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ABSTRACT  

The objectives of this research were to investigate the impact of electric vehicle 

battery charging on grid demand at a national level and on the steady state parameters 

of distribution networks. An agent-based control system that coordinates the battery 

charging of electric vehicles according to electric vehicle owner preferences, 

distribution network technical limits and electricity prices was designed and 

developed and its operation was tested experimentally.  

The impact on grid demand peak increases at the national systems of Great Britain 

and Spain was evaluated using low and high electric vehicle uptake levels of 7% and 

48.5% of the car fleet for the year 2030 with a deterministic method. It was found that 

a low uptake will not raise significantly the grid demand peaks in both countries under 

investigation. However, a high uptake will raise significantly the grid demand peaks. 

The impact from residential electric vehicle battery charging on steady state voltages, 

power line losses, transformers’ and cables’ loadings of distribution networks was 

evaluated using a deterministic and a probabilistic method. It was found that low and 

medium uptake levels of electric vehicles equivalent to 12.5% and 33% per residential 

area of 384 customers in 2030, can be safely accommodated by reinforcing the 

distribution network. A combination of reinforcements, installation of micro-

generators and control of electric vehicle battery charging will be required to 

accommodate safely a high uptake of 71% with regards to the constraints studied.  

An agent-based control system that coordinates the battery charging of electric 

vehicles was designed and developed. Search techniques and neural networks were 

used for the decision making processes. The ability of the agent-based control system 

to operate successfully in both normal and abnormal conditions for the electrical 

network was proved with experimental validation in the laboratory of Tecnalia 

research institute in Spain. 
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CHAPTER 1     

                                               

INTRODUCTION 

Socio-economic, environmental, technical and political factors are driving a 

transition of the transportation sector towards low carbon vehicles. The term low 

carbon vehicles refers to vehicles that release low Carbon Dioxide (CO2) quantities 

during their operation. A significant share of European Union’s (EU’s) 27 member 

countries’ CO2 emissions (23.1%) is attributed to road transport [1]. Targets have 

been set by the EU with respect to the levels of CO2 emissions from vehicles for the 

years 2015 and 2020 [2]. These targets together with the actual average CO2 emission 

factors (gCO2/km) per vehicle for the year 2010 are shown in Table 1.1. 

The stimulus of the EU legislation and the associated penalties from exceeding 

certain CO2 emission levels (in the United Kingdom (UK), the CO2 road tax starts 

from £105 for new cars emitting more that 130g/km according to [3]), has encouraged 

major automotive manufacturers, to announce production of Electric Vehicles (EVs) 

(Table 1.2). These vehicles are anticipated to gain an important market share over 

conventional Internal Combustion Engine (ICE) powered vehicles. Analysis on 

lifecycle CO2 emissions in document [4] that was published for the British 

government concludes that in the year 2030, EVs may be able to produce less than 

50g/km CO2 emissions, approximately one third of petrol based vehicles. 

Table 1.1 Average actual (2010) and target (2015 and 2020) tailpipe CO2 

emissions for new vehicles [5]-[6] 

Year UK (gCO2/km) EU27 (gCO2/km) 

 2010 144.2 140.3 

Year EU27 (gCO2/km) 

2015 130 

2020 95 
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Table 1.2 Major automotive manufacturers who have announced EV production 

 

Manufacturer Source 

Bayerische Motoren Werken (BMW) [7] 

Daimler/Mercedes Benz [8] 

Fiat [9] 

Ford [10] 

General Motors/Chevrolet [11] 

Honda [12] 

Mazda [13] 

Mitsubishi [14] 

Nissan [15] 

Peugeot/Citroën [16] 

Renault [16] 

Suzuki [18] 

Toyota [19] 

Volkswagen Group [20] 

Volvo [21] 
 

There are mainly two technologies which are expected to penetrate the EV market 

in the forthcoming years according to [4]:  Plug-in Hybrid EVs (PHEVs) and full EVs 

or Battery EVs (BEVs). Hybrid Electric Vehicles (HEVs) and Fuel Cell Vehicles 

(FCV) are also electric vehicles but since these technologies do not represent a load 

for the power system, they are not considered in this thesis. The term Electric 

Vehicles or EVs in this thesis refers to PHEVs and BEVs. PHEVs are equipped with 

an ICE in addition to their battery to provide traction or charge the battery, while BEV 

motors rely solely on the electrical energy stored in the battery. Both EV technologies 

will require charging infrastructure connected to the electrical networks to charge 

their batteries. 

From a power system viewpoint, Electric Vehicles may be considered as:  

i) Simple loads, drawing a continuous current from the electricity network.  

ii) Flexible loads that may allow an aggregator company to interrupt or coordinate 

their charging procedure. Such a company could aggregate the demand of 

multiple EVs and enable their participation in electricity markets. The benefits 

of aggregation are referred in Section 1.3 and the different aggregator types that 

are currently found in the literature are defined in Section 2.3.1.  
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iii)  Storage devices that may allow an aggregator company to interrupt or 

coordinate their charging procedure, or even request power injections from their 

batteries back to the grid. The latter is known as Vehicle to Grid (V2G) [22].  

A unique characteristic of EVs in terms of power systems is that they are mobile 

devices expected to connect to various locations of electricity networks at different 

times of a day. It is inevitable that traditional power system planning and operation 

will face challenges.  

1.1 TRADITIONAL POWER SYSTEM OPERATION 

The Electricity Supply Industry in the UK comprises five functions [23]; 

Generation, Transmission, Distribution, Supply and Metering.  

Large power plants generate bulk energy with the majority of it being currently 

produced in nuclear, gas and coal fired stations (91% of the net electricity supplied in 

the UK in 2010 [24]). The bulk generated energy is produced in 3-phase Alternate 

Current (AC) form and enters the national grid’s transmission system at the Grid 

Supply Points (GSPs) through bulk supply transformers [25].  

The transmission system of Great Britain (GB) transfers electricity in 400kV, 

275kV and 132kV or lower voltages through 25,000 km of HV overhead lines [26] 

and 2,000 of underground HV lines, to large or special demand customers and to 

GSPs [23]. The GSPs are connection points to large power plants and entry points to 

the 14 distribution network areas operated by eight Distribution Network Operators 

(DNOs) [26].  

Electricity distribution refers to the allotment of electricity to the majority of 

commercial, industrial and residential customers through a variety of voltage levels 

(66kV, 33kV, 22kV, 11kV, 6.6kV, 400V, 230V, and 132kV only in England and 

Wales) according to the demand [23].  

Electricity supply companies are concerned with the marketing and billing of 

electricity. In the UK, there are currently over 18 energy companies [27]. These firms 

cooperate with licensed meter operators (that operate independently or they are DNO 

subsidiaries) who measure real time power flows in all levels of the electricity 

network [23] to ensure accurate billing. The conventional power system planning and 

operational paradigm follows the arrangement described in Fig. 1.1.  
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The electricity distribution stage is the main stage of electricity consumption and 

hence of great importance for customers, in terms of meeting quality and reliability 

principles at a minimum possible cost and environmental impact [28]. These 

principles are referred to in [29] as DNOs’ obligations and comprise of: 

 Protection against network faults to ensure that customers are not affected by 

disturbances. 

 Maintenance of voltages within limits.  

 Assurance of equipment integrity and operation within fault ratings. 

 Assistance to the Transmission System Operator (TSO) with frequency 

response.  

DNOs typically use Supervisory Control and Data Acquisition (SCADA) systems 

to acquire information about the status of the distribution system through Remote 

Telemetry Units, or Remote Terminal Units (RTUs). RTUs are typically located from 

Fig.1.1 Example of conventional power system structure 
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132kV down to 6.6kV substations and they are triggered frequently to transmit data 

through various communication media, for the status of the equipment they monitor 

or control [29]. 

Currently, centralised SCADA systems are employed to obtain the transmitted data 

from RTUs to the Distribution Control Centre (DCC). There, the information is used 

by the Distribution Management System (DMS) to evaluate the state of the network 

using a number of applications that perform network monitoring, generation 

scheduling, generation control, network analysis and security control applications 

[30]. Thereafter, control signals are transmitted from the SCADA server to terminal 

servers sitting at substations that host Substation Control Systems (SCS) [29]. The 

control signals are transferred from there to downstream RTUs, other Intelligent 

Electronic Devices (IEDs) or generators [31]. A simplified arrangement of a 

SCADA/DMS system is shown in Fig. 1.2. 

1.2 FUTURE ENERGY SYSTEMS 

Concerns over climate change and fuel security, are driving a change of the power 

generation mix. The UK Renewables Obligation [32] and the CO2 emission reduction 

targets (80% CO2 reduction by 2050 compared to 1990 levels [33]) are anticipated to 

encourage the increase of renewable and nuclear generation.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 Example function structures of centralised SCADA/DMS (Adapted from 

[30]-[31]) 
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Governmental incentives, such as the feed-in tariffs for generators of a power 

output up to 5MW [34], are expected to increase the presence of generation that is 

embedded in distribution networks. This type of generation, usually termed 

Distributed Generation (DG), is normally smaller than 100MW [25] and can be 

embedded in various voltage levels of the distribution system, changing the 

conventional unidirectional power flows. DG plants are usually operated close to their 

maximum power outputs reducing the generation’s mix flexibility to follow the time 

varying load demand. 

Various technical solutions are currently employed or proposed in the literature for 

the integration of distributed generators into distribution networks and increase the 

benefits from their wide deployment. These solutions include network reinforcement, 

alteration of settings of network equipment such as transformer taps, and use of 

Active Network Management (ANM) techniques and technologies [35]. The term 

active network entails continuous real time monitoring, decision making and control 

techniques that proactively manage network and generator constraints to meet DNOs’ 

obligations [29]. ANM is reported in [36] to include management and control of other 

Distributed Energy Resources (DERs) apart from generators. According to [37], 

Distributed Energy Resources include energy storage systems.  

In the UK, DNOs have been encouraged by the Office for Gas and Electricity 

Markets (OFGEM) to explore ANM techniques and technologies [38]. ANM 

technologies include techniques and devices, with regards to: voltage control; power 

flow control; fault level management; ancillary services capability; energy storage; 

Demand Side Management (DSM); Distribution Management Systems; Energy 

Management Systems (EMS) and RTUs; islanding capability; power electronics; 

communications and smart metering [35], [39], [40]. 

The operation of future power networks will make Distribution Network Operators 

evolve to Distribution System Operators (DSOs) [41]. According to the European 

Union directive 2003/54/EC [42], “Distribution System Operator means a natural or 

legal person responsible for operating, ensuring the maintenance of and, if necessary, 

developing the distribution system in a given area and, where applicable, its 

interconnections with other systems and for ensuring the long term ability of the 

system to meet reasonable demands for the distribution of electricity”. The term DSO 

will be used throughout this thesis instead of DNO.  
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The evolution of energy networks is anticipated to be encouraged by the recent 

regulatory framework model proposed by OFGEM [43]. According to the RIIO 

(Revenue set to deliver strong Incentives, Innovation and Outputs) model, increase in 

local generation, uptake of EVs and Energy Service Companies (ESCOs) (Fig.1.3) is 

required to decarbonise the energy sector and enhance security of supply. The EV 

uptake is particularly supported by the UK government through incentives for EV 

acquisition and use such as reduction in upfront costs and favourable tax regimes [44]. 

In addition, funds for eight pilot projects with regards to EV charging infrastructure 

installation and trials are reported in the Plug-in Vehicle Infrastructure Strategy [45].  

The proliferation of new power system technologies and companies that provide 

services will increase the interdependences between power system components and 

enhance the complexity of power system monitoring, operation and control [29], [31]. 

Recently, a change is being faced from a centralised approach to monitoring and 

control of power systems, to a more distributed approach with distributed information 

processing [31].  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.3 Example of power system with EVs, DGs and ESCOs (Adapted from [46])  
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The drivers for the change from a centralised to a more distributed approach include: 

 The complexity of relationships between various power system components 

which are dispersed in large geographical areas. 

 The need for improvements in speed, accuracy and reliability of monitoring, 

data acquisition and information processing. 

 The difficulty in a single centralised processing entity to monitor, evaluate and 

control the various components in real time. 

 The increased vulnerability of the power system to faults that can spread from a 

single component to the whole system due to increased interconnections 

between power system components and increased loading. 

A number of technologies are being developed to provide DCCs with flexibility, 

and openness to continuous changes and enhancements. These include: distributed 

systems; object and component technology; middleware; Common Object Request 

Broker Architecture (CORBA) and agent technology, distributed and Service 

Oriented Architectures (SOA) [47]. In such architectures, EMS/DMS functions of 

control centres appear as modular applications and may be offered as services that can 

be accessed by different users, control centres and enterprises [47]-[54].  An example 

of control centre application services is shown in Fig. 1.4. 

Battery charging of electric vehicles will generally increase electricity demand. If 

the process of EV battery charging is left uncontrolled, it is likely that the time that 

EV owners will plug their EVs in sockets or dedicated charging points to charge them 

will coincide with peak demands [4].  

 

 

 

 

 

 

 

 

Fig. 1.4 Control centre application services [47] 
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There are two ways to cope with the demand increase that EV battery charging will 

add:  

(i) To apply a passive and costly approach upgrading power system infrastructure.  

(ii) To use active approaches trying to manage EV battery charging and minimise 

costly infrastructural updates. 

A promising method for the integration of DERs in power systems that may 

embody the distributed processing paradigm is aggregation and control through the 

use of agents or Multi-Agent Systems (MAS) technology. DER aggregation aims to 

accumulate DER owners’ preferences and DER operational characteristics, in order to 

form a flexible portfolio of resources. MAS technology may be utilised to make this 

portfolio more controllable by enabling real-time active control of these resources. 

1.3 DER AGGREGATION 

DER aggregation techniques and methods have been studied within major 

European projects including [55]-[60]. Pilot installations and laboratories have been 

developed [61] to demonstrate DER aggregation and control concepts [62]. It is 

reported in [63], [64] that with DER aggregation: 

 Technical benefits can be provided to electrical power network operators, 

through the provision of ancillary services and deferral of infrastructure 

upgrades.  

 Financial benefits can be provided to commercial aggregators and DER owners 

by enabling their participation in electricity markets. 

Active customer participation or Demand Side Management is considered as a key 

sector of future energy networks. According to OFGEM, Demand Side Management 

is defined as “any mechanism that allows a customer’s demand to be intelligently 

controlled in response to events on the power system. Such events would include lack 

of network capacity or insufficient generation” [65].  

At present, in England and Wales, services from the demand side are procured by 

the TSO, National Grid Company [66]. These services may be provided to the TSO 

by single units individually, or representatives that aggregate multiple DER units to 

provide single points of contact [66]. These representatives are referred to as 

Aggregators and may be Electricity Suppliers, DSOs or ESCOs, according to [67].  
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In document [67] that was published for the National Grid Company, the potential 

of electric vehicles to provide ancillary services at the transmission level through 

coordination of their battery charging, was identified. In reference [68] it is reported 

that the use of services from the demand side could contribute to voltage support, line 

and distribution substation congestion relief, and power losses compensation. This 

thesis investigates how the load demand from electric vehicle battery charging, may 

be managed at the distribution level. 

1.4 THESIS OBJECTIVES 

The key questions that this thesis aims to address are to what is extent electric 

vehicle battery charging going to affect the grid demand at the national level and the 

steady state operational parameters of distribution networks. The following objectives 

were set: 

1. Evaluate how different EV charging regimes and uptake levels will impact: 

 The grid demand peaks of Great Britain and Spain: Two EV uptake levels 

were drawn from the literature and four EV charging regimes were 

defined. A deterministic approach was used to evaluate the anticipated 

grid demand changes from EV battery charging in the year 2030.  

 The steady state operational parameters of UK distribution networks: The 

impact on distribution transformers’ and cables’ loadings, voltages of 

distribution feeders and electrical line losses were evaluated with a 

deterministic and a probabilistic approach. A case study was built for the 

year 2030 using three EV uptake levels and a UK LV generic distribution 

network model. 

2. Design and develop an agent-based control system for the coordination of EV 

battery charging: The technology of agents was used as a coordination 

mechanism due to the multiple benefits it offers such as (i) proven reliability 

and robustness in industrial applications, (ii) simplicity and computational 

speed, (iii) flexibility and extensibility. The technology of neural networks for 

short term load forecasting was used due to (i) proven reliability and 

robustness in industrial applications and (ii) speed and accuracy in 

computations.  

3. Evaluate experimentally the developed control system.  
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The main beneficiaries of this research are power system operators. The study 

presented in Chapter 3 is aimed to provide grid operators with an insight of the 

anticipated changes in the load profile shape and peak increase or time displacement 

with EV utilisation. British urban residential distribution networks are currently 

operated close to their capacity that is limited by equipment loading. It will be shown 

in Chapter 4 that if EV battery charging is left uncontrolled, distribution transformers 

and cables will be overloaded, power losses will be increased and the voltage profile 

of distribution feeders will be modified. The agent-based control system presented in 

Chapter 5 was shown in Chapter 6 to manage the EV load and displace it to off-peak 

times, keeping the distribution network parameters within their operating limits. 

Therefore this research is also aimed to show distribution network operators that 

costly infrastructural updates can be deferred.   

1.5 THESIS STRUCTURE 

This thesis is structured in the following way: 

Chapter 2: A review of the literature related to the studies presented in subsequent 

chapters is given. An overview is presented regarding: (i) EV grid integration 

standards, (ii) EV battery charging impact on power systems, (iv) EV aggregation 

concepts, (v) intelligent agents and (vi) neural networks. 

Chapter 3: The impact of EV battery charging on grid demand at a national level is 

evaluated. A case study is defined that includes different EV charging regimes and 

EV uptake levels. A comparison between the national systems of Great Britain and 

Spain for the year 2030 is presented.  

Chapter 4: The impact of EV battery charging on distribution networks is addressed. 

Two approaches are used: (i) a deterministic approach and (ii) a probabilistic 

approach. A case study is defined for the year 2030 and the effect of EV battery 

charging on a UK generic distribution network’s steady-state operating parameters is 

evaluated.  

Chapter 5:  A hierarchical Multi-Agent System (MAS) concept for the coordination 

of EV battery charging is defined. The design of the MAS is analysed and the 

functionalities of each agent are described.  

Chapter 6: The multi-agent system built in Chapter 5 was tested experimentally. The 

experiments were conducted in Tecnalia’s laboratory facilities in Bilbao, Spain. The 
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hardware equipment and communication software used are described. A case study 

for the year 2030 was built and is defined. The experimental procedure and results are 

presented. The operation of the control system is evaluated.   

Chapter 7: The main conclusions of this thesis are summarised. Limitations and 

suggestions for further work on the subject of this thesis are given. 
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CHAPTER 2  

 

LITERATURE REVIEW TO 

ELECTRIC VEHICLE GRID 

INTEGRATION  

2.1 ELECTRIC VEHICLE GRID INTEGRATION STANDARDS 

The widespread use of Electric Vehicles will require the development of standards 

to ensure harmonisation and interoperability between different manufacturers, 

technologies and country regulations, and provide simplicity to EV owners.  

European standards organisation bodies are working towards a common European 

standard, according to [69]. The standardisation bodies involved are: (i) Comité 

Européen de Normalisation (CEN), (ii) Comité Européen de Normalisation 

Électrotechnique (CENELEC), and (iii) the European Telecommunications Standards 

Institute (ETSI). The common European standard is anticipated to deal with issues 

regarding safety, interoperability and smart charging requirements [69]. 

The International Electrotechnical Commission (IEC) has announced workings on 

the standard IEC 62196, according to [70]. IEC 62196 is anticipated to specify types 

of electrical connectors between EVs and electricity networks. 

The Institute of Electrical and Electronic Engineers (IEEE) has formed a Working 

Group (IEEE WG P2030.1) to produce a document that will serve as a guideline for 

utilities [71]. This guideline is being developed in cooperation with the Standards 

Association of Automotive Engineers (SAE) of the United States (US). Cardiff 
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University has been part of Task Force 2 that is concerned with the impact of EVs in 

power systems.   

In the UK, the Energy Networks Association (ENA) has formed a task force to 

“ensure that network and future smart grid requirements are fully considered in 

decisions affecting specification and implementation of electric vehicles and plug-in 

hybrid electric vehicles including those used in commercial and passenger transport” 

[72]. It is reported in [72] that ENA’s task force aims “to identify work required to 

develop UK standards for:  

 “connection hardware, including vehicle and charging point connectors and 

cables, 

 charging points, including vehicle charge rates and types of charging station, 

together with recommended network requirements, 

 wireless charging, including electrical standards and Electro-Magnetic Fields 

(EMF) considerations, 

 energy metering, including data exchange and industry processes, 

 communications and smart grid integration telling networks where vehicles are 

charging and telling vehicle users what can they use” [72].  

 

2.2 TECHNICAL IMPACT OF ELECTRIC VEHICLE BATTERY 

CHARGING IN POWER SYSTEM 

The charging of electric vehicle batteries will increase electricity demand. The 

magnitude and variance of this increase will depend on the EV uptake levels, the 

power rating of the EV chargers, and the connection time and duration of these 

vehicles to the electricity network.   

2.2.1 Technical Impact of EV Grid Utilisation on Grid Demand  

A number of studies that addressed the impact of EV battery charging on grid 

demand have been completed. In the United States, four studies have been published 

for the Department of Energy. 
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A. US Studies of EV Battery Charging Impact on Grid Demand 

Electrical load demand data of six US regions were used by Denholm and Short in 

[73] to address filling the valley
1
 in electricity demand to charge EV batteries. It was 

assumed that 40% of the average distance travelled in each region would be by 

electric vehicles and that the energy consumption of EVs would be 0.21kWh/km. The 

findings showed that EV charging would imply an increase in minimum load, of 

between 18% and 40% depending on the region under investigation.  

In document [74], Kintner Meyer et al. compared the number of EVs that could be 

charged using a valley filling control, to the number of EVs that could be charged 

only during the period 18:00 and 06:00. The US national system load data from 2002 

was considered and the EV fleet was divided equally into four EV technology 

categories, characterised by different battery capacities and energy consumption. The 

results showed that 84% of the vehicle fleet could be charged under the valley filling 

control, compared to 43% that could be charged during the period 18:00 to 06:00, 

according to the generation capacity of the studied year. 

Hadley and Tsvetkova studied the effect of EV battery charging on the generation 

system of 2020 and 2030 for 13 US regions in [75]. Evening and night charging 

regimes were used. In the evening regime, half of the EV fleet would start the 

charging process at 17:00 and the rest at 18:00 p.m. In the night charging regime, half 

of the EV fleet would start charging at 22:00 and the rest at 23:00. Three power rating 

levels for EV chargers were considered for each regime: 1.4kW, 2kW and 6kW. The 

authors concluded that additional generation would only be necessary to cover the 

needs for EV battery charging, for the case of evening charging and 6kW charger use.  

Parks et al. [76] considered the application of multiple charging regimes in order to 

study the effects of EV utilisation on grid demand for the area of Colorado in US. The 

charging of 500,000 EVs with 0.21 kWh/km energy consumption and 7.2 kWh 

battery capacities was simulated. Four charging regimes were used: 

(i)  Uncontrolled regime: charging of EVs starts as soon as they return home. 

(ii) Delayed regime: charging of EVs starts at 22:00. 

(iii) Off- peak regime: charging of EVs starts at 23:00 and stops at 07:00. 

(iv) Continuous regime: EVs are charged throughout the whole day.  

                                                 
1 Load demand valley filling typically means the flattening of a load profile  
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It was assumed in [76] that the charger rating for each regime was 1.4kW except for 

the off-peak regime, in which 3.2kW chargers were considered. The uncontrolled 

regime case resulted in an increase of 2.5% in peak demand. The continuous regime 

would increase the peak demand by 4.6%.  

B. EU Studies of EV Battery Charging Impact on Grid Demand 

In document [4] that was published for the British government, the annual energy 

demand required to cover the EV battery charging needs for different EV uptake 

levels in the UK, was calculated. It is reported that the EV battery charging demand 

would be between 4.2TWh-31TWh (1.1%-7.9%) assuming a total electricity demand 

of 390TWh for the year 2030. The EV uptake levels used in [4] are shown in Table 

2.1 and the annual calculated EV energy demand for each level is shown in Table 2.2. 

The authors of document [4] concluded that UK’s generation will be sufficient to 

cover the calculated EV battery charging demand, assuming that this demand will be 

managed with ways that will aim to avoid EV battery charging occurrence during 

peak load hours. However, this issue was not further studied.  

Table 2.1 Projected number of BEVs and PHEVs in the UK according to [4] 

Year 2020 2030 

Scenario/EV Type BEV (units) PHEV (units) BEV (units) PHEV (units) 

Business as Usual 70,000 200,000 500,000 2,500,000 

Mid-Range 600,000 200,000 1,600,000 2,500,000 

High-Range 1,200,000 350,000 3,300,000 7,900,000 

Extreme Range 2,600,000 500,000 5,800,000 14,800,000 

 

Table 2.2 Annual EV electricity demand in the UK according to [4] 

Year 2020 2030 

Generating capacity 100GW 120GW 

Projected annual UK demand 360TWh 390TWh 

EV demand GWh GWh 

Business as Usual  400 4,200 

Mid-Range 1,800 6,700 

High-Range 3,500 17,000 

Extreme Range 7,400 31,000 
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Researchers from the Caledonian University of Glasgow [77] studied the effect of 

EV battery charging on the grid demand of GB. A 10% EV uptake based on 2008 car 

fleet figures (that translates to 2.84 million cars) and grid demand data for the year 

2009 were used. The charging characteristics of three types of batteries were used 

with a maximum power rating of 7kW. Three charging regimes were considered: 

(i) Uncontrolled regime: charging of EV batteries occurs at the last daily trip home 

arrival time, which is between 17:00-18:00 for company vehicles and 17:30-

18:30 for private vehicles.  

(ii) Off-peak charging regime: charging of all EV batteries starts between 21:00-

22:00 and stops at 06:00. 

(iii) Smart charging regime: charging of all EV batteries occurs during the cheapest 

hours of the day in terms of electricity prices. The starting time for charging was 

assumed between 23:00-24:00 and the ending time at 07:00. 

The results from study [77] showed that: 

1. If EV batteries would be charged every day: 

 The uncontrolled regime would increase the winter peak demand by 

approximately 10%. 

 The off-peak regime would increase the winter peak demand by 6.1%. 

 The smart charging regime would not increase the winter peak demand. 

2. If EV batteries would be charged every two days: 

 The uncontrolled regime would increase the winter peak by 5.84%. 

 The off-peak regime would not increase the winter peak demand. 

 The smart charging regime would not increase the winter peak demand. 

The European project Mobile Energy Resources in Grids of Electricity (MERGE) 

examined the effect of residential EV battery charging on electricity demand of six 

European countries, including GB and Spain [78]. Two EV charging regimes were 

used:  

(i) Dumb charging: EV owners would plug-in their EVs as soon as they return 

home from the last daily trip.  

(ii) Smart charging: a valley filling approach is adopted.  
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Study [78] used the following assumptions: 

 The average energy requirement of each EV per day is 6.4 kWh. 

 The efficiency of EV chargers is 90% and the rated power is 3kW. 

 The EV uptake is 10% of each country’s car fleet in 2009. 

 The grid demand excluding the EV demand comes from typical summer and 

winter days of 2009. 

The results reported in [78] show that a dumb charging regime would increase the 

peak demand of the six countries examined between 6% and 12%.The peak demand 

of GB would increase by 8% and the peak demand of Spain by 7%. The valley filling 

control showed that the specific EV uptake examined, would not increase the daily 

peak demand of any country under investigation. 

C. Contribution of this Thesis on EV Battery Charging Impact on Grid 

Demand 

 In Chapter 3 of this thesis, the effect of residential EV battery charging on the 

electricity demand peaks of the national systems of GB and Spain is examined. The 

study is an outcome of collaboration with the research institute Tecnalia in Spain and 

was submitted for publication before studies [77]-[79] became publicly available. 

However, it will be shown in Section 3.7 that the results from the three studies are in 

good agreement. 

The present study differs from study [77] in the following points: 

 The present study investigated the effect of uncontrolled, dual tariff, variable 

price and mixed charging regimes for residential battery charging of EVs. The 

definition of these regimes is provided in Section 3.4 of Chapter 3. Study [77] 

did not investigate a mixed charging regime. 

 The present study used scenarios for the EV uptake and grid demand for the 

year 2030. Study [77] used EV uptake data for the year 2008 and grid demand 

data for 2009. 

 The present study investigated the effect of residential EV battery charging on 

grid demand peaks for the Spanish system as well. 
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The present study differs from study [78] in the following points: 

 Study [78] investigated only uncontrolled and valley filling charging regimes. 

 Study [78] investigated the effect of a 10% EV uptake of the vehicle fleet of 

2009 on the grid demand of the year 2009. 

2.2.2 Technical Impact of EV Grid Utilisation on Distribution Networks 

Several studies that address the impact of EV battery charging on power 

distribution networks have been completed. While there are some similarities across 

these studies, each of them considers a different approach in terms of the electric 

system, analysis method/software, electric vehicle uptake and charging scenarios 

analysed. A summary of the reviewed studies is provided in Table 2.3. 

Table 2.3 Summary of documents that addressed EV impact on distribution networks 

Electricity 

network 

EV related 

assumptions 

Method/ 

software 

Study aims Source 

Distribution 

network in 

US with 

1232 

customers. 

10 PHEV uptake 

levels from 0 to 100%. 

EV charger of 1kW. 

The charging period is 

17:00 -23:00. 

Load flow studies 

with PHEV 

Distribution 

Circuit Impact 

Model (PDCIM).  

Impact on 

underground 

cables and 

transformers. 

[79] 

Distribution 

transformer 

feeding 

three 

residences. 

Two EV chargers of 

120 V, 15 A used in 

charging period of 

21:00-08:00. One EV 

charger of 240V, 30 A 

used in a charging 

period of 00:00-03:00. 

Use of first order 

electro-thermal 

model for a 

distribution 

transformer. 

Impact on loss 

of life of the 

transformer. 

[80] 

Energy hub 

network 

including 

electric, 

heat loads 

and 

PHEVs. 

PHEVs are introduced 

as software agents into 

energy hub networks.  

Integration 

scheme for 

PHEVs into 

power networks, 

modelled within 

energy hubs. 

Assessment of 

energy hub 

network with 

Multi-Agent 

Transport 

Simulation 

(MATSIM). 

[81] 

MV 

network, 

supplied by 

a HV/MV 

transformer 

and five 

DG units. 

EV uptake levels of 

25% and 50%. 

 

 

 

A mobility model 

and stochastic 

system loading is 

used for load flow 

studies. 

Distribution of 

node voltages 

and cable 

overloads 

with/without 

EVs and smart 

charging. 

[82] 

Portuguese 

semi-urban 

15kV 

1.5 vehicles per 

household on average. 

Three EV types; 

Load flow studies 

with PSS
®
E and 

stochastic inputs. 

Impact on 

transformer 

and line 

[83] 
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network. Hybrid EV: 1.5 kW (6 

kWh), Medium EV: 

3kW (12 kWh), Large 

EV: 6 kW(24kWh). 

Algorithm to 

maximize the EV 

charging.  

loadings, node 

voltages and 

network losses. 

Detailed 

distribution 

network 

from MV 

substation 

to service 

entrance. 

EV uptake levels of 

2%, 5% and 10%. 

Two EV chargers of 

12A (120V) and 30A 

(240V) were used for 

peak and off-peak 

load conditions.  

Deterministic and 

stochastic 

analysis using 

Distribution 

Systems 

Simulation Model 

(DSSM) software. 

Impact on 

thermal 

loadings, 

unbalance, 

harmonic 

distortion and 

power losses. 

[84], 

[85] 

 

 

 

 

IEEE 34-

node test 

feeder was 

scaled to 

230V to 

represent a 

residential 

network. 

PHEV uptake levels 

of 10, 20, and 30%. 

EV type: 4kW 

(11kWh).  

Three charging 

periods: 09:00-18:00, 

18:00-21:00, 10:00-

16:00. 

Stochastic inputs 

for EV charging 

duration and SoC 

were used as 

inputs to a load 

flow algorithm.  

Optimisation 

aiming to 

minimise 

network losses. 

[86] 

3-node 

network 

with co-

generation 

and a 

PHEV 

aggregator. 

PHEV uptake levels 

of 10% and 30%. 

Three charging 

periods: 10:00-17.59, 

09:00-20.59 and 

continuous. 

Time Coordinated 

Optimal Power 

Flow (TCOPF) 

with gPROMS
TM

 

software. 

Optimisation 

aiming to 

minimise 

network losses. 

[87] 

Two 

distribution 

networks 

from the 

US. 

PHEV uptake levels 

of 10%, 25%, 50% 

and 100%. Two EV 

charger types: 15A 

(120V) and 40A 

(240V). 

SynerGEE
® 

load 

flow analysis tool.  

Impact on 

distribution 

substation 

equipment 

loading. 

[88] 

UK LV 

generic 

distribution 

network. 

EV uptake levels of 

10% , 20%, 30%. 

Three charging 

scenarios: 

uncontrolled, off-peak 

and smart charging. 

Deterministic 

load flow and 

statistical 

analysis. 

Impact on 

distribution 

transformer, 

node voltages, 

power quality, 

and imbalance. 

[89] 

Two 

distribution 

networks of 

6,121 and 

61,304 

supply 

points. 

EV uptake levels of 

35%, 51% and 62%. 

Peak and valley 

charging were tested. 

Four EV types with 

four charging rates 

each. 

Steady-state load 

flow studies. 

Calculation of 

the 

reinforcement 

required to 

accommodate 

the EVs. 

[90] 

Danish 

distribution 

network 

with wind 

generation.  

EV uptake levels of 

10% and 20%. A peak 

load system scenario 

was studied. EV type: 

16A, 230V (16kWh). 

Deterministic and 

probabilistic 

analysis is used 

for load flow 

studies. 

Impact on 

voltage profile 

of distribution 

feeders. 

[91] 
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German 

suburban 

distribution 

network. 

EV uptake levels of 

2.5, 10 and 25% Four 

types of EV chargers: 

2.7, 4.6, 14 and 60kW. 

Deterministic 

load flow studies. 

Impact on 

distribution 

transformer 

loading. 

[92] 

Dutch LV 

distribution 

network. 

EV uptake level of 

75% was used. Two 

types of EV chargers: 

3 and 10kW. 

Deterministic 

load flow studies. 

Impact on 

transformer 

and cable 

loadings and 

node voltages. 

[93] 

UK 

distribution 

system. 

EV uptake levels of 

10% and 20% were 

used. 

Stochastic 

analysis and 

deterministic load 

flow study. 

Impact on load 

profile and line 

congestion 

levels. 

[94] 

 

The majority of the studies presented in Table 2.3 used load flow based simulations 

to address the impact of EV battery charging on:  

 Thermal loadings (congestion levels) of distribution transformers and cables. 

 Voltage of distribution network nodes and feeders. 

 Power line losses. 

A. Deterministic Studies 

Deterministic studies are categorised into single-snapshot and multi-period studies.  

In single-snapshot studies, fixed locations and power ratings for EV chargers and 

fixed values for the remaining distribution network loads are used. Load flow 

algorithms have been executed to determine the states of the equipment and 

operational parameters of the network for the given configuration [84], [88], [92].  

In multi-period studies, daily simulations have been performed, assuming that EV 

charging locations and EV charging periods would be fixed. Daily load profiles have 

been used for the remaining system’s loads [79], [80], [87], [89], [90], [91], [93].  

B. Probabilistic Studies 

Probabilistic studies used stochastic procedures to define distribution network 

loading conditions and acquire probability densities of the operational parameters of 

the studied networks.  

In document [82], the plug-in time and duration for each EV were acquired by a 

mobility model for a full year. In reference [83], the connection of EVs was assumed 

to coincide with home arrival, based on Portuguese traffic patterns, and the duration 
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of charging was assumed to be four hours. Daily sequential power flows were 

executed to obtain probability densities of nodal voltages, thermal loadings and 

losses. In document [86], three charging periods of EVs were predefined and a 

centralised scheduler was used to optimise the charging rates of each EV for each 

hour of each period, within distribution network voltage and cable limits. In reference 

[91], the charging patterns of the EVs were extracted from the traffic pattern of 

conventional vehicles and nodal load values were created to execute 50 load flows per 

hour for a daily simulation. The study outputs were mean hourly node voltage values. 

C. Contribution of this Thesis on EV Battery Charging Impact on 

Distribution Networks 

In Chapter 4 of this thesis, deterministic and probabilistic studies are presented 

using a typical British LV distribution network. Both studies evaluated the impact of 

EV battery charging on distribution transformers and LV cable loadings, node 

voltages and power line losses. It was assumed that the single-phase connections were 

distributed evenly across the three phases and therefore voltage unbalance studies 

were not conducted. EV uptake estimates for the year 2030 were used.  

i) The deterministic study presented in Chapter 4 shows single steady state load 

flow snapshots using a UK generic LV distribution network for minimum and 

maximum loading conditions. The study method is similar to the studies [84], 

[85], [88] however, it differs in the data and electrical network used. The data 

used are estimates for the UK for the year 2030 and the LV distribution network 

model used comprises a representative configuration for British distribution 

networks. The same network was used in [89], with data for the year 2003, but 

the impacts on electrical line losses and distribution transformer and cable 

loading were not investigated. The present study showed that EV battery 

charging will overload the cables and transformers, and modify the voltage 

profile of distribution feeders of the network under investigation. A network 

reinforcement approach is evaluated. Different EV uptake levels are used for the 

evaluation of the studied impacts using various reinforcement combinations of 

underground cables and distribution transformer. A case where micro-

generators are installed is also evaluated.  

ii) The probabilistic study presented in Chapter 4 shows probability densities of the 

studied impacts using seasonal daily load profiles and sequential power flows. 
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A number of impact factors were modelled as uncertain variables: (i) residential 

load profiles, (ii) EV types, (iii) EV charging equipment power rating and 

locations, (iv) EV charging connection time and duration, (v) micro-Generation 

(mGen) types, generation profiles and locations of installations. The first three 

factors have been considered in [82], [83], [86], [91] but the remaining factors 

are introduced in the present research. A smart charging function is evaluated.  

2.3 EV AGGREGATION AND CONTROL CONCEPTS 

The aggregation of EV resources to provide services to electricity system operators 

and enable EV participation in electricity markets is a recent concept. A number of 

studies that address the use of EV batteries to provide power system frequency related 

services to TSOs, have been completed [83], [95]-[102]. This section reviews the 

literature with regards to aggregation of EV resources, focusing in particular on 

concepts that study the coordination of EV battery charging based on EV owner 

preferences and distribution network constraints.  

2.3.1 Definition of Aggregator Types 

The company types identified in the literature to aggregate DERs, are ESCOs, 

Energy Service Provider Companies (ESPCs) and simply Aggregators. 

An ESCO, according to a report prepared for the European Commission [103], is 

“a natural or legal person that delivers energy services and/or other energy efficiency 

improvement measures in a user’s facility or premises, and accepts some degree of 

financial risk in so doing. The payment for the services delivered is based (either 

wholly or in part) on the achievement of energy efficiency improvements and on the 

meeting of the other agreed performance criteria”.  

In contrast to ESCOs, ESPCs are “natural or legal persons that provide a service 

for a fixed fee or as added value to the supply of equipment or energy. Often the full 

cost of energy services is recovered in the fee, and the ESPC does not assume any 

(technical or financial) risk in case of underperformance” [103]. 

An aggregator, according to the European project birth of a European Distributed 

Energy Partnership (EU-DEEP) [104], is a "legal organisation that consolidates or 

aggregates a number of individual customers and/or small generators into a coherent 

group of business players”. “An aggregator is therefore a facility manager able to 

design and offer energy services downstream to energy customers (at the micro level: 
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a large number of contracts) and upstream to several key players (at the macro level: 

system operators, electricity traders, etc.)”. “Aggregators can also be viewed as 

entities that bring a group of consumers together to buy electricity” [104]. 

At present, in the UK, only companies that hold a supplier’s license are allowed to 

supply electricity. These companies cannot hold a license of a DSO, according to the 

UK Electricity Act [105]. Supplier companies have been developing special electricity 

tariffs for EV charging [106] and cooperating with EV charging point and EV 

manufacturers [107].  

In document [108] of the European project MERGE, it is reported that with the 

current regulation it is more justifiable to consider EV aggregators as parts of energy 

supplier companies or the supplier companies themselves. A control and management 

framework for EV aggregation was developed within MERGE [109].  According to 

that framework [109], the company that aggregates EV demand and coordinates EV 

battery charging, was named Electric Vehicle Supplier/Aggregator (EVS/A). A 

number of agents that have been developed to coordinate EV battery charging and 

presented in Chapter 5 of this thesis are assumed to belong to such a company. The 

locations of the agents in a power distribution system are provided in Section 5.2. 

2.3.2 Aggregation and Control Concepts of Electric Vehicles in Distribution 

Networks 

Two approaches are currently found in the literature with regards to coordinated 

control of EV battery charging considering distribution network technical constraints: 

(i) centralised control and (ii) distributed control. 

A. Centralised Control of EV Battery Charging  

In centralised control approaches, optimisation algorithms have been used to obtain 

optimal schedules for charging EV batteries within distribution network limits and: 

 Minimise power losses [86], [110], [111]. 

 Minimise voltage deviations on distribution feeders [112]. 

 Maximise the amount of energy delivered for EV battery charging [113]. 

 Minimise the cost of charging for the EV owners [114]-[118]. 

 Fill the valley of the load curve at the primary and secondary distribution 

transformers, by minimising the load demand variance [119]. 
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The studies [86], [110]-[119], assumed that the relevant data for each EV and 

measurements for each node of the electrical network would be transferred to a 

centralised controller. Thereafter, optimal power flows or other similar algorithms 

would be executed for finite horizons (i.e. a day) and individual EV schedules would 

be obtained. The EV schedules would be transmitted to EV controllers and the set-

points at each time instant would be applied.  

In document [120] that was published from International Business Machines 

(IBM), it is argued that the responsible company for managing EV battery charging 

(termed in [120] EV fleet operator) should be separated from the DSO, and thus not 

have access to the topology of the distribution network. However, it is assumed that 

the loading limits of the network would be made available to this fleet operator before 

the decision making procedure.  

The assumptions made in documents [86], [110]-[120] to obtain EV charging 

schedules within distribution network constraints are summarised: 

1. Predictions for distribution network loading conditions would be in place prior 

to the optimisations.  

2. The characteristics of all EVs (i.e. battery charging efficiency and technology) 

are identical to reduce the variables of the optimisations.  

3. The EV owners’ preferences (i.e. EV connection and disconnection times, and 

energy requirements) would be known or predicted before the optimisations. 

The centralised approaches of the reviewed studies [86], [110]-[120] do not report 

addressing control in real-time. Moreover, the calculation process is reported to be 

time consuming and resource-expensive [119].  

B. Distributed Control of EV Battery Charging  

In distributed control approaches, the problem of finding individual EV profiles 

that satisfy a set of requirements is broken into smaller sub-problems and the 

computations for each sub-problem are executed separately. The EV owners and EV 

aggregators are represented by software agents. An agent is a piece of software that is 

able to perceive its environment through sensors and act to that environment through 

actuators [121]. For example, an EV agent represents the EV owner and 

communicates with other agents to decide its charging schedule and satisfy the 

Aggregator’s policy.  More details on agents are provided in Section 2.4. 
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Researchers from the University of Michigan, California Institute of Technology 

and Carnegie Mellon University of the US [122]-[124], addressed filling the valley of 

the load curve using finite-horizon non-cooperative dynamic game theory approaches. 

The proposed algorithms aim to obtain individual schedules for EVs satisfying energy 

capacity limits. A planning period between EV agents and a coordinator agent that 

represents the aggregator takes place prior to the energy delivery. The main process is 

summarised: 

1. The EV agents provide the coordinator agent with their decision (charge or idle) 

for each interval of their connection period.  

2. The coordinator agent updates an energy cost value based on the total load 

demand (which is EV charging demand plus the remaining system loads) and 

distributes this value to the EV agents.  

3. The EV agents re-evaluate their decision based on the received cost value and 

the EV owner preferences.  

The above process is repeated until all EV agents remain on their decision. The 

coordinator agent is assumed to know the available energy for trading. The link with 

the electrical network is not mentioned in [122]-[124]. 

Researchers from Leuven University of Belgium [119] proposed an MAS where 

one coordinator agent is located at the MV substation and one coordinator agent at the 

LV substation. The aim of the MAS is to flatten the load profile at both MV and LV 

transformers. Two operating alternatives are proposed: 

i) Each EV agent sends the power rating and energy requirements to the LV 

substation agent. The LV substation agent schedules the charging of the EV for 

the whole duration of the EV connection, in communication with the MV 

substation agent. Load forecasts for the remaining loads of the distribution 

network are assumed to be in place for the whole period.  

ii)  Each EV agent sends only the power rating of the charging point to the LV 

substation agent that decides in communication with the MV substation agent 

whether each EV will charge at the next time interval.  

The first alternative showed that the variance of the load profile was lower than in the 

second alternative.  
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   Researchers from Southampton University of England [125]-[126], proposed an 

MAS where a coordinator agent is assumed to know the amount of energy that can be 

allocated to the EVs during a given period and proposed an algorithm that intends to 

incentivise EV owners to report truthfully the duration of the EV connection in order 

to avoid discrimination. It is reported in [125], that the algorithm accomplishes that, 

by leaving electricity units unallocated. The algorithm does not take into account 

arrivals of EVs during the given scheduling period. 

C. Contribution of this Thesis on Control of EV Battery Charging  

Distributed management and control of EV battery charging concepts [122]-[126] 

do not report interactions between aggregator companies and the DSO. Furthermore, 

unforeseen circumstances such as emergency events are not addressed.  

The technology of Multi-Agent Systems is used in Chapter 5 of this thesis for the 

development of a control system that considers:  

 Real-time uncertainties.  

 Interactions between the aggregator and the DSO.  

 Emergency events.  

2.4 DISTRIBUTED CONTROL SYSTEMS, AGENTS AND MULTI-AGENT 

SYSTEMS  

Distributed control technologies have been used by numerous researchers in recent 

years in power engineering applications. Two distinct technologies of distributed 

computing have been employed by utilities; SOA [54] and MAS [127]. 

SOA is currently used in Spectrum Power Control System developed by Siemens 

[54] and utilised by the Spanish electric utility Iberdrola. SOA is a computing 

paradigm that aims to support high performance, scalability, reliability, and 

availability [47]. Services are applications that run on a cluster of centralised servers 

and may be accessed through programmable interfaces [47]. The hardware resources 

required for the execution of these applications may be split among various machines 

to accelerate the process. This is called Grid Computing [47], [128]. In SOA, the 

registration and search for each service is done through a mediator (i.e. broker). When 

the communication between a client (i.e. service requester) and a server (i.e. service 

holder) is implemented via the web using particular types of machine readable 
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protocols (such as eXtensible Markup Language or XML), then this type of SOA is 

called Web-Services architecture according to [47], [128]-[129].  

A web-service can be seen as an application provided by an agent [47], [130], or 

conversely, an agent may use a web-service [131]. There are some distinct features of 

agents that differentiate them from services. According to Jennings and Wooldridge 

[132], agents and MAS adopt the object-oriented paradigm by keeping the 

information needed to solve each sub-problem private.  Moreover, they enhance this 

paradigm by incorporating control over their actions [132].  

The basic properties of an agent, according to [133], are: 

 Autonomy: the ability to operate in order to meet its design objectives without 

constant guidance from the user. 

 Responsiveness: the ability to perceive the environment and act in response.  

 Social ability: the ability to interact with other agents. 

 Pro-activeness: the ability to reason and initiate its own actions in order to meet 

its design objectives. 

The above characteristics differentiate agents from objects and web-services, in the 

sense that an agent may have the ability to decide upon its actions, according to the 

resources, skills and services that it may possess and access [132]. In addition, 

communication and interaction between agents in MAS can be carried by a richer set 

of standards that may support interoperability [128]. Such standards were proposed by 

the Foundation of Intelligent and Physical Agents (FIPA) [134].    

According to McArthur et al. [128], “applications where the use of agents is 

justified are normally cases where the characteristic of autonomy offers tangible 

benefits”. In the MAS proposed in Chapter 5 of this thesis, the property of autonomy 

is employed for the operation of the MAS in normal operating conditions and in 

emergency operating conditions. In this thesis, normal operation refers to distribution 

network operation within technical limits and emergency operation refers to operation 

when distribution network technical limits are violated. During emergency operation, 

the MAS acts autonomously to restore normal operating conditions.  
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The technology of MAS has been used in a range of applications in power system 

engineering. Distinguished examples of MAS technology use in real world power 

engineering industrial applications include:  

 The ARchitecture for Cooperative Heterogeneous ONline Systems 

(ARCHON
TM

) system developed by EA Technology and the University of 

Southampton. The use of ARCHON
TM

 for power system diagnostics and outage 

management in a system operated by the Spanish electric utility company 

Iberdrola, is reported in [135]. 

 The Protection Engineering Diagnostic Agents (PEDA) system for data retrieval 

and analysis developed by the University of Strathclyde. The use of PEDA to 

support protection decision making in a transmission system operated by the 

British Company Scottish Power Powersystems, is reported in [136].  

 The IntelliTEAMII system developed by S&C Electric Company has been used 

for outage management and service restoration in a Canadian power distribution 

system operated by ENMAX Power Corporation [137]. 

A number of laboratories exist that host DER and have been used for developing 

and testing agent-based applications for DER aggregation. Important examples are: 

 The laboratory in the National Technical University of Athens (NTUA) [138]. 

 The laboratory in Tecnalia research institute [139]. 

 The laboratory in Durham University [140]. 

2.4.1 Foundation of Intelligent and Physical Agents (FIPA) 

FIPA is a standards committee of the IEEE Computer Society. FIPA develops 

specifications and standards that support interoperability among agents and agent 

based applications [141]. A FIPA compliant Multi-Agent System MAS should follow 

the formation described in the Agent Management Reference Model [142] which 

provides “the normative framework within which FIPA agents exist and operate. It 

establishes the logical reference model for the creation, registration, location, 

communication, migration and retirement of agents” [142]. 

 Each module of the reference model is a necessary component for a FIPA-

compliant MAS [142]-[143]. Agents are loaded on an Agent Platform (AP) that 

provides the physical infrastructure on which agents are deployed. Each agent may 
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provide a service as part of the MAS and may have access to resources and posses 

skills, both denoted in Fig. 2.1 as Software [142]. The service of each agent can be 

published in the Directory Facilitator (DF) that provides yellow pages services.   

 

 

 

 

 

 

 

 

 

A mandatory component of an agent platform is the Agent Management System. 

The Agent Management System manages the operation of the agent platform 

providing unique identification addresses-Agent Identifiers (AIDs) to each agent 

hosted in the platform and maintaining the agents’ status in its directory [142]. The 

Message Transport System (MTS) transports intra-platform and inter-platform FIPA-

compliant messages between agents [142]-[143]. The language of the messages is the 

Agent Communication Language (ACL) [144]. The structure of an ACL message is 

shown in Fig. 2.2. 

The ACL messages that are transported between agents may comprise of various 

parameters with the type of communicative act (performative) being the only 

mandatory parameter. The Agent Communication Channel (ACC) is provided by the 

AP and offers the MTS that uses the message transport information included in the 

message’s envelope to transport the message. Interaction Protocols (IPs) are 

standardised communication patterns which provide a pre-defined sequence of 

communicative acts between agents. FIPA’s IPs’ specifications can be found at [145]. 

 

 

 

 

Fig. 2.2 FIPA ACL message structure [142] 

Fig. 2.1 Agent management reference model [142] 
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2.4.2 Agent Development Software Selection 

Numerous agent development software packages are available, each offering 

different functionalities. Discussion and evaluation of more than 50 packages can be 

found in references [146]-[157]. The main criteria for the choice of the package were: 

appropriateness for the specific application and active developer society/high activity.  

Table 2.4 presents the most appropriate software packages that were considered 

after the literature review, due to their FIPA compliance. JACK
®
 and JADE software 

packages have proved robustness and reliability in industrial applications [158], [159]. 

JADE was the package used in this research due to the following reasons:  

(i) High activity of JADE community, with continuous updates of source code.  

(ii) Proven reliability and robustness [160] in simulation studies and real world 

applications, including major European projects [55]-[60] and power 

engineering applications [138]- [139]. 

2.4.3 JAVA
TM

 Agent Development Framework (JADE) 

JADE provides all the facilities required to develop an agent-based application:  

 Distributed runtime environment that implements the life-cycle support features 

required by agents.  

 A library of classes that developers can use to implement their agents.  

 A suite of graphical tools that facilitates the debugging, administration and 

monitoring of the executed agents.  

 The Agent Management System and the Directory Facilitator. 

 

Table 2.4 Comparison of agent development software 

Software FIPA-Compliance Availability Activity Source 

JADE Fully Public High [158] 

JACK® Not Readily Commercial Medium [162] 

Agent Factory Fully Public Low [163] 

Zeus Fully Public Low [164] 

Comtec Fully Public Low [165] 

FIPA-OS Fully Public Low [166] 

Tryllian Fully Public Low [167] 
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Each JADE agent has a unique identity that includes its name and address and is 

contained within an AID. The agent addresses are transport addresses inherited by the 

platform, where each platform address corresponds to a Message Transport Protocol 

(MTP) end point in which FIPA-compliant messages can be sent and received.  

The tasks performed by an agent are carried out within a code format which is 

called behaviour. A behaviour is implemented as an object of an abstract class that 

provides the skeleton of the task to be performed [142]. This class is provided by 

JADE and can be modified or enhanced according to the needs of the programmer. 

The communication between agents is based on asynchronous message passing [142]. 

When an agent sends a message to a recipient, this message is stored to the recipient’s 

message queue through the JADE run-time [142]. The recipient is then notified. 

However, it is at the discretion of the developer when, or if, the agent is going to pick 

up the message from the message queue (Fig. 2.3).  

The structure of each JADE agent consists of three layers [142] (Fig. 2.4): 

1. Message handling layer enables communication with other agents. 

2. Behavioural layer contains the core decision making software of the agent (i.e. 

agent logic). 

3. Functional layer is used by the agent to apply an action to a physical entity (for 

example sending a set-point to a battery inverter). 

 

 

 

 

 
Fig. 2.4  Layered structure of a JADE agent [142] 

 

Fig. 2.3 JADE communication architecture [142] 
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2.4.4 Short Term Load Forecasting with Artificial Neural Network  

In multi-agent systems where forecasts of electrical load in the very short term (i.e. 

less than an hour) were required, the methods of persistence [168] and linear 

regression [169] were used. Persistence means that the agent assumes that the load 

demand in the following time interval will be the same with the load demand in the 

current time interval.  

In document [128], it is reported that the technology of MAS provides a framework 

where Artificial Intelligence (AI) techniques may be integrated. Numerous methods 

for short term load forecasting have been developed. According to [168], these 

include: similar-day approach; regression methods; time series; neural networks; 

expert systems and fuzzy logic. The use of Artificial Neural Networks (ANNs) for the 

forecasting of electrical load by the Greek utility Public Power Corporation is 

reported in [171]. In the proposed MAS in Chapter 5, the technology of ANNs is 

used. This subsection provides a brief theoretical background of ANNs. 

Artificial neural networks are information-processing systems that represent 

biological neural networks through mathematical models [172]. A biological neuron 

has three main components; dendrites, soma and axon. The dendrites receive signals 

from other neurons. These signals are transmitted across a synaptic gap via a chemical 

process. This process modifies the signals which are then received in the soma of the 

neuron. The soma sums the incoming signals and when sufficient inputs are gathered, 

the soma is activated to transmit a signal via its axon to other neurons [172]. 

To represent a biological neuron through mathematical relationships, two 

assumptions are generally made [172]. The first is that the modification of each signal 

received via a neuron’s connection is modelled with a weighted multiplier w, called 

synaptic weight. The second is that each neuron applies an activation function to its 

net input (sum of weighted input signals) to determine its output signal. 

An artificial neural network, according to [172], is described by:  

 The architecture: the pattern of connections between neurons. 

 The training algorithm: the method of determining the weights of its 

connections. 

 The activation function. 
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Several neural network types have been developed. Many versions or 

variations/combinations may be found in the literature with respect to ANN types. 

According to [172], [173], basic neural network types include: Feed Forward Neural 

Networks; Self Organizing Map Neural Networks; Recurrent Networks; Radial Basis 

Function Network; Learning Vector Quantization. The most common type of ANN 

reported in the literature is the Multi-Layer Perceptron (MLP). This type of ANN is a 

feed-forward ANN and is used in this thesis.  

The basic unit of the MLP is the perceptron. It produces its output by taking a 

linear combination of the input signals and transforming this through its activation 

function. MLP networks consist of several layers of neurons. Each neuron of a certain 

layer is connected to each neuron of the next layer. An MLP comprises of at least one 

input layer, one hidden layer and one output layer. Each layer may comprise a number 

of neurons.  

Fig. 2.5 (a) shows a simplified representation of a biological neural network with 

inputs xn from four neurons in the input layer, a processing unit of one neuron in the 

hidden layer, and output yn to two neurons in the output layer. Fig. 2.5 (b) shows the 

representation of the artificial network in a simplified diagram.  

 

b) Representation of the artificial neural network 

a) Simplified representation of a biological neural network 
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The training of ANNs is done through supervised algorithms or is left 

unsupervised. In MLP ANNs, supervised training is commonly used. The ANN of 

this thesis is trained with supervised training. Details on unsupervised training of 

neural networks can be found in [173]-[176]. Supervised training algorithms in ANN 

are used to learn the relationship between a set of network inputs and a set of desired 

outputs and adjust the weights of the network connections [177]. A number of 

supervised training algorithms for ANNs can be found in the literature. According to 

[177], these include; Back Propagation; Resilient Propagation; Manhattan Update 

Rule; Levenberg Marquadt; Scaled Conjugate Gradient; Neural Network Simulated 

Annealing Training; Neural Network Genetic Algorithm Training. 

Propagation training algorithms are commonly used to train MLP ANNs. In 

general, propagation training algorithms are gradient descent methods; at the 

beginning of propagation training algorithms, the synaptic weights are given small 

random numbers and the training error between the desired and the actual outputs is 

calculated. The training iterations continue for the whole training dataset, until the 

gradient of the average error falls below a predefined threshold [172]. At every 

iteration the weights are updated. The minimisation of the error and the updating of 

the weights depend on the training algorithm used. Resilient propagation (RPROP) is 

reported as a very fast propagation method in terms of convergence in [178]. An 

improved method of the RPROP algorithm is called improved resilient propagation 

(iPROP
+
) [179] and its implementation in [180] is used in the training of the 

developed MLP. The description of the iPROP
+
 algorithm is provided in Appendix A.  

According to [180], activation functions for ANNs include: Bipolar; Competitive; 

Gaussian; Linear; Logarithmic; Sigmoid; Sinusoidal; Hyperbolic Tangent. The 

hyperbolic tangent activation function is commonly used in ANNs and is used in the 

MLP of this research. It is described by equation (2.2). Details about other activation 

functions can be found in [180]. 

         (2.2) 

To generalise an ANN and achieve accuracy with input data not seen during the 

training process, overfitting should be avoided during the training period [181]. 

“Overfitting is a phenomenon which indicates that the neural network has too closely 

approximated/learned, the data examples” [182]. To avoid overfitting, two methods 

are reported in [181], [182]: early stopping of training and use of less hidden units 

f(x) =  e
2x - 1 

e
2x

 + 1 
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(pruning). Early stopping can be achieved by halting the training algorithm when the 

testing error falls below a predefined threshold [181]. The testing error is calculated in 

parallel to the training error using a set of testing data. The number of hidden units is 

generally decided by a trial and error procedure, as there is not yet any proven method 

to provide the optimum number [183]. In [184], a comparison of methods for defining 

the architecture of an ANN is provided, with the Hecht-Nielsen’s rule, outperforming 

more modern approaches. This rule was used for the MLP developed in Chapter 5; the 

hidden neurons are 2N+1, where N is the number of input neurons [185]. 

The software requirements of the ANN development for the agent that implements 

load forecasting were: 

 Implementation or bridge with JAVA
TM

 language, to be easily incorporated 

and work online with the proposed MAS. 

 Speed and accuracy in online learning/processing data, to enable the use of the 

proposed system in real-time environment. 

Three JAVA
TM

 based neural network software packages, Joone, Neuroph and 

Encog® were compared in [186]. All three packages were found equally accurate. 

The open source libraries of Encog® were used for the MLP in this thesis, due to the 

speed that its algorithms provide [186].  

It should be noted that the neural networks for the particular application used in 

Chapter 5 does not consider cyclic behaviour (similar days) or special event days. 

Load demand data for two days are used, assuming that these days are the same day of 

the previous week and the day before the prediction. A larger set of data including 

weather data could be used to identify similar days in terms of load demand patterns 

and the data for such days could be used to train the ANN. 
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2.5 SUMMARY 

This chapter reviewed the relevant literature for this thesis. Standards and 

guidelines related to the EV interaction with the power system were identified.  

Studies that have been completed and were related to EV utilisation impact on grid 

demand, at a national level were reviewed. The modelling assumptions made in each 

study were discussed.  

Studies concerned with the impact of EV battery charging on distribution networks 

were reviewed. A summary of these studies according to the modelling assumptions, 

method or software used, the electricity network studied and the aims of each study, 

was provided.  

Aggregation concepts related to coordinated control of Electric Vehicle battery 

charging were reviewed. Centralised and decentralised control methods were 

presented. The description of each control method for completed studies was 

provided. The advantages and disadvantages of each concept were discussed. The 

application of distributed control methods in power systems was discussed.  

The attributes of agents and Multi-Agent Systems were reported. The main 

components of the Agent Reference Management Model, according to the 

Foundation of Intelligent and Physical Agents, were described. The elements of the 

JADE software that was used for the development of the agent based system 

presented in Chapter 5 were provided. A brief reference was given to artificial neural 

networks and the characteristics of the particular network type used in the MAS 

proposed in this thesis.  
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CHAPTER 3  
 

ELECTRIC VEHICLE BATTERY 

CHARGING IMPACT ON GRID 

DEMAND  
 

3.1 INTRODUCTION 

The effect of residential charging of Electric Vehicles on electricity demand at a 

national level is addressed. A study case is defined to investigate how different 

charging regimes and EV uptake levels will affect the electricity demand of Great 

Britain in 2030.  A comparison with Spain is presented. The aim of this chapter is to 

provide grid operators with an insight of the anticipated changes in the load profile 

shape and peak increase or time displacement with EV utilisation.  

3.2     EV UPTAKE IN 2030 

The number of Electric Vehicles in Great Britain are estimated for the year 2030 

using the Business as Usual and Extreme Range scenarios presented in [4] (Table 

2.1). These numbers correspond to EV uptake levels for the UK and are referred to in 

this chapter as low EV uptake and high EV uptake. The total numbers of vehicles for 

GB and Spain were projected for the year 2030. The projections were made by means 

of curve fitting using historical data. The R
2
 quantity (usually termed coefficient of 

determination) was used as a measure to evaluate the projections. This quantity stands 

for the sum of squares of the residuals for a polynomial or exponential fit [187]. It 

shows how well, the equations which were constructed to express the increase in 

vehicles, fit with the historical data trend. R
2
 values range from 0 to 1, denoting zero 

and perfect correlation respectively (Equation 3.1). 

 

                      R
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i _________ 
 ( y – p )

2
  Σ  

i 

 ( y – ӯ )
2
  Σ  



Chapter 3                                        Electric Vehicle Battery Charging Impact on Grid Demand 

 

  
       Page 39 

 
  

          Where  

        y is the observed value of the data used for the equation’s construction,   

        p is the predicted value of the data calculated by the constructed equation,   

        ӯ is the mean of the observed data,  

        i is the number of observed data. 

The number of vehicles in the UK was projected to be 42.4 million in 2030 using 

linear extrapolation with data for the number of vehicles in the UK from 1950 [187]. 

The population and number of cars in GB was approximately 97% of the whole UK’s 

in 2008 [189], [190]. According to this percentage, the low EV uptake is translated to 

7.07% penetration of EVs and the high EV uptake to 48.56% in GB.  

The number of vehicles in Spain was estimated for the year 2030, using linear 

extrapolation with data for the number of vehicles in Spain from 2001 acquired from 

[191]. In order to make a comparison between GB and Spain, the same low and high 

EV uptake percentage levels from GB, were used for the Spanish case study. The 

number and type of EVs used for each take up level, is shown in Table 3.1, together 

with the value of R
2
 for each prediction.  

Table 3.1 EV uptake predictions in 2030 by country, level and type of vehicle 

 

Country UK (projected) Spain 

(projected) 

GB (calculated) 

Vehicle Fleet of 2030 

(million) 

42.423               

(R²= 0.997) 

35.347           

(R²= 0.985) 

41.196 

EV fleet of 2030 (million) BEVs PHEVs BEVs PHEVs BEVs PHEVs 

Low uptake 0.5 2.5 0.416 2.083 0.485 2.422 

High uptake 5.8 14.8 4.832 12.331 5.63 14.33 

 

3.3 STUDY ASSUMPTIONS 

According to document [4], EV use is likely to develop first in urban areas and the 

most common places to charge EV batteries will be residential parking spaces and 

garages. In the UK, single phase connected domestic plugs, allow the flow of 13A or 

16A [4]. 13A single phase connection was assumed to be the main domestic charger 

rating in GB in 2030. A regulation from the Spanish government, recommends 16A 

for standard domestic plugs [192] and this value was used in this study. It was 

assumed that all batteries would be initially at 20% State of Charge (SoC) and then 

fully charged to a 100%. Table 3.2 shows the main assumptions used in this study. 
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Table 3.2 EV related assumptions used in Chapter 3 

 

Main assumptions of the study Source 

EV charger efficiency (%) 87 

 

[75], [192]  
EV battery charging efficiency (%) 85 

EV charger rated power (kW) 

[4], [192] UK 2.99 

Spain 3.68 

Battery capacities (kWh) 

[4], [76] BEV 35 

PHEV 9 

 

Usable EV battery capacity 
[75] 

80% of the nominal to ensure long battery life 

 

The published daily electricity demand profiles from National Grid Company, were 

used for the GB power system. The demand profiles of 15
th

 day of the first month of 

each season were used [194]. In document [4], it is assumed that in 2030, the annual 

UK electricity demand is going to be 390 TWh. Statistics for the UK drawn from 

[195] show that the energy consumption of Northern Ireland was 2.4% of the whole 

UK energy consumption in 2006. According to this percentage, it is assumed that the 

annual electricity demand of GB in 2030 will be 380.6 TWh, a 12% increase from 

2008.  

The published daily electricity demand profiles from the Spanish National 

Commission of Energy were used for the Spanish power system [196]. The profiles of 

the 15
th

 day of the first month of each season were used. The Spanish electricity 

demand in 2008 was 263.5 TWh according to the TSO of Spain [197]. In a document 

from the Spanish association of electricity industry [198], the Spanish electricity 

demand of 2030 is projected to be 428.8 TWh, an increase of 62.7% from 2008. This 

figure is a projection based on the expected economic growth and historical data of 

annual electricity demand increases [199]. 

The demand profiles for GB and Spain were assumed to follow the same patterns in 

2030 as in 2008, scaled by 12% for GB and 62.7% for Spain. Fig. 3.1 shows the 

electricity demand by time of day for the assumed typical days of 2008 and 2030 with 

data acquired from [197], [200], [201]. The figures for the spring season are omitted 

due to their close similarity to the autumn season. 
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3.4  EV CHARGING REGIMES 

Four charging regimes were studied.  

3.4.1 Uncontrolled Regime  

In the uncontrolled regime, commuters start the EV charging as soon as they return 

home. The daily traffic pattern of commuters determines the occurrence of EV 

charging.  

The traffic distributions by time of the day for a typical weekday were acquired 

from the Department of Transport [202] for UK and from the Spanish Ministry of 

Public Works for Spain [203]. The traffic distribution for GB was considered to be the 

same as for the UK. The traffic distributions do not assume seasonal variations. 

The average time of daily trips in the UK is approximately 20 minutes [204] over 

the last 30 years. The average daily trip time for GB was considered to be the same as 

for the UK. It was assumed that each commuter journey within a specific hour will 

start charging the EV battery in the following hour.  
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Fig. 3.1 Electricity demand for three seasons of 2008 (actual) and 2030 (projected) 
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The earliest hour for domestic EV charging in the uncontrolled regime was 

considered to be 16:00. Traffic distributions and the number of commuters who start 

the charging of their EVs in each hour are shown in Fig. 3.2.  

The batteries would become fully charged from 20% SoC in approximately 4 hours 

for a PHEV and 15 hours for a BEV in GB. In Spain, a full charge of a PHEV would 

require 3 hours and a BEV approximately 12 hours, based on the EV charger rating 

and the Lithium-ion battery characteristics provided in Table 3.2. 

 

a) Traffic distribution by time of day 

 

b) Charging distribution by time of day for low EV uptake 

  

c) Charging distribution by time of day for high EV uptake       
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Fig. 3.2 Traffic distributions and number of commuters starting the charging process 

for uncontrolled case by time of day for low and high EV uptake 
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3.4.2 Dual Tariff Regime  

In the dual tariff regime, the commuters are assumed to charge overnight.  In GB, 

different price rates and off peak times and durations exist, depending on the energy 

supplier. For simplification, it was assumed that British off peak charges start at 23:00 

and finish at 7:00 of the next day’s morning, according to [205]. It was assumed that 

the customers, who return home before 23:00, start their EV charging at 23:00. The 

EV owners who would return home between 23:00 and 24:00, would start the charging 

process the hour commencing 24:00. Spanish off peak rates start at 22:00 and finish at 

12:00 the following day, according to [206]. 

3.4.3  Variable Price Regime  

In the variable price regime, it was assumed that there will be a wide use of smart 

meters in 2030. Smart meters were assumed to have a functionality to receive price 

signals. PHEVs, which would need approximately 4 hours to achieve a full SoC, were 

assumed to charge during the cheapest hours of the day, following the price signals. 

The cheapest hours, with respect to electricity market prices, were acquired from [207] 

for GB and from [197] for Spain. It was assumed that the times of cheapest rates 

during 2030 would be identical to the cheapest times of 2008. BEVs were considered 

to fully charge as in the uncontrolled scenario. 

3.4.4 Mixed Charging Regime  

In the mixed charging regime, the above three regimes were combined: 

 One third of the EV owners would charge their EVs using the uncontrolled 

regime. 

 One third of the EV owners would charge their EVs using the dual tariff regime. 

 One third of the EV owners would charge their EVs using the variable price 

regime.  

3.5  RESULTS 

The effect of EV battery charging on peak demand figures and peak demand times 

on the national power systems of GB and Spain is evaluated. The peak demand 

increases and peak time displacements for the low EV uptake case are shown in Table 

3.3. Table 3.4 shows the results for the high EV uptake. 
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Table 3.3 Peak increase and time displacement by season as a result of EV charging 

and low uptake 

Season 

(GB) 

Actual Peak  

Time (2008) 

Uncontrolled  Charging  Dual Tariff Charging 

Peak Increase 

GW (%) 

Projected Peak 

Time (2030) 

Peak Increase 

GW (%) 

Projected Peak 

Time (2030) 

Spring 18:00-19:00 5.770 (11.4%) 19:00-20:00 - 18:00-19:00 

Summer 12:00-13:00 3.940 (10.1%) 20:00-21:00 2.653 (6.8%) 23:00-24:00 

Autumn 20:00-21:00 6.315 (13%) 20:00-21:00 - 20:00-21:00 

Winter 17:00-18:00 3.160 (5%) 18:00-19:00 - 17:00-18:00 

Season 

(Spain) 

Actual Peak  

Time (2008) 

Peak Increase 

GW (%)  

Projected Peak 

Time (2030) 

Peak Increase 

GW (%) 

Projected Peak 

Time (2030) 

Spring 21:00-22:00 5.337 (10.1%) 21:00-22:00 5.469 (10.3%) 22:00-23:00 

Summer 13:00-14:00 4.513 (9.7%) 21:00-22:00 8.664 (18.7%) 22:00-23:00 

Autumn 20:00-21:00 5.337 (9.3%) 20:00-21:00 3.487 (6.1%) 22:00-23:00 

Winter 20:00-21:00 4.913 (7%) 20:00-21:00 2.146 (3.1%) 22:00-23:00 

Season 

(GB) 

Actual Peak  

Time (2008) 

Variable Price Charging Mixed Charging 

Peak Increase 

GW (%) 

Projected Peak 

Time (2030) 

Peak Increase 

GW (%) 

Projected Peak 

Time (2030) 

Spring 18:00-19:00 1.179 (2.3%) 18:00-19:00 2.231 (4.4%) 19:00-20:00 

Summer 12:00-13:00 - 12:00-13:00 0.560 (1.4%) 20:00-21:00 

Autumn 20:00-21:00 1.452 (3%) 20:00-21:00 2.592 (5.3%) 20:00-21:00 

Winter 17:00-18:00 1.452 (2.3%) 17:00-18:00 1.460(2.3%) 18:00-19:00 

Season 

(Spain) 

Actual Peak  

Time (2008) 

Peak Increase 

GW (%) 

Projected Peak 

Time (2030) 

Peak Increase 

GW (%)  

Projected Peak 

Time (2030) 

Spring 21:00-22:00 0.763 (1.4%) 21:00-22:00 2.031 (3.9%) 21:00-22:00 

Summer 13:00-14:00 1.518 (3.3%) 22:00-23:00 4.902 (10.6%) 21:00-22:00 

Autumn 20:00-21:00 - 21:00-22:00 1.785 (3.1%) 20:00-21:00 

Winter 20:00-21:00 1.074 (1.5%) 18:00-19:00 1.642 (2.4%) 20:00-21:00 
 

The results for the EV charging regimes defined in Section 3.4 are graphically 

shown for two-day duration of each season studied for the year 2030. Spring season 

results are omitted from the graphs due to their similarity with the results for the 

autumn season. 

The uncontrolled charging regime results (Fig. 3.3 and Fig. 3.4), show that peak 

demand times coincide with the times that commuters would plug-in their EVs. This 

would lead to a peak demand increase for all seasons and both countries.  
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Table 3.4 Peak increase and time displacement by season as a result of EV charging 

and high uptake 

Season 

(GB) 

Actual Peak  

Time (2008) 

Uncontrolled  Charging  Dual Tariff Charging 

Peak Increase 

GW (%) 

Projected 

Peak Time 

(2030) 

Peak Increase 

GW (%) 

Projected 

Peak Time 

(2030) Spring 18:00-19:00 41.216 (81.6%) 19:00-20:00 49.256 (97.5%) 00:00-01:00 

Summer 12:00-13:00 40.989 (101%) 20:00-21:00 52.41 (134.5%) 23:00-24:00 

Autumn 20:00-21:00 43.364 (89.5%) 20:00-21:00 44.916 (92.7%) 23:00-24:00 

Winter 17:00-18:00 37.872 (59.6%) 19:00-20:00 36.967 (58.2%) 23:00-24:00 

Season 

(Spain) 

Actual Peak  

Time (2008) 

Peak Increase 

GW (%)  

Projected 

Peak Time 

(2030) 

Peak Increase 

GW (%) 

Projected 

Peak Time 

(2030) Spring 21:00-22:00 41.64 (79%) 21:00-22:00 59.110(112.1%) 22:00-23:00 

Summer 13:00-14:00 38.73 (83.5%) 21:00-22:00 60:303(130%) 22:00-23:00 

Autumn 20:00-21:00 41.641(72.8%) 21:00-22:00 55.126(96.3%) 22:00-23:00 

Winter 20:00-21:00 41.325 (56.4%) 20:00-21:00 53.785(77.1%) 00:00-01:00 

Season 

(GB) 

Actual Peak  

Time (2008) 

Variable Price Charging Mixed Charging 

Peak Increase 

GW (%) 

Projected 

Peak Time 

(2030) 

Peak Increase 

GW (%) 

Projected Peak 

Time (2030) 

Spring 18:00-19:00 45.393 (89.8%) 03:00-04:00 19.03 (37.6%) 20:00-21:00 

Summer 12:00-13:00 46.99 (120.6%) 03:00-04:00 24.78 (63.6%) 22:00-23:00 

Autumn 20:00-21:00 39.113 (80.7%) 01:00-02:00 17.29 (35.7%) 23:00-00:00 

Winter 17:00-18:00 38.544 (60.7%) 23:00-24:00 10.21 (16.1%) 20:00-21:00 

Season 

(Spain) 

Actual Peak  

Time (2008) 

Peak Increase 

GW (%) 

Projected 

Peak Time 

(2030) 

Peak Increase 

GW (%)  

Projected Peak 

Time (2030) 

Spring 21:00-22:00 50.489(95.7%) 03:00-04:00 29.82 (56.6%) 22:00-23:00 

Summer 13:00-14:00 50.188(108.2%) 05:00-06:00 33.01 (71.2%) 21:00-22:00 

Autumn 20:00-21:00 41.136(71.9%) 02:00-03:00 27.83 (48.7%) 22:00-23:00 

Winter 20:00-21:00 29.504(41.1%) 05:00-06:00 27.49 (38.1%) 23:00-24:00 
 

The dual tariff regime results for the low EV uptake scenario (Fig. 3.5 and Fig. 3.6), 

show that peak demand times would be shifted to the time when off peak charges start. 

In GB, for the low EV uptake case, increase in demand was observed only during the 

summer season. Regarding Spain and the low EV uptake, peak demand was increased 

for every studied season.  

The variable price charging results for the low EV uptake scenario (Fig. 3.7 and 

Fig.3. 8), show that EV battery charging tends to fill the night valley of the load curve, 
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as the cheapest hours for every season and both countries would occur during 

minimum demand times.  

The mixed charging results for the low EV uptake scenario (Fig. 3.9 and Fig. 3.10), 

show that peak demand times would coincide with the peak demand times of the 

uncontrolled regime.  

3.6 DISCUSSION OF THE RESULTS 

The maximum simultaneous demand served in GB during the winter of 2008 was 

60.3GW [208]. This is forecasted to increase by 12% in 2030 [4] raising the figure to 

67.5GW. The low EV uptake case for uncontrolled charging in GB, was projected to 

increase the winter typical day peak demand by 3.2GW, raising the maximum 

simultaneous demand to 70.7GW in 2030. The GB generating capacity in 2030 is 

projected to be 120GW [4], with renewable generation holding 32% of the total 

generating capacity. The load factor of the 2008 GB generation system was 67% 

[209]. In order to supply the increased demand from low EV uptake, the generation 

system load factor should not decrease below 59%. 

The maximum simultaneous demand served in Spain during the winter of 2008 was 

42.9GW [210]. The projected increase in demand by 62.7% in 2030 [198], would raise 

the maximum simultaneous demand to 69.9GW. The low EV uptake case for 

uncontrolled charging in Spain, was projected to increase the winter typical day peak 

demand by 5.1GW, raising the maximum simultaneous demand to 75GW. The 

Spanish generating capacity in 2030 is projected to be 107.8GW [210], with renewable 

generation holding approximately 40% of the total generating capacity. The load 

factor of the 2008 Spanish generation system was 65.56% [198]. In order to supply the 

increased demand from low EV uptake, the generation system load factor should 

increase to 69%.  

The effect of a price based charging control type on electricity demand was 

investigated. In this control type, namely variable price charging, the charging of 

PHEVs occurred during the cheapest hours of the day. This type of control resulted in 

peak demand reductions, compared to the uncontrolled scenario for the low EV 

uptake. The typical winter day electricity demand peaks were reduced by 2.5% for GB 

and 5.4% for Spain. 
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Fig. 3.3 British predicted energy demand for uncontrolled charging in 2030 

Fig. 3.4 Spanish predicted energy demand for uncontrolled charging in 2030 
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Fig. 3.5 British predicted energy demand for dual tariff charging in 2030 

Fig. 3.6 Spanish predicted energy demand for dual tariff charging in 2030 
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Fig. 3.7 British predicted energy demand for variable price charging in 2030 

Fig. 3.8 Spanish predicted energy demand for variable price charging in 2030 
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Fig. 3.9 British predicted energy demand for mixed charging in 2030 

Fig. 3.10 Spanish predicted energy demand for mixed charging in 2030 
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3.7  SUMMARY AND COMPARISON WITH RELEVANT STUDIES 

The impact of domestic charging of electric vehicles’ batteries on the electricity 

demand of Great Britain and Spain was examined. A study case was created to 

investigate how different charging regimes and EV uptake levels will affect the 

electricity demand of both power systems. The peak demand increase for each 

charging regime and each country are summarised in Fig. 3.11.  

The results for low EV uptake show that the increase in demand peaks could be 

managed with a dual tariff and dynamic price control. Low EV uptake, equivalent to 

7% of the whole car fleet, would increase the typical day electricity demand peaks: 

 Uncontrolled EV charging was found to increase the British winter day peak 

demand by 3.2GW (3.1%) and the Spanish winter day peak demand by 4.9GW 

(7%).  

 Dual tariff control would not affect the British winter day peak. The Spanish 

winter day peak demand would be increased by 2.1GW (3.1%). 

 Variable price control would increase the British winter day peak demand by 

1.5GW (2.3%) and the Spanish winter day peak demand by 1.1GW (1.5%).  

 Mixed charging would increase the British winter peak demand by 1.5GW 

(2.3%) and the Spanish winter day peak demand by 1.6GW (2.4%). 

 

 

 

 

 

 

 

 

 

 

 

+1.5 +1.5 

Fig. 3.11 Electricity demand peak increase in winter of 2030 from EV battery 

charging in GB and Spain 
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In MERGE project [78], a 10% EV uptake (of 2009 car fleet) was used to examine 

the effect on peak demand on British and Spanish systems. The results for the 

uncontrolled charging regime of the present study and study [78] are compared in 

Table 3.5. The comparison shows that the peak demand times are identical in both 

studies. The traffic pattern assumptions used in the present study coincide with the 

results of the survey conducted in [78]. The difference in peak demand figures is due 

to the difference in number of EVs used in each study. 

Table 3.5 Comparison of the results between the present study and the 

European project’s MERGE 

Winter Peak Demand Increase and Time Displacement 

Country Present study MERGE project [78] 

GB 3.160 GW (5%) at 18:00 5.596 GW (8%) at 18:00 

Spain 4.913 GW  (7%) at 20:00 4.033 GW (7%) at 20:00 

 

 In a study published by researchers from the Caledonian University of Glasgow 

[77], a 10% EV uptake (of 2008 car fleet) was used to examine the effect on peak 

demand on the British system. Three types of EVs with an equal number of battery 

charging characteristics were simulated to charge within uncontrolled, off-peak and 

real-time pricing charging regimes. The results of the present study and study [77] for 

the winter season are compared in Table 3.6.  

The comparison between the present study and study [77] shows that: 

 For the uncontrolled regime, the peak demand times are identical. The difference 

in peak demand figures is due to the difference in number of EVs used in each 

study and the power rating of the chargers.  

 For the off-peak regime, grid demand peaks are not affected in the present study 

in which off-peak times start at 22:00, whereas the peak is increased in study 

[77] in which off-peak times start at 21:00.  

 For the variable price regime, the use of a low power rating charger of 2.99kW 

assumed in the present study (Table 3.2) would require energy from the grid 

during a longer period, including the actual peak time. The use of higher power 

rating EV chargers in study [77] showed that the demand for EV battery 

charging would be satisfied during the valley hours and hence the actual demand 

peaks would not be affected. 
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The high EV uptake case, equivalent to 48.5% of the whole car fleet, will greatly 

increase the electricity demand daily peaks, irrespectively of the charging regime.  

 Uncontrolled EV charging would increase the British winter day peak by 38GW 

(59.6%) and the Spanish winter day peak by 41GW (56.4%).  

 Dual tariff charging would increase the British winter day peak by 

approximately 37GW (58.2%) and the Spanish winter day peak by 54GW 

(77.1%). 

 Variable price charging would increase the British winter day peak by 

approximately 39GW (60.7%) and the Spanish winter day peak by 29GW 

(41.1%).   

 Mixed charging would increase the British winter peak demand by 10.21GW 

(16%) and the Spanish winter day peak demand by 27GW (38%). 

Table 3.6 Comparison of the results between the present study and study [77] 

Winter Peak Demand Increase and Time Displacement 

Charging Regime Present study Study [77] 

Uncontrolled 5% at 18:00 10% at 18:00 

Dual Tariff (Off-Peak in [77]) - 6.1% at 21:00 

 

 

Variable Price (Smart Charging in [77]) 2.3% at 17:00 - 
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CHAPTER 4  
 

ELECTRIC VEHICLE BATTERY 

CHARGING IMPACTS ON 

DISTRIBUTION NETWORKS  
 

4.1 INTRODUCTION 

The impact of EV battery charging on distribution networks is investigated. A case 

study is defined for the year 2030. The effect of EV battery charging on a UK generic 

distribution network’s steady-state operating parameters is evaluated.  

EV uptake estimates for the year 2030 in terms of penetration per LV residential 

area are provided.  

A deterministic approach is used to evaluate the impact of EV battery charging on 

steady-state thermal loadings, voltage profiles and power losses of distribution feeders 

of the UK generic distribution network. A case study for the year 2030 is analysed. 

Network reinforcement options are evaluated.  

A probabilistic approach is used to address distribution network loading 

uncertainties. The algorithm of a dedicated software tool developed to perform 

simulations is described.  A case study for the year 2030 is analysed and the impact of 

EV battery charging on steady-state thermal loadings, voltage profiles and power 

losses of distribution feeders of the UK generic distribution network is evaluated. A 

set of Graphical User Interfaces (GUIs) that were developed to enable easiness in the 

insertion of the user defined inputs is shown in Appendix B.  

The results of the deterministic and probabilistic approaches are compared and 

conclusions are drawn. 
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4.2 CASE STUDY RESIDENTIAL UK GENERIC NETWORK 

The typical urban UK distribution network’s topology [211] used in this study 

consists of a HV/MV primary substation feeding a MV network. A 500 MVA three 

phase 33kV ideal voltage source was used to represent the upstream grid. According 

to reference [211], this source is connected to two 33/11.5kV 15MVA transformers, 

an 11kV substation and six 11kV outgoing feeders. Each feeder supplies eight 

secondary MV/LV substations with an equal number of 11/0.433kV transformers. 

One feeder was modelled in detail while the remaining feeders were simplified as 

lumped loads.  From each secondary substation, four outgoing radial feeders serve 96 

single-phase customers each.  The single-phase connections were distributed evenly 

across the three phases. One feeder was modelled in detail and the remaining feeders 

were simplified as lumped loads. The network details can be found in [211]. Fig. 4.1 

shows the network schematic. The UK generic network parameters were given as 

inputs to a load flow algorithm for the studies conducted for this chapter. A Newton-

Raphson load flow algorithm developed at Cardiff University by a colleague PhD 

student was used [212].  

4.3 EV UPTAKE LEVELS ESTIMATES 

The presence of EVs in British LV residential areas for the year 2030 is estimated. 

Data for UK number of households from 1970 to 2020 were drawn from [213]. Linear 

extrapolation of these data shows that the number of households in the UK in 2030 

will be 30.5 million (Fig. 4.2). The low and high EV uptake levels of Table 3.1 are 

12.5% and 70.8% according to the number of households. A medium EV uptake is 

defined as 33%. Table 4.1 shows these levels and the absolute numbers per 384 

customers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 UK LV generic distribution network schematic [211] 
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Fig. 4.2 Number of households in the UK 

Table 4.1 Estimated EV uptake levels per 384 households in the UK in 2030  

EV Type Low Level Medium Level High Level 

BEV (units) 16 32 80 

PHEV (units) 

 

32 

 

96 

 

192 

Total (units) 48 128 272 

Total (%) 12.5 

 

 

 

 

33.3 70.8 

4.4 DETERMINISTIC STUDY 

4.4.1 Assumptions 

The operating limits of steady state voltage, distribution transformer and cable 

loading are drawn from the literature. 

4.4.1.1 Voltage 

DSOs are obliged to supply their customers at a voltage within specified limits. In 

the UK, these limits are +10% and -6% from the nominal single phase voltage of 

230V, according to the Electricity Safety, Quality and Continuity Regulations [214]. 

4.4.1.2 Transformer Loading 

Transformer loading conditions are determined by the maximum temperature of 

the transformer’s winding [215]. In document [216], it is reported that the temperature 

of this spot should not exceed 110 
0
C. The American National Standards Institute 

(ANSI) /IEEE C57.91:1981 standard suggests that the transformer loading should be 

subject to the ambient temperature with reference to 30 
0
C [217]: 

 For each 
0
C above 30 

0
C, the loading capability drops by 1.5% of the rated 

kVA. 

 For each 
0
C below 30 

0
C, the loading capability increases by 1% of the rated 

kVA. 

y = 0.2018x + 18.394 

R² = 0.9984 
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The mean winter temperature in the UK during 2009 was 3.2 
0
C and the mean 

summer temperature 14.8 
0
C [218]. On average, a 500kVA outdoor distribution 

transformer would therefore be able to withstand 26.8% overload during winter (134 

kVA) and 15.2% (76kVA) overload during summer.  

4.4.1.3  LV Underground Cables  

LV underground cables in the UK are rated taking into account the following 

parameters: soil resistivity, ground ambient temperature, maximum conductor 

temperature, cyclic and distribution rating, ducts and maximum lengths without de-

rating and short-circuit rating requirements [219]. 

DSOs in the UK employ different methodologies for determining the thermal 

limits that cables can withstand. Publicly available documents from UK DSOs were 

reviewed. In reference [220], it is reported that sustained and cyclic ratings are used to 

determine cable thermal limits. In document [221], it is mentioned that only 

continuous ratings are used to determine cable thermal limits. In reference [222], it is 

reported that all UK DSOs are collaborating to develop a common tool that will be 

used to determine the rating of distribution networks’ cables.  

Load flow simulations performed using the UK generic network of Fig. 4.1, with 

maximum load data acquired from the Electricity Association [211], showed that the 

most vulnerable cable is the 185mm
2
 cable emanating from the LV busbar supplying 

96 customers. Table 4.2 shows the sustained ratings of the 185mm
2
 cable from two 

DSOs [220], [221], the standard BS5467:1989 from [223], and a cable supplier [224]. 

The lowest of the four values was used as the cable thermal limit (347A). 

4.4.1.4 EV Load Modelling 

The maximum equivalent load of an EV is determined by the power rating of the 

charger. In a survey published by the UK Society of Motor Manufacturers and 

Traders in 2010 [225], it is reported that 20% of the EVs have been designed to be 

charged by a 3-phase 32A supply, 5% by a 3-phase 16A supply, 5% by a 1-phase 32A 

supply, 55% by a 13A/16A 1-phase supply and the rest by other types.  

Table 4.2 Sustained current carrying capacity (A) of 185mm
2
 underground cable 

  Size (mm
2
) DSO1 DSO2 BS5467:1989 Cable Supplier 

185 369 355 347 355 
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In the UK, the 1-phase 3-pin domestic-style sockets certified against the standard 

BS1363 are rated 13A [226]. It was assumed that the distribution of EV chargers 

among EV owners will be 20% 3-phase 32A, 10% 1-phase 32A and the remaining 

70% will be 1-phase 13A.  

The EVs and the EV chargers were assumed to be uniformly distributed among the 

network nodes with an equal number of EVs and chargers owned by every customer. 

In the UK generic distribution network there are 24 customers per network node of 

the LV feeder. The EV equivalent loads were modelled as purely resistive with 

constant power. The number of cases that can be studied with non-uniform 

distribution of EVs and chargers is very large. For this reason, the study of non-

uniform distribution of EVs and chargers was considered in the probabilistic approach 

in Section 4.5. In the probabilistic approach, the location of EVs and chargers was 

considered to be an uncertain variable.  

4.4.1.5 Residential Load Modelling 

Minimum and maximum demand figures acquired from the Electricity Association 

were used to model the minimum and maximum residential loads [211]. These figures 

correspond to 0.16kW and 1.3kW per customer in 2003 and denote minimum summer 

values and maximum winter values, respectively. An annual increase of 1% was 

considered from 2003 to 2030 [220]. The loads were modelled as purely resistive with 

constant power [211]. 

4.4.2 Simulation Results for the Steady State Load Flow Deterministic Studies 

The impacts on steady state voltage of the LV detailed feeder, distribution 

transformer loading, and 185mm
2
 cable loading, are presented. The electrical power 

losses that would occur in the cables of the LV feeder are shown for each case 

investigated.  

4.4.2.1 Voltage 

Under minimum load conditions of a summer season, voltage was found to violate 

the lower limits only for the high EV uptake level. Under maximum load conditions 

of a winter season, the lower voltage limit was violated for medium and high EV 

uptake levels. The voltage profile of the 96 customers LV feeder is shown for both 

loading conditions in Fig. 4.3. 
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4.4.2.2 Transformer Loading 

The distribution transformer was found to be overloaded for the medium and high 

EV uptake levels under minimum load conditions. Under maximum load conditions, 

the transformer was overloaded for all EV uptake levels. Table 4.3 contains the 

transformer loading results.  

4.4.2.3 185mm
2
 LV Underground Cable 

The 185mm
2
 cable would exceed the sustained current carrying capacity for the 

medium and high EV uptake cases under maximum load conditions. Under minimum 

load conditions the capacity limit would be breached only for the high EV uptake. 

Table 4.3 shows the simulation results. 

Table 4.3 Steady state load flow results for distribution transformer and 185mm
2
 

cable loading measurements  

EV Uptake Distribution Transformer (kVA) LV Feeder’s 185mm
2 

Cable (A) 

                  Minimum Load Conditions During Summer Season 

No EV 93.7 31.1 

Low 411.14 135.6 

Medium 916.2 299 

High 1738 565 

                Maximum Load Conditions During Winter Season 

No EV 724.2 240 

Low 1022 334.5 

Medium 1469 482.5 

High 2190 718 

 

0.9 
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1.1 

Minimum load 

Maximum load 

Fig. 4.3 Steady-state voltage profile of LV feeder for different levels of EV uptake 
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4.4.2.4 Power Line Losses 

The electrical losses in the cables of the LV feeder supplying 96 customers were 

recorded for all simulated cases. An increase in losses is shown as the EV uptake 

increases (Fig. 4.4). The fraction of losses/load served for the high EV uptake in 2030 

(represented as lines in Fig. 4.4), reached 8% under minimum loading conditions and 

9% under maximum load conditions. 

4.4.2.5 Impact Evaluation with Distribution Network Reinforcements 

The impact from EV battery charging on distribution transformer, cable loading, 

voltage and losses is evaluated assuming that the network would be reinforced. The 

studied network is tapered with the LV feeder that supplies 96 residences comprising 

150 metres of 185mm
2
 underground cable followed by 150 metres of 95mm

2
 

underground cable. Four network upgrade cases are defined. One case with 

penetration of micro-generation is considered.  

 Case 1: The LV feeder is uniform, i.e. the LV feeder comprises 300m of 

185mm
2
 cable. 

 Case 2: The LV feeder is uniform as in Case 1 and the distribution transformer 

is upgraded to 1MVA. 

 Case 3: The first 150m of the 185mm
2
 cable are upgraded to 300mm

2
, the rest 

150m remain to 185mm
2
, and the distribution transformer is 1MVA. The 

sustained current rating of the 300mm
2
 cable during winter season is 484A, 

according to [219].  

 Case 4:  The first 150m of the 185mm
2
 cable are upgraded to 300mm

2
, the rest 

150m remain to 185mm
2 

as in Case 3, and the distribution transformer is 

upgraded to 2.5MVA. 

 Case 5: Each customer owns a micro-generator with an average power rating of 

1.1kW according to [211].  The equipment upgrades of Case 4 are applied. Each 

micro-generator is modelled as a negative load.  
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The five cases were evaluated with maximum load conditions to consider the most 

onerous circumstances. The results for the most remote node’s voltage, transformer 

loading, cable loading, losses and losses/load served are shown in Table 4.4. The base 

case in Table 4.4 repeats the case without network reinforcements for easier 

interpretation of the results.  

The results for the low EV uptake show that the transformer upgrade to a rating of 

1.5MVA would be sufficient to satisfy the constraints studied.  The results for the 

medium EV uptake show that when all upgrades were considered (Case 4), the only 

constraint not satisfied was the loading of the cable emanating from the LV busbar. 

The application of micro-generators (Case 5) eliminated this constraint.  

Table 4.4 Steady-state load flow results for the studied impacts with network 

reinforcement under maximum loading conditions 

Case 
Voltage 

(p.u.) 

Transformer 

Loading (kVA) 

Cable 

Loading (A) 

Losses 

(kW) 

Losses/Load 

Served (%) 

  
       Low EV Uptake 

  Base Case 0.9826 1.022 334.5 11.53 4.95 

Case 1 0.9946 1016 336.1 10.31 4.43 

Case 2 1.005 1037 339.6 10.78 4.63 

Case 3 1.017 1040 343 8.34 3.58 

Case 4 1.019 1045 344 8.35 3.59 

Case 5 1.042 576.2 191.3 2.69 1.15 

  
     Medium EV Uptake 

  
Base Case 0.938 1469 482.5 23.99 6.88 

Case 1 0.9549 1471 485.7 22.01 6.32 

Case 2 0.9728 1526 494.7 22.73 6.53 

Case 3 0.9896 1531 502.2 17.83 5.12 

Case 4 0.9931 1542 504.2 18.03 5.17 

Case 5 1.017 1089 358 17.86 5.12 

  
       High EV Uptake 

  
Base Case 0.8599 2190 717.5 52.9   9.5 

Case 1 0.8847 2194 726 50.1   9 

Case 2 0.9167 2357 752 52.3   9.4 

Case 3 0.9411 2368 770 41.5   7.4 

Case 4 0.9506 2415 777 42.6   7.6 

Case 5 0.9718 1977 641.2 27.7   6.1 
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The results for the high EV uptake show that when all upgrades were considered 

(Case 4), the only constraint not satisfied was the loading of the cable emanating from 

the LV busbar. The power generated by the micro-generators (Case 5) was not 

adequate to reduce the current draw requirement within the sustained rating of the 

cable. Further cable upgrade from the 300mm
2
 cable was not considered because this 

is the widest cross-sectional area used in LV circuits as reported in [220]-[223]. 

4.5 PROBABILISTIC STUDY 

A probabilistic algorithm was developed to include uncertainties that are 

anticipated to influence the impact of EV battery charging on the LV operating 

parameters and equipment. The uncertainties considered are categorised into: (i) EV 

related parameters, (ii) residential load related parameters and (iii) DG related 

parameters. 

4.5.1 Assumptions 

4.5.1.1 EV Related Parameters 

The uncertainties related to the EV connection in distribution networks, such as the 

plug-in time, the location and the charging duration were considered. The electricity 

use of UK domestic customers at present, is in majority unrestricted (flat price). It is 

reported in [227] that time of use tariffs were used by 16% of the UK customers in 

2007 with Economy 7 being the most widespread.  It was assumed that the EV owners 

will be able to choose between two charging modes. 

(i) Uncontrolled or Dumb Charging, where no form of control is applied. The 

connection of EVs with Economy 7 tariff was assumed to occur at 12 p.m. with 

a maximum duration of seven hours. 

(ii) Smart Charging (SC), where the EV owner will be able to choose the desired 

battery State of Charge (SoC) and the ending time of the charging session. This 

mode would allow the utility to control the charging of each battery according 

to localized constraints and the commuter’s preferences. 

Typical UK residential load profiles from [228] show a winter daily peak at 6 p.m. 

The average daily trip with a car in the UK over the last 30 years has been 

approximately 20 minutes [204]. The traffic distribution profile from [202] shows a 

daily peak at 5p.m. This profile was shifted by one hour. It was assumed that the 

shifted profile corresponds to the commuters’ destination arrival time profile. It was 
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observed that the peak of this profile coincides with the residential peak load (Fig. 

4.5). The distribution of the time that EVs are plugged in residences was modelled by 

a normal distribution. The distribution mean was modelled to be the peak load time 

and its standard deviation one hour from the peak. This means that the plug-in time 

would occur within a 6-hour period with a probability of 99.7% (i. e. three standard 

deviations from the peak load time), and a probability of plugging-in within an hour 

of the peak load being approximately 68.27%. This means that the density of plug-in 

time is higher around the peak load time and decreases equally with the divergence 

from it. This approximation for modelling the EV plug-in time using a normal 

distribution was the simplest to reflect the home arrival distribution shown in Fig. 4.5. 

The duration of EV battery charging depends on the battery capacity, its SoC prior 

to the connection, and the owner’s preferences, such as the time of disconnection and 

the energy required for charging. The SoC of each EV at the time when each EV 

owner will plug-in the EV in the residential location and the duration of charging, 

were modelled as random numbers with a uniform distribution. These variables 

depend on the use of additional recharging infrastructure from each EV owner, further 

from the residential charging point considered in this study. The use of a uniform 

distribution was adopted to exclude higher densities of the SoC and the re-charging 

time in particular regions, since the presence of additional charging infrastructure was 

not included in this study. The maximum Depth of Discharge (DoD) was assumed to 

be 80% [75]. The BEVs were assumed to have a battery capacity of 35kWh and the 

PHEVs of 9 kWh [4], [76]. The EV battery efficiency was assumed to be 85% and the 

EV charger efficiency 87%, according to [75], [192]. 
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4.5.1.2 Residential Load Related Parameters 

Synthetic profiles were created for each of the 3072 residences (Fig. 4.1). A 

random daily and a random hourly number were uniformly generated for each profile 

to create each profile’s randomisation factor (R). R was calculated by equation (4.1). 

                                                                                                                                          
 

                            
ShSdR 1

                                                                                      
(4.1) 

Where  

Sd is the daily and Sh is the hourly randomisation factors.  

The randomisation factors used, had a maximum of 15% and 20% for each daily 

and hourly figure [229]. The values of the residential profiles were multiplied by the 

randomisation factor. In the case study presented in Section 4.5.3, 84% of the 

customers were assigned an unrestricted load profile and 16% an Economy 7 profile.  

4.5.1.3 Distributed Generation Related Parameters  

Micro-generation units were considered in the development of the algorithm to 

enable investigation on the LV studied parameters in networks with DG. They were 

considered at a domestic scale (i.e. ratings of a few kW) and were modelled as 

negative loads. Three types of mGen were considered: Wind Turbines (WT), 

Photovoltaics (PV) and mCHP units. The mCHP technologies considered are 

Microturbines, Fuel Cells and Stirling Engines, with a  Heat to Power Ratio (HPR) of 

2.6; 1.4 and 5.0 respectively [230]-[231]. Generation profiles for WT and PV were 

drawn from [232]. The mCHPs were assumed to follow the heat load, since heat 

storage was not considered. Typical daily heat load profiles were drawn from [233]. A 

different generation profile was created for each customer that was assigned an mGen 

unit, based on equation (4.1). Two mGen penetration levels that were estimated by a 

colleague PhD student and reported in [234] were used for the year 2030 (Table 4.5).  

Table 4.5 mGen penetration estimates for the year 2030 per 384 customers [234] 

Component 
Unit 

Power (kW) 

Penetration (Units) 

Low  High  

Wind Turbines 2.5 4 11 

Photovoltaics 1.5 2 4 

Fuel Cell (Natural Gas) 3 3 11 

Micro-turbine (Biogas) 3 2 4 

Stirling Engine (Wood Pellets) 1.2 13 38 

Total Number (Percentage) - 24 (6.25%) 68(17.7%) 
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4.5.1.4 Operational States of the Studied Constraints  

For a clear interpretation of the sequential load flow outputs, the results are 

classified into operational states: Normal, Alert and Emergency. The assumed limits 

for steady state voltage, distribution transformer and the 185mm
2
 cable loadings of 

the UK LV generic distribution network are shown in Table 4.6. The 185mm
2
 cable 

was assumed to be able to sustain up to 145% of its nominal rating for up to four 

hours. According to [223], when this limit or duration is exceeded, protective devices 

should operate. 

Table 4.6 Assumed state boundaries for LV studied parameters 
 

Parameter 
Nominal 

Rating 

State Range (p.u.) 

Normal Alert Emergency 

Transformer (summer) 500 kVA 0-1 1-1.2 More than 1.2 

Transformer (winter) 500 kVA 0-1.2 1.2-1.4 More than 1.4 

185 mm
2
 Cable 347A 0-1 1-1.45 More than 1.45 

Voltage 400V 
0.95- 

1.09 

0.94-0.95, 

1.09-1 

Less than 0.94, 

More than 1.1 

 

4.5.2 Description of Probabilistic Algorithm for the Evaluation of EV Impacts 

on Distribution Networks 

The developed algorithm uses a Monte Carlo (MC) procedure (Fig. 4.6). Different 

sets of input data are obtained from random number generators. Sequential power 

flows run for two-day duration and the procedure terminates when convergence 

criteria are satisfied [235]. The samples that are acquired by the MC procedure form 

the probability densities of the output results. The convergence criterion was the 

standard error of each node’s voltage magnitude for every time-step of the simulation. 

The MC algorithm halted when all individual standard errors fell below the 

predefined value (0,001%) to ensure accuracy of the results. The standard error is a 

common criterion used in commercial MC simulation software packages, such as in 

Crystal Ball software developed by Oracle [236]. 

A smart charging re-scheduling algorithm was inserted in the power flow 

execution stage. When the power flow was called, a routine checked the states of the 

constraints, according to Table 4.6. If emergency states were found, the charging of an 

EV was re-scheduled. This means that the EV load was displaced to a subsequent 

time-step, if the customer preferences allowed the displacement. In the case that a 
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voltage violation was found, the priority of rescheduling was on the vulnerable node. 

If there was no EV registered in this node, an EV from a neighbouring node was 

rescheduled. In the case that a cable or transformer overload was found, the priority of 

rescheduling was on the 96 customer area. The power flow was executed again and 

the rescheduling routine was re-called if another violation or overload was found. The 

process is repeated until no violation is detected or no other EVs can be rescheduled.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.6 Flow diagram of the probabilistic algorithm 
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Fig. 4.7 Operational states for steady-state voltage of the most remote node 

4.5.3 Simulation Results of the Steady State Load Flow Probabilistic Studies 

The results of 45 simulations for each season were recorded. The three EV uptake 

levels of Table 4.1, the two mGen penetration levels of Table 4.4 and five levels of 

smart charging (from 0 to 100% in 25% steps) were combined. Fig. 4.7-Fig. 4.9 show 

the probability distributions for steady state voltage, distribution transformer and 

cable loading of the detailed modelled LV area shown in Fig. 4.1. Each column shows 

the probability of each state for one scenario. In the horizontal axis, the percentage 

represents the number of EVs in smart charging mode. In each figure, the upper 

columns correspond to winter scenario results and the lower columns to summer 

scenario results. For each EV uptake level, no mGen and the two different mGen 

penetration levels are considered, and within them, the five smart charging steps are 

shown. For example, the first column (upper-left) of Fig. 4.7 depicts the case of low 

EV uptake without smart charging and mGen for winter. For this case, the probability 

of the most remote node’s voltage to be in normal state was found 90%.  

4.5.3.1 Voltage 

Voltage was found to violate limits only in winter season loading conditions for the 

medium and high EV uptake cases. Fig. 4.7 shows the distribution of operating states 

for the voltage of the most remote network node. For summer season loading 

conditions, the voltage limits would be breached (emergency state) only for the high 

EV uptake case. The increase in mGen and EV smart charging control, reduce the 

voltage violations. For the low EV uptake case, 100% application of smart charging 

among EV owners was found to prevent any voltage violation. 
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Fig. 4.9 Operational states for 185mm
2
 cable 

4.5.3.2 Transformer Loading  

The distribution transformer would be overloaded for all cases under winter season 

system loading. For the summer season loading conditions, the transformer would 

surpass the normal operational state for the medium and high EV uptake cases. Fig. 

4.8 shows the probability of each operational state of the transformer loading. 

4.5.3.3 185mm
2
 LV Underground Cable 

The 185mm
2
 cable was found to exceed normal operational state for all EV uptake 

cases in winter season loading conditions. For the summer season, emergency 

operational state would occur only for the high EV uptake case. The wide application 

of smart charging was found to decrease the possibility of alert and emergency states 

to zero. Fig. 4.9 shows the probability of each operational state of the cable loading.  
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Fig. 4.8 Operational states for distribution transformer 
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4.5.3.4 Power Line Losses 

The electrical losses in the cables of the LV feeder supplying 96 customers were 

recorded for all simulated cases. Fig. 4.10 shows the daily electrical line losses of the 

detailed feeder and the fraction of losses/load served (lines corresponding to the 

secondary vertical axis). It can be seen that a high mGen penetration in 2030 would 

decrease the losses/load served by approximately 1%. This percentage would further 

decrease by 1% with a wide deployment of smart charging (i.e. 100% of the EV 

owners assigned smart charging for the high EV uptake). 

  
 

 

 

4.6 SUMMARY 

The effect of electric vehicle battery charging on distribution network’s voltage, 

thermal loadings and electrical line losses was studied. A case study for the year 2030 

was built based on EV uptake estimates produced from governmental scenarios. 

These estimates correspond to 12.5%, 33% and 71% of the residences having an EV 

and were described as low, medium and high EV uptake levels. Two approaches were 

used: 

1. A deterministic approach used load flow snapshots with a uniform distribution 

of EV loads across the nodes of a typical UK distribution network. Minimum 

and maximum network loading conditions were considered. The findings with 

regards to each technical impact studied for the maximum loading conditions of 

winter season, were: 

 Voltage was found to violate limits for the medium and high EV uptake 

levels. 
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Fig. 4.10 Daily electrical line losses and losses/load served in the LV feeder 
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 The cable emanating from the LV busbar supplying 96 households was 

found to exceed its nominal rating for the medium and high EV uptake 

levels. 

 The distribution transformer was found to be overloaded for all EV uptake 

levels. 

 Electrical line losses in the LV cables were found to increase by 6% for the 

high EV uptake level, compared to the case without EVs. 

A distribution network reinforcement approach was investigated. It was found that 

a low EV uptake level (see Table 4.4) may be safely integrated with regards to 

network constraints, by upgrading underground cables and distribution transformers. 

This solution was found not to be enough for medium and high EV uptake levels. 

Micro-generators installation will overcome all the constraints for the medium EV 

uptake level. For the high EV uptake level the transformer loading and the voltage 

limits were not violated applying both the network reinforcements and the micro-

generation installation.  

2. A probabilistic approach was employed to tackle behavioural uncertainties of 

EV owners, residential customers and micro-generation power outputs, types 

and installation locations. The findings with regards to each technical impact 

studied for the maximum loading conditions that denotes winter season, were: 

 Voltage was found to violate limits for the medium and high EV uptake 

levels. The probability of voltage limits violation for the low EV uptake 

level and the most remote network node, was found to be 4%. 

 The cable emanating from the LV busbar supplying 96 households was 

found to exceed its nominal rating for all EV uptake levels.  

 The distribution transformer was found to be overloaded for all EV uptake 

levels. The probability of normal operation was found to be less than 5%. 

 Electrical line losses in the LV cables were found to increase to 14% for the 

high EV uptake level. 

The disparity between the two approaches is due to the uncertainties considered in 

the probabilistic approach. The non-uniform distribution of EV load among network 

nodes and the temporal uncertainties of load variations, showed increased currents 

flowing through the 185mm
2
 cable, incrementing the probability of cable overload 

and electrical losses.  
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The effect of micro-generation penetration and a controlled regime for EV battery 

charging were investigated. Two micro-generation penetration levels were used for 

the 2030 case study, 6.25% and 18%. The smart charging regime was varied between 

0-100% in steps of 25%. The results showed that the high penetration level of micro-

generation sources and smart control of EV battery charging (100% of EV owners) 

would eliminate the probability of voltage violations for the low EV uptake. The 

transformer overload probability would be reduced to 5% from 85%. 

From the deterministic and the probabilistic analyses conducted in this chapter, it 

can be concluded that in order to operate distribution networks with a high EV uptake 

equivalent to approximately 71% within their technical limits (loading capacity), a 

combination of reinforcements, installation of micro-generator sources and control of 

EV battery charging is required. 
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CHAPTER 5  
 

COORDINATION OF ELECTRIC 

VEHICLE BATTERY CHARGING 

WITH A MULTI-AGENT SYSTEM  
 

5.1 INTRODUCTION 

Hierarchical structures of agents have been suggested for the aggregation and 

control of distributed energy resources within multiple Micro-grids [237] and Virtual 

Power Plants (VPPs) [238]. In [239]-[240] the inclusion of EVs in such hierarchical 

structures was proposed. In this research the distribution of the hierarchical agents 

followed the hierarchy of the voltage levels of power distributions networks with: 

 A Regional Aggregator agent located at the primary substation level (HV/MV). 

 Local Aggregator agents located at secondary substations (MV/LV).  

 Electric Vehicle agents located in the EVs or the charging points.   

The Regional Aggregator agent manages a number of Local Aggregator agents which 

are responsible for the management of EV agents that in turn manage a single EV.  

The benefits of a hierarchical aggregation structure, in contrast to a single 

centralised aggregator, include: 

 Reliability and robustness: In the case of a failure in a Local Aggregator agent, 

or an EV agent, only part of the control system is affected [241]. 

 Simplicity and speed: Data and information are processed locally reducing the 

complexity of computations and providing faster response [241]. 
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 Flexibility: Each Local Aggregator agent may incorporate characteristics of the 

area and resources it manages and follow different policies or control strategies 

from another Local Aggregator agent. 

 Extensibility: EV agents operating under the management of a Local 

Aggregator agent can be added, modified or removed without major 

amendments in the whole system. 

A Multi-Agent System (MAS) for the coordination of electric vehicle battery 

charging was developed. The MAS coordinates the battery charging of electric 

vehicles based on: 

 Distribution network technical constraints. 

 EV owner preferences. 

 Electricity prices. 

 

5.2 MULTI-AGENT SYSTEM HIERARCHY 

The locations of the agents in a power distribution system are shown in Fig. 5.1. 

The Regional Aggregator (RA) agent is located at the primary substation level 

(HV/MV). The RA agent manages a number of Local Aggregator (LA) agents. It 

aggregates their EV load demand portfolio and communicates with the DSO agent, to 

ensure that the EV load demand portfolio will not affect normal power system 

network operating conditions.  

The Local Aggregator (LA) agent is located at the secondary substation level 

(MV/LV). It manages the battery charging of EVs that are dispersed in a LV area via 

their EV agents.  

The EV agent is located in the electric vehicle and represents the EV owner. It 

manages the battery charging of a single EV.  

The DSO agent is located at the primary substation level (HV/MV). It is 

responsible for the technical operation of the distribution network.  
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5.3 ASSUMPTIONS USED IN THE DEVELOPMENT OF THE AGENT-

BASED CONTROL SYSTEM 

5.3.1 Real-time Operation with Spot Market Electricity Prices  

The MAS satisfies the load demand of the EVs within distribution network limits 

in the most economic way. In the Directive 2006/32/EC on energy end-use efficiency 

and energy service of the European Parliament and of the Council [242], it is reported 

that real-time electricity prices should be offered to customers. A spot price for each 

hour of a day is sent to each EV agent and is used for the coordination of EV battery 

charging.  

5.3.2 Network Limits Matrix 

 The distribution network capacity limits are assumed to be defined by the DSO. 

This concept was proposed in [243]. A matrix with the capacity limits of each LV 

feeder for each hour of a day is produced by the DSO agent. It is named network 

limits matrix and is made available by the DSO agent to the RA agent. The RA agent 

sends the network limits for each LV area to each LA agent that in turn uses them to 

choose the schedules for EV battery charging within technical limits.  

The following constraints are considered: 

 Distribution transformer loading limits. 

 LV cable loading limits.  

 Steady state voltage limits.  
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Fig. 5.1 Location of agents in a power distribution system 
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5.3.3 Network Monitoring System 

A network monitoring system is assumed to be in place and provide the DSO agent 

with real-time measurements for load forecasting, production of the network limits 

matrix and initiation of corrective actions in the case of emergency. In this MAS, the 

corrective actions considered are curtailments of EV battery charging.   

5.3.4 EV Battery Model 

A lithium-ion battery charging characteristic is modelled in the EV agent. The 

battery charging characteristic comes from a battery manufacturer that supplies 

batteries to EV makers [244]. The derivation of the battery charging characteristic 

parameters and its modelling in the EV agent are provided in Appendix C.  

5.4  MULTI-AGENT SYSTEM OPERATION 

In each hour there is a planning period and an operational period. During the 

planning period, the set-points of the EVs for the next operational period are decided 

as shown in Fig. 5.2. 

 

 

 

The MAS operation includes two modes; normal and emergency operation. 

During normal operation, the distribution network is operated within its technical 

limits. The RA agent, the LA agents and the EV agents communicate during each 

planning period to decide the EV set-points for the next operational period.  At the 

end of each planning period, the DSO agent evaluates the proposed EV demand. The 

algorithm for the normal operation is shown in Fig. 5.3. 

 

 

 
Planning Period 

Decision of EV Set-points for T+2 

 

Operational Period  

Application of EV Set-points for T+1 

Planning Period  

Decision of EV Set-points for T+1 

 

Operational Period  

Application of EV Set-points for T 

             T                                                T+1              Time (hours)                              

 

Fig. 5.2 Planning and operational periods of the MAS 
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5.5 TASK DECOMPOSITION AND ALGORITHMS OF THE AGENTS 

DURING NORMAL OPERATION 

5.5.1 Electric Vehicle Agent  

The EV agent represents the EV owner who has the option to choose: 

 The time of EV disconnection. 

 The desired SoC of the EV battery at the time of disconnection. 

 Whether power injections are allowed from the EV battery to the grid, if the EV 

is V2G capable.  

At the beginning of: 

 Every operational period, the EV agent receives a set-point from the LA agent 

and sends it to the battery inverter of the EV.  

 Every planning period, the EV agent receives a message from the LA agent that 

contains hourly prices for a day and an integer np that stands for the number of 

schedules that the EV agent should form into a priority list. The responding 

message of the EV agent contains:  

i) A Risk Factor.  

ii) A number of np charging schedules with the total price of each schedule.  

A. Risk Factor 

The Risk Factor Rf is for the EV owner and is used in the decision making of the 

DSO agent for EV curtailment in the case of emergency. It is unique for each EV 

agent at each planning period and expresses the urgency of the EV agent to charge the 

battery of its EV at the following operational period. It is calculated by equation (5.1).                                                                                 

                       (5.1)                                  

 

Where  

SoCd is the desired SoC at the time of disconnection in kWh, 

SoCT the estimated SoC of the next operational period in kWh,  

eB is the average battery efficiency,  
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eC is the average efficiency of the EV charging point,  

PC  the power rating of the charging point in kW, and 

pc is the number of hours that the EV will be connected.  

B. EV Agent’s Planning Algorithm  

The problem of producing a priority list of feasible charging schedules is a finite 

horizon problem. The horizon is determined by the EV owner. The EV owner will 

choose the time of EV disconnection once the EV is plugged-in at a charging point.  

 The planning horizon comprises a number of finite (fixed) stages T= {T1,...,Tn}  

that are the number of hours of the EV connection period.  

 At each stage, the EV agent has a finite set of feasible actions A= {A1,...,Ak}. 

The range of actions are defined by the EV owner:  

(i) If the EV owner does not allow interruptions of the EV battery charging, the 

only feasible action is charging, 

(ii) If the EV owner allows interruptions of the EV battery charging, the 

feasible actions are charging and idle, 

(iii)  If the EV is V2G capable and the EV owner allows power injections from 

the EV to the grid, the feasible actions are charging, idle and discharging.  

 An EV charging schedule is the sequence of actions at each stage of the 

planning horizon and the total price is the sum of hourly costs.  

A SoC estimation error and a self-discharge factor are modelled in the EV agent 

for the calculation of the expected SoC for each time-step of each charging schedule.  

 If the Energy exchange is positive (i.e. charge action) or negative (i.e. discharge 

action), a SoC estimation error is applied. 

 If the Energy exchange is 0 (i.e. idle action), a battery self discharge factor is 

applied. 

The modelling assumptions for the SoC estimation and the self-discharge factors are 

provided in Appendix C. 

The EV agent’s planning algorithm should produce a priority list of np schedules 

based on the total price in an ascending order. All feasible schedules are calculated by 

the EV agent and the cheapest np are put in the priority list and sent to the LA agent. 

The remaining feasible schedules are kept in the memory of the EV agent in case the 
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LA agent requires more schedules in the priority list. The Breadth-First Search (BFS) 

algorithm is used to obtain all feasible schedules. The BFS algorithm expands firstly 

the root node of a tree, then all the successors of the root, and then their successors 

(Fig. 5.4) [121].  

A pruning step is added to the breadth-first algorithm. This means that sub-trees 

that are not going to contain feasible schedules are not further expanded. A schedule 

is feasible when it satisfies a number of constraints. These constraints are evaluated 

per stage of the tree expansion. An example and evaluation of the algorithm’s 

performance is given in Appendix D. 

C. Constraints in EV Agent’s Planning Algorithm  

The set of constraints inserted in the pruning step of the BFS algorithm differ 

according to the preferences of the EV owner. 

1) If the EV owner does not allow power injections from the EV battery back to the 

grid, the constraints are: 

i) 20%*CB≤ SoCt 

ii) SoCt ≤ CB 

iii) SoCt ≤ SoCd 

iv) SoCd – tol ≤ SoCend ≤ SoCd  

Where:  

SoCt is the estimated SoC at every time-step t of the connection period in 

kWh,  

CB is the nominal battery capacity in kWh,  

SoCd is the desired SoC at the end of the connection period in kWh, 

tol is a tolerance factor in kWh,  

SoCend is the SoC of each schedule produced by the algorithm at the end of 

the connection period in kWh,  

t is each time-step of the connection period. 
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The schedules that satisfy the constraints are sorted based on the total price in an 

ascending order. The tolerance variable tol is used in the case that the number of 

schedules produced by the EV agent are less than the number np requested by the LA 

agent.  

 In the first run of the algorithm at the beginning of each planning period, the 

tolerance is set to zero.  

 When all feasible schedules have been defined, the algorithm checks whether 

the number of feasible schedules, are at least equal to the number np of 

schedules requested by the LA agent.  

 If the number of schedules is less than the requested, the tolerance is increased 

by [SoCd – SoCt ],where SoCt is the estimated SoC at the beginning of the 

following operational period, and the algorithm re-runs. The schedules that do 

not satisfy the desired SoCd constraint are sorted according to the SoCend in a 

descending order and put in the EV agent’s priority list after the schedules that 

satisfy the desired SoCd constraint.  

2) If the EV is V2G capable and the EV owner allows power injections from the EV 

to the grid, the constraints are:  

i) 20%*CB≤ SoCt 

ii) SoCt ≤ CB 

iii) SoCd – tol ≤ SoCend ≤ SoCd  

The EV agent may buy additional energy during hours when electricity is cheap and 

sell it at a later time at higher prices. In order to avoid expansion of sub-trees where 

profit is not foreseen, the rule shown in equation (5.2) was added to perform 

consistency checking [121]. “A heuristic h(n) is consistent if,  for every node n and 

every successor n' of n generated by any action a, the estimated cost c of reaching the 
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Fig. 5.4 Breadth-first search on simple binary tree. At each stage, the node to be 

expanded next is indicated by a marker [121] 
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goal from n is no greater than the step cost of getting to n' plus the estimated cost of 

reaching the goal from n'” [122]. This means that the EV agent allows the buying of 

additional energy (SoCd≤ SoCt ≤ CB) if it only foresees that it may sell it later at a 

higher price and overall has profit and conversely.  

           

              h(n) ≤ c ( n, a,  n’) + h(n’)                                       (5.2)     

 

A battery utilisation cost factor is used. This factor is expressed in £/kWh and 

stands for the cost of the battery to provide energy back to the grid. It is calculated by 

equation (5.3). This concept comes from [245]. 

           

                                        (5.3)      

 

Where: 

cBU is the battery utilisation cost in £/kWh,  

cB is the capital cost of the battery in £,  

d is an annual interest rate of the battery cost,  

ly the lifetime of the battery in years,  

Lc is the lifetime of the battery in cycles,  

CB is the battery capacity in kWh and  

eB is the average battery efficiency.  

The lifetime of the battery ly is calculated by equation (5.4). 

          (5.4)      

Where:  

         acd is the average charge/discharge cycles of the EV battery per day.  

A sensitivity analysis of the battery utilisation cost is provided in Appendix E and 

an example of JADE implementation is provided in Appendix F.  

5.5.2 Local Aggregator Agent  

The LA agent is located at the MV/LV substation level and manages the EV agents 

of a LV area. At the beginning of every operational period, the LA agent sends the 
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decided set-points to the EV agents. At the beginning of each planning period, the LA 

agent receives from the RA agent: 

 The network limits for each feeder of the LV area it manages. 

 The hourly electricity price schedule for a day.  

The LA agent sends a message to the EV agents requesting their schedule priority 

lists, the total price of each schedule in the priority list and their risk factor. When all 

responses are received, the LA agent searches for the combination of schedules for 

each node of each LV feeder that satisfies the network loading limits and minimises 

the total cost. An exhaustive search routine is used for each node of each LV feeder to 

find the cheapest compound profile. An example is shown in Fig. 5.5. 

 The LA agent adds the first schedules of all EV agents that are located in EVs 

connected to a network node. From the combinations of schedules that satisfy 

the network limits, the combination with the lowest sum of costs is the solution. 

 If no combinations that satisfy the network limits are found, then the 

combinations of all first and second schedules are evaluated. This process is 

repeated until a solution is found or the limit np is reached. 

 If the limit np is reached and no solution has been found, the LA agent requests 

more schedules from the EV agents and the search routine re-runs with an 

increased search space.  

The LA agent multiplies the LV feeder limits from the network limits matrix by a 

node factor Nf, which is the number of EVs connected to the network node divided by 

the number of EVs in the feeder, to create network node limits.  The exhaustive search 

is solved per node starting with the node with the highest average of risk factors and 

moves on with the remaining nodes prioritizing them according to the average of risk 

factors in a descending order. When the solution for each node is found, each LA 

agent sends to the RA agent the risk factor of each EV agent for each node and the 

aggregated EV load demand per node for the following operational period.  

 

 

 

 a) Search space=1 b) Search space=2 c) Search space=np 

Fig. 5.5 Example of exhaustive search with gradual increase of search space 
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5.5.3 Regional Aggregator Agent  

The RA agent manages the LA agents of a MV network and is located at the 

HV/MV substation level. At the beginning of every operational period the RA agent 

sends a message to the LA agents to inform them that the operational period has 

started. 

When it receives all responses from the LA agents that the EV agents have applied 

their set-points, it sends a message to the LA agents to start the planning period. The 

LA agents reply with: 

 The list of risk factors of the EVs connected to each node of their area.  

 The proposed EV load demand per node of the LV area they manage for the 

following operational period.  

The RA agent sends this information to the DSO agent and requests technical 

validation for the following operational period.  

 If the DSO agent validates this demand, the RA agent informs the LA agents 

that their proposal has been accepted.  

 If the RA agent’s proposal is not validated, the DSO agent updates the network 

limits and informs the RA agent. The updated network limits are passed to the 

LA agents that re-evaluate the schedules of the EV agents. 

5.5.4 DSO Agent  

The DSO agent represents the DSO and is located at the HV/MV substation level. 

The DSO agent is responsible for the power delivery in the distribution network 

within technical constraints. The DSO agent has the following resources:  

 The topology of the downstream distribution network. 

 The historical load demand of each node of the network. 

 The actual demand of each node in real time. 

 The risk factor of each EV agent for each distribution network node. 

The DSO agent produces the network limits matrix. The network limits matrix is 

produced via the algorithm shown in Fig. 5.6. This algorithm provides the capacity 

available for EV battery charging in a LV feeder. This is done by increasing gradually 
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the load in each LV network node, starting from the most remote node, until a 

technical constraint is violated. In Fig. 5.6: 

 The variable L is the load step increase. 

 The variable T denotes 24 hourly time-steps.  

 The variable Lc is a counter that is used to record the added load.  

At the end of each planning period, the DSO agent: 

 Receives from the RA agent the proposed EV demand and the risk factors of the 

EV agents for the following operational period. 

 Forecasts the residential load demand of each node of the distribution network 

for the next operational period using neural networks.  

 Adds the forecasted residential load demand to the proposed EV demand. 

 Runs a load flow and checks whether the proposed EV demand will affect 

normal operating conditions in the next operational period.  

In the case of technical invalidation, the DSO agent updates the network limits 

matrix and sends them to the RA agent. The network limits are then assumed final. 
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5.6 TASK DECOMPOSITION AND ALGORITHMS OF THE AGENTS 

DURING EMERGENCY OPERATION 

If an emergency situation occurs (i.e. voltage violates limits or transformers or 

cables are overloaded), the MAS reacts autonomously to restore normal operating 

conditions. The algorithm for the emergency operation is shown in Fig. 5.7.  

5.6.1 DSO Agent  

The DSO agent that monitors the network nodes, detects the limit breach and: 

 Curtails gradually the EVs starting with those with lowest individual risk factor 

of the affected network node. 

 Curtails EVs from neighbouring nodes if there are no EVs connected in the 

node that the violation was found. The neighbouring node is chosen based on 

the lowest risk factor of the EV agents.  

 Curtails EVs randomly if the risk factors of EV agents are equal. 

 The curtailing procedure stops only when normal operation is restored. 

5.6.2 Regional Aggregator Agent  

After the emergency event (when normal operating conditions are restored), the 

RA agent is directly notified by the DSO agent and initiates an emergency planning 

period.  

5.6.3 Local Aggregator Agent  

The LA agent that manages the EV agents in the area of emergency receives a 

message from the RA agent after normal operating conditions have been restored, to 

start an emergency planning period. 

5.6.4 Electric Vehicle Agent  

During the emergency, the EV agent receives a curtailment request from the DSO 

agent and sends a set-point of zero current to the battery inverter of the EV. After 

normal operating conditions are restored, the EV agent produces a priority list of 

charging schedules and sends it to the LA agent together with a risk factor.  
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5.7 SHORT TERM LOAD FORECASTING WITH ARTIFICIAL NEURAL 

NETWORKS  

The DSO agent requires a load prediction for the domestic loads of each network 

node. A single value for each node of the distribution network is required as a 

prediction output. Artificial neural networks are used for short term load forecasting. 

5.7.1 Architecture of Artificial Neural Network  

Two options were considered to decide the architecture of the ANNs: 

 A single ANN that predicts the load per node for all network nodes. 

 An ANN for each network node. This option was employed to avoid false 

predictions for all network nodes in the case of a single ANN fault.  

The input data typically used in ANNs for short term load forecasting are historical 

load and weather (temperature and in some cases humidity) data, according to [246].  

Due to the lack of weather data, the developed ANN uses only historical load data.  

A Multi-Layer Perceptron (MLP) is implemented for each network node. Each 

MLP uses load data from two previous days and the day that prediction is required. 

The two previous days are assumed to be the day before the day that prediction is 

required, and the same day of the prediction of previous week. The training data of 
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Fig. 5.7 Algorithm of the MAS during emergency operation 
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each MLP are the half-hourly node load values of the two previous days and the 

testing data the equivalent values of the current day. The training data are normalised 

to a maximum value of 1 because it is required by the activation function used.  

Each MLP has 48 neurons in the input layer, 97 neurons in the hidden layer and 

one neuron in the output layer. The number of neurons in the hidden layer was 

decided after trial and error. The training of each network is done using Encog’s 

iPROP
+
 [180] algorithm (provided in Appendix A) and stops when the Mean Square 

Error (MSE) falls below 0.1%. This stopping threshold was decided after tests. The 

characteristics of the neural network are shown in Table 5.1. 

                                                                                                                              (5.5) 

Where  

yn is the actual output, 

yn is the desired output, 

in is the number of iterations. 

 

Table 5.1 Characteristics of neural network for load forecasting 

 

Network 

Type 

Activation 

Function 

Number of Neurons Training 

Algorithm 

Early 

Stopping 

Criterion 
Input 

Layer 

Hidden    

Layer 

Output 

Layer 

MLP Tanh 48 97 1 iPROP+ MSE<0.1% 

 

5.7.2 Evaluation of Artificial Neural Network  

The accuracy of the ANN was tested. 500 days were simulated. A 24-customer 

node profile was used. This profile consisted of a combination of unrestricted 

residential load profiles (84%) and Economy 7 residential load profiles (16%), from 

[228]. Three profiles were created from this profile for each simulated day. Two of 

them were used to train the ANN and the third for the testing procedure. One random 

daily and one random hourly number were uniformly generated for each profile to 

create each profile’s randomisation factor. This factor was calculated by equation 

(4.1) and the process is explained in Section 4.5.1.2.  
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The Mean Absolute Percentage Error (MAPE) defined in equations (5.6)-(5.8) was 

used to evaluate the accuracy of the ANN. 

            (5.6) 

 

 

                                                                                                                                 (5.7) 

 

 

                                                                                                                                 (5.8) 

 

 

Where  

Nd is the number of simulated days, 

d  is the day index, 

h  is the hour index. 

The MAPE for all simulated cases was found to be 2.17% and the daily deviation 

from the total absolute average error 1.13%. The worst and best daily forecasts were 

recorded and shown in Fig. 5.8 and Fig. 5.9.  

 
 

Fig. 5.8 Forecasted and actual load profiles for the case with the worst MAPE (d) 
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Fig. 5.9 Forecasted and actual load profiles for the case with the best MAPE (d) 
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5.8 SUMMARY 

A multi-agent system for the coordination of EV battery charging in distribution 

networks was described. The location of the agents in a distribution network was 

provided.  

Four types of agents were described: 

 A Regional Aggregator (RA) agent located in the primary substation level. 

 A Local Aggregator (LA) agent located in the secondary substation level. 

 An Electric Vehicle (EV) agent located in the EV.  

 A DSO agent would be located at the primary substation.   

The algorithms of each agent were provided. The MAS operates in two modes, 

normal and emergency. Therefore, two main algorithms were created and described: 

 One algorithm for normal operation that is executed continuously when the 

distribution network is operated within its technical limits. 

 One algorithm for emergency operation that is executed when voltage of the LV 

area violates limits or transformers and cables are overloaded.  

An Artificial Neural Network (ANN) was developed for short term load 

forecasting. The ANN is used by the DSO agent to forecast the residential load of 

each node of the distribution network.  
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CHAPTER 6  
 

 

EXPERIMENTAL EVALUATION OF 

THE MULTI-AGENT SYSTEM  
6   

6.1 INTRODUCTION 

The operation of the MAS proposed in Chapter 5 to coordinate EV battery 

charging was tested in the DER laboratory of the research institute Tecnalia in Spain. 

In this chapter the outcomes of the testing are provided. A test feeder was created to 

demonstrate in real-time the online operation of the MAS under normal and 

emergency operating conditions of the electrical network and three different policies 

of the MAS.  

The laboratory setup and a software agent created to monitor and control the 

equipment of the physical devices were accomplished with the help of Tecnalia 

personnel. This work was done under the framework of the EU FP7 project 

Distributed Energy Resources Research Infrastructures in collaboration with a 

colleague PhD student. The deliverable report document can be found in [247].  

6.2 EXPERIMENTAL SETUP 

6.2.1 Testing Requirements 

The MAS operation was evaluated using the detailed feeder of the LV part of the 

UK generic distribution network presented in Chapter 4. The detailed feeder is 

referred to as residential feeder in Fig. 6.1 and was assumed to comprise of 96 

domestic loads and 32 electric vehicles, uniformly distributed throughout the network 

nodes and managed under a Local Aggregator agent. The remaining 288 domestic 

loads and 96 EV agents of the LV area were simplified as lumped loads. The EV 

uptake level is the medium uptake level of 33% used in Chapter 4 of this thesis. 
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The design aim for the laboratory testing was to create an equivalent circuit of the 

residential feeder. The requirements for this setup and the MAS testing were: 

 Resistive controllable loads and/or energy storage devices to emulate the 

loading behaviour of the LV feeder. 

 Cables and links for creating the equivalent circuit. 

 Monitoring devices for acquiring measurements from the constructed circuit. 

 Data acquisition and communication software for transferring measurement data 

to the software agents. 

 Communication software for monitoring and control of the loading of the 

equivalent feeder.  

The laboratory of Tecnalia research institute was used for the testing of the MAS 

because it met these requirements and in addition provided the EV-ON platform. The 

EV-ON platform is a cluster of software and hardware resources that emulates the 

behaviour of an actual electric vehicle. An EV agent was adapted to it.  
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Fig. 6.1 UK generic network and the residential feeder simulated in Tecnalia’s 

laboratory 
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6.2.2 Hardware and Software Resources 

  The laboratory of Tecnalia provides connections to DER equipment via cables 

emanating from the laboratory switchboard which is connected to the LV distribution 

network through the laboratory building. The following hardware and software 

resources of the laboratory were used:  

 The EV-ON platform, which comprises of commercial hardware and dedicated 

software for SoC measurement acquisition and set-point application.  

 The Avtron Millennium resistive load bank with a total load of 150kW. 

 The Avtron K595 resistive load bank with a total load of 39kW. 

 The GaugeTech DMMS300 measurement device. 

 The communication software and infrastructure for acquiring measurements 

from the measurement device and monitoring and controlling the load banks, 

was provided by Tecnalia. The software used is named Communication 

Software for Distributed Energy Resources (CSDER) [248]. 

6.2.2.1 EV-ON Platform 

The EV-ON platform was not directly connected to the laboratory switchboard and 

was not mapped to the CSDER. This means that the SoC acquisition and the set-

points application were not performed through CSDER but directly via dedicated 

software developed by Tecnalia to control the inverter of the EV-ON platform.  Fig. 

6.2 shows the EV-ON platform.  
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Fig. 6.2 EV-ON platform of Tecnalia [249] 
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The hardware components that were used from the charging point of the EV-ON 

platform [250] (see left side of Fig. 6.2) are: 

 Charging point controller: Industrial embedded PC (Beckhoff CX 1030) with 

Microsoft Windows XP embedded operating system. 

 Plug: SCAME (Libera series for EVs). 

 User interface: Axiomtek panel 6100-O/P 10.4 industrial Thin Film Transistor- 

Liquid Crystal Display (TFT-LCD) monitor with touch screen. 

The hardware components that were used from the electric vehicle of the EV-ON 

platform [250] (see right side of Fig. 6.2) are: 

 Vehicle controller: Industrial embedded PC (Beckhoff CX 1030) with 

Microsoft Windows XP embedded operating system. 

 Inverter: Xantrex XW4024 (230V/50Hz). Hybrid charger/inverter controllable 

by means of XanBUS proprietary protocol (accessed by the vehicle controller 

through a gateway to Modbus protocol). 

 Batteries: Standard vented lead acid batteries of 2.64 kWh total capacity. 

 SoC estimator: Xantrex DC-Link pro.  

 User interface: Axiomtek panel 6100-O/P 10.4 industrial TFT-LCD monitor 

with touch screen. 

Dedicated software developed by Tecnalia was adapted to one EV agent to: 

 Retrieve SoC measurements,  

 Apply current set-points to the inverter.  

6.2.2.3 Resistive Load Banks and Measurement Device 

Two resistive load banks with a total load of 189kW were used to emulate the 

loading of the residential feeder. The load banks were connected to the three phases of 

the LV busbar of Tecnalia’s laboratory. A measurement device was used to provide 

active power (P), reactive power (Q) and three phase voltage (V) measurements. This 

device was installed on the busbar of the lab switchboard and was mapped to the 

CSDER. The individual load steps of each load bank are provided in Table 6.1 and 

the pictures of each load bank and the measurement device are shown in Fig. 6.3. 
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Table 6.1 Individual load steps of each load bank 
 

Load Bank  Available Load Steps (kW) 

Avtron K595 0.35 0.75 1.39 2.78 5.56 11.11 16.67 

Avtron Millenium 5.0 10.0 10.0 25.0 50.0 50.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2.4 Communication Software for Distributed Energy Resources  

The CSDER, “offers the way to translate a range of proprietary communication 

protocols used by different DER to a form of the IEC 61850 based protocol” [248]. 

The CSDER is implemented in JAVA
TM

, therefore it was readily available for use 

with the MAS. It was used as a gateway between the software agents and the physical 

devices of the laboratory. The server hosting the CSDER resources for the monitoring 

and control of the physical equipment was installed in the laboratory facilities of 

Tecnalia. Details of the implementation of CSDER can be found in document [248]. 

The high-level software architecture of CSDER is shown in Fig. 6.4.  

  

b) Avtron Millennium 

load bank 

  

a) Avtron K595 

load bank 

c) GaugeTech DMMS300 

measurement device 

  

 

Fig. 6.3 The resistive load banks and the measurement device used in Tecnalia’s 

laboratory [251]-[253] 
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Fig. 6.4 High-level software architecture of CSDER [248] 

 

A software agent was created to monitor and control the load bank’s steps in order 

to vary the loading conditions at each time-step of the experiments. This agent is 

named Load Banks Controller (LBC) agent. A CSDER client was instantiated at the 

initiation of each experiment in this agent. Through that client, command signals were 

sent to CSDER to:  

 Monitor the steps of each load bank that were switched on. 

 Alter the state of each load bank’s load step. 

Another CSDER client was instantiated in the DSO agent at the initiation of each 

experiment. Through that client, the DSO agent was instructed to acquire periodically 

real power (P), reactive power (Q), and voltage (V) measurements from the 

measurement device, through the CSDER. The periodical measurement acquisition 

function was implemented using JADE functionality (i.e. the ready-made class 

TickerBehaviour provided freely with JADE source code) [161].  

6.2.3 Load Banks Controller Agent  

The role of the LBC agent was to calculate the load bank steps required to be 

switched on and off, in order to create the loading conditions of the simulated LV 

feeder at each time-step of the experiments. The feeder loading at each time-step of 

the simulation was formed by summing the domestic load values and the EV load 

values. The domestic load values were input at the beginning of each experiment and 



Chapter 6                                                   Experimental Evaluation of the Multi-Agent System 

  
       Page 96 

 
  

the EV load values were the output of the MAS decision making after each planning 

period.  

A scaling factor μ was applied by the LBC agent, since the maximum demand of 

the feeder in kW was greater than the total load that the load banks provide. This 

factor was calculated by equation (6.1). 

 

  μ =    =   = 1.29                                                (6.1) 

Where  

Lmax    is the maximum load demand in kW of the feeder used in the case 

studies (i.e. the maximum sum of domestic loads and EV load demand),  

Lmax    is the maximum load of the load banks in kW. 

During normal operation, the steps followed by the LBC agent were: 

1. Read from a file the domestic load demand prior to the initiation of every 

operational period, 

2. Acquire the EV load demand from the LA agent after the set-points validation 

from the DSO agent, 

3. Add the domestic and EV load demands and apply the scaling factor, 

4. Calculate the combination of load bank steps required to be switched on from 

each load bank to achieve the desired feeder loading, 

5. Send commands to each load bank through CSDER for switching. 

During emergency operation, the Load Banks Controller agent was receiving an 

instruction from the DSO agent to curtail the equivalent load of an EV. The steps 

followed by the Load Banks Controller agent during emergency operation were: 

1. Retrieve the total demand value of the LV feeder for the current time-step, 

2. Subtract the demand of the EV that is to be curtailed from the total feeder’s 

demand, 

3. Apply the scaling factor, 

6. Calculate the combination of load bank steps required to be switched on from 

each load bank to achieve the desired feeder loading, 

4. Send commands to each load bank through CSDER for switching. 

sim 
Lmax 

Lmax 
lab 

sim 

lab 

243.59 (kW) 

188.61 (kW) 
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6.2.4 Test Network Configuration in Tecnalia’s Laboratory  

Thirty-six (36) agents were executed in total for the tests that took place in 

Tecnalia’s laboratory. All agents were hosted on one JADE platform that was running 

on one computer. The configuration used to test the operation of the MAS is shown in 

Fig. 6.5. The following instances were run: 

 32 EV agents, from which one was adapted to the EV-ON platform, 

 One LA agent, one RA agent, one DSO agent and the Load Banks Controller 

agent. 
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Fig. 6.5 Configuration of test network in Tecnalia’s laboratory 
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6.3 EXPERIMENTAL PROCEDURE 

6.3.1 Input Data for Experiments 

Domestic load profiles for winter season were drawn from [228]. On average, 16% 

of the customers were assumed to have an Economy 7 tariff profile and the rest an 

unrestricted profile. An annual load increase of 1% for the year 2030 was considered 

from the maximum value of 1.3kW per customer in 2003 [220]. 

 Electricity prices were drawn from [254]. The hourly prices of all winter days for 

the winter of the year ending 2010, were averaged to create a single daily electricity 

price profile. The domestic load profile that was used for each of the four 24-customer 

nodes of the LV feeder and the electricity price profile are shown in Fig. 6.6.  

 

Fig. 6.6 Load profile per 24 customers and electricity prices used in the experiments 

6.3.2 Assumptions Used in the Experiments 

An equivalent of the residential feeder was created in the laboratory to test the 

MAS operation. The assumed limits for the residential feeder are summarised in Table 

6.2, according to the analysis provided in Chapter 4 (Table 4.5).  

The feeder loading limit of 175kVA was assumed, that is 25% of the transformer 

winter loading limit of 700kVA. The cable impedances of the laboratory connections 

were neglected. Resistive load banks were used in the laboratory and the equivalent 

load of the EVs was assumed also purely resistive. The electrical line losses for the 

Table 6.2 Assumed limits for the operating parameters of the case study feeder 
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loading of the feeder during winter season with the medium EV uptake were found to 

be 4.1% (Fig. 4.5). The feeder loading limit was reduced to 167.825kVA to consider 

this value.  

Cable thermal limits were not used in the evaluation of the MAS operation. The 

cables connecting the load banks to the switchboard’s busbar were not equipped with 

any measurement device mapped to the CSDER. Other monitoring equipment that 

could provide online measurements to the software agents was not readily in place.  

Voltage limits were also not used. The laboratory switchboard where the 

measurement device was installed was continuously grid connected and feeding 

additional devices in the laboratory apart from the ones used for the testing of this 

MAS. Therefore, the voltage was not controllable.  

A 33% EV uptake was assumed (medium EV uptake level in Table 4.1). The 

fraction of BEVs to PHEVs was assumed 1/1. The EVs were uniformly distributed 

among the network nodes, i.e. four BEVs and four PHEVs per LV segment.  

The daily energy requirement for each EV was determined according to [4]. The 

average annual driving distance in 2030 for a car in the UK was assumed in [4] to be 

21,331 km, or 58.5km daily. An efficiency of 0.11kWh/km for 2030 based on [4], 

gives on average 6.5kWh daily energy requirement approximately. This figure was 

used in the case studies as the daily energy requirement of EVs. 

The initial SoC of EVs prior to the connection was assumed 30%. The battery 

capacities of BEVs were assumed to be 35kWh and the battery capacities of PHEVs 

9kWh with a maximum allowable Depth of Discharge (DoD) of 80% to prolong 

battery life [75]. The BEVs were assumed to connect at 18:00, half of the PHEVs at 

17:00 and the rest at 19:00. The hour commencing 18:00 is the peak load hour for a 

winter day and in Chapter 4 it was assumed to be the main home arrival time in (Fig. 

4.5). The time of disconnection for all EVs was assumed to be the end of the 

simulated day (i.e. 06:00 the following morning). The EV parameters used in the case 

study are shown in Table 6.3.  

Table 6.3 Assumed EV parameters used in the case studies 
 

BEV battery capacity (kWh) 35 BEV initial State of Charge (%) 30 

PHEV battery capacity (kWh) 9 PHEV initial State of Charge (%) 30 

EV charging point rating (kW) 2.99 EV energy requirement (kWh) 6.5 
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6.3.3 Experiments 

Five experiments were conducted in total (Table 6.4). In all experiments, the goal 

was to minimise the cost of charging. There were three purposes for the experiments: 

 Three experiments aimed to evaluate the behaviour of the MAS during normal 

operating conditions, applying different policies/control strategies.  

 One experiment aimed to evaluate the operation of the MAS during a load 

increase foreseen by the DSO agent in the short term.  

 One experiment aimed to evaluate the operation of the MAS during an 

emergency event.  

Table 6.4 Description of experiments 

 

Experiment Conditions Purpose 

Experiment 

1 

Normal operating 

conditions. 

To evaluate the MAS operation during 

normal operating conditions aiming to 

follow the electricity price signals. 

Experiment 

2 

Normal operating 

conditions, aiming to 

minimise the EV load 

demand in a specific 

hour. 

To evaluate the MAS operation when the 

demand reduction would be required in 

the LV area, during a specific hour. 

Experiment 

3 

Normal operating 

conditions and allowing 

EVs to provide power 

back to the grid. 

To evaluate the MAS operation when 

power injections would be required from 

the specific LV area, during a specific 

hour. 

Experiment 

4 

Simulating a technical 

invalidation from the 

DSO agent. 

To evaluate the MAS operation during a 

load increase that would be foreseen to 

occur in the short-term (the hour before 

energy delivery) and was not previously 

forecasted.  

Experiment 

5 

Simulating emergency 

operating conditions. 

To evaluate the MAS operation during an 

unforeseen load increase in real-time. This 

load increase would create a violation of 

the feeder limit. 
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6.3.4 Experimental Parameters 

Each experiment had a daily horizon with 24 hourly time-steps. Each time-step 

was scaled to a 1-minute interval. The time interval was chosen to be small for two 

reasons:  

(i) To minimise the use of the laboratory facilities and energy use.  

(ii) To simulate the lithium-ion battery characteristics provided in Appendix C, 

using the lead-acid batteries of the EV-ON platform. 

The simulation of the lithium-ion battery characteristics using the EV-ON’s lead acid 

batteries, was constrained by the available capacity of the batteries.  

 The capacity of the batteries used in the EV-ON platform was 2.64kWh and 

the minimum SoC allowed was 50%, to extend their lifetime.  

 The charging and discharging of the batteries was performed in a SoC range 

between 50%-75% because above 75% SoC, the batteries were entering a 

constant voltage charge state and the charging current was not fully 

controllable.  

The available controllable capacity of the batteries was approximately 0.66kWh. The 

time for charging continuously the battery within the controllable range was found to 

vary between 10-20 minutes for a current set-point of 13A AC, due to voltage 

fluctuations and errors of the EV-ON’s SoC estimator. The modelled battery would 

require a period between 3-6 hours to acquire 6.5kWh capacity depending on the 

initial SoC and the preferred SoC at the end of the charging period. Therefore, each 

time-step should be scaled to a period between 1-3 minutes. A 1-minute interval was 

chosen to ensure that the battery charging would remain within the controllable range 

for the whole charging period.   

6.4 RESULTS 

Two sets of results for each experiment are shown.  

i) For the first set, the micro-grid emulator provided by Tecnalia was used. This 

emulator is a piece of software that emulates the behaviour of the micro-grid 

devices.  

ii) For the second set, the actual devices using the laboratory configuration 

presented in Fig. 6.5 were utilised.  
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In the laboratory, each experiment was executed twice to obtain the power demand 

profiles of a BEV and a PHEV from the EV-ON platform:  

 The power demand profile when the EV agent was representing a PHEV that 

connects at 17:00. 

 The power demand profile when the EV agent was representing a BEV that 

connects at 18:00.  

These profiles were expected to be different due to the EV owners’ preferences that 

were given as inputs.  

 The charging profile of a BEV was expected to be stable because the initial 

battery SoC at the time of plugging-in would be approximately 30% and the 

desired SoC at the time of disconnection would be approximately 50%.  

 The charging profile of a PHEV was expected to decrease after the third hour of 

charging as it would then enter the constant voltage charging state (i.e. the SoC 

would be more than 90%). A single set-point was applied by the EV agent at the 

beginning of each operational period, which is a similar approximation to the 

approximation made for the feeder loading (shown in Fig. 6.7 and Table 6.4). 

Fig.6.8 to Fig. 6.12 show the test results. The measurements acquired from the 

actual DMMS300 measurement device were lower than the outputs from the micro-

grid emulator in all experiments. This was due to the modelling assumption in the 

micro-grid emulator software that the voltage at the LV busbar of the laboratory 

switchboard (i.e where the measurement device is installed), is not affected by the 

demand of the loads connected to it. The actual voltage in the LV busbar of the 

laboratory switchboard was varying due to the load of the load banks and other loads 

of the lab.  

6.4.1 Reference Case 

A reference case is provided in Fig. 6.7 using calculations based on the lithium-ion 

battery characteristics provided in Appendix C and using the micro-grid emulator 

software. This case shows the feeder loading without the MAS control using the data 

presented in Section 6.3.1.  

 The greyed area shows the feeder loading without EVs.  

 The black dotted line shows the feeder loading limit.  
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 The grey line shows the feeder loading with EVs and no control.  

 The black line shows the loading of the simulated feeder, as measured by the 

measurement device using the micro-grid emulator software. This line shows 

that the loading of the feeder would be relatively stable during each operational 

period. The small continuous variations are perturbations modelled in the micro-

grid emulator software to consider voltage fluctuations.  

The difference between the calculated values (grey line) and the micro-grid 

emulator output values (black line) in Fig. 6.7 is due to the single command sent to 

the load banks at the beginning of each operational period. When during an 

operational period the EV battery charging entered the constant voltage charging state 

(i.e. in case the SoC is above 90%), the load banks steps were not altered to reflect the 

equivalent load decrease. This was due to the limited time chosen for each time-step 

of the simulation. Ten measurements per minute were acquired from the measuring 

device (i.e. one measurement every six seconds). The process that would be needed to 

achieve the exact loading conditions every six seconds is: 

 Ask each EV agent to report the power draw.  

 Add the power demand from each EV agent to create aggregate demand. 

 Calculate the appropriate steps for each load bank that are required to achieve 

the aggregate demand.  

 Send command signals to the load banks for switching. 

This process required more than six seconds in the single computer that was hosting 

all the agents and the communication software. However, the SoC of each EV agent 

was calculated considering the modelled charging characteristic. This approximation 

did not affect the testing of the MAS operation.  

 
Fig. 6.7  Feeder loading with EV battery charging without control 
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Fig. 6.7 shows that if the battery charging of EVs was left uncontrolled and the 

charging process would start as soon as the EVs were plugged-in, the feeder loading 

limit would be exceeded. According to the assumptions presented in Table 6.3, each 

EV would require 6.5 kWh of net energy, therefore the 32 EVs would require 

208kWh at the end of the simulated day.  

Table 6.5 shows the total energy required by the EVs based on the modelled 

lithium-ion battery including the charging losses of the chargers and the batteries 

(grey line of Fig. 6.7) and the total energy as measured by the emulator’s 

measurement device (black line of Fig. 6.7). 

Table 6.5 Energy requirements for EV battery charging in the reference case study 

 

Net EV energy 

requirement  

Supplied EV energy 

requirement (calculated)  

Supplied EV energy   (measured 

by the emulator software)  

208 kWh 282.38 kWh 313.14 kWh 

 

6.4.2 Experiment 1  

Fig. 6.8 shows the feeder loading and the EV-ON power demand when the MAS 

was operated under normal operating conditions with the policy of price following.  

 
 
 

 

 

 

 

 

 

Fig.6.8 Feeder loading and EV-ON power demand measurements for price following 

under normal operating conditions 
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 The battery charging of EVs occurred during the cheapest hours of the period 

that the EVs were connected.  

 The feeder loading limits were not violated.  

 The preferences of all EV owners were satisfied.  

 The energy supplied to the EVs was 314.12kWh. 

6.4.3 Experiment 2 

Fig. 6.9 shows the feeder loading and the EV-ON power demand when the MAS 

was operated under normal operating conditions aiming to reduce the EV load 

demand during the period 03:00-04:00. This is the period when the EV load demand 

was at maximum in Experiment 1. This condition was simulated by setting the 

electricity price signal for the specific hour to the highest value. It is shown that: 

 The EV load demand is displaced at previous hours following the electricity 

prices.  

 The feeder loading limits were not exceeded.  

 The preferences of all EV owners were satisfied.  

 The energy supplied to the EVs was 326kWh. 

 

 
 

 

 

 

Fig. 6.9 Feeder loading and EV-ON power demand measurements for price following 

with demand reduction policy under normal operating conditions 
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6.4.4 Experiment 3 

Fig. 6.10 shows the feeder loading and the EV-ON power demand when the MAS 

was operated under normal operating conditions allowing EVs to provide power back 

to the grid (V2G operation). This condition was simulated by setting the price for 

selling energy back to the grid at three times higher than the price for buying 

electricity from the grid.  This arbitrary assumption was made because the battery 

utilisation cost for all EV agents was set to 6.027 £p/kWh. This number is calculated 

assuming 1000 full battery charging/discharging cycles as the battery life and an 85% 

average battery efficiency (see Fig. E.1, Appendix E).  

 In the experiment it was shown that the batteries from BEVs: 

 During the first two operational periods of their connection, they would provide 

power back to the grid.  

 During the third operational period, they would remain idle. 

 During the fourth operational period they would be charged. 

 During the fifth operational period they would be discharged. 

 Finally their charging would remain at maximum until the end of the simulated 

day to fulfil the final SoC preference.  

 
 

 

 

Fig. 6.10 Feeder loading and EV-ON power demand measurements for price 

following with V2G policy under normal operating conditions 
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The batteries from PHEVs would be charged with the same pattern as in 

Experiment 1 without providing power back to the grid, because there was not 

sufficient battery capacity and time to provide power back to the grid and then re-

charge to a 100% SoC.  

The experiment showed that: 

 The preferences of all EV owners were satisfied.  

 The feeder loading limits were not exceeded.  

 The net energy supplied to the EVs was 358.26kWh. 

6.4.5 Experiment 4 

Fig. 6.11 shows the feeder loading and the EV-ON power demand when the MAS 

operation was tested for a technical invalidation from the DSO agent. This means that 

the set-points for an operational period were not validated during the planning period 

by the DSO agent.  

This condition was created by setting manually the load forecasting output of the 

DSO agent to a value of 110kW for the operational period of 04:00-05:00. This 

change is shown in Fig. 6.11 with the dark red area.  

The value of 110kW was chosen because, under normal operating conditions as 

shown in Fig. 6.8, the EV aggregate load demand during this period was 

approximately 60kW. Thus, the total feeder demand with the manual increase of 

110kW, would be raised to a value of approximately 170kW, causing a feeder limit 

breach. This is shown in Fig. 6.11 with the orange line.  

To acquire the EV-ON power demand profiles, the LA agent was manually forced 

to re-schedule the EV agent adapted to the EV-ON platform before the others. This 

resulted in the LA agent choosing the second profile from its priority list. This profile 

had a zero set-point for the operational period of 04:00-05:00 because the electricity 

price for this period was higher than the electricity price of the following period. 

The experiment showed that: 

 The operation of the MAS sustained the feeder loading within its limits.  

 The preferences of three EV owners were not satisfied.  

 



Chapter 6                                                   Experimental Evaluation of the Multi-Agent System 

  
       Page 108 

 
  

 
 

 

 

 

 

Fig. 6.11 Feeder loading and EV-ON power demand measurements for price 

following under technical invalidation from the DSO agent 

1) When the EV agent of the EV-ON platform was representing a BEV, the final 

SoC of the BEV that was rescheduled was 15.85kWh instead of 17.7kWh which 

was the preferred SoC at the end of the connection duration. The final SoC of 

the remaining two PHEVs that were rescheduled was 8.7kWh and 8.68kWh 

instead of 9kWh which was the preferred SoC at the end of the connection 

duration. The energy supplied to the EVs as measured by the emulator software 

was 315.82kWh. This case is shown in Fig. 6.11 with the grey line.  

2) When the EV agent of the EV-ON platform was representing a PHEV, all three 

EV agents that were re-scheduled were representing a PHEV. The final SoC of 

the three PHEVs that were rescheduled were 8.69kWh, 8.71kWh and 8.71kWh 

instead of 9kWh which was the preferred SoC at the end of the connection 

duration. The energy supplied to the EVs as measured by the emulator software 

was 318.15kWh. This case is omitted from Fig. 6.11 due to its similarity to the 

previous case. 

6.4.6 Experiment 5 

Fig. 6.12 shows the feeder loading and the EV-ON power demand when the MAS 

operation was tested during an emergency event.  
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A. Experiment using the micro-grid emulator software 

The emergency condition was created by increasing the feeder loading manually to 

a value of 110kW after the start of the operational period of 04:00-05:00. This 

increase is shown with the dark red area in Fig. 6.12. The increase caused a feeder 

limit breach. The DSO agent detected the violation and the equivalent load of three 

PHEVs was curtailed. These PHEVs had the lowest risk factors. The final SoC of the 

three PHEVs were 8.85kWh, 8.9kWh and 8.91 kWh instead of 9kWh which was the 

preferred SoC at the end of the connection period. The energy supplied to the EVs as 

measured by the emulator software was 327.49kWh. 

B. Experiment using the actual laboratory devices 

The emergency event was created by increasing the feeder loading manually to a 

value of 120kW after the start of the operational period of 04:00-05:00. This increase 

is shown with the dark grey-red area in Fig. 6.12. To acquire the EV-ON power 

demand profiles, the risk factor of the EV agent that was adapted to the platform was 

manually set to 0 for the operational period of 04:00-05:00. This resulted in the DSO 

agent choosing the specific agent for curtailment. The manual load increase caused a 

feeder limit breach. However: 

 The operation of the MAS restored the feeder loading within its limits.  

 The preferences of three EV owners were not satisfied.  

1) When the EV agent of the EV-ON platform was representing a BEV, the DSO 

agent detected the violation and the equivalent load of the BEV was curtailed. 

This curtailment was not adequate to restore normal operating conditions and 

the equivalent load of a PHEV was further curtailed. The final SoC of the BEV 

was 16.9kWh instead of 17.7kWh which was the preferred SoC at the end of the 

connection duration. The final SoC of the PHEV was 8.91kWh instead of 9kWh 

which was the preferred SoC at the end of the connection period. 

2) When the EV agent of the EV-ON platform was representing a PHEV, the DSO 

agent detected the violation and the equivalent load of this PHEV was curtailed. 

This curtailment was not adequate to restore normal operating conditions and 

the equivalent load of two more PHEVs was curtailed based on the risk factors. 

The final SoC of the three PHEVs was 8.85kWh, 8.9kWh and 8.92kWh instead 

of 9kWh which was the preferred SoC at the end of the connection period. 
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Fig. 6.12 Feeder loading and EV-ON power demand measurements for price 

following under emergency operating conditions 

6.5 SUMMARY 

The hierarchical Multi-Agent System (MAS) described in Chapter 5 was tested 

experimentally in the laboratory facilities of Tecnalia. An equivalent of a LV feeder 

was set-up that serves 96 residential customers based on the UK generic distribution 
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operation of the MAS during a foreseen load increase in the short term (i.e. technical 

invalidation from the DSO agent). One experiment evaluated the operation of the 

MAS during an unforeseen load increase in real-time (i.e. emergency condition). 

The main findings from the MAS testing are: 

 The ability of the MAS to coordinate EV battery charging within electrical 

network operating limits following electricity market price signals has been 

proven.  

 The ability of the MAS to respond to foreseen short-term (i.e. the hour before 

energy delivery) network loading changes and act autonomously to adapt to 

these changes was shown. The constraints of the electrical network and the EV 

owner preferences were satisfied. 

 The ability of the MAS to respond to real-time emergency events and act 

autonomously to restore normal operating conditions for the electrical network 

was shown. 

 The ability of the MAS to operate using limited computational resources was 

shown. All the agents were running on a single computer. 
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CHAPTER 7  

 

CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER WORK 

 

Electric Vehicles are anticipated to gain a significant share of the vehicle market in 

the forthcoming years. Formal EV uptake targets have not been set by the UK 

government. However, in document [255] that was published for the Committee on 

Climate Change, it is suggested that in order to decarbonise the transport sector and 

achieve the EU27 target of 95gCO2/km by 2020, 1.7 million EVs should be on British 

roads.  

7.1 THESIS CONTRIBUTION 

The contributions that were made in this thesis are summarised: 

 Different electric vehicle charging regimes and uptake levels were used to 

evaluate the impact on grid demand at the national levels of Great Britain and 

Spain for the year 2030. 

 The impact of electric vehicle battery charging on distribution network steady 

state voltage, thermal loadings of transformers and cables, and power line losses 

was addressed. A deterministic approach and a probabilistic approach were 

utilised to evaluate these impacts using computer simulations with a UK generic 

distribution network model.  

 An agent-based control system for the coordination of EV battery charging on 

distribution networks was designed and developed. 

 The agent-based control system was tested experimentally.  
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7.2 ELECTRIC VEHICLE BATTERY CHARGING IMPACT ON GRID 

DEMAND  

In document [4] that was published for the British government, the average 

electricity demand required to cover the EV battery charging was calculated. The 

effect of EV battery charging on grid demand peaks was left open for investigation.   

7.2.1 Summary of Research Work 

Chapter 3 of this thesis investigated the effect of residential EV battery charging on 

grid demand peaks for the national systems of Great Britain and Spain. A case study 

for the year 2030 was defined. Two EV uptake levels were used, based on the 

scenarios developed in document [4]. A low EV uptake would be approximately 7% 

of the car fleet and a high EV uptake would be 48.5% of the car fleet. The same EV 

uptake levels were used for Spain, and the effect of residential EV battery charging on 

grid demand peaks at the national systems of Great Britain and Spain was 

investigated. Four EV charging regimes were applied: 

1. Uncontrolled regime in which the battery charging of EVs would occur as soon 

as the EV owners return home: For the low EV uptake, the winter grid demand 

peak of GB would be increased by 5% and the winter grid demand peak for 

Spain would be increased by 7%. For the high EV uptake, the winter grid 

demand peak of GB would be increased by 60% and the winter grid demand 

peak for Spain would increase by 54%.   

2. Dual tariff regime in which the battery charging of EVs would occur overnight: 

For the low EV uptake, the winter grid demand peak of GB would remain the 

same and the winter grid demand peak for Spain would be increased by 3.1%. 

For the high EV uptake, the winter grid demand peak of GB would be increased 

by 58.2% and the winter grid demand peak for Spain would increase by 77.1%.   

3. Variable price regime in which the battery charging of EVs would occur during 

the cheapest hours of the day: For the low EV uptake, the winter grid demand 

peak of GB would be increased by 2.3% and the winter grid demand peak for 

Spain would be increased by 1.5%. For the high EV uptake, the winter grid 

demand peak of GB would be increased by 60.7% and the winter grid demand 

peak for Spain would be increased by 41.1%.   
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4. Mixed charging regime which combines in equal shares the uncontrolled, dual 

tariff and variable price regimes: For the low EV uptake, the winter grid 

demand peak of GB would be increased by 2.3% and the winter grid demand 

peak for Spain would be increased by 2.4%. For the high EV uptake, the winter 

grid demand peak of GB would be increased by 16.1% and the winter grid 

demand peak for Spain would be increased by 38.1%.   

7.2.2 Limitations and Suggestions for Further Work 

The study presented in Chapter 3 investigated the effect on grid demand from EV 

battery charging for a worst case for the grid: 

 All EVs for both EV uptake levels investigated, were assumed to charge on the 

same day using residential outlets or charging points. Diversity on EV 

availability and other locations of charging were not considered.    

 The batteries of the EVs were assumed to be at a minimum possible SoC before 

connecting to the grid (i.e. at 20% SoC) and charge until the time of 

disconnection.   

The results for the high EV uptake showed that the grid demand would be greatly 

increased. The great increase in demand would affect the electricity market prices and 

hence a feedback on prices should be considered.  

7.3 ELECTRIC VEHICLE BATTERY CHARGING IMPACT ON POWER 

DISTRIBUTION NETWORKS 

The loading capacity of power distribution networks is limited by the equipment 

rating, such as distribution transformers and cables, and operational parameters such 

as voltage on distribution feeders. Electricity demand for residential use is generally 

increasing and residential battery charging of EVs, will increase it further. In 

document [4], it is stated that “the impact of vehicle charging on local networks and 

infrastructure is a critical area for study in future pilot and demonstration projects”.  

7.3.1 Summary of Research Work 

Chapter 4 of this thesis investigated the effect of EV battery charging on 

distribution network voltage, distribution transformer and cable loading, and electrical 

line losses. A case study for the year 2030 was built based on EV uptake levels of 

document [4]. The EV uptake levels correspond to 12.5%, 33% and 71% of the 
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residences having an EV and were described as low, medium and high EV uptake 

levels. A residential UK LV generic distribution network model was used and two 

approaches were utilised: 

1. A deterministic approach used load flow snapshots with a uniform distribution 

of EV loads across the nodes of a typical UK distribution network.  

2. A probabilistic approach was employed to address behavioural uncertainties of 

EV owners, residential customers and micro-generation power outputs, types 

and installation locations. A dedicated software tool was designed and 

developed for the probabilistic simulations. 

The results from the deterministic and probabilistic studies showed good 

agreement for the impact studies on distribution transformer and voltage profiles on 

distribution feeders. A disparity between the two approaches was observed in the 

study of cable loading and electrical losses due to the uncertainties considered in the 

probabilistic approach. The uncertainties included in the probabilistic approach 

showed that non-uniform distribution of EV load among network nodes and the 

temporal load variations would result in increased currents flowing through the cable 

emanating from the LV busbar. The probability of cable overload and the electrical 

line losses of the studied LV area would be increased.  

A distribution network reinforcement approach was investigated. It was found that 

a low EV uptake level may be integrated without violating the operating limits of he 

network constraints studied, by upgrading underground cables and distribution 

transformers. This solution was found not to be enough for medium and high EV 

uptake levels. Micro-generators installation was found to overcome all the constraints 

for the medium EV uptake level. For the high EV uptake level the transformer loading 

and the voltage limits were not violated applying both the network reinforcements and 

the micro-generation installation. 

A smart charging function was created and incorporated in the probabilistic 

algorithm. This function uses a simple heuristic to evaluate the effect of EV battery 

charging re-scheduling. For the case studies performed, the fraction of EVs for each 

uptake level allowing smart charging was varied from 0% to 100% in steps of 25%. 

The results with micro-generation sources and smart charging showed that a high 
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penetration level of micro-generation (equivalent to approximately 18%) and smart 

control of EV battery charging would reduce the impact of the studied parameters. 

7.3.2 Limitations and Suggestions for Further Work 

Real-world data of EV usage are anticipated to become publicly available from 

pilot projects such as the plugged-in places in the UK [256]. From such data, 

probability density functions may be extracted to model the connection time and 

duration of EVs, and be integrated in the probabilistic software tool. 

The centralised smart charging control function used in the probabilistic approach 

uses a simplified heuristic rule. The memory requirements and computation time may 

increase significantly with the increase of control variables (i.e. EVs whose charging 

can be re-scheduled). Tools such as multi-period power flows with the use of global 

optimisation algorithms should be used to quantify the amount of EVs that can be 

safely integrated in a distribution network.    

7.4 COORDINATION OF ELECTRIC VEHICLE BATTERY CHARGING 

USING A MULTI- AGENT SYSTEM  

The deployment of DER including electric vehicles will begin a change of 

distribution networks and utilities towards a smarter grid where increased use of 

monitoring systems and decision making tools for DER control will be needed. It was 

shown in Chapter 4 that only by reinforcing the distribution network will not be 

adequate to charge EV batteries within distribution network limits for a high EV 

uptake. Active network management techniques and methods are currently 

encouraged by regulators in order to enhance the performance of LV networks that are 

presently operated passively. In recent years, the technology of agents and Multi-

Agent Systems has been developed and started to be applied in power system 

applications that require real-time monitoring and control, and some degree of 

autonomy.      

7.4.1 Summary of Research Work 

Chapter 5 of this thesis investigated the application of Multi-Agent Systems for the 

coordination of EV battery charging in LV distribution networks. Controllers that 

would be hierarchically located in a power distribution network were modelled as 

software agents.  
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The hierarchy of the Multi-Agent System and an algorithm that calculates the 

distribution network loading limits (named network limits matrix algorithm) were 

developed in collaboration with a colleague PhD student, I. Grau.  

Four types of agents were developed:  

1. A Regional Aggregator agent that would be located in the primary substation 

level. 

2.  A Local Aggregator agent that would be located in the secondary substation 

level. 

3. An Electric Vehicle agent that would be located in the EV.  

4. A DSO agent that would be located at the primary substation.  

Information flows between the agents and the algorithms for their internal logic were 

designed and developed. The MAS is able to coordinate EV battery charging when: 

1. The distribution network is operated within its technical limits (i.e. voltage of 

network nodes is within limits and distribution transformers and cables are not 

overloaded).  

2. The distribution network suffers from voltage limits violations of transformer 

and cable overloads. In this case, the developed MAS is able to restore normal 

operating conditions by curtailing the charging of EV batteries.  

7.4.2 Limitations and Suggestions for Further Work 

The developed MAS comprises hierarchical agents with decision making processes 

being split between them and decisions are made in a cooperative way. The EV agents 

provide the Local Aggregator agent with a set of alternatives (plausible charging 

schedules), and the Local Aggregator agent decides the EV set-points based on a 

simplified economic evaluation for each LV feeder. It was assumed that the EV 

owners that would commit to this management program, would be compensated in the 

case the schedules chosen would lead to some EVs charging during more expensive 

hours than others. 

 The technical and economic performance of the proposed concept should be 

evaluated and compared with: 
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 A game theory decentralised approach in which EV agents compete for energy 

trading. This may be done by setting-up local markets and designing EV agents 

with abilities for forecasting and decision making for bidding.  

 A centralised approach in which decisions are taken centrally taking under 

consideration a wider set of power system variables. This may be done by 

transferring a set of preferences and characteristics from each EV agent to a 

central scheduler. Thereafter, optimal power flow software could be used to 

obtain optimal actions. 

7.5 EXPERIMENTAL EVALUATION OF THE MULTI-AGENT SYSTEM  

The algorithms of the agent-based system presented in Chapter 5 were evaluated 

individually for each agent at a modelling level. The adaptation of the agents to a real 

physical environment would prove that the MAS is able to work under real-world 

conditions.  

The laboratory facilities of Tecnalia including the micro-grid emulator, 

communication software, and the expertise of staff in real-world DER applications, 

were used for validation of the agent-based system.   

7.5.1Summary of Research Work 

A residential feeder of the UK LV generic distribution work was emulated in the 

laboratory of Tecnalia using two resistive load banks. One measurement device was 

used to acquire measurements and transfer them to the agent-based system. One EV 

agent was adapted to the EV-ON platform, a cluster of hardware and software 

resources that mimics the behaviour of an actual EV.  

Three tests were conducted to test the MAS during normal operating conditions: 

1. Minimise the cost of charging complying with the technical limits of the 

network. 

2. Minimise the cost of charging complying with the technical limits of the 

network, and aiming to minimise the EV load demand during a particular 

period. 

3. Minimise the cost of charging complying with the technical limits of the 

network, allowing power injections from the EVs back to the grid during a 

particular period. 



Chapter 7                                                            Conclusions and Suggestions for Further Work 

 

  
       Page 119 

 
  

Two tests were conducted to test the MAS under the conditions of experiment one 

mentioned above, creating artificially the following events: 

1. Evaluate the behaviour of the system during a foreseen load increase in the short 

term.  

2. Evaluate the behaviour of the system during an unforeseen load increase in real-

time. 

It was concluded that the MAS was able to achieve its design objectives for all 

experiments conducted.  

7.5.2 Limitations and Suggestions for Further Work 

The battery used in the EV-ON platform was lead-acid technology based battery. 

The battery modelled in the EV software agent that was adapted on the EV-ON 

platform was a lithium-ion battery. Further work should include testing of the 

charging and discharging behaviour of a real lithium-ion battery. Thereafter, detailed 

modelling of real battery characteristics should be incorporated into the EV agent and 

the experiments using the real lithium-ion battery should be conducted with the 

operation of the whole MAS. 

The experiments conducted for the artificially created unplanned events revealed 

that although the priority of the MAS to coordinate EV battery charging within 

network technical constraints was satisfied, some of the EV owner preferences were 

not fulfilled. This means that the battery SoC at the end of the connection period was 

not the desired one. It was assumed that in such case compensation would be provided 

by the DSO. A security loading capacity margin should be considered in the network 

limits matrix in order to avoid this case.   

Additional EV battery charging policies for the MAS could be designed. When EV 

load data become available, predictions that will allow market participation of the 

aggregator will be needed. EV load prediction tools will be required. These prediction 

tools may use data from different areas to create compound EV load demand profiles 

for energy trading. In that case, the following functions should be developed in the 

proposed MAS: 

 Minimise the battery charging of EVs within network technical constraints 

aiming to follow a day-ahead compound EV load demand profile for a single 

LV area. 
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 Set-up information exchange between different Local Aggregator agents to 

minimise the imbalances of a given compound EV load demand profile for a 

large geographical area under the management of the Regional Aggregator 

agent.  

7.6 OVERALL RESEARCH BENEFIT 

A number of actors could benefit from the work provided in this thesis. 

1. Overall this research may provide insights for regulators to formulate and 

promote policies that will accelerate the uptake of electric vehicles and other 

low carbon technologies. In collaboration with distribution system operators, 

standardisation bodies and local councils, a push towards charging 

infrastructures installations for electric vehicles and incentives for EV 

ownership may be achieved. From a policy perspective, revisions for services 

companies such as aggregators should take under consideration the efficiency 

and reliability improvements, and the business potential that may be offered. 

2. Distribution system operators may benefit from this research with regards to 

the impacts that are anticipated from EV utilisation on steady-state operational 

parameters of their networks. The impact studies conducted and the control 

approaches simulated and evaluated showed some of the benefits that active 

management approaches may offer, in contrast to the present passive operation 

of distribution networks.  

3. Society and the environment may generally benefit from this research. The 

management of EV battery charging and possible introduction of new tariffs for 

EVs may yield to deferral of costly infrastructural updates of distribution 

networks and enhance the energy consumption awareness of customers.  

Therefore, economic benefits may be seen and overall, carbon dioxide 

emissions reductions may be achieved.    
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APPENDIX A 

 

RESILIENT PROPAGATION ALGORITHM FOR 

ARTIFICIAL NEURAL NETWORK TRAINING 

 

The resilient propagation algorithm is reported in [178], as a fast and efficient 

propagation technique for training Multi-Layer Perceptron Artificial Neural 

Networks. This section describes the algorithm in brief. 

When the algorithm is initiated, small random numbers are assigned to the synaptic 

weights. The training error between the desired and the actual outputs is calculated. 

The training iterations continue for the whole training dataset, until the gradient of the 

average error falls below a predefined threshold [172]. At each iteration the weights 

are updated.  

In resilient propagation, each synaptic weight is updated based on rule (A.1). 

 

        (A.1) 

 

Where  

Δij      is the updated value for the synaptic weights i to j for iteration t 

Δij      is the updated value for the synaptic weights i to j for iteration t-1 
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The rule A.1 means that “every time the partial derivative of the corresponding 

weight wij changes its sign, which indicates that the last update was too big and the 

algorithm has jumped over a local minimum, the update-value Δij is decreased by the 

factor η. If the derivative retains its sign, the update-value is slightly increased in 

order to accelerate convergence in shallow regions” [178]: 

 

                                                                                                                                 (A.2) 

 

 

“Once the update-value for each weight is adapted, the weight-update follows a 

simple rule: if the derivative is positive, i.e. the error has increased, the weight is 

decreased by its update-value, if the derivative is negative, the update-value is added” 

[178]. 

         (A.3) 

 

In the case that there is a change in the sign of the derivative, the previous weight-

update is reverted and the           is set to zero in equation (A.2) to avoid repetition 

[178]. 

Improvements in speed of convergence of the resilient propagation algorithm are 

reported in [179]. The reversion of the previous weight-update, in the case that there 

is a change in the sign, is done only if the overall error E
t
 for the current iteration is 

higher than the error E
t-1

 of the previous iteration. The resilient propagation algorithm 

with this improvement is called improved resilient propagation +, or IPROP
+
. 
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APPENDIX B 

 

GRAPHICAL USER INTERFACE (GUI) OF THE 

DEVELOPED SOFTWARE FOR PROBABILISTIC 

SIMULATIONS  

This section provides the graphical user interfaces developed for the dedicated 

software tool described in Chapter 4. With this software, probabilistic simulations 

may run to evaluate the impact of electric vehicles and micro-generation on the UK 

generic LV distribution network used in Chapter 4. 

 From the GUI shown in Fig. B.1 the type of simulation may be selected. Three 

types of simulations may be run from this tool: 

 Single configuration simulation: in this type, EVs and mGen units are randomly 

placed throughout the nodes of the network and the Monte Carlo procedure is 

executed for the same configuration. This is a general simulation that aims to 

provide a first view of the impact on the distribution network studied 

parameters. 

 Multiple configuration simulation: in this type, EVs and mGen units are 

randomly placed throughout the nodes of the network for every iteration of the 

Monte Carlo procedure. This type of simulation aims to provide a detailed view 

of the impact on the distribution network studied parameters. 

 Specific configuration: in this type of simulation the user is able to place 

manually EVs and mGen in each node of the network. This type of simulation 

aims to provide the user with the ability to evaluate the impact on the 

distribution network studied parameters for any configuration is required.   
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Fig. B.1GUI for selection of inputs and simulation type of the probabilistic software 

tool 

 

In the case that specific configuration is chosen, two additional GUIs appear to 

allow the insertion of user inputs for each node of the LV network. In the first (Fig. 

B.2), inputs for the 3072 customers may be inserted. The mGen inputs for the detailed 

LV area are inserted separately. The EV inputs for the detailed LV area can be 

inserted from the GUI in Fig. B.3. 
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Fig. B.2 GUI for selection of user inputs in the specific configuration 

 
 

Fig. B.3 GUI for selection of user inputs for EVs in the specific configuration 
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APPENDIX C 

 

DERIVATION OF PARAMETERS FOR LITHIUM-ION 

BATTERY CHARACTERISTICS 

The parameters of a lithium-ion battery charging characteristic are estimated. 

These parameters are used to model a lithium-ion battery for the EV agent developed 

in Chapter 5 and tested in Chapter 6.  

C.1 BATTERY CHARGING 

The following characteristics were used to model the lithium-ion battery: 

 Power characteristic: this characteristic is used to calculate the set-points for 

each time-step of the EV connection period.  

 State of Charge (SoC) characteristic: this characteristic is used to estimate the 

SoC for each time-step of the EV connection period. 

Both characteristics were deducted from the charging characteristic shown in Fig. 

C.1.  

 

 

 

 

 

 

Fig. C.1 Representative charging characteristic of LEV50 type lithium-ion cells at 

10A (   ) and 100A (   ) at 25 ºC [245]. The black solid lines show that when the cell 

reaches 90% SoC (in 4.5 hours from the beginning of charging with 0% SoC), then 

the current starts decreasing. 
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The battery model of the EV agent is assumed to comprise of modules whose cells 

exhibit the charging characteristic of Fig. C.1. The nominal charging current is 

assumed to be Inominal = 13A at 230V (Pnominal=2.99kW). The voltage of the charging 

point is assumed to remain constant at 230V.  

The following assumptions are made, with deduction from Fig. C.1: 

 The battery is fully charged from zero SoC in eight hours. 

 From 0% SoC to 90% SoC: 

i) The charging current remains constant at 13A and the power at 2.99kW.  

ii) The SoC increases linearly based on equation (C.1): 

   SoC(ts+tc)= SoC(ts) + Pnominal* eB* eC *tc                                           (C.1) 

Where  

         SoC is the battery State of Charge (kWh), 

         tc is the current point in time, 

         ts is the time (hours) when SoC estimation is needed during the constant   

            current charging range, with 0 ≤  tc  ≤ 4.5, 

         eB is the average battery efficiency, 

         eCn is the charger’s efficiency at 13A.  

 From 90% SoC to 100% SoC: 

i) The charging current decreases exponentially based on equation (C.2): 

   I (te) = I nominal * e
-at

                  (C.2) 

Where  

   te is the time (hours) when current estimation is needed, during the  

     exponential range with 0 ≤  te  ≤ 3.5, 

  a is a constant. 

The constant a is calculated from equation (C.2) to 1.026 assuming that the 

charging current is 1A at the seventh hour of charging. The power characteristic for 

the case of battery charging is described by equation (C.3): 

e / 3.5 
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          P(t)=                                                                                                   (C.3) 

 

The Xantrex XW4024 hybrid charger/inverter used for the experimental validation 

of the MAS in Chapter 6, provides a number of available positive set-points. The set-

point of 13A is included. For the set-points estimated when the battery SoC was in the 

region of 90%-100%, a lookup table was used with the set-points that the inverter is 

able to accept, and the closest value was chosen.   

ii) The SoC increases exponentially based on equation (C.4): 

    SoC (te) = Cb*(1 – e 
–bt

)                 (C.4) 

            Where  

                     b is a constant. 

The constant b is calculated from equation (C.4) to 0.033 assuming that the SoC is 

98% at the seventh hour of charging. The SoC characteristic for the case of battery 

charging is described by equation (C.5): 

 

        

          SoC(t)=                                                                                               (C.5) 

 

Where  

Es is a SoC estimation error modelled as random number from a uniform       

distribution with a maximum of an absolute value of 0.05%. 

For the experiments presented in Chapter 6: 

 The average battery efficiency eB was assumed 0.85, based on [76].  

 The EV charger’s efficiency eC at 13A, was assumed 0.917. This value is the 

efficiency of the Xantrex hybrid inverter/charger XW4024 that was used in the 

laboratory of Tecnalia.  

 

 P(tc)+Pnominal ,  if  SoC<90% 

P(tc)+Pnominal* e
-at

 ,  if  SoC>90% 

SoC(ts+tc)=SoC(ts)+(Pnominal* eB* eC *tc)*(1+Es),  
 

if  SoC<90% 

SoC (te)=Bcap*(1 - e
-bt

 )*(1+Es), if  SoC<90% 
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C.2 BATTERY DISCHARGING 

Battery discharging characteristics are not currently available in the literature for 

modelling the behaviour of a lithium-ion battery in V2G mode. The characteristics of 

the Xantrex hybrid inverter/charger XW4024 were used. Fig. C.2 shows that for 

different ranges of the battery SoC, a number of set-points may be applied. The 

horizontal axis shows the minimum SoC of the availability of these set-points. For 

example, for a battery SoC value higher than 50%, the range of acceptable current set-

points are from -11.1A to -13.  

It should be noted that the particular inverter may accept lower set-points down to -

18A but in this thesis the lowest limit was assumed to be -13A.  

The efficiency of the inverter differs for each set-point. The variation is analogous, 

i.e. the higher the set-point, the higher the efficiency. This is shown in Fig. C.3.  

 

 

Fig. C.2 Range of acceptable set-points by the Xantrex charger/inverter XW4024 for 

different ranges of battery SoC  

 

Fig. C.3 Relationship between current set-point (A) and efficiency (%) of the Xantrex 

XW4024 hybrid charger/inverter  
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It was assumed that the EV agent could apply only the set-points with the highest 

efficiency for each range of the battery SoC. This assumption was made to provide the 

most economical choices for the EV owner. Thus, three available set-points were 

inserted in the EV agent’s logic for the planning algorithm, in the case of discharging: 

 

 

         I=                  (C.6) 

  

 

The power characteristic used, assuming a constant single-phase voltage of 230V, is 

described by equation (C.7). The battery efficiency eb was assumed stable at 85% 

throughout the discharging process. 

 

 

 

 

                     P =                                                                                                       (C.7) 

 

 

 

The SoC estimation was performed using the rule described in equation (C.7) with 

an application of a SoC estimation error identical to the one provided in equation 

(C.5). 

                     SoC(t)= SoC(ts+tc)=SoC(ts)+(P* eB* eC *tc)*(1+Es)                         (C.8) 

 

 

C.3 BATTERY SELF-DISCHARGE 

The self-discharge percentage of lithium ion batteries is reported to be less than 5% 

per month in 
2,3 

and approximately 2-3% in 
4
. For the modelling of the self-discharge 

of a lithium ion battery in this thesis, a random number is chosen from the EV agent 

in the planning algorithm. This number is drawn from a uniform distribution with a 

minimum of 0% and a maximum of 0.005%. This translates to a monthly maximum 

self-discharge percentage of 3.6%. 

                                                 
2 D., U., Sauer, “The battery – Bottleneck for the E-mobility?”, Worksho of the the Dutch Royal Institute of Engineers, 

Available at: http://afdelingen.kiviniria.net/media-afdelingen/DOM100000139/Verslagen/01_-_Prof._Dirk_Uwe_Sauer_-
_The_battery_Bottleneck_for_the_E-mobility.pdf, (last accessed: October 2011). 
3 Electronics Lab, “How to rebuild a Li-Ion battery pack”, Implemented for Fujitsu - Siemens Lifebook S-

Series FPCBP25 battery pack”, Available at: http://www.electronics-lab.com/articles/Li_Ion_reconstruct/, (last accessed: 
October 2011). 

4 Electropedia, “Battery and energy technologies”, Available at:  http://www.mpoweruk.com/performance.htm, (last accessed: 

October 2011). 

-12.97A,      if  SoC ≥ 50% 

-11A,             if  30% ≤ SoC < 50% 

-2.7A,           if  SoC < 30% 

-2.98kW,           if  SoC ≥ 50%, with ec=91.55% 

-2.53kW,          if  30% ≤ SoC < 50%, with ec=90.55% 

-0.621kW,      if  SoC < 30%, with ec=86.4% 

http://www.electronics-lab.com/articles/Li_Ion_reconstruct/


                                                                                                                                   Appendix D 

 

  
       Page 158 

 
  

 

 

APPENDIX D 
 

EXAMPLE AND EVALUATION OF BREADTH FIRST 

SEARCH ALGORITHM WITH PRUNING STEP  

The criteria used in [121] to evaluate the performance of problem-solving 

algorithms are: 

 Completeness: Is the algorithm guaranteed to find a solution? 

 Optimality: Does the strategy find the optimal solution? 

 Time complexity: How long does it take to find a solution? 

 Space complexity: How much memory is needed to perform the search? 

The BFS algorithm is reported in [121] to perform well with completeness and 

optimality but may require a large amount of resources in terms of memory and time 

of calculations. In the EV agent’s problem, if the constructed search tree was uniform 

with a branching factor b=3 (one for each action; charging, idle and discharging), the 

cases that would have to be enumerated for a 24 hourly time-steps horizon are 

3
24

=282,429,536,481. These calculations would require 33 days and 282 Terabytes 

(TB) of memory, assuming that 100,000 nodes can be generated per second and each 

node requires 1000 bytes of storage [121]. 

To reduce the calculation time and the memory required for the calculation of 

feasible schedules, a pruning step was added to the breadth-first algorithm. This 

means that sub-trees that are not going to contain feasible schedules are not further 

expanded. A schedule is feasible when it satisfies a number of constraints. These 

constraints are evaluated per stage of the tree expansion. 

D.1 EXAMPLE OF BREADTH FIRST SEARCH WITH PRUNING STEP 

The EV battery SoC in the hour T is SoCT=3kWh and the desired SoCend at the 

time of disconnection T+2 is SoCd=5kWh. The possible energy exchange between the 
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EV battery and the grid at each time-step is Ex=2kWh. The EV agent’s possible 

actions are charge, idle or discharge, therefore after the first time-step (T+1), the 

possible SoC of the EV battery would be SoCT+Ex, SoCT and SoCT-Ex. For each 

action, the feasibility of the generated node is checked. In this example the only 

constraint is the minimum battery capacity SoCmin=1.5kWh. The node whose action is 

discharge at time-step T+1 is discarded because it does not satisfy the constraint (Fig. 

D.1).  

The two nodes that satisfied the constraint are stored and the algorithm moves to 

the next time-step. After the second time-step (T+2), only two schedules satisfy the 

EV owner’s desired SoCd. These are the feasible EV charging schedules (Fig. D.2).  

 

 

Fig. D.1 Planning algorithm’s evolution after one time-step 

 
 

  

 

 

 

 

 

 

Fig. D.2 Planning algorithm’s evolution after two time-steps 
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D.2 EVALUATION OF EV AGENT’S PLANNING ALGORITHM’S 

PERFORMANCE 

The effect of the pruning step (i.e. insertion of constraints) in terms of calculation 

time and memory required, was investigated. The following case was evaluated:  

 The EV owner allows power injections from the EV back to the grid: The 

branching factor is the highest possible, b=3. 

 The connection period of the EV is the full horizon: 24 hourly time-steps.  

 The electricity prices for selling power back to the grid are high: Three times 

the price for buying electricity. 

 The battery SoC at the beginning and end of the connection period are the same, 

and equal to half of the usable battery capacity: 14kWh for a usable battery 

capacity of 28kWh.  

 The battery utilisation cost was set to 6.027p/kWh assuming an average of 85% 

battery efficiency, 1000 cycles of battery life, a battery capital cost of 

51.43£/kWh and an annual interest rate of 7.7%. 

 The hourly electricity prices of all winter days for the winter of the year ending 

2010 from [254], were averaged to create a single daily electricity price profile. 

These electricity prices were assumed for buying energy from the grid.  

The algorithm was executed and the number of solutions found was 3,802,004. 

This calculation would require approximately 42 seconds and 3.8 Gigabytes (GB) of 

memory according to [121]. The calculation time and memory requirements were 

deemed adequate for the specific problem. 
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APPENDIX E 

 

SENSITIVITY ANALYSIS OF LITHIUM BATTERY 

UTILISATION COST 

 

The battery utilisation cost is the cost of use of an electric vehicle’s battery to 

provide power back to the grid. This section shows that this cost varies greatly, 

depending on a number of factors.  

Lithium-ion battery technologies are considered a strong candidate for use in 

electric vehicles. This is due to a number of advantages they offer
2
: lack of 

maintenance requirement due to sealed cells; long cycle life; broad temperature range 

of operation; low self-discharge rate; rapid charge capability; high rate and high 

power discharge capability; high efficiency; high specific energy and energy density; 

no memory effect. 

To estimate the utilisation cost of providing power back to the grid, the factors 

considered in equations (5.3) and (5.4) in Chapter 5 are provided.  

 Battery capital cost: this is the initial cost required to acquire the battery, 

 Battery lifecycle: this is the duration of the useful life of a battery and it depends 

on a number of factors. These include
5,6 

:  

i) The full charge/discharge cycles,  

ii) The environmental conditions such as temperature and humidity, 

iii) The charging behaviour of the EV owner, i.e. loss of capacity may occur if 

the battery is frequently overcharged or undercharged, 

iv)  Daily use of battery. 

 Battery efficiency. 

                                                 
5 D. Linden, and T., B. Reddy, “Handbook of batteries”, 2002, published by McGraw-Hill, ISBN 0-07-135978-8.S.  
6 Dhameja, “Electric vehicle battery systems”, 2002, published by Newnes, Butterwoth-Heinemann. ISBN 0-7506-9916-7. 
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Projections for the battery capital cost, were aggregated in a study conducted for 

the EU funded project Grids for Vehicles
7
. This study reports current projections of a 

maximum 400 €/kWh, within a timeframe of the year 2030. A long term target of 65-

80 €/kWh for the year 2030 is reported. With the current exchange rate of 1.15 (£/€), 

this translates to 56.5-69.5£/kWh. In document [4] prepared for the UK government, a 

capital cost of £1800 for a 35kWh battery in 2030 is assumed for the year 2030. This 

translates to 51.43£/kWh.   

In order to account for the depreciation of the battery throughout the period of its 

use, an annual interest rate (discount factor) is used
8
. Fig. E.1 shows the variation of 

the battery utilisation cost based on the equations (5.3) and (5.4) using: 

 a discount factor of 7.7%
9
,  

 a battery capital cost of 51.43£/kWh. 

 

 
 

Fig. E.1 Sensitivity of battery utilisation cost to battery efficiency, full battery 

charge/discharge cycles and average battery full cycles per day 

  

                                                 
7 http://www.g4v.eu/datas/Parameter_Manual_WP1_3_RWTH_101216.pdf 
8 W. Kempton and J. Tomić, "Vehicle-to-grid power fundamentals: Calculating capacity and net revenue," Journal of Power 

Sources, vol. 144, pp. 268-279, 2005. 
9 U.S Department of Energy, “Annual energy outlook with projections to 2030”, 2006. Last accessed: 15/10/2011: 

http://www.scag.ca.gov/rcp/pdf/publications/1_2006AnnualEnergyOutlook.pdf 
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APPENDIX F 

 

EXAMPLE OF EV AGENT IMPLEMENTATION IN JADE 

At the initiation of the EV agent the following three behaviours are uploaded in the 

behaviour pool after the EV agent registers to the Directory Facilitator. 

 Planning period behaviour: this behaviour is executed when a message is 

received by the Local Aggregator agent that contains the hourly electricity 

prices for a whole day to start the planning period.  

 Operational period behaviour: this behaviour is executed when a message is 

received by the Local Aggregator agent to start the operational period. 

 Curtailment behaviour: this behaviour is executed when a message is received 

by the DSO agent to curtail the battery charging of the EV. 

 
 Fig. F.1 Activity diagram of the EV agent start-up and behaviours 


