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ABSTRACT

Context. Statistical methods for quantifying clustering have not yet been tested against anti-clustered data.
Aims. We investigate the performance of the normalised correlation length, s̄, and Q when applied to anti-clustered data.
Methods. We tested the operation of s̄ on simulated data and recently published observations.
Results. s̄ successfully distinguishes anticlustered data in simulations and indicates anticlustering in an area where it is speculated that
triggered star formation has occurred. The existence of radial anticlustering can cause the Q clustering analysis method to malfunction.
Users of Q should therefore use s̄ to rule out anticlustering before applying Q.
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1. Introduction

Cartwright & Whitworth (2004) devised a measurement, Q,
which enables clustering to be both quantified and classified as
either radial or multi-level subclustering. This measure is now
widely used (e.g. Bastien et al. 2009; Sanchez & Alfaro 2009;
Schmeja et al. 2009) and Q is calculated as m̄/s̄, where m̄ is
the mean edge length of the minimal spanning tree, and s̄ the
correlation length. However, it is possible that star clusters exist
in which the arrangement of stars is “anti-clustered”; that is, a
spherical distribution of stars has lower density or a void in the
centre, and the density of stars increases with radius.

In this paper we investigate the behaviour of Q when ap-
plied to the analysis of anticlustered data. We develop the nor-
malised correlation length, s̄, and demonstrate its effectiveness
in identifying and quantifying radial anticlustering. In Sect. 1
we describe the methods used to produce artificial test data and
Sect. 2 explains the calculation of s̄. Section 3 shows the results
obtained using s̄ on artificial data, and these are discussed and
compared with the results obtained from real data in Sect. 4. In
Sect. 5 we draw our conclusions.

2. Methodology

Three different types of artificial star cluster were created, us-
ing random numbers R to generate the individual star positions.
The first type (2D0) is a circular cluster (i.e. two-dimensional
disc) with statistically uniform surface density. This is the distri-
bution expected from circular samples of randomly distributed
data points. The second type (3Dα) are spherical clusters (i.e.
three-dimensional clusters) with volume density n ∝ rα and
α = −2, −1, 0, 0.5, 1.0, or 1.5. Thirdly a fractal or
multiscale clustering is used to create clusters of type F(dim),
dim = 3, 2.5, 2.0 or 1.5. dim indicates the Fractal Dimension,
or space filling dimension, of the cluster, a value of 3.0 indicating
homogeneous, unclustered space filling, and 1.5 the most sub-
clustered distribution. All of the random artificial clusters are
created with 100 to 300 stars. For a full description of the meth-
ods used for creating these clusters, see Cartwright & Whitworth
(2004). For each type of cluster 1000 realisations are analysed,
so that means and standard deviations can be obtained for the

parameters extracted. The three-dimensional clusters are pro-
jected onto an arbitrary plane for analysis. The data for the real
star clusters used are illustrated in Fig. 2 and the sources listed
in Table 2.

Each cluster, real or artificial, is centred on the mean posi-
tion of its stars, and distances are then normalised by setting the
radius of the cluster (i.e. the distance from the mean of the stars’
positions to the most distant star in the cluster) to unity. In the
rest of this paper, all distances are normalised in this way.

3. The normalised correlation length

The normalised correlation length, also known as the “first mo-
ment”, is a single measurement characteristic of the distribution
function p(s), where p(s)ds gives the probability that the pro-
jected separation between two cluster stars chosen at random is
in the interval (s, s + ds). To obtain p(s) empirically, we define
imax equal bins in the range 0 < s < 2Rcluster = 2 , so all the bins
have width Δs = 2/imax. Thus the ith bin corresponds to the in-
terval (i−1)Δs < s < iΔs , and to the mean value si = (i−1/2)Δs.
Then we count the number of separationsNi falling in each bin,
and put

p(si) =
2Ni

Ntotal (Ntotal − 1)Δs
, (1)

whereNtotal is the total number of stars in the cluster, and hence
Ntotal (Ntotal − 1)/2 is the total number of separations.

Figure 1a presents the results obtained from 1000 clusters of
type 2D0, a disc with uniform surface-density. The plotted points
give the mean p̄(si) from the 1000 realizations, and the error bars
give the width of the bin and the 1σ standard deviation. If there
were no edge effects (i.e. if the uniform surface-density extended
to infinity in two dimensions), we would have p(s) = 2s, and this
is indeed a good fit to p̄(si) at small s values, as indicated by the
dashed line in Fig. 1a.

For a circle of unit radius populated with complete spatial
randomness, p(s) is given by (Diggle 2003):

p(s)=1+
1
π

[
2(s2−1) cos−1(s/2)− s(1+s2/2)

√
(1−s2/4)

]

for all 0 ≤ s ≤ 2.
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Fig. 1. Distribution function p(s) for separations
between randomly chosen stars in artificial (non-
fractal) cluster of type a) 2D0, N ∝ r0; b) 3D+1,
N ∝ r1; c) 3D0, n ∝ r0; d) 3D1, n ∝ r−1. The solid
line is the value of p(s) for a star cluster of type 2D0
having an infinite number of stars, and is included
for reference.

The solid line in Fig. 1a shows that this function fits the plot-
ted points well, and it is included in all the other plots for refer-
ence, i.e. to emphasize the differences between the distributions.

The overall structure of the cluster is well represented by
p(s), as can be seen from Figs. 1b through 1d, which show the
results obtained for three other types of artificial star cluster.
Figure 1c shows how p(s) is slewed towards smaller s values
for a projected sphere with constant density. This is due to the
extra depth, and therefore larger number of stars, in the central
region of the projected cluster, which results in more small sep-
arations between stars. This bias towards shorter separations is
even more pronounced for Fig. 1d, a projected sphere with a
centrally concentrated density, N ∝ r−1.

Figure 1b gives p(s) for a sphere with density which in-
creases with radius, N ∝ r−1. It can be seen that p(s) for this
configuration lies somewhere between those shown in Figs. 1a
and 1c. By comparison, p(s) for a sphere with multiscale sub-
clustering shows many peaks, corresponding to the distances be-
tween subclusters and the mean distances within them (Fig. 2 in
Cartwright & Whitworth 2004).

The Normalized Correlation Length is the mean separation
s̄ between stars in a cluster, and is therefore the mean value of
the distributions in Fig. 1. Table 1 gives mean values of s̄ and
their standard deviations, for the artificial cluster types tested. It
can be seen that increasing values of s̄ > 0.8 are measured for
anticlustered data, while s̄ < 0.8 is monotonically decreasing for
clustered data, whether radially or fractally clustered.

In order to test the robustness of s̄ with varying numbers
of stars in the clusters, means and standard deviations were

Table 1. Clustering measures obtained for artificial star clusters.

Cluster type
or name s̄ m̄ Q
2D Uniform
2D0 (N ∝ r0) .88 ± .03 .65 ± 0.02 .74 ± .02

Radially clustered
3D-2 (n ∝ r−2) .60 ± .03 .55 ± .02 .93 ± .03
3D-1 (n ∝ r−1) .73 ± .03 .61 ± .02 .84 ± .02
3D0 (n ∝ r0) .80 ± .02 .63 ± .02 .79 ± .02

Radially anticlustered
3D05 (n ∝ r0.5) .82 ± .03 .63 ± .02 .77 ± .02
3D1 (n ∝ r1.0) .83 ± .03 .63 ± .02 .76 ± .02
3D15 (n ∝ r1.5) .85 ± .03 .64 ± .02 .75 ± .02

Fractally clustered
F2.5 (D = 2.5) .74 ± .09 .54 ± .05 .73 ± .06
F2.0 (D = 2.0) .67 ± .13 .41 ± .04 .61 ± .08
F1.5 (D = 1.5) .62 ± .18 .27 ± .07 .45 ± .09

calculated for 1000 examples of each cluster type with 85, 100,
300 and 500 members. The results are in Table A.2 in the
Appendix.

Additionally, clusters of 1000 members were created and
then 100 different subsamples of 200 members were randomly
selected and analysised to produce s̄. The results are in Table A.1
in the appendix. This table also shows the variation in the calcu-
lated centre (mean position) of the cluster, depending on which
stars are selected from a cluster. Column 1 lists the cluster type
and Col. 2 the mean and standard deviation of s̄. Columns 3 and
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Fig. 2. Position data for the protostars referred to in the text. Top,
RCW120, middle CN 138. Bottom the types I and II protostars from
the W5 region. All the positions have been normalised by centreing on
the mean position of the cluster members, and then setting the distance
from the centre to the furthest star to be one distance unit.

4 give the mean and standard deviation of the mean position of
the cluster, in units of the radius of the original spherical distri-
bution of points.

4. Results

Table 1 shows that s̄ decreases monotonically as distributions
become more clustered, whether radially or multiscale, and in-
creases monotonically as they become radially anticlustered. A
value of s = 0.8 corresponds to a statistically uniform density.
(In the limit, numerical investigations revealed that s̄ reaches a
maximum value of 1.17 for a ring of stars viewed face on.) s̄ can
therefore be used to distinguish between clustered and anticlus-
tered distributions. Tests also confirm the robustness of s̄ and its
invariance with number of stars in a cluster and the selection or
omission of points within the sample (Tables A.2 and A.1).

Table 2. Real star clusters.

Name Members Sources s̄
CN 138 85 Watson (2009) 0.84
RCW 120 65 Deharveng (2009) 0.67
W5 2053 Koenig (2008) n/a

Table 1 also lists the mean edge length m of the mini-
mal spanning tree and the derived Q = m̄/s̄ for each cluster.
Cartwright & Whitworth (2004) showed that Q can be used to
distinguish the two types of clustering, radial and multiscale,
and indeed this can be seen in the table, Q > 0.8 indicating
fractal-type, multiscale clustering, and Q < 0.8 indicating radial
clustering. However, the anticlustered data also yield a Q < 0.8,
and so a simple measurement of Q does not distinguish fractal
sub-clustering and anticlustering.

The confusion is avoided by first using s to distinguish be-
tween clustered and anti-clustered data, and then applying Q for
data which is apparently clustered, to establish whether the clus-
tering is radial or multiscale.

Table 2 reports the value of s̄ obtained for young stars in
the RCW 120 and CN 138 regions, as reported by Deharveng
et al. (2009) and Watson et al. (2009). A value of 0.67 for s̄ for
RCW120 does not indicate anticlustering. However, a value of
0.84 for the CN 138 region does indicate anticlustering.

The values of s̄ for clustered, anti clustered and statistically
random distributions are very close. A statistical test is there-
fore performed in order to establish the probability of obtain-
ing a value of s̄ = 0.84 from a random or fractally clustered
distribution, and compare this with the probability of obtain-
ing it from an anticlustered distribution. The test is performed
as follows. First we wish to reject the hypothesis that the ob-
served data are randomly arranged, either in 2 or 3 dimensions.
1000 simulations are performed using the 3D0 cluster type, with
the same number of points as CN 138 (85) yielding 1000 val-
ues of s̄i. These are placed in size order, and compared with the
value obtained for the CN 138 data. As each value of s̄i has equal
probability, the position of the observed value of s̄ in the ordered
set of random observations indicates the probability that a value
greater than or equal to the observed value can be obtained from
a 3D0 type cluster (see e.g. Diggle 2003). Out of 1000 simu-
lations of the 3D0 clusters, only 60 yielded s̄ ≥ 0.84, giving a
confidence level of 94% that the 3D0 hypothesis can be rejected.
Similarly, the 2D0 hypothesis, that the stars are randomly ar-
ranged in 2 dimensions, and the Fractal hypothesis, that CN 138
is fractally clustered with a dimension of D = 2.5, may be re-
jected with 99% confidence. The values of s̄ for radial density
gradients proportional to r and r1.5 are closest to the measured
value for CN 138. Therefore, on the basis of the measured value
of s̄, the protostars in the CN 138 region are found to be anticlus-
tered with a density proportional to rα where α = 1.25 ± 0.25.

5. Discussion

Tests on artificial star clusters show that the correlation length
s̄ is reliably found to be s̄ = 0.8 ± 0.02 for statistically
uniform-density spherical distributions of points viewed in a
2-dimensional projection. s̄ increases monotonically above 0.8
as distributions become more radially anticlustered, and s̄ de-
creases below 0.8 as the distributions become more clustered,
either radially or with multiscale, fractal characteristics. s̄ can
therefore be used to distinguish between clustered and anticlus-
tered distributions of points. Tests show that s̄ is robust and re-
mains constant with changing numbers of stars in a cluster and is
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also largely unaffected if different members are selected or omit-
ted from a cluster before analysis (Tables A.2 and A.1; see also
Bastien et al. 2009).

If the mean edge length of the mimimal spanning tree m is
also calculated, and used to obtain Q = m̄/s̄, then Q permits the
two types of clustering to be distinguished. However, Table 2
shows that confusion may arise if Q is calculated for a distribu-
tion which is anticlustered, as theQ value is likely to be less than
0.8, falsely indicating a fractally subclustered distribution. It is
important therefore, that users of Q check the value of s̄ before
proceeding to the calculation and interpretation of Q.

The fact that the correlation length s of a cluster can indicate
a region of anticlustering is in itself a useful tool. The formation
of stars produces stellar winds and ionizing radiation which are
predicted to disrupt the surrounding molecular clouds, trigger-
ing further star formation. Elmegreen & Lada (1977) proposed
the collect and collapse mechanism, whereby expanding HII re-
gions would sweep up spherical shells of matter from the inter-
stellar medium, which would then collapse to form stars. Recent
work has identified such bubbles, together with accurate census
data of their associated star forming regions (Koenig et al. 2008;
Deharveng et al. 2009; Watson et al. 2009). If the collect and
collapse mechanism occurs in nature, one would expect the spa-
tial distribution of the observed stars to bear the imprint of this
process. The star formation rate should increase with the dis-
tance away from the centre of the expanding bubble, and should
therefore be radially anticlustered.

Tests on observations of protostars which are believed to be
forming in an expanding HII region, and therefore may be anti-
clustered, produce mixed results. Data from the CN 138 region
(Watson et al. 2009) do show an increased s̄, consistent with
anticlustering, and a density gradient proportional to rα where
α = 1.25±0.25. The possibility of a random arrangement of stars
producing this value of s̄ can be ruled out with 94% confidence.
Data from the RCW120 region (Deharveng et al. 2009), how-
ever, give a lower value of s̄, consistent with clustering. In this
case, it can be seen from Fig. 2 that there are several small clus-
ters in the data, and the existence of these small clusters would
tend to reduce s̄ cancelling out the signature of the radial anti-
clustering.

Koenig et al. (2008) have also published observations of pro-
tostars forming in association with expanding HII bubbles, and
these form arcs and “elephants” trunks’ which are very sugges-
tive of triggered star formation. s̄ would not be able to diagnose
anticlustering in this situation, as the arcs do not form complete
circles. s̄ is only able to detect anticlustering when the stars are
forming in a fairly homogeneous arrangement, and when there
are no tight knots of stars.

It should also be noted that a random arrangement of stars
in two dimensions, or cluster type 2D0, will also give increased
values of s̄. It is therefore necessary to ensure that observational
criteria are used to include only the stars in the three dimensional
volume of interest, before applying the correlation length analy-
sis.

6. Conclusion

Users of the Q = m̄/s̄ parameter should ensure that they calcu-
late the correlation length s̄ first, and exclude the possibility of
anticlustered data, before proceeding to the calculation of Q and
its interpretation. The correlation length s̄ increases monotoni-
cally as clusters are more radially anticlustered. s̄ can therefore
be used to estimate the radial density gradient of star clusters
whether the gradient is positive or negative. It can also be used

to rule out spatial randomness. The technique fails if the region
being studied has subclusters of stars, or if only a part of a spher-
ical bubble of stars exists.
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Appendix A: Stability tests on s̄

Table A.1. Variance of s̄ and calculated centre (mean position) of clus-
ter, when calculated from subsets of 200 points randomly selected from
1000 cluster members.

Cluster type s̄ x y
2D Uniform
2D0 (N ∝ r0) .87 ± .03 .01 ± 0.03 .03 ± .03

Radially clustered
3D-2 (n ∝ r−2) .59 ± .02 .006 ± .02 .010 ± .02
3D-1 (n ∝ r−1) .73 ± .02 .009 ± .03 .007 ± .02
3D0 (n ∝ r0) .79 ± .02 .004 ± .03 .012 ± .03

Radially anticlustered
3D05 (n ∝ r0.5) .82 ± .03 .03 ± .03 .006 ± .03
3D1 (n ∝ r1.0) .84 ± .03 .02 ± .03 .008 ± .03
3D15 (n ∝ r1.5) .85 ± .03 .01 ± .03 .02 ± .03

Fractally clustered
F3.0 (D = 3.0) .79 ± .02 .01 ± .02 .003 ± .03
F2.5 (D = 2.5) .75 ± .03 .18 ± .02 .15 ± .03
F2.0 (D = 2.0) .63 ± .03 .08 ± .03 .08 ± .03
F1.5 (D = 1.5) .67 ± .03 .09 ± .08 .14 ± .02

Table A.2. Variance of s̄ with numbers of objects in cluster.

Cluster type s̄ s̄ s̄ s̄
or name N = 85 N = 100 N = 300 N = 500
2D Uniform
2D0 (N ∝ r0) .85 ± .04 .86 ± 0.03 .88 ± .02 .88 ± .02

Radially clustered
3D-2 (n ∝ r−2) .60 ± .03 .59 ± .03 .59 ± .02 .59 ± .01
3D-1 (n ∝ r−1) .73 ± .03 .73 ± .03 .73 ± .02 .73 ± .02
3D0 (n ∝ r0) .79 ± .03 .79 ± .03 .80 ± .02 .80 ± .02

Radially anticlustered
3D05 (n ∝ r0.5) .81 ± .03 .81 ± .03 .82 ± .02 .82 ± .02
3D1 (n ∝ r1.0) .83 ± .03 .83 ± .03 .84 ± .02 .84 ± .02
3D15 (n ∝ r1.5) .84 ± .04 .84 ± .03 .85 ± .02 .86 ± .02

Fractally clustered
F3.0 (D = 3.0) .79 ± .03 .79 ± .04 .80 ± .02 .80 ± .01
F2.5 (D = 2.5) .74 ± .06 .75 ± .05 .73 ± .05 .74 ± .05
F2.0 (D = 2.0) .70 ± .09 .70 ± .08 .70 ± .08 .69 ± .07
F1.5 (D = 1.5) .68 ± .10 .69 ± .09 .68 ± .09 .70 ± .10
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