can deep learning algorithms be developed and trained to
classify specific, visible signs of disease in wildlife images, using Saprolegnia spp. in
salmonids as a case study, and how does dataset composition influence model

performance?

Chapter 5 provided empirical evidence for the effectiveness of deep learning algorithms in
classifying visible signs of Saprolegnia spp. infection in salmonids. All developed models
consistently outperformed random classification, with EfficientNetV2S demonstrating
superior performance (macro-average F1-score of 0.920 on the Salmo genus dataset) likely
because it can process higher-resolution images. This allows it to discern subtle yet
diagnostically important features, such as the fine, filamentous texture of early-stage fungal
hyphae or slight skin discolouration, that would be lost in lower-resolution inputs. This work
showed the potential for rapid, large-scale disease screening, offering a valuable tool for
early outbreak detection and more targeted application of confirmatory diagnostics, despite
not replacing molecular diagnosis. A critical contribution was the adherence to rigorous
validation protocols, which provided a more realistic assessment of real-world applicability

compared to prior studies.

The influence of dataset composition and image characteristics on model performance was
highlighted across both the salmonid (Chapter 5) and possum (Chapter 6) case studies.
Chapter 5 showed that performance was highly dependent on the taxonomic specificity of

the dataset; the precision of the best model dropped from 0.858 on the Salmo-specific
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dataset to just 0.462 on the Oncorhynchus-specific dataset. The better performance on the
Salmo dataset was likely due to it being more balanced, whereas data imbalance in other
datasets contributed to the overprediction of the minority (disease) class. Beyond simple
data imbalance, this discrepancy may also reflect other confounding factors, such as subtle
inter-genus differences in the visual presentation of saprolegniosis or potential systematic
variations in image quality between the datasets, making classification inherently more
challenging for the Oncorhynchus genus. The influence of image quality was also apparent:
performance was affected by water surface reflections in the aquatic environment (Chapter
5), and by factors like low light or subject distance in the terrestrial camera-trap images

(Chapter 6).

Question 4: Can the outputs of computer vision classification models serve as a proxy for
disease severity assessment, and can semi-supervised learning approaches help mitigate

labelled data limitations in this context?

Chapter 6 expanded the application of CV beyond binary classification to assess disease
severity, using brushtail possum rumpwear as a case study. The underlying supervised
model achieved high performance , with results showing that pre-training on a custom
wildlife dataset from the same camera network provided a slight advantage over using
standard ImageNet weights, reaching an accuracy of up to 95.2% and a 'Disease’ class F1-
score of 0.927. Trained only on broad 'Healthy', 'Disease' and ‘Occluded’ labels, it produced
an output probability that served as a robust proxy for disease severity. This was
demonstrated by the mean model outputs for the ‘Disease’ class, which progressed from
0.09 for 'Healthy' images, to 0.75 for 'Mild Signs', and 0.96 for 'Obvious Signs'. The model
was well-calibrated for this purpose (Brier score: 0.034), providing a high-throughput,
automated scoring method that overcomes manual processing bottlenecks. Importantly,
this method moves beyond coarse, categorical health scores by generating a continuous,
quantitative variable. This innovation could open the door to more powerful statistical
analyses of disease dynamics, such as modelling subtle population-level shifts in mean
disease severity over time or in response to management interventions. The chapter also
explored semi-supervised learning to address data limitations; this yielded mixed results,
increasing recall at the cost of precision, which suggests a possible ceiling effect for the

already high-performing model. Finally, model interpretation using Grad-CAM validated that
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the model focused on relevant anatomical features, confirming its utility while also
highlighting its limitations with poor quality images. The interpretability was quantitatively
validated: 94% of correct classifications produced cohesive heatmaps, compared to only
61% of incorrect classifications. This method moves beyond the subjective visual assessment
of heatmaps towards a quantitative, data-driven measure of when the model's decisions

can be trusted.

7.2 OVERALL IMPLICATION AND CONTRIBUTIONS TO WILDLIFE DISEASE

SURVEILLANCE

The findings of this thesis advance the practical application of computer vision (CV) for
wildlife disease surveillance, offering a complement to traditional monitoring methods. By
investigating the entire pipeline from disease suitability to model development, this
research shows the practical utility of CV for ecological science and wildlife health

management.

This thesis shows that CV offers a way to address existing gaps in wildlife disease
surveillance. Traditional methods often face limitations in scale, timeliness, and
geographical coverage (Delgado et al. 2023; Barroso et al. 2024). Notably, the methods
developed in this thesis align directly with the most recent international guidance, which
formally recognises "non-biological samples", including visual observations from camera
traps, as a key component of modern wildlife surveillance (WOAH and IUCN 2024). Our work
addresses these challenges by using automated image analysis for non-invasive, scalable
monitoring. The analysis of online digital repositories (Chapter 4), particularly the high
volume of observations on platforms like iNaturalist, highlights a large data stream that can
be used for broad-scale surveillance without needing to physically capture animals. This
automated, non-invasive approach provides a real alternative to the costly, logistically
intensive, and often stressful capture-recapture programs that are frequently the only other
means of assessing the health of free-ranging populations, thereby reducing costs,

complexity, and impacts on animal welfare.

The case studies in Chapters 5 and 6 show the effectiveness of deep learning models in

extracting meaningful ecological information from these image sources. The successful
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classification of Saprolegnia spp. in salmonids (Chapter 5) provides a method for rapid,
large-scale screening, which can act as an early warning system. This approach allows for
more targeted application of costly confirmatory diagnostics by flagging potential
outbreaks. Similarly, the ability of CV to serve as a proxy for disease severity, as shown with
possum rumpwear (Chapter 6), extends beyond simple presence or absence detection. This
offers a high-throughput, automated scoring method that overcomes the bottleneck of
manual processing, enabling fine-grained ecological analysis of disease progression across

populations.

By integrating these CV-derived health classifications with spatio-temporal metadata, this
research opens new avenues for epidemiological analyses. These include mapping disease
distributions, tracking spread, and investigating associations with environmental drivers
(Toivonen et al. 2019), improving our understanding of disease dynamics in wild
populations. The insights from this thesis show the potential for CV to extend the reach and
efficiency of wildlife disease surveillance, enabling more timely and comprehensive

responses to emerging health threats.

7.3 BROADER CHALLENGES AND LIMITATIONS

Despite the potential shown in this thesis, the successful and widespread application of CV
for wildlife disease surveillance faces several substantial and interconnected challenges.
These limitations, identified across various stages of the research, require ongoing attention

and methodological innovation.

A fundamental and pervasive challenge lies in data availability and quality. While online
repositories offer vast quantities of imagery, images explicitly showing clear, specific disease
signs remain inherently scarce (Green et al. 2020). This rarity, coupled with potential
observer bias against photographing unhealthy animals, frequently results in highly
imbalanced datasets, posing a significant hurdle for training robust and unbiased machine
learning models (Chapter 2; Chapter 5). However, the opposite effect, a ‘novelty bias” must
also be considered, where citizen scientists are disproportionately motivated to photograph
and upload an unusually sick-looking animal precisely because of its rarity (Edwards et al.
2021). This competing bias could, in certain contexts, lead to an artificial inflation of

prevalence estimates derived from these platforms. Acknowledging this duality of potential
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under- and over-reporting is critical for interpreting health data from opportunistic sources.
Furthermore, the opportunistic nature of much online imagery leads to immense variability
in quality, including inconsistent lighting, animal pose, distance, occlusion, and complex
backgrounds (Cunha et al. 2023; Chapter 2; Chapter 4; Chapter 5). This is particularly acute
in aquatic environments, where factors like water turbidity, surface reflections, and rapid

subject movement can obscure subtle disease features (Chapter 5).

Data labelling and ground truth validation present a further challenge. Reliably identifying
visible disease signs can be ambiguous, as visual cues may mimic natural variation or
injuries. This ambiguity complicates the creation of high-quality, consistent ground truth
labels needed for supervised learning (Murray et al. 2021; Chapter 2; Chapter 5). The ideal
of validating model outputs against 'gold standard' clinical diagnoses is rarely feasible in
free-ranging wildlife populations, which highlights the importance of rigorous protocol
design and expert involvement in the labelling process (Chapter 2). A key limitation of
relying on visual signs is the inability to investigate the underlying cause of diseases. This
challenge of differential diagnosis is particularly acute, as some conditions have similar
visual presentations despite different causes. Consequently, image-based surveillance may
underestimate true disease prevalence or misattribute signs, reinforcing its role as a

screening tool rather than a definitive diagnostic (Ringwaldt et al. 2022).

Methodological complexities in model development also present limitations. There is a risk
of models learning spurious correlations, associating disease labels with irrelevant
background elements rather than the actual pathological features, which severely limits
their generalisation capabilities to new environments or conditions (Miao et al. 2019;
Chapter 2). While transfer learning aids in mitigating data requirements, and advanced
techniques like semi-supervised learning hold promise, our findings (Chapter 6) indicate that
for already high-performing models or datasets, these methods may offer only marginal
gains. For such models, semi-supervised learning runs the risk of introducing noise from the
unlabelled set that can degrade precision, highlighting that more complex methods do not
guarantee improved performance. Emerging Vision-Language Models, while promising,
currently struggle with the fine-grained distinctions and specialised terminology required for

accurate disease identification (Vendrow et al. 2024)
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Beyond the technical aspects, practical and operational constraints must also be considered.
Developing deep learning workflows typically demands significant computational power and
specialised technical expertise, which can be barriers for many ecological research groups
(Ditria et al. 2020; Vidal et al. 2021; Chapter 2; Chapter 5). Furthermore, the licensing
restrictions prevalent on certain online platforms (e.g., "All Rights Reserved" on Flickr)
significantly curtail widespread data reuse, impeding the development and dissemination of
Al models and curated datasets (Chapter 4). The increasing capabilities of Al-driven image
editing features in consumer devices also pose a nascent but significant threat to the
scientific integrity of online visual data, as algorithmic alterations may create convincing but
false representations that are not transparently documented (Chapter 4). Lastly, evolving
fish welfare guidelines advocating for in-water photography, while ethically laudable, may
inadvertently reduce image clarity and visibility of key features, presenting a new challenge

for data quality and the scientific utility of angler-sourced images (Chapter 4).

Collectively, these challenges underscore that while CV offers immense potential, its
effective application in wildlife disease surveillance requires continuous innovation in data
acquisition, meticulous curation, robust methodological development, and careful
consideration of the inherent biases and limitations of opportunistic visual data and the very

nature of visual disease signs themselves.

7.4 FUTURE WORK

Building upon the foundations and insights generated by this thesis, several key directions
emerge for future research to further advance the application of computer vision (CV) in
wildlife disease surveillance. These directions encompass improvements in data acquisition,
methodological refinements, enhanced validation, and broader deployment strategies,

collectively pushing the boundaries of landscape epidemiology.

7.4.1 DATA ACQUISITION AND CURATION

A primary focus for future work should be on strategies to overcome the persistent
challenge of data scarcity and class imbalance. This includes exploring and promoting
standardised imaging protocols and metadata structures, particularly for citizen science
contributions (Chapter 4), to ensure higher quality and more consistent data. Engaging
directly with contributor communities, such as anglers, to educate them on best practices
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for capturing scientifically valuable images of both healthy and unhealthy-looking animals
could significantly improve dataset representativeness and reduce bias (Chapter 5).
Maximizing the utility of all available image data, including those with incomplete metadata
or unverified finer taxonomic labels, for training robust Al models, remains a critical future
direction (Chapter 4). Further research into multi-source data integration, beyond the

platforms explored here, could provide a more comprehensive picture.

7.4.2 METHODOLOGICAL ADVANCEMENTS AND NEW FRONTIERS

Future research should continue to explore advanced learning paradigms to mitigate
labelled data limitations. This includes deeper investigation into semi-supervised and self-
supervised learning techniques to leverage potentially abundant unlabelled imagery
(Chapter 2, Section 2.6.2; Chapter 6). Further research into few-shot learning could also be
highly beneficial for identifying rare or emerging disease signs, allowing models to
generalise from very limited examples (Chapter 2, Section 2.3). Developing more robust
models for challenging environmental conditions, particularly for underwater imagery in
aquatic systems, is crucial; this could involve incorporating explicit fish detection tools, such
as 'megafishdetector' (Yang et al. 2023), and advanced image pre-processing techniques to
reduce reflections and enhance clarity (Chapter 5). Furthermore, a powerful methodological
frontier involves integrating the model disease classifications with external environmental
datasets to test specific ecological hypotheses. This would enable researchers to investigate
long-standing ecological questions, such as whether outbreaks are positively correlated with
periods of low flow and high water temperature, transforming the CV tool from a simple
detector into an engine for epidemiological discovery. Exploring hierarchical models that
incorporate taxonomic data could also improve classification accuracy by leveraging broader

biological relationships (Elhamod et al. 2022).

A significant "new frontier" lies in the further development and application of Vision-
Language Models (VLMs) (Radford et al. 2021; Vendrow et al. 2024). These models hold
immense potential for more flexible data querying using natural language and for open-set
recognition; the ability to identify samples that do not belong to known categories, which is
highly relevant for detecting previously unseen disease conditions or anomalies (Chapter 2).
For instance, this could enable a system trained only on known diseases to flag an image of
a possum with a novel condition, such as unusual skin nodules, as an 'unknown anomaly’,
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triggering an alert for expert veterinary review. While currently facing limitations with fine-
grained distinctions, their continued refinement could revolutionize surveillance by allowing
for the detection of novel disease signs not explicitly trained for. Finally, a challenging but
valuable research avenue is the development of Al that can infer morphometric data from
images lacking an explicit size reference. This might be achievable by leveraging the fixed
geometry of camera traps to estimate distance, training models to use common background
objects as opportunistic scales, or by learning consistent body-part ratios to assess relative

animal condition (Chapter 4).

7.4.3 MODEL EVALUATION AND VALIDATION

To ensure the practical utility of CV models, future work must focus on rigorous evaluation
beyond standard computer vision metrics. This includes developing methods to assess
whether model performance translates directly into accurate ecological variables like
prevalence estimates and understanding the sensitivity of these estimates to various data
biases (Pantazis et al. 2024). Refining model interpretation techniques, such as saliency
maps, to serve as visual indicators of model uncertainty, or to verify that models are
focusing on relevant pathological features rather than spurious background cues, is also
important (Chapter 6). Addressing the emerging concern of Al-driven image editing in
consumer devices will be critical, necessitating new standards for transparent
documentation of alterations to maintain scientific integrity of visual data from public

sources (Coalition for Content Provenance and Authenticity 2025, Chapter 4).

7.4.4 DEPLOYMENT AND BROADER IMPACT

Efforts should continue towards developing highly efficient models suitable for deployment
on edge devices (Tuia et al. 2022). In an ecological context, these are field-based hardware,
such as smart camera traps or drones, that process data locally rather than requiring it to be
sent to a remote server. This local processing could enable real-time disease detection in
the field. This would facilitate direct, actionable insights for on-the-ground management.
Fostering interdisciplinary collaboration between ecologists, veterinarians, and computer
scientists remains paramount to bridge expertise gaps and ensure successful
implementation of these advanced tools (Weinstein 2018). Finally, advocating for and

promoting open licensing policies across all online platforms would substantially enhance
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the accessibility and reproducibility of research (Wilkinson et al. 2016), bolstering global
efforts to address pressing conservation and health challenges (Chapter 4). This includes
encouraging data infrastructure that supports standardised protocols and ethical data

sharing of sensitive wildlife health information (Tulloch et al. 2018; WOAH and IUCN 2024).

7.5 CONCLUSION

This thesis has shown the potential of computer vision for advancing wildlife disease
surveillance. Through a multi-faceted research design, it identified a broad range of visually
apparent wildlife diseases, critically assessed online image repositories as novel data
sources, and confirmed the effectiveness of deep learning models for both disease

classification and severity assessment.

By using opportunistic visual data, this work has contributed to bridging knowledge gaps in
wildlife health monitoring. It shows how CV can overcome traditional logistical constraints,
enabling non-invasive, scalable, and efficient surveillance. While acknowledging challenges
such as data scarcity, the variability of field-captured imagery, and the limitations of visual-
only diagnosis, this research has also identified practical strategies and promising avenues

for future work.

The work presented here provides a framework and evidence for integrating computer
vision into applied wildlife health monitoring. It moves beyond simply offering a new tool; it
demonstrates how to transform the casual observation into a quantitative data point,
fundamentally enhancing our ability to understand disease dynamics and support timely

conservation responses on a global scale.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL, CHAPTER 3

Supplementary Table 1. Search terms used in the R package ‘Photosearcher’ to investigate

the number of records on Flickr of diseases obtained from the World Organisation for

Animal Health animal diseases portal.

Disease Name

Associated Search Terms (comma separated)

Abalone viral ganglioneuritis

abalone herpesvirus

Acute hepatopancreatic necrosis
disease

Vibrio parahaemolyticus

African horse sickness

african horse sickness virus

African swine fever

african swine fever virus

Agent causing chronic wasting disease

CWD prions

Anthrax

Bacillus anthracis

Atrophic rhinitis of swine

Pasteurella multocida

Aujeszkyis disease

Suid herpesvirus 1 (SHV-1)

Avian chlamydiosis

Chlamydia psittaci, Chlamydia avium, Chlamydia
gallinacea

Avian infectious bronchitis

Infectuous bronchitis virus

Avian infectious laryngotracheitis

gallid alphaherpesvirus 1

Avian influenza

Bird flu, Orthomyxoviridae Alphainfluenzavirus

Avian mycoplasmosis

Mycoplasma gallisepticum, Mycoplansma synoviae

Avian tuberculosis

Mycobacterium

Babesiosis

Babesia

Baylisascariasis

Baylisascaris procyonis

Bluetongue

Bluetongue virus




Bonamiosis

Bonamia exitiosa, Bonamia ostreae

Border disease

Border disease virus

Lyme disease

Borrelia burgdorferi

Tickborne Relapsing Fever

Borrelia anserina

Bovine anaplasmosis

Anaplasma marginale

Bovine babesiosis

Babesia bovi, Babesia bigemina, Babesia divergens

Bovine genital campylobacteriosis

Campylobacter fetus subsp. venerealis

Bovine spongiform encephalopathy

Bovine spongiform encephalopathy prions

Bovine tuberculosis

Mycobacterium tuberculosis complex

Bovine viral diarrhoea

Bovine viral diarrhoea virus

Brucellosis

Brucella abortus, Brucella melitensis, Brucella suis

Cache Valley virus disease

Cache Valley virus

Akabane disease

Akabane virus

Camelpox

Camelpox virus

Campylobacteriosis

Campylobacter jejuni, Campylobacter coli

Caprine arthritis

Caprine encephalitis, CAE virus

Carp edema virus infection

Carp edema virus

Chytridiomycosis

Batrachochytrium dendrobatidis, Batrachochytrium
salamandrivorans

Circovirosis

Canine circovirus, Fox circovirus, Porcine circovirus 1,
Porcine circovirus 2, Porcine circovirus 3, Canary
circovirus, Goose circovirus, Gull circovirus, Pigeon
circovirus, Beak and feather disease, Beak and feather
disease virus

Classical swine fever

Classical swine fever virus

Contagious agalactia

Mycoplasma agalactiae, Mycoplasma capricolum subsp.
capricolum, Mycoplasma mycoides subsp. capri,
Mycoplasma putrefaciens

Contagious bovine pleuropneumonia

Mycoplasma Mycoides

Contagious caprine pleuropneumonia

Mycoplasma capricolum subsp. Capripneumoniae
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Contagious equine metritis

Taylorella equigenitalis

Crayfish plague

Aphanomyces astaci

Crimean Congo haemorrhagic fever

Crimean-Congo haemorrhagic fever virus

Cryptosporidiosis

Cryptosporidium

Cysticercosis

Taenia spp.

Decapod iridescent virus 1 infection

Decapod iridescent virus 1

Dermatophilosis

Dermatophilus congolensis

Dourine

Trypanosoma (Trypanozoon) equiperdum

Duck virus enteritis

Anatid alphaherpesvirus-1

Duck virus hepatitis

duck hepatitis A virus, duck astrovirus type 1, duck
astrovirus type 2

Ebola Virus Disease

Ebolavirus

Echinococcosis

Echinococcus

Elephant endotheliotropic herpesvirus
disease

Elephant Endotheliotropic Herpesvirus, EEHV

Encephalomyocarditis virus infection

Encephalomyocarditis virus

Enzootic abortion of ewes

Chlamydia abortus

Enzootic bovine leukosis

bovine leukaemia virus

Epizootic haematopoietic necrosis
disease

epizootic haematopoietic necrosis virus

Epizootic haemorrhagic disease

epizootic haemorrhagic disease virus

Epizootic lymphangitis

Histoplasma capsulatum var. farciminosum

Epizootic ulcerative syndrome

Aphanomyces invadans

Equine encephalomyelitis

Eastern encephalomyelitis virus, Western
encephalomyelitis virus

Equine infectious anaemia

Equine Infectious Anaemia virus

Equine influenza

Equine influenza virus (Orthomyxoviridae influenzavirus
A subtypes H7N7 and H3N8)

Equine piroplasmosis

Theileria equi, Babesia caballi
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Equine viral arteritis Equine viral arteritis virus

Equine viral rhinopneumonitis Equid herpesvirus-1 (EHV-1)
European brown hare syndrome European brown hare syndrome virus
Fasciolosis Fasciola gigantica, Fascioloides magna
Feline leukaemia Feline leukaemia virus
Fibropapillomatosis chelonid herpesvirus 5 (ChHV5)
Filovirosis filoviruses

Foot and mouth disease Foot and mouth disease virus

Fowl cholera Pasteurella multocida

Fowl pox fowlpox virus

Fowl typhoid Salmonella Gallinarum biovar Gallinarum
Glanders Burkholderia mallei

Gyrodactylosis Gyrodactylus salaris

Pasteurella Multocida serotypes B:2 and E:2 (Carter and
Heddleston classification system) or 6:B and 6:E

Haemorrhagic septicaemia (Namioka-Carter classification system)
Hantavirosis Hantavirus

Heartwater Ehrlichia ruminantium

Hendra Hendra virus

Herpesvirosis Alcelaphine herpesvirus 1, ovine herpesvirus 2

Feline immunodeficiency virus, FIV, simian

Immunodeficiency virus infection immunodeficiency virus, SIV
Covert mortality nodavirus CMNV

Enterocytozoon hepatopenaei Enterocytozoon hepatopenaei
Louping ill Flavivirus, Louping ill virus

salmon anaemia virus, pathogenic highly polymorphic
region (HPR)-deleted, non-pathogenic highly
Salmon anaemia virus infection polymorphic region (HPRO)-deleted

Tilapia lake virus infection Tilapia lake virus
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Infectious bovine rhinotracheitis

Infectious pustular vulvovaginitis, bovine herpesvirus 1

Infectious bursal disease

Infectious bursal disease (IBD) virus (Birnaviridae
Avibirnavirus) serotype 1

Infectious haematopoietic necrosis

salmonid novirhabdovirus

Hypodermal necrosis

Haematopoietic necrosis, Decapod
penstylhamaparvovirus 1

Infectious myonecrosis

infectious myonecrosis virus

Influenza A virus of swine

Influenza A viruses of swine

Japanese encephalitis

Japanese encephalitis virus

Koi herpesvirus disease

cyprinid herpesvirus-3 (CyHV-3)

Leishmaniosis

Leishmania

Leptospirosis

Leptospira, Leptospira interrogans

Listeriosis

Listeria monocytogenes

Low pathogenic avian influenza

Low pathogenic avian influenza viruses

Lumpy Skin Disease

Lumpy skin disease virus

Maedi-visna

maedi-visnha virus

Malaria

Plasmodium spp., Plasmodium

Malignant Catarrhal Fever

Alcelaphine gammaherpesvirus-1, Ovine
gammaherpesvirus-2

Mange

mange mites

Marekis disease

Marek's disease, Marekis disease virus, Marek's disease
virus

Marteiliosis

Marteilia refringens

Middle East respiratory syndrome

MERS, Middle East respiratory syndrome coronavirus
(MERS-CoV)

Morbillivirosis

Morbilliviruses

Mpox

Monkeypox virus

Myxomatosis

Myxoma virus

Nairobi sheep disease

Nairobi sheep disease virus
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Necrotising hepatopancreatitis

Candidatus Hepatobacter penaei

New world screwworm

Cochliomyia hominivorax

Newcastle disease

Newcastle disease virus

Nipah

Nipah virus

Nosemosis

Nosema apis (Zander), Nosema ceranae, Nosema

Old world screwworm

Chrysomya bezziana Villeneuve

Ovine epididymitis

Brucella ovis

Ovine pulmonary adenocarcinoma

jaagsiekte sheep retrovirus

Papillomatosis in crocodiles

crocodile poxvirus

Paramyxovirosis

Avian paramyxoviruses

Paratuberculosis

Mycobacterium avium subsp. paratuberculosis

Parvovirosis

Parvoviruses, Hepatopancreatic parvovirus, infectious
hypodermal and hematopoietic necrosis virus,
Densoviruses

Pasteurellosis

Pasteurella spp

Perkinsosis

Perkinsus marinus, Perkinsus olseni

Peste des petits ruminants

small ruminant Morbillivirus

Porcine cysticercosis

Taenia solium

Porcine epidemic diarrhoea

Porcine epidemic diarrhoea virus

Porcine reproductive and respiratory

syndrome

Porcine reproductive and respiratory syndrome virus

Pox viruses infection

Pox, Poxviruses

Psoroptic mange

Psoroptes spp.

Pullorum disease

Salmonella enterica subspecies enterica serovar
Gallinarum biovar Pullorum

Q fever

Coxiella burnetii

Rabbit haemorrhagic disease

RHDB, calicivirus

Rabies

Rabies virus, Lyssavirus

Ranavirosis

Ranavirus, Ranaviruses
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Red sea bream iridoviral disease

RSIVD, Red sea bream iridovirus

Rift Valley fever

Rift valley fever virus

Rinderpest

Rinderpest virus

Salmonellosis

Salmonella spp., Salmonella abortusovis, Salmonella
enterica

Salmonid alphavirus infection

Salmonid alphavirus

Scabies

Sarcoptes scabiei mite

Schmallenberg disease

Schmallenberg virus

Scrapie

PrPc -> PrPsc

Sheep pox

Goat pox, Sheeppox virus, Goatpox virus

Snake fungal disease

Ophidiomyces ophiodiicola

Spring viraemia of carp

Carp sprivivirus

Surra

Trypanosoma evansi

Swine vesicular disease

Swine vesicular disease virus

Taura syndrome

Taura syndrome virus

Teschovirus encephalomyelitis

porcine teschovirus serotype 1 (PTV-1)

Theileriosis

Theileria annulata, Theileria parva, Theileria orientalis,
Theileria spp.

Tick borne encephalitis

TBE, Tickborne encephalitis virus

Toxoplasmosis

Toxoplasma gondii

Transmissible gastroenteritis

Transmissible gastroenteritis virus

Trichinellosis

Trichinella spp., Trichinella britovi, Trichinella murrelli,
Trichinella nativa, Trichinella nelsoni, Trichinella papuae,
Trichinella patagoniensis, Trichinella pseudospiralis,
Trichinella spiralis

Trichomonosis

Tritrichomonas foetus, Trichomonas spp.

Trypanosomiase

Order Kinetoplastida; family Trypanosomatidae; Genus
Trypanosoma; Subgenus Nannomonas (T. congolense),
Subgenus Duttonella (T. vivax), and Subgenus
Trypanozoon (T. brucei ssp.).
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Tularemia

Francisella tularensis subsp. tularensis, Francisella
tularensis subsp. holarctica

Turkey rhinotracheitis

Avian metapneumovirus (aMPV)

Venezuelan equine encephalitis

Venezuelan equine encephalomyelitis (VEE) viruses

Verocytotoxigenic Escherichia coli

Verocytotoxigenic Escherichia coli

Vesicular Stomatitis

vesiculoviruses

Viral haemorrhagic septicaemia

viral haemorrhagic septicaemia virus

West Nile fever

West Nile virus

White spot disease

white spot syndrome virus

White tail disease

Macrobrachium rosenbergii nodavirus (MrNV)

White-nose syndrome

Pseudogymnoascus destructans

Withering abalone syndrome

Xenohaliotis californiensis

Yellow fever

Yellow fever virus

Yellow head disease

yellow head virus genotype 1 (YHV1)

Yersiniosis enterocolitica

Yersinia enterocolitica

Yersiniosis pestis

Plague, Yersinia pestis

Yersiniosis pseudotuberculosis

Yersinia pseudotuberculosis

Foamy virus Simian foamy viruses
Hepatitis A Simian hepatitis A virus
Hepatitis B Hepatitis B virus

Herpes Saimiriine Herpesvirus 1

Herpesvirus Cercopithecus infection

Cercopithecine herpesvirus 2

Herpesvirus saimiri infection

Saimiriine herpesvirus 2

Macacine herpesvirus infection

Macacine herpesvirus 1 (McHV1)

Marburg virus disease

Marburg virus

Papiine herpesvirus 2 infection

Papiine herpesvirus 2

Simian haemorrhagic fever

Simian haemorrhagic fever virus

Simian retrovirus infection

Simian betaretroviruses, Simian retroviruses
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Simian T-cell lymphotropic virus-1
infection

Simian T-cell lymphotrophic virus-1

SV40 infection

Simian Virus 40 (SV40)

Zika

Zika virus

Burkholderia pseudomallei

Burkholderia pseudomallei

Shigella flexneri infection

Shigella flexneri

Entamoeba histolytica infection

Entamoeba histolytica

Giardia infection

Giardia spp.

Pneumonyssus simicola infestation

Pneumonyssus simicola

Prosthenorchis elegans infection

Prosthenorchis elegans

Strongyloides stercoralis infection

Strongyloides stercoralis

Trichuriasis

Trichuris

Trichophyton infection

Trichophyton sp.

Acarapisosis

Acarapis woodi

American foulbrood

Paenibacillus larvae

European foulbrood

Melissococcus plutonius

Small hive beetle infestation

Aethina tumida

Tropilaelaps

Tropilaelaps spp.

Varroosis

Varroa, Varroa destructor

181




Posterior Predictive Check Binned Residuals

Model-predicted intervals should include observed data points Points should be within error bounds
180 0.8
[ ] + = +
150 3 04 + +
A 2 + +
€ [
p=3
3 120 & 00 + + +
8 & + +
g
90 ° T I 04
0 1 40% 60% 80%
visible Estimated Probability of visible
® Observed data + Model-predicted data Within error bounds - no -@- yes
Influential Observations Collinearity
Points should be inside the contour lines High collinearity (VIF) may inflate parameter uncertainty
\ 5 10
20 k)
P 58
© o
10 © 5
."3 = 81 2
@ 0 o -
& g w3
N >
o -10 © <
3 55 2 ¢ ¢
-20 k3]
g ¢ LI R T
0.0 0.1 0.2 0.3 0.4 affects_wipdiifimgen_classtaxeansmisdiamsdmiesidrariadiresibn VEEAH_wildzoonotic
Leverage (h;)
¢ Low(<5)

Uniformity of Residuals
Dots should fall along the line
1.00

0.75

Sample Quantiles
IS
@
3

0.00 0.25 0.50 0.75 1.00
Standard Uniform Distribution Quantiles

Supplementary Figure 1. Model checks returned by the R package 'performance’ (Liidecke et
al. 2021) for a binomial glm used to investigate the association between taxa, zoonotic
status, wild status, and pathogen class, with the occurrence of visible disease signs obtained

from the World Organisation for Animal Health animal diseases portal.

Supplementary Table 2. Coefficients from the binomial Generalised Linear Model used to
predict the presence of visible disease signs. The reference levels were 'mammals' for Host

Taxa and 'virus' for Pathogen Class. The asterisk (*) denotes statistical significance (p < 0.05).

Variable Level Estimate Std. Error zvalue Pr(>\z\)
(Intercept) -0.61 0.51 -1.2 0.23
taxa Molluscs -0.8 1.03 -0.78 0.43357
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Insects 0.03 0.96 0.03 0.97209
Crustaceans 2.05 1.1 1.86 0.0634
Amphibians -0.55 1.11 -0.5 0.61609
Reptiles 0.43 0.63 0.69 0.49293
Fish 0.53 0.67 0.79 0.43023
Birds 0.27 0.39 0.69 0.49117
zoonoticl Yes -0.33 0.33 -1 0.317
wild_alt_sourcel Yes 0.66 0.41 1.6 0.11
WOAH_wildl Yes -0.23 0.35 -0.67 0.504
Prion -0.98 1.32 -0.74 0.45807
Bacterium 0.06 0.38 0.16 0.86992
Protist 0.03 0.46 0.07 0.94078
Ectoparasite 0.7 0.87 0.81 0.41876
Fungi 0.04 0.94 0.05 0.96344
pathogen_class Helminth -0.9 0.71 -1.27 0.20264
transmission_directl Yes 0.94 0.33 2.87 0.004*
transmission_indirectl Yes 0.15 0.33 0.46 0.648
transmission_vectorl  Yes 0.36 0.35 1.01 0.311
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Supplementary Figure 2. Post-hoc pairwise comparisons returned by the R package
‘emmeans’ (Lenth 2024) of the tendency for different taxonomic groups to show visible
disease signs for diseases from the World Organisation for Animal Health animal diseases

portal.

Supplementary Table 3. Post-hoc pairwise comparisons of the tendency for different host

taxa to show visible disease signs for diseases in the World Organisation for Animal Health
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animal diseases portal, from the R package emmeans (Lenth 2024). The asterisk (*) denotes

statistical significance (p < 0.05).

contrast estimate SE df z.ratio p.value
mammals - molluscs 0.8 1.03 Inf 0.78 0.99
mammals - insects -0.03 0.96 Inf -0.03 1
mammals -

crustaceans -2.05 1.1 Inf -1.86 0.58
mammals - amphibians 0.55 1.11 Inf 0.5 1
mammals - reptiles -0.43 0.63 Inf -0.69 1
mammals - fish -0.53 0.67 Inf -0.79 0.99
mammals - birds -0.27 0.39 Inf -0.69 1
molluscs - insects -0.84 1.33 Inf -0.63 1
molluscs - crustaceans -2.85 1.44 Inf -1.98 0.49
molluscs - amphibians -0.25 1.42 Inf -0.18 1
molluscs - reptiles -1.23 1.15 Inf -1.08 0.96
molluscs - fish -1.33 1.13 Inf -1.18 0.94
molluscs - birds -1.07 1.06 Inf -1.01 0.97
insects - crustaceans -2.01 1.4 Inf -1.44 0.84
insects - amphibians 0.59 1.39 Inf 0.42 1
insects - reptiles -0.4 1.1 Inf -0.36 1
insects - fish -0.5 1.11 Inf -0.45 1
insects - birds -0.24 1 Inf -0.24 1
crustaceans -

amphibians 2.6 1.51 Inf 1.72 0.68
crustaceans - reptiles 1.62 1.23 Inf 131 0.9
crustaceans - fish 1.52 1.23 Inf 1.24 0.92
crustaceans - birds 1.77 1.14 Inf 1.56 0.77
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amphibians - reptiles -0.98 1.21 Inf -0.81 0.99
amphibians - fish -1.08 1.23 Inf -0.88 0.99
amphibians - birds -0.83 1.14 Inf -0.72 1
reptiles - fish -0.1 0.87 Inf -0.11 1
reptiles - birds 0.16 0.68 Inf 0.23 1
fish - birds 0.26 0.74 Inf 0.35 1
helminth - “o0—>
fungi - +——r
ectoparasite - < L ]
Z|
o protist - —
g
g
bacterium - ——>
virus - ¢+ ——r
prion = ® >
0 2
emmean

Supplementary Figure 3. Post-hoc pairwise comparisons returned by the R package

‘emmeans’ (Lenth 2024) of the tendency for different pathogen classes to show visible
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disease signs for diseases from the World Organisation for Animal Health animal diseases

portal

Supplementary Table 4. Post-hoc pairwise comparisons of the tendency for different

pathogens to show visible disease signs for diseases in the World Organisation for Animal

Health animal diseases portal, from the R package emmeans (Lenth 2024).

contrast estimate SE df z.ratio p.value
virus - prion 0.98 1.32 Inf 0.74 0.99
virus - bacterium -0.06 0.38 Inf -0.16 1
virus - protist -0.03 0.46 Inf -0.07 1
virus - ectoparasite -0.7 0.87 Inf -0.81 0.98
virus - fungi -0.04 0.94 Inf -0.05 1
virus - helminth 0.9 0.71 Inf 1.27 0.86
prion - bacterium -1.04 1.34 |Inf -0.78 0.99
prion - protist -1.02 1.38 Inf -0.74 0.99
prion - ectoparasite -1.68 1.58 Inf -1.07 0.94
prion - fungi -1.03 1.6 Inf -0.64 1
prion - helminth -0.08 1.47 Inf -0.06 1
bacterium - protist 0.03 0.51 Inf 0.05 1
bacterium -

ectoparasite -0.64 0.89 Inf -0.72 0.99
bacterium - fungi 0.02 0.97 Inf 0.02 1
bacterium - helminth 0.96 0.72 Inf 1.33 0.84
protist - ectoparasite -0.67 0.96 Inf -0.7 0.99
protist - fungi -0.01 0.99 Inf -0.01 1
protist - helminth 0.93 0.77 Inf 1.22 0.89
ectoparasite - fungi 0.66 1.22 Inf 0.54 1
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ectoparasite -
helminth 1.6 1.09 Inf 1.47 0.76

fungi - helminth 0.94 1.13 Inf 0.83 0.98

Supplementary Table 5. The number of records returned by the R package 'Photosearcher’

for diseases obtained from the World Organisation for Animal Health animal diseases portal.

Disease name Number of images

Malaria 5018
Anthrax 3789
Pox viruses infection 3147
Yellow fever 2046
Border disease 1281
Avian influenza 1216
Hendra 977
Herpes 562
Bluetongue 533
Newcastle disease 487
White spot disease 393
Lyme disease 351
Ebola Virus Disease 339
Psoroptic mange 290
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Chytridiomycosis 269
White tail disease 251
Yellow head disease 248
Scabies 219
Marburg virus disease 210
Foot and mouth disease 186
Circovirosis 166
West Nile fever 157
Varroosis 142
Zika 130
White-nose syndrome 116
Myxomatosis 106
Surra 97
Giardia infection 93
Rinderpest 63
Trichomonosis 54
Rift Valley fever 49
Influenza A virus of swine 42
African swine fever 36
Avian tuberculosis 29
Snake fungal disease 29
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Leptospirosis

29

African horse sickness 25
Leishmaniosis 21
Toxoplasmosis 19
New world screwworm 14
Cryptosporidiosis 11
Sheep pox 10
Theileriosis 10
Trichuriasis 10
Salmonellosis 9
Scrapie 9
Mpox 9
Contagious bovine

pleuropneumonia 9
Lumpy Skin Disease 8
Pasteurellosis 8
Fowl cholera 8
Atrophic rhinitis of swine 8
Swine vesicular disease 7
Avian mycoplasmosis 7
Vesicular Stomatitis 7
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Rabbit haemorrhagic disease

Strongyloides stercoralis

infection

Marek's disease

Equine infectious anaemia

Fowl pox

Gyrodactylosis

Fibropapillomatosis

Ranavirosis

Crayfish plague

Elephant endotheliotropic

herpesvirus disease

Covert mortality nodavirus

Shigella flexneri infection

Acarapisosis

Duck virus enteritis

Haemorrhagic septicaemia

Paratuberculosis

Parvovirosis

Peste des petits ruminants

Trichophyton infection

191




SUPPLEMENTARY MATERIAL, CHAPTER 4

OBSERVER BIAS

Methods

Recent studies show that citizen science activity changed markedly during the COVID-19
pandemic, with many platforms reporting increased participation (Sanchez-Clavijo et al.
2021; Dimson and Gillespie 2023; Qiao et al. 2023). To model long-term growth and assess
whether similar patterns were evident in our dataset, we conducted an exponential
regression analysis. Wikimedia Commons was excluded from this analysis due to insufficient
data. For the remaining platforms, the analysis began in the first year with 250 submissions

to ensure sufficient data for robust regression while still capturing early growth trends.

To model exponential growth, we log-transformed the annual submission counts. This
linearises the growth trend and stabilises variance, a common approach for count data
where variance often scales with the mean (Wooldridge 2020). Key assumptions for linear
regression, such as normality and homoscedasticity of residuals, were checked and met. We
then fitted a simple linear model (In(y) = ¢ + bx) to the transformed data using ordinary least
squares, where y is the submission count and x is the year (normalised to start from zero).
The 95% prediction intervals were calculated for this model and subsequently back-
transformed to the original scale by taking their exponent, producing the final

exponential trend line and prediction bands. The annual growth rate for each platform was

calculated from the model’s slope parameter b as (e*b - 1) * 100% (Wooldridge 2020).

To assess observer bias, we used the COVID-19 pandemic as a case study, testing whether
submission counts during the period of major global mobility restrictions fell within the 95%
prediction interval of the pre-pandemic model. This period was defined as 11 March 2020
(the WHO pandemic declaration) to 30 June 2022 (when major travel and social restrictions

were broadly eased in North America and Europe).

Results



Exponential regression analysis of long-term trends showed annual growth rates of +31.7%
for iNaturalist (Supplementary Figure 4a) and +17.7% for GBIF (Supplementary Figure 4b),
and -3.7% for Flickr (Supplementary Figure 4c). During the 2020-2022 COVID-19 period,

the number of submissions for these platforms fell within their models’ 95% prediction
intervals, though GBIF submissions in 2020 were 33% lower than expected. Salmonid image
submissions rose from 7,506 in the three years preceding the pandemic (2017-2019)

to 30,420 during it. iNaturalist supplied 96.5% of these pandemic-era submissions.
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Supplementary Figure 4. Exponential trends in salmonid image submissions across digital

platforms (2000-2023). (a) iNaturalist submissions. (b) GBIF submissions. (c) Flickr
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submissions. Solid lines represent fitted exponential models (models have been fitted from
the first year with 250 submissions following the platform’s launch), shaded areas indicate
95% prediction intervals, blue/purple/green points show yearly submission counts and red
points highlight submissions from the period where substantial COVID-19 restrictions were

in effect globally (2020-2022).

Discussion

Our analysis of observer bias showed that the increase in submissions during the COVID-19
pandemic, mostly from iNaturalist, matches trends seen in other citizen science projects
(Dimson and Gillespie 2023; Qiao et al. 2023). This period shows that citizen science can be
a resilient and scalable way to collect data, but also suggests that major events can create

temporal biases that must be considered in long-term analyses.

Supplementary Table 6. Taxonomic Classification and keywords of Salmonidae Family used to

search photo-sharing sites.

Scientific name (taxonomic rank) Common name

Salmonidae (family)

Coregoninae (subfamily) whitefish

Coregonus (genus)

Coregonus acrinasus (species)

Coregonus albellus (species)

Coregonus aff. albellus Brienzer (species)

Coregonus aff. albellus Thuner (species)

Coregonus albula (species) vendace

Coregonus alpenae (species) longjaw cisco

Coregonus alpinus (species)
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Scientific name (taxonomic rank)

Common name

Coregonus aff. alpinus Brienzer (species)

Coregonus aff. alpinus Thuner (species)

Coregonus anaulorum (species)

Coregonus arenicolus (species)

Coregonus artedi (species) cisco
Coregonus atterensis (species)

Coregonus austriacus (species)

Coregonus autumnalis (species) arctic cisco

Coregonus baerii (species)

Coregonus baicalensis (species)

baikal whitefish

Coregonus baunti (species)

Coregonus bavaricus (species)

Coregonus bezola (species)

Coregonus brienzii (species)

Coregonus candidus (species)

Coregonus chadary (species)

khadary whitefish

Coregonus clupeaformis (species)

lake whitefish

Coregonus clupeoides (species)

powan

Coregonus confusus (species)

Coregonus danneri (species)

Coregonus duplex (species)

Coregonus fatioi (species)

Coregonus cf. duplex AGH-2010 (species)

Coregonus fatioi (species)

Coregonus fera (species)

Coregonus fluviatilis (species)
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Scientific name (taxonomic rank)

Common name

Coregonus fontanae (species)

Coregonus gutturosus (species)

lake constance
whitefish

Coregonus heglingus (species)

Coregonus aff. heglingus Walen (species)

Coregonus aff. heglingus Zurich (species)

Coregonus hiemalis (species)

Coregonus hoferi (species)

Coregonus holsata (species)

Coregonus hoyi (species)

bloater

Coregonus huntsmani (species)

atlantic whitefish

Coregonus intermundia (species)

Coregonus johannae (species)

deepwater cisco

Coregonus kiletz (species)

Coregonus kiyi (species) kiyi
Coregonus ladogae (species)
Coregonus laurettae (species) bering cisco

Coregonus lavaretus (species)

european  whitefish;
common whitefish

Coregonus litoralis (species)

Coregonus lucinensis (species)

Coregonus lutokka (species)

Coregonus macrophthalmus (species)

Coregonus maraena (species)

maraena whitefish

Coregonus maraenoides (species)

Coregonus maxillaris (species)
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Scientific name (taxonomic rank)

Common name

lacustrine fluvial
Coregonus megalops (species) whitefish
Coregonus migratorius (species) arctic cisco
Coregonus muelleri (species)
Coregonus muksun (species) muksun

Coregonus nasus (species)

broad whitefish

Coregonus nelsonii (species)

alaska whitefish

Coregonus nigripinnis (species)

blackfin cisco

Coregonus nilssoni (species)

Coregonus nipigon (species)

Coregonus nobilis (species)

Coregonus oxyrinchus (species) houting

Coregonus palaea (species)

Coregonus aff. palaea Biel (species)

Coregonus aff. palaea Neuchatel (species)

Coregonus pallasii (species)

Coregonus peled (species) peled

Coregonus pennantii (species) gwyniad

Coregonus pidschian (species) humpback whitefish
Coregonus pollan (species) irish pollan

Coregonus pravdinellus (species)

Coregonus profundus (species)

Coregonus reighardi (species)

shortnose cisco

Coregonus renke (species)

Coregonus restrictus (species)

Coregonus sardinella (species)

sardine cisco; least
cisco
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Scientific name (taxonomic rank)

Common name

Coregonus steinmanni (species)

Coregonus stigmaticus (species)

schelly

Coregonus subautumnalis (species)

Coregonus suidteri (species)

Coregonus cf. suidteri AGH-2010 (species)

Coregonus cf. suidteri Ex74D1 (species)

Coregonus cf. suidteri Ex74D2 (species)

Coregonus cf. suidteri Ex74D3 (species)

Coregonus cf. suidteri Ex74D4 (species)

Coregonus cf. suidteri Ex74D5 (species)

Coregonus cf. suidteri Ex74D6 (species)

Coregonus cf. suidteri Ex74E1 (species)

Coregonus cf. suidteri Ex74E2 (species)

Coregonus cf. suidteri ExX74E3 (species)

Coregonus cf. suidteri Ex74E4 (species)

Coregonus cf. suidteri ExX74E5 (species)

Coregonus cf. suidteri ExX74E6 (species)

Coregonus cf. suidteri LIDQ-2022 (species)

Coregonus suspensus (species)

Coregonus trybomi (species)

Coregonus tugun (species)

tugun

Coregonus ussuriensis (species)

amur whitefish

Coregonus vandesius (species)

Coregonus vessicus (species)

Coregonus wartmanni (species)

blaufelchen

Coregonus widegreni (species)

valaam whitefish
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Scientific name (taxonomic rank)

Common name

Coregonus zenithicus (species)

shortjaw cisco

Coregonus zuerichensis (species)

Coregonus cf. zuerichensis AGH-2010 (species)

Coregonus zugensis (species)

Prosopium (genus)

freshwater whitefish

Prosopium abyssicola (species)

bear lake whitefish

Prosopium coulterii (species)

pygmy whitefish

Prosopium cylindraceum (species)

round whitefish

Prosopium gemmifer (species)

bonneville cisco

Prosopium spilonotus (species)

bonneville whitefish

Prosopium williamsoni (species)

mountain whitefish

Stenodus (genus)

Stenodus leucichthys (species)

sheefish; inconnu

Stenodus nelma (species)

Salmoninae (subfamily)

trout; salmon; char

Brachymystax (genus)

Brachymystax lenok (species)

lenok; lenok trout

Brachymystax savinovi (species)

Brachymystax tsinlingensis (species)

Brachymystax tumensis (species)

Hucho (genus)

Hucho bleekeri (species)

sichuan taimen

Hucho hucho (species) huchen
Hucho ishikawae (species)

Hucho perryi (species)

Hucho taimen (species) taimen
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Scientific name (taxonomic rank)

Common name

Oncorhynchus (genus)

Oncorhynchus aguabonita (species)

golden trout

Oncorhynchus apache (species)

apache trout

Oncorhynchus chrysogaster (species)

mexican golden trout

Oncorhynchus clarkii (species)

cutthroat trout

Oncorhynchus formosanus (species)

Oncorhynchus gilae (species) gila trout
Oncorhynchus gorbuscha (species) pink salmon
Oncorhynchus iwame (species) iwame trout

Oncorhynchus kawamurae (species)

Oncorhynchus keta (species)

chum salmon

Oncorhynchus kisutch (species)

coho salmon

Oncorhynchus masou (species)

cherry salmon

Oncorhynchus mykiss (species)

rainbow trout

Oncorhynchus nerka (species)

sockeye salmon

Oncorhynchus rhodurus (species)

japanese amago

Oncorhynchus tshawytscha (species)

chinook salmon

Oncorhynchus tshawytscha x Oncorhynchus kisutch (hybrid)

Parahucho (genus)

Parahucho perryi (species)

japanese huchen

Salmo (genus)

Salmo abanticus (species)

abant trout

Salmo akairos (species)

Salmo aphelios (species)

Salmo balcanicus (species)

Salmo baliki (species)
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Scientific name (taxonomic rank)

Common name

Salmo carpio (species)

Salmo caspius (species)

caspian trout

Salmo cenerinus (species)

Salmo cenerinus 637 HS-2020 (species)

Salmo cenerinus 640 HS-2020 (species)

Salmo cenerinus BOLD:AAB3872 (species)

Salmo cettii (species)

mediterranean Trout

Salmo chilo (species)

Salmo ciscaucasicus (species)

caspian salmon

Salmo coruhensis (species)

coruh trout

Salmo dentex (species)

Salmo euphrataeus (species)

euphrates trout

Salmo ezenami (species)

Salmo fahrettini (species)

Salmo farioides (species)

balkan brook trout

Salmo ferox (species)

Salmo fibreni (species)

Salmo ghigii (species)

Salmo ischchan (species)

sevan trout

Salmo kottelati (species)

antalya trout

Salmo labecula (species)

seyhan trout

Salmo labrax (species)

black sea salmon

Salmo letnica (species)

ohrid trout; lake ohrid
brown trout

Salmo lourosensis (species)

Salmo lumi (species)

Salmo macedonicus (species)

macedonian trout
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Scientific name (taxonomic rank)

Common name

Salmo macrostigma (species)

Salmo marmoratus (species)

marble Trout

Salmo marmoratus x Salmo trutta (hybrid)

Salmo montenigrinus (species)

Salmo munzuricus (species)

Salmo multipunctatus (species)

draa trout

Salmo nigripinnis (species)

Salmo obtusirostris (species)

adriatic trout

Salmo ohridanus (species)

Salmo okumusi (species)

okumus trout

Salmo opimus (species)

opimus trout

Salmo oxianus (species)

Salmo pallaryi (species)

lake sidi ali trout

Salmo pelagonicus (species)

Salmo pellegrini (species)

Salmo peristericus (species)

prespa trout

Salmo platycephalus (species)

flathead trout

Salmo rhodanensis (species)

rhone trout

Salmo rizeensis (species)

rize trout

Salmo salar (species)

atlantic salmon

Salmo schiefermuelleri (species)

Salmo stomachicus (species)

Salmo taleri (species)

Salmo tigridis (species)

tigros trout

Salmo trutta (species)

river trout;
trout; sea trout

brown

Salmo viridis (species)
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Scientific name (taxonomic rank) Common name

Salmo visovacensis (species)

Salmo zrmanjaensis (species)

Salmo abanticus complex sp. H1 (species)

Salmo abanticus complex sp. H2 (species)

Salmo caspius complex sp. H1 (species)

Salmo caspius complex sp. H2 (species)

Salmo trutta complex sp. GP-2022 (species)

Salmo trutta complex sp. Lt-2021 (species)

Oncorhynchus mykiss x Salmo salar (hybrid)

Salmo trutta x Salvelinus (hybrid)

Salvelinus (genus)

Salvelinus agassizii (species) silver trout
Salvelinus albus (species) white char
Salvelinus alpinus (species) atlantic char
Salvelinus anaktuvukensis (species) angayukaksurak char
Salvelinus andriashevi (species) chukot char
Salvelinus boganidae (species) boganida char

Salvelinus colii (species)

Salvelinus confluentus (species) bull trout

Salvelinus curilus (species)

Salvelinus czerskii (species)

Salvelinus drjagini (species) dryanin's char

Salvelinus elgyticus (species) small-mouth char

Salvelinus evasus (species)

Salvelinus faroensis (species)

Salvelinus fimbriatus (species)
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Scientific name (taxonomic rank)

Common name

Salvelinus fontinalis (species)

brook trout

Salvelinus fontinalis x Salvelinus malma (hybrid)

Salvelinus gracillimus (species)

Salvelinus grayi (species)

Salvelinus gritzenkoi (species)

Salvelinus inframundus (species)

Salvelinus jacuticus (species)

yakutian char

Salvelinus japonicus (species)

Salvelinus killinensis (species)

Salvelinus krogiusae (species)

Salvelinus kronocius (species)

Salvelinus kuznetzovi (species)

Salvelinus lepechini (species)

Salvelinus leucomaenis (species)

whitespotted char

Salvelinus levanidovi (species)

Salvelinus lonsdalii (species)

Salvelinus mallochi (species)

Salvelinus malma (species)

dolly varden

Salvelinus malma x Salvelinus leucomaenis (hybrid)

Salvelinus maxillaris (species)

Salvelinus murta (species)

Salvelinus namaycush (species)

lake trout

Salvelinus namaycush x Salvelinus fontinalis (hybrid)

Salvelinus neiva (species)

nieva

Salvelinus neocomensis (species)

Salvelinus obtusus (species)
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Scientific name (taxonomic rank)

Common name

Salvelinus perisii (species)

Salvelinus profundus (species)

Salvelinus salvelinoinsularis (species)

Salvelinus schmidti (species)

Salvelinus struanensis (species)

Salvelinus taimyricus (species)

Salvelinus taranetzi (species)

Salvelinus thingvallensis (species)

Salvelinus tolmachoffi (species)

Salvelinus umbla (species)

Salvelinus vasiljevae (species)

Salvelinus willoughbii (species)

Salvelinus youngeri (species)

Salvethymus (genus)

Salvethymus svetovidovi (species)

long-finned charr

Thymallinae (subfamily)

grayling

Thymallus (genus)

Thymallus aeliani (species)

Thymallus arcticus (species)

arctic grayling

Thymallus baicalensis (species)

baikal black grayling

Thymallus bailolenensis (species)

Thymallus brevicephalus (species)

Thymallus brevipinnis (species)

Thymallus brevirostris (species)

mongolian grayling

Thymallus burejensis (species)

Thymallus flavomaculatus (species)

yellow spotted grayling
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Scientific name (taxonomic rank) Common name

Thymallus grubii (species) amur grayling

Thymallus ligericus (species)

Thymallus mertensii (species)

Thymallus nigrescens (species) kosogol grayling

Thymallus nikolskyi (species)

Thymallus pallasii (species) east siberian grayling

Thymallus svetovidovi (species)

Thymallus thymallus (species)

Thymallus tugarinae (species) lower amur grayling

Thymallus yaluensis (species)

Supplementary Table 7. Metadata field standardisation across online image sources,
organised by category. The ‘Standard field” describes the name of the field in the
consolidated metadata.

* the value of the field was based on search terms (Supplementary Table 6) used to
download each image for this source

** the value of the field was based on the label for each image following manual verification
for this source

*** the value of the field was based on the unique SHA-256 hash value for each image for
this source

**%* the value of the field was derived from the Exchangeable Image File Format (EXIF)

information for each image for this source

Category Standard iNaturalist GBIF Flickr Wikimedia
field
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me name ificName search term* search term*
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vel rank taxonRank search term* search term*
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id_at_source photo_uuid identifier hash*** image
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genus, species, owner_locatio
subspecies, n,
continent,
waterBody,
islandGroup,
island,
countryCode,
stateProvince,
municipality,
locality,
habitat,
lifeStage,
behavior,
establishment
Means,
organismQuan
tity,
organismQuan
tityType, sex,
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ondition,
pathway,
degreeOfEstab
lishment,
associatedTaxa
organismRema
rks,
samplingProto
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sampleSizeVal
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sampleSizeUni
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samplingEffort
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Supplementary Figure 5. Location uncertainty distributions across image repositories. a) Box
plots showing the distribution of coordinate uncertainty (in meters, log scale) for iNaturalist
(iNat) and GBIF observations. The boxes represent the interquartile range, with the
horizontal line showing the median value. Whiskers extend to the most extreme non-outlier
values, with outliers plotted as individual points. b): Distribution of Flickr's accuracy levels,
ranging from 1 (world level) to 16 (street level). Red dashed lines and labels indicate key
geographic reference points in Flickr's scale: world (1), country (3), region (6), city (11), and

street level (16).
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SUPPLEMENTARY MATERIAL, CHAPTER 5
For Taxonomic Classification and keywords of Salmonidae Family used to search photo-

sharing sites, see Supplementary Table 6.

Image attribution for Figure 5.5:

a) Adapted (resized) from Photo 164294760
(https://www.inaturalist.org/photos/164294760) by Tom Clenche
(https://www.inaturalist.org/people/tclenche), some rights reserved (CC BY-NC)
[https://creativecommons.org/licenses/by-nc/4.0/]

b) Adapted (resized) from Photo 75576535

(https://www.inaturalist.org/photos/75576535) by anniezgrab

(https://www.inaturalist.org/people/anniezgrab), some rights reserved (CC BY-NC)
[https://creativecommons.org/licenses/by-nc/4.0/]

c) Adapted (resized) from Photo 105571877
(https://www.inaturalist.org/photos/105571877) by Liadan Dickie

(https://www.inaturalist.org/people/fuligogirl), some rights reserved (CC BY-NC)
[https://creativecommons.org/licenses/by-nc/4.0/]
d) Adapted (resized) from Photo 309595571

(https://www.inaturalist.org/photos/309595571) by moisearthur

(https://www.inaturalist.org/people/moisearthur), some rights reserved (CC BY-NC)

[https://creativecommons.org/licenses/by-nc/4.0/]

e) Adapted (resized and overlayed with heatmap) from Photo 164294760
(https://www.inaturalist.org/photos/164294760) by Tom Clenche
(https://www.inaturalist.org/people/tclenche), some rights reserved (CC BY-NC)
[https://creativecommons.org/licenses/by-nc/4.0/]

f) Adapted (resized and overlayed with heatmap) from Photo 75576535

(https://www.inaturalist.org/photos/75576535) by anniezgrab



https://www.inaturalist.org/photos/75576535
https://www.inaturalist.org/photos/105571877
https://www.inaturalist.org/photos/309595571
https://www.inaturalist.org/people/moisearthur
https://www.inaturalist.org/photos/75576535

(https://www.inaturalist.org/people/anniezgrab), some rights reserved (CC BY-NC)
[https://creativecommons.org/licenses/by-nc/4.0/]

g) Adapted (resized and overlayed with heatmap) from Photo 105571877
(https://www.inaturalist.org/photos/105571877) by Liadan Dickie

(https://www.inaturalist.org/people/fuligogirl), some rights reserved (CC BY-NC)
[https://creativecommons.org/licenses/by-nc/4.0/]
h) Adapted (resized and overlayed with heatmap) from Photo 309595571

(https://www.inaturalist.org/photos/309595571) by moisearthur

(https://www.inaturalist.org/people/moisearthur), some rights reserved (CC BY-NC)

[https://creativecommons.org/licenses/by-nc/4.0/]

IMAGE QUALITY ANALYSIS

Methods

To quantitatively assess the impact of image quality on model performance, we calculated
three no-reference image quality metrics for each image in the Salmo genus-specific
validation dataset. We used the variance of the Laplacian as a proxy for image sharpness,
where a higher score indicates a sharper image. We also calculated two perceptual quality
scores: the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) score (Mittal et al.
2012) and the Natural Image Quality Evaluator (NIQE) score (Mittal et al. 2013). For both
BRISQUE and NIQE, a lower score indicates better perceptual quality. Image dimensions

(width and height in pixels) were also recorded.

We compared the distributions of these metrics between correctly and incorrectly classified
images for the best-performing model (EfficientNetV2S). The summary statistics are
presented below. A Mann-Whitney U test was used to test for significant differences between

the two groups (correct vs. incorrect) for each metric, with a significance level of a=0.05. Tests
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were performed on the full, pooled dataset (all correct vs. all incorrect classifications) to
assess the overall effect, and on a stratified dataset (correct vs. incorrect within each 'Healthy'

and 'Saprolegnia spp.' class) to investigate class-specific effects.

Results

A Mann-Whitney U test performed on the full, pooled dataset found no statistically
significant differences between correctly and incorrectly classified images for any of the five
metrics tested. The p-values for the pooled tests were: sharpness (p=0.366), BRISQUE

(p=0.266), NIQE (p=0.787), image width (p=0.993), and image height (p=0.940).

A secondary, stratified analysis comparing correct and incorrect classifications within each of
the 'Healthy' and 'Saprolegnia spp.' classes also found no statistically significant differences
for any metric. While the summary statistics (Tables E1-E5) show minor differences in the

means between groups, the statistical tests confirm these variations are not significant.

Supplementary Table 8. Sharpness (variance of Laplacian) statistics for images in the Salmo

genus-specific data set, classified by the EfficientnetV2S model. Higher is better.

True Label Classification count mean std min  25% 50% 75% max
Healthy Correct 956 670.74 1721.1 2.87 49.0 176.0 628.2 29270.93
Healthy Incorrect 14 354.13 388.52 2.82 38.39 19433 62441 1268.82
Sapro Correct 252 1439.79 2622.98 1.75 9.7 106.77  1479.77 15906.8
Sapro Incorrect 3 82.28 82.76 4.86 38.67 72.48 120.99 169.5
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Supplementary Table 9. BRISQUE score statistics for images in the Salmo genus-specific data

set, classified by the EfficientnetV2S model. Lower is better.

True Label Classification count mean std min  25% 50% 75% max

Healthy Correct 956 27.56 14.47 0.0 16.26 25.92 36.81 92.47
Healthy Incorrect 14 33.12 16.87 8.32 17.93 33.14 46.99 60.21
Sapro Correct 252 33.9 18.93 0.0 18.92 35.5 47.55 67.46
Sapro Incorrect 3 38.87 37.76 0.0 20.6 41.2 58.31 75.42

Supplementary Table 10. NIQE score statistics for images in the Salmo genus-specific data

set, classified by the EfficientnetV2S model. Lower is better.

True Label Classification count mean std min 25% 50% 75% max
Healthy Correct 956 14.45 4.63 4.57 11.67 13.77 16.44 69.33
Healthy Incorrect 14 15.53 419 11.36 13.27 14.09 16.86 26.3
Sapro Correct 252 15.13 549 6.54 11.31 14.67 17.5 50.07
Sapro Incorrect 3 11.99 1.29 1112 11.25 11.38 12.42 13.46
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Supplementary Table 11. Height statistics for images in the Salmo genus-specific data set,

classified by the EfficientnetV2S model.

True Label Classification count mean std min 25% 50% 75% max
Healthy Correct 956 1618.56 699.41 165.0 1160.5 1536.0 2048.0 5616.0
Healthy Incorrect 14 1355.93 484.57 300.0 1152.0 1200.0 1554.75 2048.0
Sapro Correct 252 1604.16 1203.91 159.0 579.0 1268.5 2592.0 5312.0
Sapro Incorrect 3 3578.67 1524.15 2448.0 2712.0 2976.0 4144.0 5312.0
Supplementary Table 12. Width statistics for images in the Salmo genus-specific data set,

classified by the EfficientnetV2S model.

True Label Classification count mean std min 25% 50% 75% max
Healthy Correct 956.0 1895.88 890.33 287.0 1536.0 2048.0 2048.0 6720.0
Healthy Incorrect 14.0 1535.64 529.15 640.0 1164.0 1568.0 2048.0 2048.0
Sapro Correct 252.0 2137.21 1780.69 213.0 480.0 1536.0 4032.0 5312.0
Sapro Incorrect 3.0 3406.67 505.34 2988.0 3126.0 3264.0 3616.0 3968.0
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Supplementary Figure 6. Box plot showing median, interquartile range, minimum and
maximum values of sharpness (variance of Laplacian) scores for images in the Salmo genus-
specific data set, classified by the EfficientnetV2S model. Box plots show median,

interquartile range, minimum and maximum values.
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Supplementary Figure 7. Box plot showing median, interquartile range, minimum and
maximum values of BRISQUE scores for images in the Salmo genus-specific data set,

classified by the EfficientnetV2S model.
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Supplementary Figure 8. Box plot showing median, interquartile range, minimum and
maximum values of NIQE scores for images in the Salmo genus-specific data set, classified by

the EfficientnetV2S model.
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Supplementary Figure 9. Box plot showing median, interquartile range, minimum and
maximum values of height for images in the Salmo genus-specific data set, classified by the

EfficientnetV2S model.
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Supplementary Figure 10. Box plot showing median, interquartile range, minimum and
maximum values of width for images in the Salmo genus-specific data set, classified by the

EfficientnetV2S model.
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SUPPLEMENTARY MATERIAL, CHAPTER 6

Distribution of Model Confidence Scores by True Class
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Supplementary Figure 11. Distribution of the model's confidence scores across training,

validation and test images, categorised by ground truth class.



Distribution of Model Confidence Scores by Predicted Class
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Supplementary Figure 12. Distribution of the model's confidence scores across all unlabelled

images, categorised by the model's predicted class.
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Supplementary Figure 13. Scatter plot of the supervised model’s output probabilities for the
'Healthy' and 'Disease’ classes on the non-occluded test set. Each point represents an image,

coloured by its expert-assigned ground truth label.
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Supplementary Figure 14. Principal Component Analysis (PCA) of the bottleneck features
extracted from the test set images. Each point represents an individual image, plotted

according to the first two principal components.
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t-SNE Dimension 2
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Supplementary Figure 15. t-Distributed Stochastic Neighbour Embedding (t-SNE) of the

bottleneck features extracted from the test set images. Each point represents an individual

image, plotted in the two-dimensional embedding space.
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Supplementary Figure 16. Principal Component Analysis (PCA) of the final prediction
probabilities from the test set. Each point represents an individual image, plotted according

to the first two principal components derived from the model's three-class softmax outputs.
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Supplementary Figure 17. t-Distributed Stochastic Neighbour Embedding (t-SNE) of the final
prediction probabilities from the test set. Each point represents an individual image, plotted
in the two-dimensional embedding space derived from the model's three-class softmax

outputs.
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Supplementary Figure 18. Uniform Manifold Approximation and Projection (UMAP) of the
final prediction probabilities from the test set. Each point represents an individual image,

plotted in the two-dimensional embedding space derived from the model's three-class

softmax outputs.
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Supplementary Figure 19. Additional Grad-CAM visualisations for the high-confidence
‘Healthy’ classification scenario. Each of the four panels displays an example image from the

test set (top) and the same image with the Grad-CAM heatmap overlay (bottom). The
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heatmap indicates image regions of high importance for the model's final prediction, with

red signifying high importance and blue signifying low importance.

High-Confidence Occluded

-. v‘ '

Supplementary Figure 20. Additional Grad-CAM visualisations for the high-confidence

‘Occluded’ classification scenario. Each of the four panels displays an example image from
the test set (top) and the same image with the Grad-CAM heatmap overlay (bottom). The
heatmap indicates image regions of high importance for the model's final prediction, with

red signifying high importance and blue signifying low importance.
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High-Confidence Obvious Signs

Supplementary Figure 21. Additional Grad-CAM visualisations for the high-confidence
‘Disease’ classification scenario, where the images belong to the ‘Obvious signs’ class. Each
of the four panels displays an example image from the test set (top) and the same image

with the Grad-CAM heatmap overlay (bottom). The heatmap indicates image regions of high
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importance for the model's final prediction, with red signifying high importance and blue

signifying low importance.

Low-Confidence Mild Signs

Supplementary Figure 22. Additional Grad-CAM visualisations for the low-confidence

‘Disease’ classification scenario, where the images belong to the ‘Mild signs’ class. Each of
the four panels displays an example image from the test set (top) and the same image with
the Grad-CAM heatmap overlay (bottom). The heatmap indicates image regions of high
importance for the model's final prediction, with red signifying high importance and blue

signifying low importance.
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Misclassified Disease as Healthy

Supplementary Figure 23. Additional Grad-CAM visualisations for the divergent
classifications of ‘Disease’ as ‘Healthy’ classification scenario. Each of the four panels
displays an example image from the test set (top) and the same image with the Grad-CAM
heatmap overlay (bottom). The heatmap indicates image regions of high importance for the
model's final prediction, with red signifying high importance and blue signifying low

importance.
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Misclassified Healthy as Disease

Supplementary Figure 24. Additional Grad-CAM visualisations for the divergent

classifications of ‘Healthy’ as ‘Disease’ classification scenario. Each of the four panels

displays an example image from the test set (top) and the same image with the Grad-CAM

heatmap overlay (bottom). The heatmap indicates image regions of high importance for the

model's final prediction, with red signifying high importance and blue signifying low

importance.

Supplementary Table 13. Test set performance comparison of the final semi-supervised

learning model against its supervised baseline. Best values for each metric are shown in

bold.
Metric Wildlife_ft Wildlife_SSL
Accuracy 0.952 0.948
Fl-score (Healthy)  0.958 0.957
F1-score (Disease) 0.926 0.924
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F1-score (Occluded) 0.96 0.95
Macro avg Fl-score 0.948 0.944
Macro avg Precision 0.947 0.942
Macro avg Recall 0.95 0.946
Precision (Healthy) 0.962 0.959
Precision (Disease) 0.913 0.898
Precision

(Occluded) 0.965 0.969
Recall (Healthy) 0.955 0.955
Recall (Disease) 0.94 0.952
Recall (Occluded) 0.956 0.931
Weighted avg F1-

score 0.952 0.948
Weighted avg

Precision 0.952 0.949
Weighted avg Recall 0.952 0.948
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