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Abstract 

Schedule volatility is an unfortunate fact of life facing most suppliers of both products and services.  
In this paper we are concerned with establishing the magnitude of the problem faced and the 
resultant effects on supply chain performance.  Empirical data collected from fifty-nine value 
streams is statistically analysed to investigate the negative effects of volatile customer schedules 
on performance.  The evidence has been acquired predominantly via the rigorous site-based Quick 
Scan Audit Methodology.  For each value stream the forecast error is evaluated, and confirms the 
excessive volatility of the orders placed by many customers.  A comparison between the 
automotive and non-automotive supply chains is conducted to assess the generic nature of the 
resultant relationships.  We have concluded that volatility is a universal problem not confined to 
particular industries.  Hence it strengthens the viewpoint that solutions initially proposed for the 
automotive sector may well find successful application elsewhere. 
 
Keywords: Supply chain management, empirical case investigation, schedule volatility, automotive 
vs. non-automotive, performance evaluation. 
 

 
 
1 Introduction 

Schedule volatility is a particular case of the bullwhip effect in which production orders are 
subject to more lively behaviour than the incoming customer demand (Childerhouse et al., 2006).  
However, although demand amplification has been studied via simulation (Forrester, 1958), using OR 
type analysis (Lee et al., 1997, who in passing coined the “bullwhip” phrase), and utilising transfer 
function modelling (Dejonckheere et al., 2002), there have been relatively few industrial studies to 
promulgate and exploit this knowledge.  Notable exceptions are the in-depth case studies described 
by Harrison (1995) and Towill and McCullen (1999).  Unusually, the latter paper also evaluated the 
impact of system design changes via an effective real-world BPR programme on bullwhip.  They were 
able to provide substantial evidence on the simultaneous achievement of damping down volatility and 
reducing average stock levels in a global supply chain.  Thus the system was effectively re-
engineered to avoid the detrimental “vicious circles” which often plague production planning and 
control.   
 

The earlier Case Studies by Harrison (1996) clearly illuminated the magnitude of the problems 
caused by schedule volatility.  An extensive and very relevant horizontal survey was conducted by 
Liker and Wu (2000) comparing US and Japanese automotive OEMs.  The data of particular interest 
to our research is portrayed in Figure 1.  Clearly, the “Lean” principles invoking level scheduling 
(Suzaki, 1987) practised by the three Japanese automakers have resulted in far less volatility for their 
suppliers, especially in the short term.  On that evidence there is an order of magnitude difference in 
forecast-ability to be overcome if the US auto suppliers are to achieve parity.  Since the same 
marketplace is targeted by both groups of OEM, it is obvious that the material flow systems must 
generate this schedule volatility internally. 
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Figure 1: Summary of schedule volatility induced by US and Japanese implant automakers via 

their late order changes (Liker and Wu, 2000) 
 

It is also well established that production scheduling in any business serving many customers 
with many products is a very complex task.  Algorithmic decision support systems provide only part of 
the answer.  The practicalities to be faced include capacity constraints, efficiency of 
component/material/sub-assembly suppliers, shop floor problems, and a volatile marketplace 
(Olsmats et al., 1988).  In some industries, this situation is much exacerbated by customers changing 
orders at very short notice.  For example, the Liker and Wu (2000) study on US automakers 
established that in a particular company, the orders placed on their component suppliers change by 
37% three days ahead, and by 19% one day ahead.   But as far as the production schedulers 
involved in the vendor companies are concerned, this is just one more annoying source of volatility to 
be coped with, superimposed on that from every other customer.  It is not surprising to find that there 
is a danger of a wrong reaction by the scheduler faced with such a complicated scenario.  Unintended 
consequences within the enterprise include generation of the “Flywheel Effect” (Houlihan, 1984), and 
interacting “Vicious Circles” (Hoover et al., 1996). 
 
Metters (1997) has shown via simulation that bullwhip can generate significant on-costs in the supply 
chain.  Hence, appropriate production scheduling is a key factor in business strategy.  Of course, the 
real-world range of possible schedule dynamics is very wide.  At one end of the spectrum the aim is 
to level schedule, which, in effect, is making to stock even if the target is adjusted periodically in the 
light of sales trends.  This approach is heavily dependent on customer collaboration if the delivery 
process is to be sufficiently smooth (Towill, 2006).  At the other end of the spectrum, orders fluctuate 
much more widely than the incoming demand. In this paper the goal is to use the site-based Quick 
Scan Audit Methodology (Naim et al., 2002) to generate the necessary data to test for significant 
system variables resulting from schedule volatility.  Both automotive and non-automotive sectors are 
included herein.  A number of the 59 value streams are inter-linked, thus enabling an extended 
investigation of the knock-on effects of schedule volatility along the supply chain. 
 
 
2 Contribution of the present paper 

Understanding schedule volatility is extensively underpinned by what may be regarded as 
“hard” theory (Wikner et al., 1991).  This is, of course, subject to how appropriately the expected real-
world scenario has been represented prior to simulation or mathematical analysis.  It is our view that 
considerable insight into system behaviour is generated via such approaches.  Salient results have 
already been published (Childerhouse et al., 2008).  In the present paper the five categories of 
scheduler strategy output identified have been used to classify the dynamics of the 59 real-world value 
streams.  We show that all of the posited behaviours are encountered within the scope of our QSAM 
studies.   

   Percentage 
Change in 

Parts Order
Chrysler Ford GM Honda Nissan Toyota

One
Week
Ahead

(16%) (24%) (37%) (10%) (3%) (7%)

Three
Days
Ahead (3%) (5%) (30%) (2%) (5%) (3%)

One
Day
Ahead

(3%) (10%) (19%) (2%) (1%) (2%)

“Worst” OEM“Worst” OEM
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The term ‘value stream’ has been popularised by Womack and Jones (1996),  and is defined as 
“the special activities required to design, order, and provide a specific product, from concept to launch, 
from order to delivery, and from raw materials into the hands of the customer”.  In many respects 
‘supply chain’ and ‘value stream’ are synonymous.  A practical interpretation is that a supply chain 
consists of a bundle of multiple value streams. 
 

As befits the process engineering approach used herein, the QSAM is linked to the specific 
block diagram structure shown in Figure 2 (Mason-Jones and Towill, 1998).  It is readily traceable to a 
systems engineering tautology (Parnaby (1979). The focus is on identifying and codifying in an 
informative and repeatable manner the four major uncertainties associated with the value stream 
under audit (Towill and Childerhouse, 2006).  These are respectively due to “Our Process”; “Our 
Suppliers”; “Our Customers”; and the overarching “Control Systems”.  Furthermore, the patterns 
determined by such an audit can then be used to classify a particular value steam as “traditional”, 
“typical”, or “exemplar”.  In the latter case, further scrutiny of QSAM results can highlight the actions 
which enable such “best practice” (Childerhouse and Towill, 2004). 
 

 
 

Figure 2: Value stream representation underpinning the uncertainty circle 
(Mason-Jones and Towill, 1998) 

 
Our aim is manifestly to increase the knowledge base on schedule volatility observed in real-

world value streams.  The novel contribution is the study across a sample of enterprises so that the 
phenomenon can be evaluated on a comparative basis.  In particular, we study the schedule volatility 
induced in both automotive and non-automotive value streams.  The results confirm that previously 
identified “best practice” companies minimise schedule volatility in order to avoid costly ramifications.  
Attention has been concentrated on the performance impact of the production scheduler strategy.  
This is based on an earlier in-depth Case Study in the UK automotive industry (Olsmats et al., 1988).  
That paper included simulation modelling to demonstrate the possible behaviour in response to 
various demands, a procedure already exploited to explore the range of experienced scheduler 
responses (Childerhouse et al., 2008).       
 
 
3 Scheduler strategies 

Production Schedulers are rarely concerned with managing just one product, and the task is 
therefore to perform a delicate balancing act between the demands for different items and between 
different customers (Olsmats et al., 1988).  Also, the multi-product scenario can be somewhat different 
from aggregate statistics, requiring considerable care in subsequent analysis (Fransoo and Wouters, 
2000).  Certainly, there is some industrial evidence to support the view that schedulers may 
reasonably balance conflicting demands even if, as a consequence, the individual value stream 
volatility may be somewhat increased (Potter et al., 2005).  Note that in these instances the bullwhip 



consequently increased, but within acceptably set bounds.  Furthermore, in complex supply chain 
scenarios, the scheduler may be reasonably aware of what is actually happening at the marketplace 
despite demand amplification being induced by downstream players as identifiable within a European 
confectionary supply chain (Holmström, 1997). 

 
There is a range of operating paradigms which the busy production scheduler can adopt in this 

situation.  Some will be manifestly more successful than others in terms of adherence to the schedule, 
annual stock turns, and customer service level.  Indeed in volatile situations just avoiding creating a 
chaotic situation on the shop floor and in dealings with second tier suppliers would be an achievement.  
However the “best” scheduler decisions are highly particularised.  It is possible to develop a 
classification schema which will cover the range of expected responses (Childerhouse et al., 2008).  
This approach will be further exploited herein. 

 
  At one extreme is where chaotic behaviour exists, and where progress chasers are much in 

evidence endeavouring to expedite “their own” particular clients’ orders.  At the other end of the 
spectrum is level scheduling, which is an outcome of the “Smooth is Smart” philosophy (Towill, 2006).  
Intermediate between these limiting strategies is the “Pass on Orders” (PoO) philosophy in which 
customer demand is sent straight on to the shop floor.  “Let them sort it out as they have the required 
up-to-date knowledge of local conditions” is the associated mantra.  The five categories we have 
selected follow directly from Childerhouse et al. (2008).  They are, in order of increasing volatility: 

 
 Level scheduling (i.e. the output is unaffected by the input); 
 Demand smoothing (i.e. a deliberate attempt is made to filter out the worst peaks and 

troughs); 
 Pass-on-orders (i.e. output and input are aligned); 
 Demand amplification (i.e. the output is somewhat more volatile than the input);  
 Chaotic (i.e. seemingly excessive random volatility). 

 
Note that the last phenomenon, in the specific sense defined by Burger and Starbird (2005), is 

easily self-induced.  For example, the doubly volatile scenario shown in Figure 3 result from a planning 
and inventory vicious circle, and a quality driven vicious circle.  Hence, the production scheduler must 
avoid actually making matters worse when seemingly taking action to improve this very complex 
situation. 
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Figure 3: Chaotic behaviour in the supply chain caused by self-enhancing feedback loops 

forming two “Vicious Circles” 
Source:  Authors, based on Hoover et al. (1996) 

 
Surprisingly, under such circumstances PoO can be a serious contender for scheduler strategy.  

For example, in the maybe somewhat artificial atmosphere of the “Beer Game”, Sterman (1989) has 
shown that PoO performance can be used as a realistic benchmark for judging decision-making 
efficacy.  He analysed the performance of some 2000 “players” involved in this popular management 
business game.  The objective was to determine how many of them had bettered PoO.  This was 
evaluated using a particular cost function which balanced inventory costs and order volatility.  The 
conclusions reached were extremely interesting.  Only 25% of this large sample of players actually 
bettered the PoO standard.  From this result we might conclude that PoO is a reasonable strategy to 
adopt.  “Only partially” is the further explanation, because within this select group were a few players 
(about 10%) whose performance was much superior to pass on orders.  Hence, the challenge to 
provide the production scheduler with algorithmic decision support systems which will be consistently 
optimum in some sense (Disney et al., 2005).   

 
Control theory underlines the importance of the production scheduler accessing as many 

system states as possible (Ashby, 1956).  Considerable benefits arise from understanding the 
significance of such data, especially when it is timely, noise and bias free, and preferably includes 
product flow rates and inventory levels (Chatfield et al., 2004).  However, it is still the scheduler’s 
responsibility to decide when any individual decision support system (DSS) recommendation will be 
overridden in the light of other information available (Olsmats et al., 1988).  Obviously any production 
scheduler may quite consciously adopt a different paradigm for dealing with various products, or 
indeed various customers.  For example, Holmstrőm, (1997) studied the bullwhip effect visible in the 
transmission and demand amplification of orders in a European confectionary supply chain, starting at 
the market place and tracking back to the factory.  What happened during the consequential chain of 
decision-making depended very much on the product concerned.  Bullwhip occurred at most echelons 
for both product types.  However, at the factory, the production scheduler considerably smoothed the 
demand for the high-volume, low profit margin confectionary.  In contrast, his decisions regarding the 
low-volume, high profit margin products were quite different, with a volatile schedule placed on the 
shop-floor.  Trading bullwhip levels between products can thus be an acceptable way to proceed.  But 
again this is helped if customer strategy is known.  Planning can then proceed with confidence (Potter 
et al., 2005). 



A summary of ways of coping with the problem are shown in Table 1 (Gilliland and Prince, 
2001).  Statistical forecasting is of restricted use when supplying “awkward” customers.  In any event, 
our research methodology  is based on identification and subsequent reduction of uncertainty.  This is 
covered in depth by Childerhouse and Towill (2004), as is the necessary associated re-engineering by 
Towill and McCullen (1999).  But, in our view, collaboration needs to extend both up and down the 
supply chain.  Information quality as well as information quantity is essential for seamless operations 
(Chatfield et al., 2004). 
 
 
Approach Characteristics Possible Downside 

Statistical Forecasting Efficient and cheap to run: 
capable of automatic updating 

Accuracy more dependent on 
volatility than sophistication: data 
has to be reliable 

Supply Chain Engineering Minimises reliance of business 
on forecasts, exploits “Rapid 
Response” modes 

Need to carefully match pipelines 
to marketplace: responsiveness 
increases costs 

Demand Smoothing Identification of internal and 
external causes of uncertainty: 
re-engineer supply chain to 
minimise uncertainty 

Customers may be unwilling to 
work with suppliers: customers 
may not be able to forecast 
demand 

Collaboration with Customer Emphasis on communicating 
and building, relationships, IT 
developments for collaboration 

Difficult, protracted, expensive 
and time consuming for 
management 
 

 
Table 1:  Approaches suggested for coping with “unforecastable” demand 

Source:  Authors, based on Gilliland and Prince (2001) 
 
4 Research methodology 

Empirical data was collected via the rigorous site-based Quick Scan Audit Methodology 
(QSAM) as outlined by Naim et al., (2002).  This has been specifically developed to minimise the 
disturbance to the host organisation(s) whilst still acquiring an accurate performance and operations 
assessment of the supply chain.  In total, it takes four researchers (plus appropriate company staff 
inputs) one week to fully audit the supply chain of a medium-sized organisation. During this period, 
only half of this time is spent on-site disrupting the host managers.  However, it is important to note 
that QSAM is team based, and we stress the inclusion of players from the host organisation.  So both 
parties contribute considerable effort and expertise to the audit programme.  

 
The QSAM utilises the four well-honed investigative techniques of questionnaire analysis, 

process mapping, semi-structured interviews, and modelling from numerical data.  The process-
mapping phase is of prime importance, and enables flows to be determined across internal supply 
chains and interfaces involving both customers and suppliers.  This procedure includes the 
identification of both value-added and non-value added processes. During the off-site stage of the 
QSAM a number of brainstorming sessions are then held so as to triangulate data from all sources, 
identify gaps in knowledge requiring further investigation, and also to resolve any inconsistencies.  
Rigorous analysis of the information allows key problem areas and issues to be highlighted.  The 
output is thus a clear assessment of the current status of the company and its supply chain, together 
with the maturity of its practices and processes and their ability to meet current and future customer 
needs.   

 
The depth of knowledge obtained from each individual Quick Scan mirrors the large investment 

in time by the researchers conducting the analysis.  Inevitably, the understanding is not as great as 
the comprehensive knowledge obtained via detailed Case Study analysis.  However, a far greater in-
depth understanding of an individual value stream is gained via the QSAM than by using telephone or 



Childerhouse, P., Towill, D.R. and Disney, S.M., (2009), “The effect of schedule volatility on supply chain performance”, International 
Journal of Logistics: Research and Applications, Vol. 12, No. 4, pp313–328. ISSN 1367-5567. DOI: 10.1080/13675560903075919. 

postal surveys.  Figure 4 illustrates this critical point in relation to the balance between the resultant 
depth of knowledge and number of companies analysed.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Comparative scope and depth of understanding gained via QS analysis 

Source: Childerhouse and Towill, 2003 
 

The key QSAM elements that result in successful supply chain evaluations are:  
 

 A team of four researchers can ensure investigator triangulation. 
 The use of four comprehensive data collection methods provides methodology triangulation. 
 
Achieved via: 
 
 The application of a refined, repeatable, systematic and hence holistic methodology. 
 The considerable skills and knowledge of the QSAM team. 
 The buy-in obtained from the win-win situation of the provision of improvement opportunities 

and gathering of rigorous research data. 
 

Initially, the audit methodology was conducted solely in the European automotive sector, 
resulting in information relating to 22 value streams. The majority of these value streams were 
however based in the UK, with some elsewhere in Europe.  They involved both OEM system and 
component suppliers.  More recently, the QSAM has been adapted to evaluate other industrial sectors 
and has been successfully applied in Thailand and New Zealand.  This has resulted in detailed 
information pertaining to a further 37 non-automotive value streams.  Appendix A provides descriptive 
information of the value stream sample, it can be seen that they come from a range of market sectors 
including FMCG, telecommunications, heavy engineering and aerospace and cover a wide spectrum 
of value adding activities.  

 
QSAM uses the investigative resources available to establish “new knowledge” via shop-floor 

studies.  Importantly it additionally compares the “health” of a group of value streams via statistical 
significance testing (Childerhouse and Towill, 2003).  This procedure enables trends to be observed, 
clusters of supply chains detected, and exemplars highlighted.  Further and deeper examination of the 
site-acquired data then enables characteristics of “poor practice”,  “good practice”, and “best practice” 
to be identified and cross-checked.  Furthermore, because a battery of investigative techniques is 
exploited via QSAM, triangulation of data is commonplace. 
 

Case Studies

QSAM

Questionnaire Surveys

0 1                                59                           300

Comprehensive

In-depth

Overview

Number of Companies/
Sample Size

Depth of
Knowledge 
Acquired
from Each
Company



5 Sector schedule volatility comparison  
There is an on-going usage of the automotive sector somehow being “different”, with impossible 

customers to deal with, ineffective processes, poor end products and macho personality conflict at all 
levels.  This, of course, is not necessarily the case, as the study by Liker and Wu (2000) amply 
demonstrated.  Much “good practice” has definitely existed for many years, typically in Japan (Suzaki, 
1987) Germany (Warnecke and Huser, 1995), USA (Liker and Wu, 2000), and the UK (Parnaby, 1998 
and 1995).  Nevertheless, the current competency situation is extremely patchy, as our previous 
research has shown (Childerhouse et al., 2006).  Hence, although the Toyota Production System ~ 
TPS (Ohno, 1988) and its European equivalent “Managing-By-Projects” (Parnaby 1988; Parnaby et 
al., 2003) is promulgating these practices throughout the industry, diffusion is actually taking a very 
long time (Spear and Bowen, 1999).  As the latter authors have argued, a high success rate for TPS 
transfer is certainly not guaranteed, even amongst Toyota suppliers when assisted by internal 
consultants from the host company. 

 
The definitions used in this section are linked in Table II.  Our estimate of input volatility is 

based on the accuracy of one month ahead forecasts when compared to actual call-offs on the day for 
specific products.  In the automotive sector the one month ahead forecast is typically provided by the 
customer (OEM) and can be considered a rough estimate of scheduled demand.  Our average 
customer-induced volatilities are calculated from six months of recorded time series data for each 
particular product.  The process of calculating the inaccuracy is straightforward.  Once the two 
columns of data (forecast and actual) have been input to a spreadsheet, the forecasts are aligned to 
the actual result for each corresponding day and hence the average difference between the two 
calculated.   

 
 

Terminology Definition 

Input volatility 
(demand placed on the scheduler) 

Changes in actual orders from the customer 
One-month-ahead schedule forecast. 

Output volatility 
(demand placed on the shopfloor) 

Orders for products (on the shop floor and 
elsewhere) placed by the production scheduler. 

Scheduler Induced Volatility 
(relationship between input & output volatility) 

“bullwhip”/smoothing induced by the decision 
making of the production scheduler. 

 
Table 2:   Definitions Used in Inter Market Sector Scheduler Induced Volatility Analysis 

 
 
Figure 5 is a frequency distribution graphs of input for the two sample groups.   There is a very 

large spread of results for the schedule volatility as estimated via this process. However, for the 
automotive sector plotted in Figure 5a, half of our sample lies within the 20% range (27+23).  Both 
Japanese implants studied are located within a few percentage points.  This high level of consistency 
is to be expected as it agrees with previous conclusions reached by Harrison (1996) and Liker and 
Wu (2000) for such enterprises.   Figure 5b shows the results of the same calculations performed on 
the non-automotive sample.  Again, there is a significant spread of value streams.  What is surprising 
at first sight is that this variability is so comparable with that estimated for the automotive sector.   
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Figure 5: Input volatility histograms 
 

The average one-month input volatility for the 22 automotive sample mean is 31% and the non-
automotive is slightly higher at 38%.  This small difference is not statistically significant with a t-value 
of 0.82.  Yet the common perception is that the former is different from the supposed relatively staid 
behaviours anticipated in other market sectors.  On this evidence it is not.  This misconception is 
perceived to be due to even more pressure by OEMs demanding JIT deliveries which are often 
distinctly different from forecasts initially sent to supplies.  So the impression persists that “automotive” 
is an unreasonable business in the extreme.  Our results substantially beg to differ.  Schedule volatility 
does not appear to be market sector specific.  Hence, the ten bullwhip solutions previously proposed 
in the literature (Geary et al., 2006) may well be applicable across a wider range of industries than first 
thought. 

 
6 Real world scheduler strategies 

The previous section highlighted the input volatility a real-world production scheduler actually 
has to cope with when matching supply and demand.  Data on the output volatility resulting from his 
actions was also collected and collated for the 59 value streams.  A wide range of data was collected 
during each of the quick scans (see Naim et al., 2002) and overall measures for process and control 
uncertainty determined.  This was necessary because data inconsistencies, different organisational 
procedures and a wide range of product types made it impossible to directly compare the empirical 
cases.  To overcome this problem both process and control uncertainty were codified for the 59 value 
streams and a resultant measure of output volatility developed.  Mapping these two variables together 
allows us to correspondingly position the five scheduler strategies and then evaluate the range of real 
world scenarios.  Hence Figure 6a illustrates the automotive samples spread of scheduler strategies 
(note the numbers identify the value stream IDs). 
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(a) European automotive value stream sample (b) None-automotive value stream sample



    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Factory scheduler strategy in real-world value streams 
 

The top left scenario is chaotic as the customer demand volatility is low but the output variance 
from the scheduler is far higher.  Demand amplification is nearly as bad for the system as this still has 
a significant gearing up of input-to-output volatility.  The central band in Figure 6a relates to the simple 
case of passing-on-orders where the input and output volatilities are approximately the same.  In some 
cases, it is possible to actually reduce the input volatility as shown in the demand smoothing area of 
Figure 6a.  The bottom right scenario goes one step further and provides level schedules for 
production and suppliers, thereby substantially decoupling the demand volatility from production 
processes altogether.  In other words “Smooth is Smart” (Towill, 2006). 

 
The automotive sample in Figure 6a shows a relatively random scatter of input and output 

volatilities.  The correlation coefficient for the inter-relationship is 0.082, which is certainly not 
statistically significant.  For comparison Figure 6b illustrates the non-automotive sample mapped on to 
our research model.  Once again, the relationship between input and output volatility is minimal with 
another statistically non-significant correlation coefficient of 0.079.  These results are somewhat 
disconcerting, but not surprising.  Clearly, in many instances the incoming demand signal is being 
substantially manipulated before it hits the shop floor.         

 
The distribution of the five scheduler strategies is reasonably similar for the two sample groups 

as highlighted in Table 3.  Both samples have relatively small “tops” and “tails”, i.e. there are a minimal 
number of cases of either the chaotic or the level scheduling strategies.  Both sample groups also 
have approximately the same proportion of production schedulers utilising the simplest possible 
strategy of passing on orders.  Table 2 also provides anecdotal evidence from one or two automotive 
cases in each of the strategy types.  These help interpret the results associated with particular 
scheduler strategies. 
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Scheduler 
Strategy 

Non-
automotive 
sample % 

 
Automotive 
sample % 

 
Comments on Specific 

Automotive QSAM examples 

Chaotic 3% 14% Value stream 17 has both internal and external 
customers: the process has variable yield rates and 
expediting product is commonplace.  

Demand 
Amplification 

22% 14% Value stream 1 has relatively stable OEM customer 
demand but places highly variable demand on most 
of its suppliers. 

Pass on 
Orders 

41% 45% Value streams 4 and 5 serve Japanese implants: 
the demand is level and the supply is co-ordinated 
by the customers. 

Demand 
Smoothing 

32% 23% Value streams 14 and 15 are forging processes 
with the raw material common for many products, 
hence smoothing is feasible. 

Level 
Scheduling 

3% 5% Value stream 19 is a third party logistics provider 
and levels its automotive customer’s demands 
before placing them on the automotive parts 
supplier. 

Table 3: Sample distribution of production scheduler strategies 
 
Level scheduling may be practiced for many reasons.  For example a production scheduler with 

a clear view of downstream activities may be able to cut a swathe through bullwhip potentially induced 
by “players” over/under ordering.  If he expects the average demand to be a relatively smooth trend 
line then he can ignore such fluctuations and considerably smooth orders onto the shop floor.  
Holmström, (1997) has shown this happening to high volume product supply in the European retail 
sector.  However, conceptually there is little difference in implementing level scheduling as Make-to-
Sell or as Sell-then Make (Hopp and Spearman, 2004).  In the first instance the stock level fluctuates, 
in the second case the backlog fluctuates as capacity is deliberate”. 
 
 
7 The effects of schedule volatility 

During the Quick Scan Audit, a large amount of quantitative data is collected.  This facilitates 
the further performance evaluation of the alternative scheduler strategies. Due to the small number of 
chaotic and level scheduling instances for this particular extended purpose, the scheduler strategies 
have been aggregated into three broad categories:  

 Amplify, those schedulers that increase the variability of demand (chaotic plus demand 
amplification); 

 Pass-on, those schedulers that simply pass the demand variability upstream (pass-on orders); 
and 

 Dampen, those schedulers that dampen the demand signal (demand smoothing plus level 
scheduling).  

Analysis of variance (ANOVA) applied to these groupings is illustrated in Table 4 for each category 
against seven commonly used performance variables.  The mean values and the resultant p-value is 
provided against each of the performance variables together with a description, scalar and the 
direction of good performance.  
 
 
 
 
 
 



Variable Description Scalar Performance Amplify 
(n=15) 

Pass-on 
(n=25) 

Dampen 
(n=19) 

ANOVA 
p-value 

Inventory 
levels 

Large pools of 
inventory 
throughout the 
system 

% 
presence 
of 
symptoms 

> worse 93% 48% 53% 0.01 
*** 

Cycle time 
compression 

Streamline 
material flow 
and minimise 
throughput time 

% 
adherence 
to rule 

< worse 1.9% 2.0% 2.8% 0.02 
** 

Variety Number of 
alternative 
product variants 

Single 
units 

< worse 7 17 1196 0.05 
** 

Time 
separated 
causality 

Casual 
relationships 
often well 
separated in 
time 

% 
presence 
of 
symptoms 

> worse 86% 45% 58% 0.05 
** 

Manufacturing 
lead time 

Manufacturing 
lead time 

Days > worse 18.7 9.8 5.1 0.06 
* 

Variable 
customer 
service 

Variable 
performance to 
similar order 
patterns 

% 
presence 
of 
symptoms 

> worse 83% 59% 54% 0.25 

Profitability Profit margin % < worse 13.2% 12.9% 6.3% 0.28 
 

Notes: Statistically significant at the * = 90% level, ** = 95% level and *** = 99% level 

Table 4: Statistical Analysis of the Effects of Schedule Volatility 
 

The seven performance variables in Table 4 have been deliberately placed in order according 
to the statistical significance of the ANOVA results.  Inventory levels have the most statistically 
significant result with the mean values of the three categories significantly different at the 99% level.  
The presence of large pools of inventory throughout the system is most common for the amplified 
value streams.  This result is expected because increased buffers are required for situations with 
amplified demand.  The lack of focus on cycle time compression is statistically significant at the 98% 
level for the mean value of the three categories.  The result could indicate the expected benefit that 
planners that dampen demand facilitate streamlined material and information flows.   

 
The third result in Table 4 is much more difficult to explain.  Here the number of product 

variants statistically significant correlates at the 95% level with the three strategies.  But those value 
streams with damped demand have far greater product variants, so perhaps these value streams are 
so designed to facilitate the offering of more product variety to customers (Scala et al, 2006).  Time 
separated causality also has a p-value that is significant at the 95% statistical level.  The amplified 
value streams have a far greater instance of time separated causality, indicating how much harder it is 
in the real-world to align cause and effect when demand signals are distorted.  This result would 
certainly accord with the generic conclusions by Forrester (1958) but based in that instance only on 
simulation results.  The category average manufacturing lead time decreases stepwise from 
“amplified” through “pass-on” to “dampen”. This result is statistically significant at the 94% level.  This 
is as expected, because time always acts as multiplier of demand amplification and often elapsed time 
is incorrectly used as a strategy to buffer demand volatility.   

 
The penultimate variable in Table 4 is customer service.  This result is not significant at the 90% 

level, although the mean values are much as expected.  Those value streams with amplified demand 
are performing the worst in this respect.  The profit margin mean values for the three categories are 
counterintuitive as they are expected to drop for those value streams with amplified demand; however, 
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this variable is not statistically significant.  However they are quite possibly due to chance.  Also 
profitability is affected by a large range of factors, and not just the performance of the supply chain.   
 
8 Discussion 

What impact might the four approaches listed by Gilliland and Prince (2001) have in such 
situations as those we have studied via QSAM?  We have previously shown in Figure 3 how a vicious 
circle erupts if internal communication is fragile.  Also “negotiated” demand smoothing, if possible, is 
extremely helpful to all players in the system (Towill, 2006).  Indeed, it is a key factor in the Toyota 
Production System (TPS) as emphasised by Suzaki (1987).  Competency in supply chain engineering 
clearly has an important benefit since it enables us to deliver the right quantity at the right time.  Some 
of our automotive QSAM sample has achieved this goal (Childerhouse and Towill, 2004).  This leaves 
the statistical forecasting mode, a process entirely within company control; except that, unfortunately, 
the forecast effectiveness critically depends on the flow and quality of information from system players 
(Hariharan and Zipkin, 1995; Chatfield et al., 2004; Hayya et al., 2006).  Unless, of course, the 
production scheduler argues that “history will repeat itself” and gambles on smoothing the flow of 
particular products (Holmström, 1997).  But, as demonstrated by Buffa, (1969) this may, on occasion, 
require excessive inventories to be kept, which simply shifts the on-costs from shop floor to storeroom. 

 
The current research project outputs a number of effects which clearly emerged as being 

significantly related to production scheduler volatility.  Some of these properties are established at a 
very high confidence level.  These particular results indicate system weaknesses where business 
process improvement (BPI) programmes may have the greatest possible positive impact on seamless 
material flow.  The latter is a highly desirable property of most, if not all, supply chains.  Hence, in this 
investigation we have generated new knowledge on the effective engineering of value streams 
pertinent to a wide range of businesses. 

 
It is inevitable that our sample of value streams is neither random nor necessarily representative 

of all possible real world scenarios.  Hence, the findings need to be further investigated to 
demonstrate the degree of similarity between the automotive and other industrial sectors.  If this is 
indeed the case, then there should be a “rich picture” emerging as to exactly why this is so.  Indeed 
some case studies exist which support our contention have already been published elsewhere by 
Liker, (2004).  The proposed five strategy model also needs further investigation to validate our 
theoretical subdivision on the basis of input and output volatility.  Currently, we are researching the 
obstacles and enablers of the alternative scheduler strategies and this has knock-on effects on 
sequential links in a supply chain.  Further research is also currently on-going to determine the exact 
conditions for the existence and specific nature of other self-inducing volatility feedback loops.    

 
It is an interesting research question to investigate whether the pressures imposed on production 

schedulers are industry specific.  Our previous studies of European automotive supply chains have 
established the posited wide range of decision-making “level scheduling” to “chaotic” as actually being 
observed in real-world practice.   It is, therefore, natural to further progress this project to the stage 
where the following questions may reasonably be asked: 

 
 Does the production scheduler face a similar set of problems irrespective of the market 

sector? 
 Are a similar set of responses observable, irrespective of market sector? 
 Can a scenario of the various possible effects of scheduler volatility be established which is 

also independent of market sector? 
 Can previously posited phenomenon such as positive feedback loops/accelerator loops be 

associated with production scheduler induced volatility? 
 Can general conclusions be reached on the “best” algorithmic DSS? 
 Does the position of the decoupling point and the interplay of customer, supplier and 

manufacturing leads times radically effect the performance ramifications of the scheduler 
behaviour?  

 



The managerial implications of our exploratory study are significant if still yet to be 
comprehensively verified.  Schedule volatility and the bullwhip effect are not sector specific, hence 
managerial practices to enhance performance, such as time compression total cycle (Towill, 1996) 
should also be generic.  The analysis shows that the decisions of production schedulers’ affect the 
wider supply chain in relation to the upstream order volatility and hence act as a barrier to seamless 
operations.  The consequence is poor customer service and higher inventories throughout the 
pipeline.  The clear message from this scenario is that scheduler behaviour has significant knock-on 
effects and hence should be resourced sufficiently.  This is in stark contrast to virtually all of the value 
streams studied, where advanced DSS and production scheduler expertise was not perceived as an 
important area for investment in resources.    
 
9 Conclusions 

The throughput controlling decisions made by a production scheduler can be broadly classified 
into five alternatives.  These approaches have been verified via simulation and literature review.  In 
this paper we have proposed a simple model to evaluate which one of these strategies are currently in 
use in any particular real-world value stream by measuring input and output volatility.  This paper is 
researched via site-based QSAM investigations on a sample of value streams across a wide range of 
industries.  However, it is then possible to compare the automotive supply chain cluster with the 
remainder businesses cluster.  This exercise establishes that there is reasonable correlation between 
production scheduler volatility scenarios in automotive and non-automotive sectors.  Hence, the 
conclusion is reached that this complex problem is not confined to automotive value streams.  In fact, 
it is much more commonly encountered elsewhere than may be generally realised.  But, on the 
positive side, this discovery means that generic solutions developed in one particular market sector 
may be readily transferred to others. 

 
To summarise, our view is that irrespective of market sector, best practice companies minimise 

their schedule volatility.  In other words the goal is to ensure that any order volatility is not further 
amplified as it passes upstream: “Smooth is Smart” (Towill, 2006).  This reduces the significant ramp-
up and ramp-down costs for their suppliers and hence the supply chain as a whole.  Contrary to some 
perceived wisdom, the schedule volatility phenomenon is not unique to the automotive industry.  
Hence we have established a consequential “new management theory” likely to pass the 
transferability test proposed by Micklethwait and Woolridge (1996).  It therefore follows that posited 
bullwhip solutions are unlikely to be market sector specific.  That being the case, the ideas put forward 
by Geary et al. (2006) may turn out to be of universal applicability once particular value stream causes 
have been identified.  
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Appendix A: Value stream sample 

Value 
Stream ID 

Organisation 
ID 

Nationality Industry Sector Major value adding  Decoupling 
point 

1 A UK Automotive Machining and  Assembly MTS 
2 A UK Automotive Assembly MTS 
3 B UK Automotive Assembly MTS 
4 B UK Automotive Assembly ATO 
5 B UK Automotive Assembly ATO 
6 C UK Automotive Assembly MTO 
7 D UK Automotive Machining MTS 
8 E UK Automotive Heat Treatment MTO 
9 E UK Automotive Heat Treatment MTO 
10 F UK Automotive Machining and  Assembly MTS 
11 F UK Automotive Machining and  Assembly MTS 
12 G UK Automotive Machining and  Assembly MTS 
13 G UK Automotive Machining and  Assembly MTS 
14 H Germany Automotive Forging MTS 
15 H Germany Automotive Forging MTS 
16 I UK Automotive Assembly ATO 
17 I UK Automotive Assembly ATO 
18 J Germany Automotive Machining MTO 
19 K UK Automotive 3rd Party Logistics MTO 
20 L UK Automotive Assembly MTS 
21 M UK Automotive Machining and  Assembly ATO 
22 O UK Automotive Machining and  Assembly MTS 
23 N UK Utilities Water provision MTS 
24 Q UK Heavy Engineering Design and Assembly  MTS 
25 Q UK Heavy Engineering Design and Assembly  MTS 
26 P UK Construction Assembly MTO 
27 P UK Construction Assembly and Insulation MTO 
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28 R UK Telecommunications Assembly MTS 
29 S UK Lighting Assembly MTS 
30 S UK Lighting Design and Assembly  ETO 
31 S UK Lighting Assembly MTO 
32 S UK Lighting Assembly ATO 
33 T UK Telecommunications Assembly MTO 
34 U UK Food Food Processing MTS 
35 V UK Aerospace Cutting and Sticking MTO 
36 W UK Aerospace Assembly MTO 
37 X UK Steel Melting and Shaping MTS 
38 Y New Zealand Food Pasteurisation & bottling ATO 
39 Y New Zealand Food Pasteurisation & Packing MTS 
40 Y New Zealand Food Packaging & Distribution MTO 
41 Z New Zealand Light Engineering Machining and  Assembly ATO 
42 Z New Zealand Light Engineering Machining and  Assembly ATO 
43 AA New Zealand Food Pasteurisation & Packing MTS 
44 AA New Zealand Food Pasteurisation & Packing MTS 
45 AB UK FMCG Food Processing MTS 
46 AC Thailand Construction Mixing and Delivery MTO 
47 AD Thailand Telecommunications Assembly ATO 
48 AE Thailand Manufacturing Assembly ATO 
      
49 AF Thailand Manufacturing Assembly ATO 
50 AG Thailand Telecommunications Machining and  Assembly MTO 
51 AG Thailand Telecommunications Machining and  Assembly MTO 
52 AH Thailand Steel Rolling and Cutting MTS 
53 AI Thailand Service Scanning ETO 
54 AJ Thailand Furniture Assembly MTS 
55 AK New Zealand Heavy Engineering Deign and Assembly ETO 
56 AL Thailand Rice Oven Assembly MTO 
57 AM New Zealand Food Storage and Chilling MTO 
58 AN UK Steel Casting and Rolling ATO 
59 AO UK Steel Rolling and Cutting MTO 

Note: ATO = assemble to order, MTS = make to stock, MTO = make to order, ETO = Engineering to order 


