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THESIS SUMMARY 
Wildlife disease surveillance is often limited by the scale, cost, and logistical challenges 

of traditional methods. This thesis aimed to investigate the potential of using computer 

vision to classify visible signs of disease in wildlife from digital imagery. In Chapter 1, we 

introduced the challenges of traditional surveillance and the potential for computer vision, 

while in Chapter 2 , we provided an overview of the precedents for using computer vision in 

related fields. In Chapter 3, we analysed the WOAH animal disease database and found that 

over two-thirds (67%) of major infectious diseases present with externally visible signs, and 

that diseases spread by direct contact were significantly more likely to have them, 

confirming a broad scope for image-based monitoring. Chapter 4 then investigated wildlife 

imagery availability in online repositories, using salmonids as a case study. Our analysis of 

nearly 70,000 images showed that platforms like iNaturalist are a vast and growing data 

source, and that a consistent 14-18% of images displayed signs of disease or damage, 

highlighting an underused resource for health monitoring. In Chapter 5, we developed deep 

learning models to classify Saprolegnia spp. infection in salmonids. The best model 

achieved a high macro-average F1-score (0.930), with performance strongly influenced by 

dataset composition, as taxonomically focused and balanced datasets yielded the best 

results. Chapter 6 used rumpwear in common brushtail possums as a second case study to 

explore disease severity assessment. We showed a model's output probability for the 

'Disease' class served as a robust, well-calibrated proxy for severity, distinguishing between 

mild and obvious signs, and found that semi-supervised learning provided minimal benefit. 

Finally, Chapter 7 discusses how these results show computer vision is a viable tool to 

complement traditional surveillance, providing a framework to understand disease 

dynamics and support more timely and effective conservation responses. 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 :  

INTRODUCTION 



 
 

2  
 

1.1 BACKGROUND 

1.1.1 WILDLIFE DISEASE MONITORING 

Effective wildlife disease surveillance represents a critical component of global health 

security, serving as an early warning system for emerging infectious diseases and 

zoonotic threats (Daszak et al. 2000; Jones et al. 2008a; Cunningham et al. 2017). 

Traditional approaches to wildlife disease monitoring rely heavily on resource-intensive 

field sampling, laboratory diagnostics, and expert pathological assessments (Phelps et 

al. 2019; Watsa 2020; WOAH 2023). These methods, while effective, face significant 

limitations in scale, timeliness, and geographical coverage, often exacerbated 

by funding constraints, lack of harmonised systems, and variable capacity, particularly 

in remote or resource-limited regions where wildlife health expertise may be scarce 

(Delgado et al. 2023; Barroso et al. 2024). 

The increasing frequency of wildlife disease outbreaks, particularly Emerging Infectious 

Disease (EID) events, and their potential impacts on biodiversity, ecosystem function, 

and human health, underscores the urgent need for innovative, scalable, monitoring 

approaches (Daszak et al. 2000; Jones et al. 2008a; Cunningham et al. 2017). Recent 

advances in digital technologies, coupled with the proliferation of citizen science 

initiatives and online biodiversity platforms, offer promising opportunities to 

complement traditional surveillance methods with novel data streams (August et al. 

2020a). 

1.1.2 THE POTENTIAL TARGET: VISIBLE SIGNS OF WILDLIFE DISEASE 

A potential avenue for innovative surveillance lies in detecting the externally visible signs of 

wildlife disease. Veterinary medicine distinguishes between clinical ‘signs’, which are 

objective indicators noticeable to an observer, and ‘symptoms’, which represent the 

subjective sensation of illness experienced by the patient. Because animals cannot describe 

subjective feelings, disease assessment necessarily relies on identifying these observable 

clinical signs (Constable et al. 2017). 

Many wildlife diseases manifest through such externally visible signs, which can include 

morphological abnormalities (e.g., lesions, tumours, deformities), behavioural changes (e.g., 
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lethargy, disorientation), and physiological indicators (e.g., discharge, emaciation) (Ford and 

Mazzaferro 2012), see  

Figure 1.1. Fish species, for instance, exhibit numerous externally visible disease indicators 

such as skin lesions, fin erosion, exophthalmia (popeye), haemorrhaging, and abnormal 

growths (Noga 2010). However, the utility of visible signs for monitoring depends heavily on 

the specific disease and host. Visibility can vary considerably across taxonomic groups, 

disease causes (aetiologies), and stages of infection. Furthermore, the severity of a disease 

can alter how subtle its signs are; for example, mild mange may only cause minor fur 

disruption while severe cases lead to obvious and extensive hair loss. Some conditions, such 

as prion wasting diseases (e.g., chronic wasting disease), may show no obvious clinical signs 

until late in infection, making early cases challenging to detect visually (Haley and Hoover 

2015). Conversely, diseases such as devil facial tumour disease or white-nose syndrome in 

bats produce distinctive visual signatures readily documented through photography. 

Therefore, understanding the spectrum of visually detectable disease manifestations across 

wildlife taxa is crucial when considering image-based monitoring approaches. The diagnostic 

value and suitability of targeting visible signs ultimately depend on their specificity, 

consistency, severity and correlation with underlying disease processes (Stephen and Karesh 

2014) — factors which determine their potential for reliable detection in imagery. 
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Figure 1.1. Animals presenting with visible signs of disease. A) Tasmanian devil with visible 

signs of Devil Facial Tumour Disease; B) Blue tit with visible signs of Avian pox; C) Bat with 

visible signs of White-nose syndrome; D) Woodlouse with visible signs of infection with 

isopod iridovirus; E) Brown trout with visible signs of infection with Saprolegnia spp.; F) 

Amphibian with visible signs of Amphibian Chytrid. Image Credits: A) Photo 61996475, © 

Brett Vercoe, some rights reserved (CC BY-NC), uploaded by Brett Vercoe, cropped from the 

original; B) Photo 180916919, © ingridaltmann, some rights reserved (CC BY-NC); C) Photo 

488589421, © Eric C. Maxwell, some rights reserved (CC BY-NC), uploaded by Eric C. 

Maxwell, cropped from the original; D) Photo 450094682, © Felix Riegel, some rights 

reserved (CC BY-NC), uploaded by Felix Riegel; E) Photo 337522384, © Sean Cozart, some 
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rights reserved (CC BY-NC), uploaded by Sean Cozart; F) Photo 7693670, © thesoulflowers, 

some rights reserved (CC BY-NC), cropped from the original. 

 

1.1.3 DIGITAL IMAGERY: ABUNDANCE, SOURCES, AND THE DISEASE DATA CHALLENGE 

The digital revolution has generated an unprecedented volume of wildlife imagery, with 

millions of photographs uploaded annually to diverse online platforms (Nazir and Kaleem 

2021; Depauw et al. 2022). These images originate from varied sources, including dedicated 

citizen science initiatives (e.g., iNaturalist), social media platforms, wildlife photography 

communities, and institutional repositories (Toivonen et al. 2019). The sheer scale 

represents a potentially vast resource; for example, analysis conducted for this thesis 

demonstrates exponential growth in salmonid image submissions to platforms like 

iNaturalist between 2008 and 2023 (detailed in Chapter 4). 

Despite this abundance of wildlife imagery, finding images that document disease within 

these digital repositories is a significant challenge. This apparent scarcity may stem 

from several factors. First, the disease itself may be genuinely rare in the wild population. 

Second, observer biases can play a strong role; societal preferences for charismatic species 

are well-documented (Troudet et al. 2017), and it is plausible that observers also 

preferentially photograph or share images of healthy-looking animals. Furthermore, limited 

awareness of disease indicators among non-specialists and platform designs not focused on 

disease reporting likely exacerbate this scarcity. Nevertheless, these digital repositories 

likely contain valuable, largely untapped information for wildlife health monitoring, as 

platforms not explicitly focused on disease may still inadvertently capture visual evidence of 

health abnormalities. However, harnessing this potential requires overcoming significant 

inherent challenges. Extracting reliable ecological insights from such vast, non-

systematically generated online datasets necessitates careful consideration of data biases, 

validation requirements, and interpretation difficulties (Jarić et al. 2020). Applied to wildlife 

health, this manifests as the core challenge of efficiently identifying potentially rare disease-

relevant images, validating the presence of visible signs (often from limited visual 

information and non-expert sources), and analysing these findings amidst data 

heterogeneity (Jarić et al. 2020), a task further complicated by the fact that most visible 
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signs are not pathognomonic and could indicate multiple conditions (Stephen and Karesh 

2014). Addressing this complex task necessitates powerful automated tools capable of 

processing images at scale. 

1.2 COMPUTER VISION: A TOOL FOR SCALABLE IMAGE ANALYSIS 

Addressing the challenge of analysing vast repositories of wildlife imagery for rare disease 

signs requires powerful automated tools. Computer vision is the field that develops 

computational methods to extract information from digital images and video. Some 

computer vision approaches use rule-based image processing, while others use artificial 

intelligence methods. This thesis focuses on artificial intelligence approaches to computer 

vision, mainly machine learning. These methods learn patterns from data rather than relying 

on hand-designed rules. A particular focus is deep learning, which uses neural networks with 

many layers to learn useful image features directly from pixel data  (LeCun et al. 2015). See 

Figure 1.2 for a visual representation of these related fields.  

 

 

Figure 1.2. Conceptual relationship between Artificial Intelligence, Machine Learning, Deep 

Learning, and Computer Vision. 

 

Artificial Intelligence
Technology designed to perform tasks
that typically require human intelligence

Machine Learning
Computer algorithms that can

improve through experience by
learning patterns in the data

Deep Learning
Uses artificial neural

networks to automatically
learn and extract

features from data
Computer Vision

Technology designed to
computationally gain high-level

understanding from digital
images or videos
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These technologies, especially deep learning approaches like Convolutional Neural Networks 

(a type of neural network particularly adept at processing grid-like data such as images), 

have revolutionised automated image analysis across numerous domains. Their success in 

core tasks such as object detection, image classification, and semantic segmentation makes 

them highly promising for application to wildlife disease monitoring through automated 

analysis of visual data.  

Employing computer vision for wildlife health assessment presents several key advantages 

over manual inspection. These include the scalability required to process massive image 

datasets often generated by camera traps and citizen science efforts (Green et al. 2020), the 

potential for near real-time analysis of incoming data streams (Arshad et al. 2020), and the 

ability, demonstrated prominently in medical imaging, to potentially detect subtle visual 

patterns indicative of early-stage disease that might elude human observers (Esteva et al. 

2017). Furthermore, these systems can theoretically improve over time through continuous 

learning as more validated training data becomes available. However, applying these 

technologies effectively to wildlife disease detection faces significant hurdles. Key 

challenges include severe class imbalance issues stemming from the relative scarcity of 

disease images compared to healthy ones, a well-documented problem in ecological 

datasets (Cunha et al. 2023), the critical need for substantial amounts of high-quality, 

expertly labelled training data, which is laborious and costly to obtain for wildlife disease 

imagery  (Green et al. 2020; Cunha et al. 2023), the presence of numerous confounding 

factors inherent in field photography such as variable illumination, pose, distance, and 

background complexity  (Cunha et al. 2023), and the inherent complexity, similar to 

challenges in medical imaging, of reliably distinguishing subtle pathological conditions from 

normal biological variation or environmental artefacts (Wei et al. 2022). Overcoming these 

challenges is central to the research presented in this thesis. 

1.3 RESEARCH AIM AND QUESTIONS 
The aim of this thesis is to investigate the potential and challenges of using computer vision 

technologies to classify visible signs of disease in wildlife through the analysis of digital 

imagery. To achieve this aim, the following specific research questions  are addressed: 
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 1: Which wildlife diseases, particularly those subject to existing monitoring efforts, present 

with externally visible signs suitable for detection via computer vision?  

 

 2: What is the availability, quality, and ecological information content of wildlife imagery, 

particularly for fish species (salmonids), accessible from online digital repositories, and what 

is the prevalence of visible disease signs within these data?  

 

 3: How effectively can deep learning algorithms be developed and trained to classify 

specific, visible signs of disease in wildlife images, using Saprolegnia spp. in salmonids and 

‘rumpwear’ in common brushtail possums (Trichosurus vulpecula) as case studies, and how 

does dataset composition influence model performance? 

 

4: Can the outputs of computer vision classification models serve as a proxy for disease 

severity assessment, and can semi-supervised learning approaches help mitigate labelled 

data limitations in this context? 

1.4 RESEARCH DESIGN 
To address the research aim and questions, this thesis employs a multi-faceted research 

design integrating literature synthesis, database analysis, and empirical computer vision 

case studies. 

 

Initially, a foundation is established through reviews of relevant literature, exploring the 

application of computer vision for disease detection in related fields and outlining key 

methodological considerations (Chapter 2). Building on this, a systematic analysis of the 

WOAH animal diseases databases is conducted to identify and characterise diseases 

presenting with externally visible signs, thereby assessing the scope for computer vision-

based monitoring (addressing Question 1 in Chapter 3). This involves collating disease 

metadata and classifying visible signs according to defined criteria. 

 

The practical feasibility is then investigated through quantitative assessment of data 

availability, focusing on the characteristics and potential utility of wildlife imagery sourced 
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from online digital repositories (such as Flickr and iNaturalist), exemplified by a detailed 

case study on salmonids (addressing Question 2 in Chapter 4). 

 

Finally, the core potential of the approach is evaluated empirically through the 

development, training, and assessment of deep learning-based computer vision pipelines. 

Two distinct case studies are presented: one focusing on the classification of Saprolegnia 

spp. in salmonids using different dataset compositions (addressing Question 3 in Chapter 5), 

and another exploring disease severity assessment and semi-supervised learning techniques 

for possum rumpwear (addressing Question 4 in Chapter 6). Statistical analyses, including 

General Linear Models and goodness-of-fit tests where appropriate, are used to analyse 

results from the database and case study investigations. 

This sequential design allows the research to move from defining the theoretical potential 

and scope (Chapters 2 and 3), through understanding data limitations (Chapter 4), to 

demonstrating practical implementation and methodological refinement using specific 

wildlife disease examples (Chapters 5 and 6). 

1.5 THESIS STRUCTURE 
This thesis is structured into seven chapters, including this introduction, to systematically 

address the research aim and questions. The four data chapters (Chapters 3-6) are 

presented as self-contained studies, each written with the intention of publication in a peer-

reviewed journal. 

Chapter 1: Introduction (this chapter) introduces the research context, defines the problem 

of wildlife disease surveillance, outlines the potential of computer vision, establishes the 

research aim and specific questions, describes the research design, and provides this 

roadmap. 

Chapter 2: Seeing Sickness: Computer Vision Precedents and Principles for Wildlife Disease 

Surveillance provides essential context by reviewing the application of computer vision for 

disease detection in related fields (human medicine, livestock, plant pathology), critically 

discusses the unique challenges and opportunities presented by wildlife disease ecology, 
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and outlines foundational methodologies for data handling and computer vision pipeline 

development relevant to this thesis. 

Chapter 3: From Pixels to Pandemics: Quantifying the Potential for Image-Based Wildlife 

Disease Detection conducts a systematic analysis of the WOAH animal disease database to 

identify and characterise wildlife diseases that present with externally visible signs, thereby 

assessing their suitability as potential targets for computer vision-based detection 

approaches. 

Chapter 4: The Extended Image: the Value of Online Images for Ecological Research 

investigates the availability, characteristics, and potential utility of wildlife imagery from 

online digital repositories (e.g., iNaturalist, Flickr) for disease monitoring, focusing 

specifically on salmonid fishes as a case study to understand data landscapes and 

limitations. 

Chapter 5: Computer Vision for Infectious Disease Surveillance; Saprolegnia spp. in 

Salmonids presents the development, training, and evaluation of a deep learning pipeline 

designed to classify visible signs of Saprolegnia spp. infection in salmonids, exploring the 

influence of dataset composition and taxonomic specificity on model performance. 

Chapter 6: Deep Learning Model Confidence as a Proxy for Disease-Severity: a Case Study 

of Rumpwear in Possums explores the application of computer vision beyond simple 

detection, investigating its potential for assessing disease severity using possum rump wear 

as a case study and examining the utility of semi-supervised learning techniques to mitigate 

labelled data limitations. 

Chapter 7: General Discussion and Conclusions synthesises the key findings from the 

preceding chapters, discusses the overall implications and limitations of using computer 

vision for wildlife disease surveillance based on this research, and proposes directions for 

future work in this emerging field. 
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CHAPTER 2 : 

SEEING SICKNESS - COMPUTER VISION 

PRECEDENTS AND PRINCIPLES FOR WILDLIFE 

DISEASE SURVEILLANCE 
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Abstract 

Computer vision can improve wildlife disease surveillance by allowing for the non-invasive, 

large-scale analysis of images from sources such as camera traps and citizen science. 

However, applying computer vision methods that have worked well in controlled settings 

like human medicine and agriculture to wildlife in natural environments presents specific 

challenges. This review provides a practical introduction for ecologists, synthesising the 

opportunities, challenges, and key steps for developing and evaluating computer vision 

systems for this purpose. We outline a workflow from data acquisition and labelling to 

model development and validation, using sarcoptic mange in red foxes as a recurring 

example.  While the main opportunity lies in using large, opportunistic image archives to 

augment traditional surveillance, the most significant challenges are data centric. These 

include the scarcity of disease images, high variability in image quality, and the difficulty of 

obtaining reliable ground-truth labels for training and validation. We conclude that effective 

implementation requires a tailored, end-to-end workflow addressing these specific data 

hurdles. 

2.1 INTRODUCTION 
Computer vision (CV), powered by advances in machine learning and the increasing 

availability of visual data, offers transformative potential for ecological research and wildlife 

monitoring (Weinstein 2018; Tuia et al. 2022). Beyond established applications in species 

identification and behavioural analysis, a burgeoning area of interest lies in leveraging CV 

for non-invasive wildlife disease surveillance, aiming to augment traditional epidemiological 

methods that can be resource-intensive and challenging to implement at scale in wild 

populations (Delgado et al. 2023; Barroso et al. 2024). Detecting visible signs of disease 

through automated image analysis could provide valuable insights into disease prevalence, 

distribution, and host impacts.  

Translating CV techniques successfully to the complexities of wildlife disease, however, 

requires careful consideration. While applications in related fields like human medicine 

(Esteva et al. 2021), livestock health (Fuentes et al. 2022) and plant disease (Ferentinos 

2018) offer valuable precedents, the unique challenges of working with wild animals in 

uncontrolled environments necessitate a tailored approach. Therefore, before delving into 
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the specific wildlife disease applications explored later in this thesis, this chapter aims to 

provide a foundational overview essential for developing and evaluating CV systems in this 

context. To achieve this, the chapter is structured as follows: we first highlight the existing 

gaps in wildlife disease surveillance and introduce the rationale for image-based monitoring 

(Section 2.2). Next, we explain the core foundational concepts of computer vision, machine 

learning, and deep learning relevant to understanding the subsequent discussions (Section 

2.3). We then briefly survey the established uses of CV within the broader field of animal 

ecology (Section 2.4) before examining precedents for disease detection in the related 

domains of human medicine, plant pathology, and livestock/aquaculture health (Section 

2.5). The core of the chapter (Section 2.6) then critically analyses the specific opportunities 

and inherent challenges of applying computer vision to wildlife disease surveillance, 

integrating discussion of the key practical considerations involved in implementation; from 

data acquisition and labelling to model development and evaluation. To ground these 

technical discussions in a practical context, we will use sarcoptic mange in red foxes (Vulpes 

vulpes) as a recurring case example throughout the chapter to illustrate key concepts and 

challenges. Finally, this chapter concludes with a summary and forward look, outlining a 

conceptual framework for future work in this emerging field (Section 2.7).  

2.2 THE WILDLIFE DISEASE SURVEILLANCE GAP AND THE POTENTIAL ROLE 

OF IMAGE-BASED MONITORING 

Despite the recognised importance of monitoring animal diseases, global surveillance efforts 

remain inconsistent. While frameworks exist for reporting notifiable diseases, particularly in 

livestock (e.g., through World Organisation for Animal Health, WOAH), implementation is 

often patchy, and systematic surveillance for diseases in wildlife populations is generally 

considered ad hoc (Phelps et al. 2019; Watsa et al. 2020). Gathering diagnostic samples 

from wildlife presents significant logistical challenges, contributing to these surveillance 

gaps (Watsa 2020; Delgado et al. 2023; Barroso et al. 2024). Consequently, the initial 

detection of wildlife disease outbreaks often relies heavily on opportunistic observations by 

the public – including hunters, anglers, wildlife enthusiasts, and photographers – who report 

sightings of sick or deceased animals. Several significant epizootics were first identified 

through such observations of externally visible signs. For example, an epidemic of 
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trichomonosis in British finches was identified following unsolicited reports from the public 

of sick and dead birds at garden feeders (Robinson et al. 2010), while the spread of 

mycoplasmal conjunctivitis in North American house finches was monitored through a large-

scale citizen-science survey of feeder birds (Dhondt et al. 1998). 

The critical role of visible signs of disease highlights a potential pathway for enhancing 

surveillance. If disease signs are visually apparent to observers, they can, in principle, be 

captured in photographs or videos. This motivates the exploration of image-based 

monitoring, leveraging the increasing abundance of digital imagery alongside CV tools, as a 

non-invasive approach to help bridge existing gaps in wildlife disease surveillance. 

2.3 COMPUTER VISION: FOUNDATIONAL CONCEPTS 

Ecological research increasingly uses image and video data for non-invasive monitoring, 

generating vast datasets that require efficient analysis methods (Tuia et al. 2022; Pollock et 

al. 2025). CV is the field of computer science focused on enabling machines to "see" and 

interpret visual information from the world, much like human vision. It offers powerful tools 

to automate tasks like identifying species, counting individuals, or, pertinent to this thesis, 

detecting signs of disease within these large image collections (Weinstein 2018; Pollock et 

al. 2025). While applying these methods effectively often benefits from collaboration with 

computer scientists (Weinstein 2018; Ditria et al. 2020; Vidal et al. 2021), understanding the 

core concepts is essential for ecologists seeking to use these techniques. Here, we provide a 

primer on key CV concepts, particularly those relevant to image-based disease detection. 

2.3.1 MACHINE LEARNING CONCEPTS FOR COMPUTER VISION 

At its heart, much of modern CV relies on Machine Learning (ML), a branch of Artificial 

Intelligence (AI) where systems learn to perform tasks from data without being explicitly 

programmed for every step (Braga-Neto 2024). Instead of defining rigid rules, ML models 

identify patterns within data to make predictions or decisions. Learning techniques are 

broadly categorised as supervised or unsupervised. In supervised learning, the most 

common approach for tasks like disease classification, the model is trained on labelled 

training data; images that have been manually annotated with the correct answer or class 

(e.g., explicitly labelled as, for example, "mange present" or "mange absent"). During an 

iterative process called training, the model learns to associate visual patterns, often called 
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features; informative image characteristics based on aspects like colour, texture, edges, or 

corners - with the correct labels by comparing its predictions to the provided ground truth 

labels. In contrast, unsupervised learning algorithms attempt to discover inherent structures 

or patterns within unlabelled data. While evaluating the intrinsic success of purely 

unsupervised pattern discovery (like clustering) can be less direct than measuring accuracy 

against known labels (Valletta et al. 2017), techniques that learn representations from 

unlabelled data (such as self-supervised learning; He et al. 2020) have become extremely 

powerful. These learned representations can then be effectively adapted for specific tasks, 

like classification, using smaller amounts of labelled data. However, given the primary goal 

of identifying and classifying specific, known disease conditions in this thesis, this chapter 

focuses mainly on supervised learning approaches, while acknowledging the growing 

importance of methods that leverage unlabelled data. 

2.3.2 FROM FEATURE ENGINEERING TO DEEP LEARNING 

Historically, supervised machine learning in CV often involved a two-step process (Figure 

2.1a). First, a human expert, the "feature engineer," would carefully select and design 

algorithms known as feature descriptors. These algorithms automatically detect relevant 

visual patterns (features) and encode them, often into a series of numbers that could be 

used to differentiate one feature type from another. These hand-crafted features were then 

fed into a separate classifier algorithm (e.g., a Support Vector Machine) which learned to 

distinguish between classes based on those predefined features (Szeliski 2022). This 

traditional approach required significant domain expertise and laborious fine-tuning to 

identify the most effective features for a given task (O’Mahony et al. 2020). 
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Figure 2.1 Comparison of tradisonal and deep learning computer vision classificason 

workflows. (a) Tradisonal computer vision classificason workflow. Features hand-craved by 

a feature engineer are extracted from the input data and used as input for a classifier. This 

requires detailed knowledge of feature descriptors. (b) Deep learning classificason workflow. 

The deep learning model performs feature learning and classificason directly from the input 

images and their corresponding labels in an end-to-end manner. The output percentages are 

included as examples to illustrate potensal model outputs. Image copyright: Mangey fox in 

my garden, © Paul Williams, some rights reserved (CC BY-NC), uploaded by Paul Williams, 

cropped from the original image.  

 

A major shift occurred with the rise of Deep Learning (DL), a subfield of ML (LeCun et al. 

2015). DL models, particularly those based on Artificial Neural Networks (ANNs), enable 

"end-to-end" learning (Figure 2.1b) (LeCun et al. 2015). Instead of relying on hand-crafted 

features, DL algorithms automatically learn the most relevant descriptive features directly 
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from the labelled input data during training (O’Mahony et al. 2020). ANNs are inspired by 

the structure of biological brains, composed of interconnected processing units called 

artificial neurons, typically organised in layers (LeCun et al. 2015). Information flows from an 

input layer, through one or more ‘hidden’ layers, to an output layer. Connections between 

neurons have associated weights that are adjusted during training, strengthening or 

weakening signals based on how well the network performs the target task (LeCun et al. 

2015). 

For image analysis, Convolutional Neural Networks (CNNs) have become the dominant DL 

architecture (LeCun et al. 2015). CNNs incorporate specialised ‘convolutional’ layers that are 

good at detecting spatial hierarchies of patterns within images. Early layers might detect 

simple features like edges or corners, while deeper layers combine these to recognise more 

complex shapes, textures, and eventually objects (e.g., parts of an animal, specific lesion 

types or severity of disease). The development of the ‘AlexNet’ CNN (Krizhevsky et al. 2012), 

which significantly outperformed previous methods on a major image recognition challenge 

(ImageNet), spurred rapid advancements. Since then, numerous CNN architectures have 

been developed, such as VGG (Simonyan and Zisserman 2014), ResNet (He et al. 2016), 

Inception (Szegedy et al. 2016), and EfficientNet (Tan and Le 2019), offering different trade-

offs in performance, size, and computational cost (Khan et al. 2020). More recently, 

architectures based on the Transformer model, originally developed for natural language 

processing, have also shown strong performance on image analysis tasks (Dosovitskiy et al. 

2021). 

2.3.3 COMPUTER VISION TASKS AND ANNOTATION REQUIREMENTS 

These DL models can be trained for various CV tasks relevant to disease ecology, differing 

primarily in the type of information extracted and the required labelling (Figure 2.2) (Szeliski 

2022). The simplest task is image classification, where the entire image is assigned a single 

label (e.g., "mange", "healthy"). This requires only image-level labels (Figure 2.2a), but a 

potential pitfall is that the model might learn to associate the label with irrelevant 

background features if there are systematic differences between classes (e.g., if most 

mange photos are taken in urban areas and healthy ones in rural areas) (Miao et al. 2019). A 

more advanced task is object detection, which involves not only classifying objects within an 

image but also localising them, typically by drawing a bounding box around each instance 
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(Figure 2.2b). This requires more detailed labelling but allows for detecting multiple animals 

or lesions in one image and can help mitigate background dependence issues. Common 

architectures used for this include Faster R-CNN (Ren et al. 2015) and YOLO (Redmon et al. 

2015; Bochkovskiy et al. 2020). For the most detailed spatial information, semantic 

Segmentation assigns a class label to every pixel in the image, effectively creating a mask 

outlining the object (Figure 2.2c) or affected area (Figure 2.2d). This requires intensive pixel-

level annotation but can be valuable for quantifying the extent of lesions, for example. 

While models like Mask R-CNN (He et al. 2017) are popular architectures for this task, the 

manual annotation burden often makes a human-in-the-loop process more practical. In such 

workflows, a model generates a draft segmentation that a human expert can quickly 

approve or refine. This interactive approach not only accelerates the creation of new 

training data but also facilitates continuous model improvement by using the corrections to 

retrain the model, a strategy also known as active learning. 

 

 

Figure 2.2. Different levels of image annotason for training Convolusonal Neural Networks. 

(a) Image-level label for classificason (e.g., ‘Fox with mange’). (b) Object detecson using 

bounding boxes to localise and classify regions of interest. (c) Semansc segmentason using 

polygons (or masks) to classify each pixel belonging to the region of interest ‘Fox with 

mange’. (d) Semansc segmentason using polygons (or masks) to classify each pixel 

belonging to the region of interest ‘Visible signs of mange’. Image copyright: Mangey fox in 

Fox with mange
(a) (b) (c) (d)

Fox with mange
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my garden, © Paul Williams, some rights reserved (CC BY-NC), uploaded by Paul Williams, 

cropped and edited from the original image. 

2.3.4 EVALUATING MODEL PERFORMANCE 

Evaluating the performance of these different tasks requires specific metrics tailored to 

what is being measured. For image classification, where the task is a binary decision, 

labelling a whole image as either ‘fox with mange’ or ‘healthy fox’, common metrics derive 

from a confusion matrix comparing predictions to these ground truth labels. This matrix 

counts: True Positives (TP) where the model correctly identifies a fox with mange; True 

Negatives (TN) where it correctly identifies a healthy fox; False Positives (FP) where it 

wrongly labels a healthy fox as having mange; and False Negatives (FN) where it misses 

mange in a fox that actually has it. While overall Accuracy ((TP+TN)/Total) provides a general 

sense of correctness, it can be misleading if, as is common in disease studies, one class (e.g., 

healthy foxes) is much more frequent than the other. Therefore, Precision (TP/(TP+FP)) is 

crucial: it tells us, out of all the foxes that the model claimed had mange, the proportion 

that did, indicating the rate of false alarms. Recall (or Sensitivity, TP/(TP+FN)) is equally 

important, measuring the proportion of all foxes that genuinely had mange that the model 

successfully identified. The F1-score, a harmonic mean of Precision and Recall, offers a 

single metric balancing the risk of false alarms against the risk of missing cases. Specificity 

(TN/(TN+FP)) measures how well the model correctly identifies the healthy foxes. Crucially, 

from a disease surveillance perspective, the relative importance of metrics like Precision and 

Recall depends on the ecological or management context; a high rate of false negatives (low 

Recall) might mean missing critical early warnings, while excessive false positives (low 

Precision) could lead to unnecessary and costly interventions. 

For object detection, where the goal might be to specifically localise the visible signs of 

mange by drawing a bounding box around affected areas (rather than just the whole fox), 

evaluation must consider both the classification correctness (is it mange?) and the 

localisation accuracy (is the box placed correctly?). The overlap between the predicted 

bounding box around the mange signs and the ground truth box is typically quantified using 

Intersection over Union (IoU) calculated as the area of overlap between the predicted and 

ground truth boxes divided by the total area encompassed by both boxes. Standard metrics 
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like mean Average Precision (mAP) then summarise the detection performance across 

different confidence thresholds, integrating both how well the mange signs were classified 

and how accurately they were localised via the bounding box, judged against a specific IoU 

threshold. 

Finally, for semantic segmentation, which aims to create a precise pixel-level mask outlining 

only the fox, or the mange-affected skin areas on the fox, evaluation focuses on the 

accuracy of this mask. Metrics commonly used are again IoU (sometimes called the Jaccard 

Index in segmentation) or the Dice Coefficient (closely related to the F1-score but calculated 

at the pixel level). These quantify how well the pixels predicted by the model as being part 

of a mange lesion overlap with the true lesion pixels defined in the ground truth mask. 

Understanding the specific information provided by these different metrics is crucial for 

interpreting model performance and selecting or developing models appropriate for specific 

ecological or epidemiological questions related to wildlife disease. 

2.3.5 PRACTICAL APPROACHES AND EMERGING METHODS 

Training deep CNNs from scratch typically require vast amounts of labelled data and 

substantial computational resources (Zhuang et al. 2020). Transfer Learning offers a 

practical solution. It uses models pre-trained on large, general-purpose datasets (like 

ImageNet, containing millions of diverse images). By adapting these pre-trained models and 

fine-tuning only some layers on a smaller, task-specific dataset (e.g., wildlife disease 

images), researchers can often achieve high performance with significantly less data and 

computational effort, essentially transferring the general visual knowledge learned from the 

large dataset to the new problem (Yosinski et al. 2014). 

Meta Learning, or "learning to learn," represents another advanced area of machine 

learning (Hospedales et al. 2022). Instead of learning to classify specific objects directly, 

these methods learn a process for comparing images or learning new classes quickly from 

very few examples (few-shot learning). Techniques like metric learning (e.g., Siamese 

networks, triplet loss) learn similarity functions, which can be useful for tasks like identifying 

new or unseen anomalies (Hospedales et al. 2022). This ability to handle previously unseen 

classes relates to the concept of Open Set Recognition, where a model must not only classify 

known categories but also identify inputs that do not belong to any of the known classes, 
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which is relevant when encountering unexpected diseases or conditions in surveillance data 

(Barcina-Blanco et al. 2024). 

Beyond these learning paradigms, recent advances in Vision-Language Models (VLMs) offer 

new ways of interacting with and analysing image data (Radford et al. 2021; Liu et al. 

2023b). These models, often built upon Large Language Model architectures, learn joint 

representations of images and text, enabling tasks like zero-shot classification, visual 

question answering, and text-to-image retrieval. The ability to query large image datasets 

using natural language descriptions holds significant potential for ecological research, 

allowing scientists to search for specific visual concepts (e.g., behaviours, interactions, 

visible signs) that may not be captured by standard metadata or classification labels. 

However, evaluating the effectiveness of these models for complex, domain-specific queries 

remains an active area of research, with benchmarks specifically designed for ecological 

applications highlighting current limitations, particularly with expert-level concepts and fine-

grained visual details (Vendrow et al. 2024). 

Understanding these fundamental concepts, which include supervised learning, the shift 

from feature engineering to deep learning with CNNs and Transformers, the different CV 

tasks and their labelling requirements, practical techniques like transfer learning, and 

emerging capabilities like meta-learning and vision-language interaction, provides the 

necessary foundation for evaluating the application of CV in related fields (Section 2.5) and 

understanding the specific opportunities and challenges within wildlife disease ecology 

(Section 2.6). 

2.4 COMPUTER VISION APPLICATIONS IN ANIMAL ECOLOGY 
The application of computer vision in ecological research involving animals has grown 

exponentially, particularly over the past decade, driven by the increasing availability of 

digital visual data and the need to automate its processing and analysis (Jarić et al. 2020; 

Pollock et al. 2025). A Scopus search for publications combining terms related to computer 

vision and animals shows a marked increase over time (Figure 2.3a). In contrast, the number 

of publications linking computer vision, animals, and disease is much lower, although it has 

also increased in recent years (Figure 2.3a). To account for background growth in computer 

vision, Figure 2.3b shows these trends normalised by the annual number of “computer 
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vision” publications. In an offset regression with a negative binomial robustness check, the 

rate of “computer vision AND (wildlife OR animal*)” increased by about 3.8% per year, while 

“computer vision AND (wildlife OR animal*) AND disease” increased by about 10.7% per 

year. An interaction model indicated that the disease-related subset increased faster than 

the broader animals subset (p = ). Broad search terms such as “animal*” may include 

laboratory animal studies rather than wildlife research, which may inflate the apparent 

volume of general “CV Animals” work. Nonetheless, the trend indicates increasing use of 

these methods in animal-related research, alongside a growing but smaller body of work 

applying computer vision to disease. 

 

Figure 2.3. Scopus publicason trends. (a) The annual number of publicasons (arscles, 

reviews, conference papers and data papers) returned for the search terms ‘“computer 

vision” AND (wildlife OR animal*)’  and ‘”computer vision” AND (wildlife OR animal*) AND 

disease’ on Scopus from 1984- 2025. (b) The same trends expressed as records per 1,000 

background ‘computer vision’ publicasons per year. The background rate is the annual 
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number of publicasons returned for the search term ‘computer vision’ using the same 

document type filters and sme period. 

 

Within ecology, CV powered by deep learning is now routinely leveraged for a wide range of 

monitoring tasks previously reliant on manual effort (Tuia et al. 2022; Pollock et al. 2025). 

Key applications include automating the description, counting, and classification of animal 

species from images and video, crucial for biodiversity assessments and species 

management (Weinstein 2018; Willi et al. 2019; Norouzzadeh et al. 2021). Beyond species 

identification, CV is also widely employed for analysing animal behaviour, such as social 

interactions, quantifying activity patterns, facilitating the re-identification of individuals 

based on unique markings, and tracking animal movements (Robie et al. 2017; Schneider et 

al. 2019; Ravoor and Sudarshan 2020; Ratnayake et al. 2021). 

The visual data used is highly diverse, spanning scales from satellite and drone imagery 

down to microscopy, and originating from sources as varied as smartphones used in 

controlled settings or by citizen scientists (Spiesman et al. 2021), camera traps 

(Norouzzadeh et al. 2021), and specialised sensors operating beyond the human visual 

spectrum, such as infrared cameras (Dunbar et al. 2009). The adoption of deep learning 

algorithms, particularly Convolutional Neural Networks (CNNs) discussed in Section 2.3.2, 

has significantly advanced these applications, often achieving classification accuracies 

similar to, or even exceeding, human expert performance for tasks like species identification 

(Swanson et al. 2015; Gómez-Villa et al. 2016; Torney et al. 2019; Ditria et al. 2020). 

Given this demonstrated success of CV in extracting diverse ecological information from 

various image types, yet the comparatively limited focus on disease applications evident in 

the literature trends (Figure 2.3), its potential application specifically for detecting signs of 

disease warrants detailed investigation, building upon techniques established in other 

health-related domains. 
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2.5 COMPUTER VISION FOR DISEASE DETECTION IN RELATED DOMAINS 
While the application of CV specifically to wildlife disease surveillance is nascent, 

considerable progress has been made in using these techniques for disease detection and 

diagnosis in the related fields of human medicine, plant disease, and livestock/aquaculture 

health. Examining these precedents provides valuable insights into established 

methodologies, potential capabilities, and challenges relevant to wildlife applications. 

In human medicine, CV is now well-integrated into many areas of diagnostics, analysing a 

wide range of imaging modalities (Esteva et al. 2021). Numerous AI-based medical 

technologies using CV have received regulatory approval (e.g., at least 29 by the US FDA 

between 2012-2020), aiding image reconstruction, analysis, and diagnosis (Benjamens et al. 

2020). These tools are applied across fields including radiology (analysing X-rays, CT, MRI) 

(Rajkomar et al. 2017; Weston et al. 2019; Jain et al. 2021), cardiology (Wehbe et al. 2023), 

and ophthalmology (analysing retinal scans) (Kucur et al. 2018; Panda et al. 2018; Hemelings 

et al. 2020). Particularly relevant to monitoring visible signs in wildlife, CV systems analysing 

standard clinical photographs in dermatology have achieved diagnostic abilities comparable 

to, or even exceeding, those of human specialists for tasks like classifying skin lesions 

(Esteva et al. 2017; Haenssle et al. 2018; Liu et al. 2020). Beyond diagnosis, CV assists in 

diverse clinical tasks such as population screening, predicting patient outcomes, segmenting 

pathological structures (at organ or cellular levels), and monitoring disease progression over 

time (Esteva et al. 2021). The success in medicine is often driven by the availability of large, 

curated datasets and the relatively standardised nature of many medical images (Esteva et 

al. 2021). However, the fundamental pattern recognition capabilities demonstrated, 

especially in analysing photographic images for conditions like skin diseases, highlight the 

potential for similar approaches in animals, while acknowledging the significant differences 

in image quality and consistency expected from wildlife data. 

Similarly, automated disease identification using CV has gained significant traction in 

agriculture for crop protection. Numerous studies have applied techniques, often deep 

learning, to classify diseases based on images of plant leaves, stems, or fruits (Mohanty et 

al. 2016; Sladojevic et al. 2016a; Amara et al. 2017; Gui et al. 2021). High classification 

accuracies, sometimes exceeding 99% under specific conditions, have been reported for 
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identifying multiple diseases across various plant species, demonstrating the potential for 

automated systems in field or controlled environments (Ferentinos 2018; Bhagwat and 

Dandawate 2021). This success underscores the utility of CV for detecting visual disease 

signs (like spots, lesions, wilting, colour changes) in biological organisms using standard 

imagery, albeit typically under more controlled conditions than wildlife monitoring. 

Image-based disease detection is comparatively less developed for monitoring the health of 

mobile animals like livestock or wildlife, but research is growing. In livestock farming, efforts 

include using CV for automated lameness detection in cattle based on gait analysis (Barney 

et al. 2023; Myint et al. 2024), monitoring respiratory diseases through behavioural or 

thermal changes (Jorquera-Chavez et al. 2020; Wu et al. 2023), or identifying skin conditions 

(Rony et al. 2021) and external parasites (Barbedo et al. 2017). In aquaculture, disease-

related applications often focus on controlled environments, targeting issues like external 

parasite detection (e.g., sea lice on salmon) or identifying visible lesions indicative of 

bacterial or fungal infection (Liu et al. 2023a). While progress has been made, some studies 

in this area have faced limitations related to dataset size, image quality, or methodological 

validation (see Chapter 5, this thesis; Liu et al. 2023). 

Commercial aquaculture has also developed imaging systems for fish health and welfare 

monitoring, particularly in salmon farming where external parasites such as sea lice are 

routinely assessed. A number of commercial suppliers now market camera-based and 

computer-vision systems for salmon aquaculture (e.g., Aquabyte and OptoScale), with 

applications that commonly include automated sea-lice assessment, fish sizing, and 

welfare/condition scoring. These systems typically use fixed in-cage or underwater cameras 

to capture images or video of fish as they pass and then apply automated image analysis to 

produce operational metrics. Such outputs are also relevant to ecological and behavioural 

questions. However, much of the underlying imagery, derived data streams, and 

implementation detail from commercial deployments are proprietary or otherwise not 

publicly accessible, which limits independent evaluation, reproducibility, and reuse in 

academic research. 

While still limited, some studies have demonstrated the potential of CV for detecting visible 

disease signs specifically in wildlife contexts. For instance, photographic analysis has been 

https://www.aquabyte.ai/
https://optoscale.no/?lang=en
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explored for monitoring the progression of Devil Facial Tumour Disease (DFTD) based on 

lesion characteristics (Nurçin et al. 2024), and researchers have applied image analysis 

techniques to assess skin conditions in marine mammals like bottlenose dolphins (Tursiops 

erebennus) (Murphy et al. 2025). Similarly, computer vision techniques have been used to 

classify images of brushtail possums based on the presence and severity of 'rumpwear’  a 

condition involving fur loss (Chapter 6, this thesis). Work detailed in this thesis (Chapter 5) 

also demonstrates the application of deep learning to classify visible signs of Saprolegnia 

spp. infection in salmonids from photographic images. These examples, though fewer than 

in human medicine or plant disease, serve as important precedents validating the 

exploration of CV for detecting visually distinct signs of disease or abnormal conditions in 

diverse animal taxa, including wildlife. 

Synthesising these applications shows that computer vision can classify visible signs of 

disease from images, sometimes reaching expert-level performance with large, curated 

datasets from controlled settings. The main CV tasks used, which we described in Section 

2.3.3, include classification, detection, and segmentation. While supervised learning is 

common, research in these fields is also exploring advanced techniques like few-shot 

learning and open-set recognition to address data limitations (Singh et al. 2021; Dong et al. 

2024). These methods are relevant to the data scarcity and potential for new conditions 

found in wildlife surveillance. However, translating this success to wildlife disease 

monitoring is not straightforward. The main difficulties come from the uncontrolled nature 

of wildlife imagery and the challenge of obtaining enough accurately labelled images (Green 

et al. 2020; Cunha et al. 2023). Therefore, while these precedents are encouraging, we 

cannot directly transfer the methods. Developing effective tools requires tailored 

approaches to address these data challenges, which we explore in the following section. 

2.6 APPLYING COMPUTER VISION TO WILDLIFE DISEASE SURVEILLANCE: 

OPPORTUNITIES, CHALLENGES, AND PRACTICAL CONSIDERATIONS 
Having established the potential of CV in ecological research (Section 2.3.4) and its 

demonstrated utility in disease detection within different fields (Section 0), this section 

focuses on the application of these technologies to wildlife disease surveillance. It examines 

the significant opportunities presented by CV in this context, addresses the substantial 
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challenges inherent in working with wildlife populations and data, and outlines the key 

practical considerations necessary for successful implementation. 

2.6.1 OPPORTUNITIES IN CV-BASED SURVEILLANCE 

The integration of CV into wildlife disease surveillance offers several compelling advantages 

compared to traditional methodologies, which often rely on invasive sampling or 

opportunistic carcass discovery (Watsa 2020; Delgado et al. 2023), limiting scalability and 

timeliness. A primary benefit is the potential for enhanced non-invasive monitoring. CV 

allows for the assessment of visible disease signs from digital imagery (photographs and 

videos) without requiring the physical capture or handling of animals. This significantly 

reduces potential stress to wildlife and alleviates the considerable logistical challenges and 

costs associated with capturing and sampling free-ranging, often elusive, species (Burton et 

al. 2015). Examples include identifying skin lesions in cetaceans from photographic surveys 

(Murphy et al. 2025) and monitoring visible signs of poor health or external lesions in 

terrestrial mammals using camera-trap imagery (Muneza et al. 2019; Murray et al. 2021). 

CV also enables greater scalability in monitoring efforts. Ecological studies using camera 

traps or citizen science platforms can generate enormous volumes of visual data; for 

instance, the Snapshot Serengeti project amassed over 1.2 million image sets within three 

years (Swanson et al. 2015). Manual review of such datasets is prohibitively time-

consuming. CV provides the necessary tools to automate the processing of these large 

image collections, facilitating tasks like species identification and potentially flagging images 

exhibiting disease indicators, thereby transforming data analysis from a bottleneck into a 

more tractable process (Norouzzadeh et al. 2018; Green et al. 2020). 

Automation, in turn, allows for an expanded scope of surveillance. Monitoring can be 

extended across larger geographical areas and sustained over longer durations than is often 

feasible using traditional field-based methods alone. Furthermore, CV techniques offer the 

exciting potential for application to retrospectively analyse archived image collections, 

potentially uncovering historical disease patterns or tracking pathogen spread over 

timeframes previously inaccessible. The frequent availability of metadata associated with 

digital images, such as time, date, and location information (from EXIF data or camera 

deployment records), adds significant value (Biggs et al. 2009; Daume 2016). Integrating 
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these spatio-temporal data points with CV-derived health classifications facilitates 

epidemiological analyses, including mapping disease distributions, tracking potential spread, 

and investigating associations with environmental variables (Toivonen et al. 2019). 

Finally, there is potential for earlier detection of disease outbreaks or changes in prevalence. 

Continuous or wide-scale monitoring using automated image analysis might identify subtle 

visual signs across a population before they become apparent through more limited 

traditional surveillance approaches. Citizen science initiatives, where numerous observers 

contribute images, represent a particularly promising avenue for broad-scale detection if 

participants can be effectively guided in recognising and reporting relevant signs (Scott et al. 

2020). 

2.6.2  CHALLENGES AND PRACTICAL STEPS 

Despite the significant potential, the effective application of CV to wildlife disease 

surveillance necessitates addressing several substantial challenges related to data, 

methodology, and implementation. 

Getting the Right Ingredients: Data Acquisition and Curation 

A fundamental difficulty lies in obtaining sufficient high-quality image data depicting the 

target disease(s). While digital wildlife imagery is abundant overall, images clearly showing 

specific disease signs are often scarce (Green et al. 2020). This rarity may stem from the low 

prevalence of certain diseases, the subtle nature of early-stage signs, or potential observer 

bias against photographing unhealthy-appearing animals. This frequently results in highly 

imbalanced datasets, where healthy individuals vastly outnumber diseased ones, posing a 

significant challenge for training unbiased machine learning models. 

Overcoming this data scarcity necessitates a strategic and often multi-faceted approach to 

image sourcing. Several potential avenues exist, each presenting distinct opportunities and 

limitations. Large camera trap archives such as Wildlife Insights (wildlifeinsights.org), LILA 

(lila.science) and Agouti (Casaer et al. 2019), for instance, offer extensive systematic data, 

though isolating relevant disease images might require targeted searches or specialised 

analytical techniques (Murray et al. 2021). Citizen science platforms such as iNaturalist 

provide large quantities of geo-referenced, opportunistic data (Van Horn et al. 2018).Their 
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value for ecological research, including health assessment, is increasingly recognised 

(Vendrow et al. 2024). These data are particularly relevant for monitoring species that 

interact frequently with the public or recreational users, such as fish observed by anglers or 

boaters. However, using these platforms for disease monitoring may depend on project 

designs that encourage relevant reporting(Scott et al. 2020). While social media yields 

immense image quantities (Durso et al. 2021; Edwards et al. 2021), researchers must 

grapple with significant challenges related to data noise, inherent biases, and ethical usage 

(Morcatty et al. 2024). In contrast, collaborations with veterinary or rehabilitation facilities 

can provide high-quality images of confirmed cases, offering valuable ground truth, albeit 

potentially lacking natural ecological context. Given these varied characteristics, integrating 

data from multiple sources is often the most pragmatic strategy. Regardless of the source(s), 

even when employing transfer learning (Section 2.3.5) to reduce data requirements 

(Yosinski et al. 2014), securing several hundred labelled examples per class (including 

‘healthy’) is generally advisable for robust model development (Christin et al. 2019). 

Furthermore, careful management and utilisation of associated metadata, such as location 

and time, is crucial throughout the acquisition and curation process to maximise the 

potential for subsequent ecological analysis (Toivonen et al. 2019). 

Seeing Clearly: Data Quality and Labelling 

Beyond the initial acquisition, the inherent quality and subsequent labelling of wildlife 

imagery present further significant hurdles for computer vision applications. Images 

captured in natural environments typically exhibit extreme variability in factors such as 

lighting, animal pose, distance, occlusion, and background complexity (Figure 2.4). This 

often results in a low signal-to-noise ratio, where subtle disease signs can be difficult to 

discern amidst visual clutter (Lürig et al. 2021; Cunha et al. 2023). These challenges can be 

particularly acute in aquatic environments, where factors such as water turbidity, surface 

reflections, rapid subject movement, and the inherent difficulties of underwater imaging 

further reduce image clarity and the visibility of subtle signs. Compounding this issue, visual 

diagnosis from images alone can be inherently ambiguous; differentiating visual signs of 

disease from natural variation or injuries can prove challenging, even for experts. Such 

ambiguity inevitably complicates the creation of reliable ground truth labels necessary for 

training supervised models (Murray et al. 2021). 
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Addressing these combined challenges requires meticulous attention to data quality control 

and the establishment of robust labelling procedures. Paramount among these is the 

development of clear, objective definitions for disease categories coupled with consistent 

labelling protocols applied across the dataset. The specific type of annotation required must 

also align carefully with the intended analytical goal: simple image-level labels suffice for 

basic classification tasks, whereas object detection necessitates bounding boxes to localise 

signs, and semantic segmentation demands detailed pixel-level masks for precise spatial 

delineation (Figure 2.2). Selecting appropriate labelling software (such as CVAT or 

Zooniverse) can facilitate this process. Critically, given the diagnostic difficulty inherent in 

identifying wildlife diseases visually, ensuring high label quality typically necessitates 

significant domain expertise (veterinary or ecological) (Murray et al. 2021). This contrasts 

sharply with tasks like species identification, where non-expert citizen scientists can often 

achieve high accuracy (Swanson et al. 2015). To further improve reliability and quantify 

uncertainty, best practice involves employing multiple annotators for each image (or at least 

a subset) and assessing consistency through metrics like Inter-Annotator Agreement (IAA) 

(Artstein 2017; Ditria et al. 2020; Palmer et al. 2021). While comparison against a ‘gold 

standard’ set with clinically confirmed diagnoses represents the ideal for label validation, 

this approach is unfortunately rarely feasible in free-ranging wildlife contexts, underscoring 

the importance of rigorous protocol design and expert involvement. 
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Figure 2.4. Examples of photographs of red foxes (Vulpes vulpes) with clinical signs of 

sarcoptic mange, sourced from the citizen science platform iNaturalist. The panels illustrate 

common challenges and characteristics, such as: (A) a blurry, low-light camera trap image; 

(B) a clear, high-quality photograph suitable for detailed assessment; (C) a subject that is 

distant in an image that has been edited; (D) a subject that is both blurry and partially 

occluded by foliage; (E) an image clearly showing clinical signs of mange along the flank and 

tail; and (F) a subject at a significant distance from the camera. Image Credits: (A) Photo 

401908233, © Nova Patch, CC BY-SA; (B) Photo 248359548, © Lori A Owenby, CC BY-NC; (C) 

Photo 61922852, © Juan C. Espinosa, CC BY; (D) Photo 333198287, © Erin O’Connor, CC BY-

NC; (E) Photo 360827452, © Lyla R. Meader, CC BY-NC; (F) Photo 223123668, © Cole Wolf, 

CC BY. All images were uploaded by their respective owners to iNaturalist. 

Building the Engine: Model Development and Methodological Complexity 

Developing effective computer vision models for wildlife disease classification or detection 

presents considerable methodological challenges beyond data acquisition and labelling. The 

visual signs themselves can be subtle, non-specific, mimic normal variation, or change 

significantly with disease stage, making automated detection intrinsically difficult (Wei et al. 

2022). A further complication arises from the risk of models learning spurious correlations; 

they might associate disease labels with irrelevant background elements present in the 

training data rather than the relevant disease features, thereby severely limiting their ability 

to generalise to new images or environments  (Miao et al. 2019). Even advanced Vision-

Language Models (VLMs), despite their potential for flexible data interaction, currently face 

hurdles in this domain, often struggling with the fine-grained visual distinctions required for 

accurate disease identification and lacking comprehension of specialised terminology used 

in expert queries  (Vendrow et al. 2024). Looming over these technical difficulties is the 

fundamental challenge of rigorously validating model outputs against confirmed (‘gold 

standard’) disease status in free-ranging wildlife populations. This is a significant, often 

challenging, obstacle given the inability to capture and clinically assess most individuals 

observed remotely. 

Mitigating these complex challenges requires a thoughtful and rigorous approach to model 

development and training. Careful workflow design is crucial, involving the selection of 
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appropriate computer vision tasks (classification, detection, or segmentation) tailored to the 

specific research questions and potentially employing multi-stage pipelines, for instance, 

using an initial general animal detector like MegaDetector (Beery et al. 2019) before 

applying a specialised disease classifier. To leverage existing knowledge when specialised 

datasets are small or scarce, transfer learning  (Yosinski et al. 2014) is a standard approach 

where models pre-trained on large, general datasets are adapted for the specific wildlife 

disease task. Furthermore, advanced learning paradigms offer promising avenues to 

capitalise on potentially abundant unlabelled imagery alongside limited labelled examples. 

Active learning strategies, for example, can intelligently prioritise the most informative 

images for expert annotation, maximising model improvement while minimising labelling 

effort. Techniques like semi-supervised learning explicitly incorporate unlabelled data into 

the training process to improve model generalisation, while self-supervised learning 

methods can first learn rich visual representations from unlabelled data alone, which are 

then fine-tuned using the available labels (He et al. 2020). Such approaches, along with few-

shot learning strategies designed to learn effectively from minimal labelled examples 

(Section 2.3.5), are particularly pertinent given the typical constraints of wildlife disease 

datasets. Essential pre-processing steps, such as image resizing and pixel value 

normalisation, ensure data consistency for model input. Furthermore, data augmentation, 

applying random transformations like flips, rotations, and brightness adjustments to training 

images, is critically important for enhancing model robustness against the inherent 

variability in wildlife photographs (Shorten and Khoshgoftaar 2019). Emerging generative AI 

techniques also offer a potential, though still developing, avenue for synthesising data for 

particularly rare classes (Rafiq et al. 2025). Finally, the model training process itself demands 

careful management. This includes using distinct training and validation data splits, ideally 

incorporating spatial or temporal separation to rigorously test generalisation capabilities 

(Beery et al. 2018; Tabak et al. 2019; Schneider et al. 2020), which helps monitor learning 

progress and prevent the common problem of overfitting where the model performs well 

on training data but poorly on unseen data. This entire workflow, from data acquisition and 

annotation through to model evaluation and interpretation, is outlined in Figure 2.5. 
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Figure 2.5. Schemasc overview of the computer vision pipeline for wildlife disease detecson 

from online images. Data are collected and annotated, undergo inisal quality control, and 

are dynamically pre-processed during model training. Opsonal animal detecson can be 

applied before disease classificason or segmentason. Model outputs are evaluated and 

interpreted in an ecological context. 

 

Checking the Results: Evaluation, Interpretation and Deployment 

Once a model is trained, evaluating its performance presents its own set of challenges, 

particularly within ecological contexts. Relying solely on overall accuracy can be highly 

misleading, especially given the class imbalance typically encountered in disease datasets 

where healthy individuals vastly outnumber diseased ones. Furthermore, demonstrating 

that a model achieves high statistical performance on standard metrics (as defined in 

Section 2.3.4) does not automatically guarantee that its outputs provide meaningful 

ecological insights or accurately reflect real-world disease dynamics. 

Consequently, a nuanced and comprehensive evaluation strategy is essential. This involves 

selecting performance metrics appropriate for the specific task and sensitive to data 

characteristics, particularly the class imbalance inherent in many disease studies (Blair et al. 
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2024). Beyond calculating these core metrics, evaluation should include comparing model 

performance to human expert benchmarks where feasible, providing valuable context for its 

capabilities (Esteva et al. 2017). Robustness and generalisability must also be rigorously 

assessed, ideally by testing the model on data collected under different conditions or from 

different locations than those represented in the training set (Beery et al. 2018; Ditria et al. 

2020). Ideally, evaluation should extend beyond standard computer vision metrics to assess 

whether model performance translates into the accurate estimation of relevant 

downstream ecological variables, such as prevalence estimates, as this link is not always 

direct (Pantazis et al. 2024). To gain further confidence in the model reasoning, model 

interpretation techniques, such as saliency heat maps which highlight image regions 

influencing predictions, can help verify that the model is focusing on relevant pathological 

features rather than spurious background cues (Selvaraju et al. 2020; see Figure 2.6). Only 

through thorough evaluation can the suitability of a model for deployment and 

interpretation be confidently determined. 

 

Figure 2.6. Illustrason of a saliency-style heatmap for post-hoc model interpretason. The 

image on the lev shows a red fox (Vulpes vulpes) with visible signs consistent with sarcopsc 

mange. The panel on the right shows a heatmap overlay created manually in Affinity 

Designer (using a semi-transparent colour layer) to illustrate how saliency visualisasons are 
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commonly presented. Warmer colours indicate regions of higher apparent importance. This 

figure is illustrasve only and is not an output from any model used in this thesis. 

 

Putting it Together: Resource and Ethical Considerations 

Finally, successfully implementing computer vision for wildlife disease surveillance involves 

navigating significant resource constraints and ethical responsibilities. Deep learning 

workflows typically demand considerable computational power for training and inference 

and require specialised technical expertise in data science and programming. These 

requirements can present substantial barriers for ecology research groups operating with 

limited budgets or lacking dedicated technical staff (Ditria et al. 2020; Vidal et al. 2021). 

Concurrently, the handling of wildlife health data necessitates careful consideration of 

ethical issues, particularly regarding data sensitivity and potential impacts on conservation 

efforts or public perception. 

Addressing these practical hurdles often requires interdisciplinary collaboration. 

Partnerships between ecologists and computer or data scientists can bridge expertise gaps 

and are frequently essential for project success  (Weinstein 2018). Effective project planning 

must explicitly account for computational requirements, potentially exploring options like 

cloud computing resources or shared infrastructure. Importantly, all stages of the research, 

from data acquisition through to analysis and dissemination, must adhere to ethical 

protocols (Wilkinson et al. 2016). This includes ensuring appropriate permissions for data 

collection, implementing secure data storage, and carefully managing the sharing of 

potentially sensitive information, such as precise locations of vulnerable species or graphic 

images depicting specific disease conditions (Morcatty et al. 2024). Careful attention to both 

resource management and ethical conduct is fundamental to the responsible application of 

computer vision in this sensitive field. 

2.7 SUMMARY AND FORWARD LOOK 

This review has provided a foundational overview of the potential for using computer vision 

in wildlife disease surveillance. We have seen that while precedents from human medicine, 
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agriculture, and livestock health demonstrate the considerable capabilities of CV for 

analysing visual signs of disease (Section 0), the successful application to wildlife requires 

careful navigation of unique challenges (Section 2.6). Key opportunities include the potential 

for non-invasive monitoring at large scales, leveraging the vast amounts of available digital 

imagery (Section 2.6.1). However, significant hurdles exist concerning data availability and 

quality, the inherent ambiguity of visual diagnosis in variable field conditions, 

methodological complexities in model development, and practical considerations regarding 

resources and ethics (Section 2.6.2). 

Successfully applying CV effectively to wildlife disease monitoring, therefore, requires more 

than adopting off-the-shelf tools. It necessitates a nuanced, integrated approach that 

addresses these specific challenges. Success hinges on developing targeted data curation 

strategies, selecting appropriate model architectures and workflows, employing robust 

validation methods that consider ecological relevance beyond model accuracy, and fostering 

strong interdisciplinary collaboration. Future advancements, perhaps leveraging the 

capabilities of Vision-Language Models, might even open new avenues for detecting novel 

or unexpected disease signs that have not been explicitly trained for. The groundwork laid in 

this chapter provides the necessary context for the subsequent chapters of this thesis, 

which explore these elements through the development and evaluation of CV tools 

designed for specific wildlife disease case studies. 
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ABSTRACT 

Animal disease surveillance is dependent on early detection for an optimal response to both 

emerging and known pathogens. For wildlife, diseases are often reported ad hoc presenting 

a challenge for both conservation and public health. Images acquired via smartphones, 

camera traps, and open-access websites, however, present an opportunity for non-invasive 

surveillance of diseases with visible signs that could supplement existing, sparse knowledge. 

Here, we quantify the visible signs associated with animal diseases listed on the World 

Organisation for Animal Health (WOAH) animal diseases portal. From a database of 204 

unique infectious diseases, we found that 137 (67.2%) have at least one visible sign. These 

signs were most frequently associated with viral pathogens and mammalian hosts, with 

'lesion' being the most commonly recorded sign. Diseases that spread by direct contact 

were significantly more likely to have visible signs than those transmitted indirectly or by 

vectors. To assess the feasibility of image-based surveillance, we interrogated ‘Flickr’, an 

open access image sharing website and found public images for 74 of the 137 diseases with 

visible signs.  

While we show the potential for image-based disease detection in a range of host-pathogen 

systems, challenges remain in acquiring sufficient number and diversity of images and 

associated metadata for comprehensive spatial and temporal surveillance. Actively 

acquiring images via a camera or sensor networks, or from stakeholder citizen science 

groups, are likely the most fruitful means to acquire sufficient spatiotemporal coverage for 

surveillance. Thereafter, sufficient images could provide an opportunity to train a computer 

vision model for surveillance. These data could enable near real-time feedback and generate 
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novel spatiotemporal data for determining, together with location data, when, where, and 

why disease occurs in animals. 

3.1 INTRODUCTION 
Epizootics cause significant animal welfare issues, lead to population declines, and in wildlife 

can threaten species viability (McCallum 2008). Widespread disease and high mortality are 

obvious conservation concerns, especially when coupled with pervasive environmental 

stressors such as climate change and pollution (Smith et al. 2009). Up to 80% of the range of 

the northern long-eared bat (Myotis septentrionalis) in North America, for example, is at risk 

from white-nose syndrome, with widespread mortality occurring (Cheng et al. 2021). 

Similarly, devil facial tumour disease (DFTD) has spread rapidly throughout the Tasmanian 

devil (Sarcophilus harrisii) population in Australia, causing up to 90% mortality (Jones et al. 

2008b). Infectious diseases that spill over into humans (zoonoses) can yield devastating 

societal health and socio-economic impacts (Morens et al. 2004; Karesh et al. 2012). Over 

70% of emerging human infectious diseases originate from wildlife (Jones et al. 2008a) 

which provides strong motivation for animal disease surveillance. The impact of animal 

disease on conservation, food security, animal welfare and human health therefore renders 

surveillance vital (Dobson et al. 2006; Muneza et al. 2019; Savary et al. 2019). The economic 

incentive for zoonotic surveillance is obvious: the SARS-CoV-2 pandemic resulted in 

estimated economic losses of $14 trillion in the US alone (Walmsley et al. 2021). Despite 

considerable potential for harm and these clear incentives for surveillance, our 

understanding of where and when animal diseases occur, especially within wild species, is 

sporadic and incomplete (Watsa 2020), a gap highlighted in the most recent international 

guidelines on the topic (WOAH and IUCN 2024).  

One promising avenue for closing this surveillance gap is through non-invasive, image-based 

methods. Many infectious diseases produce externally visible signs, which can be captured 

in photographs.  

3.1.1 DISEASE SURVEILLANCE OF ANIMALS 

While global infrastructure for animal disease surveillance exists, it is primarily focused on 

livestock and commercially important species, with comparatively limited surveillance in 

wildlife (WOAH and IUCN 2024). Member countries of the World Organisation for Animal 
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Health (WOAH) have a duty to report ‘listed’ terrestrial and aquatic animal diseases; those 

considered of international concern by WOAH. Reports typically stem from clinical 

surveillance (veterinary observations), syndromic surveillance (systematic analysis of health 

data), ante- and post-mortem inspections (including in slaughterhouses/abattoirs) and 

surveillance of sentinel animals (WOAH 2023). Coordinated pathogen screening is clearly an 

important tool to prevent epizootics/pandemics, but depends on having animals ‘in-hand’ 

and available for inspection, and while this may be relatively straightforward for livestock or 

domestic animals, ‘point of care diagnostics’ remains a significant challenge for wildlife 

(Bora et al. 2022; WOAH and IUCN 2024). 

Surveillance and disease detection in wildlife are typically ad hoc (Phelps et al. 2019; Watsa 

2020) and often reports originate from the general public. Individuals that interact with 

animals, such as hunters, anglers and wildlife enthusiasts, are likely to report disease 

outbreaks or sick animals due to their understanding of what is unusual (Mörner et al. 

2002). Take, for example, the emergence of white nose syndrome, where the pathogen 

itself is often visible on the face and was first noticed by recreational cavers in bat 

hibernacula (Hoyt et al. 2021). Similarly, DFTD causes large lesions, typically on the face, and 

was first detected by a wildlife photographer (Hawkins et al. 2006). These diseases illustrate 

that where signs are visible to the human eye then it is theoretically possible to use image-

based disease detection for surveillance (Figure 3.1).  

 

 



 
 

41  
 

 

Figure 3.1. Photographs from online sources showing wildlife species infected with diseases 

with visible signs. (A) Red fox, Vulpes vulpes, with visible signs of mange. (B) Green sea 

turtle, Chelonia mydas, with visible signs of myxomatosis. (C) Common raven, Corvus corax, 

with visible signs of avian pox. (D) Rabbit, Oryctolagus cuniculus, with visible signs of 

myxomatosis. (E) Limosa harlequin frog, Atelopus limosus, with visible signs of 

chytridiomycosis. (F) Coho salmon, Oncorhynchus kisutch, with visible signs of Saprolegnia 

spp. See Supplementary Material, Chapter 3, for photograph a�ribusons. 

 

3.1.2 IMAGE-BASED INFECTIOUS DISEASE DETECTION IN ANIMALS  

Non-invasive imaging offers a promising avenue for wildlife disease surveillance. Infrared 

thermography (IRT), for example, has previously been used as a non-invasive method to 

measure spatial variation in body surface temperature as a proxy for host health (Schilling et 
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al. 2022). This has been used to successfully detect disease, notably sarcoptic mange 

(Sarcoptes scabiei) that results in heterogenous fur loss and so is associated with heat loss 

(Escobar et al. 2022). Such imaging, however, requires specialist equipment, is labour 

intensive, and disease detection performance is comparable to visual observation (Arenas et 

al. 2002). In contrast, standard photographs offer a simple, versatile method for collecting 

what the latest international guidelines term "non-biological samples" (WOAH and IUCN 

2024). Smartphone images, which often contain valuable spatiotemporal metadata, and 

images from camera traps or public photo-sharing platforms like Flickr, provide a rich source 

of data (Fox et al. 2020; Terry et al. 2020; Edwards et al. 2021). Engaging citizen scientists to 

contribute such images is a form of participatory surveillance that can help overcome 

coverage gaps and detect spatial hotspots, as demonstrated with mange in red foxes 

(Vulpes vulpes) (Scott et al. 2020). Yet, despite available infrastructure, image-based disease 

surveillance in animals remains rare (Schilling et al. 2022). While manual screening is viable 

at small scales, computer vision offers a scalable, cost-effective solution. Overall, this 

approach provides a rapid, non-invasive method to help close surveillance gaps. 

3.1.3 COMPUTER VISION FOR INFECTIOUS DISEASE DETECTION 

Although many ecological studies now use computer vision for species classification 

(Norouzzadeh et al. 2021) and to record species distributions (Beery et al. 2021), few have 

applied it to animal disease detection in the wild. Outside ecology, however, computer 

vision is already used operationally for health and welfare monitoring in managed animal 

systems. In Precision Livestock Farming (Berckmans 2017), commercial vision systems such 

as HerdVision provide automated body condition and mobility scoring (HerdVision 2021). 

Similar camera-based approaches are also used in aquaculture and fisheries, for example to 

support sea-lice monitoring in salmon production (Tidal 2025) and AI-assisted analysis of 

catch imagery for sustainable management (Skirrow 2024). In research settings, the 

relatively small number of existing studies nonetheless shows that computer vision can 

screen large image datasets for health-related signals, motivating further development for 

wildlife disease surveillance (Christin et al. 2019; Jarić et al. 2020; Poulin et al. 2021). For 

example, Park et al. (2007) reported 80-90% identification accuracy for scuticociliates and 

Trichodina spp. in the olive flounder (Paralichthys olivaceus). More recently, Olsen et al. in 

press developed a computer vision pipeline to classify saprolegniasis-like infections in wild 
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salmonids, achieving high performance using images compiled from citizen science 

platforms. In contrast, plant pathology has more broadly adopted computer vision. 

Automated systems for in situ crop disease detection have achieved high accuracy (Mohanty 

et al. 2016; Sladojevic et al. 2016b; Amara et al. 2017; Boulent et al. 2019; Bischoff et al. 

2021), with some studies reporting up to 99% accuracy for multiple diseases across a range 

of plant species (Fuentes et al. 2017; Ferentinos 2018; Bhagwat and Dandawate 2021). 

Medical image analysis is even more advanced, spanning multiple modalities and 

demonstrating diagnostic performance rivalling or surpassing human experts (Esteva et al. 

2017; Nishio et al. 2018; Jain et al. 2021). These successes are largely attributed to 

the abundance of high-quality, well-annotated training images available in these domains. 

The primary challenge for animal disease surveillance, therefore, lies in acquiring sufficient 

images to develop and train similar models. This study represents a first step in that 

direction by quantifying which diseases might be suitable for this approach and assessing 

the current availability of images, providing a roadmap for future work in this area. 

In this study, we quantify this potential by systematically assessing animal diseases of 

international concern for visible signs that could be used for image-based detection. We 

focus on infectious diseases because their capacity for transmission makes them a primary 

target for early detection and large-scale surveillance. Specific aims are to: (1) identify and 

quantify important animal diseases that have visible signs and therefore potential use in 

image-based disease detection; (2) identify general characteristics of diseases and their 

hosts by testing the association between visible signs and metadata on pathogen taxonomy, 

host taxonomy, transmission mode, host context (wildlife or livestock), and zoonotic 

potential; and (3) assess the availability of open-access digital imagery to evaluate the 

feasibility of image-based surveillance for identified diseases. 

3.2 METHODS 

3.2.1 ANIMAL DISEASE DATABASE CONSTRUCTION 

As no single comprehensive database of all animal infectious diseases exists, we first 

compiled and curated a foundational list of infectious diseases from the World Organisation 

for Animal Health animal diseases portal (WOAH, 2020). We selected this source for two 

reasons: first, these diseases are subject to global attention and are typically well-



 
 

44  
 

documented, allowing for the reliable extraction of metadata on clinical signs. Second, these 

diseases were more likely to have publicly available image data, relevant to our aim of 

assessing the potential for image-based surveillance.  

The list of diseases sourced from the WOAH portal (n=206) underwent a three-step curation 

process to establish a consistent naming convention. First, we excluded three non-infectious 

agents (e.g., botulism). Second, we disaggregated broad entries into their constituent 

diseases (e.g., resolving the single entry for ‘Zoonoses transmissible from non-human 

primates’ into 45 specific diseases listed within the WOAH Terrestrial Manual (WOAH 2023), 

of which 23 did not already have entries for mammals in the database), yielding a total of 

250 diseases. Third, we standardised disease names to create a single canonical label for 

each disease (e.g., records for ‘Equine Influenza’ and ‘Equine Influenza, in wildlife’ were 

both mapped to the standardised entity ‘Equine Influenza’). This curation process yielded a 

Master Disease List of 204 unique diseases. 

For each of the 204 diseases in our Master Disease List, we systematically extracted detailed 

information on hosts, pathogens, clinical signs, and transmission to create a Detailed 

Disease-Host Database. Our primary source was the WOAH portal, which we supplemented 

with the Merck Veterinary Manual (Kahn and Line 2005). Where information was 

incomplete, we conducted targeted literature searches on Scopus. To capture the full 

diversity of disease presentation, a separate record was created in the database whenever a 

source provided distinct information for a specific host taxon, causative pathogen, or host 

context (e.g., a specific WOAH entry for wildlife). For example, the single conceptual disease 

‘Toxoplasmosis’ was expanded into four separate records to capture distinct clinical 

information documented for mammals and birds, in both wildlife and general/livestock 

contexts. This detailed extraction process resulted in a database of 295 unique records. The 

full dataset is available at https://doi.org/10.5281/zenodo.17467038. 

3.2.2 HOST AND DISEASE METADATA 

For each of the 295 records, we collected the following metadata. 

Pathogen, transmission and zoonotic potential 
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The pathogen genus and species were recorded. To assess the relationship between visible 

signs and pathogen, each pathogen was assigned to one of seven taxonomic divisions: prion, 

virus, bacterium, protist, fungi, ectoparasite (parasitic arthropods), or helminth. We 

categorised the primary mode of transmission for each disease into one of three groups: 

direct (requiring close or direct contact between an infected and susceptible host), indirect 

(including transmission via fomites, ingestion, or environmental reservoirs), or vector-borne 

(requiring an intermediate organism, typically an arthropod, to transmit the pathogen). 

Zoonotic potential was sourced from the WOAH portal and supplemented by Taylor et al. 

(2001). 

Host data 

Hosts were classified into eight taxonomic groups: molluscs, insects, crustaceans, 

amphibians, reptiles, fish, birds, and mammals. To provide a more nuanced understanding 

of the host context, each disease-host association was further classified into one of three 

categories based on its primary source and relevance to wildlife. The first category, 'WOAH-

designated Wildlife', comprises associations where the disease is formally designated by 

WOAH as being of significant importance to wildlife health and conservation. The second 

category, 'Other Wildlife Associated', includes associations not formally designated by 

WOAH for wildlife but for which a wildlife host was identified through supplementary 

literature sources. All other associations, primarily those concerning domestic animals, were 

classified as ‘Livestock / General’. This classification reflects the host contexts described in 

the sources reviewed; consequently, diseases in the 'Livestock / General' category may also 

affect wildlife. 

Visible signs data 

For each record, clinical signs were first extracted verbatim from the source texts. For 

example, the WOAH technical disease card for Elephant Endotheliotropic Herpesvirus states 

that typical clinical signs include "lethargy, anorexia (...) oedema of the head, neck, trunk, 

and thoracic limbs. Cyanosis of the tip of the tongue (...) and oral ulcers are also seen" 

(Bucko and Gieger 2019). Two researchers (Perkins and Olsen) then independently reviewed 

these textual descriptions to classify each of the 295 records as having either ‘visible’ or 

‘non-visible’ signs. Initial independent agreement was observed for 96.6% of records 
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(n=285). The remaining ten disagreements all concerned diseases where diarrhoea was the 

only potentially visible sign; following discussion, we labelled these as ‘non-visible’. A record 

was classified as ‘visible’ if the text described at least one external, physical sign that would 

be observable on the animal itself. A record was classified as 'non-visible' if the 

signs described were purely behavioural (e.g., ‘lethargy’), were not affixed to the host's 

body (e.g., diarrhoea), or were secondary products (e.g., misshapen eggs). Thus, for the 

EEHV example, descriptions like ‘oedema of the head’, ‘cyanosis’ and ‘oral ulcers’ led to 

a ‘visible’ classification. 

For further analysis, visible signs were grouped into eight categories based on their primary 

visual characteristic. These categories were: external exudate (e.g., nasal discharge, 

excessive mucus production); colour change (e.g., reddening of the body, dullness, 

gangrene); fur/skin/feather change (e.g., ruffled feathers, protruding scales, fin rot, fur loss); 

morphology (e.g., curling of the foot, protruding eyes); swelling/oedema (e.g., swollen 

joints, bloating, enlarged lymph glands); lesion (e.g., haemorrhaging, necrosis, ulcers, 

blisters); anorexia/weight loss (e.g., atrophy of the body); and conjunctivitis (e.g., swollen 

eyes, lachrymation, blepharitis). Applying this framework to the EEHV example, ‘oedema of 

the head’ was classified as swelling/oedema, ‘cyanosis of the tip of the tongue’ as colour 

change, ‘oral ulcers’ as lesion, and the associated ‘anorexia’ as anorexia/weight loss. 

3.2.3 ASSESSING IMAGE AVAILABILITY 

We used the ‘Photosearcher’ package (Fox et al. 2020) in R v4.2.2 (R Core Team 2021) to 

quantify images showing signs of diseases using open access photo sharing website Flickr. 

‘Photosearcher’ relies on appropriate labelling so will only detect diseases that are labelled 

correctly with a text keyword. We use this method as a test bed to reflect the wider 

availability of images across the internet. 

For each disease in our database, we compiled a list of relevant search terms, including the 

consolidated disease name based on the WOAH animal diseases database entry and the 

scientific names of any associated pathogens (see Supplementary Table 1 for a full list). This 

search did not separate different taxa or wildlife versus livestock. The total image count for 

each disease was calculated by summing the search results from all its associated terms. Our 

search included all images uploaded to Flickr between its launch (01/01/2004) and the 
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search date (22/01/2026), but with no spatial filters. To reduce inflation from ambiguous or 

widely used terms, we excluded a small set of search terms that returned large volumes of 

clearly irrelevant content on brief manual inspection (MERS, glanders, plague and mange). 

3.2.4 DATASET ANALYSIS 

For statistical analysis, the 295 records from the Detailed Disease-Host Database were 

consolidated to our primary analytical unit: the unique disease-host association. This 

consolidation, which yielded a final dataset of 250 unique analytical units, was done to 

ensure that each data point in the model was statistically independent. When a disease-host 

pair had multiple entries (e.g., from different sources), we aggregated their metadata into a 

single summary record. 

To investigate factors associated with the presence of visible signs, we fitted a binomial 

Generalised Linear Model (GLM). The binary response variable was the presence/absence 

(1/0) of visible signs. The model included the following predictors: host taxa (8-level factor), 

pathogen class (7-level factor), zoonotic (binary), wildlife disease (binary), WOAH-

designated Wildlife (binary), and transmission routes. As a disease can have multiple 

transmission routes, we included direct, indirect, and vector transmission as separate binary 

predictors. We set 'mammals' and 'virus' as the reference levels for host taxa and pathogen 

class, respectively. We verified model assumptions using diagnostic plots from the 

'performance' package (Lüdecke et al. 2021). To determine the overall significance of each 

predictor, we performed a sequential Analysis of Deviance (Type I) using a Chi-squared test. 

We then used the 'emmeans' package (Lenth 2024) to conduct post-hoc pairwise 

comparisons. All statistical analyses were done in R v4.3.2 (R Core Team 2021), using a 

significance level of 0.05. 

3.3 RESULTS 
We found that 137 (67.2%) of the 204 infectious diseases listed in the World Organisation 

for Animal Health animal diseases portal have at least one visible sign. However, because 

many pathogens are generalists, a single disease can manifest differently in different hosts. 

Of the 250 disease-host associations, 162 (64.8%) had visible signs. Of these, 58 (35.8%) 

presented with a single category of sign, while the remaining 104 presented with two or 

more, with some showing as many as six distinct sign categories (Figure 3.2). After 
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consolidating all signs for each unique disease-host unit, the three most common categories 

of clinical signs were lesion (n=80), swelling/oedema (n=58), and colour change (n=58) 

(Figure 3.2).  

 

 

Figure 3.2. The frequency distribuson of diseases with visible signs (lev) and the type of 

visible signs (right) using data from the World Organisason for Animal Health animal 

diseases portal and addisonal sources.  

 

Among the 162 disease-host associations with visible signs, viruses were the most common 

pathogen (n=86), followed by bacteria (n=37) and protists (n=19). Mammals were the most 

common host taxa (n=89), followed by birds (n=29) (Figure 3.3). Of these 162 disease-host 

associations, 79 (48.8%) involved a ‘WOAH listed’ disease. These visible associations were 

most commonly found in hosts categorised as 'Other Wildlife Associated' (n=94), followed 

by 'WOAH-designated Wildlife' (n=44), and 'Livestock / General' (n=24). Notably, of the 70 

total associations involving 'WOAH-designated Wildlife', 44 (62.9%) had visible signs (Figure 

3.3). Of the 137 unique diseases with visible signs, 55 (40.1%) are known to be zoonotic, 

compared to 31 (46.3%) of the 67 unique diseases without visible signs. 
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Figure 3.3. The number of diseases with visible signs, host category, and the number of 

diseases with non-visible signs according to host taxa (top) and pathogen class (middle), and 

World Organisason for Animal Health (WOAH) listed status (bo�om) using data from the 

WOAH animal diseases portal and addisonal sources. 

 

The majority of diseases in the WOAH database were viruses associated with mammals, of 

which over half had visible signs (Figure 3.4). Of all predictors tested, only direct 

transmission was significantly associated with the presence of visible signs (χ² = 7.72, df = 1, 

p = 0.005). We found no significant association for host taxonomic group (χ² = 9.33, df = 7, p 

= 0.230), pathogen class (χ² = 7.93, df = 6, p = 0.243), zoonotic potential (χ² = 1.58, df = 1, p = 
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0.209), or whether a disease affects wildlife (affects wildlife: χ² = 2.41, df = 1, p = 0.120; 

WOAH_wild: χ² = 0.22, df = 1, p = 0.638). 

 

 

Figure 3.4. Co-occurrence and frequency of diseases associated with host, pathogen type 

and visible signs using data obtained from the World Organisason for Animal Health animal 

diseases portal. 

 

These results confirmed that diseases with a direct transmission route were significantly more 

likely to present with visible signs (Estimate = 0.94, p = 0.004). No other individual predictor 

level was statistically significant, although diseases in crustaceans showed a marginal, non-

significant trend towards being more likely to have visible signs compared to the reference 

taxon, mammals (Estimate = 2.05, p = 0.063). Full model coefficients are provided in 

Supplementary Table 2. Post-hoc pairwise comparisons for both host taxa (Supplementary 
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Table 3; Supplementary Figure 2) and pathogen class (Supplementary Table 4; Supplementary 

Figure 3) confirmed that no single pair of levels was significantly different from another. 

3.3.1 ASSESSING IMAGE AVAILABILITY 

To quantify online image availability, we searched Flickr for the 137 diseases identified as 

presenting with visible signs. We found images for 74 of them, although the number of 

images found for each disease varied greatly. Six diseases returned over 1,000 images, 20 

had between 100 and 999 images, 18 had between 10 and 99, and the remaining 30 had 

fewer than 10 images (see Figure 3.5, Supplementary Table 5). Because Flickr counts are 

keyword-based and some terms were dominated by non-disease content on brief manual 

inspection, we excluded a small set of ambiguous terms (MERS, glanders, plague and 

mange) from the summary; in the filtered results, diseases with the most images included 

malaria (n=5,018), anthrax (n=3,789) and pox virus infections (n=3,147). 

 

 

Figure 3.5. The top 10 diseases with the highest image availability on Flickr, out of the 137 

diseases from the World Organisason for Animal Health animal diseases portal idensfied as 
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having visible signs. The number of images for each disease is based on a search conducted 

on 22 January 2026. 

 

3.4 DISCUSSION 
Our study shows that a substantial proportion (64.8%) of the 250 disease-host associations 

of animals that we evaluated have visible signs of infection, confirming a broad potential for 

image-based surveillance. These signs were most frequently found in diseases of mammals 

caused by viruses, and the most common signs were lesions, colour changes, and swelling. 

This initial classification provides a foundation for identifying suitable diseases and visual 

characteristics that could be targeted by automated detection models. 

Our statistical model revealed that after accounting for host and pathogen type, the only 

significant predictor of sign visibility was transmission mode. This link between direct 

transmission and visible signs aligns with the evolutionary framework of "transmission-

symptom" co-evolution (Antonovics et al. 2017). The theory posits that for pathogens 

reliant on direct contact, external signs are not just by-products of infection but can evolve 

to be integral to the transmission process itself. This may occur because signs that facilitate 

shedding, such as lesions, increase the probability of a pathogen transferring to a new host. 

Our data support this: two of the most frequent signs in directly transmitted diseases were 

lesions and external exudates. Such signs can create a direct physical pathway for a 

pathogen to exit an infected host and enter a susceptible one, for example via infectious 

fluid from a sore. In this context, the visible sign could be a key component of the 

pathogen's transmission route. 

Our model found no significant link between visible signs and pathogen class, host taxa, or 

zoonotic potential. These results, however, should be interpreted cautiously. Because we 

used the disease-host pair as our analytical unit, some pathogen groups, particularly 

generalist viruses, were over-represented in the dataset, which may have obscured weaker 

underlying associations. 
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While images offer opportunities for disease surveillance, the success of automated 

detection depends not only on how conspicuous a sign is, but also on the diversity of its 

presentation. Signs vary in appearance across hosts, individuals, stages of infection, and 

environmental conditions. Our model showed no significant overall effect of host taxa but, 

for some, the sample size was probably too small e.g. just 13 crustacean specific diseases. In 

early-stage infections, visible signs such as slight fur thinning or faint skin discolouration may 

be too subtle to detect reliably. Signs like fur loss from mange are often stark and manual 

image-based disease detection has worked well (Scott et al. 2020; Murray et al. 2021). 

Other signs, however, like minor texture changes or slight swelling, can be subtle and easily 

missed. Although ‘external exudate’ was a common sign, and might seem visually subtle, it 

has been used to detect Foot and Mouth disease from images of ‘ocular discharge’ (Hofstra 

et al. 2023). Regardless, image-based surveillance will likely perform best for diseases with 

bold, unmistakable visual hallmarks. 

Most diseases in our study are not pathognomonic, so an image with visible signs cannot 

provide a definitive diagnosis. They can, however, be used for disease surveillance, defined 

by WOAH and IUCN (2024) as observing clinical signs to detect potential disease events. 

Using images as non-biological samples is a non-invasive method for health assessment, 

distinct from pathogen surveillance which requires collecting biological samples from 

captured animals. Image-based methods may be less sensitive for detecting subtle, early-

stage infections, but they offer a low-cost, scalable way to screen for disease where no 

surveillance previously existed. This approach can also be used to assess historic disease 

emergence or outbreaks. For example, Elmer et al. (2019) used archival images from Google 

to trace the historical occurrence of black spot syndrome in Caribbean reef fishes back to 

1985, demonstrating the value of public image repositories for long-term disease 

surveillance. The methods for acquiring these non-biological samples align with established 

surveillance strategies. Using public websites like Flickr or iNaturalist is a form of passive and 

participatory surveillance, which relies on opportunistic reports from citizen scientists to 

detect mortality events and unusual signs (Lawson et al. 2015). In contrast, using camera-

trap networks (e.g. Ringwaldt et al. 2025) or dedicated video transects (e.g. de Wit and 

Johnson 2024) to monitor specific diseases is a form of active (targeted) surveillance. 
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A key part of image-based surveillance is acquiring the images. In a livestock setting, 

Precision Livestock Farming is growing the capability to collect many images for real-time 

health monitoring (Berckmans 2017). The commercial aquaculture and fisheries sectors also 

use automated imaging to monitor sea lice and track wild fish stocks (Skirrow 2024; Tidal 

2025). Acquiring quality images in wildlife settings provides other challenges, but aligns with 

a broader trend towards non-invasive methods in wildlife health research (Schilling et al. 

2022). Here, we evaluated Flickr as a proxy for open-access imagery and found data for over 

half of the diseases, affirming the potential of public photo-sharing platforms for filling in 

gaps in disease surveillance. Our search returned substantial image counts for several 

diseases with more specific terminology (e.g., anthrax, avian influenza, foot and mouth 

disease, and chytridiomycosis; Supplementary Table 5), suggesting that for some conditions 

sufficient public imagery may already exist to support model development. However, term 

choice matters: broad or ambiguous search terms can return large volumes of mixed-

content imagery. For example, the term “mange” returned 42,260 images, but a brief 

manual check suggested that many results were off-target, implying that such datasets 

would require substantial verification and curation. A practical way forward is to use more 

specific, context-rich queries (e.g., combining host and disease terms such as “fox” + 

“mange”), which yields a more manageable candidate set. However, even with improved 

queries, verification remains a standard requirement in wildlife disease research. For 

example, Scott et al. (2020) manually analysed images sent in by the public to study mange, 

while Ringwaldt et al. (2025) used computer vision on dedicated camera trap images. 

Similarly, Szentivanyi and Vincze (2022) manually screened images from iNaturalist to track 

toad myiasis. 

Future image-based disease surveillance requires integrating these strategies within a One 

Health framework. Further work should focus on creating better analytical pipelines for 

public datasets and encouraging more targeted data collection. For example, stakeholder 

groups like recreational anglers could help build expertly labelled training sets for fish 

diseases. Existing ecological camera-trap networks could also be repurposed for health 

monitoring. As accessible computer vision pipelines emerge (e.g. Blair et al. 2024; Brook et 

al. 2025) these methods become more feasible for a wider range of users. Combining image 
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data with other metadata, such as geolocation and environmental variables, can generate 

data to better inform One Health actions. 

3.5 CONCLUSION 
Our findings confirm that a majority of animal diseases in the WOAH animal diseases 

database present with externally visible signs, establishing a broad potential for image-

based surveillance. Realising this potential requires strategies that navigate the complexities 

of disease ecology and the inherent noise in public image datasets. Our work aligns with the 

principle that diseases with visible signs are ideal targets for citizen science (Lawson et al. 

2015) and a wider trend towards non-invasive sampling in wildlife research (Schilling et al. 

2022). While not a replacement for traditional diagnostics, these methods provide a 

valuable tool for scalable, low-cost screening. For many diseases in remote settings where 

surveillance is sparse, this approach can provide a mechanism for detection where 

previously there was none. By combining proactive data collection with advanced computer 

vision and integrating these efforts into existing One Health frameworks, image-driven tools 

can improve near-real-time disease monitoring and contribute to more timely interventions. 
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Abstract 

Online digital images are a large and growing data source that can supplement traditional 

ecological monitoring. Here we extend the concept of the ‘extended specimen’, traditionally 

applied to physical specimens with  associated data network, to include digital images. 

Photographs reflect species occurrence, but we propose further ecological utility, such as 

health indicators. Here, we use fish as a model species to assess image availability and 

‘extendibility’. Fish are globally important with economic and cultural value, and many 

images are shared online by anglers, making them a good case study. We systematically 

assessed quantity, quality, and accessibility of ~70,000 salmonid images from four major 

online repositories (iNaturalist, Flickr, GBIF, Wikimedia Commons). iNaturalist contributed 

the most verified salmonid images with robust spatial and temporal metadata, followed by 

GBIF for metadata completeness. Species-level identification was common, but reliability 

varied; iNaturalist and GBIF offer structured verification, whereas taxonomy in Flickr and 

Wikimedia Commons was derived from image search terms. We found strong support for 

health monitoring, with visible signs of disease or damage in 17.4% of an annotated subset 

of images.  However, we  identified key limitations for ‘extended’ analyses; restrictive 

licensing hindered data reuse, and a lack of standardised size references made estimating 

fish size impractical. This demonstrates the potential for opportunistic surveillance and that 

repositories require evaluation of characteristics including data quality, licensing, and 

taxonomic verification. Nevertheless, leveraging the distinct strengths of diverse platforms, 

including using images with incomplete metadata for AI model training, is critical to 

maximise ‘extended image’ ecological insights. 

4.1 INTRODUCTION 
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4.1.1 DIGITAL IMAGES AS AN ‘EXTENDED SPECIMEN’  

The current global biodiversity crisis has severe implications for environmental and societal 

wellbeing. Understanding species distributions is critical for biodiversity and environmental 

management to mitigate these impacts (Pecl et al. 2017; Pyšek et al. 2020). Traditional 

monitoring is, however, resource-constrained (Yoccoz et al. 2001; Lindenmayer and Likens 

2010; Amano et al. 2016), with systematic data often undermined by spatial, temporal, and 

taxonomic gaps (Isaac and Pocock 2015; Speed et al. 2018). Here, we propose the ‘extended 

image’ framework, harnessing massive image databases as a step-change to address this. 

Digital technology has greatly increased ecological data availability, with citizen science in 

particular collating image-based records at unprecedented scales (Nazir and Kaleem 2021; 

Depauw et al. 2022). Dedicated platforms like eBird (eBird.org) and iNaturalist 

(iNaturalist.org) have accumulated vast numbers of biodiversity records, many with 

photographic evidence. In addition to these structured programmes, a large repository of 

images exists on other online platforms, uploaded without specific scientific intent. The use 

of such digital sources, generated for other purposes, to quantify ecological patterns and 

processes is described as iEcology (Jarić et al. 2020). Within this broader iEcology space, 

‘passive citizen science’  (see Edwards et al. 2021) specifically leverages social media content 

that is unconnected to any particular citizen science programme, treating everyday uploads 

as an untapped dataset for studying species trends, distributions, behaviour, and/or 

phenology (Vardi et al. 2024). This parallels with the natural history concept of the 

‘extended specimen’, where physical specimens are anchors for a rich network of associated 

digital data (Webster 2017; Lendemer et al. 2020). Building on this, the ‘Digital Extended 

Specimen’ (DES) framework aims to formalise these as interconnected, FAIR (Findable, 

Accessible, Interoperable, and Reusable) digital objects on the internet (Hardisty et al. 

2022). 

Analogously, we can conceptualise the ‘extended image’ where all associated data are 

linked to the image itself, rather than to a physical specimen. Online photographs and 

videos are not merely species occurrence records but potential repositories of diverse 

ancillary data such as behaviour, interactions, or health status. For example, species 

distribution data from Flickr closely mirrors National Biodiversity Network Atlas records 

(Edwards et al. 2021), and online photos enabled the rediscovery of a snake species 
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previously thought extinct (Durso et al. 2021). Plant-pollinator interactions have been 

extrapolated from citizen science wasp imagery (Pernat et al. 2024), YouTube videos 

opportunistically revealed rare thanatological behaviours in Asian elephants (Elephas 

maximus) (Pokharel et al. 2022) and online images have been used to document terrestrial 

hermit crabs using artificial shells (Jagiello et al. 2024). The ‘extended image’ is also relevant 

for wildlife health surveillance; the severity and drivers of Black Spot Syndrome in ocean 

surgeonfish (Acanthurus tractus) have been investigated from videos (de Wit and Johnson 

2024), while photographs from iNaturalist and Flickr can track nasal toad myiasis 

(Szentivanyi and Vincze 2022). Applying these approaches to fish disease surveillance is 

further explored in our own work (Olsen et al. submitted; Chapter 5). 

4.1.2 APPLYING THE ‘EXTENDED IMAGE’: A SALMONID CASE STUDY 

Fish are an ideal taxonomic group to explore extended image potential: global recreational 

anglers number hundreds of millions (Arlinghaus et al. 2020), and many using digital tools to 

share catch information generating a substantial repository of images with associated 

ecological and social insights (Monkman et al. 2018; Skov et al. 2021; Lennox et al. 2022). 

Salmonids warrant particular research attention, as keystone species and bioindicators 

(Naiman et al. 2002; Schindler et al. 2003) with substantial economic value and deep 

cultural importance, yet increasingly under environmental pressures (Reid et al. 2019). The 

value of the ‘extended image’ is pertinent for fish health, as externally visible disease signs 

are common (Noga 2010) and could be captured in publicly available images. Indeed, 

computer vision (CV) for monitoring salmon populations is being explored (e.g. Atlas et al. 

2023; Olsen et al. in review). Since infectious diseases threaten both wild and farmed 

salmonid populations (Peeler et al. 2011; Thorstad et al. 2021), disease monitoring 

through scalable image analysis could provide critical policy and risk mitigation insights 

(Olsen et al. in review). Understanding fish distribution and health, therefore, 

has conservation, socio-economic, and food security relevance (Lynch et al. 2016; FAO 

2020). 

The value of online images for biodiversity monitoring is recognised (Lynch et al. 2016; FAO 

2020), yet no systematic assessment has evaluated availability, quality, or accessibility of 

fish images across multiple platforms for comprehensive ecological analysis, i.e. 

‘extendibility’. We therefore aimed to address this knowledge gap using salmonid images 
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from four major open-access platforms. We conducted a systematic assessment of temporal 

patterns, geographical coverage, taxonomic reliability, licensing restrictions, and the 

prevalence of visible signs of disease or damage. Examining both structured citizen science 

platforms and informal image-sharing websites, we aimed to identify strengths and 

limitations of different data sources to guide researchers using online images as an 

ecological tool. We hypothesised that online platforms would yield substantial 

and geographically diverse salmonid image datasets. We further predicted that these would 

be suitable for addressing ecological questions regarding distribution, seasonal and annual 

occurrence patterns, and health. 

4.2 METHODS 

4.2.1 DATA SOURCE DESCRIPTIONS  

Wildlife images are available from many sources, including social media feeds, angler fora, 

and institutional archives. For this study, however, we focused on four major open-access 

platforms designed for broad image sharing and/or biodiversity data aggregation: iNaturalist 

(inaturalist.org), GBIF (gbif.org), Wikimedia Commons (commons.wikimedia.org), and Flickr 

(flickr.com). These were selected for their high expected volume of relevant images and the 

availability of metadata, which is often removed on general social media platforms  (Steidl 

2016). These metadata are essential for developing the ‘extended image’ for ecological 

analysis. 

iNaturalist is a citizen science platform with over 260 million observations 

from approximately 9 million users as of July 2025. GBIF (Global Biodiversity Information 

Facility) aggregates research data, with over 3.1 billion occurrences and 239 million images. 

Wikimedia Commons contains over 123 million freely usable media files. Flickr is a photo-

sharing website hosting an estimated 10 billion images and is popular for wildlife 

photography. Since 2019, Flickr has limited free accounts to 1,000 photos, which may affect 

the availability of older content (Gartenberg 2018). For platforms without taxonomic 

organisation (Flickr and Wikimedia), scientific and common names was compiled by 

integrating data from FishBase, FishTreeOfLife, and NCBI. Common names in English were 

sourced from NCBI, FishBase, and iNaturalist (Supplementary Table 6). 
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We also originally considered other image sources. Previous research have used images 

from platforms like X (formerly Twitter) and Facebook (Daume 2016; Durso et al. 2021) but 

ultimately these were excluded due to API restrictions and subscription fees, which create 

significant financial and technical barriers. In addition, these platforms remove EXIF 

data from uploaded images restricting their value in ecology. CalPhotos, with 188,152 

animal images, was also excluded due to the absence of an API and requirements for 

individual image download permissions. 

4.2.2 DATA ACQUISITION, VERIFICATION, AND INITIAL DATASET COMPILATION 

We collected images and metadata (e.g., date, location, user-provided tags and 

descriptions, species identification, image licensing information, EXIF data) for the Family 

Salmonidae from the selected platforms between December 2023 and February 2024. All 

data acquisition and processing scripts were run using Python (v3.11.7) unless otherwise 

specified. 

For iNaturalist, we downloaded metadata files from the ‘iNaturalist Licensed Observation 

Images’ dataset on 4 December 2023 using the AWS Command Line Interface. Using pandas 

(v1.5.3) in Python, we filtered for observations classified as Salmonidae (taxon_id = 47520) 

or lower taxonomic levels, which returned 49,040 unique image URLs. Of these, 40,569 

were "Research Grade", indicating community consensus on the species identification for an 

observation with date and coordinates. These images were downloaded on 12 December 

2023 using the multiprocess package (v0.70.15); six images were unavailable due to removal 

from the platform since the metadata download. 

From GBIF, we searched using the following filters: BasisOfRecord is Human Observation", 

"MediaType is Image", "OccurrenceStatus is Present", and "TaxonKey is Salmonidae". 

To avoid duplication, we excluded the 94.5% of records that originated from iNaturalist. This 

filtering resulted in a Darwin Core Archive containing 1,843 unique images from other 

sources such as museum collections, which were subsequently downloaded using the gbif-dl 

package (v0.1.1) in Python (v3.9.18). 
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Using an adapted R script from Marshall et al. (2020) , we queried our compiled list of 

salmonid names (Supplementary Table 6) to retrieve 183 unique images from Wikimedia 

Commons via Python’s urllib3 (v1.26.16). 

For Flickr, we queried the API on 12 December 2023 using the flickrapi package (v2.4.0) in 

Python. As the platform lacks formal taxonomic identification, we searched image titles, 

descriptions, and user-supplied tags using a curated list of target names (see Supplementary 

Table 6). 

The search query was refined through preliminary testing to remove unproductive terms. 

For example, the term ‘Peled’ was excluded as it returned images of the footballer Pelé but 

no relevant images of the fish, Coregonus peled. The final, refined list of 43 search terms 

yielded 19,610 licensed images. To remove exact digital duplicates arising from multiple 

user uploads or tags, we generated a unique SHA-256 hash for each image file using 

Python’s Hashlib library. This deduplication resulted in 18,101 unique images, although this 

method does not account for near-duplicates such as sequential photographs from a single 

event. When a unique image had multiple metadata records, we consolidated them by 

retaining the record with the highest location accuracy and the earliest available date. 

The combined dataset comprised 69,167 unique images. However, the images from Flickr 

and Wikimedia Commons still required manual verification. This was necessary to filter 

results from ambiguous search terms that, unlike 'Peled', did yield a mixture of relevant and 

irrelevant images. For example, a search for ‘Grayling’ returned images of the target fish 

(Thymallus spp.) but also the non-target Grayling butterfly (Hipparchia semele). An initial sift 

of the 18,284 images from Flickr and Wikimedia was performed by two annotators to 

remove images that were obviously not fish. Following this, 9,773 images were evaluated in 

detail on Labelbox by at least two annotators, who assessed for the presence of a fish and 

confirmed it as a salmonid. We excluded images of cartoons, drawings, prepared food, 

or fossils (see Figure 4.1 for examples of included and excluded images). This process 

verified 91 of 183 images from Wikimedia Commons and 6,869 of 18,101 images from Flickr 

as suitable for the final dataset. 

 



 
 

63  
 

 

Figure 4.1. Examples of image search results highlighsng classificason challenges. (A) 

Atlansc salmon (Salmo salar). (B) T-shirt with salmon design. (C) Arcsc grayling (Thymallus 

arcDcus). (D) False posisve: Grayling, a bu�erfly species, correctly labelled but incorrectly 

returned in search for salmonids due to taxonomic name overlap. Image credits: (A) “Atlansc 

Salmon”, © E. Peter Steenstra/USFWS, Public Domain;  (B) “Student-made Atlansc salmon T-

shirts”, © Gillian Ball / USFWS, Public Domain; (C) “The next generason's parents?”, © 

USFWS Mountain-Prairie, some rights reserved (CC BY); “Tree Grayling. Neohypparchia 

staDlinus”, © gailhampshire, some rights reserved (CC BY) 

 

4.2.3 METADATA CONSOLIDATION 

To enable robust cross-platform analysis, we standardised key metadata fields across all 

sources, as detailed in Supplementary Table 7. For iNaturalist and GBIF, 

taxonomic classification was taken directly from the metadata fields provided in the 

downloaded datasets. For Wikimedia Commons and Flickr, taxonomic information was 

assigned based on the search term used to download the image; if an image was 

downloaded under multiple terms, the lowest available taxonomic level was assigned. 

Where images were downloaded using a common name (e.g., “European grayling”), the 

corresponding scientific name and taxonomic level were determined using Supplementary 

Table 6. 
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Quality indicators were harmonised under a standardised 'quality' column: iNaturalist 

provided structured quality grades, GBIF included an ‘identificationVerificationStatus’ field, 

and Flickr and Wikimedia Commons relied on manual verification labels. Spatial information 

was standardised under 'longitude', 'latitude', and 'location_accuracy'. Flickr provided 

coordinate data with an accuracy scale, while iNaturalist and GBIF expressed uncertainty as 

a radius in metres. Wikimedia Commons generally lacked spatial metadata. Temporal data 

were harmonised under a single 'date' field, drawing from observation, upload, or EXIF 

dates. 

Licensing information was mapped to ten standard categories to ensure consistent tracking 

of usage rights. These included All Rights Reserved, Public Domain, Government Work, 

Unknown, and six Creative Commons (CC) variants (CC BY, CC-BY-SA, CC BY-ND, CC BY-NC, 

CC BY-NC-SA and CC BY-NC-ND). The CC licenses specify different permissions, such as 

restricting for-profit use (-NC), preventing modifications (-ND), or requiring derivative works 

to be shared under the same license (-SA). Data provenance was maintained by preserving 

each image’s unique source identifier and repository of origin. In addition to these 

standardised fields, GBIF provided the richest ecological metadata through the Darwin Core 

standard. This included fields such as 'habitat', 'samplingProtocol', 'lifeStage', 'behaviour', 

'establishmentMeans', and 'organismQuantity'. Further contextual information, such as field 

notes, taxonomic details, and environmental parameters (e.g., 

'minimumDistanceAboveSurfaceInMeters'), was also available for some records. These 

additional fields were retained for reference and potential future analyses. 

4.2.4 DATASET CHARACTERISATION: IMAGE QUALITY AND LICENSING 

Image Quality Assessment 

Image Quality Assessment (IQA) models are computational tools designed to predict the 

perceived quality of an image. No-reference (or "blind") IQA models operate solely on the 

input image, whereas full-reference models require a comparison to a pristine reference 

image (Ding et al. 2021). To evaluate the quality of images collected for this study, 

we applied three established no-reference methods: blur detection (Pech-Pacheco et al. 

2000), BRISQUE (Mittal et al. 2012), and NIQE (Mittal et al. 2013). We selected these 

methods to provide a comprehensive characterisation of the dataset. Blur detection 
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specifically measures image sharpness, which is critical for the visual identification of 

diagnostic features. BRISQUE and NIQE assess overall perceptual quality and are sensitive to 

a wide spectrum of distortions, including noise, compression artefacts, and other deviations 

from natural scene statistics. 

Blur scores were calculated using the Laplacian variance method, which quantifies 

sharpness by computing the variance of the image's Laplacian operator. BRISQUE scores 

were obtained using the QualityBRISQUE class from the OpenCV library (opencv-contrib-

python 4.9.0.80). NIQE scores were calculated using a publicly available Python 

implementation which also relies on OpenCV. Notably, this implementation of NIQE requires 

a minimum image resolution of 192 × 192 pixels due to its patch-based analysis. 

Because IQA metrics were non-normally distributed and sample sizes were highly 

unbalanced among platforms, we compared metric distributions among repositories using 

Kruskal–Wallis rank-sum tests and reported epsilon-squared () as an effect size. Where 

global tests were significant, we used pairwise Mann–Whitney U tests with Holm correction 

for multiple comparisons and reported rank-biserial correlation as an effect size. NIQE 

scores could not be calculated for a small number of images (<0.3%) that did not meet 

minimum requirements (e.g. resolution constraints), and these were excluded from NIQE-

specific tests. 

License Information Analysis 

To assess the reusability of the compiled salmonid dataset, we analysed the distribution of 

image licenses. This analysis is essential as license agreements dictate how images can be 

used, reproduced, modified, and shared for research, including in publications and for 

training computational models. Our analysis categorised licenses based on their restrictions; 

for example, ‘All Rights Reserved’ typically prohibits reuse without explicit permission from 

the copyright holder. We analysed the license distribution across all source platforms for 

verified salmonid images. This approach was designed to quantify the dataset’s potential for 

scientific sharing and reuse, aligning with best practices for data stewardship and addressing 

known challenges in citizen science data openness (Groom et al. 2017).  

4.2.5 ANALYSIS OF SPATIAL AND TEMPORAL PATTERNS 
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Location Information Analysis 

The spatial distribution of verified salmonid observations was visualised using hexagonal 

binning. The visualisation included all images of salmonids with coordinate data, which were 

drawn from all sources except Wikimedia Commons as it generally lacks location-specific 

metadata. Location uncertainty was recorded differently across platforms. Flickr uses a 16-

point accuracy scale ranging from 1 (world level) to 16 (street level), with intermediate 

values representing broader regions (e.g., country at level ~3, city at level ~11). Notably, 

Flickr defaults to the highest accuracy (level 16) when a user does not specify a value. In 

contrast, iNaturalist and GBIF express uncertainty as a radius in metres, defining the circular 

area in which the observation occurred. 

Datetime Information Analysis 

The temporal distribution of salmonid observations was analysed across the four image 

repositories. To ensure data quality, observations were filtered to event dates between 1 

January 1900 and 14 December 2023, which removed five records (<0.01%) with apparent 

data entry errors. Following manual inspection, a small cluster of Flickr images dated to 

1980 and attributed to two specific users were also identified as clear outliers and removed. 

We assessed annual trends by tracking the number of observations per year and evaluated 

seasonal patterns by aggregating observations by month across all years. To statistically 

support seasonal descriptions, we tested (i) whether monthly observations deviated from a 

uniform distribution using a Chi-square goodness-of-fit test (overall and per platform), and 

(ii) whether month-by-platform patterns differed among repositories using a Chi-square test 

of independence; we reported Cramér’s V as an effect size and inspected standardised 

residuals to identify months contributing most strongly to differences. 

4.2.6 ANALYSIS OF TAXONOMIC COMPOSITION  

We analysed the taxonomic composition of the verified salmonid observations using 

Python. The taxonomic resolution was assessed across eight hierarchical levels (family, 

subfamily, genus, species, hybrid, subspecies, variety, and form), and the relative proportion 

of observations at each level was calculated for each data source. For a more detailed 

analysis, observations were organised into the three salmonid subfamilies (Coregoninae, 
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Salmoninae, and Thymallinae), with each genus assigned to its subfamily based on 

established taxonomic classifications.  

4.2.7 IMAGE CONTENT ANNOTATION: SIZE AND HEALTH INDICATORS 

We annotated a subset of 5,667 verified salmonid images (11.5% of the total) to check for 

signs of disease or damage and for objects to estimate size. We selected this subset 

using stratified random sampling by data source and the lowest available taxonomic 

classification of genus or species to represent the different platforms and taxa. This mixed-

level approach ensured the inclusion of images where species-level identification was not 

possible, which is a frequent occurrence in images of diseased or damaged fish. For this 

assessment, we sampled all verified salmonid images from Flickr, Wikimedia and GBIF. We 

sampled all iNaturalist images regardless of their quality grade. We did this because fish 

with visible disease or damage can be harder to identify to species level, and excluding 

images that were not 'Research Grade' could create a selection bias. Two annotators 

independently examined the image subset in Labelbox. To check for disease or damage, 

they recorded visible signs such as rashes, discolouration, parasites, growths, cuts, or 

wounds. We recorded an image as positive if any fish within it showed these signs. To find 

objects for size estimation, the annotators recorded standard references like rulers or coins 

but ignored non-standard objects like hands or fishing rods. We excluded images from the 

final analysis if poor quality or obstruction meant we could not reliably assess them. 

4.3 RESULTS 

4.3.1 DATASET OVERVIEW: IMAGE QUANTITY, QUALITY, AND LICENSING 

Our cross-platform search and filtering process yielded a final dataset of 49,372 verified 

salmonid images (Table 4.1). This dataset was distilled from an initial collection of 69,167 

unique, deduplicated images. The verification pipeline was essential, removing 10,711 

entirely irrelevant (non-fish) images and a further 9,084 images of other fish species. This 

highlights a key challenge of using platforms without strict taxonomic controls. The 

composition and metadata of the final dataset varied significantly between platforms. 

iNaturalist was the primary contributor, providing the vast majority of verified salmonid 

images (40,569) with high-quality taxonomic data. In contrast, Flickr provided the highest 
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resolution images (median width 2560px) but had poor coverage for location data. GBIF 

offered the most complete metadata, with 100% of its images having date, time, and 

location information, though its images were the lowest resolution (median width 1000px). 

 

Table 4.1. Summary of image counts and metadata availability across repositories. The table 

shows the number of images at each stage of the data collecson and filtering pipeline. 

Columns illustrate the progression from inisal downloads ('Total images'), through 

deduplicason ('Unique images'), to manual verificason ('Fish images' and 'Salmonid 

images'). * The 'Fish images' and 'Salmonid images' counts are subsets of the 'Unique 

images' total. ** All subsequent metadata and dimension stassscs are calculated from the 

final 'Salmonid images' set. 

 

The quality of salmonid images differed among repositories when assessed using three no-

reference IQA metrics (Figure 4.2). Median blur scores (Laplacian variance; higher values 

indicate sharper images) ranged from 199.35 (iNaturalist) to 322.35 (GBIF), with Flickr 

(216.20) and Wikimedia Commons (231.57) intermediate (Figure 4.2a). Median BRISQUE 

scores suggested slightly better perceptual quality in GBIF (20.84) than in 

Source Total 

images  

Unique 

images  

Fish 

images
* 

Salmonid 

images* 

With 

Datetime** 

With 

location** 

Median 

image 

width [px]  

(IQR)** 

Median 

image 

height [px] 

(IQR)** 

iNaturalist 49,057 49,040 49,040 40,569 40,056 40,568 1861  

(1536-

2048) 

1536  

(1365-

2048) 

Flickr 19,610 18,101 7,479 6,869 6,865 1,211 2560 

(1181-

3870) 

1944  

(890-2848) 

GBIF 1,843 1,843 1,843 1,843 1,843 1,843 1000  

(800-1280) 

752  

(600-1054) 

Wikimedia 

Commons 

183 183 94 91 54 0 1600  

(800-2303) 

965  

(538-1732) 

Total 70,693 69,167 58,456 49,372 48,818 43,622 - - 
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Wikimedia Commons (22.08), Flickr (26.10), and iNaturalist (26.81), although all medians 

were <30 (Figure 4.2b). Median NIQE scores were tightly clustered (12.22–13.89), with 

Wikimedia Commons lowest (12.22), GBIF 12.92, Flickr 13.33, and iNaturalist 13.89 (Figure 

4.2c). Despite substantial within-platform variation (Figure 4.2), non-parametric tests 

detected differences among platforms for all three metrics (Kruskal–Wallis, p<0.001), but 

the magnitude of these differences was small (=0.0038–0.0071). Post-hoc pairwise 

comparisons (Holm-adjusted Mann–Whitney tests) showed that sharpness differed 

among iNaturalist, Flickr, and GBIF (all adjusted p<0.001), whereas Wikimedia did not 

differ from other platforms; BRISQUE differed among most platform pairs except GBIF 

versus Wikimedia; and NIQE differed only for iNaturalist versus the other platforms, with no 

detectable differences among GBIF, Flickr, and Wikimedia after correction. 

 

 

Figure 4.2. Variason in image quality metrics across repositories for verified salmonid images 

(n=49,372). Violin plots show the distribuson of (a) blur score (Laplacian variance, a 

sharpness proxy; higher values indicate sharper images, shown on a log scale), (b) BRISQUE, 

and (c) NIQE (lower values indicate higher perceptual quality for BRISQUE/NIQE). Internal 

horizontal lines indicate the median and interquarsle range. NIQE scores could not be 

computed for a small subset (<0.3%). 

 

Two license types dominated the dataset of confirmed salmonid images. Most images 

(73.4%; 36,252) had a Creative Commons Attribution-NonCommercial (CC BY−NC) license. 

The 'All Rights Reserved' license was the second most common (11.6%; 5,736 images). The 
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proportion of license types differed between platforms (Figure 4.2). Most iNaturalist images 

were CC BY−NC (86.3%), while most Flickr images were 'All Rights Reserved' (83.5%). 

Wikimedia Commons had a high proportion of Public Domain and Creative Commons 

Attribution-ShareAlike (CC BY−SA) licenses, which together accounted for 81.4% of its 

images. GBIF images were mainly CC BY−NC (56.4%) and Creative Commons Attribution 

(CC BY) (25.4%). 

 

Figure 4.2 Image license distribuson across data sources for confirmed salmonid images 

(n=49,372), shown as percentages per source. Stacked bars represent proporson of different 

license types within a source pla�orm. 

 

4.3.2 SPATIAL AND TEMPORAL DISTRIBUTION 

The precision of location data for the salmonid images varied between the sources that 

provided coordinates (Supplementary Figure 5). For iNaturalist and GBIF, the median 

location uncertainty was about 100 m. For both platforms, half of the observations had a 

reported uncertainty between 10 m and 1,000 m (Supplementary Figure 5a). Flickr data 

showed a bias towards high precision; about 90% of its georeferenced images were 

recorded at city-level accuracy (level 11) or higher, and 30.1% were recorded at the highest 

precision of street-level (level 16) (Supplementary Figure 5b). 
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Georeferenced salmonid observations were densest in North America and Europe (Figure 

4.3). iNaturalist had the widest global coverage, with dense clusters in North America and 

Europe, some observations in Russia and Japan, and a few records from South America, 

Australia, and New Zealand. GBIF data were densest in Europe, and Flickr data were 

concentrated in North America and Europe. We found few observations from the Southern 

Hemisphere on any platform. 

 

 

Figure 4.3. Global distribuson of salmonid observasons across image repositories. a) 

Combined observasons from all sources, with hexagonal bins indicasng observason density 

on a logarithmic scale from 1 (yellow) to >1000 (red) observasons per bin. Individual 

distribuson maps for b) iNaturalist, c) GBIF, and d) Flickr using the same binning and colour 

scheme. 

The annual submission trends differed between platforms (Figure 4.4). GBIF had the earliest 

records, starting in the 1950s, and grew exponentially from around 2008. Flickr data showed 

a small peak around 1980, rose again in the mid-2000s, and then declined after 2010. 

iNaturalist showed rapid and sustained growth after its 2008 launch. Wikimedia Commons 

had fewer than ten submissions each year.  
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Figure 4.4. Temporal distribuson of fish images across data sources from 1946 to 2023. The 

plot shows the number of images (log scale) contributed annually from each pla�orm using 

their respecsve date fields: iNaturalist (observed_on), GBIF (eventDate), Flickr (datetaken), 

and Wikimedia (EXIF data). Verscal dashed lines indicate pla�orm launch dates: GBIF (2001), 

Flickr and Wikimedia (2004), and iNaturalist (2008). 

Seasonal patterns peaked in summer–autumn (June–October), which comprised 66.0% of 

observations, and the monthly distribution differed from uniform (=14373.43, df=11, 

p<0.001; Figure 4.5). Monthly patterns also differed slightly among platforms (=882.69, 

df=33, p<0.001; Cramér’s V=0.077), with iNaturalist contributing the most observations in 

every month and Flickr showing a disproportionate January peak (standardised residual = 

21.2). 
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Figure 4.5. Monthly distribuson of salmonid observasons across image repositories (log 

scale).  

4.3.3 TAXONOMIC COMPOSITION AND IDENTIFICATION PATTERNS 

The taxonomic resolution – the most specific level of identification for an observation – 

varied between the data sources. All salmonid observations on Wikimedia Commons were 

identified to species level. Species-level identification was also the most common resolution 

on iNaturalist (94%) and Flickr (91%). While most GBIF observations were also identified to 

species (72%), it had the widest range of other resolutions, with 21% of its records identified 

to subspecies and 4.4% to variety. A small number of records on Flickr could only be 

identified to a broader level, such as genus (6%) or subfamily (3.4%). Identifications that 

could not go beyond the family level were minimal on all platforms. 

The hierarchical distribution of all salmonid observations shows that the 

subfamily Salmoninae is dominant (Figure 4.6). The most frequent species 

was Oncorhynchus mykiss (rainbow trout, 10,984 images), followed by Salmo trutta (brown 

trout, 9,573 images), and Salvelinus fontinalis (brook trout, 5,870 images). Other numerous 



 
 

74  
 

species included Oncorhynchus tshawytscha (Chinook salmon, 3,613 images) 

and Oncorhynchus kisutch (coho salmon, 2,724 images). The subfamilies Thymallinae and 

Coregoninae made up much smaller parts of the dataset. iNaturalist was the main source for 

most species.  
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Figure 4.6. Hierarchical distribuson of salmonid observasons. The horizontal bar chart 

displays the taxonomic hierarchy, with genera indented under their respecsve subfamilies 

and species indented under their parent genus. The length of each bar represents the total 

number of images idensfied at that specific taxonomic level, plo�ed on a logarithmic scale 

to accommodate the wide range of counts. The colour of each bar corresponds to its 

taxonomic rank (Subfamily, Genus, or Species). For visual clarity, only the five most abundant 

species within each genus are displayed. 

 

4.3.4 IMAGE CONTENT ANALYSIS: SIZE AND HEALTH INDICATORS 

We annotated a subset of 5,667 salmonid images. From this subset, we could not reliably 

assess 696 images because of poor quality or obstructions. Of the remaining 4,971 images, 

only 123 (2.5%) had standard size reference objects, which made systematic size estimation 

impractical. 

For health assessment, 866 (17.4%) displayed visible signs of disease or physical damage 

(e.g., rashes, discolouration, parasites, growths, cuts, wounds, scarring), while 4,105 (82.6%) 

depicted apparently healthy salmonids. The prevalence of disease or damage indicators was 

largely consistent across platforms within the annotated subset: 18.0% for iNaturalist (755 

of 4,203 images), 17.0% for GBIF (19 of 112 images), 16.7% for Wikimedia Commons (2 of 12 

images), and 13.9% for Flickr (90 of 644 images). 

4.4 DISCUSSION 
Our study used salmonids as a case study to assess how online image repositories can be 

used for ecological research. We showed that the choice of platform determines the quality 

and type of data available, so researchers must select platforms based on their specific 

needs. For studies needing rich metadata, iNaturalist and GBIF are the strongest sources. 

iNaturalist supplied the most verified salmonid images, and GBIF had complete temporal 

and spatial metadata for all its records. In contrast, Flickr gave many images initially but 

fewer verified salmonids and had limited location data. Wikimedia Commons made a very 

small contribution. 
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Our work supports earlier findings that combining data from multiple sources increases the 

number of available images (Heberling et al. 2021). However, we show that the usefulness 

of each platform depends on the research question and the required data quality. These 

repositories offer a large and growing visual dataset with wide spatial and temporal scope, 

showing they can supplement traditional monitoring. The value of these images for more 

advanced uses is limited by platform-specific problems. The high number of ‘All Rights 

Reserved’ licenses, mostly on Flickr, limits data reuse. The lack of standard size references 

on all platforms makes size estimation impractical. In contrast, our finding of a consistent 

14-18% of images showing visible disease or damage suggests an opportunity for wildlife 

health surveillance using the ‘extended image’ idea. 

4.4.1 INTERPRETING THE DATASET: AVAILABILITY, QUALITY, AND USABILITY 

The purpose of each platform and its user community likely explain the differences in the 

data we found. The success of iNaturalist shows the power of dedicated citizen 

science platforms for gathering verifiable observations. This contrasts with the challenges 

posed by general-purpose platforms like Flickr and Wikimedia Commons, whose broader 

aims likely explain their lower yield of relevant, verifiable data. Curated databases like GBIF 

are valuable for collecting research-grade data from many sources. Although these online 

repositories provide large datasets, other valuable collections may exist in less accessible 

places like local archives or private collections. Making these hidden datasets usable 

requires targeted outreach and adherence to data management principles that make them 

Findable, Accessible, Interoperable, and Reusable (FAIR) (Wilkinson et al. 2016; Reyserhove 

et al. 2020). 

The image quality showed modest platform-specific tendencies. GBIF and Wikimedia 

generally scored slightly better on perceptual metrics (lower BRISQUE/NIQE), and GBIF 

tended to have sharper images on the Laplacian-variance metric (higher values), but 

platform effects were small (<0.01) with substantial overlap among sources. Consequently, 

image-level filtering is likely more useful than relying on platform-wide averages for 

downstream analyses. 

Licensing restrictions are prohibitive to data reuse for the extended image concept. The high 

proportion of All Rights Reserved images (21.5%), mostly on Flickr, are barriers to curating 
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and sharing datasets or the products of computational analyses, particularly AI models. 

These activities involve copyright and the creation of derivative works (e.g. Vendrow et al. 

2024), limiting potential for an image to be truly ‘extended’ through reprocessing. 

Researchers using online imagery should therefore evaluate licensing terms at project 

commencement, aligning with best research practices. This is particularly true for machine 

learning and data sharing, where attention to image provenance, legal frameworks, and 

community standards for data stewardship are essential (Wilkinson et al. 2016; Gebru et al. 

2021; Hemphill et al. 2022; London School of Economics 2025). 

4.4.2 SPATIAL AND TEMPORAL DYNAMICS OF ONLINE SALMONID IMAGERY: OPPORTUNITIES 

AND BIASES 

The opportunities and biases in the spatial data highlight the need for careful filtering and 

interpretation. The median location uncertainty for iNaturalist and GBIF records is about 

100 m, which suggests the data can be used for fine-scale distribution modelling. The 

apparent high precision of Flickr data is promising, but its accuracy scale defaults to ‘street-

level’ when users give no information. This default means many records may not reflect 

user-confirmed precision, misrepresenting the true accuracy. This issue, combined with the 

wide uncertainty range in iNaturalist and the lack of explicit distance values for Flickr’s scale, 

means the data must be filtered and interpreted carefully for precise spatial work. The small 

number of georeferenced Flickr images further limits the use of this large image pool for 

spatial analysis. 

The geographical concentration of images in North America and Europe matches the known 

native distribution of salmonids (Araneda et al. 2008). iNaturalist had the most extensive 

global coverage, but observations from the Southern Hemisphere were sparse across all 

platforms. This is consistent with salmonids being non-native to most of this region, with 

some introduced populations in New Zealand, Australia, and South America (Klemetsen et 

al. 2003). The dataset therefore captures native areas well but may underrepresent 

introduced ranges or show gaps in citizen science monitoring. This shows the importance of 

comparing image-derived distributions to established biogeographical 

knowledge (Klemetsen et al. 2003; Araneda et al. 2008) and accounting for sampling effort 

when inferring species distributions. 
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The annual increase in submissions, particularly from iNaturalist, shows a growing data 

stream that can be used for long-term studies, such as tracking changes in seasonal events. 

The seasonal peaks in summer and autumn align with expected increases in fishing activity 

and salmonid visibility (e.g., spawning runs) in the Northern Hemisphere. The unusual 1980 

peak in Flickr data is also notable. Our inspection confirmed it was caused by incorrect 

metadata from two users who likely uploaded old photos with the wrong date, as Flickr 

launched in 2004. This shows a problem for temporal analysis, as the ‘date taken’ field may 

not always be the true observation date and needs to be checked. 

4.4.3 INTERPRETING TAXONOMIC PATTERNS IN THE SALMONID IMAGE DATASET 

The high number of species-level identifications across platforms supports using online 

images for species occurrence data (Theobald et al. 2015; Heberling et al. 2021; Szentivanyi 

and Vincze 2022). The origin and reliability of these identifications vary, however. For Flickr 

and Wikimedia Commons, we inferred species from the original search terms (e.g., ‘Rainbow 

Trout’). While we confirmed these images showed salmonids, the species label (e.g., 

Oncorhynchus mykiss) was not validated with the same rigour as a ‘research grade’ 

iNaturalist observation.  This uncertainty, along with challenges like poor image quality and 

taxonomic ambiguity, can make species identification difficult even for experts (Marshall et 

al. 2020). These data therefore need careful interpretation based on their source, 

particularly for detailed ecological analysis. 

The dominance of Oncorhynchus mykiss and other popular angling targets like Pacific and 

Atlantic salmon (Figure 4.6) likely reflects their widespread distribution, popularity with 

anglers, and how easy they are to identify from photos. This suggests human interests and 

likelihood of observation, not systematic surveying, shape the dataset. The lower 

representation of groups like Thymallinae and Coregoninae might also reflect these biases. 

Despite these variations in taxonomic certainty, the dataset is valuable. Even images with 

less certain species labels can be used for distribution maps at the family level. They are also 

useful for training AI models when resources to re-check every image are limited (see 

Heberling et al. 2021). Such models can be designed to learn from datasets with 'noisy' 

labels, a term for labels that may be incorrect. The key is to use the strengths of each data 

source for the specific research question. This could mean using iNaturalist’s community-
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vetted taxonomy, GBIF’s taxonomic depth, or the visual diversity from Flickr and Wikimedia 

for AI development. 

4.4.4 IMAGE CONTENT ANALYSIS: SIZE AND HEALTH INDICATORS 

It was impractical to estimate fish size systematically because only 2.5% of images had 

standard size references. Assessing health indicators was a more practical approach. Our 

finding that 17.4% of suitable images showed visible signs of disease or damage confirms 

that these platforms can be used as an opportunistic data source for fish health surveillance. 

The prevalence of these signs was consistent across platforms, from 13.9% on Flickr to 

18.0% on iNaturalist. This suggests the platforms capture these conditions uniformly, 

regardless of their main purpose or user base. The types of indicators we saw are also 

similar to those used in traditional fisheries health assessments, which implies these images 

could supplement existing monitoring programmes. Building on this finding, the data 

collected in this study on healthy salmonids and those with visible signs of disease formed 

the basis of a subsequent study that successfully trained a computer vision model for the 

automated classification of saprolegniasis-like infections (Olsen et al. submitted; Chapter 5).  

However, using online images for scientific analysis faces challenges from image alterations, 

such as the common use of watermarks. An emerging problem is AI-driven image editing. 

Features like those in the Google Pixel 8 that automatically alter images (Berrada 2023), 

undermines scientific integrity if the alterations are not transparently documented. While 

metadata standards like those from the International Press Telecommunications Council 

(IPTC) can record alterations, the consistent documentation of AI-driven changes is not yet 

common (IPTC Photo Metadata Working Group 2024). This is a gap that initiatives like the 

Coalition for Content Provenance and Authenticity (C2PA) are designed to address (Coalition 

for Content Provenance and Authenticity 2025).  

4.4.5 LIMITATIONS AND BIASES 

While the ‘extended image’ concept offers opportunities, we must acknowledge several 

limitations. These reflect challenges found in the extended specimen and digital extended 

specimen literature, such as problems with data quality, standardisation, and integration 

(Lendemer et al. 2020; Hardisty et al. 2022). Common challenges for online images include 

geographical bias (e.g. Durso et al. 2021), limited taxonomic coverage, variable image 
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quality, and incomplete metadata. Platform-specific biases from search algorithms or user 

behaviour can also affect how representative the data is (Jarić et al. 2020; Vardi et al. 2024). 

The Digital Extended Specimen framework (Hardisty et al. 2022) highlights further needs for 

persistent identifiers, machine-actionable data, and clear provenance. These limitations, 

while significant, can be addressed through methodological rigour, careful consideration 

of sampling biases, and the adoption of best practices for data collection and analysis 

(Callaghan et al. 2019; Di Cecco et al. 2021). 

4.4.6 FUTURE RESEARCH AND RECOMMENDATIONS 

Future work should use all available image data. Images with incomplete metadata, 

like those from Flickr or Wikimedia Commons that lack precise locations, or those with 

unverified taxonomic labels, should not be dismissed. These images are useful for training 

robust AI and machine learning models. For example, such models can be built for general 

salmonid detection using foundational models  (Bommasani et al. 2021) or for species 

identification systems that tolerate noisy labels (Sun et al. 2021). They could also be used for 

visual assessment of health indicators across broader taxonomic groups (e.g. Siachos et al. 

2024).  

Several strategies could also improve online repositories for science. Standardising 

metadata and image quality metrics would help when combining data from 

different platforms. Automated verification tools could help process large numbers of 

images, though they need carefully curated training data that accounts for platform 

differences. Adopting open licensing policies across all platforms would improve research 

access and reproducibility. Finally, engaging with contributor communities, such as anglers 

and photographers, to teach best practices for taking scientifically useful images could 

improve the quality of future data. 
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Abstract 

Effective disease surveillance in wild fish populations is essential for food security and 

biodiversity conservation, but data acquisition can be limited by ad hoc reporting and 

resource-intensive laboratory diagnostics, limiting the spatio-temporal scope. We developed 

and evaluated a computer vision pipeline to detect saprolegniasis-like infections, a 

devastating disease affecting wild and farmed salmonids that manifests as visible signs on 

the fish.  

Compiling a dataset of 4,526 images (494 infected, 4,032 healthy) from citizen science 

platforms and stakeholders, we used data augmentation to address the significant class 

imbalance. We then fine-tuned and compared four pre-trained convolutional neural 

network architectures (EfficientNetV2S, EfficientNetV2B0, ResNet50, and MobileNetV3S), 

chosen to represent a range of standard and efficient models, to classify healthy versus 

infected fish across datasets of varying host taxonomic specificity. 

The EfficientNetV2S model achieved the highest performance on a Salmo genus-specific 

evaluation dataset, with a mean recall (proportion of infected fish images correctly 

identified) of 0.918 (± 0.038) and precision (proportion of correctly identified infected fish 

among all fish identified as infected) of 0.862 (± 0.056). Performance differed between 

Salmo and Oncorhynchus evaluation sets and depended on the training data strategy, with 

genus-specific training performing best on Salmo images, while broader training improved 

recall on Oncorhynchus images at the expense of precision. Despite challenges including 

variable image quality, water surface reflections, and inherent class imbalance, these results 

show computer vision can support large-scale disease surveillance in wild fish populations. 
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Computer vision-based surveillance could enable earlier outbreak detection and targeted 

diagnostics, improving freshwater ecosystem health management. While successful 

implementation hinges on acquiring sufficient high-quality imagery, this study highlights the 

potential of applying tailored Artificial Intelligence tools for monitoring visually detectable 

diseases across diverse wildlife species. 

5.1 INTRODUCTION 

The emergent field of iEcology (internet ecology) frequently uses image repositories to 

generate insights into species distribution and occurrence, biogeographical patterns, 

behaviour, species interactions, habitat use, and the impact of human activities on wildlife 

(Weinstein 2018; Jarić et al. 2020; Tuia et al. 2022). Its application to wildlife disease 

surveillance, however, remains sparse, despite the abundance of available data (Edwards et 

al. 2021). While examples are emerging, such as automated classification of Devil Facial 

Tumour Disease (DFTD) in Tasmanian devils (Sarcophilus harrisii) (Nurçin et al. 2024) and 

lesions in bottlenose dolphins (Tursiops erebennus) (Murphy et al. 2025), the field is still 

under-explored. Computer vision offers a promising tool for automating disease detection 

from images where diseases have visible signs. Freshwater wild fish are an excellent test 

bed for disease detection because they are a significant source of diseases (Shinn et al. 

2014), including zoonoses (Gauthier 2015), they represent some of the most threatened 

vertebrates on the planet (Collen et al. 2014; Shinn et al. 2014; Dias et al. 2017), and disease 

control costs billions (Shinn et al. 2014). Many fish diseases present visible signs, making 

them well-suited for image-based detection. Furthermore, fishers, especially recreational 

anglers, have a culture of taking and sharing images online of their catch, therefore in 

theory, both visible signs and the images from which to observe them exist. The advantages 

of image-based disease detection over traditional surveillance include the ability to rapidly 

screen thousands of images in a non-invasive manner. 

Computer vision applications have demonstrated promising results for disease detection 

across domesticated and livestock species. Deep learning models have shown success in 

diagnosing ocular surface diseases in domestic dogs and cats (Nam and Dong 2023) and 

detecting skin conditions like pododermatitis and neoplasia in dogs (Smith et al. 2024). 

Computer vision has been used to detect early signs of respiratory diseases in pigs via 
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changes in temperature using thermal imagery (Jorquera-Chavez et al. 2020). In cattle, 

computer vision has been employed for tick detection and identification (Barbedo et al. 

2017; Luo et al. 2022) and for real-time detection and scoring of digital dermatitis 

(Aravamuthan et al. 2024).  

While these advancements showcase the potential of computer vision in veterinary 

medicine, research on wild species is limited. Previous studies in fish have primarily focused 

on aquaculture settings using small datasets, often with limited information on the species 

involved (Malik et al. 2017; Hasan et al. 2022; Mia et al. 2022; Yasruddin et al. 2022; 

Rachman et al. 2023; Vijayalakshmi et al. 2023; Biswas et al. 2024; Kumaar et al. 2024; 

Maruf et al. 2024). Ahmed et al. (2022), for example, classified ‘salmon disease’ in 266 

images of salmon (83 healthy, 183 infected) with an accuracy of 91.4% using traditional 

computer vision methods, but the disease and salmon species were not specified. Gupta et 

al. (2022) achieved an accuracy of 96.7% using convolutional neural networks to classify 

3,289 salmon images (augmented based on an initial dataset of 68 healthy, 71 wounded, 70 

with fish-lice). Importantly, inclusion of augmented images during model validation and 

testing may influence evaluation metrics (Huang and Khabusi 2023; Rachman et al. 2023; 

Biswas et al. 2024; Maruf et al. 2024).  

There is a paucity of  surveillance of fish diseases, such as saprolegniasis, caused by the 

oomycete Saprolegnia parasitica, which kills 1 in 10 farmed salmon (Dias et al. 2017). This 

disease, characterised by fungal-like white growths on the fish’s body, head, and fins, has no 

effective treatment. It causes significant morbidity and mortality in wild fish populations 

(van West and Beakes 2014; Derevnina et al. 2016; Matthews 2019; Matthews et al. 2021) 

and can infect other aquatic species (Costa and Lopes 2022). With widescale fish mortality 

and inter-specific transmission, early detection of this disease is critical to assess risk to 

aquatic species, and to help identify drivers of outbreaks (MacAulay et al. 2022). While 

regular disease surveillance occurs in commercial fisheries, outbreaks in wild fish are often 

detected by ad hoc reporting of diseased/dead fish to the relevant fisheries authorities (e.g. 

Fish Health Inspectorate in the UK). Once an outbreak is recognised as such, identification of 

Saprolegnia spp. may follow with direct sampling of animals (Tandel et al. 2021) or water 

(Pavić et al. 2022) using molecular methods or culturing. While these methods are highly 

sensitive, they are time-consuming and damage to fish stocks has usually occurred by the 
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time the pathogen is identified. Because Saprolegnia spp. cause visible signs of infection 

there is potential for use of image-based disease surveillance. While visible signs alone 

cannot confirm disease, these data could support large-scale surveillance and identify areas 

for targeted investigation. 

Here, we establish a computer vision pipeline to detect common infectious diseases 

(Saprolegnia spp.) in wild salmonids. We use standard methods (Jarić et al. 2020; Edwards et 

al. 2021) to collate a large database of images of wild fish, and assess the accuracy with 

which computer vision classifiers detect infectious disease. Our ultimate aim is to assess if 

we can move current practices from intermittent, episodic reports of disease towards 

detailed real-time monitoring of wild freshwater fish. Doing so would provide a step 

towards collating spatiotemporal information on disease and provide a framework from 

which we can expand to other host-parasite systems. Our proposed pipeline offers a step-

change in monitoring infectious diseases, providing a technology-led framework for 

understanding disease dynamics in wild fish and other species. 

5.2 METHODS 

5.2.1 DATA 

Images of salmonids were acquired from photo-sharing websites, Flickr (www.flickr.com), 

iNaturalist (www.iNaturalist.org), GBIF (www.GBIF.org) and Wikimedia Commons, between 

December 2023 and February 2024. These data constitute ‘passive citizen science’;  images 

submitted without scientific intent1 that nonetheless could contain important ecological 

data (Edwards et al. 2021). These sites were accessed using Application Programming 

Interfaces (APIs) that allow for keyword or taxonomic-level searches to download images 

and associated metadata. 

Image Acquisition 

We focused our work on salmonids as the taxa most prone to saprolegniasis (Vieira da Silva 

do Nascimento et al. 2020). GBIF and iNaturalist can be searched taxonomically for 

‘Salmonidae’, returning observations linked to any subfamily, genus or species within this 

 
1 Upon manual review of the images, titles and descriptions, it is clear that most images were taken by anglers. 

http://www.flickr.com/
file:///Users/c1767198/Library/Containers/com.microsoft.Word/Data/Library/Preferences/AutoRecovery/www.iNaturalist.org
file:///Users/c1767198/Library/Containers/com.microsoft.Word/Data/Library/Preferences/AutoRecovery/www.GBIF.org
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family. Flickr and Wikimedia Commons allow for keyword searches in text fields such as 

titles and descriptions. To compile keywords, a comprehensive list of scientific and common 

salmonid names was created by integrating subfamily, genus, and species data from 

FishBase (https://www.fishbase.se/search.php), FishTreeOfLife 

(https://fishtreeoflife.org/api/taxonomy/family/Salmonidae.json), and NCBI 

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi). This list was enriched with 

additional species and English common names from FishBase and iNaturalist (see 

Supplementary Table 6 for a full list of taxa). This resulted in a final list of three subfamilies, 

11 genera, 387 species and two hybrids.  

We searched GBIF occurrence data using the following filters: “BasisOfRecord is Human 

Observation”, “MediaType is Image”, “OccurenceStatus is Present”, “TaxonKey is 

Salmonidae”. Of the returned occurrences, 94.5% were duplicated from iNaturalist and 

these duplicates were excluded. We downloaded the Darwin Core Archive resulting from 

our search and used the gbif-dl (v0.1.1) package in Python 3.9.18 to extract the 

corresponding URLs and download the images. 

For iNaturalist images we first downloaded the metadata files (observations, observers, 

photos and taxa) from the ‘iNaturalist Licensed Observation Images’ open dataset 

(https://registry.opendata.aws/inaturalist-open-data) using the AWS Command Line 

Interface (CLI). We then used Python 3.11.7 and the pandas (v1.5.3) package to link taxa 

information to observation, observer and photo metadata, allowing us to filter to images 

identified as the Family ‘Salmonidae’ (taxon_id=47520) or lower associated taxonomic 

levels. We used the multiprocess (v0.70.15) package to download the images. To ensure 

comprehensive coverage, we incorporated iNaturalist observations regardless of their 

quality grade. 

We queried the Flickr API for images with tags, descriptions or titles containing the terms in 

Supplementary Table 6 using the flickrapi (v2.4.0) package in python 3.11.7. We tested the 

search terms in the Flickr user interface first and excluded terms that returned a very high 

proportion of irrelevant images, such as the common name ‘salmon’ which returns over 

400,000 images, mainly of salmon prepared for food. SHA-256 (Secure Hash Algorithm) from 

https://www.fishbase.se/search.php
https://fishtreeoflife.org/api/taxonomy/family/Salmonidae.json
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
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hashlib in the Python Standard Library of python 3.11.7 was used to create unique ids for 

each image to locate and remove duplicate downloads. 

To acquire images from Wikimedia Commons we followed the process implemented by 

Marshall et al. (2020), amending their R script (SuppCode2_Wikimedia_query.R from 

zenodo.org/records/4010155) to query for the terms listed in Supplementary Table 6. 

Following removal of duplicate image URLs, the images were downloaded using urllib3 

(v1.26.16) in Python 3.11.7.  

In total, before ‘ground-truthing’ to check for salmonids, 69,158 photographs were collated 

across online sources based on keyword or taxonomic-level searches: 49,057 from 

iNaturalist, 1,843 from GBIF, 19,610 from Flickr and 183 from Wikimedia Commons. 

Ground Truth - Images of Healthy and Diseased Salmonids 

The Wikimedia Commons and Flickr image datasets contained a high proportion of 

irrelevant images, as they were downloaded based on keywords (Supplementary Table 6) 

that often had multiple meanings. For example, a Grayling is also a moth species. To address 

this issue two labellers manually screened the dataset for the presence of salmonids (Figure 

5.1), on Labelbox (Labelbox. 2025), leaving 91 relevant images from Wikimedia Commons 

and 6,869 from Flickr which were added to the existing collection of 49,057 images from 

iNaturalist and 1,843 images from GBIF. 

Due to the time-consuming nature of expert annotation and the requirement of specific 

expertise to identify Saprolegnia spp., two of the authors examined a subset of 

approximately 10% (5,667) of the salmonid images, stratified by data source and taxonomic 

classification, for visible signs of disease, outlined in Figure 5.1. This subset provided a 

manageable starting point for the intensive labelling process, while still yielding a dataset 

large enough to develop and validate our proof-of-concept pipeline. Due to poor image 

quality or obstructions making it difficult to assess fish health, 696 images were excluded. 

From this initial evaluation, 4,105 images were identified as containing healthy salmonids, 

making up the first class in our binary classification problem. The remaining 866 images 

were reviewed for visible signs of Saprolegnia spp. Where more than one salmonid was 

visible in an image, the image would be labelled as part of the ‘Saprolegnia spp.’ class if at 

https://zenodo.org/records/4010155
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least one of them displayed visible signs of the disease. This process identified 217 potential 

infections in salmonids, making up the second class in the classification problem.  

The ‘Saprolegnia spp.’ class was supplemented following the creation of ground truth labels 

by searching the iNaturalist and Flickr APIs using the keyword ‘Saprolegnia’ (‘Additional 

Saprolegnia spp. images’ in Figure 5.1). The Flickr search returned 33 images with nine new 

images showing salmonids with visible signs of Saprolegnia spp. infection while iNaturalist 

returned 42 images of which 41 showed signs of saprolegniasis. Additionally, we 

incorporated 198 images provided by the Environment Agency’s National Fisheries 

Laboratory (EA), 120 images uploaded to the Fisheries Management Scotland (FMS) app for 

fish disease (https://fms.scot/fish-health-and-disease), and 55 provided by the Fish 

Pathobiology and Immunology Laboratory at Michigan State University. These photographs 

were assumed, not verified, to show fish with Saprolegnia spp. based on visible signs. The 

final count of images with Saprolegnia spp. infection was 630.  
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Figure 5.1. Data pipeline for collasng images and idensfying disease (Saprolegnia spp.) in 

salmonids. Images and metadata were downloaded from online sources using API searches 

based on taxonomy or search terms and false posisves removed. A 10% subset, strasfied by 

data source and taxonomic classificason, of the data was labelled as ‘healthy’ or ‘disease’ 

and the ‘disease’ class was subsequently screened for visible signs of Saprolegnia spp. 

Images with visible signs of Saprolegnia spp. infecsons were added from addisonal sources 

(e.g. Environment Agency). Following cleaning, the data were split into sered datasets based 

on taxonomic classificason and the number of available images in the ‘healthy’ and 

‘Saprolegnia spp.’ classes per taxon. 

Image Cleaning 

All images were manually cropped to remove obvious watermarks, time stamps, duplicates 

or borders. If this was not possible the image was excluded. The final dataset consisted of 

4,032 images showing healthy salmonids, hereafter referred to as the ‘healthy’ class, and 

494 images showing salmonids with visible signs of Saprolegnia spp. infection, hereafter 

referred to as the ‘Saprolegnia spp.’ class (Table 5.1). 

 

Table 5.1. The number of salmonid images classed as ‘healthy’ and ‘Saprolegnia’ spp. from 

each image source. 

Source ‘Healthy’ 

count 

‘Saprolegnia 

spp.’ count 

iNaturalist 3,374 211 

Flickr 556 22 

GBIF 92 2 

Wikimedia Commons 10 0 

Environment Agency 0 130 

Fisheries Management Scotland 0 98 

Michigan State University 0 31 
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Total 4,032 494 

 

Metadata 

Metadata associated with images was used to split the data into training and validation 

partitions. iNaturalist, Flickr, FMS and Immunology Laboratory at Michigan State University 

images were accompanied by detailed metadata, including user information, date, and 

location. While Wikimedia Commons images were downloaded with user and date 

information, location data was unavailable. EA images sourced from National Fisheries 

Laboratory (NFL) image archives, encompassing those taken by EA field officers, NFL 

employees, and anglers, included date and camera specifications as a proxy for user 

information in the EXIF data. Although location information was missing for the EA images, 

we knew that all were captured within England and Wales. 

Dataset strategies 

The ‘healthy’ and ‘Saprolegnia spp.’ dataset comprised images of salmonids classified to 

different taxonomic levels, ranging from family to species. A total of 13 taxa had images of 

both healthy and infected classes (Table 5.2) with the remaining taxa having images only in 

one of the classes. To address the imbalance in Saprolegnia spp. infected and healthy 

images across different taxonomic groups, we implemented a multi-tiered data preparation 

strategy, based on taxonomic specificity and the number of available images for each 

taxonomic classification. 

Table 5.2. Count and raso of images across host taxa for Healthy and Saprolegnia spp. 

classes. Raso represents the number of Saprolegnia spp. images divided by the number of 

Healthy images. Only taxa with images in both classes are included. See Supplementary 

Table 6 for a full list of taxa. 

Host taxa Healthy Saprolegnia spp. Ratio 

Salmo spp. 43 135 3.140 

Salmo salar 91 110 1.209 
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Host taxa Healthy Saprolegnia spp. Ratio 

Oncorhynchus tshawytscha 180 54 0.300 

Oncorhynchus spp. 181 45 0.249 

Oncorhynchus keta 50 45 0.900 

Oncorhynchus gorbuscha 85 27 0.318 

Oncorhynchus nerka 132 25 0.189 

Oncorhynchus mykiss 936 24 0.026 

Oncorhynchus kisutch 214 11 0.051 

Salmo trutta 836 10 0.012 

Salvelinus fontinalis 529 2 0.004 

Thymallus thymallus 44 2 0.045 

Prosopium williamsoni 24 1 0.042 

 

To address the imbalance in Saprolegnia spp. infected and healthy images across different 

taxonomic groups, we implemented a multi-tiered data preparation strategy. The full 

dataset, referred to as ‘All photographs’, included all 4,032 ‘healthy’ and 494 ‘Saprolegnia 

spp.’ images from 68 different taxa. We then created several tiered datasets (Table 5.3): 

• ‘Taxa present in both classes’: This dataset included all images from taxa with images 

present in both the ‘healthy’ and ‘Saprolegnia spp.’ classes (Supplementary Table 6). 

• ‘Taxa with ≥ 10 photographs in both classes’: This dataset restricted the inclusion 

criteria to taxa with a minimum of 10 images in both classes. The 10-image threshold 

was chosen to ensure a reasonable number of images for training, validation, and 

testing, while also maintaining a balance between data quantity and quality. 

• Genus specific datasets: To account for potential variations within specific genera, 

we created separate datasets for species within Oncorhynchus and Salmo, each with 

a minimum of 10 images per class, ‘Oncorhynchus’ with ≥ 10 photographs in both 

classes’ and ‘Salmo with ≥ 10 photographs in both classes’. 
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Both data quality and data quantity are important factors for model performance. While a 

larger, more diverse dataset can improve model generalisation, addressing potential class 

imbalance and intra-class variability is crucial. In our case, a larger dataset might introduce 

samples that, while belonging to the same class, exhibit significant visual differences. 

Conversely, a smaller, more focused dataset may lead to overfitting where the model starts 

to ‘memorise’ the training data rather than learning real patterns. Our strategy aimed to 

balance these trade-offs by focusing on taxa with adequate representation in both classes 

and by creating genus-specific datasets to capture intra-genus variations, and therefore our 

tiered datasets included a mixture of all photographs and taxa within and across broad taxa 

(Table 5.3). It was not practical to look at one species in isolation in this study, as the 

datasets would have been too small to be practically split into adequate training and 

validation sets. 

Table 5.3. Count and raso of images for the ‘Saprolegnia spp.’ and ‘Healthy’ classes in the 

sered datasets. The class raso is calculated as the number of ‘Saprolegnia spp.’ images 

divided by the number of ‘Healthy’ images. 

Dataset 

Saprolegnia 

spp. Healthy 

Class 

ratio 

All photographs 494 4,032 0.123 

Taxa present in both classes 491 3,345 0.147 

Taxa with 10 photographs in both classes 486 2,748 0.177 

Oncorhynchus, 10 photographs in both 

classes 

231 1,778 0.130 

Salmo, 10 photographs in both classes 255 970 0.263 

 

Dataset Splits 

The limited sample size of small validation sets can introduce high variance in performance 

metrics, as the choice of validation samples can substantially impact the evaluation results 

(Chollet 2021). The best practice with small datasets is to use k-fold cross-validation (Chollet 
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2021). This technique divides the data into k ‘folds’ (subsets), using each fold once as a 

validation set while training on the remaining folds. We implemented this using the scikit-

learn package StratifiedGroupKFold function, with k=5 folds. To ensure robust evaluation, 

we leveraged the metadata associated with each photograph to stratify by location and 

taxonomic classification, and group by user information (for example, username for 

iNaturalist submitted images) to prevent data leakage from user-specific patterns. These 

patterns, which persist even after removing obvious duplicates, can include consistent 

camera artifacts (such as sensor noise or colour profiles) or a characteristic photographic 

style. If these user-specific signatures were present in both the training and validation sets, 

the model's performance could be artificially inflated by learning to identify the 

photographer rather than the disease. This grouping ensured that photographs from the 

same user were kept within the same fold, to avoid data leakage from the training to 

validation sets. This approach was crucial, as the smallest tiered dataset contained only 255 

images in the ‘Saprolegnia spp.’ class, with some users contributing as many as 31 of these 

images. By using stratified group k-fold cross validation, we aimed to assess the stability of 

each model across different data splits. The reported metrics for each model represent the 

average performance across the 5 folds. 

5.2.2 IMAGE CLASSIFICATION 

We selected four neural network architectures to compare a range of common and state-of-

the-art approaches. We chose ResNet50 (He et al. 2016) because it is a widely recognised 

architecture used as a standard baseline for image classification, providing a robust point of 

comparison (Alom et al. 2019). ResNet-50 is a 50-layer residual network that uses skip 

connections between convolutional blocks to ease optimisation of deep architectures (He et 

al. 2016). We also included MobileNetV3S (Howard et al. 2019), a lightweight network 

based on depth wise separable convolutions and squeeze-and-excitation blocks, which is 

designed for high efficiency on less powerful devices. This is an important consideration for 

future work, where the model could be integrated into a mobile application for in-field 

analysis. Finally, we chose two models from the more modern EfficientNetV2 family (Tan 

and Le 2021), which are known for their high accuracy and computational efficiency 

compared to older models like ResNet50. This family of models uses compound scaling and 

Fused-MBConv blocks to achieve high accuracy with relatively few parameters (Tan and Le 
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2021). We specifically used two variants, EfficientNetV2B0 and EfficientNetV2S, to explore 

the trade-off between model size and performance on our dataset. EfficientNetV2B0 is the 

smaller, more efficient model, while the slightly larger EfficientNetV2S offers potentially 

higher accuracy at a greater computational cost. This selection allowed us to assess 

performance across different model backbones, balancing a classic baseline with modern, 

efficient alternatives. 

Addressing Class Imbalance 

Class imbalance is a common issue in machine learning, especially in image classification and 

wildlife classification tasks, such as species classification, where distributions are often long-

tailed (Cunha et al. 2023). In this study, the datasets exhibit a clear imbalance, with a large 

majority of ‘healthy’ samples and a minority of ‘Saprolegnia spp.’ samples; this is an 

expected feature of disease, reflecting the reality that for many diseases the number of 

healthy individuals vastly outnumber those with disease. This imbalance can lead to model 

bias towards the majority class. Because our goal is surveillance (minimising missed 

infections), we explicitly applied class-imbalance mitigation during training (oversampling 

and augmentation; see below) and report metrics that remain informative under imbalance. 

Increasing the Sample Size 

While oversampling (duplicating existing training samples) can potentially lead to overfitting 

(Alkhawaldeh et al. 2023), we mitigated this risk by subsequently applying data 

augmentation techniques to the expanded training dataset. Importantly, oversampling was 

applied only to the training partition within each cross-validation fold (not to validation 

data): after splitting images into a fold-specific training set and validation set, the minority 

class (‘Saprolegnia spp.’) in the training set was randomly sampled with replacement to 

increase its frequency. Data augmentation, a set of popular techniques to increase training 

data size, especially when samples are limited (Shorten and Khoshgoftaar 2019; Mumuni 

and Mumuni 2022), can create a more robust and varied dataset and enhance model 

generalization capabilities. RandAugment, a data augmentation technique that applies a 

combination of image transformations (Cubuk et al. 2020), was applied during training. 

RandAugment was implemented in Keras-CV with the number of augmentations per image, 

N = 3, and magnitude M = 0.5. Here, N controls how many random transformations are 
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applied to each training image, while M controls the overall strength of those 

transformations. Increasing N or M generally increases regularisation and robustness to 

nuisance variation, but if set too high can introduce unrealistic artefacts that may reduce 

performance; conversely, if set too low the regularisation effect may be insufficient. We 

used these standard settings as a practical balance and did not perform an exhaustive 

sensitivity analysis of N and M due to computational cost. 

Transfer Learning 

To leverage transfer learning, all models were instantiated with pre-trained weights from 

training on ImageNet (Krizhevsky et al. 2012). In practical terms, the weights are the learned 

numerical parameters of the network (convolutional filters and layer parameters) obtained 

by optimising model predictions to minimise a loss function on the ImageNet classification 

task. Initialising with these pre-trained parameters provides a strong starting point because 

early and mid-level layers typically capture generic visual features (e.g., edges, textures and 

shapes) that transfer well to many image tasks. The model can then be fine-tuned on this 

new, often smaller dataset, adapting these generic features to the specific visual patterns 

associated with, in our case, saprolegniasis-like infection in salmonid photographs. 

Loss Function 

The choice of loss function (a mathematical function that quantifies the difference between 

model predictions and actual observations) is crucial for addressing class imbalance. Focal 

Loss is a modified cross-entropy loss which down-weights the loss contributions of well-

classified examples, allowing the model to focus on the more challenging minority class (Lin 

et al. 2020). We employed the Keras-CV implementation of Focal Loss with default 

parameters, which are effective in various computer vision classification tasks (Nemoto et 

al. 2018; Petmezas et al. 2022; Nie et al. 2023). We set the bias initialization of the final 

classification layer to b=log((1-π)/π), with 𝜋=0.01, as suggested by Lin et al. (2020), who 

show that this prevents large destabilizing loss values at the start of the training process. 

Training Pipeline 

The training pipeline was implemented in Python 3.10.13 using Keras 3 with JAX as the back 

end, and all models were trained on two Nvidia P100 GPUs. All four architectures shared the 
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same transfer-learning pipeline (Figure 5.2). Each cropped salmonid image was resized to 

the required input resolution (224x224 pixels for ResNet-50, MobileNetV3S and 

EfficientNetV2-B0, 300x300 pixels for EfficientNetV2S) and, during training, RandAugment 

(N = 3, M = 0.5) was applied to the training images. The augmented image was then passed 

through the chosen convolutional backbone initialised with ImageNet weights, followed by a 

custom classification head consisting of global average pooling, a fully connected layer (128 

units for ResNet50 and MobileNetV3S, 256 for EfficientNetV2B0 and 512 for 

EfficientNetV2S), dropout with rate 0.2, and a final dense layer with two sigmoid-activated 

outputs (‘healthy’ and ‘Saprolegnia spp.’). The bias of the output layer was initialised to 

reflect a low prior probability of disease (π = 0.01, β ≈ −4.6) for the focal loss, and the Adam 

optimiser was used to update model weights. 
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Figure 5.2. Transfer-learning pipeline used for training models on binary classificason task. 

Each cropped salmonid photograph was resized and augmented using RandAugment (N = 3, 

M = 0.5) before being passed through a pre-trained convolusonal backbone (ResNet50, 

MobileNetV3S, EfficientNetV2B0 or EfficientNetV2S, inisalised with ImageNet weights). The 

backbone output was fed to a custom classificason head consissng of global average 
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pooling, a dense layer (128–512 units, ReLU) and a dropout layer (rate 0.2), followed by a 

two-unit sigmoid output for the ‘healthy’ and ‘Saprolegnia spp.’ classes trained with focal 

loss. 

We used a typical transfer learning and fine-tuning approach (Chollet 2021). We instantiated 

the base model backbone with pre-trained, ImageNet (Krizhevsky et al. 2012), weights. First, 

the backbone layers were frozen and only the classification head was trained, using a 

learning rate of 0.001, a common and effective starting point for this training phase (Chollet 

2021). If the validation loss did not improve for five epochs, the learning rate was reduced 

by a factor of 0.1. If the validation loss did not improve for 20 epochs, training in this frozen 

phase was stopped and the model weights were restored to those from the epoch with the 

lowest validation loss. In the second phase the last blocks of the backbone were unfrozen 

(as specified for each model in Table 5.4) and the whole network was fine-tuned for 40 

epochs with a lower learning rate of 0.00001. This much lower rate is a standard practice for 

fine-tuning, as it prevents the general-purpose features learned on ImageNet from being 

catastrophically forgotten during the update process (Yosinski et al. 2014).  The patience 

values of five epochs for learning rate reduction and 20 for early stopping were chosen as 

common heuristics to balance efficient training time with allowing the model to fully 

converge. 

 

Table 5.4. Architecture and computasonal characterisscs of the four convolusonal models 

trained to classify images of salmonids as ‘healthy’ or ‘Saprolegnia spp.’. For each backbone 

we report the input resoluson, the size of the added dense layer (Dense units), number of 

model layers unfrozen during the fine-tuning phase, the number of total and trainable 

parameters (at fine-tuning), and the approximate inference sme per image measured on a 

P100 GPU. 

Backbone Input size 

[px] 

Dense units Unfrozen 

layers to 

fine-tune 

Total 

parameters 

Trainable 

parameteres 

Inference 

time per 

image [ms] 

ResNet50 224x224 128 98 23,850,242 15,216,002 104.35 
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Backbone Input size 

[px] 

Dense units Unfrozen 

layers to 

fine-tune 

Total 

parameters 

Trainable 

parameteres 

Inference 

time per 

image [ms] 

MobileNetV3S 224x224 128 52 1,013,234 803,114 27.38 

EfficientNetV2B0 224x224 256 198 6,247,762 5,707,446 105.05 

EfficientNetV2S 300x300 512 363 20,988,258 18,876,042 412.38 

 

We used k-fold cross-validation with k=5 to train each model architecture 5 times. The 

arithmetic mean and standard deviation for each evaluation metric were calculated using 

the implementations of mean and std in NumPy. 

Model Evaluation 

We assessed models using common metrics: precision (Eq. 5.1), recall (Eq. 5.2) and F1 (Eq. 

5.3). We also calculated the Matthews Correlation Coefficient (MCC) (Eq. 5.4) (Chicco and 

Jurman 2020). These metrics denote relationships between the numbers of True Positives 

(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). True positives for the 

‘Saprolegnia spp.’ class represent the number of cases correctly identified as presenting 

with Saprolegnia spp. and true negatives the number of cases correctly identified as not 

presenting with Saprolegnia spp., as ‘healthy’. Similarly, false positives, or type 1 errors, are 

images incorrectly classified as ‘Saprolegnia spp.’ and false negatives, or type 2 errors, are 

the number of disease cases incorrectly classified as ‘healthy’. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	 (5.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(5.2) 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(5.3) 

𝑀𝐶𝐶 = 2 ×
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

A(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5.4) 

 

Precision (Eq. 5.1) measures the proportion of correct positive predictions amongst all 

positive predictions made by the model. For example, if the model identifies 100 images as 

‘Saprolegnia spp.’, with 90 actually showing visible signs of Saprolegnia spp., the precision 

would be 90%. High precision indicates that when the model predicts a particular condition 

is present, it is usually correct. Recall (Eq. 5.2) measures the proportion of actual positive 

cases correctly identified by the model. For instance, if there are 100 images of fish with 

visible signs of Saprolegnia spp. in the dataset, and the model correctly identifies 80 of 

them, the recall would be 80%. High recall indicates that the model is successfully detecting 

most instances of the condition of interest. The F1 (Eq. 5.3) is the harmonic mean of 

precision and recall, balancing both measures. For example, in disease monitoring, we want 

to avoid both incorrectly identifying healthy fish as diseased (false positives, affecting 

precision) and missing cases of actual disease (false negatives, affecting recall). A high F1 

indicates that the model maintains both good precision and good recall. The MCC (Eq. 5.4) 

produces a value between -1 and +1, representing the correlation between observed and 

predicted classifications. A coefficient of +1 represents a perfect prediction, 0 is no better 

than random guessing, and -1 indicates total disagreement. MCC calculates the correlation 

using all four categories of the confusion matrix (true positives, true negatives, false 

positives, and false negatives), making it robust for imbalanced datasets. 

We focus on models with high recall for the ‘Saprolegnia spp.’ class to minimise missed 

cases (false negatives), even if it might increase false positives. We also consider precision 
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for the disease class. To account for the class imbalance, we use the macro-average F1-score 

(the mean of both class-wise F1 scores) and MCC. From here on, we refer to class-wise 

metrics as metricclass, where ‘metric’ is one of the metrics, and ‘class’ is either ‘healthy’ or 

‘sapro’ for Saprolegnia spp. 

Cross-Evaluation Strategy 

To enable fair comparisons between training strategies, we performed a cross-evaluation in 

which models trained on different tiered datasets were evaluated on identical held-out 

folds of two genus-specific evaluation sets (Salmo and Oncorhynchus). For each architecture 

and training strategy, we trained models using 5-fold stratified group cross-validation. For 

each fold, we evaluated the resulting model not only on its within-fold held-out data, but 

also on the corresponding held-out fold from the Salmo evaluation set and from the 

Oncorhynchus evaluation set. This produced fold-paired performance estimates on the 

same images, allowing direct comparison of training strategies when evaluated on a fixed 

target genus. 

Comparison to a Random Model 

To establish a simple, unbiased benchmark, we implemented a random baseline classifier 

that assigns each image to ‘healthy’ or ‘Saprolegnia spp.’ with equal probability (p = 0.5). For 

each dataset (and for each cross-validation fold’s held-out validation set), we generated 

random predictions for all images and computed the same evaluation metrics as for trained 

models (precisionsapro, recallsapro, macro-average F1 and MCC). Because the random baseline 

is stochastic, we repeated this procedure 100 times. For each fold we then summarised the 

baseline as the mean metric value across repeats (and report the mean and 95% interval 

across repeats for descriptive purposes). 

5.2.3 QUALITATIVE AND QUANTITATIVE ANALYSIS 

We used saliency methods to visualise which parts of an image most influenced a model 

classification decision and generated heatmaps that highlight those regions. We applied 

Grad-CAM, (Selvaraju et al. 2020) in TensorFlow, following the implementation in Chollet 

(2021) for the best performing model on all images in the Salmo genus-specific dataset. We 

categorised images as: correctly identified ‘healthy’ or ‘Saprolegnia spp.’ images and 
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incorrectly identified ‘healthy’ or ‘Saprolegnia spp.’ images. Through manual inspection of 

correctly (n=1208) and incorrectly (n=17) classified images and their corresponding Grad-

CAM heatmaps, we investigated whether systematic patterns existed in the regions of the 

image that most influenced the model's classification decisions. To quantitatively investigate 

how image characteristics influenced model performance, we calculated several image 

quality and dimension metrics for each image. We then compared the distributions of these 

metrics between correct and incorrect classifications. Full methodological details and 

statistical analyses are provided in Supplementary Material, Chapter 5. 

5.3 RESULTS 

5.3.1 MODEL COMPARISON 

All performance comparisons below use the cross-evaluation in which models trained under 

different dataset strategies were evaluated on the same held-out folds of the Salmo and 

Oncorhynchus evaluation sets (Figures 5.3–5.4). The EfficientNetV2S architecture generally 

demonstrated the strongest performance across both evaluation sets, achieving the highest 

macro-average F1 and (in most cases) the highest MCC. EfficientNetV2B0 consistently 

ranked second, while the smaller MobileNetV3S and ResNet50 backbones generally 

produced lower metric scores. 

On the Salmo evaluation set, the highest overall performance was achieved when models 

were trained on the genus-specific dataset (‘Salmo, ≥10 photographs’). Using this training 

strategy, EfficientNetV2S attained a macro-average F1 of 0.930 ± 0.026 and an MCC of 0.859 

± 0.051 (Figure 5.3b-c). It also achieved a recallsapro of 0.918 ± 0.038 (Figure 3.5a) and a 

precisionsapro of 0.862 ± 0.056. This exceeded the performance of the same architecture 

trained on the broader ‘All photographs’ dataset (macro-average F1 0.910 ± 0.024; MCC 

0.826 ± 0.054). However, the combined training strategy (‘Taxa with ≥10 photographs in 

both classes’) proved a competitive alternative, with EfficientNetV2S achieving the highest 

precisionsapro (0.908 ± 0.055) of all models, while maintaining comparable performance 

across macro-average F1 (0.922 ± 0.036) and MCC (0.845 ± 0.075). Across all architectures 

and training strategies, performance on the Salmo evaluation set exceeded the random 

baseline across recallsapro, macro-average F1 and MCC (Figure 5.3).  
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Figure 5.3. Performance metrics on the Salmo data. Comparison of recallsapro, macro-average 

F1 and MCC for different models trained on the different sered datasets and tested on the 

Salmo genus-specific data.  A random model with 95% confidence level, in grey, for each 

metric and dataset was calculated by running a model that randomly predicts the ‘healthy’ 
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or ‘Saprolegnia spp.’ class with equal probability 100 smes. Box plots show median, 

interquarsle range, whiskers indicate 1.5 x IQR, with individual points for each model fold 

run overlaid. 

 

Performance was lower on the Oncorhynchus evaluation set, with greater variation between 

training strategies (Figure 5.4). For EfficientNetV2S, genus-specific training (‘Oncorhynchus, 

≥10 photographs’) yielded the highest precisionsapro (0.478 ± 0.073) and macro-average F1 

(0.734 ± 0.044). In contrast, training on the broader ‘All photographs’ dataset increased 

sensitivity, producing the highest recallsapro (0.674 ± 0.073), compared with 0.612 ± 0.072 for 

the genus-specific model. Regarding the random baseline, while recallsapro for the ResNet50 

architecture overlapped with the random confidence interval across all training strategies 

(Figure 5.4a), the MCC values for all trained models remained consistently positive and 

above the random baseline band (Figure 5.4c). 
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Figure 5.4. Performance metrics on the Oncorhynchus data. Comparison of recallsapro, macro-

average F1 and MCC for different models trained on the different sered datasets and tested 

on the Oncorhynchus genus-specific data.  A random model with 95% confidence level, in 
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grey, for each metric and dataset was calculated by running a model that randomly predicts 

the ‘healthy’ or ‘Saprolegnia spp.’ class with equal probability 100 smes. Box plots show 

median, interquarsle range, whiskers indicate 1.5 x IQR, with individual points for each 

model fold run overlaid. 

 

5.3.2 QUALITATIVE AND QUANTITATIVE ANALYSIS 

Grad-CAM analysis revealed that surface reflections were consistently responsible for 

misclassifications for EfficientNetV2S, particularly when surface reflections obscured fish 

features (Figure 5.5). Manual inspection highlights that the model can correctly focus on 

infection, with the strongest activation (shown in red to turquoise) around the dorsal fin and 

midsection where the infection was visible (Figure 5.5e). Similarly, when correctly classifying 

a healthy brown trout the model appropriately concentrated on the fish's body, with the 

highest activation along the main body and adjacent areas (Figure 5.5f). However, where 

water surface reflections created both bubbles above and reflective patterns below the fish 

(Figure 5.5c-d) the corresponding heatmap (Figure 5.5g-h) reveals that the model focused 

primarily on these water disturbances leading to misclassifying these healthy fish as 

diseased. 

 

Figure 5.5. Grad-CAM heatmaps. Comparison of a subset of images used for EfficientNetV2S 

classificason on the ‘Salmo, ≥ 10 photographs in both classes’ dataset (a-d) and their 



 
 

108  
 

corresponding Grad-CAM heatmap overlays (e-h). (a) Atlansc salmon (Salmo salar) correctly 

classified as infected with ‘Saprolegnia spp.’, (b) Atlansc salmon (Salmo salar) correctly 

classified as ‘healthy’, (c and d) Brown trout (Salmo truHa) incorrectly classified as 

‘Saprolegnia spp.’, and corresponding Grad-CAM heatmap overlays (e-h).  See 

Supplementary Material, Chapter 5 for photograph a�ribuson.  

The quantitative analysis of image characteristics found no statistically significant 

association between classification outcome and global image quality metrics. Comparing 

correctly and incorrectly classified images using a Mann-Whitney U test on the full dataset 

revealed no significant differences in sharpness (p=0.366), perceptual quality (BRISQUE, 

p=0.266; NIQE, p=0.787), or image dimensions (p>0.9). Full details of this analysis are 

provided in Supplementary Material, Chapter 5. 

5.4 DISCUSSION 

Our results demonstrate the potential for computer vision to support disease surveillance in 

wild fisheries. By performing a rigorous cross-evaluation on held-out folds of the 

Salmo/Oncorhynchus evaluation sets, we found that deep learning models outperformed 

random classification on macro-average F1 and MCC across both evaluation sets (Figures 

5.3-5.4), with the strongest performance on the Salmo genus-specific dataset. Our work 

demonstrates the potential for rapid and extensive surveillance, mindful of potential 

methodology pitfalls, with classification potentially improved with more training images. 

Previous work has reported near-perfect classification of fish diseases, including   

Saprolegnia spp. (models: VGG16, MobileNetV2 and InceptionV3 (Biswas et al. 2024). 

However, manual inspection of the images used  

(https://www.kaggle.com/datasets/subirbiswas19/freshwater-fish-disease-aquaculture-in-

south-asia), revealed potential overfitting due to augmented versions of images from the 

training set constituting those in the test set. Kumaar et al. (2024) also achieved high 

performance (models: InceptionV3, VGG16 and a custom FishNetCNN) on the same dataset, 

expanded with additional images, but had inconsistent sample sizes and possible 

augmented training samples in the test set. Although our best model (EfficientNetV2S) 

achieved lower metrics for classification of Saprolegnia spp. than these works (Biswas et al. 

https://www.kaggle.com/datasets/subirbiswas19/freshwater-fish-disease-aquaculture-in-south-asia
https://www.kaggle.com/datasets/subirbiswas19/freshwater-fish-disease-aquaculture-in-south-asia
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2024; Kumaar et al. 2024), we adhered to stricter validation protocols, reducing bias and  

improving real-world application for  monitoring diseases in the field. 

5.4.1 MODEL PERFORMANCE AND TECHNICAL CONSIDERATIONS 

The strong performance of EfficientNetV2S can most likely be attributed to its ability to 

process higher resolution images (300x300 pixels versus 224x224 pixels) enabling detection 

of subtle disease features. A key finding from our cross-evaluation was the influence of 

training data composition. For the Salmo dataset, which benefitted from a more favourable 

class balance (highest ratio of disease to healthy images), the specialist model performed 

best, refuting the hypothesis that a generalist model trained on all available data would 

necessarily outperform a specialist model due to volume alone. This suggests that when a 

target taxon is well-represented, adding images from other genera introduces additional 

visual variation that may degrade performance. However, the combined training strategy 

(taxa with ≥10 photographs) proved highly competitive, achieving the highest precision, 

which suggests that curated multi-taxa datasets can improve model robustness against false 

positives. Conversely, for the Oncorhynchus dataset, which had fewer disease examples, the 

generalist ‘All photographs’ model improved recall for the 'Saprolegnia spp.' class by 

leveraging features learned from the Salmo examples. This highlights a strategic trade-off 

for surveillance: specialist models are preferable where data is more balanced to maximise 

MCC and precision, while generalist models can boost sensitivity for data-poor taxa via 

transfer learning, albeit with a trade-off in precision. 

Grad-CAM visualisations suggested the model focused on relevant anatomical features in 

correctly classified images, but when misclassifying did so most likely so due to water 

surface reflections (Figure 5.5), thereby providing guidance for future work that model 

performance, i.e. disease classification, could be improved by restricting the type of images 

used. 

All models, particularly MobileNetV3S, overpredicted ‘Saprolegnia spp.’ leading to higher 

recallsapro (proporson of infected fish images that are correctly idensfied) but lower 

precisionsapro (proporson of correctly idensfied infected fish among all fish idensfied as 

being infected). Oversampling to address class imbalance changes the class distribution in 

the training data and this can drive the models to overpredict the minority class. Although 
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we mitigated this using image augmentation to increase the size of our training datasets, 

alternative strategies like multi-branch networks, as suggested for visual recognition of 

animal species in camera-trap images (Cunha et al. 2023), could enhance performance.   

An important consideration for practical application is the trade-off between accuracy and 

computational efficiency, as well as the intended use case. This tool could be deployed in 

two main ways. First, for post-hoc analysis, automatically screening large image collections 

from online repositories to flag potential cases for follow-up by managers. Where geotags 

and timestamps are available, such screening could support spatiotemporal exploration of 

apparent disease signals, although any inferred patterns would require careful adjustment 

for uneven observation effort and reporting biases. Second, as an in situ mobile application 

to support rapid field triage. Our model comparison was designed in part to explore such 

deployment trade-offs: lightweight architectures such as MobileNetV3S offer fast inference, 

while EfficientNetV2 variants provide improved performance. The inference times reported 

here (Table 5.4) were measured on an Nvidia P100 GPU and therefore indicate relative 

computational cost rather than expected mobile latency; real-world on-device performance 

would require conversion to a mobile runtime (e.g., TensorFlow Lite/Core ML) and 

device-specific benchmarking and optimisation (e.g., quantisation). In both deployment 

modes, predictions should be treated as a screening signal rather than diagnosis, with 

confirmatory diagnostics (e.g., molecular testing) required for case confirmation, and 

decision thresholds selected to reflect the relative costs of false negatives and false 

positives. 

5.4.2 DATA CHALLENGES IN DISEASE DETECTION 

Developing robust disease detection models is hindered by the difficulty of obtaining expert 

annotations for images with confirmed disease.  Citizen science data introduces noise and 

geographic bias (Edwards et al. 2021) and in the current work, UK-based images were 

overrepresented. Many images were shared by anglers, and although these stakeholders 

offer an opportunity to acquire many images, they may be less likely to take ‘trophy’ images 

of diseased fish or only share pictures of fish in advanced stages of disease, so creating bias. 

Combined with inconsistent taxonomy across sources and variable image quality, the 

complexities of building representative datasets are apparent using internet harvested 

images. Computer vision techniques such as augmentation (making random changes to 



 
 

111  
 

existing images to increase dataset size) increase sample size, but risk inadvertently 

amplifying existing biases (Shorten and Khoshgoftaar 2019). For our study, an important 

next step to improve model performance and generalisability could be to expand the 

labelled dataset by annotating a larger portion of the thousands of unlabelled salmonid 

images acquired during our initial data collection. With post-hoc image processing not being 

a complete solution, engaging and training stakeholders (here, anglers) to submit images of 

both healthy and unhealthy-looking fish could help overcome some biases and class 

imbalances. Similar citizen science approaches have worked well for surveillance of other 

wildlife diseases, such as sarcoptic mange in foxes, Vulpes vulpes (Scott et al. 2020), 

although they did not use computer vision. Open access image repositories (iNaturalist, 

Flickr, GBIF), offer great opportunities to develop structured citizen science programmes 

with standardised imaging protocols (August et al. 2020b). Indeed, iNaturalist and Flickr 

were valuable resources for collecting a large dataset of 4,526 salmonid images for our 

study.  

Online platforms offer great potential to collate a large number of images, providing a cost-

effective alternative to traditional field surveys; they capture valuable metadata, including 

date, time, location, which is crucial for disease surveillance and ‘research grade’ images 

have been taxonomically identified. An additional benefit of using online repositories is that 

users have explicitly agreed to share their observations under Creative Commons licenses, 

aligning with best practices including Findable, Accessible, Interoperable, and Reusable 

(FAIR) data (Wilkinson et al. 2016). However, leveraging citizen science data still requires 

careful curation and quality control due to the inherent biases in these data (Brown and 

Williams 2019). 

Academic or practitioner curated databases of confirmed disease cases, such as those used 

in our study, offer a potensal soluson for training models. However, these databases are 

oven not open access. While there is a growing infrastructure for sharing images (e.g., 

Kaggle, Zenodo) and increasing calls for collaborason in building species-specific disease 

databases (Nunes et al. 2020), challenges remain in transforming collated data into 

resources that effecsvely meet researchers' needs. Good annotason pracsces and 

standardised protocols are needed to make these datasets broadly useful.  For example, 

'SalmonScan'  (Ahmed 2024), although a large dataset (1,208), constitutes augmented 
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images from 24 uninfected and 91 infected fish, and lacks details about species 

idensficason and infecson types.  

5.4.3 CHALLENGES IN WILD FISH DISEASE DETECTION 

Specific to disease detection in wild fish, the Grad-CAM analysis revealed misclassification of 

fish underwater due to water surface features.  Incorporating fish detection using tools like 

‘megafishdetector’ (Yang et al. 2023) could help isolate individual specimens in complex 

images. Pre-processing techniques could reduce reflection effects crucial for minimally 

invasive in situ monitoring. Furthermore, given the differing performance on Salmo versus 

Oncorhynchus evaluation sets, a hierarchical model incorporating taxonomic data (Elhamod 

et al. 2022), may improve classification accuracy by explicitly modelling the visual 

differences between genera. 

5.4.4 IMPLICATIONS FOR DISEASE SURVEILLANCE 

Our results demonstrate the potential for computer vision to transform disease surveillance 

in wild fish populations. While our models cannot replace traditional diagnostic methods, as 

confirmation of Saprolegnia spp. infection requires a confirmed molecular diagnosis (van 

West and Beakes 2014), they offer a valuable tool for rapid, large-scale screening. This 

approach could help identify potential disease outbreaks earlier, enabling more targeted 

application of confirmatory tests. 

The success with Saprolegnia spp. suggests potential applications for other visually 

distinctive diseases not only in fish but also in other animals, such as mange in Vulpes vulpes 

(Scott et al. 2020). Integration with spatiotemporal metadata, available for all research 

grade iNaturalist observations, could provide insights into disease dynamics and 

environmental drivers of outbreaks if large enough datasets could be acquired. However, 

such datasets would likely contain inherent biases, as observation frequency often 

correlates with human population density and accessibility of sites (Geurts et al. 2023). 

Additionally, temporal biases may arise from seasonal variations in observer effort and 

species visibility. These sampling biases would need careful consideration when interpreting 

any apparent patterns in disease occurrence or distribution.  
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This work represents a significant step toward automated disease surveillance in wild fish 

populations, demonstrating both the potential and challenges of computer vision 

approaches. Overall, this work highlights the transformative potential of computer vision for 

disease surveillance in fish, but also other visually distinct wildlife diseases, while also 

underscoring the need for continued refinement and careful integration with existing 

methods. 

 



 

 

 

 

 

 

 

CHAPTER 6 : 

DEEP LEARNING MODEL CONFIDENCE AS A 
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Abstract 

Traditional wildlife disease surveillance is often resource-intensive, and computer vision 

offers a promising avenue for more efficient, automated monitoring. Here, we evaluate 

deep learning models for classifying 'rumpwear', an externally visible condition in common 

brushtail possums (Trichosurus vulpecula), using camera trap images. Rumpwear ranges 

from hair breakage to complete hair loss, and its visually gradable nature makes it an ideal 

case study for moving beyond simple disease presence/absence detection. Our best-

performing supervised model achieved 95.2% classification accuracy. Importantly, we 

demonstrate that the model's output probability for the 'Disease' class correlates 

significantly with expert-assigned severity scores on held-out test images, validating its use 

as a proxy for a disease-severity index. Gradient-weighted Class Activation Mapping showed 

the model concentrated on the rump, which was the relevant region for rumpwear clinical 

signs. Developing deep learning models that can rapidly classify and quantify disease-

severity from images is a useful tool for enhancing existing disease monitoring projects and 

offers vital infrastructure for future programmes. 

6.1 INTRODUCTION 
Effective disease surveillance is crucial globally. Yet achieving comprehensive monitoring 

faces significant challenges, particularly for wildlife populations where efforts often rely on 

opportunistic reporting rather than systematic surveys (Phelps et al. 2019; Watsa 2020). 

While frameworks like the World Organisation for Animal Health (WOAH) collate reports on 

notifiable diseases, primarily focusing on livestock and major epizootics through methods 

like clinical observations and sentinel monitoring, obtaining comparable data for many wild 

species remains difficult (Stallknecht 2007; Watsa 2020). Consequently, understanding 
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disease dynamics in wildlife often depends on passive detection, such as reports of dead or 

sick animals from the public, for example hunters, amateur naturalists or anglers. 

Deep learning models have proven effective for image-based disease detection and 

classification in agriculture, particularly plant pathology (Francis and Deisy 2019; Li et al. 

2020), and medical diagnostics (Esteva et al. 2021; Rana and Bhushan 2023). Despite this 

success, and the rapid growth of camera-trap image datasets (Swanson et al. 2015), few 

studies apply these techniques to wildlife disease surveillance (Christin et al. 2019; Jarić et 

al. 2020; Poulin et al. 2021). Many animal diseases manifest externally visible signs, 

presenting a clear opportunity to leverage computer vision (CV) for automated detection 

from photographs or videos. Encouragingly, specific applications are emerging: for instance, 

CV has been used to classify skin lesions in bottlenose dolphins (Tursiops truncatus) from 

photographic surveys (Murphy et al. 2025) and to detect Devil Facial Tumour Disease (DFTD) 

in Tasmanian devils (Sarcophilus harrisii) from camera trap images (Nurçin et al. 2024). 

Recently, Ringwaldt et al. (2025) also used a CNN to identify rumpwear in common brushtail 

possums for broad-scale distribution mapping. Furthermore, the potential utility of image 

repositories for assessing disease in aquatic species, such as salmonids, has found that 

models can distinguish healthy from diseased animals (Olsen et al. 2026, Chapter 5). Despite 

these advancements, broad application and methodological refinement across diverse 

wildlife-disease systems are needed to fully realise the potential of image-based 

surveillance. 

One condition presenting with visually apparent signs in Australian marsupials is rumpwear, 

also known as ‘rumpy possum’ or ‘rumpiness’. It affects common brushtail possums 

(Trichosurus vulpecula) across Australia, including Tasmania (Ringwaldt et al. 2025). 

Rumpwear has also been described in mountain brushtail possums  (Trichosurus 

cunninghami, see Hufschmid et al. 2010) and common ringtail possums (Pseudocherius 

peregrinus, see Ringwaldt et al. 2022). Rumpwear manifests as bilateral hair damage on the 

lumbosacral region, ranging from changes in fur colouration due to hair breakage to, in rare 

cases, complete hair loss (Hufschmid et al. 2010; Ringwaldt et al. 2022). While the precise 

aetiology remains unclear, it is hypothesised to involve hypersensitivity to an irritant, 

possibly ectoparasites, leading to mechanical hair damage from overgrooming (Hufschmid 

et al. 2010). The visually gradable nature of these signs, along with evidence suggesting links 
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to host factors, seasonality, and population density (Hufschmid et al. 2010; Ringwaldt et al. 

2025), makes rumpwear a suitable model syndrome for developing and evaluating 

computer vision tools beyond simple presence/absence detection, particularly for assessing 

varying levels of affliction. 

Building on the epidemiological findings and initial image classification efforts of Ringwaldt 

et al. (2025), this study used a dataset of 7780 images of common brushtail possums from 

the same Tasmanian camera trap network (Vaughan et al. 2022; Brook et al. 2025; 

Ringwaldt et al. 2025). These images were expertly scored for the presence and apparent 

severity ('Mild signs' versus 'Obvious signs') of rumpwear by Ringwaldt and Brook, as 

detailed in Ringwaldt et al. (2025). While Ringwaldt et al. (2025) developed a CNN for broad-

scale rumpwear detection and distribution mapping, our study provides a novel 

methodological framework for moving beyond simple presence/absence classification. 

Specifically, this paper aims to: 1) comprehensively evaluate different deep learning model 

configurations (including pre-training and fine-tuning strategies) to accurately classify 

rumpwear presence, comparing model performance to expert labels; 2) investigate whether 

model outputs (e.g., prediction probabilities) can serve as a robust proxy for a nuanced, 

expert-scored disease-severity index, aligning with the original multi-category expert scores; 

and 3) explore the utility of semi-supervised learning techniques to potentially reduce the 

reliance on extensive manual labelling for training effective classifiers in such wildlife-health 

studies. 

6.2 MATERIALS AND METHODS 

6.2.1 DATA ACQUISITION AND PREPARATION 

We sourced possum images from the University of Tasmania’s state-wide camera-trap 

network. This network and its operational details (914 unique camera sites, active 2016-

2021) are described in Vaughan et al. (2022) and Ringwaldt et al. (2025). Most units 

employed white-flash illumination, producing colour night images that allowed clearer 

visual grading of rumpwear in this nocturnal species. Initial image processing, including 

animal detection using MegaDetector (Beery et al. 2019) and subsequent species 

classification to identify common brushtail possums was done using the "Mega-Efficient 

Wildlife Classifier" (MEWC), as described by Brook et al. (2025). 
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Two experienced observers (co-authors Ringwaldt and Brook) annotated 7779 images for 

signs of rumpwear. Each image was assigned to one of four initial categories based on visual 

evidence: 1) Healthy: no signs of rumpwear; 2) Mild signs: potential rumpwear indicated by 

hair breakage or light grey/cream fur on the rump; 3) Obvious signs: clear breakage or loss 

of fur on the rump; and 4) Occluded: rump not visible or image quality insufficient for 

assessment (Figure 6.1).  

 

Figure 6.1. Camera trap images of brushtail possums exemplars, corresponding to the classes 

defined in this study. (A) Healthy (B) mild signs of rumpwear (C) obvious signs of rumpwear, 

and (D) possum with rump occluded. 

For the primary model training, the initial expert-annotated categories of ‘Mild signs’ and 

‘Obvious signs’ were consolidated into a single ‘Disease’ class. This was done to ensure a 

sufficient number of training examples for the overall diseased category, given the potential 

for fewer samples in more granular severity sub-classes, and to account for the inherent 

subjectivity and continuous nature of visual severity assessment. The original ‘Mild’ and 

‘Obvious’ distinctions were, however, retained for a subsequent post-hoc analysis to 

investigate whether model outputs could serve as a proxy for disease-severity (see Section 

6.2.8). 
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6.2.2 DATASET PARTITIONING AND DE-DUPLICATION 

To ensure the integrity and independence of the dataset, we applied a multi-step 

partitioning and de-duplication pipeline. For each class, image embeddings were first 

computed for all images using the clip-ViT-B-32 model from OpenAI (Radford et al. 2021) via 

the sentence-transformers library (Reimers and Gurevych 2019). We computed pairwise 

cosine similarity within each class to flag duplicates. 

Pairs with cosine similarity ≥ 0.999 were treated as exact duplicates. Within each group of 

identified exact duplicates (caused by overlapping object detections by MegaDetector), all 

but one image were excluded from the final dataset, resulting in 7657 unique images after 

duplicate removal. Near-duplicate sequences (scoring 0.97 – 0.999) likely represented time 

series of the same individual animal captured in quick succession.  We placed all 

near-duplicate sequences solely in the training set to prevent images from the same animal 

encounter appearing in both the training and evaluation (validation or test) sets, thereby 

reducing the risk of data leakage. 

Following the removal of exact duplicates and the allocation of near-duplicate sequences to 

the training set, the remaining unique images within each class were statically partitioned. 

The target split was 80% for training, 10% for validation, and 10% for testing, based on the 

post-duplicate-removal image count for each class. This procedure resulted in the final 

dataset splits shown in Table 6.1.  

 

Table 6.1. The number of images in the training, validason and test set for each of the 

classes ‘Healthy’, ‘Disease’ and ‘Occluded’ 

Class Training Validation Test Total Proportion (%) 

Healthy (no rumpwear) 3177 397 397 3971 51.9 

Disease (signs of possible or obvious 

rumpwear) 

1329 166 167 1662 21.7 

Occluded (rump of animal occluded) 1619 202 203 2024 26.4 
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Class Training Validation Test Total Proportion (%) 

Total 6125 765 767 7657 100.0 

 

6.2.3  MODEL ARCHITECTURE AND PRE-TRAINING STRATEGIES 

We chose EfficientNetV2S convolutional neural network (CNN) architecture (Tan and Le 

2021) for its high accuracy to computational efficiency ratio in image recognition tasks. All 

models were implemented using Keras 3 with a JAX backend in Python 3.10.13. A transfer 

learning approach was adopted, with model weights initialised from two distinct pre-

training sources to enhance feature extraction. 

First, we used ImageNet pre-training for generic visual features (Deng et al. 2009). The 

second source involved custom wildlife pre-trained weights, generated to leverage domain-

specific features relevant to camera trap imagery. These custom weights were produced by 

adapting the workflow from the MEWC pipeline (Brook et al. 2025), with the associated 

codebase available on GitHub (http://github.com/zaandahl/mewc). The MEWC framework 

is designed for customised wildlife image classification using deep learning. Brook et al. 

(2025) demonstrated the MEWC workflow's capability by training models (including 

EfficientNetV2S) on a dataset of 10 common Tasmanian wildlife species/classes, reportedly 

achieving high classification accuracies (e.g., their EfficientNetV2S model achieved 99.48% 

accuracy and a test loss of 0.0023 on this multi-species task). 

To prevent leakage, we first fine-tuned MEWC on nine non-possum Tasmanian mammal 

species. The resulting weights from this nine-species classification model then served as our 

custom wildlife pre-trained weights, providing CNN features adapted to the specific camera 

network and Tasmanian environmental context. 

For all model configurations, we passed the features extracted by the pre-trained 

EfficientNetV2-S base model to a custom classification head to map the learned feature 

representations to the specific target classes. This comprised of a GlobalAveragePooling2D 

layer to summarise the spatial feature maps, followed by a Dropout layer. Dropout layers 

were included to reduce overfitting by randomly deactivating a subset of neurons during 

training, encouraging the model to learn more generalisable feature representations. The 
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subsequent layers included a Dense layer with 256 units, an Exponential Linear Unit (ELU) 

activation layer, and then a second Dropout layer. The head terminated with a final Dense 

classification layer with softmax activation, which predicted probabilities for the ‘Healthy’, 

‘Disease’, or ‘Occluded’ categories. 

6.2.4 SUPERVISED TRAINING PROTOCOL 

We investigated four primary supervised training configurations, varying both the source of 

pre-trained weights (ImageNet or custom wildlife) and the initial training strategy (frozen 

base then fine-tune, or fine-tune only). This comparison allowed us to determine whether 

the model benefits more from domain-specific prior knowledge (local wildlife) than generic 

features (ImageNet), and to assess whether the entire network needs to be updated to 

capture the fine-grained visual characteristics of rumpwear. 

For the “frozen then fine-tuned” (fr_ft) configurations, the model was initialised with either 

ImageNet or custom wildlife pre-trained weights. During the initial frozen training phase, 

the weights of the base CNN were kept fixed, and only the custom classification head was 

trained for 10 epochs. Following this, the top block of the EfficientNetV2S base was 

unfrozen, and the entire model was fine-tuned for a further 28 epochs, divided into four 

progressive stages of seven epochs each. 

In the “fine-tuned only” (ft) configurations, the model was initialised with the respective 

pre-trained weights, and the top block of the base model was unfrozen immediately. The 

model was then fine-tuned for 28 epochs, also using progressive training stages. 

All training runs used the AdamW optimiser with a learning rate of 1e-4 and weight 

regularisation (1e-4), together with an exponential learning rate scheduler. To address class 

imbalance, the training data was balanced by resampling (without replacement) 1300 

images per class for each epoch. Input images were resized to 384 × 384 pixels, and data 

augmentation was applied using RandAugment (Cubuk et al. 2020) with three 

augmentations per image and progressive augmentation magnitudes across the four fine-

tuning stages (0.2, 0.4, 0.6, and 0.8, respectively). To further regularise the model during the 

fine-tuning stages (mitigating overfitting), the rate for the top dropout layer (located after 

the ELU activation in the classification head) was progressively increased across the four 
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stages (0.1, 0.2, 0.3, and 0.4, respectively). Training was performed with a batch size of 16. 

Model checkpoints were saved based on the lowest validation loss observed during training. 

6.2.5 MODEL EVALUATION METRICS 

We assessed performance with the standard quartet of metrics: accuracy, precision, recall, 

and F1-score (definitions in Géron 2022, Chapter 3). Accuracy can be a misleading metric for 

this task because the dataset is imbalanced; for instance, a model that only ever predicts 

‘Healthy’ would still achieve 90% accuracy if just 10% of possums were diseased. In disease 

surveillance, the cost of failing to identify a diseased animal (a false negative) is particularly 

high. High recall for the ‘Disease’ class means the model successfully identifies most true 

disease cases, generating few false negatives. As such, we treat accuracy as ancillary and 

base our conclusions on F1 and recall.  

6.2.6 MODEL SELECTION FOR SUBSEQUENT ANALYSIS 

To ensure a fair and unbiased evaluation, we selected a single supervised model for all 

subsequent analyses, including the semi-supervised learning protocol and the 

disease-severity investigation. Model selection was based on a comparative evaluation of 

the four trained models on a held-out validation set, a standard practice to prevent 

information leakage from the test set during model development (Chollet 2021). We 

considered both discrimination performance (including precision for the ‘Disease’ class) and 

overall calibration, as reflected in the validation loss, because a key aim of the study was to 

use the model’s continuous output probability as a proxy for disease severity. In particular, 

we prioritised models with lower validation loss, as these are more likely to produce reliable 

and interpretable probability scores across the severity spectrum, which is essential for 

generating high-quality pseudo-labels and for analyses relying on model output probabilities 

(Lin et al. 2020; Sohn et al. 2020). 

6.2.7 SEMI-SUPERVISED LEARNING VIA PSEUDO-LABELLING 

The scarcity of high-quality labelled data in ecological image analysis motivates the use of 

semi-supervised and self-supervised learning approaches (van Engelen and Hoos 2020). To 

investigate if model performance could be improved with unlabelled data, we adopted a 

semi-supervised learning (SSL). Among the various semi-supervised learning strategies, 

wrapper methods such as self-training (also known as iterative pseudo-labelling) are well-
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established and widely used due to their simplicity and flexibility. These methods allow 

unlabelled data to be incorporated into model training with minimal modification to existing 

supervised algorithms, making them especially attractive for practical applications where 

ease of implementation and interpretability are important considerations (van Engelen and 

Hoos 2020). While more complex semi-supervised learning methods exist, there is no single 

best approach for all problems, and empirical evaluation is essential to determine the most 

suitable method for a given research question. In this study, we adopted an iterative 

pseudo-labelling strategy, balancing methodological rigour with practical feasibility, to 

investigate its utility in training effective rumpwear classifiers with reduced reliance on 

extensive manual labelling. 

The iterative pseudo-labelling protocol was done with the elected supervised model over 

three iterations. In each iteration, the current teacher model generated pseudo-labels for 

the unlabelled dataset. Only images where the model's prediction confidence for a specific 

class surpassed a given threshold were assigned pseudo-labels. This confidence threshold 

was set to 0.99, 0.85, and 0.70 for the three successive iterations, gradually allowing more, 

potentially less certain, pseudo-labels to be incorporated. 

Following pseudo-label generation in each of the three iterations, the teacher model was 

retrained using curriculum learning strategy (Bengio et al. 2009) where a model learns from 

easier examples before proceeding to more difficult ones. In our implementation, prediction 

confidence served as a proxy for example difficulty. Within each iteration, pseudo-labels 

meeting that iteration's confidence threshold were sorted by confidence. Training then 

proceeded through four curriculum stages: the expert-labelled data was first combined with 

the top 25% of these pseudo-labels, then progressively with the top 50%, 75%, and finally all 

100%. Each of these four curriculum-stage datasets was used to fine-tune the model for 10 

epochs, employing the same progressive training settings (dropout, augmentation 

magnitudes) as the supervised models. The model resulting from the final curriculum stage 

of an iteration became the teacher for the next. 

 

6.2.8 ASSESSING MODEL OUTPUT AS A PROXY FOR DISEASE-SEVERITY 
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To investigate whether the outputs from the trained deep learning model could serve as 

an automated proxy for expert-assigned disease-severity scores (categorised as 'Mild 

signs' and 'Obvious signs'), a series of analyses were conducted. For severity, images 

with a ground truth label of 'Occluded' were excluded; this was because the rump is not 

visible in such images, meaning severity cannot be assessed by an expert, and 

therefore cannot be assessed for health status. 

First, to understand general model calibration, we examined the distribution of the 

model's predicted softmax probability for its chosen class, grouped by the ground truth 

label ('Healthy', 'Disease', 'Occluded') across all data splits. A similar confidence 

analysis was also done on the large, unlabelled dataset by applying the final trained 

model to generate predictions, to understand the model's output distribution on a 

dataset representative of a real-world monitoring scenario. 

To assess the relationship between model output and disease-severity more directly, 

several visualisations focused on the model's softmax probability for the 'Disease' 

class (P(Disease)). Violin plots were generated to compare the distribution of 

P(Disease) across test set images with ground truth labels of 'Healthy', 'Mild signs', and 

'Obvious signs'. To statistically test for differences in P(Disease) between these three 

groups, we used a Kruskal-Wallis H test, a non-parametric approach suitable for 

comparing multiple groups without assuming a normal distribution of the data. Post-

hoc analysis was subsequently performed using Dunn's test with Bonferroni correction 

to identify which specific group pairs were significantly different. Complementing this, a 

2D scatter plot visualised P(Healthy) against P(Disease) for each non-occluded test set 

image, with points coloured by their ground truth label ('Healthy', 'Mild signs', 'Obvious 

signs') to identify potential separation in this two-dimensional probability space. 

Finally, to explore whether the model's learned internal representations inherently 

captured severity-related information, dimensionality reduction techniques, 

specifically Uniform Manifold Approximation and Projection (UMAP), t-distributed 

Stochastic Neighbor Embedding (t-SNE; van der Maaten and Hinton 2008), and 

Principal Component Analysis (PCA), were used. These techniques were applied to two 

distinct sets of features from the non-occluded test set images: first, to the three-
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dimensional vector of softmax output probabilities ([P(Healthy), P(Disease), 

P(Occluded)]), and second, to the 256-dimensional embeddings from the model's 

'compression_bottleneck' layer. The resulting two-dimensional plots were coloured by 

the ground truth label ('Healthy', 'Mild signs', 'Obvious signs') to assess whether these 

categories formed distinct clusters, which would indicate that the model had learned 

separable features related to disease-severity. To quantitatively evaluate this 

clustering, we calculated the silhouette coefficient (Rousseeuw 1987). The silhouette 

score measures how similar a data point is to its own cluster compared to other 

clusters, where a higher score indicates that clusters are dense and well-separated. To 

further validate the reliability of the model's 'Disease' class probability, we also 

performed a calibration analysis (Guo et al. 2017). For this, we evaluated the model's 

performance on the binary task of distinguishing 'Healthy' from ‘Disease’ cases in the 

non-occluded test set. We calculated the Brier score loss (Brier 1950) and Expected 

Calibration Error (ECE), and generated a combined plot showing both the calibration 

curve and a histogram of the prediction confidences. 

We analysed the Gradient-weighted Class Activation Mapping (Grad-CAM; Selvaraju et al. 

2020) heatmaps for all non-occluded test images  (n=564) to provide a quantitative 

assessment of the model's visual focus. Each heatmap was visually classified as either 

'cohesive', where activation was clearly concentrated on the possum's rump, or 

'fragmented', where activation was diffuse, scattered, or focused on other image 

elements. We then calculated the proportion of cohesive and fragmented heatmaps 

across different groups, such as correct versus divergent classifications and different 

levels of model confidence. 

6.2.9 MODEL INTERPRETABILITY: IDENTIFYING KEY IMAGE REGIONS 

To understand the visual basis for the classification decisions made by the wildlife_ft model, 

we used Grad-CAM. Grad-CAM is a visualisation technique that produces a "heatmap" 

highlighting the specific regions in an input image that were most influential in the model's 

prediction for a given class (e.g., 'Disease'). 

Rather than using a simple random sample, we implemented a targeted, scenario-based 

strategy to select the most informative images from the test set. This approach allowed us 
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to probe the model's behaviour under various conditions. We generated Grad-CAM 

heatmaps for the model's predicted class by analysing several key situations. We examined 

high-confidence (>0.95) correct classifications for 'Healthy', ’Obvious signs’, and 'Occluded' 

images to confirm the model's confident decisions were based on biologically relevant 

features. We also investigated correctly identified 'Mild signs' cases where the model 

exhibited lower confidence (0.5-0.75). Finally, we focused on divergent classifications: 

instances where the model's prediction differed from the expert label, such as when 

'Healthy' animals were labelled as 'Disease' or vice versa. 

It is important to recognise that expert labels are not an absolute ground truth, as no 

physical verification of disease status was performed. Therefore, these divergent 

classifications represent a disagreement between the model and the human expert, 

not necessarily a model error. By overlaying heatmaps onto the original images, we could 

qualitatively assess the features that led to a divergent prediction, providing deeper insight 

into the model's decision-making process. 

6.3 RESULTS 

6.3.1 SUPERVISED CLASSIFICATION OF RUMPWEAR STATUS 

The test set performance of the four supervised EfficientNetV2S model configurations is 

detailed in Table 6.2. All models  reached 93.9%–95.2% accuracy and weighted average F1-

score, confirming the architecture’s suitability. 

Table 6.2. Performance metrics for four EfficientNetV2S model configurasons on the 

rumpwear test set. ImageNet_fr_v: Pre-trained on ImageNet, frozen base then fine-tuned. 

Wildlife_fr_v: Pre-trained on custom wildlife dataset, frozen base then fine-tuned. 

ImageNet_v: Pre-trained on ImageNet, fine-tuned only. Wildlife_v: Pre-trained on custom 

wildlife dataset, fine-tuned only. Best values for each metric are shown in bold. 

Metric ImageNet_fr_ft Wildlife_fr_ft ImageNet_ft Wildlife_ft 

Accuracy 0.94 0.939 0.948 0.952 

F1-score (Healthy) 0.95 0.949 0.958 0.958 
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F1-score (Disease) 0.903 0.904 0.927 0.926 

F1-score (Occluded) 0.953 0.949 0.945 0.96 

Macro avg F1-score 0.935 0.934 0.943 0.948 

Macro avg Precision 0.929 0.929 0.948 0.947 

Macro avg Recall 0.943 0.939 0.939 0.95 

Precision (Healthy) 0.969 0.964 0.946 0.962 

Precision (Disease) 0.863 0.881 0.939 0.913 

Precision 

(Occluded) 0.955 0.942 0.959 0.965 

Recall (Healthy) 0.932 0.935 0.97 0.955 

Recall (Disease) 0.946 0.928 0.916 0.94 

Recall (Occluded) 0.951 0.956 0.931 0.956 

Weighted avg F1-

score 0.941 0.939 0.948 0.952 

Weighted avg 

Precision 0.942 0.94 0.948 0.952 

Weighted avg 

Recall 0.94 0.939 0.948 0.952 

 

The Wildlife_ft model, which used custom wildlife-specific pre-trained weights and was fine-

tuned directly, demonstrated the highest overall accuracy (0.952) and the best weighted-

average F1-score (0.952). Comparing pre-training sources, models initialised with custom 

wildlife weights (Wildlife_ft) showed a slight advantage over their ImageNet counterparts 

(ImageNet_ft) in overall performance. Regarding the training strategy, directly fine-tuning 
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the models (_ft) consistently resulted in better performance than including an initial frozen 

base phase (_fr_ft). 

For the crucial ‘Disease’ class, the ImageNet_ft configuration achieved the highest F1-score 

(0.927) and precision (0.939), making it the most reliable for positive predictions. The 

highest recall (0.946), indicating the best ability to identify all true disease cases, was 

achieved by the ImageNet_fr_ft model.  

All four models showed very similar classification performance, so the choice of final model 

was driven by calibration rather than accuracy alone. Among the two strongest candidates, 

the ImageNet_ft model performed best on the ‘Disease’ class, but the Wildlife_ft model 

achieved the lowest validation loss, indicating better overall calibration. Given our focus on 

using model probabilities as a proxy for disease severity, we selected the Wildlife_ft 

configuration, accepting a small reduction in ‘Disease’ precision as a trade-off for more 

reliable probability estimates. All subsequent analyses therefore use Wildlife_ft as the base 

model. 

6.3.2 SEMI-SUPERVISED CLASSIFICATION OF RUMPWEAR STATUS 

We investigated whether a semi-supervised learning (SSL) protocol could improve upon the 

supervised model's performance. The results were mixed: while the final SSL model 

increased recall for the ‘Disease’ class, this gain came at the cost of lower precision and 

overall accuracy. The detailed performance metrics are provided in the supplementary 

material (Supplementary Table 13). 

6.3.3 ASSESSING MODEL OUTPUT AS A PROXY FOR DISEASE-SEVERITY 

We examined model confidence across all datasets. For images in the test set, the model 

generally assigned high probabilities to its predicted class (Supplementary Figure 11). A 

similar high-confidence pattern was observed in the predictions made on the unlabelled 

dataset during the semi-supervised learning protocol (Supplementary Figure 12). 

The model's predicted probability for the 'Disease' class (P(Disease)) increased 

systematically with expert-assigned disease severity (Figure 6.2). A Kruskal-Wallis 

test confirmed a highly significant difference in the P(Disease) distributions across 

the 'Healthy', 'Mild Signs', and 'Obvious Signs' groups (H = 348.29, p < 0.001).  Post-hoc 
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analysis using Dunn's test showed that all three groups were statistically distinct 

from one another. The separation was most pronounced between the 'Healthy' (mean = 

0.09) and 'Obvious Signs' (mean = 0.96) groups (p < 0.001). The 'Mild Signs' group (mean 

= 0.75) was also clearly distinguished from both the 'Healthy' group (p < 0.001) and, 

more subtly but still significantly, from the 'Obvious Signs' group (p = 0.018). This 

demonstrates a clear ordinal relationship where the model's confidence in its 'Disease' 

prediction aligns directly with the visually assessed severity of the condition. 

 

 

 

Figure 6.2. Violin plots showing the distribuson of model-predicted disease probability 

(P(Disease)) for test set images, grouped by their expert-assigned ground truth label. 

 

When visualised in a two-dimensional probability space, the 'Healthy', 'Mild Signs', and 

'Obvious Signs' categories formed distinct regions (Supplementary Figure 13). 'Healthy' 

images clustered where P(Healthy) was high and P(Disease) was low, while 'Obvious Signs' 

clustered in the opposite corner. The 'Mild Signs' images were primarily located in the space 

between these two groups. 
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The separation of severity classes was also evident in dimensionality reduction visualisations 

of the model's feature embeddings, projections showed moderate clustering. The UMAP 

projection showed visually distinct clustering (Figure 6.3) with a silhouette score of 0.373, 

while the PCA and t-SNE projections resulted in similar scores of 0.372 and 0.298, 

respectively (Supplementary Figure 14 and Supplementary Figure 15). The first two principal 

components of the PCA on these bottleneck features captured 70% of the variance. These 

silhouette scores indicate that while some structure is present, the severity classes show 

considerable overlap within the bottleneck feature space. The separability was stronger in 

the model’s final three-dimensional softmax probability outputs. Here, a PCA projection 

achieved a silhouette score of 0.648 with its first two components explaining nearly 100% of 

the variance (Supplementary Figure 16). The corresponding t-SNE and UMAP projections 

had lower scores of 0.342 and 0.255, respectively (Supplementary Figure 17 and 

Supplementary Figure 18). 
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Figure 6.3 UMAP projecson of the 256-dimensional feature embeddings extracted from the 

model's 'compression_bo�leneck' layer for each image in the non-occluded test set. Points 

are coloured by their expert-assigned ground truth label. 

 

The reliability of the model’s confidence score as a severity proxy was confirmed with a 

detailed calibration analysis (Figure 6.4). The model achieved a low Brier score of 0.034 and 

a small ECE of 0.046.  
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Figure 6.4. Calibrason analysis of the model's 'Disease' class probability on the non-occluded 

test set. The top panel compares the model's predicted probability (blue line) to a perfectly 

calibrated model (dashed line). The model's Brier score and Expected Calibrason Error (ECE) 

are shown in the top-lev corner. The bo�om panel shows a histogram of these predicted 

probabilises.  

 

6.3.4 MODEL INTERPRETABILITY: IDENTIFYING KEY IMAGE REGIONS 

A quantitative analysis of the Grad-CAM heatmaps for all non-occluded test images showed 

a strong link between the model's focus and its performance. Correct classifications were 

highly associated with cohesive heatmaps (94.0%), whereas this figure was much lower for 

divergent classifications (60.7%). Heatmap cohesion also correlated directly with model 

confidence: 99.7% of high-confidence predictions (>0.95) had cohesive heatmaps, compared 

to only 67.1% for low-confidence predictions (<0.75). 

The visual outputs in Figure 6.5 illustrate these quantitative patterns. For high-confidence 

'Healthy' (Figure 6.5A) and 'Obvious Signs' (Figure 6.5B) classifications, the model's attention 

was strongly and cohesively centred on the rump. When classifying an 'Occluded' animal 

(Figure 6.5C), the model's focus was appropriately on the possum's head and face. 

Additional examples for each scenario are provided in Supplementary Figure 19 to 

Supplementary Figure 24. 

In contrast, visualisations for uncertain or divergent classifications often showed a more 

fragmented activation pattern. This was evident even for some correctly identified, but 

challenging, 'Mild Signs' images, which had a lower proportion of cohesive heatmaps 

(88.0%) than 'Obvious Signs' images (98.3%) (Figure 6.5D). This fragmented pattern was 

most common in cases of divergent classification. When a healthy animal was classified as 

'Disease' (Figure 6.5E), or when a diseased animal was classified as 'Healthy' (Figure 6.5F), 

the model's attention was often scattered and lacked a single, decisive point of focus. 
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Figure 6.5. Grad-CAM visualisasons of the trained wildlife_v EfficientNetV2S model's class 

acsvason maps for representasve test images. Each panel shows the original image (top) 

and the same image with the Grad-CAM heatmap overlay (bo�om). The heatmap indicates 

image regions of high importance for the model's final predicson; red signifies high 

importance, while blue signifies low importance. The panels display six different 
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classificason scenarios: (A) A high-confidence 'Healthy' classificason. (B) A high-confidence 

correct ‘Disease’ classificason belonging to the ‘Obvious signs’ ground truth class. (C) A high-

confidence 'Occluded' classificason. (D) A low-confidence, correct ‘Disease’ classificason 

belonging to the 'Mild signs' ground truth class. (E) A divergent classificason of a healthy 

animal as 'Disease'. (F) A divergent classificason of a diseased animal as 'Healthy'. 

 

6.4 DISCUSSION  

This study demonstrates that our pipeline automates rumpwear detection and yields a well-

calibrated quantitative severity proxy. While our supervised classifier successfully learned 

this severity continuum, attempts to further enhance its already high performance using 

semi-supervised learning yielded mixed results.  

Notably, the supervised model encoded the severity of rumpwear clinical signs as a 

continuum, mirroring its gradual visual progression (Hufschmid et al. 2010; Ringwaldt et al. 

2022). This was quantitatively demonstrated by the mean P(Disease) scores on the test set, 

which progressed from 0.09 for 'Healthy' images, to 0.75 for 'Mild Signs', and 0.96 for 

'Obvious Signs'. The model's learned feature space also reflected this: internal features 

showed moderate class separation (silhouette scores 0.30-0.37), while the final softmax 

outputs were more distinct (PCA silhouette score: 0.648). This suggests the final 

classification layer functions to transform the more ambiguous, overlapping features into a 

separable output. A detailed calibration analysis confirmed the reliability of this output as a 

severity proxy (Figure 6.4).  

Although the model was less reliable on rare, mid-range probability predictions, it was well-

calibrated overall (Brier score: 0.034). Importantly, most 'Mild Signs' cases were assigned 

scores in a high-confidence range (IQR: 0.71–0.93), placing them outside the most uncertain 

regions of the calibration curve. This validates the model's output probability not as a 

perfectly calibrated measure of likelihood, but as a robust correlative proxy for severity, 

suitable for fine-grained analysis and as a practical alternative to more complex ordinal 

regression models (Niu et al. 2016). Furthermore, for these intermediate cases, the model 
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may offer a more consistent assessment than human experts. It is plausible that the model 

learns to identify subtle pixel-level patterns associated with early-stage rumpwear that are 

difficult for the human eye to reliably classify. However, without a definitive ground truth 

derived from physical examination, the hypothesis that the model may exceed human 

performance on borderline cases cannot be verified. 

Analysis of the model's decision-making process using Grad-CAM (Selvaraju et al. 2020) 

helped to validate its predictions. For high-confidence, correct classifications, the model 

focused its attention on cohesive, biologically relevant areas, specifically the rump and 

posterior of the animal. In contrast, for divergent classifications or low-confidence 

predictions, the model's focus became scattered and fragmented. This pattern suggests that 

the cohesion of an activation map could serve as a simple visual indicator of model 

uncertainty, an area that warrants further investigation. The visualisations also confirmed a 

key limitation: the model, much like a human expert, performed less effectively on images 

taken in low light or where the animal was distant. Image quality and posture strongly affect 

performance – a pattern seen in other camera-trap studies (Tabak et al. 2019). 

Pseudo-labelling increased ‘Disease’ recall at the cost of precision, with no improvement for 

accuracy or F1. This outcome highlights the conditional success of SSL methods. Pseudo-

labelling is typically most effective when a small expert-labelled dataset is supplemented by 

a much larger volume of unlabelled data, particularly when the initial supervised model's 

performance is not yet saturated (Sohn et al. 2020). The high accuracy of our supervised 

model meant the primary risk was confirmation bias, where the model iteratively amplifies 

its own few prediction errors (or divergences from the human labels). This process can 

introduce noise that negates the benefit of using more data (Arazo et al. 2020). Expanding 

the expert-labelled dataset would likely provide clearer gains than applying this semi-

supervised approach. 

Our work is a methodological advance, building upon previous studies that documented 

rumpwear epidemiology through manual annotation (e.g. Ringwaldt et al. 2022). It also 

complements the work of Ringwaldt et al. (2025), who first applied a CNN to much of the 

same data for broad-scale presence/absence mapping. Our study extends this foundation by 

demonstrating that a deep learning model can move beyond simple classification. By 
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validating the model's output probability as a proxy for a nuanced severity index, we provide 

a tool for more fine-grained eco-epidemiological analysis. This high-throughput, automated 

scoring overcomes the primary bottleneck of manual data processing, enabling analysis on a 

scale that would otherwise be infeasible. This tool does not replace the need for ecological 

expertise, but its use should give researchers more time to focus on interpreting patterns 

rather than labelling images. A caveat is that our model was developed using a single 

camera-trap network; its performance in other ecological contexts or with different camera 

setups would require further validation. 

Looking forward, the validated supervised model can be applied to the full, unlabelled 

camera trap image archive from the University of Tasmania’s camera network to conduct 

landscape-level epidemiological studies. More broadly, the methodological framework 

presented here can be adapted to other camera trap networks and wildlife disease systems. 

This study is also a starting point for further technical refinement. For instance, while our 

model's probabilities are well-calibrated, they could be further improved by applying post-

hoc calibration methods. Temperature scaling (Guo et al. 2017), a technique for correcting 

for model overconfidence, could be a logical next step to fine-tune the reliability of the 

output probabilities before their use in downstream epidemiological models. From a data 

perspective, expanding the labelled dataset remains a key avenue for improving model 

robustness and evaluation. 

6.5 CONCLUSION 
We show that deep learning can support wildlife disease surveillance by detecting externally 

visible clinical signs and by providing a quantitative proxy for disease severity. Using 

rumpwear in common brushtail possums as a case study, our EfficientNetV2S-based pipeline 

achieved high classification performance on held-out test images and produced biologically 

plausible attention patterns in Grad-CAM visualisations. 

Beyond presence/absence detection, the model’s continuous output for the ‘Disease’ class 

increased systematically with expert-assigned severity categories (‘Mild’ to ‘Obvious’), 

supporting its use as a practical severity index for large image collections. This provides a 

scalable alternative to manual grading and a transferable framework for other wildlife 

conditions with gradable, externally visible signs. When combined with metadata (date and 
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location), such severity scores can support finer-scale analyses of wildlife disease dynamics 

and inform targeted follow-up monitoring. 



 

 

 

 

 

 

 

 

CHAPTER 7 : 

GENERAL DISCUSSION 
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7.1 SYNTHESIS OF KEY FINDINGS 
This thesis investigated the potential and challenges of using computer vision (CV) to classify 

visible signs of disease in wildlife from digital images. The research moved from a broad 

assessment of disease suitability and data availability to the empirical development and 

evaluation of CV models for specific case studies. This multi-faceted approach addresses key 

knowledge gaps in using modern technology for wildlife health surveillance. 

Question 1: Which wildlife diseases, particularly those subject to existing monitoring 

efforts, present with externally visible signs suitable for detection via computer vision? 

Chapter 3 established the scope for CV-based monitoring by analysing the World 

Organisation for Animal Health (WOAH) disease database. The analysis showed that many 

animal diseases manifest with externally visible signs. Overall, 137 of the 204 unique 

infectious diseases (67%) and 162 of 250 disease-host associations (65%) presented with 

visible signs. The relevance to wildlife surveillance was clear: 85% of these visible disease-

host units (138 of 162) were associated with wildlife hosts. The most common signs were 

lesions, swelling or oedema, and colour changes. This assessment confirmed that a 

significant number of existing and emerging disease concerns present observable signs, 

which supports using visual data to augment current surveillance methods. 

Question 2: What is the availability, quality, and ecological information content of wildlife 

imagery, particularly for fish species (salmonids), accessible from online digital 

repositories, and what is the prevalence of visible disease signs within these data?  

This question was addressed across two chapters. An initial broad assessment in Chapter 3 

explored image availability on Flickr for the diseases in our database. This analysis showed a 

trend for diseases with visible signs to have more associated images than those without 

visible signs (a median count nearly three times higher), though this result was not 

statistically significant (p=0.17), likely due to the inherent noise in such a broad search. To 

investigate image availability and content in more detail, Chapter 4 then provided a critical 

evaluation of online digital repositories as sources of wildlife imagery, focusing on salmonids 

as a case study for data availability, quality, and content. Our comprehensive analysis of 

nearly 70,000 images revealed these platforms, especially iNaturalist, offer a vast and 
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rapidly expanding visual dataset with considerable spatial and temporal reach. While image 

quality and metadata completeness varied notably across platforms, with iNaturalist 

contributing a large and rapidly growing collection of high-sharpness images and GBIF 

ensuring metadata consistency, the data were affirmed as robust for distribution and health 

indicator analyses. A key finding was the consistent prevalence of 14-18% of images 

showing visible signs of disease or physical damage across the platforms. This highlights a 

significant, previously underused resource for broad-scale wildlife health surveillance. The 

chapter also identified practical limitations, including restrictive "All Rights Reserved" 

licenses (mainly on Flickr), the absence of standard size references, and temporal biases in 

older data. 

Question 3: How effectively can deep learning algorithms be developed and trained to 

classify specific, visible signs of disease in wildlife images, using Saprolegnia spp. in 

salmonids as a case study, and how does dataset composition influence model 

performance?  

Chapter 5 provided empirical evidence for the effectiveness of deep learning algorithms in 

classifying visible signs of Saprolegnia spp. infection in salmonids. All developed models 

consistently outperformed random classification, with EfficientNetV2S demonstrating 

superior performance (macro-average F1-score of 0.920 on the Salmo genus dataset) likely 

because it can process higher-resolution images. This allows it to discern subtle yet 

diagnostically important features, such as the fine, filamentous texture of early-stage fungal 

hyphae or slight skin discolouration, that would be lost in lower-resolution inputs. This work 

showed the potential for rapid, large-scale disease screening, offering a valuable tool for 

early outbreak detection and more targeted application of confirmatory diagnostics, despite 

not replacing molecular diagnosis. A critical contribution was the adherence to rigorous 

validation protocols, which provided a more realistic assessment of real-world applicability 

compared to prior studies.  

The influence of dataset composition and image characteristics on model performance was 

highlighted across both the salmonid (Chapter 5) and possum (Chapter 6) case studies. 

Chapter 5 showed that performance was highly dependent on the taxonomic specificity of 

the dataset; the precision of the best model dropped from 0.858 on the Salmo-specific 
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dataset to just 0.462 on the Oncorhynchus-specific dataset. The better performance on the 

Salmo dataset was likely due to it being more balanced, whereas data imbalance in other 

datasets contributed to the overprediction of the minority (disease) class. Beyond simple 

data imbalance, this discrepancy may also reflect other confounding factors, such as subtle 

inter-genus differences in the visual presentation of saprolegniosis or potential systematic 

variations in image quality between the datasets, making classification inherently more 

challenging for the Oncorhynchus genus. The influence of image quality was also apparent: 

performance was affected by water surface reflections in the aquatic environment (Chapter 

5), and by factors like low light or subject distance in the terrestrial camera-trap images 

(Chapter 6). 

Question 4: Can the outputs of computer vision classification models serve as a proxy for 

disease severity assessment, and can semi-supervised learning approaches help mitigate 

labelled data limitations in this context? 

Chapter 6 expanded the application of CV beyond binary classification to assess disease 

severity, using brushtail possum rumpwear as a case study. The underlying supervised 

model achieved high performance , with results showing that pre-training on a custom 

wildlife dataset from the same camera network provided a slight advantage over using 

standard ImageNet weights, reaching an accuracy of up to 95.2% and a 'Disease' class F1-

score of 0.927. Trained only on broad 'Healthy', 'Disease' and ‘Occluded’ labels, it produced 

an output probability that served as a robust proxy for disease severity. This was 

demonstrated by the mean model outputs for the ‘Disease’ class, which progressed from 

0.09 for 'Healthy' images, to 0.75 for 'Mild Signs', and 0.96 for 'Obvious Signs'. The model 

was well-calibrated for this purpose (Brier score: 0.034), providing a high-throughput, 

automated scoring method that overcomes manual processing bottlenecks. Importantly, 

this method moves beyond coarse, categorical health scores by generating a continuous, 

quantitative variable. This innovation could open the door to more powerful statistical 

analyses of disease dynamics, such as modelling subtle population-level shifts in mean 

disease severity over time or in response to management interventions. The chapter also 

explored semi-supervised learning to address data limitations; this yielded mixed results, 

increasing recall at the cost of precision, which suggests a possible ceiling effect for the 

already high-performing model. Finally, model interpretation using Grad-CAM validated that 
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the model focused on relevant anatomical features, confirming its utility while also 

highlighting its limitations with poor quality images. The interpretability was quantitatively 

validated: 94% of correct classifications produced cohesive heatmaps, compared to only 

61% of incorrect classifications. This method moves beyond the subjective visual assessment 

of heatmaps towards a quantitative, data-driven measure of when the model's decisions 

can be trusted. 

7.2 OVERALL IMPLICATION AND CONTRIBUTIONS TO WILDLIFE DISEASE 

SURVEILLANCE  

The findings of this thesis advance the practical application of computer vision (CV) for 

wildlife disease surveillance, offering a complement to traditional monitoring methods. By 

investigating the entire pipeline from disease suitability to model development, this 

research shows the practical utility of CV for ecological science and wildlife health 

management. 

This thesis shows that CV offers a way to address existing gaps in wildlife disease 

surveillance. Traditional methods often face limitations in scale, timeliness, and 

geographical coverage (Delgado et al. 2023; Barroso et al. 2024). Notably, the methods 

developed in this thesis align directly with the most recent international guidance, which 

formally recognises "non-biological samples", including visual observations from camera 

traps, as a key component of modern wildlife surveillance (WOAH and IUCN 2024). Our work 

addresses these challenges by using automated image analysis for non-invasive, scalable 

monitoring. The analysis of online digital repositories (Chapter 4), particularly the high 

volume of observations on platforms like iNaturalist, highlights a large data stream that can 

be used for broad-scale surveillance without needing to physically capture animals. This 

automated, non-invasive approach provides a real alternative to the costly, logistically 

intensive, and often stressful capture-recapture programs that are frequently the only other 

means of assessing the health of free-ranging populations, thereby reducing costs, 

complexity, and impacts on animal welfare. 

The case studies in Chapters 5 and 6 show the effectiveness of deep learning models in 

extracting meaningful ecological information from these image sources. The successful 
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classification of Saprolegnia spp. in salmonids (Chapter 5) provides a method for rapid, 

large-scale screening, which can act as an early warning system. This approach allows for 

more targeted application of costly confirmatory diagnostics by flagging potential 

outbreaks. Similarly, the ability of CV to serve as a proxy for disease severity, as shown with 

possum rumpwear (Chapter 6), extends beyond simple presence or absence detection. This 

offers a high-throughput, automated scoring method that overcomes the bottleneck of 

manual processing, enabling fine-grained ecological analysis of disease progression across 

populations. 

By integrating these CV-derived health classifications with spatio-temporal metadata, this 

research opens new avenues for epidemiological analyses. These include mapping disease 

distributions, tracking spread, and investigating associations with environmental drivers 

(Toivonen et al. 2019), improving our understanding of disease dynamics in wild 

populations. The insights from this thesis show the potential for CV to extend the reach and 

efficiency of wildlife disease surveillance, enabling more timely and comprehensive 

responses to emerging health threats. 

7.3 BROADER CHALLENGES AND LIMITATIONS 
Despite the potential shown in this thesis, the successful and widespread application of CV 

for wildlife disease surveillance faces several substantial and interconnected challenges. 

These limitations, identified across various stages of the research, require ongoing attention 

and methodological innovation. 

A fundamental and pervasive challenge lies in data availability and quality. While online 

repositories offer vast quantities of imagery, images explicitly showing clear, specific disease 

signs remain inherently scarce (Green et al. 2020). This rarity, coupled with potential 

observer bias against photographing unhealthy animals, frequently results in highly 

imbalanced datasets, posing a significant hurdle for training robust and unbiased machine 

learning models (Chapter 2; Chapter 5). However, the opposite effect, a ‘novelty bias’ must 

also be considered, where citizen scientists are disproportionately motivated to photograph 

and upload an unusually sick-looking animal precisely because of its rarity (Edwards et al. 

2021). This competing bias could, in certain contexts, lead to an artificial inflation of 

prevalence estimates derived from these platforms. Acknowledging this duality of potential 
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under- and over-reporting is critical for interpreting health data from opportunistic sources. 

Furthermore, the opportunistic nature of much online imagery leads to immense variability 

in quality, including inconsistent lighting, animal pose, distance, occlusion, and complex 

backgrounds (Cunha et al. 2023; Chapter 2; Chapter 4; Chapter 5). This is particularly acute 

in aquatic environments, where factors like water turbidity, surface reflections, and rapid 

subject movement can obscure subtle disease features (Chapter 5). 

Data labelling and ground truth validation present a further challenge. Reliably identifying 

visible disease signs can be ambiguous, as visual cues may mimic natural variation or 

injuries. This ambiguity complicates the creation of high-quality, consistent ground truth 

labels needed for supervised learning (Murray et al. 2021; Chapter 2; Chapter 5). The ideal 

of validating model outputs against 'gold standard' clinical diagnoses is rarely feasible in 

free-ranging wildlife populations, which highlights the importance of rigorous protocol 

design and expert involvement in the labelling process (Chapter 2). A key limitation of 

relying on visual signs is the inability to investigate the underlying cause of diseases. This 

challenge of differential diagnosis is particularly acute, as some conditions have similar 

visual presentations despite different causes. Consequently, image-based surveillance may 

underestimate true disease prevalence or misattribute signs, reinforcing its role as a 

screening tool rather than a definitive diagnostic (Ringwaldt et al. 2022). 

Methodological complexities in model development also present limitations. There is a risk 

of models learning spurious correlations, associating disease labels with irrelevant 

background elements rather than the actual pathological features, which severely limits 

their generalisation capabilities to new environments or conditions (Miao et al. 2019; 

Chapter 2). While transfer learning aids in mitigating data requirements, and advanced 

techniques like semi-supervised learning hold promise, our findings (Chapter 6) indicate that 

for already high-performing models or datasets, these methods may offer only marginal 

gains. For such models, semi-supervised learning runs the risk of introducing noise from the 

unlabelled set that can degrade precision, highlighting that more complex methods do not 

guarantee improved performance. Emerging Vision-Language Models, while promising, 

currently struggle with the fine-grained distinctions and specialised terminology required for 

accurate disease identification (Vendrow et al. 2024) 
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Beyond the technical aspects, practical and operational constraints must also be considered. 

Developing deep learning workflows typically demands significant computational power and 

specialised technical expertise, which can be barriers for many ecological research groups 

(Ditria et al. 2020; Vidal et al. 2021; Chapter 2; Chapter 5). Furthermore, the licensing 

restrictions prevalent on certain online platforms (e.g., "All Rights Reserved" on Flickr) 

significantly curtail widespread data reuse, impeding the development and dissemination of 

AI models and curated datasets (Chapter 4). The increasing capabilities of AI-driven image 

editing features in consumer devices also pose a nascent but significant threat to the 

scientific integrity of online visual data, as algorithmic alterations may create convincing but 

false representations that are not transparently documented (Chapter 4). Lastly, evolving 

fish welfare guidelines advocating for in-water photography, while ethically laudable, may 

inadvertently reduce image clarity and visibility of key features, presenting a new challenge 

for data quality and the scientific utility of angler-sourced images (Chapter 4). 

Collectively, these challenges underscore that while CV offers immense potential, its 

effective application in wildlife disease surveillance requires continuous innovation in data 

acquisition, meticulous curation, robust methodological development, and careful 

consideration of the inherent biases and limitations of opportunistic visual data and the very 

nature of visual disease signs themselves. 

7.4 FUTURE WORK 

Building upon the foundations and insights generated by this thesis, several key directions 

emerge for future research to further advance the application of computer vision (CV) in 

wildlife disease surveillance. These directions encompass improvements in data acquisition, 

methodological refinements, enhanced validation, and broader deployment strategies, 

collectively pushing the boundaries of landscape epidemiology. 

7.4.1 DATA ACQUISITION AND CURATION 

A primary focus for future work should be on strategies to overcome the persistent 

challenge of data scarcity and class imbalance. This includes exploring and promoting 

standardised imaging protocols and metadata structures, particularly for citizen science 

contributions (Chapter 4), to ensure higher quality and more consistent data. Engaging 

directly with contributor communities, such as anglers, to educate them on best practices 
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for capturing scientifically valuable images of both healthy and unhealthy-looking animals 

could significantly improve dataset representativeness and reduce bias (Chapter 5). 

Maximizing the utility of all available image data, including those with incomplete metadata 

or unverified finer taxonomic labels, for training robust AI models, remains a critical future 

direction (Chapter 4). Further research into multi-source data integration, beyond the 

platforms explored here, could provide a more comprehensive picture. 

7.4.2 METHODOLOGICAL ADVANCEMENTS AND NEW FRONTIERS 

Future research should continue to explore advanced learning paradigms to mitigate 

labelled data limitations. This includes deeper investigation into semi-supervised and self-

supervised learning techniques to leverage potentially abundant unlabelled imagery 

(Chapter 2, Section 2.6.2; Chapter 6). Further research into few-shot learning could also be 

highly beneficial for identifying rare or emerging disease signs, allowing models to 

generalise from very limited examples (Chapter 2, Section 2.3). Developing more robust 

models for challenging environmental conditions, particularly for underwater imagery in 

aquatic systems, is crucial; this could involve incorporating explicit fish detection tools, such 

as 'megafishdetector' (Yang et al. 2023), and advanced image pre-processing techniques to 

reduce reflections and enhance clarity (Chapter 5). Furthermore, a powerful methodological 

frontier involves integrating the model disease classifications with external environmental 

datasets to test specific ecological hypotheses. This would enable researchers to investigate 

long-standing ecological questions, such as whether outbreaks are positively correlated with 

periods of low flow and high water temperature, transforming the CV tool from a simple 

detector into an engine for epidemiological discovery. Exploring hierarchical models that 

incorporate taxonomic data could also improve classification accuracy by leveraging broader 

biological relationships (Elhamod et al. 2022). 

A significant "new frontier" lies in the further development and application of Vision-

Language Models (VLMs) (Radford et al. 2021; Vendrow et al. 2024). These models hold 

immense potential for more flexible data querying using natural language and for open-set 

recognition; the ability to identify samples that do not belong to known categories, which is 

highly relevant for detecting previously unseen disease conditions or anomalies (Chapter 2). 

For instance, this could enable a system trained only on known diseases to flag an image of 

a possum with a novel condition, such as unusual skin nodules, as an 'unknown anomaly', 
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triggering an alert for expert veterinary review. While currently facing limitations with fine-

grained distinctions, their continued refinement could revolutionize surveillance by allowing 

for the detection of novel disease signs not explicitly trained for. Finally, a challenging but 

valuable research avenue is the development of AI that can infer morphometric data from 

images lacking an explicit size reference. This might be achievable by leveraging the fixed 

geometry of camera traps to estimate distance, training models to use common background 

objects as opportunistic scales, or by learning consistent body-part ratios to assess relative 

animal condition (Chapter 4). 

7.4.3 MODEL EVALUATION AND VALIDATION 

To ensure the practical utility of CV models, future work must focus on rigorous evaluation 

beyond standard computer vision metrics. This includes developing methods to assess 

whether model performance translates directly into accurate ecological variables like 

prevalence estimates and understanding the sensitivity of these estimates to various data 

biases (Pantazis et al. 2024). Refining model interpretation techniques, such as saliency 

maps, to serve as visual indicators of model uncertainty, or to verify that models are 

focusing on relevant pathological features rather than spurious background cues, is also 

important (Chapter 6). Addressing the emerging concern of AI-driven image editing in 

consumer devices will be critical, necessitating new standards for transparent 

documentation of alterations to maintain scientific integrity of visual data from public 

sources (Coalition for Content Provenance and Authenticity 2025, Chapter 4). 

7.4.4 DEPLOYMENT AND BROADER IMPACT 

Efforts should continue towards developing highly efficient models suitable for deployment 

on edge devices (Tuia et al. 2022). In an ecological context, these are field-based hardware, 

such as smart camera traps or drones, that process data locally rather than requiring it to be 

sent to a remote server. This local processing could enable real-time disease detection in 

the field. This would facilitate direct, actionable insights for on-the-ground management. 

Fostering interdisciplinary collaboration between ecologists, veterinarians, and computer 

scientists remains paramount to bridge expertise gaps and ensure successful 

implementation of these advanced tools (Weinstein 2018). Finally, advocating for and 

promoting open licensing policies across all online platforms would substantially enhance 
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the accessibility and reproducibility of research (Wilkinson et al. 2016), bolstering global 

efforts to address pressing conservation and health challenges (Chapter 4). This includes 

encouraging data infrastructure that supports standardised protocols and ethical data 

sharing of sensitive wildlife health information (Tulloch et al. 2018; WOAH and IUCN 2024). 

7.5 CONCLUSION 
This thesis has shown the potential of computer vision for advancing wildlife disease 

surveillance. Through a multi-faceted research design, it identified a broad range of visually 

apparent wildlife diseases, critically assessed online image repositories as novel data 

sources, and confirmed the effectiveness of deep learning models for both disease 

classification and severity assessment. 

By using opportunistic visual data, this work has contributed to bridging knowledge gaps in 

wildlife health monitoring. It shows how CV can overcome traditional logistical constraints, 

enabling non-invasive, scalable, and efficient surveillance. While acknowledging challenges 

such as data scarcity, the variability of field-captured imagery, and the limitations of visual-

only diagnosis, this research has also identified practical strategies and promising avenues 

for future work. 

The work presented here provides a framework and evidence for integrating computer 

vision into applied wildlife health monitoring. It moves beyond simply offering a new tool; it 

demonstrates how to transform the casual observation into a quantitative data point, 

fundamentally enhancing our ability to understand disease dynamics and support timely 

conservation responses on a global scale.
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SUPPLEMENTARY MATERIAL 

SUPPLEMENTARY MATERIAL, CHAPTER 3 
Supplementary Table 1. Search terms used in the R package ‘Photosearcher’ to invessgate 

the number of records on Flickr of diseases obtained from the World Organisason for 

Animal Health animal diseases portal.  

Disease Name Associated Search Terms (comma separated) 

Abalone viral ganglioneuritis abalone herpesvirus 

Acute hepatopancreatic necrosis 
disease Vibrio parahaemolyticus 

African horse sickness african horse sickness virus 

African swine fever african swine fever virus 

Agent causing chronic wasting disease CWD prions 

Anthrax Bacillus anthracis 

Atrophic rhinitis of swine Pasteurella multocida 

Aujeszkyís disease Suid herpesvirus 1 (SHV-1) 

Avian chlamydiosis 
Chlamydia psittaci, Chlamydia avium, Chlamydia 
gallinacea 

Avian infectious bronchitis Infectuous bronchitis virus 

Avian infectious laryngotracheitis gallid alphaherpesvirus 1 

Avian influenza Bird flu, Orthomyxoviridae Alphainfluenzavirus 

Avian mycoplasmosis Mycoplasma gallisepticum, Mycoplansma synoviae 

Avian tuberculosis Mycobacterium 

Babesiosis Babesia 

Baylisascariasis Baylisascaris procyonis 

Bluetongue Bluetongue virus 
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Bonamiosis Bonamia exitiosa, Bonamia ostreae 

Border disease Border disease virus 

Lyme disease Borrelia burgdorferi 

Tickborne Relapsing Fever Borrelia anserina 

Bovine anaplasmosis Anaplasma marginale 

Bovine babesiosis Babesia bovi, Babesia bigemina, Babesia divergens 

Bovine genital campylobacteriosis Campylobacter fetus subsp. venerealis 

Bovine spongiform encephalopathy Bovine spongiform encephalopathy prions 

Bovine tuberculosis Mycobacterium tuberculosis complex 

Bovine viral diarrhoea Bovine viral diarrhoea virus 

Brucellosis Brucella abortus, Brucella melitensis, Brucella suis 

Cache Valley virus disease Cache Valley virus 

Akabane disease Akabane virus 

Camelpox Camelpox virus 

Campylobacteriosis Campylobacter jejuni, Campylobacter coli 

Caprine arthritis Caprine encephalitis, CAE virus 

Carp edema virus infection Carp edema virus 

Chytridiomycosis 
Batrachochytrium dendrobatidis, Batrachochytrium 
salamandrivorans 

Circovirosis 

Canine circovirus, Fox circovirus, Porcine circovirus 1, 
Porcine circovirus 2, Porcine circovirus 3, Canary 
circovirus, Goose circovirus, Gull circovirus, Pigeon 
circovirus, Beak and feather disease, Beak and feather 
disease virus 

Classical swine fever Classical swine fever virus 

Contagious agalactia 

Mycoplasma agalactiae, Mycoplasma capricolum subsp. 
capricolum, Mycoplasma mycoides subsp. capri, 
Mycoplasma putrefaciens 

Contagious bovine pleuropneumonia Mycoplasma Mycoides 

Contagious caprine pleuropneumonia Mycoplasma capricolum subsp. Capripneumoniae 
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Contagious equine metritis Taylorella equigenitalis 

Crayfish plague Aphanomyces astaci 

Crimean Congo haemorrhagic fever Crimean-Congo haemorrhagic fever virus 

Cryptosporidiosis Cryptosporidium 

Cysticercosis Taenia spp. 

Decapod iridescent virus 1 infection Decapod iridescent virus 1 

Dermatophilosis Dermatophilus congolensis 

Dourine Trypanosoma (Trypanozoon) equiperdum 

Duck virus enteritis Anatid alphaherpesvirus-1 

Duck virus hepatitis 
duck hepatitis A virus, duck astrovirus type 1, duck 
astrovirus type 2 

Ebola Virus Disease Ebolavirus 

Echinococcosis Echinococcus 

Elephant endotheliotropic herpesvirus 
disease Elephant Endotheliotropic Herpesvirus, EEHV 

Encephalomyocarditis virus infection Encephalomyocarditis virus 

Enzootic abortion of ewes Chlamydia abortus 

Enzootic bovine leukosis bovine leukaemia virus 

Epizootic haematopoietic necrosis 
disease epizootic haematopoietic necrosis virus 

Epizootic haemorrhagic disease epizootic haemorrhagic disease virus 

Epizootic lymphangitis Histoplasma capsulatum var. farciminosum 

Epizootic ulcerative syndrome Aphanomyces invadans 

Equine encephalomyelitis 
Eastern encephalomyelitis virus, Western 
encephalomyelitis virus 

Equine infectious anaemia Equine Infectious Anaemia virus 

Equine influenza 
Equine influenza virus (Orthomyxoviridae influenzavirus 
A subtypes H7N7 and H3N8) 

Equine piroplasmosis Theileria equi, Babesia caballi 
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Equine viral arteritis Equine viral arteritis virus 

Equine viral rhinopneumonitis Equid herpesvirus-1 (EHV-1) 

European brown hare syndrome European brown hare syndrome virus 

Fasciolosis Fasciola gigantica, Fascioloides magna 

Feline leukaemia Feline leukaemia virus 

Fibropapillomatosis chelonid herpesvirus 5 (ChHV5) 

Filovirosis filoviruses 

Foot and mouth disease Foot and mouth disease virus 

Fowl cholera Pasteurella multocida 

Fowl pox fowlpox virus 

Fowl typhoid Salmonella Gallinarum biovar Gallinarum 

Glanders Burkholderia mallei 

Gyrodactylosis Gyrodactylus salaris 

Haemorrhagic septicaemia 

Pasteurella Multocida serotypes B:2 and E:2 (Carter and 
Heddleston classification system) or 6:B and 6:E 
(Namioka-Carter classification system) 

Hantavirosis Hantavirus 

Heartwater Ehrlichia ruminantium 

Hendra Hendra virus 

Herpesvirosis Alcelaphine herpesvirus 1, ovine herpesvirus 2 

Immunodeficiency virus infection 
Feline immunodeficiency virus, FIV, simian 
immunodeficiency virus, SIV 

Covert mortality nodavirus CMNV 

Enterocytozoon hepatopenaei Enterocytozoon hepatopenaei 

Louping ill Flavivirus, Louping ill virus 

Salmon anaemia virus infection 

salmon anaemia virus, pathogenic highly polymorphic 
region (HPR)-deleted, non-pathogenic highly 
polymorphic region (HPR0)-deleted 

Tilapia lake virus infection Tilapia lake virus 
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Infectious bovine rhinotracheitis Infectious pustular vulvovaginitis, bovine herpesvirus 1 

Infectious bursal disease 
Infectious bursal disease (IBD) virus (Birnaviridae 
Avibirnavirus) serotype 1 

Infectious haematopoietic necrosis salmonid novirhabdovirus 

Hypodermal necrosis 
Haematopoietic necrosis, Decapod 
penstylhamaparvovirus 1 

Infectious myonecrosis infectious myonecrosis virus 

Influenza A virus of swine Influenza A viruses of swine 

Japanese encephalitis Japanese encephalitis virus 

Koi herpesvirus disease cyprinid herpesvirus-3 (CyHV-3) 

Leishmaniosis Leishmania  

Leptospirosis Leptospira, Leptospira interrogans 

Listeriosis Listeria monocytogenes 

Low pathogenic avian influenza Low pathogenic avian influenza viruses 

Lumpy Skin Disease Lumpy skin disease virus 

Maedi-visna maedi-visna virus 

Malaria Plasmodium spp., Plasmodium 

Malignant Catarrhal Fever 
Alcelaphine gammaherpesvirus-1, Ovine 
gammaherpesvirus-2 

Mange mange mites 

Marekís disease 
Marek's disease, Marekís disease virus, Marek's disease 
virus 

Marteiliosis Marteilia refringens 

Middle East respiratory syndrome 
MERS, Middle East respiratory syndrome coronavirus 
(MERS-CoV) 

Morbillivirosis Morbilliviruses 

Mpox Monkeypox virus 

Myxomatosis Myxoma virus 

Nairobi sheep disease Nairobi sheep disease virus 
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Necrotising hepatopancreatitis Candidatus Hepatobacter penaei 

New world screwworm Cochliomyia hominivorax 

Newcastle disease Newcastle disease virus 

Nipah Nipah virus 

Nosemosis Nosema apis (Zander), Nosema ceranae, Nosema 

Old world screwworm Chrysomya bezziana Villeneuve 

Ovine epididymitis Brucella ovis 

Ovine pulmonary adenocarcinoma jaagsiekte sheep retrovirus 

Papillomatosis in crocodiles crocodile poxvirus 

Paramyxovirosis Avian paramyxoviruses 

Paratuberculosis Mycobacterium avium subsp. paratuberculosis 

Parvovirosis 

Parvoviruses, Hepatopancreatic parvovirus, infectious 
hypodermal and hematopoietic necrosis virus, 
Densoviruses 

Pasteurellosis Pasteurella spp 

Perkinsosis Perkinsus marinus, Perkinsus olseni 

Peste des petits ruminants small ruminant Morbillivirus 

Porcine cysticercosis Taenia solium 

Porcine epidemic diarrhoea Porcine epidemic diarrhoea virus 

Porcine reproductive and respiratory 
syndrome Porcine reproductive and respiratory syndrome virus 

Pox viruses infection Pox, Poxviruses 

Psoroptic mange Psoroptes spp. 

Pullorum disease 
Salmonella enterica subspecies enterica serovar 
Gallinarum biovar Pullorum 

Q fever Coxiella burnetii 

Rabbit haemorrhagic disease RHDB, calicivirus 

Rabies Rabies virus, Lyssavirus 

Ranavirosis Ranavirus, Ranaviruses 
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Red sea bream iridoviral disease RSIVD, Red sea bream iridovirus 

Rift Valley fever Rift valley fever virus 

Rinderpest Rinderpest virus 

Salmonellosis 
Salmonella spp., Salmonella abortusovis, Salmonella 
enterica 

Salmonid alphavirus infection Salmonid alphavirus 

Scabies Sarcoptes scabiei mite 

Schmallenberg disease Schmallenberg virus 

Scrapie PrPc -> PrPsc 

Sheep pox Goat pox, Sheeppox virus, Goatpox virus 

Snake fungal disease Ophidiomyces ophiodiicola 

Spring viraemia of carp Carp sprivivirus 

Surra Trypanosoma evansi 

Swine vesicular disease Swine vesicular disease virus 

Taura syndrome Taura syndrome virus 

Teschovirus encephalomyelitis porcine teschovirus serotype 1 (PTV-1) 

Theileriosis 
Theileria annulata, Theileria parva, Theileria orientalis, 
Theileria spp. 

Tick borne encephalitis TBE, Tickborne encephalitis virus 

Toxoplasmosis Toxoplasma gondii 

Transmissible gastroenteritis Transmissible gastroenteritis virus 

Trichinellosis 

Trichinella spp., Trichinella britovi, Trichinella murrelli, 
Trichinella nativa, Trichinella nelsoni, Trichinella papuae, 
Trichinella patagoniensis, Trichinella pseudospiralis, 
Trichinella spiralis 

Trichomonosis Tritrichomonas foetus, Trichomonas spp. 

Trypanosomiase 

Order Kinetoplastida; family Trypanosomatidae; Genus 
Trypanosoma; Subgenus Nannomonas (T. congolense), 
Subgenus Duttonella (T. vivax), and Subgenus 
Trypanozoon (T. brucei ssp.). 
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Tularemia 
Francisella tularensis subsp. tularensis, Francisella 
tularensis subsp. holarctica 

Turkey rhinotracheitis Avian metapneumovirus (aMPV) 

Venezuelan equine encephalitis Venezuelan equine encephalomyelitis (VEE) viruses 

Verocytotoxigenic Escherichia coli Verocytotoxigenic Escherichia coli 

Vesicular Stomatitis vesiculoviruses 

Viral haemorrhagic septicaemia viral haemorrhagic septicaemia virus 

West Nile fever West Nile virus 

White spot disease white spot syndrome virus 

White tail disease Macrobrachium rosenbergii nodavirus (MrNV) 

White-nose syndrome Pseudogymnoascus destructans 

Withering abalone syndrome Xenohaliotis californiensis 

Yellow fever Yellow fever virus 

Yellow head disease yellow head virus genotype 1 (YHV1) 

Yersiniosis enterocolitica Yersinia enterocolitica 

Yersiniosis pestis Plague, Yersinia pestis 

Yersiniosis pseudotuberculosis Yersinia pseudotuberculosis 

Foamy virus Simian foamy viruses 

Hepatitis A  Simian hepatitis A virus 

Hepatitis B  Hepatitis B virus 

Herpes Saimiriine Herpesvirus 1 

Herpesvirus Cercopithecus infection Cercopithecine herpesvirus 2 

Herpesvirus saimiri infection Saimiriine herpesvirus 2 

Macacine herpesvirus infection Macacine herpesvirus 1 (McHV1) 

Marburg virus disease Marburg virus 

Papiine herpesvirus 2 infection Papiine herpesvirus 2 

Simian haemorrhagic fever  Simian haemorrhagic fever virus 

Simian retrovirus infection Simian betaretroviruses, Simian retroviruses 
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Simian T-cell lymphotropic virus-1 
infection Simian T-cell lymphotrophic virus-1 

SV40 infection Simian Virus 40 (SV40) 

Zika  Zika virus 

Burkholderia pseudomallei Burkholderia pseudomallei 

Shigella flexneri infection Shigella flexneri 

Entamoeba histolytica infection Entamoeba histolytica 

Giardia infection  Giardia spp. 

Pneumonyssus simicola infestation Pneumonyssus simicola 

Prosthenorchis elegans infection Prosthenorchis elegans 

Strongyloides stercoralis infection Strongyloides stercoralis 

Trichuriasis  Trichuris 

Trichophyton infection Trichophyton sp. 

Acarapisosis Acarapis woodi 

American foulbrood Paenibacillus larvae 

European foulbrood Melissococcus plutonius 

Small hive beetle infestation Aethina tumida 

Tropilaelaps Tropilaelaps spp. 

Varroosis Varroa, Varroa destructor 
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Supplementary Figure 1. Model checks returned by the R package 'performance' (Lüdecke et 

al. 2021) for a binomial glm used to invessgate the associason between taxa, zoonosc 

status, wild status, and pathogen class, with the occurrence of visible disease signs obtained 

from the World Organisason for Animal Health animal diseases portal. 

 

Supplementary Table 2. Coefficients from the binomial Generalised Linear Model used to 

predict the presence of visible disease signs. The reference levels were 'mammals' for Host 

Taxa and 'virus' for Pathogen Class. The asterisk (*) denotes stassscal significance (p < 0.05). 

Variable Level Estimate Std. Error z value Pr(>\z\) 

(Intercept) 
 

-0.61 0.51 -1.2 0.23 

taxa Molluscs -0.8 1.03 -0.78 0.43357 
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Insects 0.03 0.96 0.03 0.97209 

Crustaceans 2.05 1.1 1.86 0.0634 

Amphibians -0.55 1.11 -0.5 0.61609 

Reptiles 0.43 0.63 0.69 0.49293 

Fish 0.53 0.67 0.79 0.43023 

Birds 0.27 0.39 0.69 0.49117 

zoonotic1 Yes -0.33 0.33 -1 0.317 

wild_alt_source1 Yes 0.66 0.41 1.6 0.11 

WOAH_wild1 Yes -0.23 0.35 -0.67 0.504 

pathogen_class 

Prion -0.98 1.32 -0.74 0.45807 

Bacterium 0.06 0.38 0.16 0.86992 

Protist 0.03 0.46 0.07 0.94078 

Ectoparasite 0.7 0.87 0.81 0.41876 

Fungi 0.04 0.94 0.05 0.96344 

Helminth -0.9 0.71 -1.27 0.20264 

transmission_direct1 Yes 0.94 0.33 2.87 0.004* 

transmission_indirect1 Yes 0.15 0.33 0.46 0.648 

transmission_vector1 Yes 0.36 0.35 1.01 0.311 

 

 



 
 

184  
 

 

Supplementary Figure 2. Post-hoc pairwise comparisons returned by the R package 

‘emmeans’ (Lenth 2024) of the tendency for different taxonomic groups to show visible 

disease signs for diseases from the World Organisason for Animal Health animal diseases 

portal. 

 

Supplementary Table 3. Post-hoc pairwise comparisons of the tendency for different host 

taxa to show visible disease signs for diseases in the World Organisason for Animal Health 
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animal diseases portal, from the R package emmeans (Lenth 2024). The asterisk (*) denotes 

stassscal significance (p < 0.05). 

contrast estimate SE df z.ratio p.value 

mammals - molluscs 0.8 1.03 Inf 0.78 0.99 

mammals - insects -0.03 0.96 Inf -0.03 1 

mammals - 
crustaceans -2.05 1.1 Inf -1.86 0.58 

mammals - amphibians 0.55 1.11 Inf 0.5 1 

mammals - reptiles -0.43 0.63 Inf -0.69 1 

mammals - fish -0.53 0.67 Inf -0.79 0.99 

mammals - birds -0.27 0.39 Inf -0.69 1 

molluscs - insects -0.84 1.33 Inf -0.63 1 

molluscs - crustaceans -2.85 1.44 Inf -1.98 0.49 

molluscs - amphibians -0.25 1.42 Inf -0.18 1 

molluscs - reptiles -1.23 1.15 Inf -1.08 0.96 

molluscs - fish -1.33 1.13 Inf -1.18 0.94 

molluscs - birds -1.07 1.06 Inf -1.01 0.97 

insects - crustaceans -2.01 1.4 Inf -1.44 0.84 

insects - amphibians 0.59 1.39 Inf 0.42 1 

insects - reptiles -0.4 1.1 Inf -0.36 1 

insects - fish -0.5 1.11 Inf -0.45 1 

insects - birds -0.24 1 Inf -0.24 1 

crustaceans - 
amphibians 2.6 1.51 Inf 1.72 0.68 

crustaceans - reptiles 1.62 1.23 Inf 1.31 0.9 

crustaceans - fish 1.52 1.23 Inf 1.24 0.92 

crustaceans - birds 1.77 1.14 Inf 1.56 0.77 
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amphibians - reptiles -0.98 1.21 Inf -0.81 0.99 

amphibians - fish -1.08 1.23 Inf -0.88 0.99 

amphibians - birds -0.83 1.14 Inf -0.72 1 

reptiles - fish -0.1 0.87 Inf -0.11 1 

reptiles - birds 0.16 0.68 Inf 0.23 1 

fish - birds 0.26 0.74 Inf 0.35 1 

 

 

Supplementary Figure 3. Post-hoc pairwise comparisons returned by the R package 

‘emmeans’ (Lenth 2024) of the tendency for different pathogen classes to show visible 
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disease signs for diseases from the World Organisason for Animal Health animal diseases 

portal 

Supplementary Table 4. Post-hoc pairwise comparisons of the tendency for different 

pathogens to show visible disease signs for diseases in the World Organisason for Animal 

Health animal diseases portal, from the R package emmeans (Lenth 2024). 

contrast estimate SE df z.ratio p.value 

virus - prion 0.98 1.32 Inf 0.74 0.99 

virus - bacterium -0.06 0.38 Inf -0.16 1 

virus - protist -0.03 0.46 Inf -0.07 1 

virus - ectoparasite -0.7 0.87 Inf -0.81 0.98 

virus - fungi -0.04 0.94 Inf -0.05 1 

virus - helminth 0.9 0.71 Inf 1.27 0.86 

prion - bacterium -1.04 1.34 Inf -0.78 0.99 

prion - protist -1.02 1.38 Inf -0.74 0.99 

prion - ectoparasite -1.68 1.58 Inf -1.07 0.94 

prion - fungi -1.03 1.6 Inf -0.64 1 

prion - helminth -0.08 1.47 Inf -0.06 1 

bacterium - protist 0.03 0.51 Inf 0.05 1 

bacterium - 
ectoparasite -0.64 0.89 Inf -0.72 0.99 

bacterium - fungi 0.02 0.97 Inf 0.02 1 

bacterium - helminth 0.96 0.72 Inf 1.33 0.84 

protist - ectoparasite -0.67 0.96 Inf -0.7 0.99 

protist - fungi -0.01 0.99 Inf -0.01 1 

protist - helminth 0.93 0.77 Inf 1.22 0.89 

ectoparasite - fungi 0.66 1.22 Inf 0.54 1 
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ectoparasite - 
helminth 1.6 1.09 Inf 1.47 0.76 

fungi - helminth 0.94 1.13 Inf 0.83 0.98 

 

 

Supplementary Table 5. The number of records returned by the R package 'Photosearcher' 

for diseases obtained from the World Organisason for Animal Health animal diseases portal.  

Disease name Number of images 

Malaria 5018 

Anthrax 3789 

Pox viruses infection 3147 

Yellow fever 2046 

Border disease 1281 

Avian influenza 1216 

Hendra 977 

Herpes 562 

Bluetongue 533 

Newcastle disease 487 

White spot disease 393 

Lyme disease 351 

Ebola Virus Disease 339 

Psoroptic mange 290 
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Chytridiomycosis 269 

White tail disease 251 

Yellow head disease 248 

Scabies 219 

Marburg virus disease 210 

Foot and mouth disease 186 

Circovirosis 166 

West Nile fever 157 

Varroosis 142 

Zika  130 

White-nose syndrome 116 

Myxomatosis 106 

Surra 97 

Giardia infection  93 

Rinderpest 63 

Trichomonosis 54 

Rift Valley fever 49 

Influenza A virus of swine 42 

African swine fever 36 

Avian tuberculosis 29 

Snake fungal disease 29 
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Leptospirosis 29 

African horse sickness 25 

Leishmaniosis 21 

Toxoplasmosis 19 

New world screwworm 14 

Cryptosporidiosis 11 

Sheep pox 10 

Theileriosis 10 

Trichuriasis  10 

Salmonellosis 9 

Scrapie 9 

Mpox 9 

Contagious bovine 

pleuropneumonia 9 

Lumpy Skin Disease 8 

Pasteurellosis 8 

Fowl cholera 8 

Atrophic rhinitis of swine 8 

Swine vesicular disease 7 

Avian mycoplasmosis 7 

Vesicular Stomatitis 7 
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Rabbit haemorrhagic disease 6 

Strongyloides stercoralis 

infection 6 

Marek's disease 6 

Equine infectious anaemia 5 

Fowl pox 5 

Gyrodactylosis 5 

Fibropapillomatosis 4 

Ranavirosis 4 

Crayfish plague 4 

Elephant endotheliotropic 

herpesvirus disease 2 

Covert mortality nodavirus 2 

Shigella flexneri infection 2 

Acarapisosis 2 

Duck virus enteritis 1 

Haemorrhagic septicaemia 1 

Paratuberculosis 1 

Parvovirosis 1 

Peste des petits ruminants 1 

Trichophyton infection 1 



 

SUPPLEMENTARY MATERIAL, CHAPTER 4 

OBSERVER BIAS 

Methods 

Recent studies show that citizen science activity changed markedly during the COVID-19 

pandemic, with many platforms reporting increased participation (Sánchez-Clavijo et al. 

2021; Dimson and Gillespie 2023; Qiao et al. 2023). To model long-term growth and assess 

whether similar patterns were evident in our dataset, we conducted an exponential 

regression analysis. Wikimedia Commons was excluded from this analysis due to insufficient 

data. For the remaining platforms, the analysis began in the first year with ≥50 submissions 

to ensure sufficient data for robust regression while still capturing early growth trends. 

To model exponential growth, we log-transformed the annual submission counts. This 

linearises the growth trend and stabilises variance, a common approach for count data 

where variance often scales with the mean (Wooldridge 2020). Key assumptions for linear 

regression, such as normality and homoscedasticity of residuals, were checked and met. We 

then fitted a simple linear model (ln(y) = c + bx) to the transformed data using ordinary least 

squares, where y is the submission count and x is the year (normalised to start from zero). 

The 95% prediction intervals were calculated for this model and subsequently back-

transformed to the original scale by taking their exponent, producing the final 

exponential trend line and prediction bands. The annual growth rate for each platform was 

calculated from the model’s slope parameter b as (e^b - 1) * 100% (Wooldridge 2020). 

To assess observer bias, we used the COVID-19 pandemic as a case study, testing whether 

submission counts during the period of major global mobility restrictions fell within the 95% 

prediction interval of the pre-pandemic model. This period was defined as 11 March 2020 

(the WHO pandemic declaration) to 30 June 2022 (when major travel and social restrictions 

were broadly eased in North America and Europe). 

Results 
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Exponential regression analysis of long-term trends showed annual growth rates of +31.7% 

for iNaturalist (Supplementary Figure 4a) and +17.7% for GBIF (Supplementary Figure 4b), 

and -3.7% for Flickr (Supplementary Figure 4c). During the 2020-2022 COVID-19 period, 

the number of submissions for these platforms fell within their models’ 95% prediction 

intervals, though GBIF submissions in 2020 were 33% lower than expected. Salmonid image 

submissions rose from 7,506 in the three years preceding the pandemic (2017-2019) 

to 30,420 during it. iNaturalist supplied 96.5% of these pandemic-era submissions. 

 

Supplementary Figure 4. Exponensal trends in salmonid image submissions across digital 

pla�orms (2000-2023). (a) iNaturalist submissions. (b) GBIF submissions. (c) Flickr 
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submissions. Solid lines represent fi�ed exponensal models (models have been fi�ed from 

the first year with ≥50 submissions following the pla�orm’s launch), shaded areas indicate 

95% predicson intervals, blue/purple/green points show yearly submission counts and red 

points highlight submissions from the period where substansal COVID-19 restricsons were 

in effect globally (2020-2022). 

Discussion 

Our analysis of observer bias showed that the increase in submissions during the COVID-19 

pandemic, mostly from iNaturalist, matches trends seen in other citizen science projects 

(Dimson and Gillespie 2023; Qiao et al. 2023). This period shows that citizen science can be 

a resilient and scalable way to collect data, but also suggests that major events can create 

temporal biases that must be considered in long-term analyses. 

 

Supplementary Table 6. Taxonomic Classificason and keywords of Salmonidae Family used to 

search photo-sharing sites. 

Scientific name (taxonomic rank) Common name 

Salmonidae (family) 
 

Coregoninae (subfamily) whitefish 

Coregonus (genus) 
 

Coregonus acrinasus (species) 
 

Coregonus albellus (species) 
 

Coregonus aff. albellus Brienzer (species) 
 

Coregonus aff. albellus Thuner (species) 
 

Coregonus albula (species) vendace 

Coregonus alpenae (species) longjaw cisco 

Coregonus alpinus (species) 
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Scientific name (taxonomic rank) Common name 

Coregonus aff. alpinus Brienzer (species) 
 

Coregonus aff. alpinus Thuner (species) 
 

Coregonus anaulorum (species) 
 

Coregonus arenicolus (species) 
 

Coregonus artedi (species) cisco 

Coregonus atterensis (species) 
 

Coregonus austriacus (species) 
 

Coregonus autumnalis (species) arctic cisco 

Coregonus baerii (species) 
 

Coregonus baicalensis (species) baikal whitefish 

Coregonus baunti (species) 
 

Coregonus bavaricus (species) 
 

Coregonus bezola (species) 
 

Coregonus brienzii (species) 
 

Coregonus candidus (species) 
 

Coregonus chadary (species) khadary whitefish 

Coregonus clupeaformis (species) lake whitefish 

Coregonus clupeoides (species) powan 

Coregonus confusus (species) 
 

Coregonus danneri (species) 
 

Coregonus duplex (species) 
 

Coregonus fatioi (species) 
 

Coregonus cf. duplex AGH-2010 (species) 
 

Coregonus fatioi (species) 
 

Coregonus fera (species) 
 

Coregonus fluviatilis (species) 
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Scientific name (taxonomic rank) Common name 

Coregonus fontanae (species) 
 

Coregonus gutturosus (species) 
lake constance 
whitefish 

Coregonus heglingus (species) 
 

Coregonus aff. heglingus Walen (species) 
 

Coregonus aff. heglingus Zurich (species) 
 

Coregonus hiemalis (species) 
 

Coregonus hoferi (species) 
 

Coregonus holsata (species) 
 

Coregonus hoyi (species) bloater 

Coregonus huntsmani (species) atlantic whitefish 

Coregonus intermundia (species) 
 

Coregonus johannae (species) deepwater cisco 

Coregonus kiletz (species) 
 

Coregonus kiyi (species) kiyi 

Coregonus ladogae (species) 
 

Coregonus laurettae (species) bering cisco 

Coregonus lavaretus (species) 
european whitefish; 
common whitefish 

Coregonus litoralis (species) 
 

Coregonus lucinensis (species) 
 

Coregonus lutokka (species) 
 

Coregonus macrophthalmus (species) 
 

Coregonus maraena (species) maraena whitefish 

Coregonus maraenoides (species) 
 

Coregonus maxillaris (species) 
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Scientific name (taxonomic rank) Common name 

Coregonus megalops (species) 
lacustrine fluvial 
whitefish 

Coregonus migratorius (species) arctic cisco 

Coregonus muelleri (species) 
 

Coregonus muksun (species) muksun 

Coregonus nasus (species) broad whitefish 

Coregonus nelsonii (species) alaska whitefish 

Coregonus nigripinnis (species) blackfin cisco 

Coregonus nilssoni (species) 
 

Coregonus nipigon (species) 
 

Coregonus nobilis (species) 
 

Coregonus oxyrinchus (species) houting 

Coregonus palaea (species) 
 

Coregonus aff. palaea Biel (species) 
 

Coregonus aff. palaea Neuchatel (species) 
 

Coregonus pallasii (species) 
 

Coregonus peled (species) peled 

Coregonus pennantii (species) gwyniad 

Coregonus pidschian (species) humpback whitefish 

Coregonus pollan (species) irish pollan 

Coregonus pravdinellus (species) 
 

Coregonus profundus (species) 
 

Coregonus reighardi (species) shortnose cisco 

Coregonus renke (species) 
 

Coregonus restrictus (species) 
 

Coregonus sardinella (species) 
sardine cisco; least 
cisco 
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Scientific name (taxonomic rank) Common name 

Coregonus steinmanni (species) 
 

Coregonus stigmaticus (species) schelly 

Coregonus subautumnalis (species) 
 

Coregonus suidteri (species) 
 

Coregonus cf. suidteri AGH-2010 (species) 
 

Coregonus cf. suidteri Ex74D1 (species) 
 

Coregonus cf. suidteri Ex74D2 (species) 
 

Coregonus cf. suidteri Ex74D3 (species) 
 

Coregonus cf. suidteri Ex74D4 (species) 
 

Coregonus cf. suidteri Ex74D5 (species) 
 

Coregonus cf. suidteri Ex74D6 (species) 
 

Coregonus cf. suidteri Ex74E1 (species) 
 

Coregonus cf. suidteri Ex74E2 (species) 
 

Coregonus cf. suidteri Ex74E3 (species) 
 

Coregonus cf. suidteri Ex74E4 (species) 
 

Coregonus cf. suidteri Ex74E5 (species) 
 

Coregonus cf. suidteri Ex74E6 (species) 
 

Coregonus cf. suidteri LJDQ-2022 (species) 
 

Coregonus suspensus (species) 
 

Coregonus trybomi (species) 
 

Coregonus tugun (species) tugun 

Coregonus ussuriensis (species) amur whitefish 

Coregonus vandesius (species) 
 

Coregonus vessicus (species) 
 

Coregonus wartmanni (species) blaufelchen 

Coregonus widegreni (species) valaam whitefish 
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Scientific name (taxonomic rank) Common name 

Coregonus zenithicus (species) shortjaw cisco 

Coregonus zuerichensis (species) 
 

Coregonus cf. zuerichensis AGH-2010 (species) 
 

Coregonus zugensis (species) 
 

Prosopium (genus)  freshwater whitefish 

Prosopium abyssicola (species) bear lake whitefish 

Prosopium coulterii (species) pygmy whitefish 

Prosopium cylindraceum (species) round whitefish 

Prosopium gemmifer (species) bonneville cisco 

Prosopium spilonotus (species) bonneville whitefish 

Prosopium williamsoni (species) mountain whitefish 

Stenodus (genus) 
 

Stenodus leucichthys (species) sheefish; inconnu 

Stenodus nelma (species) 
 

Salmoninae (subfamily) trout; salmon; char 

Brachymystax (genus) 
 

Brachymystax lenok (species) lenok; lenok trout 

Brachymystax savinovi (species) 
 

Brachymystax tsinlingensis (species) 
 

Brachymystax tumensis (species) 
 

Hucho (genus) 
 

Hucho bleekeri (species) sichuan taimen 

Hucho hucho (species) huchen 

Hucho ishikawae (species) 
 

Hucho perryi (species) 
 

Hucho taimen (species) taimen 
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Scientific name (taxonomic rank) Common name 

Oncorhynchus (genus) 
 

Oncorhynchus aguabonita (species) golden trout 

Oncorhynchus apache (species) apache trout 

Oncorhynchus chrysogaster (species) mexican golden trout 

Oncorhynchus clarkii (species) cutthroat trout 

Oncorhynchus formosanus (species) 
 

Oncorhynchus gilae (species) gila trout 

Oncorhynchus gorbuscha (species) pink salmon 

Oncorhynchus iwame (species) iwame trout 

Oncorhynchus kawamurae (species) 
 

Oncorhynchus keta (species) chum salmon 

Oncorhynchus kisutch (species) coho salmon 

Oncorhynchus masou (species) cherry salmon 

Oncorhynchus mykiss (species) rainbow trout 

Oncorhynchus nerka (species) sockeye salmon 

Oncorhynchus rhodurus (species) japanese amago 

Oncorhynchus tshawytscha (species) chinook salmon 

Oncorhynchus tshawytscha x Oncorhynchus kisutch (hybrid) 
 

Parahucho (genus) 
 

Parahucho perryi (species) japanese huchen 

Salmo (genus) 
 

Salmo abanticus (species) abant trout 

Salmo akairos (species) 
 

Salmo aphelios (species) 
 

Salmo balcanicus (species) 
 

Salmo baliki (species) 
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Scientific name (taxonomic rank) Common name 

Salmo carpio (species) 
 

Salmo caspius (species) caspian trout 

Salmo cenerinus (species) 
 

Salmo cenerinus 637 HS-2020 (species) 
 

Salmo cenerinus 640 HS-2020 (species) 
 

Salmo cenerinus BOLD:AAB3872 (species) 
 

Salmo cettii (species) mediterranean Trout 

Salmo chilo (species) 
 

Salmo ciscaucasicus (species) caspian salmon 

Salmo coruhensis (species) coruh trout 

Salmo dentex (species) 
 

Salmo euphrataeus (species) euphrates trout 

Salmo ezenami (species) 
 

Salmo fahrettini (species) 
 

Salmo farioides (species) balkan brook trout 

Salmo ferox (species) 
 

Salmo fibreni (species) 
 

Salmo ghigii (species) 
 

Salmo ischchan (species) sevan trout 

Salmo kottelati (species) antalya trout 

Salmo labecula (species) seyhan trout 

Salmo labrax (species) black sea salmon 

Salmo letnica (species) 
ohrid trout; lake ohrid 
brown trout 

Salmo lourosensis (species) 
 

Salmo lumi (species) 
 

Salmo macedonicus (species) macedonian trout 
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Scientific name (taxonomic rank) Common name 

Salmo macrostigma (species) 
 

Salmo marmoratus (species) marble Trout 

Salmo marmoratus x Salmo trutta (hybrid) 
 

Salmo montenigrinus (species) 
 

Salmo munzuricus (species) 
 

Salmo multipunctatus (species) draa trout 

Salmo nigripinnis (species) 
 

Salmo obtusirostris (species) adriatic trout 

Salmo ohridanus (species) 
 

Salmo okumusi (species) okumus trout 

Salmo opimus (species) opimus trout 

Salmo oxianus (species) 
 

Salmo pallaryi (species) lake sidi ali trout 

Salmo pelagonicus (species) 
 

Salmo pellegrini (species) 
 

Salmo peristericus (species) prespa trout 

Salmo platycephalus (species) flathead trout 

Salmo rhodanensis (species) rhone trout 

Salmo rizeensis (species) rize trout 

Salmo salar (species) atlantic salmon 

Salmo schiefermuelleri (species) 
 

Salmo stomachicus (species) 
 

Salmo taleri (species) 
 

Salmo tigridis (species) tigros trout 

Salmo trutta (species) 
river trout; brown 
trout; sea trout 

Salmo viridis (species) 
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Scientific name (taxonomic rank) Common name 

Salmo visovacensis (species) 
 

Salmo zrmanjaensis (species) 
 

Salmo abanticus complex sp. H1 (species) 
 

Salmo abanticus complex sp. H2 (species) 
 

Salmo caspius complex sp. H1 (species) 
 

Salmo caspius complex sp. H2 (species) 
 

Salmo trutta complex sp. GP-2022 (species) 
 

Salmo trutta complex sp. Lt-2021 (species) 
 

Oncorhynchus mykiss x Salmo salar (hybrid) 
 

Salmo trutta x Salvelinus (hybrid) 
 

Salvelinus (genus) 
 

Salvelinus agassizii (species) silver trout 

Salvelinus albus (species) white char 

Salvelinus alpinus (species) atlantic char 

Salvelinus anaktuvukensis (species) angayukaksurak char 

Salvelinus andriashevi (species) chukot char 

Salvelinus boganidae (species) boganida char 

Salvelinus colii (species) 
 

Salvelinus confluentus (species) bull trout 

Salvelinus curilus (species) 
 

Salvelinus czerskii (species) 
 

Salvelinus drjagini (species) dryanin's char 

Salvelinus elgyticus (species) small-mouth char 

Salvelinus evasus (species) 
 

Salvelinus faroensis (species) 
 

Salvelinus fimbriatus (species) 
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Scientific name (taxonomic rank) Common name 

Salvelinus fontinalis (species) brook trout 

Salvelinus fontinalis x Salvelinus malma (hybrid) 
 

Salvelinus gracillimus (species) 
 

Salvelinus grayi (species) 
 

Salvelinus gritzenkoi (species) 
 

Salvelinus inframundus (species) 
 

Salvelinus jacuticus (species) yakutian char 

Salvelinus japonicus (species) 
 

Salvelinus killinensis (species) 
 

Salvelinus krogiusae (species) 
 

Salvelinus kronocius (species) 
 

Salvelinus kuznetzovi (species) 
 

Salvelinus lepechini (species) 
 

Salvelinus leucomaenis (species) whitespotted char 

Salvelinus levanidovi (species) 
 

Salvelinus lonsdalii (species) 
 

Salvelinus mallochi (species) 
 

Salvelinus malma (species) dolly varden 

Salvelinus malma x Salvelinus leucomaenis (hybrid) 
 

Salvelinus maxillaris (species) 
 

Salvelinus murta (species) 
 

Salvelinus namaycush (species) lake trout 

Salvelinus namaycush x Salvelinus fontinalis (hybrid) 
 

Salvelinus neiva (species) nieva 

Salvelinus neocomensis (species) 
 

Salvelinus obtusus (species) 
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Scientific name (taxonomic rank) Common name 

Salvelinus perisii (species) 
 

Salvelinus profundus (species) 
 

Salvelinus salvelinoinsularis (species) 
 

Salvelinus schmidti (species) 
 

Salvelinus struanensis (species) 
 

Salvelinus taimyricus (species) 
 

Salvelinus taranetzi (species) 
 

Salvelinus thingvallensis (species) 
 

Salvelinus tolmachoffi (species) 
 

Salvelinus umbla (species) 
 

Salvelinus vasiljevae (species) 
 

Salvelinus willoughbii (species) 
 

Salvelinus youngeri (species) 
 

Salvethymus (genus) 
 

Salvethymus svetovidovi (species) long-finned charr 

Thymallinae (subfamily) grayling 

Thymallus (genus) 
 

Thymallus aeliani (species) 
 

Thymallus arcticus (species) arctic grayling 

Thymallus baicalensis (species) baikal black grayling 

Thymallus bailolenensis (species) 
 

Thymallus brevicephalus (species) 
 

Thymallus brevipinnis (species) 
 

Thymallus brevirostris (species) mongolian grayling 

Thymallus burejensis (species) 
 

Thymallus flavomaculatus (species) yellow spotted grayling 



 
 

206  
 

Scientific name (taxonomic rank) Common name 

Thymallus grubii (species) amur grayling 

Thymallus ligericus (species) 
 

Thymallus mertensii (species) 
 

Thymallus nigrescens (species) kosogol grayling 

Thymallus nikolskyi (species) 
 

Thymallus pallasii (species) east siberian grayling 

Thymallus svetovidovi (species) 
 

Thymallus thymallus (species) 
 

Thymallus tugarinae (species) lower amur grayling 

Thymallus yaluensis (species) 
 

 

Supplementary Table 7. Metadata field standardisason across online image sources, 

organised by category. The ‘Standard field’ describes the name of the field in the 

consolidated metadata.  

* the value of the field was based on search terms  (Supplementary Table 6) used to 

download each image for this source 

** the value of the field was based on the label for each image following manual verificason 

for this source 

*** the value of the field was based on the unique SHA-256 hash value for each image for 

this source 

**** the value of the field was derived from the Exchangeable Image File Format (EXIF) 

informason for each image for this source 

Category Standard 
field 

iNaturalist GBIF Flickr Wikimedia 
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Taxonomy scientific_ma
me name 

verbatimScient
ificName 

based on 
search term* 

based on 
search term* 

taxonomic_le
vel rank taxonRank 

based on 
search term* 

based on 
search term* 

quality quality_grade 

identificationV
erificationStat
us label** label** 

Identifier 
id_at_source photo_uuid identifier 

Based on file 
hash*** image 

Temporal 
date observed_on eventDate datetaken 

Based on EXIF 
data**** 

Spatial 
latitude latitude 

decimalLatitud
e latitude  

longitude longitude 
decimalLongit
ude longitude  

Location_acc
uracy 

positional_acc
uracy 

coordinateUnc
ertaintyInMete
rs accuracy  

Usage rights license license license license license 

Additional 
fields, not 
standardise
d 

 

observer_id, 
height, width, 
ancestry, 
rank_level, 
observation_u
ui, 
observer_id, 
position, 
extension, 
photo_id 

basisOfRecord, 
institutionCod
e, 
collectionCode
, datasetName, 
ownerInstituti
onCode, 
informationWi
thheld, 
dataGeneraliza
tions, 
dynamicPrope
rties, 
occurrenceID, 
catalogNumbe
r, 
recordNumber
, recordedBy, 
recordedByID, 
kingdom, 
phylum, class, 
order, family, 

owner_userna
me, 
owner_path, 
height, width, 
url, title, 
description, 
tags, urls, 
usage_canblog
, 
usage_canprin
t, 
usage_canshar
e, has_people, 
date_uploaded
_raw, 
date_posted_r
aw, 
date_taken_ra
w, 
date_updated
_raw, 

page.title, 
image.url, 
desc.url, 
image.desc, 
user, artist, 
copyrighted, 
usage, 
attribution.re
q, 
likely.genus.o
nly, 
distribution 
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genus, species, 
subspecies, 
continent, 
waterBody, 
islandGroup, 
island, 
countryCode, 
stateProvince, 
municipality, 
locality, 
habitat, 
lifeStage, 
behavior, 
establishment
Means, 
organismQuan
tity, 
organismQuan
tityType, sex, 
reproductiveC
ondition, 
pathway, 
degreeOfEstab
lishment, 
associatedTaxa
, 
organismRema
rks, 
samplingProto
col, 
sampleSizeVal
ue, 
sampleSizeUni
t, 
samplingEffort
, fieldNotes, 
eventRemarks, 
iucnRedListCat
egory 

owner_locatio
n,  
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Supplementary Figure 5. Locason uncertainty distribusons across image repositories. a) Box 

plots showing the distribuson of coordinate uncertainty (in meters, log scale) for iNaturalist 

(iNat) and GBIF observasons. The boxes represent the interquarsle range, with the 

horizontal line showing the median value. Whiskers extend to the most extreme non-outlier 

values, with outliers plo�ed as individual points. b): Distribuson of Flickr's accuracy levels, 

ranging from 1 (world level) to 16 (street level). Red dashed lines and labels indicate key 

geographic reference points in Flickr's scale: world (1), country (3), region (6), city (11), and 

street level (16). 



 

SUPPLEMENTARY MATERIAL, CHAPTER 5 

For Taxonomic Classificason and keywords of Salmonidae Family used to search photo-

sharing sites, see Supplementary Table 6. 

 

Image attribution for Figure 5.5: 

a) Adapted (resized) from Photo 164294760 

(https://www.inaturalist.org/photos/164294760) by Tom Clenche 

(https://www.inaturalist.org/people/tclenche), some rights reserved (CC BY-NC) 

[https://creativecommons.org/licenses/by-nc/4.0/] 

b) Adapted (resized) from Photo 75576535 

(https://www.inaturalist.org/photos/75576535) by anniezgrab 

(https://www.inaturalist.org/people/anniezgrab), some rights reserved (CC BY-NC) 

[https://creativecommons.org/licenses/by-nc/4.0/] 

c) Adapted (resized) from Photo 105571877 

(https://www.inaturalist.org/photos/105571877) by Liadan Dickie 

(https://www.inaturalist.org/people/fuligogirl), some rights reserved (CC BY-NC) 

[https://creativecommons.org/licenses/by-nc/4.0/] 

d) Adapted (resized) from Photo 309595571 

(https://www.inaturalist.org/photos/309595571) by moisearthur 

(https://www.inaturalist.org/people/moisearthur), some rights reserved (CC BY-NC) 

[https://creativecommons.org/licenses/by-nc/4.0/] 

e) Adapted (resized and overlayed with heatmap) from Photo 164294760 

(https://www.inaturalist.org/photos/164294760) by Tom Clenche 

(https://www.inaturalist.org/people/tclenche), some rights reserved (CC BY-NC) 

[https://creativecommons.org/licenses/by-nc/4.0/] 

f) Adapted (resized and overlayed with heatmap) from Photo 75576535 

(https://www.inaturalist.org/photos/75576535) by anniezgrab 

https://www.inaturalist.org/photos/75576535
https://www.inaturalist.org/photos/105571877
https://www.inaturalist.org/photos/309595571
https://www.inaturalist.org/people/moisearthur
https://www.inaturalist.org/photos/75576535
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(https://www.inaturalist.org/people/anniezgrab), some rights reserved (CC BY-NC) 

[https://creativecommons.org/licenses/by-nc/4.0/] 

g) Adapted (resized and overlayed with heatmap) from Photo 105571877 

(https://www.inaturalist.org/photos/105571877) by Liadan Dickie 

(https://www.inaturalist.org/people/fuligogirl), some rights reserved (CC BY-NC) 

[https://creativecommons.org/licenses/by-nc/4.0/] 

h) Adapted (resized and overlayed with heatmap) from Photo 309595571 

(https://www.inaturalist.org/photos/309595571) by moisearthur 

(https://www.inaturalist.org/people/moisearthur), some rights reserved (CC BY-NC) 

[https://creativecommons.org/licenses/by-nc/4.0/] 

 

IMAGE QUALITY ANALYSIS 

Methods 

To quantitatively assess the impact of image quality on model performance, we calculated 

three no-reference image quality metrics for each image in the Salmo genus-specific 

validation dataset. We used the variance of the Laplacian as a proxy for image sharpness, 

where a higher score indicates a sharper image. We also calculated two perceptual quality 

scores: the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) score (Mittal et al. 

2012) and the Natural Image Quality Evaluator (NIQE) score (Mittal et al. 2013). For both 

BRISQUE and NIQE, a lower score indicates better perceptual quality. Image dimensions 

(width and height in pixels) were also recorded. 

We compared the distributions of these metrics between correctly and incorrectly classified 

images for the best-performing model (EfficientNetV2S). The summary statistics are 

presented below. A Mann-Whitney U test was used to test for significant differences between 

the two groups (correct vs. incorrect) for each metric, with a significance level of a=0.05. Tests 

https://www.inaturalist.org/photos/105571877
https://www.inaturalist.org/photos/309595571
https://www.inaturalist.org/people/moisearthur
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were performed on the full, pooled dataset (all correct vs. all incorrect classifications) to 

assess the overall effect, and on a stratified dataset (correct vs. incorrect within each 'Healthy' 

and 'Saprolegnia spp.' class) to investigate class-specific effects. 

Results 

A Mann-Whitney U test performed on the full, pooled dataset found no stassscally 

significant differences between correctly and incorrectly classified images for any of the five 

metrics tested. The p-values for the pooled tests were:  sharpness (p=0.366), BRISQUE 

(p=0.266), NIQE (p=0.787), image width (p=0.993), and image height (p=0.940). 

A secondary, strasfied analysis comparing correct and incorrect classificasons within each of 

the 'Healthy' and 'Saprolegnia spp.' classes also found no stassscally significant differences 

for any metric. While the summary stassscs (Tables E1-E5) show minor differences in the 

means between groups, the stassscal tests confirm these variasons are not significant.  

Supplementary Table 8. Sharpness (variance of Laplacian) stassscs for images in the Salmo 

genus-specific data set, classified by the EfficientnetV2S model. Higher is be�er. 

True Label Classification count mean std min 25% 50% 75% max 

Healthy Correct 956 670.74 1721.1 2.87 49.0 176.0 628.2 29270.93 

Healthy Incorrect 14 354.13 388.52 2.82 38.39 194.33 624.41 1268.82 

Sapro Correct 252 1439.79 2622.98 1.75 9.7 106.77 1479.77 15906.8 

Sapro Incorrect 3 82.28 82.76 4.86 38.67 72.48 120.99 169.5 
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Supplementary Table 9. BRISQUE score stassscs for images in the Salmo genus-specific data 

set, classified by the EfficientnetV2S model. Lower is be�er. 

True Label Classification count mean std min 25% 50% 75% max 

Healthy Correct 956 27.56 14.47 0.0 16.26 25.92 36.81 92.47 

Healthy Incorrect 14 33.12 16.87 8.32 17.93 33.14 46.99 60.21 

Sapro Correct 252 33.9 18.93 0.0 18.92 35.5 47.55 67.46 

Sapro Incorrect 3 38.87 37.76 0.0 20.6 41.2 58.31 75.42 

 

Supplementary Table 10. NIQE score stassscs for images in the Salmo genus-specific data 

set, classified by the EfficientnetV2S model. Lower is be�er. 

True Label Classification count mean std min 25% 50% 75% max 

Healthy Correct 956 14.45 4.63 4.57 11.67 13.77 16.44 69.33 

Healthy Incorrect 14 15.53 4.19 11.36 13.27 14.09 16.86 26.3 

Sapro Correct 252 15.13 5.49 6.54 11.31 14.67 17.5 50.07 

Sapro Incorrect 3 11.99 1.29 11.12 11.25 11.38 12.42 13.46 
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Supplementary Table 11. Height stassscs for images in the Salmo genus-specific data set, 

classified by the EfficientnetV2S model. 

True Label Classification count mean std min 25% 50% 75% max 

Healthy Correct 956 1618.56 699.41 165.0 1160.5 1536.0 2048.0 5616.0 

Healthy Incorrect 14 1355.93 484.57 300.0 1152.0 1200.0 1554.75 2048.0 

Sapro Correct 252 1604.16 1203.91 159.0 579.0 1268.5 2592.0 5312.0 

Sapro Incorrect 3 3578.67 1524.15 2448.0 2712.0 2976.0 4144.0 5312.0 

 

Supplementary Table 12. Width stassscs for images in the Salmo genus-specific data set, 

classified by the EfficientnetV2S model. 

True Label Classification count mean std min 25% 50% 75% max 

Healthy Correct 956.0 1895.88 890.33 287.0 1536.0 2048.0 2048.0 6720.0 

Healthy Incorrect 14.0 1535.64 529.15 640.0 1164.0 1568.0 2048.0 2048.0 

Sapro Correct 252.0 2137.21 1780.69 213.0 480.0 1536.0 4032.0 5312.0 

Sapro Incorrect 3.0 3406.67 505.34 2988.0 3126.0 3264.0 3616.0 3968.0 
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Supplementary Figure 6. Box plot showing median, interquarsle range, minimum and 

maximum values of sharpness (variance of Laplacian) scores for images in the Salmo genus-

specific data set, classified by the EfficientnetV2S model. Box plots show median, 

interquarsle range, minimum and maximum values. 
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Supplementary Figure 7. Box plot showing median, interquarsle range, minimum and 

maximum values of BRISQUE scores for images in the Salmo genus-specific data set, 

classified by the EfficientnetV2S model. 
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Supplementary Figure 8. Box plot showing median, interquarsle range, minimum and 

maximum values of NIQE scores for images in the Salmo genus-specific data set, classified by 

the EfficientnetV2S model. 
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Supplementary Figure 9. Box plot showing median, interquarsle range, minimum and 

maximum values of height for images in the Salmo genus-specific data set, classified by the 

EfficientnetV2S model. 
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Supplementary Figure 10. Box plot showing median, interquarsle range, minimum and 

maximum values of width for images in the Salmo genus-specific data set, classified by the 

EfficientnetV2S model. 
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Supplementary Figure 11. Distribuson of the model's confidence scores across training, 

validason and test images, categorised by ground truth class. 
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Supplementary Figure 12. Distribuson of the model's confidence scores across all unlabelled 

images, categorised by the model's predicted class. 
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Supplementary Figure 13. Sca�er plot of the supervised model’s output probabilises for the 

'Healthy' and 'Disease' classes on the non-occluded test set. Each point represents an image, 

coloured by its expert-assigned ground truth label. 

 

 



 
 

223  
 

 

Supplementary Figure 14. Principal Component Analysis (PCA) of the bo�leneck features 

extracted from the test set images. Each point represents an individual image, plo�ed 

according to the first two principal components. 
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Supplementary Figure 15. t-Distributed Stochassc Neighbour Embedding (t-SNE) of the 

bo�leneck features extracted from the test set images. Each point represents an individual 

image, plo�ed in the two-dimensional embedding space. 
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Supplementary Figure 16. Principal Component Analysis (PCA) of the final predicson 

probabilises from the test set. Each point represents an individual image, plo�ed according 

to the first two principal components derived from the model's three-class sovmax outputs. 
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Supplementary Figure 17. t-Distributed Stochassc Neighbour Embedding (t-SNE) of the final 

predicson probabilises from the test set. Each point represents an individual image, plo�ed 

in the two-dimensional embedding space derived from the model's three-class sovmax 

outputs. 
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Supplementary Figure 18. Uniform Manifold Approximason and Projecson (UMAP) of the 

final predicson probabilises from the test set. Each point represents an individual image, 

plo�ed in the two-dimensional embedding space derived from the model's three-class 

sovmax outputs. 
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Supplementary Figure 19. Addisonal Grad-CAM visualisasons for the high-confidence 

‘Healthy’ classificason scenario. Each of the four panels displays an example image from the 

test set (top) and the same image with the Grad-CAM heatmap overlay (bo�om). The 



 
 

229  
 

heatmap indicates image regions of high importance for the model's final predicson, with 

red signifying high importance and blue signifying low importance. 

 

 

 

Supplementary Figure 20. Addisonal Grad-CAM visualisasons for the high-confidence 

‘Occluded’ classificason scenario. Each of the four panels displays an example image from 

the test set (top) and the same image with the Grad-CAM heatmap overlay (bo�om). The 

heatmap indicates image regions of high importance for the model's final predicson, with 

red signifying high importance and blue signifying low importance. 
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Supplementary Figure 21. Addisonal Grad-CAM visualisasons for the high-confidence 

‘Disease’ classificason scenario, where the images belong to the ‘Obvious signs’ class. Each 

of the four panels displays an example image from the test set (top) and the same image 

with the Grad-CAM heatmap overlay (bo�om). The heatmap indicates image regions of high 



 
 

231  
 

importance for the model's final predicson, with red signifying high importance and blue 

signifying low importance. 

 

 

 

Supplementary Figure 22. Addisonal Grad-CAM visualisasons for the low-confidence 

‘Disease’ classificason scenario, where the images belong to the ‘Mild signs’ class. Each of 

the four panels displays an example image from the test set (top) and the same image with 

the Grad-CAM heatmap overlay (bo�om). The heatmap indicates image regions of high 

importance for the model's final predicson, with red signifying high importance and blue 

signifying low importance. 
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Supplementary Figure 23. Addisonal Grad-CAM visualisasons for the divergent 

classificasons of ‘Disease’ as ‘Healthy’ classificason scenario. Each of the four panels 

displays an example image from the test set (top) and the same image with the Grad-CAM 

heatmap overlay (bo�om). The heatmap indicates image regions of high importance for the 

model's final predicson, with red signifying high importance and blue signifying low 

importance. 
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Supplementary Figure 24. Addisonal Grad-CAM visualisasons for the divergent 

classificasons of ‘Healthy’ as ‘Disease’ classificason scenario. Each of the four panels 

displays an example image from the test set (top) and the same image with the Grad-CAM 

heatmap overlay (bo�om). The heatmap indicates image regions of high importance for the 

model's final predicson, with red signifying high importance and blue signifying low 

importance. 

  

Supplementary Table 13. Test set performance comparison of the final semi-supervised 

learning model against its supervised baseline. Best values for each metric are shown in 

bold. 

Metric Wildlife_ft Wildlife_SSL 

Accuracy 0.952 0.948 

F1-score (Healthy) 0.958 0.957 

F1-score (Disease) 0.926 0.924 
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F1-score (Occluded) 0.96 0.95 

Macro avg F1-score 0.948 0.944 

Macro avg Precision 0.947 0.942 

Macro avg Recall 0.95 0.946 

Precision (Healthy) 0.962 0.959 

Precision (Disease) 0.913 0.898 

Precision 
(Occluded) 0.965 0.969 

Recall (Healthy) 0.955 0.955 

Recall (Disease) 0.94 0.952 

Recall (Occluded) 0.956 0.931 

Weighted avg F1-
score 0.952 0.948 

Weighted avg 
Precision 0.952 0.949 

Weighted avg Recall 0.952 0.948 
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