

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/184849/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Huang, Tong-Yu, Wang, Qiang, Kerr, Andrew C. , Wang, Jun, Jiang, Zi-Qi and Ma, Lin 2026. Multiple origins of hornblende-rich cumulates within a deep magma reservoir from the Late Jurassic Gangdese arc, south Tibet: implications for arc crustal evolution. *Journal of Petrology* , egag006.
10.1093/petrology/egag006

Publishers page: <https://doi.org/10.1093/petrology/egag006>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1 **Multiple origins of hornblende-rich cumulates within a**
2 **deep magma reservoir from the Late Jurassic**
3 **Gangdese arc, south Tibet: implications for arc crustal**
4 **evolution**

5
6 Tong-Yu Huang^a, Qiang Wang^{a,b*}, Andrew C. Kerr^c, Jun Wang^a, Zi-Qi Jiang^d, Lin
7 Ma^a

8
9 ^a *State Key Laboratory of Deep Earth Processes and Resources, Guangzhou Institute of*
10 *Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China*

11 ^b *College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing*
12 *100049, China*

13 ^c *School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK*

14 ^d *School of Earth Science and Guangxi Key Laboratory of Hidden Metallic Ore Deposits*
15 *Exploration, Guilin University of Technology, Guilin, 541004*

16 *Corresponding authors.

17 E-mail address: Qiang Wang (wqiang@gig.ac.cn)

18

19

20

21 © The Author(s) 2026. Published by Oxford University Press. This is an Open Access
22 article distributed under the terms of the Creative Commons Attribution License
23 <https://creativecommons.org/licenses/by/4.0/>, which permits unrestricted reuse,
24 distribution, and reproduction in any medium, provided the original work is properly
25 cited.

26 **Abstract**

27 Early fractionation of amphibole is an essential process in the evolution of hydrous sub-
28 arc mantle-derived magmas. However, the petrogenesis of hornblende-rich cumulates
29 in the deep crust and their significant role in arc crustal evolution remains unclear. In
30 this contribution, we focus on Late Jurassic mafic-ultramafic intrusive rocks from the
31 Zedong terrane (central-eastern Gangdese area, South Tibet) and use detailed
32 petrographic, mineralogical and geochemical data to determine the origin of
33 hornblende-rich cumulates with textural and chemical heterogeneities. The
34 clinopyroxene (Cpx) hornblendite with adcumulate texture contains three distinct types
35 of amphibole (cumulus, poikilitic, and minor interstitial). These amphiboles display
36 homogeneous major and trace element compositions, consistent with crystallization
37 from a liquid of constant composition. Rock fabric analysis further suggests that they
38 formed by in-situ nucleation and overgrowth at the interface between the mush layer
39 and the convecting parental magma within the magma reservoir. Type I hornblende (Hb)
40 gabbros have an orthocumulate texture with the lowest whole-rock MgO and Mg#
41 values. Intercumulus melt evolution revealed by mineral assemblage and compositional
42 variations indicate that Type I gabbros formed through a peritectic reaction between
43 clinopyroxene precursors and evolved interstitial melts, followed by melt migration and
44 fluid exsolution in a semi-open system. Type II gabbros have the highest whole-rock
45 MgO and Mg# values and are characterized by extensive disequilibrium features.
46 Geochemical modeling indicates that their formation entails a melt-flushing process
47 involving the upward percolation of deep-recharge melts through the crystal mush. This

48 study provides petrological evidence for the multiple origins of hornblende-rich
49 cumulates within a common middle–lower crustal magma reservoir. Their textural and
50 chemical heterogeneities may reflect spatial variations in crystallization regimes across
51 distinct reservoir domains. The Zedong hornblende-rich cumulates have more depleted
52 whole-rock Sr–Nd isotopic compositions and zircon $\varepsilon_{\text{Hf}}(t)$ values than those cumulates
53 from Early Jurassic and Cretaceous Gangdessa arc. This indicates that their parental
54 magma was derived from a more juvenile mantle wedge and records significant growth
55 in the middle–lower crust. The Cpx hornblendite has lowest concentrations of SiO_2 but
56 highest $\text{Fe}_2\text{O}_3^{\text{T}}$ and $(\text{Dy}/\text{Yb})_{\text{N}}$ ratios. The differentiation trends between the cumulate
57 rocks and coeval non-cumulate rocks within the Zedong terrane indicate that the
58 evolution of the Late Jurassic arc crust was mainly controlled by amphibole
59 fractionation. Modeling shows that melts in equilibrium with the cumulus and brown
60 amphiboles are compositionally analogous to coeval intermediate-acid rocks, and imply
61 the existence of a trans-crustal magma plumbing system in this arc.

62

63 1. INTRODUCTION

64 Unravelling the evolution and differentiation of hydrous primary, mantle-derived
65 arc magmas is important in understanding the formation of continental crust (Ducea et
66 al., 2015). Geochemical characteristics of arc lava suites have demonstrated that the
67 fractionation of amphibole within the deep arc crust is widespread during the evolution
68 of arc magmas (Davidson et al., 2007). Furthermore, amphibole-rich cumulates are a
69 common component of the ancient magmatic arc lower crust such as the Bonanza arc,

70 Canada (Larocque & Canil, 2010); the Talkeetna arc, south-central Alaska (Greene et
71 al., 2006); the Kohistan arc, Pakistan (Burg et al., 2005); Fiordland, New Zealand
72 (Daczko et al., 2016); the North Cascades, USA (Dessimoz et al., 2012); the Famatinian
73 arc, Argentina (Walker et al., 2015); and the Gangdese Batholith, southern Tibet (Xu et
74 al., 2019; Guo et al., 2020). Extensive research on the Kohistan arc system has
75 demonstrated that hydrous (or super-hydrous) liquid lines of descent generate lower
76 crustal rocks with amphibole as the dominant fractionating phase (Jagoutz et al., 2011;
77 Jagoutz & Kelemen, 2015; Urann et al., 2022). Significantly, fractional crystallization
78 experiments closely reproduce the compositions of natural rocks, notably replicating
79 the cumulate sequences observed in the roots of the Kohistan arc (Alonso-Perez &
80 Müntener, 2009; Müntener & Ulmer, 2018). Compared to mature magmatic arcs, as
81 exemplified by the Sierra Nevada in the North Cordillera, which show a crystallization
82 sequence from high-Mg pyroxenite to low-Mg plagioclase-rich pyroxenite (Lee et al.,
83 2006). Fractionation of amphibole, with significantly lower SiO_2 and a high FeO/MgO
84 ratio than primary basalt, increases residual melt SiO_2 and drives calc-alkaline trends
85 more efficiently than that of gabbroic assemblages, which exert limited leverage on
86 silica enrichment (Davidson et al., 2007; Krawczynski et al., 2012). The delamination
87 of dense amphibole-rich cumulates provides a key mechanism for generating the
88 andesitic composition of the continental crust (Jagoutz et al., 2011; Müntener & Ulmer,
89 2018). Conversely, the preservation and subsequent remelting of these cumulates is an
90 equally important process. Experimental studies and thermodynamic modeling confirm
91 that amphibole-rich lithologies can act as fertile sources for partial melting under lower

92 crustal conditions, significantly enhancing melt productivity and producing felsic melts
93 (Peacock et al., 1994; Sen & Dunn, 1994; Rapp & Watson, 1995; Sisson et al., 2005).
94 Therefore, the remelting of amphibole-rich (ultra) mafic cumulates contributes to intra-
95 crustal differentiation, thereby enhancing the chemical maturation and stratification of
96 juvenile arc crust (Zhu et al., 2022, 2023).

97 The formation of cumulates necessitates the separation of crystals from the
98 remaining liquid, the conventional model centers on gravitationally driven compaction
99 and the consequent liquid expulsion (Wager et al., 1960). Based on the relative
100 proportions of “trapped liquid” defined as the liquid component trapped between the
101 cumulus crystals once the mixture has become geochemically isolated from the parent
102 magma (Latypov et al., 2023), cumulates are sub-divided into adcumulates (<5 vol.%)
103 and orthocumulates (>20 vol.%) (Holness, 2021). The solidification of a cumulate
104 begins with the assembly of primocrysts to form a crystal mush, either by re-distribution
105 from elsewhere in the intrusion (Wager & Brown, 1968; Higgins, 1991; Namur et al.,
106 2011; Barnes et al., 2021) or by in situ nucleation and growth (Campbell, 1978;
107 McBirney & Noyes, 1979; Holness, 2021; Latypov et al., 2023). Orthocumulates form
108 in a closed system after initial crystal accumulation, while adcumulates require
109 increasingly open-system conditions throughout solidification (Holness, 2021).
110 However, amphibole-rich cumulates often develop at the expense of clinopyroxene
111 (\pm olivine) through a reaction-replacement mechanism. This process, which has been
112 widely reported from exhumed crustal sections and xenoliths throughout the world
113 (Best, 1975; Conrad & Kay, 1984; DeBari et al., 1987; Costa et al., 2002; Larocque &

114 Canil, 2010; Tiepolo et al., 2011, 2012; Smith, 2014; Cooper et al., 2016; Blatter et al.,
115 2017; Perinelli et al., 2017; Xu et al., 2019, 2021; Wang et al., 2019; Chang et al., 2021)
116 and from melting or crystallization experimental products of basalts (Yoder & Tilley,
117 1962; Holloway & Burnham, 1972; Cawthorn et al., 1973; Helz, 1973; Foden & Green,
118 1992; Ulmer et al., 2018). Typically, the microtextural evidence for peritectic
119 replacement is preserved as vestiges of resorbed clinopyroxene chadacrysts within
120 amphibole. In some cases, clinopyroxene relicts are completely overprinted by
121 amphibole with a granoblastic texture (Smith, 2014; Zhu et al., 2024) involves
122 channelized reactive melt flow through porous mush (Nixon et al., 2024). In contrast,
123 idiomorphic framework amphibole accumulates formed by direct precipitation from a
124 melt are relatively uncommon (e.g. Santana et al., 2020; Sosa et al., 2023). Although
125 the two genetic types of amphibole (primary cumulate phase vs. reaction-replacement
126 origin) can be distinguished (Smith, 2014; Zhu et al., 2024), the primary factors
127 controlling their formation remain unclear, particularly when both rock types occur
128 within the same magmatic system.

129 The Gangdese arc (southern Tibet) recorded the initial growth of continental arc
130 crust during Mesozoic Neo-Tethys oceanic subduction (Zhu et al., 2023). The fractional
131 crystallization of pre-collisional arc magmas resulted in the formation of abundant
132 hornblende-rich cumulates (e.g., hornblendite and hornblende gabbro) in the Gangdese
133 lower crust (Zhu et al., 2022) and this makes them ideal candidates for investigating the
134 role of amphibole in arc crustal evolution. These hornblende-rich cumulates are found
135 at Cuijiu (Xu et al., 2019, 2021) and Milin (Ma et al., 2013; Guo et al., 2020) and formed

136 in the Late Triassic and Late Cretaceous respectively (Fig. 1b). Recent research has
137 identified Late Jurassic hornblende-rich mafic-ultramafic intrusive rocks in the Zedong
138 terrane within the central-eastern Gangdese arc. Here we present the results of an
139 integrated study involving zircon U-Pb geochronology, whole-rock geochemistry and
140 mineral geochemistry of these intrusive rocks. These new data are combined with
141 detailed field relationships, petrographic and mineralogical observations to determine
142 the multiple origins of hornblende-rich cumulates with textural and chemical
143 heterogeneities within a common middle-lower crustal magma reservoir. The influence
144 of amphibole differentiation on arc crustal evolution is also elucidated by assessing the
145 relationship between cumulate and coeval non-cumulate rocks.

146

147 **2. GEOLOGICAL BACKGROUND**

148 The Tibetan Plateau consists of the Kunlun-Qaidam, Songpan-Ganze, Qiangtang,
149 Lhasa and Himalaya Blocks (Fig. 1a). The Lhasa Block in southern Tibet has long been
150 accepted as the last geological block accreted to Eurasia before its collision with the
151 northward drifting Indian subcontinent in the early Cenozoic (Zhu et al., 2011). Based
152 on the distribution of different sedimentary cover rocks and ophiolites, the Lhasa Block
153 has recently been divided into northern, central, and southern sub-blocks, separated by
154 the Shiquan River-Nam Tso Mélange zone (SNMZ) and Luobadui-Milashan fault
155 (LMF), respectively (Pan et al., 2006; Zhu et al., 2011). The southern Lhasa sub-block
156 was an active continental margin (the Gangdese arc) accompanying northward Neo-
157 Tethyan subduction (Searle et al., 1987). The arc magmatic activity in the Gangdese arc

158 lasted from the middle Triassic to the middle Miocene (c. 240–10 Ma) and consists
159 mainly of the voluminous Gangdese Batholith and coeval terrestrial volcanic
160 successions that include the Lower-Middle Jurassic, the Cretaceous and the Paleocene-
161 Eocene Linzizong Group (Zhu et al., 2018).

162 The Indus-Yarlung Zangbo suture zone (IYZSZ) consists of several geological
163 units, and from north to south, there are the Gangdese magmatic belt, the Xigaze forearc
164 basin, the Yarlung-Zangbo ophiolite belt and Tethyan Himalayan sedimentary strata
165 (Fig. 1b). The Zedong terrane, first described by Aitchison et al. (2000), is found in the
166 eastern part of the IYZSZ and extends about 15 km from east to west and outcrops an
167 area of about 25 km² near Zedong town. The Zedong terrane is sandwiched between
168 the Gangdese batholith to the north and the Yarlung-Zangbo Ophiolite Mélange to the
169 south, and they are separated by the Renbu-Zedong thrust (RZT) (Fig. 1c). The Zedong
170 terrane was formed during the Late Jurassic. McDermid et al. (2002) reported zircon
171 U-Pb ages of 157–163 Ma for both volcanic (dacite breccia and dykes) and plutonic
172 rocks (quartz diorites), which are slightly older than Ar-Ar ages of hornblendes (i.e.,
173 ~152–158 Ma). More recently, Wang et al. (2012) reported a U-Pb age of 157.5±1.4
174 Ma for zircons from a granodiorite sample and samples of different lithologies,
175 including hornblendites, gabbros, andesites and tonalites, systematically yielded zircon
176 U-Pb ages of 155–160 Ma (Zhang et al., 2014).

177 The tectonic character of Zedong terrane has been a subject of controversy.
178 Previous studies have proposed that it represents the remnants of an intra-oceanic arc
179 developed within the Neo-Tethys Ocean since the Late Jurassic (Aitchison et al., 2000;

180 McDermid et al., 2002; Wang et al., 2012). Alternatively, Zhang et al., (2014) suggests
181 that the Zedong terrane represents a slice of the active continental margin developed on
182 the southern margin of the Lhasa Block, given that magmatic rocks in the Zedong
183 terrane show compositional similarities with the Jurassic rocks exposed in the Gangdese
184 arc. The current tectonic location may be related to subduction erosion during the Early
185 Cretaceous, which caused the truncation of forearc crust and extremely short arc-suture
186 distance (Hunag et al., 2022).

187

188 **3. FIELD OBSERVATIONS AND PETROGRAPHY**

189 The Zedong terrane mainly incorporates volcanic and volcaniclastic rocks
190 including basaltic-andesitic pillow lavas, breccias, tuffs, flows, cherty tuffs, dacites and
191 rhyolites. In addition, plutons including mafic-ultramafic cumulate rocks, diorites,
192 quartz diorites and granitic rocks are sporadically exposed (McDermid et al., 2002;
193 Zhang et al., 2014). The mafic-ultramafic intrusive rocks in this study consist of
194 hornblendites and gabbros. The gabbros are exposed to the east and west of Zedong
195 town, while the hornblendites outcrop only on the east side (Fig. 1c). The structural
196 relationship between the hornblendites and gabbros can be observed on the outcrop of
197 the section near the Zecuoba Temple, east of Zedong town. The hornblendites are
198 exposed in association with some of the gabbros, and the boundary between
199 hornblendites and gabbros is very irregular (Fig. 2a) while other gabbro outcrops
200 contain dark hornblendite inclusions (20-30 cm; Fig. 2b). The hornblendite and gabbro
201 commonly have a dark green color with massive textures, and all of the rocks are

202 petrographically unweathered in hand specimen (Fig. 2). Representative samples
203 belonging to different rock types have been collected for detailed study. Table 1 shows
204 a summary of the general petrographic features of the samples.

205

206 ***Clinopyroxene hornblendite***

207 The hornblendites display adcumulate textures with dominant euhedral
208 clinopyroxene and euhedral to subhedral amphibole (combined >90 vol. %) (Fig. 3a
209 –c). Sample 09TB01–2 consists mainly of medium- to coarse-grained brown amphibole
210 (~60 vol. %, most <1 mm), medium- to fine-grained clinopyroxene (~30 vol. %), and
211 magnetite (~10 vol. %) (Fig. 3a). Sample 09TB01–1 consists mainly of medium- to
212 coarse-grained brown amphibole (~65 vol. %, most >2 mm), medium-grained
213 clinopyroxene (~25 vol. %, 0.5–2 mm), subordinate magnetite (~10 vol. %) and trace
214 anhedral apatite occurs within the amphibole and clinopyroxene grains or in the
215 interstices between them. The distribution of amphibole in the hornblendites occurs in
216 three distinct microtextural settings: (1) dominant cumulus phase (Fig. 3a, b); (2) large
217 amphibole oikocrysts enclosing rounded magnetite and clinopyroxene (Fig. 3b, c); (3)
218 minor interstitial anhedral grains (Fig. 3c) (<5 vol. %). The amphibole contains some
219 rounded clinopyroxene inclusions and a few inclusions are altered to epidote (Fig. 3a).
220 The hornblendites contain more than 10 vol. % clinopyroxene and so we refer to these
221 rocks as “clinopyroxene (Cpx) hornblendites”.

222

223 ***Hornblende gabbro***

224 The gabbros have been divided into two groups based on mineral assemblage,
225 proportion and grain size. Group I are characterized by orthocumulate textures, and
226 consist mainly of brown amphibole ($\sim > 70$ vol. %) and interstitial euhedral to subhedral
227 green amphibole (< 10 vol. %), as well as interstitial plagioclase (~ 15 vol. %), quartz
228 (~ 5 vol. %) and trace magnetite (Fig. 3d). The brown amphibole can be subdivided into
229 three types based on morphology: (1) amphibole with a dominant granoblastic texture
230 (> 50 vol. %; Fig. 3d); (2) idiomorphic amphibole (< 10 vol. %; Fig. 3e); and (3) minor
231 amphibole containing resorbed clinopyroxene chadacrysts (< 5 vol. %; Fig. 3f).
232 However, relict clinopyroxene inclusions and some amphiboles are altered to chlorite,
233 and interstitial plagioclase commonly replaced by epidote and sericite.

234 Group II gabbros are generally orthocumulates, and are dominated by subhedral
235 to anhedral amphibole (60–65 vol. %), rounded and embayed clinopyroxene inclusions
236 (10–15 vol. %) and interstitial plagioclase (15–20 vol. %) which are mostly altered to
237 clay (Fig. 4a). The amphibole oikocrysts contain abundant anhedral dispersed grains of
238 relict clinopyroxene inclusions (0.5–1 mm) (Fig. 4a). Amphibole blebs are found along
239 the cleavage planes of some clinopyroxene inclusions (Fig. 4a). Some amphiboles are
240 characterized by brown cores and green rims (Fig. 4c). In addition, some clinopyroxene
241 grains have disequilibrium dissolution features such as embayed edges and resorption
242 channels (Fig. 4a–c). These textural relationships are indicative of a clinopyroxene-
243 consuming peritectic reaction (Smith, 2014; Wang et al., 2019; Xu et al., 2021). Apatite
244 can coexist with clinopyroxene and can occur both as early-crystallized inclusions
245 within large amphibole oikocrysts, and as a late interstitial phase between the

246 intercumulus amphibole (Fig. 4a-b), indicating a wide range of crystallization
247 temperatures. In addition, some of the clinopyroxene inclusions are mostly altered to
248 chlorite and epidote, matrix minerals (5–10 vol. %) are mostly altered to epidote and
249 sericite. With plagioclase contents exceeding 10 vol. % and mafic mineral assemblages
250 dominated by amphibole rather than clinopyroxene, these two groups of gabbro meet
251 the criteria for “hornblende (Hb) gabbro” in the classification of mafic intrusive rocks
252 (McBirney, 2007).

253

254 **4. ANALYTICAL METHODS**

255 Zircons were separated from sample 09TB143 using conventional heavy liquid
256 and magnetic separation techniques (Li & Tan, 1998), and then were mounted in epoxy
257 and polished. The zircons were imaged prior to U-Pb analysis using
258 cathodoluminescence (CL) imaging employing a JEOL JXA-8100 Superprobe at the
259 State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry,
260 Chinese Academy of Sciences, Guangzhou, China (SKLaBIG, GIG, CAS), in order to
261 characterize internal structures and choose potential target sites for U-Pb dating and Hf
262 isotopic analyses.

263 Zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
264 U-Pb analyses were carried out at the Institute of Geology and Geophysics, Chinese
265 Academy of Sciences (IGGCAS), Beijing, China. Laser ablation was conducted using
266 an Agilent 7500a Q-ICP-MS equipped with a 193-nm Excimer ArF laser ablation
267 system (Geolas plus), using zircon 91500 as external standard with circle spot of 30 μm

268 in diameter. The detailed analytical procedures for zircon U-Pb age can be found in Xie
269 et al. (2008). $^{207}\text{Pb}/^{235}\text{U}$ and $^{206}\text{Pb}/^{238}\text{U}$ ratios were calculated using ICPMSDataCal
270 software (Liu et al., 2009). Common Pb was corrected according to the method outlined
271 by Andersen (2002) and weighted-mean U-Pb ages and concordia plots were generated
272 using Isoplot/Ex v.3.0 (Ludwig, 2003). Analyses of the zircon standard GJ-1 as an
273 unknown yielded a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 608 ± 6 Ma (2σ , $n=4$), which is in
274 good agreement with the recommended value (Jackson et al., 2004).

275 In situ zircon Lu-Hf isotopic analyses were carried out on a Neptune Plus multi-
276 collector ICP-MS equipped with a RESOlution M-50193 nm laser-ablation system
277 (Resonetics) at the SKLaBIG, GIG, CAS. Lu-Hf isotopic analyses were conducted on
278 the same zircon grains that were previously analyzed for U-Pb geochronology, with
279 ablation pits of 45 μm in diameter, ablation time of 30 s, repetition rate of 6 Hz, and
280 laser beam energy density of 4 J/cm². The detailed analytical procedures are similar to
281 those described by Zhang et al. (2015). Measured $^{176}\text{Hf}/^{177}\text{Hf}$ ratios were normalized to
282 $^{179}\text{Hf}/^{177}\text{Hf}=0.7325$ (Zhang et al., 2015). Analyses of the Plešovice zircon standard
283 yielded a weighted mean of $^{176}\text{Hf}/^{177}\text{Hf}=0.282476 \pm 0.000010$ (2SD; $n=6$), consistent
284 with the certified value of 0.282482 ± 0.000013 (2SD; Sláma et al., 2008).

285 Rock samples used for whole-rock elemental and isotopic analysis during this
286 study were sawn into small chips, ultrasonically cleaned in distilled water with <3%
287 HNO_3 , then in MilliQ water alone, and subsequently dried and handpicked to remove
288 visible contamination. The rocks were crushed by a jaw crusher and then powdered to
289 ~200 mesh in an agate mortar and pestle. Major element concentrations were

290 determined on fused glass beads using a Rigaku RIX 2000 X-ray fluorescence
291 spectrometer at SKLaBIG, GIG, CAS. Calibration lines used for quantification were
292 produced by bivariate regression of data from 36 reference materials encompassing a
293 wide range of silicate compositions (Li et al., 2005), and the resulting analytical
294 uncertainties are generally <2%. Trace elements, including the rare earth elements
295 (REE), were determined by ICP-MS employing a Perkin-Elmer ELAN 6000 instrument
296 at SKLaBIG, GIG, CAS, and using the procedures outlined in Li et al. (2006). About
297 40 mg of each powdered sample was dissolved in a high-pressure Teflon bomb for 2
298 days at 190 °C using HF+HNO₃+HClO₄ (1:1:0.2) mixtures. The resulting analytical
299 precision for the majority of elements is <3%.

300 Sr and Nd isotopic analyses were undertaken on a Neptune MC-ICP-MS
301 instrument at SKLaBIG, GIG, CAS. Analytical procedures are similar to those
302 described in Li et al. (2004). Sr and REE were separated using cation columns, and Nd
303 fractions were further separated by HDEHP-coated Kef columns. The ⁸⁷Sr/⁸⁶Sr ratio of
304 the NBS987 standard and ¹⁴³Nd/¹⁴⁴Nd ratio of the Shin Etsu JNd-1 standard were
305 0.710264±0.000020 (n=6, 2SD) and 0.512102±0.000012 (n=6, 2SD), respectively. All
306 measured Sr-Nd isotopic ratios were normalized to ¹⁴⁶Nd/¹⁴⁴Nd=0.7219 and
307 ⁸⁶Sr/⁸⁸Sr=0.1194, respectively. The Sr-Nd isotopes of USGS reference material BHVO-
308 2 of this study gave ⁸⁷Sr/⁸⁶Sr=0.703482±0.000008 (SE),
309 ¹⁴³Nd/¹⁴⁴Nd=0.512983±0.000010 (SE) (Weis et al., 2005), respectively, within the
310 analytical error of the recommended values.

311 The major element compositions of all silicate mineral analyses were carried out

312 at the SKLaBIG, GIG, CAS, using a JXA-8100 electron microprobe. An accelerating
313 voltage of 15 kV, a specimen current of 20 nA, and a beam size of 1–2 μm were
314 employed. The analytical errors are generally less than 2%. The analytical procedures
315 were described in detail in Huang et al. (2007). In situ mineral trace element
316 compositions were measured with an ELEMENT XR (Thermo Fisher Scientific) ICP-
317 SF-MS coupled with a 193-nm (ArF) Resonetics RESOlution M-50 laser ablation
318 system at SKLaBIG, GIG, CAS. All LA-ICP-MS spots were located over EMPA spots.
319 Laser condition was set as following: beam size, 45 μm ; repetition rate, 6 Hz; energy
320 density, $\sim 4 \text{ J/cm}^2$. A smoothing device (The Squid, Laurin Technic) was used to smooth
321 the sample signal. Each spot analysis consisted of 20 s gas blank collection with the
322 laser off, and 30 s sample signal detection with the laser on. Si was selected as the
323 internal standard element. NIST610 was selected as the calibration standard. The oxide
324 molecular yield, indicated by the $^{232}\text{Th}^{16}\text{O}/^{232}\text{Th}$ ratio, was less than 0.3%. The detailed
325 experiment procedure and data reduction strategy are described in Zhang et al. (2019).
326 NIST612 was measured as unknown samples, which indicated that most elements are
327 within 8% of the reference values and the analytical precision (2RSD) was better than
328 10% for most elements. SiO_2 contents determined by electron microprobe were used as
329 an internal standardization to normalize trace-element abundances. High-resolution
330 elemental mapping of single minerals was carried out using a JEOLJXA-8230 electron
331 probe micro-analyzer (EPMA) at the CAS Key Laboratory of Mineralogy and
332 Metallogeny. The following conditions were adopted for all grains: an accelerating
333 voltage of 20 kV, a probe current of 80 to 100 nA and a beam diameter of 5 μm . The

334 dwell time was set to be 40 to 60 ms for each pixel. Mg K α and Al K α X-rays were
335 analyzed using a TAP crystal. Ti K α X-rays were analyzed using a PETJ crystal and Fe
336 K α X-ray was analyzed using a LIFH crystal. The rock samples were observed in the
337 backscattered electron (BSE) image mode of a Desktop SEM (Phenom XL G2)
338 operating at an acceleration voltage of 15 kV at GIG–CAS.

339 Electron Backscatter Diffraction (EBSD) measurements were carried out in the
340 Electron Microscope Center of Key Laboratory of Mineralogy and Mineralogical
341 Sciences, CAS using a FEI Helios 5CX SEM with an Oxford Aztec Symmetry II
342 EBSD acquisition camera. The measurements were collected using an accelerating
343 voltage of 20 kV, 9- μ m step size, 11 μ A beam current, and a working distance of 7–15
344 mm. The sample surface was tilted 70° relative to horizontal to enlarge beam-specimen
345 activation surface so that EBSD signal can be enhanced. Diffraction patterns were
346 manually collected and automatically indexed in real-time using the AZtec software
347 from the HKL Technology, Oxford Instruments. Five to eight Kikuchi bands were
348 included for the fitting algorithm. Only measurements with mean angular deviation
349 (MAD) values below 1.2° were accepted for analyses, and the indexing rate is about
350 80%. Resulting EBSD data were then processed in AztecCrystal software.

351

352 **5. ANALYTICAL RESULTS**

353 **5.1 Zircon U-Pb Ages and Hf Isotope Analyses**

354 The data from U-Pb zircon LA-ICP-MS dating of one Hb gabbro sample
355 (09TB143) is given in Supplementary Table S1. The majority of zircons are platy or

356 granular with variable grain sizes (100–150 μm) and length/width ratios vary from 1 to
357 1.5. The cathodoluminescence (CL) images of the zircons show no or broad-banded
358 zoning in the core, and oscillatory zoning in the rim (Fig. S1), comparable to those
359 reported for zircons from oceanic gabbro (Grimes et al., 2009). The analyzed zircons
360 have Th and U contents of 292–1316 $\mu\text{g/g}$ and 509–1416 $\mu\text{g/g}$, respectively, with Th/U
361 ratios ranging from 0.5 to 1.1, consistent with those of magmatic zircons (Hoskin &
362 Schaltegger, 2003). Moreover, no inherited cores and no significantly older zircon were
363 found in any of the analyzed zircons. This indicates that the analyzed zircons are
364 phenocrysts rather than xenocrysts. Fifteen spots yield Late Jurassic $^{206}\text{Pb}/^{238}\text{U}$ ages
365 from 157 to 159 Ma and give a weight mean age 158.3 ± 0.6 Ma (n=15; MSWD=0.31)
366 (Fig. S1), identical to other dated samples in literature (Zhang et al., 2014).

367 We also carried out zircon in situ Hf isotopic analysis (with a spot size of 40 μm)
368 for sample 09TB143, mostly on the dated spots, or adjacent to the dated spots, that had
369 similar CL characteristics. All the dated zircons show initial $^{176}\text{Hf}/^{177}\text{Hf}$ ratios ranging
370 from 0.283026 to 0.283139 (mean = 0.283072 ± 0.000070 , 2SD), corresponding to $\epsilon_{\text{Hf}}(t)$
371 values range from +12.5 to +16.4 (mean = $+14.1 \pm 2.5$, 2SD). The analytical results are
372 given in Supplementary Table S2.

373

374 **5.2 Whole-Rock Geochemistry**

375 Whole-rock geochemical data are presented in Table 2. The loss-on-ignition (LOI)
376 values of Zedong mafic-ultramafic intrusive rocks vary from 1.8 wt. % to 3.8 wt. %.
377 The Cpx hornblendite and the Hb gabbro vary greatly in terms of whole-rock

378 composition. The Cpx hornblendite has the lowest concentrations of SiO_2 (38.7–39.9
379 wt. %) but the highest concentrations of TiO_2 (1.3–1.6 wt. %), CaO (16.4–16.5 wt. %)
380 and Fe_2O_3^T (15.2–16.8 wt. %) among these rocks (Fig. 5 and Fig. S2). The two groups
381 of gabbro have significantly different major element compositions, with Group I having
382 lower MgO contents (4.0–6.8 wt. %) and $\text{Mg}\#$ values [47–54; where $\text{Mg}\#$ = molar 100
383 $\times \text{Mg}/(\text{Mg} + \text{Fe}_{\text{total}})$] than Group II ($\text{MgO}=10.7$ –13.1 wt. %; $\text{Mg}\#=67$ –71), but the
384 former having more variable SiO_2 contents (43.5–51.4 wt. %) than the latter (45.4–46.5
385 wt. %) (Fig. 5c–d).

386 The Cpx hornblendite is characterized by high middle REE (MREE)
387 concentrations and MREE to heavy REE (HREE) ratios (e.g., $(\text{Dy}/\text{Yb})_N=1.79$ –1.80)
388 but low $(\text{La}/\text{Yb})_N$ (2.04–2.68) ratios (subscript N denotes normalized to the chondrite
389 values of Sun & McDonough (1989)) with no Eu anomalies ($\delta\text{Eu}=0.98$ –1.01;
390 $\delta\text{Eu}=2^*\text{Eu}_N/(\text{Sm}_N+\text{Gd}_N)$) (Fig. 6a). Both two groups of gabbro show subparallel REE
391 patterns with slightly enriched ($(\text{La}/\text{Yb})_N=1.85$ –5.16) LREEs and relatively flat to
392 depleted MREEs and HREEs ($(\text{Dy}/\text{Yb})_N=1.07$ –1.36), but Group I have slightly positive
393 Eu anomalies ($\delta\text{Eu}=1.07$ –1.19) whereas Group II show virtually no anomaly
394 ($\delta\text{Eu}=1.02$ –1.05) (Fig. 6c). As shown in the primitive mantle normalized trace-element
395 diagram (Fig. 6b), the Cpx hornblendites are slightly enriched in large ion lithophile
396 elements (LILE, e.g., Rb, Ba) and Pb with Zr depletion and no Nb-Ta depletion. Group
397 I gabbros are enriched in LILE (e.g., Rb, Ba and Sr) but depleted in high field strength
398 element (HFSE; e.g., Nb, Ta, Zr and Ti), and the Group II gabbros have variable Rb,
399 Ba, Th, U and Pb contents (Fig. 6d).

400 Whole-rock initial Sr-Nd isotopic ratios of Zedong mafic-ultramafic intrusive
401 rocks were calculated at 158 Ma. The Cpx hornblendite and the Hb gabbro have variable
402 initial ($^{87}\text{Sr}/^{86}\text{Sr}$)_i ratios (0.7040–0.7046), but relatively uniform $\epsilon\text{Nd(t)}$ values (+5.4 to
403 +6.2). The variable Sr but relatively uniform Nd isotopic compositions of Hb gabbro
404 are most likely related to significant amounts of alteration (Fig. S2g), such as the
405 pervasive saussuritization of the majority of the plagioclase (Fig. 3–4). This inference
406 is further corroborated by a positive correlation between $^{87}\text{Sr}/^{86}\text{Sr}$ and LOI (loss on
407 ignition) values (Fig. S2h).

408

409 **5.3 Mineral Compositions**

410 Major oxide data and trace element data for hornblende, clinopyroxene and
411 plagioclase are given in Supplementary Table 3–7.

412

413 *Amphibole*

414 Amphibole formulae have been calculated using the spreadsheet of Locock (2014).
415 The amphibole cation concentrations, calculated as atoms per formula unit (apfu), are
416 provided in Supplementary Table 3. Most of the amphiboles analyzed during this study
417 are calcic (Fig. 7a–b; $\text{CaB} \geq 1.5$; $\text{Ti} < 0.5$ apfu) using the nomenclature of Leake et
418 al. (1997). Amphibole in the hornblendites show the distinct textural regions described
419 above, however, core to rim profiles of amphibole grains indicate that zoning appears
420 to be limited with no systematic compositional differences detected between the
421 cumulus and interstitial crystals. The amphibole within the Cpx hornblendite are all

422 magnesio-hastingsite [$^{A}(Na + K + 2Ca) > 0.5$ apfu; $^{VI}Al \leq Fe^{3+}$] (Fig. 7a). They have
423 almost identical major and trace element compositions, including similar REE patterns.
424 They are characterized by the lowest SiO_2 (40.1–42.4 wt. %) and MgO (13.3–14.0
425 wt. %), but the highest Al_2O_3 (12.8–14.3 wt. %) and TiO_2 (1.8–2.5 wt. %) contents
426 relative to those in the two groups of Hb gabbros (Fig. 8). The chondrite-normalized
427 REE patterns are bell-shaped with LREE- and HREE-depleted relative to MREE
428 without obvious Eu anomalies (Fig. 9a).

429 The brown and green amphiboles in the two groups of Hb gabbros are classified
430 as magnesio-hastingsite and magnesio-(ferri) hornblende ($^{A}(Na + K + 2Ca) < 0.5$ apfu,
431 Fig. 7a–b) respectively, except for two analyses of actinolite (listed in Table S3). The
432 brown amphiboles show variable major element compositions. Compared to the
433 cumulus amphibole in the hornblendite, they display higher MgO (13.7–15.2 wt. %),
434 with lower TiO_2 (0.7–2.0 wt. %) and Al_2O_3 contents (10.6–13.2 wt. %). Although these
435 brown amphiboles also have slightly higher SiO_2 (41.6–44.4 wt. %) than the amphibole
436 in the hornblendite, it does not exceed 45 wt. % (Fig. 8). The chondrite-normalized REE
437 patterns of brown amphiboles in the Hb gabbros are similar to those amphiboles in the
438 hornblendite but more enriched in HREE (Fig. 9b, c).

439 The green amphiboles in the two groups of gabbros have significantly higher SiO_2
440 (45.9–50.7 wt. %) but lower TiO_2 (0.3–1.2 wt. %) and Al_2O_3 contents (10.4–4.7 wt. %)
441 than those brown amphiboles. Despite having a broad range, the $Mg^{\#}$ and MgO content
442 of green amphiboles in Group I ($Mg^{\#}=62$ –69; $MgO=13.4$ –15.0 wt. %) are generally
443 slightly lower than those in Group II ($Mg^{\#}=65$ –72; $MgO=13.9$ –15.9 wt. %) (Fig. 8a, b).

444 This suggests that the two types of green amphiboles formed in different reaction–
445 displacement processes or under different conditions (Xu et al., 2021; Zhu et al., 2024),
446 this will be discussed in more detail in a subsequent section. The chondrite-normalized
447 REE patterns of the green amphiboles are distinctly different from those of the brown
448 amphiboles in the two groups of gabbros. Specifically, the green amphiboles in Group
449 II exhibit right-sloping patterns, whereas those in Group I have significantly lower total
450 REE contents (Fig. 9b, c). Moreover, both green amphiboles have a slight positive Eu
451 anomaly ($\delta\text{Eu}=1.10\text{--}1.56$).

452

453 ***Clinopyroxene***

454 Clinopyroxene occurs as a major cumulus phase in the Cpx hornblendite and as
455 small relict inclusions within large brown amphibole in the Group II Hb gabbro. All
456 analyzed grains are diopside in composition with limited variation in Wo content (46–
457 52 mol%) (Fig. 7c). The high Wo content reflects either crystallization in a hydrous arc
458 magma ($\text{Wo} > 40$ mol%; Gaetani et al., 1993; Prouteau & Scaillet, 2003) or
459 crystallization in the absence of orthopyroxene and olivine, which would result in Cpx
460 with a lower Wo content. Clinopyroxene in the Cpx hornblendite has relatively low
461 Mg# (74.9–86.3), with variable concentrations of Al_2O_3 (2.7–5.9 wt. %) and TiO_2
462 (0.26–0.92 wt. %). Their chondrite-normalized REE patterns are hump-shaped with
463 LREE and HREE depletions relative to the MREE, and no Eu anomalies (Fig. 9d). The
464 clinopyroxene relicts in Group II Hb gabbros have higher Mg# (80.0–88.4), but lower
465 Al_2O_3 (0.7–2.9 wt. %) and TiO_2 (0.09–0.26 wt. %) than those in the Cpx hornblendites.

466 The chondrite-normalized REE patterns show MREE and HREE enrichment and LREE
467 depletion, with significantly lower REE contents than the clinopyroxene in the Cpx
468 hornblendites (Fig. 9d).

469

470 ***Plagioclase***

471 Plagioclase is another dominant mineral in Hb gabbro but is absent in the Cpx
472 hornblendite. Group I Hb gabbros contain minor fresh interstitial plagioclase, which
473 has high Na₂O (10.1–12.5 wt. %), but low CaO (0.12–0.46 wt. %) and K₂O (0.05–0.42
474 wt. %) contents and ranges from An_{0.5} to An_{2.1} in composition. The plagioclase is
475 characterized by LREE enriched chondrite-normalised patterns, and an unusual
476 negative Eu anomaly ($\delta\text{Eu}=0.28\text{--}0.75$, Fig. 9e). Owing to extensive alteration affecting
477 most plagioclase in the Group II Hb gabbros, reliable major element compositions were
478 successfully determined for only three crystals. They have high CaO (14.6–23.9 wt. %),
479 but low Na₂O (0.84–3.95 wt. %) and K₂O (0.3–1.5 wt. %) contents with ranges from
480 An₆₄ to An₉₃ in composition (Fig. 7d).

481

482 **5.4 Thermobarometry and Chemometry**

483 Cumulate rocks may not have obvious genetically-related “daughter” felsic
484 counterparts, or even contemporary magmatic assemblages. As such, single-mineral
485 thermobarometry and chemometry is routinely used to reconstruct the crystallization
486 conditions of cumulates, and model their equilibrium melts (e.g. Luo et al., 2024; Nixon
487 et al., 2024). Crystallization conditions of the Zedong cumulate rocks have been

488 determined using multiple thermobarometers formulated for amphibole (Ridolfi, 2021,
489 R21; Higgins et al., 2022, H22; Putirka, 2016, P16; Krawczynski et al. 2012, K12) and
490 clinopyroxene (Higgins et al., 2022; Putirka, 2008, P08; Wang et al., 2021, W21).

491 Determinations of temperature (T), pressure (P), oxygen fugacity ($f\text{O}_2$) and equilibrium
492 melt water content ($\text{H}_2\text{O}_{\text{melt}}$) are summarized in Supplementary Table 3 (amphibole)
493 and 4 (clinopyroxene).

494 Temperature estimates given by the thermometers used in this study are
495 summarised in Fig. S3a. The P-independent amphibole-only thermometer of P16 gives
496 average temperatures in good agreement with mean R21 and H22. Equilibration
497 temperatures for cumulus amphibole in Cpx hornblendites range from 948 to 995 °C,
498 and brown amphibole grains in two groups of the Hb gabbro range from 924 to 930 °C
499 (I) and 896 to 905 °C (II). The H22, P-dependent (P08 Eq. 32d; Putirka 2008)
500 thermometers and P-independent thermometers (Wang et al., 2021; W21) give mean
501 temperatures of ~1017 to ~1122 °C for cumulus clinopyroxene in Cpx hornblendites
502 and ~1058 to ~1166 °C for relict clinopyroxene in Group II Hb gabbros. Our calculated
503 temperature range broadly matches experimental data, which show that amphibole and
504 clinopyroxene crystallize at 915 – 1000 °C and > 1025 °C in hydrous primitive
505 magmas, respectively (500-800 MPa; Krawczynski et al., 2012).

506 The results obtained from the various barometers applied in this study show a
507 significant range of variation. The pressures calculated using the K12 barometer are
508 markedly higher than those derived from the R21 and H22 barometers (Fig. S3b). To
509 evaluate which barometer yields results that are more geologically realistic, we

510 compiled experimental petrological data on amphibole composition (experimental
511 conditions: 850-1000 °C, starting material: hydrous basalt; data from Putirka (2016)
512 and references therein). We found that the amphibole compositions from this study
513 predominantly fall within the range of experimental data corresponding to pressures of
514 500-800 MPa (Fig. S4). This is particularly evident in the Al^{IV} vs. Al^{VI} plot (Fig. S4a),
515 where amphiboles crystallized under different pressure conditions can be clearly
516 identified, indicating that the Al content in different sites of amphibole is highly
517 sensitive to pressure. In contrast to the R21 barometer, which uses total Al, and the H22
518 barometer, which employs a machine-learning algorithm, the empirical amphibole-only
519 barometer K12 is based on the occupancy of Al at the octahedral site (Al^{VI}) in
520 amphibole. Therefore, the K12 barometer is preferred over R21 and H22. Average
521 pressures estimated by the K12 barometer for cumulus amphibole (669 ± 48 MPa) and
522 brown amphibole (596 ± 65 MPa and 592 ± 55 MPa for Groups I and II Hb gabbro,
523 respectively) are consistent within error. These results are also in good agreement with
524 the experimental data. Furthermore, the hornblendite in this study is plagioclase-free,
525 and plagioclase in the gabbro occurs as an interstitial phase that crystallized later than
526 amphibole. Experimental studies on fractional crystallization indicate that at pressures
527 exceeding ~ 500 MPa, plagioclase appears very late or is absent in hydrous, calc-
528 alkaline, mantle-derived melts, where clinopyroxene (\pm orthopyroxene) and amphibole
529 are the dominant liquidus phases (Ulmer, 2007). The absence of magmatic garnet in
530 these cumulates suggests that the crystallization pressure did not exceed 0.8-1 GPa
531 (Alonso-Perez et al., 2008). In conclusion, based on the consistency of the K12

532 barometer results with experimental data and the supporting mineralogical evidence,
533 we infer that the cumulate rocks in this study formed at mid- to lower-crustal depths.

534 Single-phase chemometry offers a novel way to estimate the compositions of
535 liquids equilibrated with silicate minerals in cumulates where melt compositions are
536 otherwise inaccessible. The compositions of melts in equilibrium with clinopyroxene
537 calculated using H22 chemometric methods are given in Supplemental Table 4. A series
538 of empirical chemometric equations for calculating the major-element compositions of
539 liquids in equilibrium with amphibole based on an expanded data set of experimental
540 results (Putirka, 2016; Zhang et al., 2017; Humphreys et al., 2019). The calculated
541 major elements are given in Supplemental Table S8. The results calculated using these
542 formulae typically have an associated uncertainty of 10–15% (SiO₂: 3.6–4.1 wt. % (SE);
543 SiO₂: 3.6–4.1 wt. % (SE); TiO₂: 0.59–0.74 wt. % (SE); FeO: 2.0–2.2 wt. % (SE); MgO:
544 1.12 wt. % (SE); CaO: 1.45 wt. % (SE); K₂O: 0.76 wt. % (SE); Al₂O₃: 1.31 wt. % (SE);
545 Humphreys et al., 2019). The melt Mg# in equilibrium with amphibole and
546 clinopyroxene were calculated following the approach of Putirka (2016), and the Fe–
547 Mg exchange coefficient $K_D(\text{Fe–Mg})^{\text{Apm/Cpx–liquid}}$ values in the range 0.28 ± 0.11 and
548 0.28 ± 0.08 are regarded to be in chemical equilibrium. Partition coefficients for REEs
549 were predicted using the empirical scheme of Humphreys et al. (2019) and Shimizu et
550 al. (2017). These data were then used to calculate the REE compositions of the liquids
551 from which the amphiboles from the Cpx hornblendite and the gabbro crystallized (data
552 see Supplemental Table S9).

553 **6. DISCUSSION**

554 **6.1 Post-magmatic Alteration**

555 The presence of epidote, chlorite, and sericite in both two groups of gabbro
556 indicates that they have undergone varying degrees of low-temperature hydrothermal
557 alteration. The green amphiboles may have formed during subsolidus hydrothermal
558 alteration given that some of them occur as replacement rims on the relict clinopyroxene
559 and the brown amphiboles (Fig. 3-4). Since this alteration may have affected the
560 mobility of certain elements, it is crucial to distinguish magmatic amphiboles from
561 amphiboles formed during hydrothermal reaction to ensure a robust interpretation of
562 the subsequent magmatic processes. Given that Ti is a high field strength element, its
563 concentration in low-temperature fluids is extremely low (Coogan, 2003). Olivine and
564 plagioclase (the other reactants in the hydrothermal amphibole-forming reaction) are
565 almost devoid of Ti, therefore any Ti in hydrothermal amphibole must have been
566 derived predominantly from clinopyroxene. The hydrothermal amphibole-forming
567 reaction is commonly accompanied by the formation of iron-titanium oxides that
568 scavenge some Ti, leaving even less for any secondary amphibole. Thus, Ti content in
569 hydrothermal amphiboles must be lower than that in associated clinopyroxene (Coogan,
570 2003), whereas amphiboles precipitated from late-stage evolved magmas are likely to
571 contain more TiO_2 because of the higher partition coefficient for Ti in amphibole
572 compared to clinopyroxene (Oberti et al., 2000). Our statistical analysis reveals that the
573 Ti content of the green amphibole ($TiO_2=0.32\text{--}1.16$ wt. %) in two groups of gabbro is
574 higher than that of the relict clinopyroxene ($TiO_2=0.09\text{--}0.26$ wt. %), and also exceeds
575 that of most clinopyroxene in the Cpx hornblendites (Fig. S5a-d), therefore favouring

576 an interpretation of magmatic origin for this amphibole. Moreover, if green amphibole
577 formed through reaction of clinopyroxene (or brown amphibole) with hydrothermal
578 fluids almost devoid of fluid-immobile elements (e.g. Th), it should not contain a higher
579 abundance of Th than its clinopyroxene precursor. However, green amphiboles have a
580 higher Th (0.06–0.28 µg/g) content than clinopyroxene (0.003–0.08 µg/g) and brown
581 amphiboles (0.04–0.07 µg/g) (Fig. S5e-h). This also supports the magmatic nature of
582 green amphiboles (e.g. Wang et al., 2023) because thorium will gradually concentrate
583 in the residual melts during magma evolution as it is highly incompatible in pyroxene
584 and amphibole (Tiepolo et al., 2007).

585

586 **6.2 Cumulate Origin for Cpx Hornblendite**

587 The Cpx hornblendites, composed entirely of primocrysts of amphibole and
588 clinopyroxene, display typical adcumulate textures (Fig. 3a – c). However, to
589 demonstrate that they formed by direct crystal accumulation, one would generally have
590 to show that the possible cumulus minerals are present in concentrations greater than
591 would be obtained if they had simply crystallized from their parental liquid with no
592 crystal accumulation (Irvine, 1982), or show the presence of late phases that likely
593 crystallized from intracumulus liquid. The SiO₂ content of the melt in equilibrium with
594 cumulate clinopyroxene and amphibole shows that they crystallized from basaltic to
595 andesitic magmas, which contrasts with the ultra-mafic whole-rock compositions of
596 the Cpx hornblendite (Fig. 10a). In addition, the REE abundance and patterns of the
597 whole-rock are similar to those of the amphibole and clinopyroxene themselves (Fig.

598 9a, d). This indicates that whole-rock compositions of the Cpx hornblendite cannot be
599 the parental liquid of these crystals and are instead cumulate phases that experienced
600 effective crystal-melt separation. Moreover, the higher REE contents (Fig. 9f) of the
601 melt in equilibrium with the cumulate amphibole, compared to the whole-rock of the
602 hornblendite (Fig. 6), provide key evidence for a cumulate origin.

603 The creation of an adcumulate requires either the removal of the interstitial liquid
604 to bring the primocrysts closer together or post-accumulation growth of the primocrysts
605 from a liquid of constant composition without nucleation of more evolved minerals in
606 the interstitial liquid (Holness, 2021). The former developing during recrystallisation
607 within the crystal pile, with interstitial liquid can be expelled during compaction (Irvine,
608 1980), but this simplest and most commonly assumed mechanism can largely be
609 discounted (Latypov et al., 2023). In systems in which there is no possibility of crystal
610 accumulation following re-distribution from elsewhere, such as in magmas with
611 relatively high viscosities, cumulates form by in situ nucleation and growth. Thus, the
612 alternative explanation involves nucleation at the temporary top of the crystal pile,
613 following exchange of interstitial liquid with the main body of parent magma by
614 diffusion or convection (Holness, 2021; Latypov et al., 2023). The following
615 microscopic observations and EBSD of fabric analysis suggest that the Cpx
616 hornblendite is more likely to have formed by the second mechanism: (1) Cumulates
617 formed by crystal re-distribution display an abundance of planar grain boundaries
618 formed by the juxtaposition of euhedral mineral grains bounded by growth faces.
619 However, amphibole grains in the Cpx hornblendite have highly irregular shapes, and

620 irregular grain boundaries, do not have any particular orientation relationship with the
621 growth faces of the adjacent crystals. Amphibole and clinopyroxene grains show
622 complex interlocking textures, with partial or complete enclosure by neighboring grains
623 of the same phase (Fig. 3a–c). Such characteristics are typical of in situ growth to
624 impingement, with a continuous nucleation of new grains; (2) crystal transport (such as
625 crystal settling, flotation and magma currents) in cumulates can cause mineral grains to
626 become sorted by size (Holness et al., 2020), potentially leading to a gradation in size.
627 Hydrodynamic sorting may also cause minerals to accumulate in layers based on their
628 density. However, the cumulate rocks in this study showing no modal grading or
629 density-sorting in the field. Moreover, cumulus amphibole and clinopyroxene have a
630 wide range of grain sizes and follow a normal distribution (Fig. 11b), suggesting that
631 these minerals likely formed in situ through prolonged episodes of nucleation in the
632 absence of hydrodynamic sorting; (3) cumulates developed by crystal settling and
633 accumulation commonly display foliation and/or lineation fabrics defined by a
634 preferred orientation of non-equant primocrysts (a shape preferred orientation)
635 (Latypov et al., 2023). The crystallographic preferred orientation of primocrysts
636 (cumulus amphibole and clinopyroxene), as determined by EBSD analysis, is generally
637 weak for all principal axes, notably [010] and [001] (Fig. 11c). This indicates that their
638 formation is unlikely to have involved substantial crystal re-distribution through
639 settling or magmatic flux (e.g. Henry et al., 2021).

640 Cpx hornblendites are characterized by a framework of cumulus clinopyroxene
641 and amphibole grains without other intercumulus minerals (except for minor interstitial

642 amphibole and trace apatite, <5 vol. %, Fig. 3a–c). Moreover, the cumulus amphiboles
643 are unzoned and exhibit a consistent and homogeneous composition between the
644 various textural forms (poikilitic and interstitial grains) (Fig. 7–9). Interstitial
645 oikocrysts of amphibole occur between cumulus clinopyroxene and form a single large
646 crystal with all patches being in optical continuity (Fig. 3c). These features suggest that
647 the amphibole crystallized within a buffered system, potentially involving one or more
648 of the following processes: (1) continuous recharge of amphibole-saturated magma; (2)
649 peritectic melt transport through the crystal mush, or (3) complete diffusive re-
650 equilibration (Holness et al., 2021; Nixon et al., 2024). However, petrographic
651 observations indicate that most amphibole in the Cpx hornblendites co-crystallized with
652 clinopyroxene and shows no textural evidence for a peritectic relationship. Although
653 complete diffusive re-equilibration could produce chemical homogeneity, it requires the
654 cumulate pile to remain hot for a sufficiently long duration. The magmatic cooling
655 history argues against this, as the substantial temperature interval ($\Delta T > 100$ °C)
656 between the liquidus crystallization of clinopyroxene and the subsequent appearance of
657 amphibole implies that time for re-equilibration was limited. Furthermore, prolonged
658 high temperatures would be expected to overprint distinctive textural features, yet these
659 features (e.g., irregular shapes, irregular grain boundaries, and grains show complex
660 interlocking) are well-preserved. Collectively, the evidence leads us to favor a model
661 of post-accumulation growth of the primocrysts (from cumulus to poikilitic
662 amphiboles) from a liquid of constant composition. This process occurred without
663 nucleation of more evolved minerals in the interstitial liquid, implying the primocrysts

664 grew until they impinged on each other. Such a scenario requires open-system behavior,
665 where the interstitial liquid was efficiently exchanged via convection with an overlying
666 melt-rich reservoir (Holness et al., 2021).

667

668 **6.3 Intercumulus Melt Evolution of Group I Gabbros**

669 The brown amphibole in Group I gabbros show significant compositional
670 variability. Sparsely occurring idiomorphic amphibole grains have major element
671 contents similar to those of the primary amphibole (referring to those amphibole grains
672 in Fig. 8 which overlap with the cumulus amphibole field), suggesting that these
673 represent remnant crystals derived from the Cpx hornblendite. In contrast, amphibole
674 that encloses resorbed clinopyroxene chadacrysts, along with amphibole exhibiting a
675 granoblastic texture, displays higher Mg# and MgO but lower Al₂O₃ and TiO₂
676 compared to the primary hornblende (Fig. 8). These compositional characteristics,
677 combined with petrographic evidence, indicate that brown amphiboles formed through
678 peritectic reactions consuming the precursor clinopyroxene. This interpretation is
679 further supported by several studies, which demonstrate that a more clinopyroxene-
680 like chemistry relative to primary amphibole is consistent with an origin via peritectic
681 reaction between an evolving melt and earlier-formed clinopyroxene that has high
682 Mg# and low Al₂O₃ and TiO₂ contents (Xu et al., 2021; Zhu et al., 2024). The
683 granoblastic amphibole, in particular, is interpreted as a product of complete reaction-
684 replacement (Smith, 2014; Nixon et al., 2024).

685 The classic model proposes that cumulate rocks represent mixtures of cumulus

686 crystals and intercumulus liquid, initially at or close to equilibrium with one another
687 at the liquidus temperature of the parent magma (Wager et al., 1960). If intercumulus
688 liquid is trapped in a closed-system, it solidifies progressively to form post-cumulus
689 overgrowths and interstitial minerals. During this process, the residual liquid becomes
690 increasingly evolved, eventually saturating in phases enriched in incompatible
691 elements (Barnes & Williams, 2024). However, in Group I Hb gabbros, the green
692 amphibole—an early interstitial phase—does not show the expected enrichment in
693 incompatible elements. The significantly lower REE content of the green amphibole
694 relative to the brown amphibole (Fig. 9c) further suggests that the evolving
695 intercumulus liquid was mobile. This is consistent with models indicating that the
696 migration of evolved liquid in a partially open system leads to the loss of incompatible
697 components (Meurer & Meurer, 2006). The escape of intercumulus liquid also
698 removes heat, which is reflected in the temperature difference between the green and
699 brown amphiboles. Thermometric calculations indicate that the brown and green
700 amphiboles crystallized from andesitic to dacitic melts (mean $\text{SiO}_2 = 61.7 \pm 1.3$ (1 σ_E)
701 wt. %) at 924–930 °C, and from rhyolitic melts (mean $\text{SiO}_2 = 71.4 \pm 1.7$ (1 σ_E) wt. %)
702 at 764–791 °C, respectively (Fig. 10b). Intercumulus plagioclase is always found
703 associated with quartz, and likely represents the latest-stage evolved melt, which is
704 also consistent with the composition of the melt equilibrated with the green amphibole.
705 However, the low-An plagioclase in the late-stage crystallized cumulus phase has an
706 unusual negative Eu anomaly (Fig. 9e). Therefore, it is necessary to discuss the
707 intermediate processes that led to the Eu anomaly in the late-stage evolved melt.

708 Plagioclase is absent in the Cpx hornblendite with no Eu anomalies (Fig. 6a),
709 suggesting that plagioclase was not involved in the early melt evolution. The absence
710 of plagioclase is ascribed primarily to high H_2O_{melt} and fO_2 in differentiated arc
711 magmas (Fig. 12) similar to other arc-related ultramafic rocks (Nixon et al., 2024).
712 Although the green amphibole exhibits a slight positive Eu anomaly compared to the
713 brown amphibole, and its calculated equilibrated melt shows a corresponding negative
714 Eu anomaly (δEu as low as 0.6; Fig. S6b), the significantly lower δEu values in
715 plagioclase (as low as 0.28) cannot be attributed to green amphibole fractionation.
716 This is due to the high partition coefficient of Eu between plagioclase and felsic melt
717 ($K_D > 1$; Rollinson, 1993). The highly evolved interstitial melt eventually crystallized
718 almost pure albite (very low An content), indicating relatively low melt water content,
719 as water significantly affects Ca–Na partitioning between plagioclase and melt (Sisson
720 & Grove, 1993). This finding is decoupled from the calculated water contents of melts
721 in equilibrium with brown amphibole (6.3–9.1 wt. %) and green amphibole (5.4–7.5
722 wt. %), suggesting that the evolution of the interstitial melt involved not only melt
723 escape but also fluid exsolution. Studies of seafloor hydrothermal systems worldwide
724 have shown that high-temperature vent fluids often have pronounced positive Eu
725 anomalies (Michard et al., 1983; Michard, 1989). The solubility and mobility of Eu^{2+}
726 are much higher in magmatic-hydrothermal fluids than in silicate melts, and
727 exsolution of high-salinity fluids can lead to extreme negative Eu anomalies (Eu/Eu^*
728 as low as 0.01) in the residual melt (Ye et al., 2025). Therefore, we conclude that the
729 intercumulus melt evolution of Group I Gabbros was jointly controlled by melt

730 migration and fluid exsolution.

731

732 **6.4 Melt Flush in the Mush: the origin of Group II Gabbros**

733 In Group II gabbros, brown amphibole typically contains resorbed clinopyroxene
734 inclusions, with amphibole blebs developing along the cleavage planes of
735 clinopyroxene (Fig. 4a). Some green amphibole occurs as reaction rims surrounding
736 brown amphibole (Fig. 4c), suggesting that both brown and green amphibole formed
737 through peritectic reactions: the brown amphibole resulted from reactions between
738 intercumulus melt and cumulus clinopyroxene, while the green amphibole formed from
739 reactions between the melt and pre-existing brown amphibole. Evidence from mineral
740 reaction textures in mafic-ultramafic cumulates at mid-ocean ridges and arc settings
741 confirms the prevalence of such processes. These textures consistently indicate that the
742 oikocrysts formed through dissolution of the enclosed minerals by intercumulus melt
743 (Smith, 2014; Lissenberg & MacLeod, 2016; Chang et al., 2021; Blundy, 2022;
744 Boulanger & France, 2023; Wang et al., 2023). Compared to the primary cumulus
745 amphibole, brown amphibole has higher SiO_2 content but a nearly constant Mg# (Fig.
746 8a), which can be explained by a reaction that consumes early pyroxene to form
747 amphibole. This reaction suppresses the decrease in the Mg# of the interstitial melt
748 (Klaver et al., 2018). The EPMA mapping of representative amphiboles containing
749 clinopyroxene resorbed inclusions show that green amphibole exhibits lower
750 concentrations of Al and Ti but higher Mg and similar Fe compared to brown amphibole
751 (Fig. 4d). In addition, compared to the green amphibole in the Group I gabbros, which

752 crystallized directly from an evolved residual melt, the green amphibole in the Group
753 II gabbros has significantly higher Mg# values (Fig. 8). This compositional difference
754 can also be attributed to melt–mush reactions occurring via dissolution–reprecipitation
755 processes, which buffer the composition of the interstitial melt. The melts in
756 equilibrium with both the brown and green amphiboles have relatively constant
757 FeO*/MgO ratios across a range of SiO₂ contents (60–75 wt. %), a characteristic highly
758 consistent with the HPRD suite from Nisyros—a young stratovolcano in the Aegean
759 arc, Greece—but distinct from LPA suites (Fig. 13). The latter evolve rapidly into
760 tholeiitic, peraluminous dacites, as predicted by fractional crystallization (FC) models.
761 In contrast, the HPRD suite from Nisyros represent peritectic boundary liquids
762 extracted from a deep crustal hot zone at the base of a cumulate mush. These liquids
763 formed through reactions in which earlier-generated wehrlite cumulates interacted with
764 melt to produce amphibole (Klaver et al., 2018). Moreover, the occurrence of interstitial
765 calcic plagioclase (with An values up to 90 mol. %; Fig. 7d) and the notably high whole-
766 rock Mg# and MgO values of the Group II gabbros—even exceeding those of the Cpx
767 hornblendites (Fig. 5c–d)—collectively indicate replacements of the more evolved
768 interstitial melt by the more primitive recharge melt leading to reactions (dissolution +
769 precipitation).

770 This process is remarkably similar to the “melt flush” process proposed by
771 Boulanger & France (2023), which is a novel igneous process where primitive melt
772 recharge replaces evolved interstitial melt in crystal mush, triggering melt-mush
773 reactions and concomitant extraction of the evolved melt to form cumulates. Thus, we

774 use two-stage assimilation-fractional crystallization (AFC) processes to model this melt
775 flush process (Klaver et al., 2018; Wang et al., 2023). The first stage (AFC1) is the
776 assimilation of clinopyroxene and the crystallization of brown amphibole + apatite +
777 plagioclase, and the second stage (AFC2) is the assimilation of brown amphibole and
778 the crystallization of green amphibole + apatite + zircon. We also show the pure FC1
779 and FC2 model which corresponds exactly with the AFC1 and AFC2 models with an
780 assimilated to crystallized mass ratio (r) of zero. Using these assumptions, we calculated
781 the Dy/Yb and La/Sm ratios of melts in equilibrium with brown and green amphibole
782 to compare melt compositions and AFC trends. The D_{REE} values for amphibole were
783 calculated using the parameterized model developed by Humphreys et al. (2019). The
784 D_{REE} values of apatite are the average values determined in experiments (Watson &
785 Green, 1981; Prowatke & Klemme, 2006). Detailed simulation parameters are provided
786 in the caption of Fig. 14 and Table S10. The modeling results show that the AFC1 trends
787 vary insignificantly with r values. In contrast, the assimilant of brown amphibole in the
788 AFC2 model has high REE contents and Dy/Yb ratios. The residual evolving melts
789 show decreasing MREE and HREE contents due to the fractionation of amphibole,
790 apatite, and zircon, and hence they are susceptible to the assimilation of brown
791 amphibole. Therefore, the dissolution of brown amphibole and crystallization of zircon
792 during AFC2 can suppress the decrease in Dy/Yb while promoting an increase in La/Sm
793 of late-stage melt. This observation is consistent with the characteristics displayed by
794 our samples, where a mass ratio of assimilation and crystallization between 0.2 and 0.4
795 can yield the calculated melt compositions for our samples (Fig. 14).

797 **6.5 Evolution of the Zedong Middle–Lower Crustal Magmatic System**

798 A schematic petrological model for the generation of the Zedong hornblende-rich
799 ultramafic–mafic intrusive rocks with chemical and textural heterogeneities is shown
800 in Fig. 15. The mantle-derived primitive magma, after undergoing possible early
801 differentiation (olivine \pm clinopyroxene), ascends to the magma reservoir in the
802 middle to lower crust of the Gangdese arc (Fig. 15a–b). Firstly, cotectic
803 clinopyroxene–magnetite–apatite primocrysts crystallized in a relatively high-
804 temperature, high-melt-fraction regime within the magma reservoir and accumulated
805 to form a crystal framework with interstitial melt and heterogeneous permeability
806 (mush zone). The relatively large temperature interval for the crystallization of
807 cumulus clinopyroxene prior to the appearance of postcumulus amphibole allowed for
808 progressive expulsion of interstitial melt during densification of the clinopyroxene
809 framework that promoted by overgrowth and partial compaction. Low-permeability
810 zones can facilitate the formation of cumulate clinopyroxenite at the base of a magma
811 reservoir. The evolved hydrous basaltic-andesitic residual liquids, which were in
812 equilibrium with the cumulus clinopyroxene, migrated upward through the crystal
813 framework. A portion of this liquid cooled and crystallized to form the initial
814 interstitial amphibole (Fig. 15c). In mush layers with high porosity (i.e., high melt
815 fraction), amphibole had sufficient space to develop large euhedral crystals (Fig. 15).
816 When evolved interstitial melt was efficiently expelled and replenished by magmas of
817 similar composition, for instance, within the boundary layers at the interface between

818 the mush and the overlying magma chamber. Amphibole will crystallize in-situ and
819 form overgrowths from a liquid of constant composition without nucleation of more
820 evolved minerals and this requires convective communication with the parent magma.
821 Finally, the amphibole primocrysts grow until they impinge to form the Cpx
822 hornblendite with an adcumulate texture (Fig. 15c, CASE ①).

823 The evolved hydrous melts migrated through the cumulus clinopyroxene crystal
824 framework and not only led to the crystallization of early interstitial brown amphibole,
825 but also triggered dissolution of clinopyroxene and crystallization of brown amphibole
826 via further cooling and peritectic reaction. The accumulation of peritectic melt
827 promoted extensive reaction allowing virtually complete in situ replacement of
828 clinopyroxene by granoblastic amphibole. Diverging from Case ①, a semi-open
829 system formed when the ascending evolved interstitial melt was not replenished. The
830 escape of this melt removed incompatible components, resulting in the late
831 crystallization of incompatible element-depleted green amphibole. The protracted
832 process, driven by the incompatible behavior of water, ultimately led to fluid
833 exsolution. As porosity and permeability gradually decreased, the trapped latest-stage
834 interstitial melt crystallized quartz and albitic plagioclase with an unusual negative Eu
835 anomaly, ultimately forming the Group I Hb gabbros with orthocumulate texture (Fig.
836 15c, CASE ②).

837 If the early clinopyroxene-dominated mush was invaded by genetically unrelated
838 melts before full consolidation, the pre-existing thermal and chemical balance would
839 be broken. Firstly, percolation of an exotic melt triggered partial or complete

840 dissolution of the clinopyroxene, with concomitant crystallization of brown amphibole
841 along its edges or within its interior. The process was accompanied by the
842 crystallization of plagioclase and apatite, and their subsequent enclosure within the
843 brown amphibole. Following a pulse of magma flushing, the composition of the
844 interstitial melt was substantially modified and equilibrated with the brown amphibole.
845 Subsequently, upon cooling, a peritectic reaction occurred between this melt and the
846 brown amphibole, producing a reaction rim of green amphibole along with interstitial
847 apatite and zircon. The eventual expulsion of the residual interstitial melt ultimately
848 formed the Group II Hb gabbros with cumulate texture (Fig. 15c, CASE ③).

849 The three types of hornblende-rich cumulate rocks have distinct genetic
850 mechanisms, resulting in differences in texture and composition, which may be related
851 to their formation in different locations within the magma reservoir. The Cpx
852 hornblendite may form in the upper to middle parts of the magma reservoir, where
853 conditions are closer to a liquid-rich parental magma chamber. In contrast, Group I
854 gabbros may form in the mush layer of the lower or margin of the magma reservoir,
855 where porosity and melt permeability are relatively low. Group II gabbros likely
856 formed near the channel of deep magma replenishment into the magma reservoir (Fig.
857 15b).

858

859 **6.6 Implications for the Gangdese Arc crustal evolution**

860 Observation of samples and fractional crystallization experiments reveal a mineral
861 fractionation sequence defined by olivine → pyroxene → amphibole + Fe-Ti

862 oxides → plagioclase on H₂O-saturated primary arc magmas at lower crustal
863 conditions (Krawczynski et al., 2012; Ulmer et al., 2018; Guo et al., 2020). The mafic
864 and ultramafic cumulate rocks that can be inferred to form during this fractionation
865 sequence is as follows: dunite → wherlite → pyroxenite → clinopyroxene
866 hornblendite → hornblendite → gabbro. In the Zedong ultramafic-mafic intrusive
867 rocks, neither olivine nor orthopyroxene were observed, however relatively low
868 compatible element (Cr and Ni) contents (Fig. S2e–f) of the Cpx hornblendite
869 indicates likely early olivine and clinopyroxene fractionation. More primitive
870 ultramafic cumulates (such as dunites and pyroxenites) are therefore proposed to occur
871 beneath these hornblende-rich cumulate rocks. The Zedong late Jurassic ultramafic–
872 mafic intrusive rocks define a Z-shaped trend in plot of Mg# vs SiO₂ (Fig. 5d),
873 resembling the cumulate sequence of the Mesozoic Gangdese arc as well as Kohistan
874 arc and Talkeetna arc, and represent the magmatic evolution of an immature arc (Zhu
875 et al., 2022). However, they have more depleted whole-rock Sr–Nd isotopic
876 compositions ($(^{87}\text{Sr}/^{86}\text{Sr})_i = 0.7040 \sim 0.7046$; $\varepsilon_{\text{Nd}}(t) = +5.4 \sim +6.2$) and zircon Hf
877 isotopic compositions (+12.5 to +16.4) in contrast to the cumulates in the lower crust
878 from the Late Cretaceous ($(^{87}\text{Sr}/^{86}\text{Sr})_i = 0.7043 \sim 0.7046$; $\varepsilon_{\text{Nd}}(t) = +2.8 \sim +4.3$; $\varepsilon_{\text{Hf}}(t) =$
879 +12.1 ~ +14.1) and the Late Triassic ($(^{87}\text{Sr}/^{86}\text{Sr})_i = 0.7037 \sim 0.7051$; $\varepsilon_{\text{Nd}}(t) = +1.7 \sim$
880 +5.5; $\varepsilon_{\text{Hf}}(t) = +0.4 \sim +13.0$) Gangdese arc (Fig. S7), indicating that the primitive
881 magma was derived from a more juvenile mantle wedge.

882 Amphibole plays an important role in the petrogenesis and evolution of arc magmas
883 and amphibole-rich mafic–ultramafic rocks are widely found in subduction zones

884 (Cawthorn & O'Hara, 1976; Davidson et al., 2007; Murphy, 2013; Nandedkar et al.,
885 2014), this is because high H₂O contents in mafic arc magmas can cause the early
886 crystallization of pargasitic amphibole and suppress the crystallization of plagioclase
887 (Sisson & Grove, 1993; Grove et al., 2002; Ulmer et al., 2018). Trends of increasing
888 La/Yb and decreasing Dy/Yb with increasing SiO₂ from erupted lavas in modern
889 subduction zones suggest that fractionation of amphibole is widespread (Davidson et
890 al., 2007; Barber et al., 2021). The fractionation of silica-poor and iron-rich amphibole
891 more effectively drives the residual melt compositions toward higher SiO₂ levels,
892 promoting calc-alkaline differentiation trends more efficiently than the fractionation of
893 plagioclase or pyroxene (Davidson et al., 2007; Krawczynski et al., 2012). Melt
894 segregation from an amphibole-dominated mush represents a form of crustal
895 differentiation, which plays a crucial role in the formation of felsic rocks and SiO₂-rich
896 continental crust (Barber et al., 2021).

897 In this study, there are obvious negative correlations between SiO₂ contents and
898 (Dy/Yb)_N ratios among the Late Jurassic basic-ultrabasic intrusive rocks, intermediate-
899 acid intrusive rocks, basalts and andesites within the Zedong area (Fig. 5e). Such a
900 marked geochemical signature has been used to indicate amphibole (\pm pyroxene and
901 plagioclase) fractionation. Most igneous rocks formed above subduction zones are calc-
902 alkaline and this is thought to be due to the presence of water in the source region
903 (Ducea et al., 2015). Previous experimental studies agree that near liquidus
904 crystallization of amphibole together with Ca-rich pyroxene (Cpx) and olivine at 500–
905 800 MPa can produce calc-alkaline liquids (Anderson 1980; Médard & Grove, 2008;

906 Krawczynski et al., 2012). The calc-alkaline trend (alkali enrichment, iron depletion)
907 of the Zedong volcanic and granitic suite (Fig. 5b) resulted from amphibole and
908 clinopyroxene fractionation, given that the Cpx hornblendites have the highest Fe_2O_3^T
909 content and their accumulation would lower the residual melt's FeO^*/MgO ratio.
910 Calculated melts in equilibrium with the cumulus amphiboles (in the Cpx hornblendite)
911 and brown amphiboles (in the Hb gabbro) overlap the Zedong basaltic andesite and
912 tonalite respectively (Fig. 5 and Fig. S2). In addition, the contemporaneous
913 emplacement (c. 160 Ma) and similar whole-rock isotopic compositions (Fig. S2g),
914 suggest that these lavas and upper crustal granitic rocks may represent the intercumulus
915 melts extracted from cumulates with different amounts of residual amphibole. This
916 indicates that there is a trans-crustal magma plumbing system in the Zedong Late
917 Jurassic arc crust, as described by Cashman et al. (2017).

918

919 7. CONCLUSIONS

920 1. The Zedong mafic-ultramafic intrusive rocks within the central-eastern
921 Gangdese arc mainly consist of the Cpx hornblendite and two groups of Hb gabbro.
922 Zircon U-Pb dating indicates that they were synchronously crystallized at c. 160 Ma.
923 2. Multiple geobarometers indicate that these intrusions formed in a magma
924 reservoir within the middle to lower crust. The Cpx hornblendite with adcumulate
925 formed through in-situ nucleation and overgrowth at the interface between the mush
926 layer and the convecting parental magma.
927 3. Group I gabbros with orthocumulate textures formed through the peritectic

928 reaction between clinopyroxene precursors and evolved interstitial melts, followed by
929 melt migration and fluid exsolution in a semi-open system.

930 4. The formation of Group II gabbros is associated with a melt flush process
931 relying on melt-mush reactions between the deep recharge melt and crystal mush. The
932 textural and chemical heterogeneities of these hornblende-rich cumulates may be
933 related to their formation at different locations within a common middle-lower crustal
934 magma reservoir.

935 5. Compared to other periods of the Mesozoic, the Late Jurassic parental arc
936 magma was derived from a more juvenile mantle wedge and records significant
937 growth in the middle-lower crust. Differentiation trends between the cumulate rocks
938 and coeval non-cumulate rocks within the Zedong terrane indicate that the evolution
939 of the Late Jurassic arc crust was mainly controlled by amphibole fractionation.

940 6. Calculated melts in equilibrium with the cumulus and brown amphiboles
941 overlap the coeval basaltic andesite and tonalite respectively, suggesting the existence
942 of a trans-crustal magma plumbing system.

943

944 **ACKNOWLEDGEMENTS**

945 We thank the Editor-in-Chief Georg Zellmer, Editor Tod Waight, John Adam, and
946 three anonymous reviewers for their constructive suggestions, which greatly improved
947 the paper. We appreciate the assistance from Yong-Hua Cao, Shan Li and Yi-Chen Zhao
948 during the EPMA and EBSD analysis.

949 **FUNDING**

950 Financial support for this research was provided by the China National Science and
951 Technology Major Project (No. 2024ZD1001103) and the National Natural Science
952 Foundation of China (42021002). This is contribution no. IS-XXXX from GIGCAS.

953

954 **Data Availability Statement**

955 New geochemical data presented in this study have been deposited in the EarthChem
956 Library at <https://ecl.earthchem.org/view.php?id=4299> (DOI: 10.60520/IEDA/114299).
957 The repository templates have been submitted as supplemental materials.

958

959 **REFERENCES**

960 Aitchison, J. C., Badengzhu, Davis, A. M., Liu, J., Luo, H., Malpas, J. G., McDermid,
961 I. R. C., Wu, H., Ziabrev, S. V. & Zhou, M.-f. (2000). Remnants of a
962 Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo
963 suture (southern Tibet). *Earth and Planetary Science Letters* 183, 231–244.

964 Alonso-Perez, R., Müntener, O. & Ulmer, P. (2009). Igneous garnet and amphibole
965 fractionation in the roots of island arcs: experimental constraints on andesitic
966 liquids. *Contributions to Mineralogy and Petrology* 157, 541–558.

967 Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report
968 ^{204}Pb . *Chemical Geology* 192, 59–79.

969 Anderson, A. T. (1980). Significance of hornblende in calc–alkaline andesites and
970 basalts. *American Mineralogist* 65, 837–851.

971 Barber, N. D., Edmonds, M., Jenner, F., Audétat, A. & Williams, H. (2021).
972 Amphibole control on copper systematics in arcs: Insights from the analysis
973 of global datasets. *Geochimica et Cosmochimica Acta* 307, 192–211.

974 Barnes, S. J. & Williams, M. (2024). Postcumulus Processes Recorded in
975 Whole–Rock Geochemistry: a Case Study from the Mirabela Layered
976 Intrusion, Brazil. *Journal of Petrology* 65, egae019.

977 Barnes, S. J., Latypov, R., Chistyakova, S., Godel, B. & Schoneveld, L. E. (2021).
978 Idiomorphic oikocrysts of clinopyroxene produced by a peritectic reaction
979 within a solidification front of the Bushveld Complex. *Contributions to
980 Mineralogy and Petrology* 176, 5.

981 Best, M. G. (1975). Amphibole-bearing cumulate inclusions, Grand Canyon, Arizona
982 and their bearing on silica-undersaturated hydrous magmas in the upper
983 mantle. *Journal of Petrology* 16, 212–236.

984 Blatter, D. L., Sisson, T. W. & Hankins, W. B. (2017). Voluminous arc dacites as

985 amphibole reaction-boundary liquids. *Contributions to Mineralogy and*
986 *Petrology* 172, 1–37.

987 Blundy, J. (2022). Chemical differentiation by mineralogical buffering in crustal hot
988 zones. *Journal of Petrology* 63, 1–36.

989 Boulanger, M. & France, L. (2023). Cumulate Formation and Melt Extraction from
990 *Mush–Dominated Magma Reservoirs: The Melt Flush Process Exemplified*
991 *at Mid–Ocean Ridges*. *Journal of Petrology* 64, egad005.

992 Burg, J.-P., Arbaret, L., Nawaz Chaudhry, M., Dawood, H., Hussain, S. & Zeilinger,
993 G. (2005). Shear strain localization from the upper mantle to the middle crust
994 of the Kohistan Arc (Pakistan). *Geological Society, London, Special*
995 *Publications* 245, 25–38.

996 Campbell, I. H. (1978). Some problems with the cumulus theory. *Lithos* 11, 311–323.

997 Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. (2017). Vertically extensive and
998 unstable magmatic systems: A unified view of igneous processes. *Science*
999 355, eaag3055.

1000 Cawthorn, R. & O'Hara, M. (1976). Amphibole fractionation in calc–alkaline magma
1001 genesis. *American Journal of Science* 276, 309–329.

1002 Cawthorn, R. G., Curran, E. B. & Arculus, R. J. (1973). A petrogenetic model for the
1003 origin of the calc-alkaline suite of Grenada, Lesser Antilles. *Journal of*
1004 *Petrology* 14, 327–337.

1005 Chang, J., Audébat, A. & Li, J.–W. (2021). In situ Reaction–replacement Origin of
1006 Hornblendites in the Early Cretaceous Laiyuan Complex, North China
1007 Craton, and Implications for its Tectono–magmatic Evolution. *Journal of*
1008 *Petrology* 62.

1009 Conrad, W. K. & Kay, R. W. (1984). Ultramafic and mafic inclusions from Adak
1010 Island: crystallization history, and implications for the nature of primary
1011 magmas and crustal evolution in the Aleutian Arc. *Journal of Petrology* 25,
1012 88–125.

1013 Coogan, L. A. (2003). Contaminating the lower crust in the Oman ophiolite. *Geology*,
1014 31, 1065–1068.

1015 Cooper, G. F., Davidson, J. P. & Blundy, J. D. (2016). Plutonic xenoliths from
1016 Martinique, Lesser Antilles: evidence for open system processes and reactive
1017 melt flow in island arc crust. *Contributions to Mineralogy and Petrology* 171,
1018 87.

1019 Costa, F., Dungan, M. A. & Singer, B. S. (2002). Hornblende- and phlogopite-bearing
1020 gabbroic xenoliths from Volcan San Pedro (36 S), Chilean Andes: evidence
1021 for melt and fluid migration and reactions in subduction-related plutons.
1022 *Journal of Petrology* 43, 219–241.

1023 Daczko, N. R., Piazolo, S., Meek, U., Stuart, C. A. & Elliott, V. (2016). Hornblendite
1024 delineates zones of mass transfer through the lower crust. *Scientific Reports*
1025 6, 31369.

1026 Davidson, J., Turner, S., Handley, H., Macpherson, C. & Dosseto, A. (2007).
1027 Amphibole “sponge” in arc crust? *Geology* 35, 787–790.

1028 DeBari, S., Kay, S. M. & Kay, R. W. (1987). Ultramafic xenoliths from Adagdak

1029 volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from
1030 the Moho of an island arc. *Journal of Geology* 95, 329–341.

1031 Dessimoz, M., Müntener, O. & Ulmer, P. (2012). A case for hornblende dominated
1032 fractionation of arc magmas: the Chelan Complex (Washington Cascades).
1033 *Contributions to Mineralogy and Petrology* 163, 567–589.

1034 Ducea, M. N., Saleeby, J. B. & Bergantz, G. (2015). The Architecture, Chemistry, and
1035 Evolution of Continental Magmatic Arcs. *Annual Review of Earth and*
1036 *Planetary Sciences* 43, 299–331.

1037 Foden, J. D. & Green, D. H. (1992). Possible role of amphibole in the origin of
1038 andesite: some experimental and natural evidence. *Contributions to*
1039 *Mineralogy and Petrology* 109, 479–493.

1040 Gaetani, G. A., Grove, T. L. & Bryan, W. B. (1993). The influence of water on the
1041 petrogenesis of subductionrelated igneous rocks. *Nature* 365, 332–334.

1042 Greene, A., DeBari, S., Kelemen, P., Blusztajn, J. & Clift, P. (2006). A Detailed
1043 Geochemical Study of Island Arc Crust: the Talkeetna Arc Section,
1044 South–Central Alaska. *Journal of Petrology* 47.

1045 Grimes, C. B., John, B. E., Cheadle, M. J., Mazdab, F. K., Wooden, J. L., Swapp, S.
1046 & Schwartz, J. J. (2009). On the occurrence, trace element geochemistry, and
1047 crystallization history of zircon from in situ ocean lithosphere. *Contributions*
1048 *to Mineralogy and Petrology* 158, 757–783.

1049 Grove, T., Parman, S., Bowring, S., Price, R. & Baker, M. (2002). The role of an
1050 H_2O –rich fluid component in the generation of primitive basaltic andesites
1051 and andesites from the Mt. Shasta region, N California. *Contributions to*
1052 *Mineralogy and Petrology* 142, 375–396.

1053 Guo, L., Jagoutz, O., Shinevar, W. J. & Zhang, H.–F. (2020). Formation and
1054 composition of the Late Cretaceous Gangdese arc lower crust in southern
1055 Tibet. *Contributions to Mineralogy and Petrology* 175, 58.

1056 Helz, R. T. (1973). Phase relations of basalts in their melting range at $PH_2O = 5$ kb as
1057 a function of oxygen fugacity: part I. Mafic phases. *Journal of Petrology* 14,
1058 249–302.

1059 Henry, H., Kaczmarek, M.-A., Ceuleneer, G., Tilhac, R., Griffin, W. L., O'Reilly, S.
1060 Y., Grégoire, M. & Le Sueur, E. (2021). The microstructure of layered
1061 ultramafic cumulates: Case study of the Bear Creek intrusion, Trinity
1062 ophiolite, California, USA. *Lithos* 388–389, 106047.

1063 Higgins, M. D. (1991). The origin of laminated and massive anorthosite, Sept Iles
1064 layered intrusion, Québec, Canada. *Contributions to Mineralogy and*
1065 *Petrology* 106, 340–354.

1066 Higgins, O., Sheldrake, T. & Caricchi, L. (2022). Machine learning thermobarometry
1067 and chemometry using amphibole and clinopyroxene: a window into the
1068 roots of an arc volcano (Mount Liamuiga, Saint Kitts). *Contributions to*
1069 *Mineralogy and Petrology* 177, 10.

1070 Holloway, J. R. & Burnham, C. W. (1972). Melting relations of basalt with
1071 equilibrium water pressure less than total pressure. *Journal of Petrology* 13,
1072 1–29.

1073 Holness, M. B. (2021). Cumulates and Layered Igneous Rocks. In: Alderton, D. &
1074 Elias, S. A. (eds.) *Encyclopedia of Geology* (Second Edition). Oxford:
1075 Academic Press, 99–112.

1076 Holness, M. B., Morris, C., Vukmanovic, Z. & Morgan, D. J. (2020). Insights Into
1077 Magma Chamber Processes From the Relationship Between Fabric and Grain
1078 Shape in Troctolitic Cumulates. *Frontiers in Earth Science* Volume 8 - 2020.

1079 Hoskin, P. W. O. & Schaltegger, U. (2003). The Composition of Zircon and Igneous
1080 and Metamorphic Petrogenesis. *Reviews in Mineralogy and Geochemistry*
1081 53, 27–62.

1082 Huang, T.-Y., Wang, Q., Wyman, D. A., Ma, L., Tang, G.-J., Zhang, Z.-P. & Dong,
1083 H. (2022). Subduction Erosion Revealed by Late Mesozoic Magmatism in
1084 the Gangdese Arc, South Tibet. *Geophysical Research Letters* 49,
1085 e2021GL097360.

1086 Huang, X.-L., Xu, Y.-G., Lo, C.-H., Wang, R.-C. & Lin, C.-Y. (2007). Exsolution
1087 lamellae in a clinopyroxene megacryst aggregate from Cenozoic basalt,
1088 Leizhou Peninsula, South China: petrography and chemical evolution.
1089 *Contributions to Mineralogy and Petrology* 154, 691–705.

1090 Humphreys, M. C. S., Cooper, G. F., Zhang, J., Loewen, M., Kent, A. J. R.,
1091 Macpherson, C. G. & Davidson, J. P. (2019). Unravelling the complexity of
1092 magma plumbing at Mount St. Helens: a new trace element partitioning
1093 scheme for amphibole. *Contributions to Mineralogy and Petrology* 174, 9.

1094 Irvine, T. N. & Baragar, W. R. A. (1971). A Guide to the Chemical Classification of
1095 the Common Volcanic Rocks. *Canadian Journal of Earth Sciences* 8,
1096 523–548.

1097 Irvine, T. N. (1980). Magmatic density currents and cumulus processes. *American
1098 Journal of Science* 280, 1–58.

1099 Irvine, T. N. (1982). Terminology for Layered Intrusions. *Journal of Petrology* 23,
1100 127–162.

1101 Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. (2004). The
1102 application of laser ablation–inductively coupled plasma–mass spectrometry
1103 to *in situ* U–Pb zircon geochronology. *Chemical Geology* 211, 47–69.

1104 Jagoutz, O. & Kelemen, P. B. (2015). Role of Arc Processes in the Formation of
1105 Continental Crust. *Annual Review of Earth and Planetary Sciences* 43, 363–
1106 404.

1107 Jagoutz, O., Müntener, O., Schmidt, M. W. & Burg, J.-P. (2011). The roles of flux–
1108 and decompression melting and their respective fractionation lines for
1109 continental crust formation: Evidence from the Kohistan arc. *Earth and
1110 Planetary Science Letters* 303, 25–36.

1111 Klaver, M., Blundy, J. D. & Vroon, P. Z. (2018). Generation of arc rhyodacites
1112 through cumulate–melt reactions in a deep crustal hot zone: Evidence from
1113 Nisyros volcano. *Earth and Planetary Science Letters* 497, 169–180.

1114 Krawczynski, M. J., Grove, T. L. & Behrens, H. (2012). Amphibole stability in
1115 primitive arc magmas: effects of temperature, H₂O content, and oxygen
1116 fugacity. *Contributions to Mineralogy and Petrology* 164, 317–339.

1117 Kuno, H. (1968). Differentiation of basalt magmas. In: Hess, H. H. & Poldervaart, A.
1118 A. (eds.) *Basalts: The Poldervaart Treatise on Rocks of Basaltic*
1119 *Composition*. New York: Interscience, 623–688.

1120 Larocque, J. & Canil, D. (2010). The role of amphibole in the evolution of arc
1121 magmas and crust: the case from the Jurassic Bonanza arc section,
1122 Vancouver Island, Canada. *Contributions to Mineralogy and Petrology* 159,
1123 475–492.

1124 Latypov, R. M., Namur, O., Bai, Y., Barnes, S. J., Chistyakova, S., Holness, M. B.,
1125 Iacono-Marziano, G., Kruger, W. A. J., O'Driscoll, B., Smith, W. D.,
1126 Virtanen, V. J., Wang, C. Y., Xing, C. M. & Charlier, B. (2023). Layered
1127 intrusions: fundamentals, novel observations and concepts, and controversial
1128 issues. *Earth-Science Review* 249, 104653.

1129 Leake, B. E., Woolley, A. R., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne,
1130 F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J.,
1131 Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher,
1132 J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. &
1133 Youzhi, G. (1997). Nomenclature of amphiboles – Report of the
1134 subcommittee on amphiboles of the International Mineralogical Association
1135 Commission on New Minerals and Mineral Names. *European Journal of
1136 Mineralogy* 9, 623–651.

1137 Lee, C.-T. A., Cheng, X. & Horodyskyj, U. (2006). The development and refinement
1138 of continental arcs by primary basaltic magmatism, garnet pyroxenite
1139 accumulation, basaltic recharge and delamination: insights from the Sierra
1140 Nevada, California. *Contributions to Mineralogy and Petrology* 151, 222–
1141 242.

1142 Li, W. & Tan, K. (1998). Signal mineral separate method and its significance in
1143 geotectonics: taking apatite and zircon as examples. *Geotectonica et
1144 Metallogenica* 22, 83–86.

1145 Li, X. H., Qi, C. S., Liu, Y., Liang, X. R., Tu, X. L., Xie, L. W. & Yang, Y. H.
1146 (2005). Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the
1147 western margin of the Yangtze Block: New constraints from Hf isotopes and
1148 Fe/Mn ratios. *Chinese Science Bulletin* 50, 2481–2486.

1149 Li, X. H., Li, Z.-X., Wingate, M. T. D., Chung, S.-L., Liu, Y., Lin, G.-C. & Li,
1150 W.-X. (2006). Geochemistry of the 755 Ma Mundine Well dyke swarm,
1151 northwestern Australia: Part of a Neoproterozoic mantle superplume beneath
1152 Rodinia? *Precambrian Research* 146, 1–15.

1153 Li, X.-H., Liu, D., Sun, M., Li, W.-X., Liang, X. & Liu, Y. (2004). Precise Sm–Nd
1154 and U–Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit
1155 and its host granite, SE China. *Geological Magazine – GEOL MAG* 141,
1156 225–231.

1157 Lissenberg, C. J. & MacLeod, C. J. (2016). A reactive porous flow control on mid-
1158 ocean ridge magmatic evolution. *Journal of Petrology*, 57(11–12), 2195–
1159 2220.

1160 Liu, Y.-S., Gao, S., Hu, Z.-C., Gao, C.-G., Zong, K.-Q. & Wang, D.-B. (2009).

1161 Continental and Oceanic Crust Recycling–induced Melt–Peridotite
1162 Interactions in the Trans–North China Orogen: U–Pb Dating, Hf isotopes and
1163 trace elements in zircons from mantle xenoliths. *Journal of Petrology* 51,
1164 537–571.

1165 Locock, A. J. (2014). An Excel spreadsheet to classify chemical analyses of
1166 amphiboles following the IMA 2012 recommendations. *Computers &*
1167 *Geosciences* 62, 1–11.

1168 Ludwig, K. R. (2003). User's Manual for Isoplot/Ex rev. 3.00: A Geochronological
1169 Toolkit for Microsoft Excel. *Berkeley Geochronology Center Spec. Publ.* 4.

1170 Luo, B. J., Ruan, B., Zhang, H. F., Song, J. L., Xu, W. C., Yang, H., et al. (2024). The
1171 role of polybaric crystallization in the construction of the Gangdese
1172 continental magmatic arc, South Tibet. *Earth and Planetary Science Letters*,
1173 628, 118580.

1174 Ma, L., Wang, Q., Li, Z.–X., Wyman, D. A., Jiang, Z.–Q., Yang, J.–H., Gou, G.–N.
1175 & Guo, H.–F. (2013). Early Late Cretaceous (ca. 93 Ma) norites and
1176 hornblendites in the Milin area, eastern Gangdese: Lithosphere–
1177 asthenosphere interaction during slab roll–back and an insight into early Late
1178 Cretaceous (ca. 100–80 Ma) magmatic “flare–up” in southern Lhasa (Tibet).
1179 *Lithos* 172–173, 17–30.

1180 McBirney, A. R. & Noyes, R. M. (1979). Crystallization and Layering of the
1181 Skaergaard Intrusion*. *Journal of Petrology* 20, 487–554.

1182 McBirney. (2007). Igneous Petrology. 3rd ed. Boston: Jones and Bartlett Publisher.

1183 McDermid, I. R. C., Aitchison, J. C., Davis, A. M., Harrison, T. M. & Grove, M.
1184 (2002). The Zedong terrane: a Late Jurassic intra–oceanic magmatic arc
1185 within the Yarlung–Tsangpo suture zone, southeastern Tibet. *Chemical*
1186 *Geology* 187, 267–277.

1187 Médard, E. & Grove, T. L. (2008). The effect of H₂O on the olivine liquidus of
1188 basaltic melts: experiments and thermodynamic models. *Contributions to*
1189 *Mineralogy and Petrology* 155, 417–432.

1190 Meurer, W. P. & Meurer, M. E. S. (2006). Using apatite to dispel the “trapped liquid”
1191 concept and to understand the loss of interstitial liquid by compaction in
1192 mafic cumulates: an example from the Stillwater complex, Montana.
1193 *Contributions to Mineralogy and Petrology* 151, 187–201.

1194 Michard, A. (1989). Rare earth element systematics in hydrothermal fluids.
1195 *Geochimica et Cosmochimica Acta* 53, 745–750.

1196 Michard, A., Albarède, F., Michard, G., Minster, J. F. & Charlou, J. L. (1983). Rare–
1197 earth elements and uranium in high-temperature solutions from East Pacific
1198 Rise hydrothermal vent field (13 °N). *Nature* 303, 795–797.

1199 Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system.
1200 *Earth–Science Reviews* 37, 215–224.

1201 Morimoto, N. (1988). Nomenclature of Pyroxenes. *Mineralogy and Petrology* 39,
1202 55–76.

1203 Müntener, O. & Ulmer, P. (2018). Arc crust formation and differentiation constrained
1204 by experimental petrology. *American Journal of Science* 318, 64–89.

1205 Murphy, J. B. (2013). Appinite suites: A record of the role of water in the genesis,
1206 transport, emplacement and crystallization of magma. *Earth–Science
1207 Reviews* 119, 35–59.

1208 Namur, O., Charlier, B., Pirard, C., Hermann, J., Liégeois, J.-P. & Auwera, J. V.
1209 (2011). Anorthosite formation by plagioclase flotation in ferrobasalt and
1210 implications for the lunar crust. *Geochimica et Cosmochimica Acta* 75, 4998–
1211 5018.

1212 Nandedkar, R. H., Ulmer, P. & Müntener, O. (2014). Fractional crystallization of
1213 primitive, hydrous arc magmas: an experimental study at 0.7 GPa.
1214 *Contributions to Mineralogy and Petrology* 167, 1015.

1215 Nixon, G. T., Manor, M. J., Scoates, J. S., Spence, D. W. & Milidragovic, D. (2024).
1216 Mineralogical constraints on magma storage conditions in ultramafic arc
1217 cumulates and the nature and role of cryptic fugitive melts: Tulameen
1218 Alaskan-type intrusion, North American Cordillera. *Contributions to
1219 Mineralogy and Petrology* 179, 103.

1220 Oberti, R., Vannucci, R., Zanetti, A., Tiepolo, M. & Brumm, R. C. (2000). A crystal
1221 chemical re-evaluation of amphibole/melt and amphibole/clinopyroxene DTi
1222 values in petrogenetic studies. *American Mineralogist* 85, 407–419.

1223 Pan, G. T., Mo, X. X., Hou, Z. Q., Zhu, D. C., Wang, L. Q., Li, G. M., Zhao, Z. D.,
1224 Geng, Q. R. & Liao, Z. L. (2006). Spatial–temporal framework of the
1225 Gangdese Orogenic Belt and its evolution. *Acta Petrologica Sinica* 22,
1226 521–533.

1227 Peacock, S. M., Rushmer, T. & Thompson, A. B. (1994). Partial melting of
1228 subducting oceanic crust. *Earth and Planetary Science Letters* 121, 227–244.

1229 Perinelli, C., Gaeta, M. & Armienti, P. (2017). Cumulate xenoliths from Mt.
1230 Overlord, northern Victoria Land, Antarctica: a window into high pressure
1231 storage and differentiation of mantle derived basalts. *Lithos* 268–271, 225–
1232 239.

1233 Prouteau, G. & Scaillet, B. (2003). Experimental Constraints on the Origin of the
1234 1991 Pinatubo Dacite. *Journal of Petrology* 44, 2203–2241.

1235 Prowatke, S. & Klemme, S. (2006). Trace element partitioning between apatite and
1236 silicate melts. *Geochimica et Cosmochimica Acta* 70, 4513–4527.

1237 Putirka, K. (2016). Special Collection: Rates and Depths of Magma Ascent on Earth:
1238 Amphibole thermometers and barometers for igneous systems and some
1239 implications for eruption mechanisms of felsic magmas at arc volcanoes.
1240 *American Mineralogist* 101, 841–858.

1241 Putirka, K. D. (2008). Thermometers and Barometers for Volcanic Systems. *Reviews
1242 in Mineralogy and Geochemistry* 69, 61–120.

1243 Rapp, R. P. & Watson, E. B. (1995). Dehydration Melting of Metabasalt at 8–32 kbar:
1244 Implications for Continental Growth and Crust–Mantle Recycling. *Journal of
1245 Petrology* 36, 891–931.

1246 Ridolfi, F. (2021). Amp–TB2: An Updated Model for Calcic Amphibole
1247 Thermobarometry. *Minerals* 11:324.

1248 Ridolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of

1249 amphibole in calc-alkaline magmas: an overview, new thermobarometric
1250 formulations and application to subduction-related volcanoes. *Contributions*
1251 to *Mineralogy and Petrology* 160, 45-66.

1252 Rollinson, H. (1993). *Using Geochemical Data: Evaluation, Presentation,*
1253 *Interpretation*, Reading, MA, Addison-Wesley Longman, p. 352.

1254 Searle, M. P., Windley, B. F., Coward, M. P., Cooper, D. J. W., Rex, A. J., Rex, D.,
1255 Tingdong, L. I., Xuchang, X., Jan, M. Q., Thakur, V. C. & Kumar, S. (1987).
1256 The closing of Tethys and the tectonics of the Himalaya. *GSA Bulletin* 98,
1257 678-701.

1258 Sen, C. & Dunn, T. (1994). Dehydration melting of a basaltic composition
1259 amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites.
1260 *Contributions to Mineralogy and Petrology* 117, 394-409.

1261 Shimizu, K., Liang, Y., Sun, C., Jackson, C. R. M. & Saal, A. E. (2017).
1262 Parameterized lattice strain models for REE partitioning between amphibole
1263 and silicate melt. *American Mineralogist* 102, 2254-2267.

1264 Sisson, T. W. & Grove, T. L. (1993). Experimental investigations of the role of H₂O
1265 in calc-alkaline differentiation and subduction zone magmatism.
1266 *Contributions to Mineralogy and Petrology* 113, 143-166.

1267 Sisson, T. W., Ratajeski, K., Hankins, W. B. & Glazner, A. F. (2005). Voluminous
1268 granitic magmas from common basaltic sources. *Contributions to Mineralogy*
1269 and *Petrology* 148, 635-661.

1270 Sláma, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M.,
1271 Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger,
1272 U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. (2008). Plesovice zircon
1273 - a new natural reference material for U-Pb and Hf isotopic microanalysis.
1274 *Chemical Geology* 249, 1-35.

1275 Smith, D. J. (2014). Clinopyroxene precursors to amphibole sponge in arc crust.
1276 *Nature Communications* 5, 4329.

1277 Sosa, E. S., Bucholz, C. E., Barickman, M. H., VanTongeren, J. A., Setera, J. B., Kay,
1278 S. M., & Kay, R. W. (2023). Petrology and geochemistry of Adak Island
1279 plutonic xenoliths: Implications for primitive magma generation and crustal
1280 differentiation in the Aleutian Island arc. *Journal of Petrology*, 64(10),
1281 egad073.

1282 Sun, S. S. & McDonough, W. (1989). Chemical and isotopic systematics of oceanic
1283 basalts: Implications for mantle composition and processes.

1284 Tiepolo, M., Langone, A., Morishita, T. & Yuhara, M. (2012). On the Recycling of
1285 Amphibole-rich Ultramafic Intrusive Rocks in the Arc Crust: Evidence from
1286 Shikanoshima Island (Kyushu, Japan). *Journal of Petrology* 53, 1255-1285.

1287 Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R. & Foley, S. F. (2007).
1288 Trace-Element Partitioning Between Amphibole and Silicate Melt. *Reviews*
1289 in *Mineralogy and Geochemistry* 67, 417-452.

1290 Tiepolo, M., Tribuzio, R. & Langone, A. (2011). High-Mg Andesite Petrogenesis by
1291 Amphibole Crystallization and Ultramafic Crust Assimilation: Evidence from
1292 Adamello Hornblendites (Central Alps, Italy). *Journal of Petrology* 52,

1293 1011–1045.

1294 1294 Ulmer, P. (2007). Differentiation of mantle-derived calc-alkaline magmas at mid to
1295 lower crustal levels: experimental and petrologic constraints. *Periodico Di
1296 Mineralogia* 76, 309–325.

1297 1297 Ulmer, P., Kaegi, R. & Müntener, O. (2018). Experimentally Derived Intermediate to
1298 Silica-rich Arc Magmas by Fractional and Equilibrium Crystallization at
1299 1.0 GPa: an Evaluation of Phase Relationships, Compositions, Liquid Lines
1300 of Descent and Oxygen Fugacity. *Journal of Petrology* 59, 11–58.

1301 1301 Urann, B. M., Le Roux, V., Jagoutz, O., Müntener, O., Behn, M. D. & Chin, E. J.
1302 (2022). High water content of arc magmas recorded in cumulates from
1303 subduction zone lower crust. *Nature Geoscience* 15, 501–508.

1304 1304 Velázquez Santana, L. C., McLeod, C. L., Blakemore, D., Shaulis, B. & Hill, T.
1305 (2020). Bolivian hornblendite cumulates: Insights into the depths of Central
1306 Andean arc magmatic systems. *Lithos* 370–371, 105618.

1307 1307 Wager, L. R. & Brown, G. M. (1968). *Layered Igneous Rocks*. Oliver & Boyd,
1308 Edinburgh & London, Edinburgh, 588 pp.

1309 1309 Wager, L. R., Brown, G. M. & Wadsworth, W. J. (1960). Types of Igneous
1310 Cumulates. *Journal of Petrology* 1, 73–85.

1311 1311 Walker, B. A., Bergantz, G. W., Otamendi, J. E., Ducea, M. N. & Cristofolini, E. A.
1312 (2015). A MASH zone revealed: The mafic complex of the Sierra Valle
1313 Fétil. *Journal of Petrology* 56, 1863–1896.

1314 1314 Wang, J., Wang, Q., Dan, W., Yang, J.–H., Yang, Z.–Y., Sun, P., Qi, Y. & Hu, W.–L.
1315 (2019). The role of clinopyroxene in amphibole fractionation of arc magmas:
1316 Evidence from mafic intrusive rocks within the Gangdese arc, southern Tibet.
1317 *Lithos* 338–339, 174–188.

1318 1318 Wang, J., Wang, Q., Sun, P., Dan, W., Kerr, A. C., Zhang, Z.–P., Zhang, L., Wei, G.,
1319 Dong, H., Hu, W.–L., Yang, Z.–Y., Zhang, X.–Z. & Qi, Y. (2023). Crustal
1320 Growth Identified by High– δ 18O Zircon and Olivine: A Perspective from
1321 Ultramafic Arc Cumulates in Southern Tibet. *Journal of Petrology* 64,
1322 egad052.

1323 1323 Wang, L., Zeng, L., Gao Li, E., Tang, S. & Hu, G. (2012). Remnant Jurassic
1324 intra–oceanic arc system in Southern Tibet: Geochemistry and tectonic
1325 implications. *Acta Petrologica Sinica* 28, 1741–1754.

1326 1326 Wang, X., Hou, T., Wang, M., Zhang, C., Zhang, Z., Pan, R., Marxer, F. & Zhang, H.
1327 (2021). A new clinopyroxene thermobarometer for mafic to intermediate
1328 magmatic systems. *Eur. J. Mineral.* 33, 621–637.

1329 1329 Watson, E. B. & Green, T. H. (1981). Apatite liquid partitioncoefficients for the rare–
1330 earth elements and strontium. *Earth and Planetary Science Letters* 56, 405–
1331 421.

1332 1332 Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W., Barling, J., 2005. High-precision
1333 Pb–Sr–Nd–Hf isotopic characterization of USGS BHVO-1 and BHVO-2
1334 reference materials. *Geochem. Geophys. Geosyst.* 6, 1–10.

1335 1335 Xie, L.–W., Zhang, Y.–B., Zhang, H.–H., Sun, J.–F. & Wu, F.–Y. (2008). In situ
1336 simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in

1337 zircon and baddeleyite. *Chinese Science Bulletin* 53, 1565–1573.

1338 Xu, W., Zhu, D.-C., Wang, Q., Weinberg, R. F., Wang, R., Li, S.-M., Zhang, L.-L.
 1339 & Zhao, Z.-D. (2019). Constructing the Early Mesozoic Gangdese crust in
 1340 Southern Tibet by hornblende-dominated magmatic differentiation. *Journal*
 1341 of *Petrology* 60, 515–552.

1342 Xu, W., Zhu, D.-C., Wang, Q., Weinberg, R. F., Wang, R., Li, S.-M., Zhang, L.-L.
 1343 & Zhao, Z.-D. (2021). Cumulate mush hybridization by melt invasion:
 1344 Evidence from compositionally diverse amphiboles in ultramafic–mafic arc
 1345 cumulates within the eastern Gangdese Batholith, Southern Tibet. *Journal of*
 1346 *Petrology* 62(11), 1–17.

1347 Ye, Z., Tang, M. & Chu, X. (2025). Extreme negative Eu anomalies in peraluminous
 1348 granites of South China: implications for extensive fluid extraction.
 1349 *Geochimica et Cosmochimica Acta*, In Press.

1350 Yoder, H. S. & Tilley, C. E. (1962). Origin of basalt magmas: an experimental study
 1351 of natural and synthetic rock systems. *Journal of Petrology* 3, 342–532.

1352 Zhang, J., Humphreys, M. C. S., Cooper, G. F., Davidson, J. P. & Macpherson, C. G.
 1353 (2017). Magma mush chemistry at subduction zones, revealed by new melt
 1354 major element inversion from calcic amphiboles. *American Mineralogist* 102,
 1355 1353–1367.

1356 Zhang, L., Ren, Z.-Y., Xia, X.-P., Li, J. & Zhang, Z.-F. (2015). IsotopeMaker: A
 1357 Matlab program for isotopic data reduction. *International Journal of Mass*
 1358 *Spectrometry* 392, 118–124.

1359 Zhang, L., Ren, Z.-Y., Xia, X.-P., Yang, Q., Hong, L.-B. & Wu, D. (2019). In situ
 1360 determination of trace elements in melt inclusions using laser ablation
 1361 inductively coupled plasma sector field mass spectrometry. *Rapid*
 1362 *Communications in Mass Spectrometry* 33, 361–370.

1363 Zhang, L.-L., Liu, C.-Z., Wu, F.-Y., Ji, W.-Q. & Wang, J.-G. (2014). Zedong
 1364 terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the
 1365 Asian active continental margin? *Journal of Asian Earth Sciences* 80, 34–55.

1366 Zhu, D.-C., Wang, Q., Weinberg, R. F., Cawood, P. A., Chung, S.-L., Zheng, Y.-F.,
 1367 Zhao, Z., Hou, Z.-Q. & Mo, X.-X. (2022). Interplay between oceanic
 1368 subduction and continental collision in building continental crust. *Nature*
 1369 *Communications* 13, 7141.

1370 Zhu, D.-C., Wang, Q., Weinberg, R. F., Cawood, P. A., Zhao, Z., Hou, Z.-Q. & Mo,
 1371 X.-X. (2023). Continental crustal growth processes recorded in the Gangdese
 1372 Batholith, Southern Tibet. *Annual Review of Earth and Planetary Sciences*
 1373 51, 155–188.

1374 Zhu, D.-C., Wang, Q., Zhao, Z.-D., Niu, Y.-L., Hou, Z.-Q., Pan, G.-T. & Mo,
 1375 X.-X. (2018). Magmatic origin of continental arcs and continental crust
 1376 formation. *Earth Science Frontiers* 25, 67–77.

1377 Zhu, D.-C., Zhao, Z.-D., Niu, Y., Mo, X.-X., Chung, S.-L., Hou, Z.-Q., Wang,
 1378 L.-Q. & Wu, F.-Y. (2011). The Lhasa Terrane: Record of a microcontinent
 1379 and its histories of drift and growth. *Earth and Planetary Science Letters* 301,
 1380 241–255.

1381 Zhu, R.-Z., Smith, D. J., Wang, F., Qin, J.-F., Zhang, C., Zhao, S., Liu, M., Zhang,
1382 F., Zhu, Y. & Lai, S.-C. (2024). Hornblendites as a record of differentiation,
1383 metasomatism and magma fertility in arc crust. *Chemical Geology* 650,
1384 121974.

1385

1386 **Figure captions**

1387 **Figure 1.** A geological map of south Tibet showing the tectonic terranes and the location
1388 of the Zedong terrane. (a) Tectonic framework of the Tibetan Plateau. Main suture zones:
1389 IYZSZ, Indus-Yarlung Zangbo suture zone; BNSZ, Bangong-Nujiang suture zone;
1390 LSSZ, Longmu Tso-Shuanghu suture zone; JSZ, Jinshajiang suture zone; AKSZ,
1391 A'nemaqin-Kunlun suture zone. (b) The distribution of the Gangdese Batholith and
1392 associated volcanic successions (modified after Zhu et al., 2019). LMF, Luobadui-
1393 Milashan Fault; SNMZ, Shiquan River-Nam Tso Melange Zone. (c) Simplified sketch
1394 map of the central-eastern Gangdese Batholith showing the locations of the Zedong
1395 terrane (modified from the latest Zedong 1:50000 geological mapping (2019)).

1396

1397 **Figure 2.** Field photographs of typical mafic-ultramafic intrusive rocks from the
1398 Zedong terrane. (a) and (b) Field relationship between Cpx hornblendite and two
1399 Groups of Hb gabbro. (c) Coarse-grained and (d) medium- to fine-grained Cpx
1400 hornblendite. (e) Typical appearance of Group I Hb gabbro. (f) Typical appearance of
1401 Group II Hb gabbro.

1402

1403 **Figure 3.** Representative photomicrographs of mafic-ultramafic intrusive rocks from
1404 the Zedong terrane. (a-c) Cpx hornblendite. (d-f) Group I Hb gabbro. Note that (b) and
1405 (f) are under cross-polarized light and others are under plane-polarized light. C-Amp,

1406 cumulus amphibole; p-Amp, poikilitic amphibole; i-Amp, interstitial amphibole; b-
1407 Amp, brown amphibole; g-Amp, green amphibole; c-Cpx, cumulus clinopyroxene; r-
1408 Cpx, relict clinopyroxene; Mag, magnetite; Ap, apatite; Pl, plagioclase; Qz, quartz. (See
1409 text for detailed descriptions)

1410

1411 **Figure 4.** (a-c) Representative photomicrographs the Group II Hb gabbro. (b)
1412 corresponds to the region enclosed by the yellow box in (a). Note that (b) is
1413 Backscattered electron (BSE) image. (d) BSE image and EPMA elemental X-ray maps
1414 of one selected representative amphibole containing clinopyroxene resorbed inclusions.

1415

1416 **Figure 5.** Whole-rock major and trace element compositions of the Zedong ultramafic-
1417 mafic cumulate rocks and coeval non-cumulate rocks. (a) $\text{Na}_2\text{O} + \text{K}_2\text{O}$ (wt. %) vs SiO_2
1418 (wt. %) (TAS) diagram (Middlemost, 1994). (b) AFM diagram with discriminatory lines
1419 of Irvine & Baragar (1971) and Kuno (1968) classifying the calc-alkaline and tholeiitic
1420 magmatic series. (c) Whole-rock MgO (wt. %) vs. SiO_2 (wt. %) plot. (d) Whole-rock
1421 $\text{Mg}\#$ vs. SiO_2 (wt. %) plot (modified after Zhu et al. (2022)). Z-shaped trend of Kohistan
1422 (dashed red line) and Talkeetna (dashed green line) are according to Jagoutz et al. (2011)
1423 and Müntener & Ulmer (2018). (e) Whole-rock $(\text{Dy}/\text{Yb})_{\text{N}}$ vs. SiO_2 (wt. %) plot
1424 (subscript N denotes normalized to the chondrite values of Sun & McDonough (1989)).

1425 (f) Whole-rock total Fe_2O_3 (wt. %) vs. SiO_2 (wt. %) plot. $\text{Mg}\# = \text{molar Mg}/(\text{Mg}+\text{Fe}^{2+})$.
1426 Data for cumulate rocks, volcanic rocks and granitic rocks from Huang et al. (2022),
1427 Wang et al. (2012) and Zhang et al. (2014). Error bars in (c), (d), and (f) show

1428 uncertainty of major element compositions from calculated melt equilibrium with
 1429 amphibole (datas see Supplementary Table S8).

1430

1431 **Figure 6.** Chondrite-normalized REE patterns and primitive-mantle-normalized trace
 1432 element patterns for the mafic-ultramafic intrusive rocks from the Zedong terrane.
 1433 Chondrite and primitive mantle values from Sun & McDonough (1989). Data for
 1434 cumulate rocks, volcanic rocks and granitic rocks from Zhang et al. (2014).

1435

1436 **Figure 7.** Mineral compositions of representative amphibole, clinopyroxene and
 1437 plagioclase for the mafic-ultramafic intrusive rocks from the Zedong terrane. (a) and (b)
 1438 Classification of amphibole according to the nomenclature of Leake et al. (1997) as
 1439 follows: $Ca_B \geq 1.50$; $(Na+K)_A \geq 0.50$; $Ti < 0.50$ and $Ca_B \geq 1.50$; $(Na+K)_A <$
 1440 0.50 ; $Ca_A < 0.50$, respectively. (c) Data for clinopyroxene plotted on the enstatite-
 1441 ferrosilite-diopside-hedenbergite quadrilateral of Morimoto (1988). (d) Classification
 1442 of plagioclase.

1443

1444 **Figure 8.** SiO_2 , MgO , TiO_2 and Al_2O_3 variations vs. Mg# of amphibole. Mg#
 1445 = $Mg/(Mg+Fe^{Tot})$.

1446

1447 **Figure 9.** Chondrite-normalized rare earth element patterns for amphibole (a–c),
 1448 clinopyroxene (d), plagioclase (e), and liquids in equilibrium with cumulus amphibole
 1449 (f). Normalization values are from Sun & McDonough (1989).

1450

1451

1452 **Figure 10.** (a) The variations in Mg# and SiO₂ (wt. %) of the calculated melts in
1453 equilibrium with amphibole. (b) The variations in equilibration temperatures and SiO₂
1454 (wt. %) of the calculated melts in equilibrium with amphibole. The melt SiO₂ contents
1455 in equilibrium with amphibole and clinopyroxene were calculated using P16 (Putirka,
1456 2016) and H21 (Higgins et al., 2021), respectively. The melt Mg# in equilibrium with
1457 amphibole and clinopyroxene were calculated following the approach of Putirka (2016),
1458 and the Fe–Mg exchange coefficient $K_D(\text{Fe–Mg})^{\text{Apm/Cpx–liquid}}$ values in the range $0.28 \pm$
1459 0.11 and 0.28 ± 0.08 are regarded to be in chemical equilibrium. Error bars show
1460 uncertainty of major element compositions from calculated melt equilibrium with
1461 amphibole.

1462

1463 **Figure 11.** EBSD results of the Cpx hornblendite (sample 09TB01-2). (a) EBSD-
1464 derived phase map showing the range of microstructures observed in the Cpx
1465 hornblendite; (b) Histogram of the grain sizes (hornblende and clinopyroxene)
1466 calculated using EBSD data; (c) Crystallographic preferred orientation of hornblende
1467 and clinopyroxene in the Cpx hornblendite.

1468

1469

1470 **Figure 12.** Hygrometry and oxygen fugacity results for amphiboles from the studied
1471 ultramafic-mafic cumulate of the Zedong intrusion. Calculated following the approach

1472 of Ridolfi et al. (2010) and Putirka (2016).

1473

1474 **Figure 13.** FeO^T/MgO vs. SiO_2 for equilibrium melts of Amp from hornblendite and
1475 Group II gabbro (modified after Klaver et al. (2018)). Calculating following the
1476 approach of Putirka (2016) and Humphreys et al. (2019). Error bars show uncertainty
1477 of major element compositions from calculated melt equilibrium with amphibole.

1478

1479 **Figure 14.** Geochemical models reproducing the variations in Dy/Yb and La/Sm ratios
1480 of the calculated melts in equilibrium with amphibole in the Cpx hornblendite and
1481 Group II Hb gabbro. The AFC1 and AFC2 models assume the following peritectic
1482 reactions: $\text{Melt}_1 + \text{Cpx} = \text{Melt}_2 + 0.75 \text{ Brown Amp} + 0.20 \text{ Pl} + 0.05 \text{ Ap}$ ($r = 0.4$); Melt_2
1483 + Brown Amp = $\text{Melt}_3 + 0.9 \text{ Green Amp} + 0.095 \text{ Ap} + 0.005 \text{ Zrn}$ ($r = 0.2 - 0.4$). REE
1484 partition coefficients for amphibole are calculated using the parameterized models
1485 developed by Humphreys et al. (2019). Melt_1 is the most primitive basalt reported in
1486 the Zedong area (data from Zhang et al. (2014)). The proportions of the assimilated and
1487 crystallized minerals are based on the modal mineral proportions in thin sections. The
1488 pure FC1 and FC2 models correspond exactly with the AFC1 and AFC2 models with r
1489 = 0, respectively. Nodes on the modeled curves indicate 10% changes in the fraction of
1490 melt remaining.

1491

1492 **Figure 15.** (a) Formation of (ultra)mafic cumulates in the middle-lower crust
1493 dominated by fractional crystallization of primitive arc magma during oceanic

1494 subduction. (b) Schematic diagram of the middle-lower crustal magma reservoir and
1495 the hornblende-rich cumulates with textural and chemical heterogeneities generated at
1496 different locations. (c) Schematic petrological model for the generation of the Zedong
1497 hornblende-rich ultramafic–mafic intrusive rocks.

1498

1499 **Figure S1.** LA-ICP-MS zircon U-Pb concordia diagrams for the Hb gabbro sample
1500 09TB143 from the Zedong terrane along with representative zircon CL images. Red
1501 circles denote the analytical spots used for U-Pb dating.

1502

1503 **Figure S2.** Variation diagrams of major elements (wt. %) and selected trace elements
1504 ($\mu\text{g/g}$) vs SiO_2 (wt. %) for the mafic-ultramafic intrusive rocks from the Zedong terrane.
1505 N denotes normalized to the chondrite values of Sun & McDonough (1989).

1506

1507 **Figure S3.** Comparison of equilibration temperatures (a) and pressure (b) for amphibole
1508 and clinopyroxene in the Cpx hornblendite and two groups of gabbro as determined by
1509 the different amphibole- and clinopyroxene-only thermobarometers used in this study.
1510 Error bars indicate the $1\sigma_{\text{E}}$ uncertainties for the models. R21, Ridolfi, 2021; P08,
1511 Putirka, 2008; K12, Krawczynski et al., 2012; P16, Putirka 2016; H22, Higgins et al.
1512 2022; W21, Wang et al., 2021.

1513

1514 **Figure S4.** Comparison between the amphibole compositions from this study and
1515 experimental petrological data on amphibole composition (experimental conditions:

1516 850–1000 °C, starting material: hydrous basalt; data from Putirka (2016) and references

1517 therein).

1518

1519 **Figure S5.** Histograms of TiO₂ and Th contents in amphibole and clinopyroxene from

1520 the Zedong mafic-ultramafic rocks.

1521

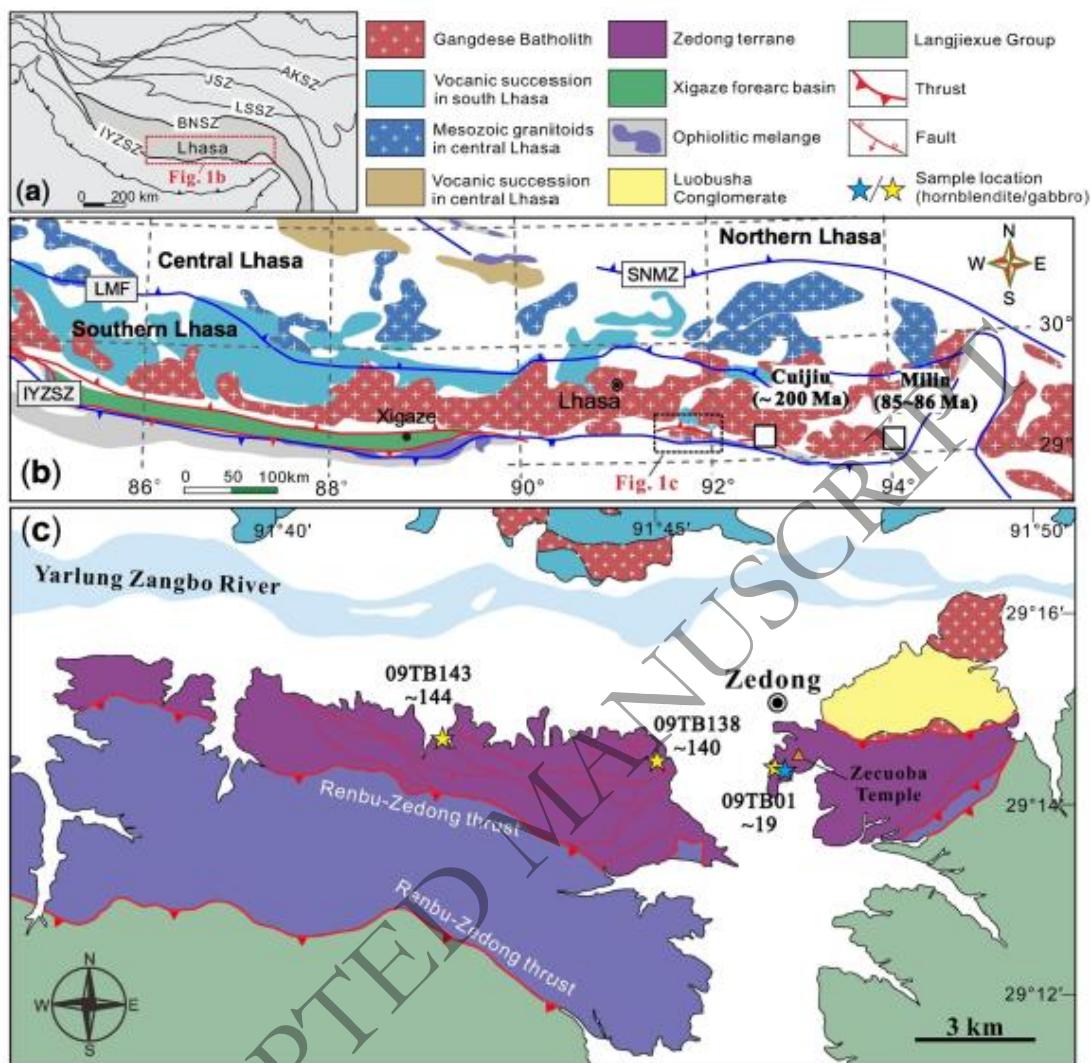
1522 **Figure S6.** (a) δEu vs. La/Sm of amphibole. (b) δEu vs. La/Sm of the calculated melts

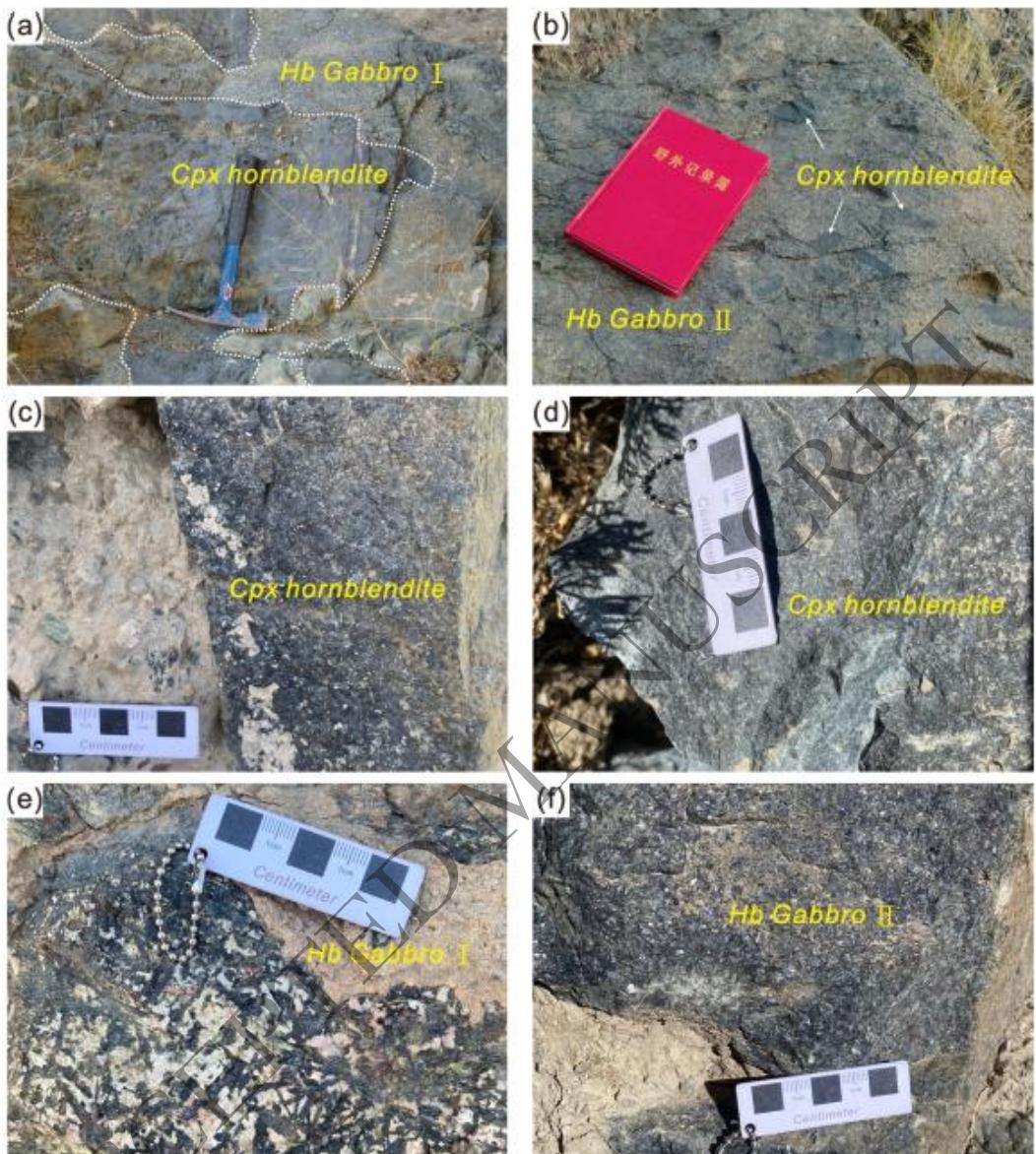
1523 in equilibrium with amphibole. The melt REE contents in equilibrium with amphibole

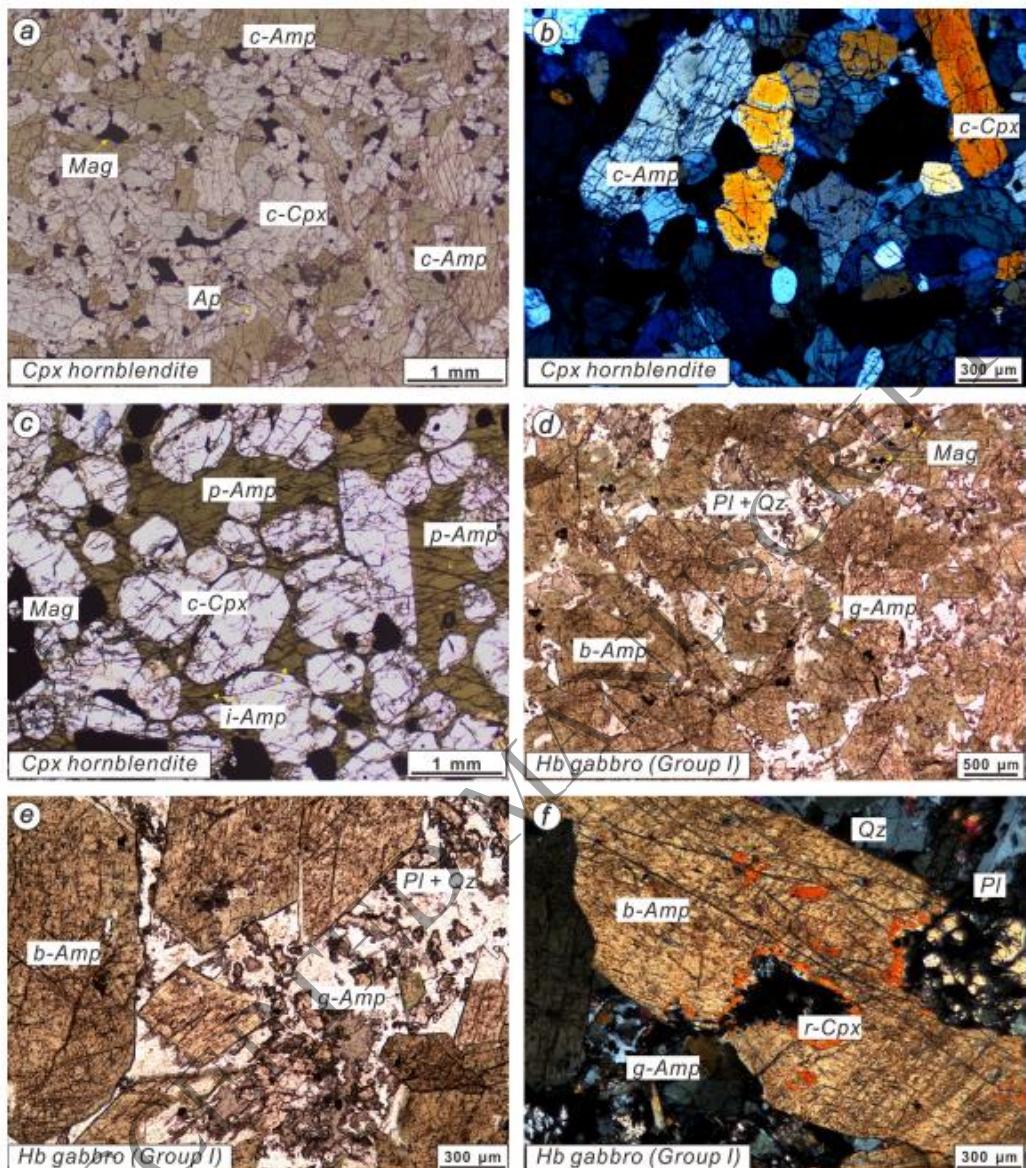
1524 were calculated using Humphreys et al. (2019).

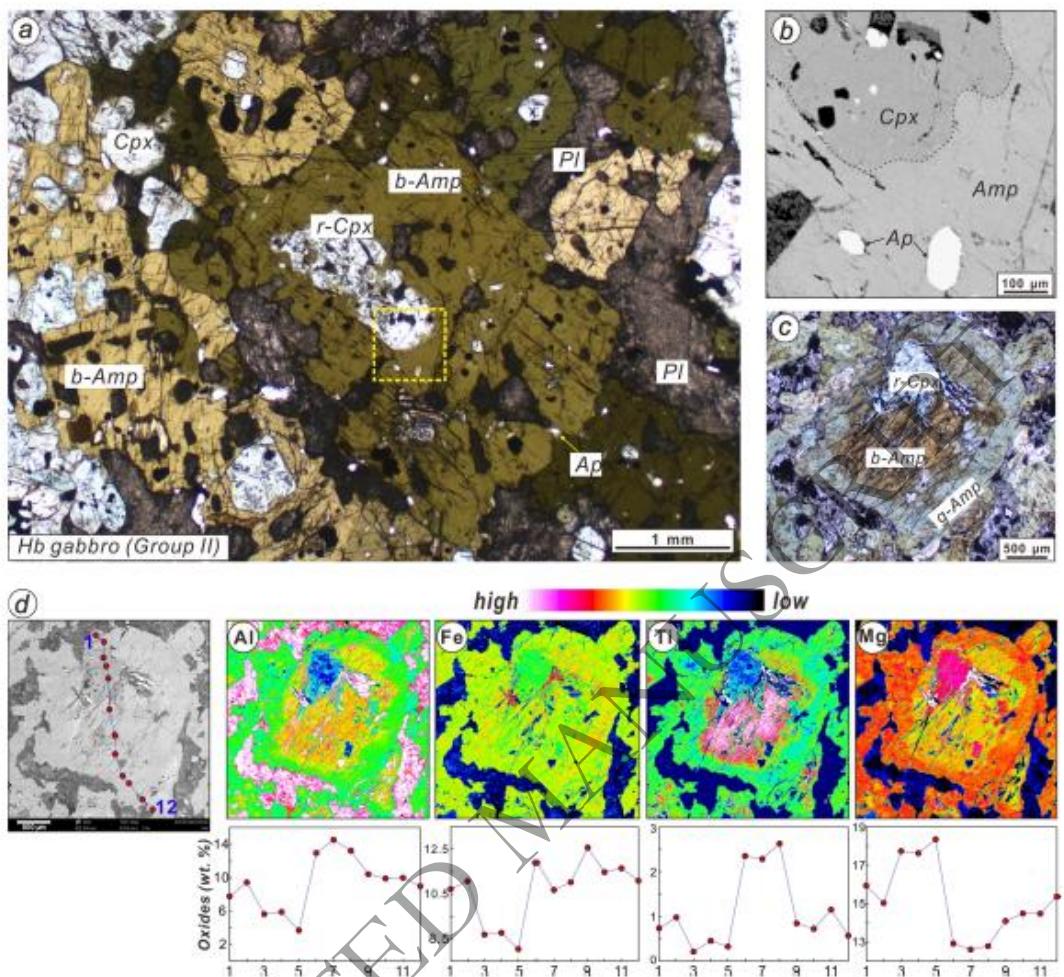
1525

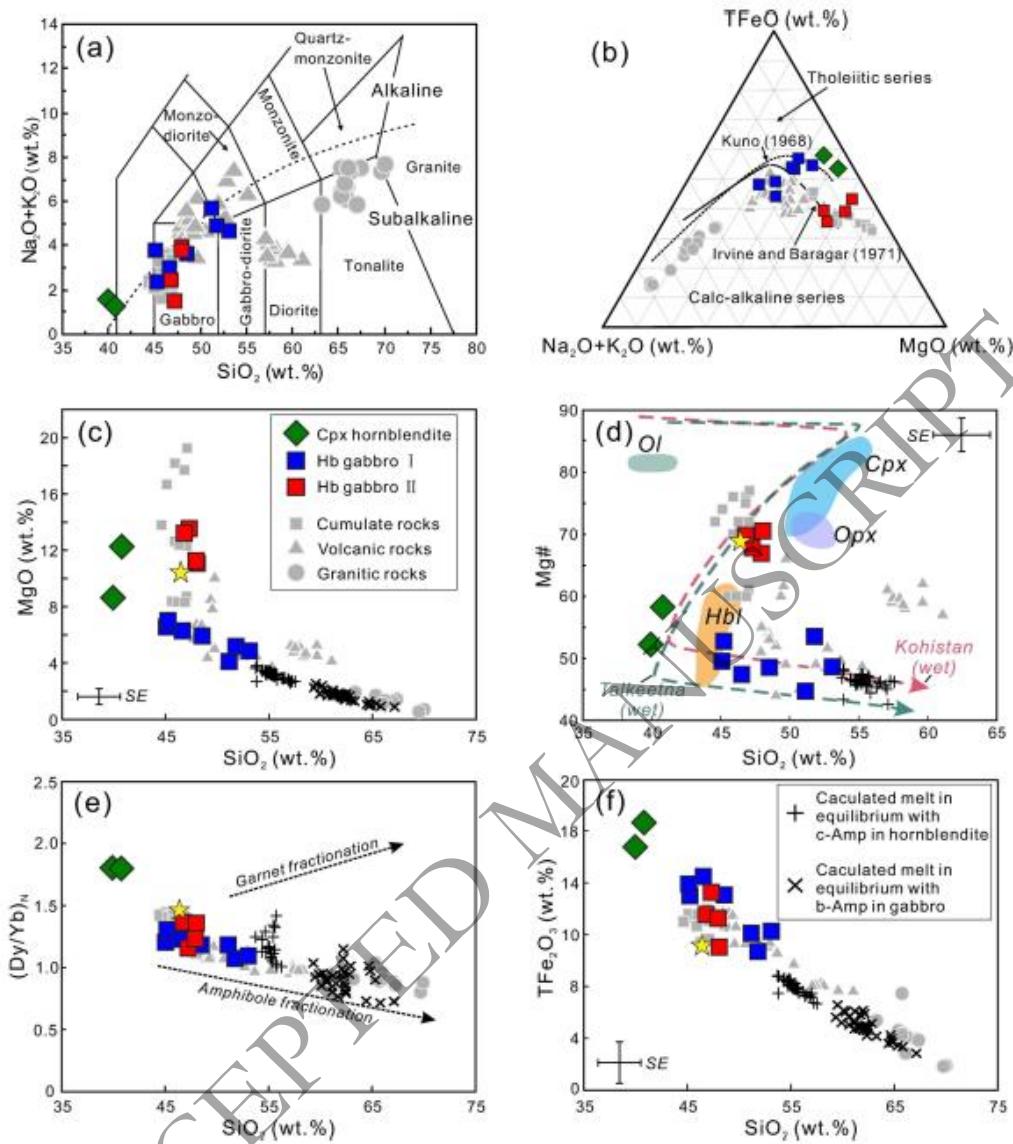
1526 **Figure S7.** Variation of whole-rock (⁸⁷Sr/⁸⁶Sr)_i vs. whole-rock ε_{Nd}(t) (a) and zircon ε_{Hf}(t)


1527 vs. age (Ma) (b) for the Mesozoic (200–90 Ma) hornblende-rich mafic-ultramafic


1528 intrusive rocks within the southern Lhasa subterrane. Data source: Late Triassic from


1529 Xu et al. (2019); Late Jurassic from this study and Zhang et al. (2014); Late Cretaceous


1530 from Guo et al. (2020).


1531

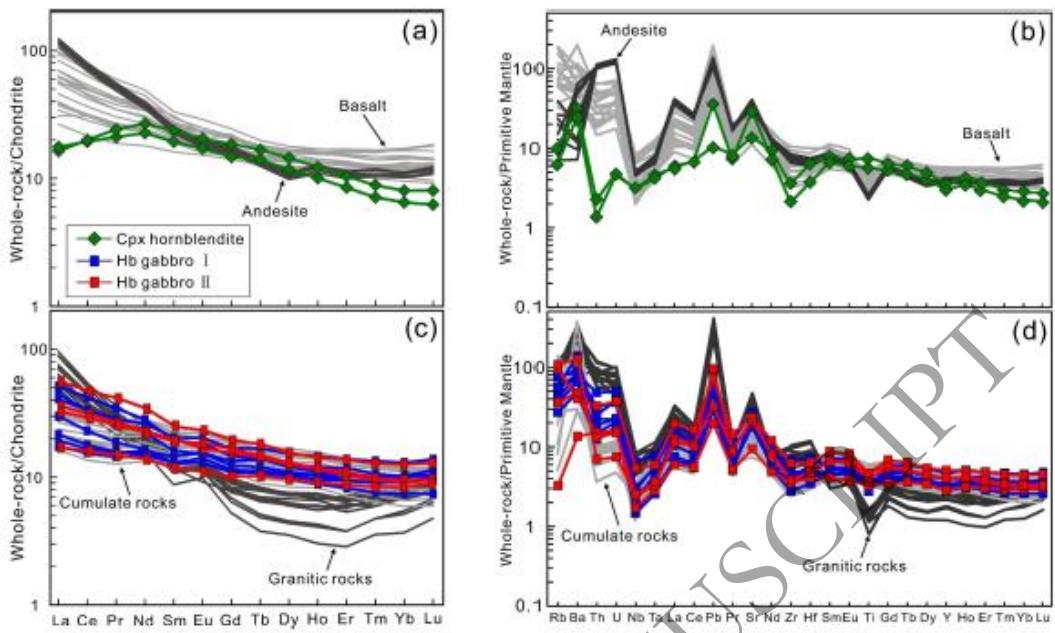

Fig. 1.

Fig. 2.

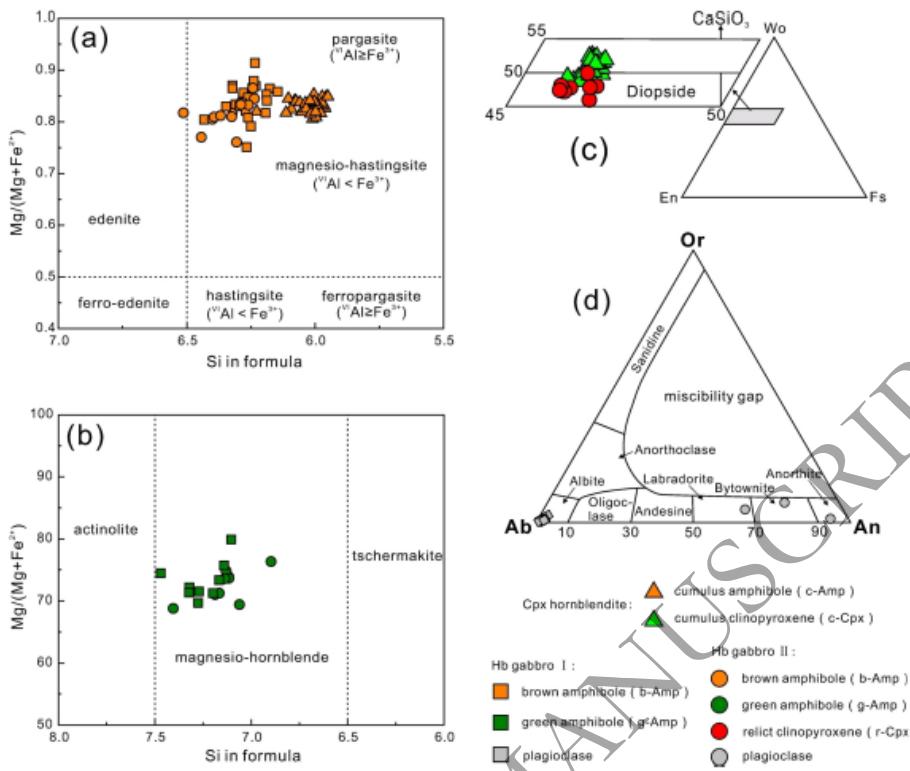
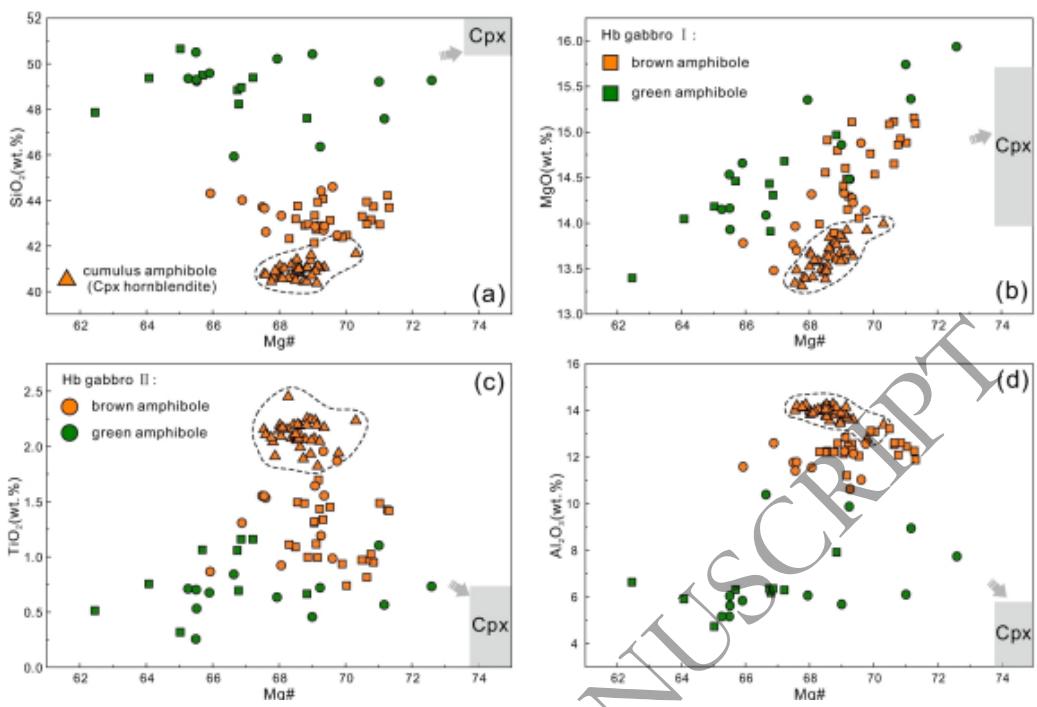
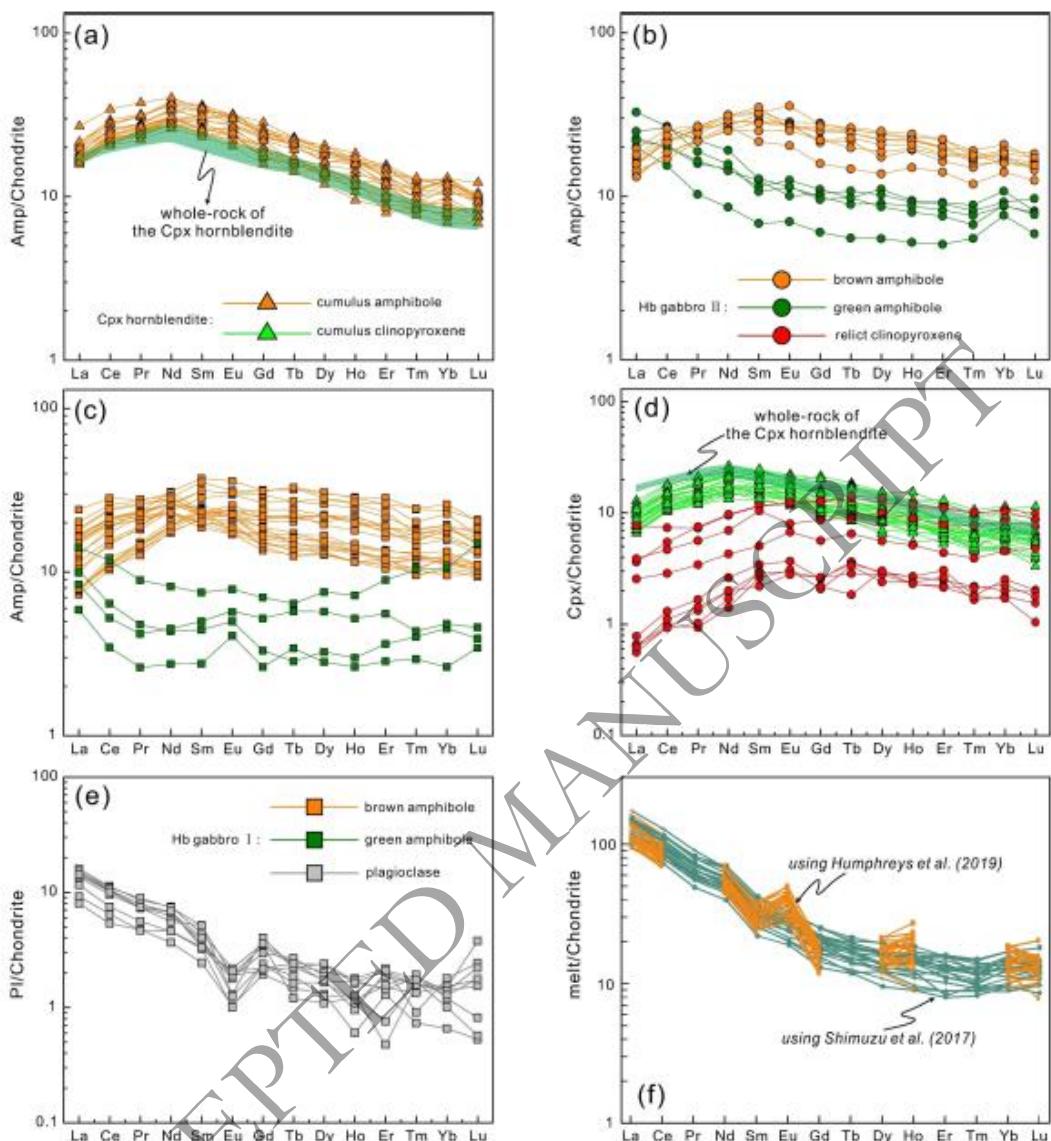
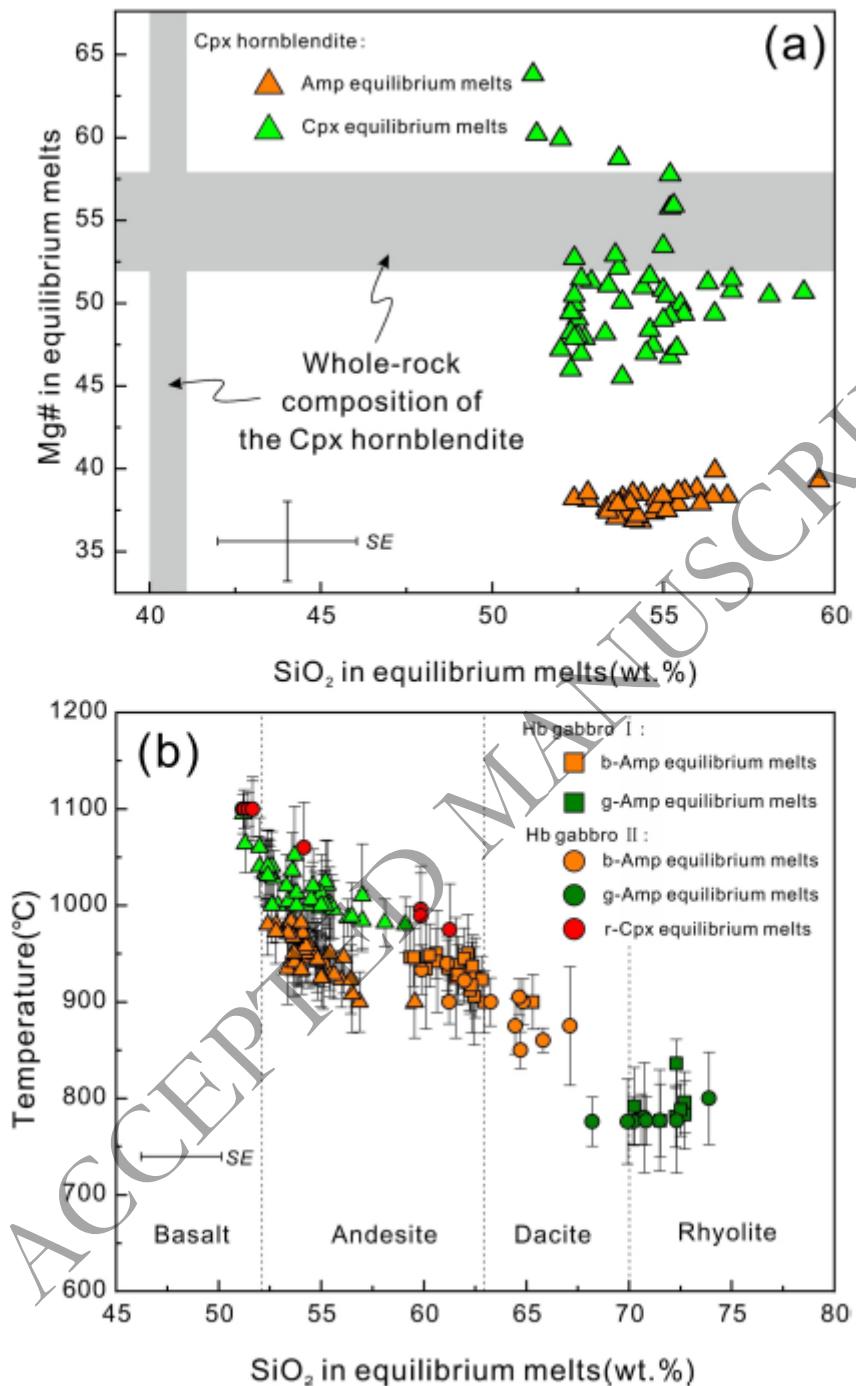

Fig. 3.

Fig. 4.

Fig. 5.


Fig. 6.


1550 **Fig. 7.**

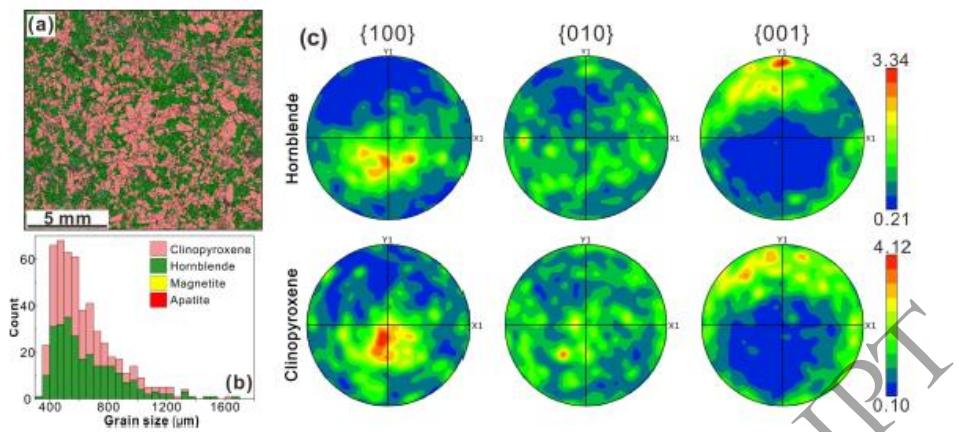

1551

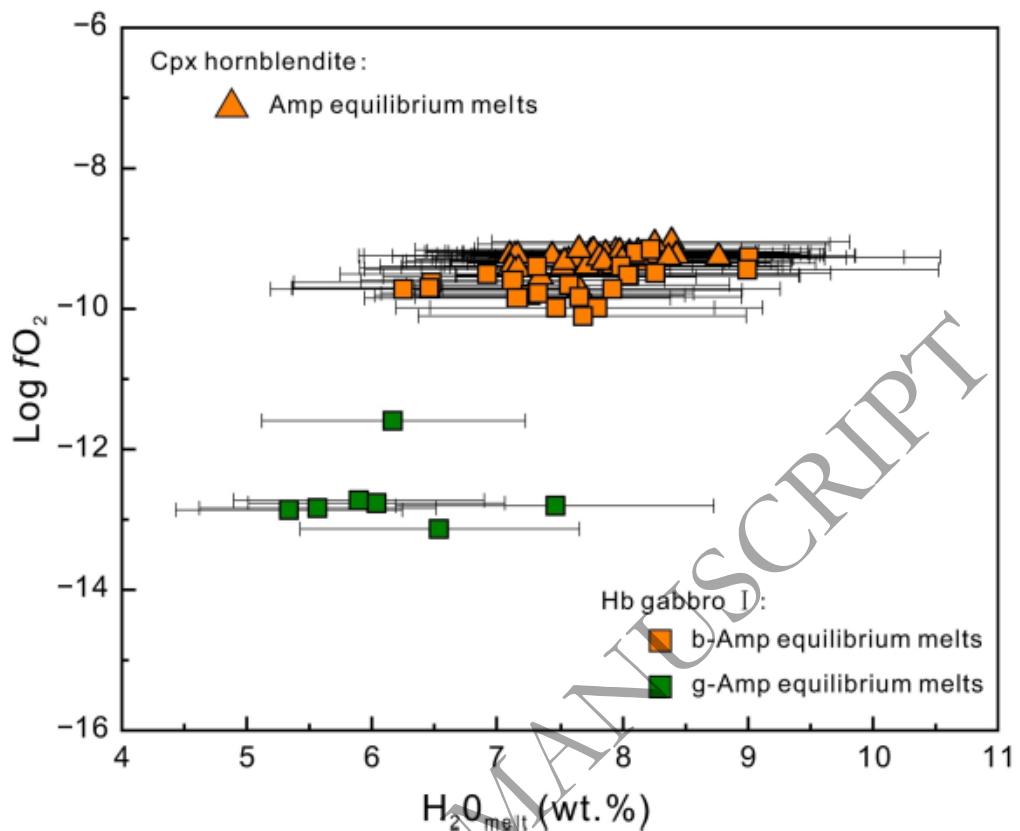
1552

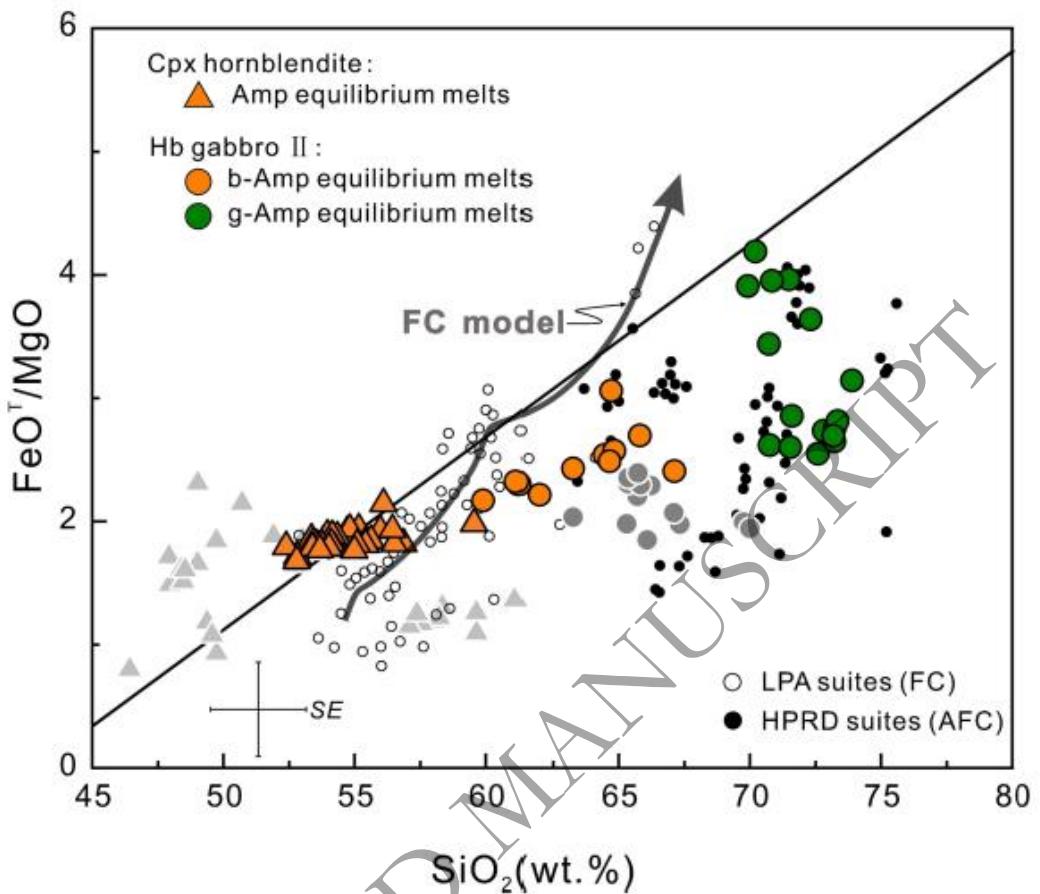
Fig. 8.

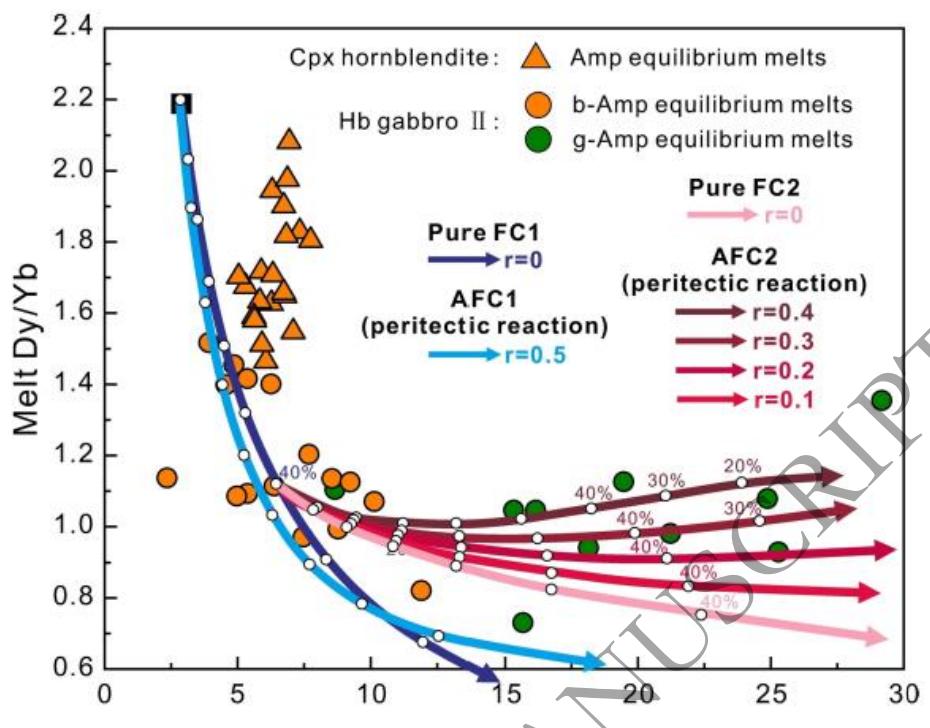
Fig. 9.

1560 **Fig. 10.**




1561


1562


1563

1564

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

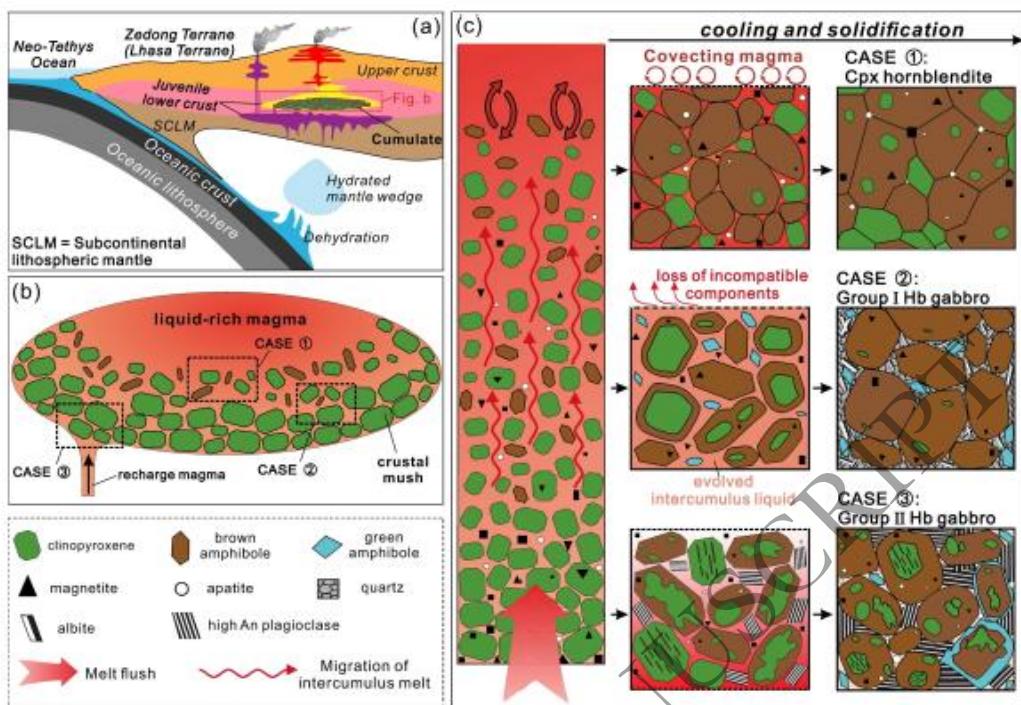

Fig. 15.

Table 1. Petrographic description of the lithologies of the Zedong Ultramafic–Mafic intrusive rocks.

Lithology	Sample name	Sample location	Longitude (°)	Latitude (°)	Texture	Petrographic characteristics	Mineral phases (vol.%)
Cpx hornblende	09TB 01-1	East of Zedong	91.77 56	29.2 300	adecumulate	Medium- to coarse-grained euhedral Cpx and euhedral to subhedral Amp accumulate in mutual contact, Amp contains some rounded Cpx inclusions and minor Cpx are altered to epidote. Minor subhedral to anhedral Mag and trace anhedral apatite occur within the Amp and Cpx grains or in the interstices between them	Cpx (25–30%), Amp (60–65%), Mag (<10%), trace Ap and Ep
	09TB 01-2	East of Zedong	91.77 56	29.2 300		Medium- to fine-grained Cpx and Medium- to coarse-grained brown Amp including (1) idiomorphic cumulus phase; (2) large Amp oikocryst enclosing rounded Mag and Cpx; (3) minor interstitial anhedral grains (<5 vol. %)	
Hb gabbro I	10-1 09TB 11 09TB 15 09TB 16	East of Zedong East of Zedong East of Zedong East of Zedong	92 91.78 89 91.78 86 91.78 86	269 29.2 269 29.2 264 29.2 264	orthocumulat e	Medium- to coarse-grained brown amphibole (>70%) and fine-grained euhedral to subhedral green amphibole (<10%). Trace relic Cpx	Amp (70–80%), Pl (15–20%), Qz (5%), Cpx (<5%)

09TB	East of	91.78	29.2	inclusions can also
18	Zedong	78	261	be found in the
09TB	East of	91.78	29.2	interior of brown
19	Zedong	75	261	Amp, interstitial
				green Amp, Qtz and
				Pl fill in the
09TB	West of	91.75	29.2	interstices of brown
138-2	Zedong	58	231	Hb. Interstitial Pl
				commonly replaced
				by Ep and Srt
09TB	East of	91.78	29.2	Medium- to coarse-
09	Zedong	94	269	grained, euhedral to
09TB	West of	91.75	29.2	subhedral brown
139	Zedong	44	247	Amp contains
09TB	West of	91.68	29.2	abundant anhedral
143	Zedong	67	439	relict Cpx inclusions.
				Enclosed Cpx
				crystals within
				brown Amp
				oikocrysts are
				typically rounded
				and embayed. Brown
				Amps are rimmed by
				green Amp, and Cpx
				having
				disequilibrium
				dissolution features
				such as embayed
				edges and resorption
				channels. Interstitial
				plagioclase is mostly
				altered to clay.
				Minor matrix
				minerals are mostly
				altered to Ep and Srt

Cpx, clinopyroxene; Hb, hornblende; Pl, plagioclase; Mag, magnetite; Qtz, quartz; Ap, apatite; Chl, chlorite; Ep, epidote; Srt, sericite.

Table 2. Whole-rock geochemical data of ultramafic-mafic intrusive rocks from the Zedong terrane, southern Tibet

Sample	09-01-1	09-01-2	09-10-1	09-TB-11	09-TB-15	09-TB-16	09-TB-18	09-T-B1-9	09-TB-138-2	09-TB-09	09-TB-13	09-TB-14	09-TB-14
<hr/>													
<hr/>													
Geological suite	I	I	I	I	I	I	I	I	I	II	II	II	II
wt %													
SiO ₂	38.7	39.9	50.1	43.5	49.5	51.4	45.1	46.6	43.7	45.6	45.9	45.4	46.5
TiO ₂	1.29	1.64	0.600	0.830	0.680	0.650	0.790	0.870	1.03	0.550	0.650	0.840	1.03
Al ₂ O ₃	14.7	9.30	17.5	16.8	19.3	17.1	17.3	17.0	18.3	9.56	12.9	13.0	15.7
Fe ₂ O ₃	15.2	16.8	8.60	12.0	9.74	9.86	13.6	12.3	12.1	12.3	10.6	11.0	8.90
MnO	0.150	0.160	0.140	0.140	0.150	0.150	0.170	0.170	0.180	0.200	0.10	0.170	0.140
MgO	8.37	12.0	5.00	6.76	3.98	4.70	6.06	5.73	6.35	13.1	10.8	12.8	10.7
CaO	16.4	16.5	9.89	13.7	7.52	8.32	11.1	9.97	10.7	13.7	10.5	11.3	10.0
Na ₂ O	0.890	0.730	3.56	1.54	3.32	2.25	1.72	1.77	1.43	1.16	2.11	1.41	1.25
K ₂ O	0.630	0.530	1.17	0.730	2.19	2.23	1.22	1.75	2.26	0.260	1.66	1.00	2.46
P ₂ O ₅	0.630	0.200	0.170	0.050	0.320	0.110	0.070	0.080	0.060	0.340	0.480	0.120	0.600
LOI	2.63	1.79	3.08	3.51	3.05	2.95	2.81	3.58	2.77	3.16	3.79	2.66	2.84
Total	99.6	99.5	99.8	99.7	99.7	99.7	99.6	99.6	99.6	99.6	99.5	99.6	99.6
Mg [#]	52	58	54	53	45	49	47	49	50	68	67	70	71
μg/g													
Sc	42.6	89.1	22.7	38.7	14.2	23.4	25.3	32.0	34.1	55.6	36.1	49.3	49.8
Ti	75.70	99.30	41.70	49.60	39.20	40.00	45.80	51.00	356.0	42.20	60.40	52.60	61.00
V	39.8	48.4	20.7	28.8	19.3	25.0	27.5	26.8	261.4	25.6	35.6	31.3	30.2

Cr	96.	15	10	17.	12.	26.	15.	22.	63.	39	39	53	38
	2	6	7	9	1	2	8	1	1	4	9	3	5
Co	56.	73.	48.	46.	41.	52.	63.	60.	56.	71.	44.	57.	47.
	0	1	9	8	4	8	9	6	2	8	1	2	7
Ni	37.	63.	50.	40.	10.	27.	25.	22.	17.	15	33	24	19
	6	9	9	3	1	1	2	1	9	6	1	5	3
Ga	14.	14.	14.	15.	16.	14.	15.	15.	14.	10.	18.	13.	14.
	9	1	9	3	5	8	5	5	4	5	0	9	6
Ge	1.4	2.1	1.3	1.4	1.4	1.4	1.4	1.3	1.6	1.7	1.5	1.6	1.5
	6	7	4	9	2	3	4	4	5	1	2	1	7
Rb	6.4	4.0	33.	17.	47.	48.	22.	35.	25.	2.0	60.	22.	68.
	6	7	4	2	5	2	8	5	7	6	0	9	4
Sr	61	29	45	56	43	37	39	43	576	19	50	44	49
	6	3	5	1	9	5	1	8		8	6	7	5
Y	13.	16.	15.	12.	21.	14.	17.	14.	17.	12.	23.	17.	18.
	7	3	1	6	0	2	7	3	9	9	0	8	3
Zr	23.	39.	75.	30.	47.	53.	41.	39.	51.	39.	69.	43.	41.
	3	6	7	9	1	3	9	1	8	2	3	4	9
Nb	2.1	2.2	2.1	1.0	1.8	1.4	1.1	2.0	4.6	1.2	3.8	1.7	1.7
	9	0	7	4	9	7	7	3	1	2	5	2	9
Cs	0.6	0.2	1.0	0.8	2.5	2.6	1.2	1.6	0.2	0.3	1.7	0.4	1.2
	10	26	9	30	8	9	3	4	67	97	4	05	1
Ba	22	17	57	33	64	60	45	96	568	94.	28	33	88
	6	2	2	0	1	4	3	9		2	0	3	4
La	4.1	3.8	10.	4.1	9.7	7.1	4.5	5.1	12.	4.0	13.	8.5	7.7
	4	9	7	3	3	5	7	5	3	8	4	9	8
Ce	11.	12.	20.	9.6	20.	14.	10.	11.	26.	9.7	29.	19.	17.
	9	3	6	1	4	2	3	0	0	9	0	2	8
Pr	2.0	2.3	2.5	1.3	2.7	1.7	1.4	1.5	3.3	1.4	3.9	2.5	2.4
	1	1	3	9	1	9	8	1	2	2	7	5	2
Nd	10.	12.	10.	6.9	12.	7.6	7.4	7.1	13.	6.5	16.	11.	10.
	6	6	5	9	3	7	8	8	2	3	1	2	4
Sm	2.9	3.6	2.4	2.0	3.1	1.9	2.2	1.9	3.0	1.8	3.8	2.8	2.9
	7	1	6	3	4	6	4	8	0	1	5	9	0
Eu	0.9	1.1	0.8	0.7	1.1	0.7	0.8	0.8	1.0	0.6	1.3	1.0	1.0
	96	9	99	60	8	68	99	40	6	45	7	3	8
Gd	3.0	3.8	2.5	2.2	3.4	2.2	2.7	2.3	3.0	2.0	4.0	3.2	3.4
	4	3	5	7	6	5	6	5	3	7	6	1	1
Tb	0.5	0.6	0.4	0.4	0.6	0.4	0.5	0.4	0.5	0.3	0.6	0.5	0.5
	24	31	51	10	31	17	16	29	23	85	85	42	59
Dy	2.9	3.6	2.8	2.4	3.9	2.6	3.2	2.7	3.0	2.4	3.9	3.2	3.3
	9	8	0	7	2	0	4	2	7	7	7	0	0
Ho	0.5	0.6	0.5	0.5	0.8	0.5	0.6	0.5	0.6	0.5	0.8	0.6	0.6
	70	98	91	03	28	42	84	83	25	16	15	62	77

Er	1.4	1.7	1.7	1.3	2.3	1.5	1.9	1.5	1.7	1.4	2.2	1.7	1.8	
	1	3	0	7	0	6	6	8	9	5	9	1	2	
Tm	0.1	0.2	0.2	0.1	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	
	82	26	59	93	43	31	73	37	57	15	29	44	52	
Yb	1.1	1.3	1.7	1.2	2.2	1.5	1.7	1.5	1.7	1.4	2.1	1.5	1.6	
	1	7	5	7	2	9	7	4	1	3	6	7	3	
Lu	0.1	0.2	0.2	0.1	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	
	59	05	87	89	52	56	72	43	67	27	32	45	45	
Hf	1.1	1.9	2.2	1.0	1.4	1.5	1.2	1.3	1.5	1.2	1.9	1.4	1.4	
	4	7	0	6	6	6	8	0	2	6	6	6	8	
Ta	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.3	0.1	0.2	0.1	0.1	
	70	90	24	04	44	83	18	30	17	16	43	35	47	
Pb	2.5	0.7	5.7	2.1	4.0	3.2	2.0	3.3	4.0	1.4	5.1	2.2	6.8	
	6	47	4	4	8	9	1	4	5	0	1	7	3	
Th	0.1	0.1	4.0	1.0	1.8	2.6	1.2	1.5	2.1	1.2	2.7	1.1	0.5	
	90	15	8	5	9	6	4	7	2	8	6	2	86	
U	0.1	0.0	97	1.0	0.3	0.4	0.7	0.4	0.4	0.7	0.3	0.7	0.3	0.1
	02	0	3	70	62	53	26	76	96	34	83	14	56	
δEu	1.0	0.9	1.1	1.0	1.0	1.1	1.1	1.1	1.0	1.0	1.0	1.0	1.0	
	1	7	8	9	2	1	9	7	2	6	3	5		
(La/Yb) _N	2.6	2.0	4.3	2.3	3.1	3.2	1.8	2.4	5.1	2.0	4.4	3.9	3.4	
(Dy/Yb) _N	1.8	1.8	1.0	1.3	1.1	1.0	1.2	1.1	1.2	1.1	1.2	1.3	1.3	
$^{87}\text{Sr}/^{86}\text{Sr}$	0.7	0.7								0.7		0.7		
	04	04								04		04		
Sr	04	14								68		80		
	08	2								2		9		
	0.0	0.0								0.0		0.0		
2 σ	00	00								00		00		
	01	01								01		01		
	5	5								4		3		
$(^{87}\text{Sr}/^{86}\text{Sr})_i$	0.7	0.7								0.7		0.7		
	04	04								04		04		
	04	1								6		5		
	0.5	0.5								0.5		0.5		
$^{143}\text{Nd}/^{144}\text{Nd}$	12	12								12		12		
	92	90								88		87		
	8	9								6		9		
	0.0	0.0								0.0		0.0		
2 σ	00	00								00		00		
	00	01								00		00		
	9	8								9		8		

$\varepsilon_{\text{Nd}}(t)$	6.2	5.7	5.9	5.4	5.5
		7	7	4	2
$T_{\text{DM}}(G)$	77	91	64	86	72
a)	5	0	3	9	3

$\text{Fe}_2\text{O}_3^T = \text{Total iron}$

measured as Fe_2O_3 .

LOI = loss on
ignition.

Mg[#] = $100 \times$

$\text{Mg}^{2+}/(\text{Mg}^{2+} + \text{Fe}^{2+})$

Chondritic uniform reservoir (CHUR) values [$^{143}\text{Nd}/^{144}\text{Nd} = 0.512638$,
 $^{147}\text{Sm}/^{144}\text{Sm} = 0.1967$ (Patchett *et al.*, 2004)] are used for the calculation.

$\lambda_{\text{Rb}} = 1.42 \times 10^{-11} \text{ year}^{-1}$, $\lambda_{\text{Sm}} = 6.54 \times 10^{-12}$
year⁻¹ (Lugmair & Harti, 1978).