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Summary 

Guanylyl cyclase - cyclic guanosine monophosphate (cGMP) signalling has been 

demonstrated to play an important role in the endogenous cardioprotective signalling of 

the myocardium during early reperfusion. It is proposed that infarct limitation is afforded 

by elevating cGMP and activating protein kinase G and its distal targets. 

It was hypothesised that increasing the activity of soluble guanylyl cyclase (sGC) would 

limit myocardial ischaemia-reperfusion injury. Primarily using the rat isolated perfused 

heart method, the experiments reported in this thesis investigate the role of exogenous 

targeting of sGC during early reperfusion, specifically exploring targeting different redox 

states of the enzyme and their effects on myocardial infarct size. The novel sGC stimulator 

BAY 41-2272 and activator BAY 60-2770 were selected to investigate this hypothesis. 

Both administration of BAY 41-2272 and BAY 60-2770 during early reperfusion 

significantly limited infarct size compared to controls. This was associated with elevated 

total tissue cGMP levels. Inhibition of nitric oxide could not completely abrogate this 

protection, but exogenous perfusion of nitric oxide along with BAY 41-2272 showed 

synergistic action. Oxidation of the prosthetic haem group by ODQ abrogated the 

protection afforded by BAY 41-2272 but potentiated the protection afforded by 

BAY 60-2770. Targeting both the reduced and oxidised forms of sGC together did not 

afford additive protection, in fact it reduced the protection afforded compared to the 

individual treatments. Preliminary data also suggest that targeting the particulate form of 

guanylyl cyclase increases activity of Akt signalling during early reperfusion suggesting 

common signalling between soluble and particulate guanylyl cyclase. 

These data suggest that targeting sGC during early reperfusion can afford cardioprotection 

by limiting infarct size. The relationship between cGMP elevation and infarct size needs to 

be investigated further. Nevertheless, these studies suggest that sGC may be a tractable 

target for the therapeutic management of acute myocardial infarction. 
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1 Introduction 

1.1 Heart disease 

Cardiovascular disease (CVD) causes more deaths worldwide than any other disease. The 

World Health Organisation (WHO) reports that there were over 17 million deaths in 

2008 attributable to CVD (Mendis S, 2011). Nearly 8 million of these deaths were as a 

direct result of coronary heart disease (CHD), disease that results in insufficient blood 

supply to the myocardium. 

CHD deaths are most often caused by sudden rupture of an atherosclerotic plaque. In the 

United Kingdom, mortality due to CHD was over 88,000 in 2008, with most deaths 

attributed to the 124,000 heart attacks that patients suffer annually in the UK (Mendis S, 

2011). Although mortality rate of CHD is decreasing in the UK as a result of improved 

treatments, diagnosis and primary prevention programmes, the global picture is different. 

It is predicted that global mortality rate will rise beyond 2015 (Deaton et al., 2011).  

It is almost one hundred years since James Herrick delivered his seminal paper on 

coronary thrombosis. Herrick’s paper, presented at the American Association of 

Physicians on May 14th 1912 was poorly received and attracted little discussion. Herrick 

had linked clinical observations to post-mortem findings suggesting that coronary 

thrombosis was not a “tocsin of doom”, that is, that it was not always fatal; he argued that 

it should be possible, and indeed desirable to make the diagnosis during life (Herrick, 

1912). Herrick’s employment of his theories in his clinical work gradually persuaded 

others to diagnose thrombotic obstruction of vessels clinically and this was pivotal in 

laying the foundations of future CHD research (Ross, 1983). 
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1.2 Coronary artery thrombosis 

Coronary thrombosis of a major blood vessel supplying the myocardium leads to 

myocardial ischaemia, which is described as the sudden and sustained lack of blood flow 

and associated hypoxia to part of the heart,  resulting in permanent damage to the heart 

tissue. This is clinically diagnosed as acute myocardial infarction (AMI) (Baker et al., 2011; 

Buja & Weerasinghe, 2008; Fuster et al., 1988). WHO guidelines for clinical diagnosis of 

AMI suggest that three criteria are satisfied. These are: clinical history of ischaemic like 

pain of duration 20 minutes, changes in repeated electrocardiograms (ECG), and rise 

and/or fall of cardiac biomarkers such as troponin and creatine kinases (Lippincott et al., 

1979). As a result of the increasing sensitivity of biomarker assays, WHO guidelines were 

revised in 2000 to give more weighting towards increases in these “soluble markers” 

(Antman et al., 2000). 

The progressive pathology that ultimately results in the rupture of an atherosclerotic 

plaque, coronary thrombosis and AMI can occur over many decades (Davies & Thomas, 

1985). Atherosclerotic lesions form when leukocytes adhere to the endothelial monolayer 

of an artery, followed by maturation of monocytes into macrophages and their uptake of 

lipid resulting in the production of foam cells. Smooth muscle cells migrate towards the 

intima adjacent to the endothelial monolayer, followed by collagen, elastin and 

proteoglycans. A lipid or necrotic core forms in the centre of the lesion resulting from 

dead or dying smooth muscle cells, macrophages and an accumulation of cholesterol. A 

fissure in the fibrous cap of the plaque allows blood coagulation components to interact 

with tissue factors in the lesion, triggering platelet aggregation, thrombus formation and 
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occlusion of the vessel lumen. If the occluded vessel is a major artery supplying the 

myocardium then this can lead to the rapid development of an ischaemic risk zone or zone 

of jeopardised tissue. The propensity to arrhythmias and decreased left ventricular 

contractility, which can be fatal, is directly related to the size of the risk zone. Out of 

approximately 350 patients treated daily in the UK for AMI, over 100 of these patients 

will die within the first few hours of presentation (Kushner et al., 2009). Those patients 

who survive initial therapy (discussed later in this chapter) will be left with a degree of 

irreversible damage to the portion of the myocardium subjected to ischaemia (termed the 

area at risk (AR), or risk zone) (Shaw & Kirshenbaum, 2008). The portion of the area at 

risk that has undergone irreversible cell damage is called the infarct. 

1.3 Specific cellular processes during myocardial ischaemia 

In the ischaemic risk zone, deprived of oxygenated blood flow, hypoxia swiftly leads to 

cessation of mitochondrial oxidative phosphorylation and ultimately the loss of the major 

source of adenosine trisphosphate (ATP). Concomitant with the ceasing of oxidative 

reactions, cytosolic glycogen becomes the major substrate for anaerobic glycolysis, which 

becomes accelerated (Reimer & Ideker, 1987). This compensatory mechanism is a vain 

attempt of the myocardium to survive. Unfortunately anaerobic glycolysis can only 

produce up to 7 % of ATP required for the normal functioning myocardium 

(Wollenberger & Krause, 1968). Although contractile function of the heart, the major 

energy demanding process of the myocardium, is suppressed rapidly, ATP demand quickly 

outstrips production and stores are depleted by half within the first 10 minutes of a severe 

ischaemic episode (Jennings et al., 1978). Accumulation of H+ and lactate, as well as 
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mitochondrial fatty acid metabolism, results in the production and release of reactive 

oxygen species (ROS) and reactive nitrogen species, both of which contribute to impaired 

contraction with persistent electrical activity and culminating in ventricular arrhythmias 

(Buja & Vela, 2008; Thandroyen et al., 1992). 

In the first minutes of ischaemic insult, there is a net loss of cytosolic K+ by efflux, not 

altering the Na+/K+ adenosine triphosphatase (ATPase) initially. This is followed by an 

increase in free Mg2+ and a decrease in total Mg. Eventually the ATP demand to maintain 

electrochemical gradients cannot be met and results in the inhibition of the 

Na+/K+-ATPase. As a result, there is net Na+ influx and further K+ efflux as well as cell 

swelling due to increased uptake of water and Cl-. The rise in intracellular Na+ activates 

the Na+/Ca2+ exchanger, which addresses the ion imbalance by extruding three Na+ in 

exchange for one Ca2+. Changes in the sarcolemma and sarcoplasmic reticulum (SR) come 

about as result of an increase in cytosolic free [Ca2+], also activating proteases causing 

alterations in contractile proteins. There is a decrease in Ca2+ sensitivity due to phosphate 

and hydrogen ions, which leads to sustained impairment of contractility despite elevated 

cytosolic [Ca2+] (Allen & Kurihara, 1982). Ca2+ overload leads to cell damage by activating 

membrane phospholipases, depressing mitochondrial respiration and increasing 

mitochondrial permeability (see Figure 1.1). During prolonged ischaemic episodes, 

contracture occurs. The interaction between myosin heads and actin is maintained because 

of the lack of ATP production (Stapleton & Allshire, 1998) (see 1.31 for more detail). 
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Figure 1.1 Schematic representation of ionic changes during ischaemia. Reduced molecular oxygen and 
metabolic substrates results in a reduction in ATP production. SR Ca2+ uptake is impaired leading to [Ca2+]i 
accumulation. Anaerobic metabolism is associated with intracellular accumulation of inorganic phosphate, 
lactate, and H+. Activation of the Na+/H+ exchanger (NHE) results in accumulation of intracellular Na+. 
Increasing intracellular concentrations of solutes results in osmotic swelling causing sarcolemmal rupture, 
further exacerbated by the activation of Ca2+ dependent proteases and phospholipases. Sustained stimuli leads 
to oncosis and tissue necrosis (adapted from Ferdinandy et al. (2007)). 

 

1.4 Cell death during myocardial ischaemic injury 

The types of cell death that occur during ischaemia and reperfusion have long been 

debated. Early literature reported that much of the cellular death that occurs was by 

oncosis leading to tissue necrosis (Buja & Willerson, 1981; Jennings et al., 1960; Reimer 

& Ideker, 1987). However, this view has been challenged in more recent studies that have 

provided evidence that this may not be the case (Bialik et al., 1997; Cheng et al., 1996; 

Itoh et al., 1995; Ohno et al., 1998). It is now generally accepted that there are three 

types of cell death that occur during myocardial ischaemia and reperfusion. Apoptosis, 
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oncosis and autophagy are the three terms used to describe the demise of cells. Necrosis is 

seen as the final manifestation, at the tissue level, of both oncotic and apoptotic cell death. 

(Buja & Weerasinghe, 2008; Majno & Joris, 1995).  

Oncosis is characterised by its development through exogenous stimuli, as a consequence 

of energy depletion and/or membrane damage and it accounts for most necrotic damage. 

Environmental insults that initiate oncotic pathways include hypoxia, inflammatory 

processes and ischaemia (as described above). In contrast to apoptosis and autophagy, 

oncosis is described as accidental and passive cell death (Buja & Vela, 2008). Cellular 

homeostasis is lost due to progressive membrane damage caused by products of activated 

leukocytes, the complement attack complex (C5b-9) and osmotic fluctuations caused in 

part by fluctuations in Ca2+. Cell swelling occurs due to uncontrolled influx of water as 

well as Na+ and Ca2+. Ultimately, cell swelling leads to membrane blebbing and cell 

rupture (Majno & Joris, 1995). Leakage of intracellular components upon membrane 

rupture in cells undergoing oncosis results in exudative inflammation. 

Apoptosis has been described as “programmed cell death”, it requires energy and results in 

cell and nuclear shrinkage and fragmentation without exudative inflammation (Kerr et al., 

1972). There are two molecular pathways that lead to apoptotic death, both of which 

occur in cardiac myocytes. The external pathway utilises cell surface receptors and the 

intrinsic pathway involves the calcium-dependent organelles, mitochondria and SR. Both 

pathways involve the activation of caspases (cytosolic aspartate residue-specific cysteine 

proteases) such as caspase-8, but differ in that the extrinsic pathway is activated by binding 

of death receptors e.g., FasL, and the intrinsic pathway involves the formation of the 
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mitochondrial permeability transition pore (mPTP) and cytochrome c (Kumar et al., 

2007). The most recent studies, although in agreement that apoptotic cell death occurs 

during coronary occlusion, do not agree concerning the extent or time period in which 

apoptosis occurs. Kajstura et al. (1996) reported that apoptotic cell death was the major 

form of cell death during up to 6 hours coronary occlusion in the rat. Conversely, Fliss et 

al. (1996) and Gottlieb et al. (1994) reported that apoptosis occurred only during 

reperfusion. Scarabelli et al. (1999) employed multiple staining techniques to report a 

time course of apoptosis in specific cell types during ischaemia/reperfusion. They 

reported that endothelial cells are the predominant cell type affected by apoptosis, and 

that the cells undergo apoptosis before cardiomyocytes. The percentage of cells 

undergoing apoptosis, contributing towards ischaemic injury, has been reported between 

5 and 33 % (Garg et al., 2003; Takashi & Ashraf, 2000) whilst Bialik et al. (1997) report a 

range between 3 and 12 %. Reported data for apoptotic contribution to ischaemic cell 

death has, in the main, been confirmed by terminal uridine deoxynucleotidyl transferase 

staining. It is important to mention that there are numerous reports that suggest that 

current sensitivity and specificity of this method in determining apoptotic cell death is 

questionable, which may in part explain the inconsistency in reported results (Bialik et al., 

1997; Buja & Vela, 2008; Fliss & Gattinger, 1996). 

Autophagy or macro autophagy is a physiological process that results in cells digesting 

internal organelles or dysfunctional cytoplasmic components via the lysosomal degradative 

pathway. This process occurs both under physiological and pathophysiological conditions, 

including myocardial ischaemia (Kanamori et al.; Yan et al., 2005). During prolonged 
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ischaemia autophagy is substantially increased and is said to be pro survival as degraded 

membrane lipids within autophagosomes are recruited to maintain needed levels of ATP 

production and protein synthesis (Levine & Klionsky, 2004). Hickson-Bick et al. (2008), 

reported that in neonatal cardiomyocytes, autophagy can protect cells against programmed 

cell death. They showed that apoptotic markers were increased when lipopolysaccharide 

(LPS) treated cardiomyocytes were treated with inhibitors of autophagy. This work 

supports data from an acute hypoxia-reoxygenation model of cardiomyocytes that suggests 

that autophagy protects against ischaemia-reperfusion injury by selective sequestration of 

damaged mitochondria, resulting in the limitation of pro-apoptotic factors (Hamacher-

Brady et al., 2006). 

1.5 Progression of infarct 

During ischaemia, myocytes can be classified into three categories: cells that are viable and 

so far unaffected by ischaemic insult; cells that have been irreversibly damaged and 

undergone cell death; and those that have been reversibly damaged, which may recover 

function with timely reperfusion (Reimer et al., 1993). The speed with which myocytes 

progress through these states, and the ultimate size of the infarct depends on a number of 

factors. Collateral blood flow and the severity of index ischaemia as well as duration of 

ischaemia will affect this end point (Reimer et al., 1977). Many non-human primates and 

pigs have little or no preformed collateral anastomoses between coronary arterial regions, 

and so occlusion of a coronary artery will result in total or near total ischaemia of the 

affected region (Fujiwara et al., 1982; Lavallee & Vatner, 1984). This is also the case for 

most human patients who have very few physiologically occurring anastomoses. The 
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exception to this would be if physical stimuli such as brief ischaemic episodes (angina 

pectoris) have occurred historically, resulting in collateral development (Fulton, 1963). In 

contrast, canine and feline models have been shown to have considerable collateral 

anastomoses, meaning that occlusion of one coronary artery rarely leads to total ischaemia 

due to perfusion of the ischaemic risk zone by the collateral circulation (Jennings et al., 

1978). Similarly, the guinea pig heart is well documented as having an extensive collateral 

coronary circulation (Maxwell et al., 1987), so much so that Winkler et al. (1984), were 

unable to detect infarct in guinea pig hearts following 6 hours of coronary artery ligation. 

Seminal work published in 1977 by Keith Reimer and colleagues described the first 

reliable infarct model, reporting the importance of controlling the above mentioned 

parameters (Reimer et al., 1977). They were the first group to characterise robustly the 

progression of infarct in a canine model of ischaemia-reperfusion, known as the “wave 

front phenomenon” (see Figure 1.2). Cell death occurs in a wave like fashion from the 

subendocardial myocardium progressing toward the subepicardial myocardium over time, 

with many cells in the subepicardial myocardium surviving up to six hours after coronary 

artery occlusion. Following 24 hours of coronary artery occlusion, they showed that 

infarct had become almost transmural. Any tissue that was still viable at this point was 

associated with adjacent blood vessels perfusing the anterior myocardium. They concluded 

that the wave front progression of the infarct was a consequence of the collateral blood 

flow, which is greatest at the epicardial myocardium (Reimer et al., 1977; Reimer et al., 

1993). 
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Figure 1.2 Schematic of the wavefront phenomenon of myocardial necrosis proposed by Reimer and Jennings, 
(1977). Infarct develops in a wave like fashion from the subendocardial myocardium to the subepicardial 
myocardium with time. Histogram adapted from Reimer et al. (1977), showing increasing infarct (I) size as a 
percentage of the area at risk (AR) over time.  
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1.6 The collateral circulation 

As mentioned above the extent of coronary collateral circulation varies depending on 

animal model and even between human patients (Kloner et al., 1976; Leshnower et al., 

2007; Maxwell et al., 1987; Reimer & Jennings, 1979). The conclusions drawn by the 

seminal work of Reimer et al. (1977) were based partly on the presence of collateral 

anastomoses. Leshnower et al. (2007) have recently investigated the progression of infarct 

upon coronary artery occlusion in a model that is more akin to species that have limited 

collateral circulation, or human patients whose collateral circulation is poorly developed. 

They chose an ovine model because of its consistent paucity of preformed collaterals. In 

contrast to the work of Reimer and Jennings 30 years earlier, Leshnower and colleagues 

reported a more evenly distributed infarct throughout the ventricular wall, following 45 

minutes coronary artery occlusion. When occlusion time was increased to 1 hour, 

distribution of the infarct was altered again, the majority of infarct now focused in the mid 

myocardium, with the least damage in the endocardial myocardium. Although these more 

recent data highlight differences between the progression of infarction in well-

collateralised hearts and those with limited collateral circulation, there is certainly 

agreement in the relationship between size of infarct and duration of index ischaemia. 

Interestingly, the most recent studies investigating this phenomenon continue to adopt the 

view of Reimer and colleagues that the endocardial myocardium is most susceptible to 

ischaemia and ultimately infarct. 
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1.7 Reperfusion of the myocardium 

The seminal work of Reimer and Jennings (1977), introduced the idea that reperfusion 

could reduce the total amount of infarction. As mentioned above, increasing the duration 

of index ischaemia, and hence delaying reperfusion results in larger infarct size. Clinically, 

treatment for patients presenting with myocardial infarction has changed dramatically over 

the course of several decades. Historically management of symptoms and rest was the 

mainstay of treatment, whereas today controlled reperfusion is the preferred choice (Van 

de Werf et al., 2003). 

Although coronary artery bypass and thrombolytic therapy are still used, the treatment of 

choice for patients presenting with ST-segment elevated acute myocardial infarction 

(STEMI) is primary percutaneous coronary intervention (PPCI). European guidelines 

suggest that PPCI by an experienced team of cardiologists is preferential over earlier 

thrombolytic therapies given by ambulance crews (paramedics) if it can be achieved within 

1-2 hours (Van de Werf et al., 2003). Although PPCI requires patients to be transported 

to specialist facilities, large cross pooled studies have shown that if this is achieved within 2 

hours, it is more effective than thrombolysis (Boersma & Group, 2006). Both PPCI and 

thrombolytic therapies carry risk, the major factor being bleeding (Armstrong et al., 

2003). Re-occlusion of the artery can also occur following PPCI, but the risk is much 

reduced (5 %) in patients fitted with physical stents (Kastrati et al., 2007). The 

combination of anti-platelet (thrombolytic), and anti-coagulant drugs given to patients 

treated by both thrombolysis and PPCI puts them at risk of haemorrhagic stroke and major 

non cerebral bleeding (Armstrong et al., 2003). 
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1.8 Reperfusion injury 

A consequence of the above-described therapies for the treatment of patients presenting 

with AMI, is that the physical act of restoring blood flow to a previously occluded vessel 

can cause irreversible damage to the myocardium (Downey & Cohen, 2006; Hearse & 

Bolli, 1992; Piper et al., 1998). Lethal reperfusion injury is described as irreversible injury 

leading to cell death that results during reperfusion itself, caused as a direct result of the 

act of reperfusing the myocardium, beyond damage caused by the preceding ischaemic 

episode. 

In the first few minutes of reperfusion, further metabolic and biochemical insult occurs. 

The oxygen paradox reported by Hearse et al. (1978) describes the requirement for 

restoration of oxygen to the ischaemic area to allow aerobic respiration to restart. 

Paradoxically, the sudden return of oxygen allows the re-energisation of the 

mitochondria, which, in turn, generates detrimental ROS in the first few minutes of 

reperfusion. In re-addressing the ion homeostasis during early reperfusion, the Na+/Ca2+ 

exchanger is activated in reverse mode, resulting in  an overload of intracellular [Ca2+] 

uptake and subsequent release by the SR. Intracellular pH is brought back to physiological 

levels rapidly with wash out of lactic acid and the activation of the Na+/H+ exchanger and 

the Na+/HCO3
- symporter. Elevated intracellular [Ca2+] cause several detrimental 

actions, which result in cell death. Through protease activation, sarcolemmal rupture 

occurs and through uptake of Ca2+ into the mitochondria, mPTP is formed (Halestrap et 

al., 2004). Release of inflammatory mediators results in recruitment of neutrophils, which 

cause microvascular plugging, further generation of ROS and release of deleterious 
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enzymes. Cellular swelling and microvascular plugging and associated interstitial oedema 

contribute to the no-reflow phenomenon even with an open coronary artery (Schwartz & 

Kloner, 2011). 

Reperfusion injury can manifest in several ways; it can be described as either reversible or 

irreversible (lethal) reperfusion injury. Vascular injury that results as a consequence of 

inflammation and endothelial dysfunction around the site of reperfusion are examples of 

lethal injury. Myocardial stunning, the prolonged contractile dysfunction that occurs after 

a short period of ischaemia, is reversible over time; however it generally manifests for 

much longer than the ischaemic episode itself, often days (Hearse & Bolli, 1992). 

Reperfusion-induced arrhythmias can contribute to either reversible or irreversible 

reperfusion injury, depending on their severity, displaying as ventricular premature beats 

(VPB) or in the most severe cases ventricular fibrillation (VF). 

The most widely held concept of lethal reperfusion-induced injury is the killing of cells 

that, prior to reperfusion, were still viable (Basso & Thiene, 2006; Burke & Virmani, 

2007). It is generally accepted that the majority of reperfusion induced cell death occurs in 

the first few minutes of reperfusion and is a result of sarcolemmal rupture (Piper et al., 

1998; Yoshida et al., 1995) (see Figure 1.3).  
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Figure 1.3 Schematic representation of reperfusion injury. With no reperfusion infarct size will increase with 
time to 100% (left hand side). Reperfusion at time (red arrow, right hand side) limits infarct size (reperfusion 
salvage) compared to no reperfusion. However, reperfusion does cause further infarction (reperfusion injury) 
depicted by the blue dotted line.  
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1.9 The role of the mitochondrial permeability transition pore 

Although the mPTP has been investigated extensively since its identification more than 

thirty years ago, it remains a complex and controversial component of 

ischaemia-reperfusion (Halestrap, 2009). Haworth and Hunter (1979) and Crompton 

(1987) identified the mPTP as a non-specific channel of defined diameter spanning the 

mitochondrial membrane. Recent work by Halestrap and colleagues has made the 

association between reperfusion and formation of this pore. They observed that opening of 

the mPTP is enhanced by adenine nucleotide depletion, as well as elevated phosphate and 

oxidative stress, which are biochemical anomalies associated with ischaemia-reperfusion 

injury (Halestrap et al., 1998; 2009). mPTP opening allows molecules up to 1.5kDa, 

including protons, into the mitochondria, resulting in uncoupling of oxidative 

phosphorylation, ATP depletion and necrotic cell death. Work by Crompton et al. (1988) 

and Griffiths et al. (1995; 1993) has shown direct evidence that mPTP opening does occur 

during reperfusion , but not during ischaemia. As yet, there is little evidence to suggest a 

role for the mPTP in healthy cells as a knockout (KO) model of mice lacking cyclophilin D 

(CYPD), a cyclosporin binding protein which is a component of the mPTP, appear normal 

but are protected against reperfusion injury (Baines et al., 2005). The continued 

publication of literature supporting a role of mPTP in reperfusion injury has created a 

surge of investigation in targeting this pore in the hope of limiting lethal 

ischaemia-reperfusion injury. 
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1.10 Cardioprotection- ischaemic preconditioning 

Early experiments that investigated the possibility of salvaging myocardial tissue after an 

ischaemic episode came to no avail. The models being used were inconsistent and no 

standardised approach was taken to allow data to be reliably compared. Any success in 

reducing infarct size was modest, in the order of 10 %, which was not sufficient to 

proceed to the clinic. It was Reimer and Jennings’ group who led the way in tackling the 

cardioprotection paradigm. Charles Murry, working in their laboratory, undertook a 

seminal study which showed that performing 4 cycles of 5 minute coronary artery 

occlusion/5 minute reperfusion prior to 40 minutes of index ischaemia would 

substantially protect the heart (Murry et al., 1986). They showed infarct limitation of up 

to 75 %, far greater protection than anyone had reported before and reproducible by all 

who subsequently applied it. The protection afforded was termed ischaemic 

preconditioning (IPC), later known as classic or early IPC, and was not dependent on 

collateral blood flow. As well as reduction in infarct size, it has been reported that IPC can 

afford cardioprotection in other ways. In dogs (Vegh et al., 1990) and rats (Shiki & 

Hearse, 1987) IPC has been shown to reduce the incidence of ischaemia-reperfusion 

arrhythmias. Interestingly, the rat is the only species where improved recovery of 

mechanical function can be shown (Steenbergen et al., 1993), and is reported to be as a 

result of altered adenosine metabolism in the rat heart (Gelpi et al., 2002). 

Murry et al. (1986), also reported data for a longer ischaemic model where hearts were 

not reperfused for three hours following IPC. The data from these experiments was in 

stark contrast to the acute ischaemic model. IPC was unable to protect hearts subjected to 
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three hours ischaemia, with infarct sizes comparable to controls, suggesting that prompt 

reperfusion after the ischaemic insult is a necessity. Later studies showed that the 

preconditioned state is very transient, lasting only 60-120 minutes and is completely lost 

between 2 and 4 hours in conscious rabbits (Burckhartt et al., 1995). This means that if 

index ischaemia is not ensued within this time period, the IPC mediated reduction in 

infarct size will be lost. 

1.11 Delayed preconditioning 

Marber et al (1993) and Kuzuya et al. (1993) independently reported a new 

preconditioning observation: 24 hours after IPC, protection could be demonstrated in the 

rabbit and canine respectively. This “second window of protection” was termed delayed 

preconditioning and was later shown to last up to 72 hours after IPC (Baxter et al., 1997; 

Imagawa et al., 1999). This aspect of preconditioning goes beyond the scope of this thesis 

and is comprehensively reviewed by Hausenloy and Yellon (2010). 

1.12 Mechanisms of classical ischaemic preconditioning 

Many autacoids have been shown to trigger classical IPC, the first to be described being 

adenosine (Liu et al., 1991). Downey’s laboratory showed that the adenosine A1 receptor 

activation triggered IPC and thus showed that IPC was receptor mediated. They showed 

that blocking of the adenosine A1 receptor abolished the characteristic protection seen, 

suggesting the importance of endogenous Gi-protein-coupled adenosine A1 receptor 

activation to afford IPC protection (Liu et al., 1991). Further studies have characterised 

other receptors that can trigger IPC when activated by their ligands. Noradrenaline was 

shown to afford similar protection through activation of α-receptors in the rat heart 
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(Banerjee et al., 1993). Bradykinin B2 and opioid δ1 receptor activation have also been 

shown to trigger IPC mediated protection (Baxter & Ebrahim, 2002; Gross et al., 2005). 

To date, it is suggested that any Gi-coupled receptor can trigger the preconditioned state 

through activation of Gi protein, although a limited number of endogenous autacoids 

participate naturally in the phenomenon. 

1.13 Ischaemic preconditioning threshold 

Downey’s group identified that pharmacological inhibition of one autacoid receptor could 

only block the protection afforded by one cycle of IPC, but not from multiple cycles 

(Goto et al., 1995). They introduced the idea of an IPC threshold, suggesting that any one 

receptor stimulus only contributed towards IPC and that increasing the stimulus via other 

receptors (pharmacologically) or increasing the number of IPC cycles (mechanically) could 

compensate and meet the threshold to initiate IPC. Similarly, other Gi receptors such as 

endothelin ET1 (Wang et al., 1996) and muscarinic M2 receptors (Yao & Gross, 1993) 

have been shown to afford IPC when activated pharmacologically (meeting the IPC 

threshold), however their antagonism does not impair IPC as agonists to these receptors 

are not produced during IPC (Yellon & Downey, 2003). 

The protection afforded by the stimulation of the above mentioned receptors has been 

reported to be mediated by protein kinase C (PKC). Inhibition of PKC will eliminate the 

protection from a preconditioned heart but has no effect on a nonprenconditioned heart 

(Ytrehus et al., 1994). ATP sensitive potassium channels (KATP) have also been reported to 

play a crucial role in IPC. The KATP inhibitor glibenclamide abrogated the protective 

effects of IPC (Ferdinandy et al., 1995), whereas the pharmacological activators, pinacidil 
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and chromakalin afford protection quantitatively similar to that of IPC (Grover et al., 

1989). In a rabbit model of IPC, Pain et al. (2000), suggested that the end effector of IPC 

was not opening of KATP channels. They demonstrated that this in fact triggered small 

bursts of ROS that trigger entrance into a preconditioned state that then activates 

downstream kinases, including PKC, and ultimately inhibition of mPTP formation. Other 

kinases that are involved in IPC signalling include activation of phosphatidylinositol 

3-kinase (PI3K), and its substrate kinase Akt (Hausenloy et al., 2005), p38 mitogen 

activated protein kinase (MAPK), p42/p44, the Janus kinase/ signal transduction activator 

of transcription (JAK/SAT) pathway (Dawn et al., 2004) and more recently inhibition of 

glycogen synthase kinase 3β (GSK3β) (Gao et al., 2009). Evidence that suggests these 

kinases play an important role in IPC relies on abolishing or abrogation of protection when 

their pharmacological inhibitors have been used in models of IPC (Hausenloy & Yellon, 

2007). 

1.14 Ischaemic preconditioning affords protection at reperfusion 

Although many studies had been published documenting the kinases involved in IPC, it 

remained unclear how IPC afforded protection through KATP channel activation. It was 

well accepted that these channels played an important role in both pharmacological 

(Garlid et al., 1997) and mechanical IPC (Hide & Thiemermann, 1996), yet whether they 

were triggers or mediators was not agreed. In 2002, Hausenloy and colleagues examined 

the role of the mPTP in the context of IPC. Using an isolated rat heart model, they 

reported that the infarct limitation afforded by both mechanical and pharmacological IPC 

was abolished if the mPTP was opened pharmacologically with atractyloside. They also 
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showed that inhibiting the opening of the mPTP at reperfusion with cyclosporine A, 

resulted in similarly protected hearts as those treated with IPC (Hausenloy et al., 2002). 

Work by Halestrap’s group the following year further investigated the role of the mPTP in 

IPC, using a more direct approach to assessing mPTP activity. They used the same 

technique that allowed them to show some years earlier that mPTP opening occurs during 

early reperfusion and not during index ischaemia (Griffiths & Halestrap, 1995). The 

method involved the mitochondrial entrapment of 2-deoxy[3H]glucose ([3H]DOG) which 

allowed them to measure mPTP opening. Their findings supported those of Hausenloy et 

al. (2002), in that protection afforded by IPC is associated with indirect inhibition of the 

mPTP. They further concluded that in their hands, direct targeting of the mPTP was less 

effective than removing the conditions that are responsible for pore opening in the first 

place (Javadov et al., 2003). As momentum gathered during the early 2000’s, Yellon’s 

group investigated the link between IPC and protection afforded in early reperfusion 

further. Two studies suggested that the kinases previously thought to be activated during 

ischaemia in response to IPC were in fact phosphorylated during early reperfusion in 

response to this stimulus (Hausenloy et al., 2004). Furthermore, IPC increased 

phosphorylation of PI3K-Akt and MEK-1/2-ERK-1/2 pathways, but during reperfusion, 

after index ischaemia. They also suggested that these kinases are critical for IPC induced 

protection (Hausenloy et al., 2005). 

Work published by both Yellon’s and Halestrap’s laboratories shifted the focus of IPC 

mediated protection towards the first few minutes of reperfusion. The so-called survival 

kinase pathways had now been shown to be implicated in IPC mediated protection as well 
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as targeting reperfusion induced injury (Burley et al., 2007; Yang et al., 2006). Clinically 

these observations were appealing as it has long been a criticism of IPC mediated 

protection that it had limited clinical applicability. Clinical studies had been employed 

where high risk patients received KATP channel agonists or nitric oxide (NO) donors. 

However the protective effects were limited, and dosing was a challenge due to the 

generally unpredictable nature of AMI (Lee et al., 2002; Rezkalla & Kloner, 2007). The 

focus had now shifted towards targeting ischaemia-reperfusion injury in the first few 

minutes of reperfusion, a strategy which is both clinically desirable and practical 

(Hausenloy et al., 2005). 

1.15 Postconditioning 

At the time when the mechanisms of IPC protection were being investigated, 

Vinten-Johansen’s group published a landmark study that again shifted attention away 

from pre-ischaemic targeting and focused on early reperfusion. They described a similar 

experimental protocol to that first reported by Murry et al. (1986). However they applied 

the ischaemic conditioning after index ischaemia, and called this postconditioning. They 

showed that three intermittent 30 second periods of ischaemia in a canine model, 

following 60 minutes index ischaemia, resulted in a marked reduction in infarct size and 

identified the first moments of reperfusion to be a key therapeutic window (Zhao et al., 

2003). Similar to preconditioning, timing and duration of the cyclical ischaemic stimulus is 

crucial in determining the amount of protection afforded. It is also apparent that species 

variation plays a role in the timing and duration. In the rabbit model protection was 

afforded when the first re-occlusion was initiated after 30 seconds reperfusion but this 
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protection was lost if re-occlusion was delayed until 60 seconds (Yang et al., 2004). In an 

in vivo rat model, protection was lost if re-occlusion was delayed from 10 to 30 seconds 

(Kin et al., 2004). It is clear however that delaying the postconditioning stimulus to 5 

minutes or more appears to be too late to stimulate the protective mechanisms (Ovize et 

al., 2010). 

Prior to the publication of Vinten-Johansen’s seminal paper, Na et al. (1996), reported a 

reduction in the incidence of VF in a feline model of regional ischaemia following 

VPB-driven intermittent reperfusion. They demonstrated a significant reduction in VF 

following what they described as postconditioning, concluding that it was as good as, if not 

better than IPC. It could therefore be argued that the first report of postconditioning came 

from the Korean group, predating the formal description that is now widely accepted. 

1.16 Mechanisms of postconditioning 

The proposed mechanisms of postconditioning initiate signal transduction pathways by 

recruiting autacoids to act on cell surface receptors and the transport of ions through cell 

surface channels. In 2002, Yellon and colleagues proposed the idea that there is a 

pro-survival signalling cascade that is endogenously activated upon reperfusion. They used 

a urocortin-mediated model of cardioprotection to show that the ERK 1/2 

MAPK-dependendent signalling pathway represented an important survival mechanism 

against reperfusion injury (Schulman et al., 2002).  Signalling through PI3K has also been 

shown to afford protection against early reperfusion injury via activation of the 

serine-threonine kinase, Akt (Fujio et al., 2000; Matsui et al., 1999). This work and 

further studies of kinase activation using G-protein coupled receptor agonists and 
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natriuretic peptides (NP) that promoted the idea that the heart possesses “Reperfusion 

Injury Salvage Kinase” (RISK) pathways (Hausenloy & Yellon, 2004) (see Figure 1.4). 

Further kinase interactions involved in the so called RISK pathway are discussed in 

Chapters 3, 4, 5 and 6. 

It has recently been proposed that a second signalling cascade, the so called “Survivor 

Activating Factor Enhancement” (SAFE) pathway  is activated endogenously upon 

reperfusion and has been demonstrated to afford cardioprotection (Boengler et al., 2008b; 

Lecour, 2009). Activation of the JAK-STAT signalling cascade via interleukin type 

cytokines transports stress signals to the nucleus from cell surface receptors and its 

inhibition has been shown to abrogate cardioprotection at reperfusion (Boengler et al., 

2008a). Although this pathway has been investigated much less widely than the RISK 

pathway it is suggested that its end effector, like that proposed for the RISK pathway, is 

the mPTP (Heusch et al., 2008).  
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Figure 1.4 Schematic representation of the reperfusion injury salvage kinase (RISK) pathway first proposed 
by Hausenloy & Yellon (2006). Schematic illustrates the dynamic signalling cascades that culminate in 
inhibition of the mitochondrial permeability transition pore (mPTP) opening and ultimately limiting cell 
death. Autacoid factors activate G proteins signalling through PI3-K/Akt/eNOS and ultimately 
sGC/cGMP/PKG. Similarly natriuretic peptides (ANP/BNP) stimulate pGC to convert GTP to cGMP and 
signalling through the same downstream targets as sGC. As depicted there are several proposed end mediators 
of mPTP inhibition. 

 

1.17 Natriuretic peptides 

The majority of the investigative work that led to the discovery of the natriuretic factor 

was carried out during the 1950’s. Kisch first reported anatomical differences in the Golgi 

networks of atrial and ventricular cells, commenting that in atrial cells they were similar 

to those of secretory cells (Kisch, 1956). In the same year Henry and colleagues reported 

that balloon distension of the atria correlated with increased urination in dogs (Henry et 

al., 1956). By the late 1960’s de Bold’s laboratory were characterising the granules found 

in the atria first reported by Jamieson and Palade (de Bold et al., 1981; Jamieson & Palade, 
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1964). de Bold et al. reported that the granules changed in response to alterations in 

electrolyte and water balance. It was then in their seminal paper in 1981 that they brought 

together the work of Kisch, Jamieson & Palade and Henry et al., documenting that atrial 

but not ventricular extracts contain a potent blood pressure lowering factor, proposing 

that it worked by stimulating renal sodium and water secretion (de Bold et al., 1981). This 

was the first description of atrial natriuretic peptide (ANP), originally atrial natriuretic 

factor (ANF). In 1988, the second family member was characterised and named brain 

natriuretic peptide (BNP) as it was isolated from the brain (Sudoh et al., 1988). It was 

later reported that it was most highly concentrated in cardiac ventricles of patients with 

heart failure (Mukoyama et al., 1990). Sudoh et al. then identified the third family 

member, C-type natriuretic peptide (CNP) from porcine brain extracts based on its ability 

to relax smooth muscle (Sudoh et al., 1990). 

All NPs are synthesised as prepro peptides. ANP undergoes cleavage from a 151 prepro 

form to a 126 amino acid proANP that is the predominant form stored in atrial granules. 

This allows rapid cleavage to the biologically active carboxyl-terminal 28 amino acid ANP 

upon secretion by the transmembrane cardiac serine protease, corin (Yan et al., 2000). 

BNP undergoes similar cleavage events to yield a biologically active 32 amino acid peptide 

(Sudoh et al., 1988). Unlike in the atria, BNP production is transcriptionally regulated by 

GATA4 and is released in response to cardiac wall stretch, resulting from volume 

overload (Lang et al., 1985; Ruskoaho et al., 1989). Plasma BNP concentrations in healthy 

individuals are approximately 1 fmol/mL which is elevated two-three hundred fold in 

patients with congestive heart failure, making it a good indicator of disease (Mukoyama et 
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al., 1991a). CNP is cleaved from its prepro peptide into two biologically active residues. 

An intracellular endoprotease cleaves proCNP into the 53 amino acid active form, but the 

22 amino acid form is cleaved by an as yet unidentified enzyme (Wu et al., 2003). The 

predominant active form found in the heart is the 53 amino acid peptide (Minamino et al., 

1991). 

Most recently a new class of so-called “designer” NPs is being developed. Centeritide is 

the first in this class of designer NPs which co-activates both NPR1 and NPR2 (see 1.18). 

Initial clinical trials suggest a reduction in blood pressure in stable heart failure patients as 

well as reduced creatine levels. It is proposed that continuous infusion of centeritide 

through a subcutaneous pump will improve patient outcome and reduce the duration of 

hospital stay (Burnett, 2011). 

1.18 Natriuretic peptide receptors 

There are three natriuretic peptide membrane associated guanylyl cyclase receptors 

(NPRs). NPR1 and NPR2 mediate most physiological actions (Chinkers & Garbers, 

1991), whereas the third receptor, NPR3 is described as a clearance receptor (Maack et 

al., 1987). NPR1 and NPR2 can be found expressed in many tissues, particularly in the 

cardiovascular system, localised to the atria, ventricles, aorta and peripheral vasculature 

(Tsuchimochi et al., 1988; Wilcox et al., 1991). NPR1 is bound by both ANP and BNP 

although ANP is an order of magnitude more potent. CNP’s ability to bind to NPR1 is 

negligible (Nakao et al., 1991). In comparison CNP is the only peptide that can 

significantly increase cyclic GMP levels in cells expressing NPR2 (Suga et al., 1992). All 

NPs bind the so-called clearance receptor, NPR3. Upon binding of the peptides to the 
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receptor, they undergo internalisation and lysosomal degradation. The peptides are also 

cleared to a lesser extent by proteolytic cleavage and renal excretion (Condra et al., 

1988). 

From binding to the NPR, intracellular signalling occurs principally by means of cGMP 

elevation and activation of distal pathways via cGMP dependent proteins. The NP 

signalling cascade initiated during early reperfusion, and the cardioprotective mechanisms 

proposed are discussed in more detail in Chapter 6. 

1.19 Nitric oxide 

Over the last 30 years, interest in NO and our understanding of it as a biological mediator 

has grown at increasing pace. Originally described as a noxious gas, it was the seminal 

work of Furchgott and Zawadzki(1980) and Ignarro et al. (1982) who discovered an 

endothelium derived relaxing factor (EDRF)  and later Palmer and colleagues (1987) who 

identified it as NO that created the foundation for this large body of research. In 1867, it 

was documented in the Lancet that organic nitrovasodilators (amyl nitrite) were 

efficacious in patients presenting with angina pectoris (Brunton, 1867). It was not until the 

latter part of the 20th century that pharmacology of these compounds was understood. 

Furchgott et al. (1980), noticed that there were inconsistencies in data reporting the 

vasoactive properties of acetylcholine (ACh) on blood vessels in vitro. They observed in 

thoracic aortic rings from rabbits that if the endothelium was damaged on dissection then 

the responses to ACh were different. This led them to conclude that the endothelium 

must be present for ACh mediated relaxation. Furthermore, they proposed that ACh 

acting on muscarinic receptors in the endothelial cells stimulates the release of a substance 
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that causes relaxation of vascular smooth muscle. It was then Palmer et al. (1987) who 

documented that relaxation induced by both EDRF and NO was inhibited by haemoglobin 

and enhanced by superoxide dismutase (SOD) to a similar degree. They deduced that NO 

released from endothelial cells was indistinguishable from EDRF in terms of biological 

activity, stability and susceptibility to an inhibitor. They concluded that EDRF and NO are 

identical. 

NO is synthesised by a group of enzymes called nitric oxide synthases (NOS). To date 

there are three distinct NOS isoforms located in different tissues. They are distinguished 

by their dependence on calcium and calmodulin (Bredt & Snyder, 1990). Neuronal NOS 

(nNOS, NOS I), isolated from brain tissue, and inducible NOS (iNOS, NOS II) are mostly 

found in soluble portions (Stuehr et al., 1991). Endothelial NOS (eNOS, NOS III) is 

mainly found in the particulate fraction in endothelial cells (Forstermann et al., 1991). 

nNOS and eNOS are constitutive enzymes, constantly producing nanomolar amounts of 

NO. In contrast, iNOS is not present constitutively; it is induced by pro-inflammatory 

cells of the immune system (Griffith & Stuehr, 1995). NOS produce NO by catalysis of a 

5-electron oxidation of one nitrogen atom of the guanidine group of L-arginine to form 

NO and L-citrulline. It is important to consider the distribution and expression of NOS 

isoforms when thinking about the actions NO has in different tissues. eNOS and nNOS are 

relatively low output enzymes and associated with basal physiological function. On the 

other hand, iNOS is a high output enzyme, generating 1000-fold more NO than eNOS 

(Singh & Evans, 1997). The sheer amount of NO that iNOS can produce can result in 

detrimental effects, not directly by NO, but by the ROS produced in an NO and super 
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oxide rich environment (Ferdinandy & Schulz, 2003). It is important to note that studies 

have also shown that eNOS can be regulated directly by PI3K/Akt (Fulton et al., 1999), 

and more recently it has been reported that oestrogen receptor binding can lead to 

phosphorylation and activation of eNOS (Haynes et al., 2000; Russell et al., 2000). 

NO’s charge neutrality enables it to diffuse freely in aqueous solutions across cell 

membranes. The rate of diffusion is dependent on its half-life, which in turn is dependent 

on the rate of formation. Typically, in aqueous solution, the intracellular half-life of NO is 

in the millisecond range (Bolli, 2001; Hakim et al., 1996). Biological breakdown of NO 

can occur in numerous ways. The most common intermediate breakdown product is 

nitrite (NO2
-) (Kelm, 1999). Nitrite can then be taken up by red blood cells, where 

further oxidation by a haemoglobin dependent mechanism leads to production of nitrate 

(NO3
-), which can be redistributed in plasma. 

1.20 Nitric oxide and cardioprotection 

For almost as long as research has been carried out exploring cardioprotective paradigms, 

particularly ischaemia-reperfusion injury, there has been controversy over the role that 

NO plays (Bolli, 2001; Ferdinandy & Schulz, 2003; Schulz et al., 2004). It would appear 

that in recent years this controversy is dwindling and it is generally accepted that NO is 

cardioprotective in the ischaemia-reperfusion setting. It is however important to note 

when drawing conclusions from the literature that various end points and animal models 

have been used and there is certainly species variation in NO production and distribution 

(Jones & Bolli, 2006). The source of NO and the amount produced or the NO donor 

being used, will affect whether NO affords protective or deleterious actions. 
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NO was initially documented as the only endogenous ligand of soluble guanylyl cyclase 

(sGC), activating it in all tissues tested (Waldman & Murad, 1987). However, it was later 

demonstrated that carbon monoxide (CO), produced by haem oxygenase could mediate 

smooth muscle relaxation and platelet aggregation via sGC  (Brüne & Ullrich, 1987). Most 

recently it has been demonstrated that nitroxyl could activate sGC, however it was noted 

that the nitroxyl donors used could not activate the oxidised form of sGC. The authors 

further reported that the activation observed was independent of NO (Miller et al., 2009). 

When acting as a signalling molecule, NO binds to the haem iron moiety, resulting in its 

activation and generation of guanosine-3’,5’-cyclic monophosphate (cGMP) from 

guanosine triphosphate (GTP) (discussed in more detail in 1.25), and cGMP acts at distal 

targets. It is worthy to note that NO can act independently of sGC and cGMP to initiate 

other actions such as protein S-nitrosylation (Ziolo, 2008). It has also been demonstrated 

that NO can directly activate adenylate cyclase, thus increasing adenosine-3’,5’-adenosine 

monophosphate (cAMP) levels and myocardial contractility (Burgoyne & Eaton, 2009). 

The role NO plays differs depending on whether it is involved in the classical or late phase 

preconditioning phenomenon. In classical IPC it has been shown that inhibition of NOS by 

pharmacological intervention has no effect on IPC’s ability to limit infarct size. However, 

exogenous delivery of NO, by NO donors such as SNAP, NOC-9 and diethylenetriamine 

NONOate (DETA-NO) prior to index ischaemia protect the heart comparably to IPC 

itself (Nakano et al., 2000; Post et al., 2000). More recently, du Toit et al. (2007), 

reported that mice over expressing eNOS demonstrated a maximally protective state, 

comparable to wild type littermates who had undergone IPC. In contrast to reports of 
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protection, others have reported deleterious actions of NOS inhibition during 

preconditioning. Vegh et al. (1993), showed in some of the earliest NO IPC studies, that 

inhibition of NO by the NOS inhibitor L-NAME, both pre and post IPC abolished the 

antiarrhythmic effects of IPC in an open chest dog model of coronary artery occlusion. 

Inhibition of NOS was also shown to increase post ischaemic contractile dysfunction 

(Lochner et al., 2002). 

Evidence suggests that NO plays an important part in both classical and delayed IPC. 

Although the exact mechanism that affords protection under the delayed IPC is unclear, 

pharmacological mimetics and triggers such as bradykinin and adenosine, NO and ROS 

have been identified. Several of these triggers initiate signalling that converges on NOS 

activation, demonstrating the importance of NO production in initiating delayed IPC. 

Bolli and colleagues, who have led the way in investigating NO’s role in delayed IPC, 

propose that NO has a functional role both in initiating, but also mediating delayed IPC 

(Bolli et al., 1998). It is suggested that stimulation of production of NO by eNOS triggers 

downstream signalling that results in upregulation of cardioprotective mediators, 

including iNOS. Bolli et al. (2001), propose that phosphorylation of PKC, recruitment of 

tyrosine kinases and activation of NF-κB, as well as ROS production play crucial roles. 

More recently, studies have shown that NO is a potent stimulator of mitochondrial 

biogenesis which is consistent with the NO hypothesis of IPC (McLeod et al., 2005; Nisoli 

et al., 2003). Although there is increasing evidence to support the notion that both eNOS 

and iNOS are important in IPC, the role of nNOS remains unclear (Murillo et al., 2011). 

As with the other isoforms of NOS, the literature remains divided about nNOS. Recent 
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studies have shown that while inhibition of nNOS is protective in ischaemia-reperfusion, 

its function is required to appreciate the protective effects of delayed IPC (Barua et al., 

2010; Lu et al., 2009). 

1.21 Nitrite 

Originally believed to be an inert by-product of NO metabolism, nitrite is now believed 

to be an “endocrine reservoir” of NO, which can be reduced to NO when demand 

requests it, usually under pathological conditions (Lundberg et al., 2008). This paradigm 

shift in how we view nitrite stems from seminal work by Zweier and colleagues’. They 

showed that NO formation increased during an ischaemic episode independently of 

enzymatic activity (Zweier et al., 1999). Pharmacological preconditioning with nitrite in 

an isolated rat heart model showed a dose dependent limitation of infarct size (Webb et 

al., 2004). These findings are in support of previous work that suggests that IPC leads to 

an increase in iNOS expression and nitrite levels (Bolli et al., 1998), which has led to the 

general hypothesis that nitrite may be an integral mediator of delayed IPC (Murillo et al., 

2011). The levels of nitrite generated in the heart during IPC reported to be in the order 

of nmol/mg corroborate with data that suggests that a cardiac nitrite concentration of 

pmol/mg protein mediates cytoprotection (Raat et al., 2009). 

Most recently, nitrite has been shown to afford cardioprotection when administered at 

early reperfusion. Duranski et al. (2005) administered sodium nitrite in an in situ mouse 

model where the left coronary artery was ligated for 30 min, followed by 24 h 

reperfusion. They reported a dose dependent protection, with highly significant infarct 

limitation at near physiological (48 nM) blood nitrite concentrations. A recent study by 
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Gladwin’s group investigated the protective effects of nitrite perfusion as an adjunctive 

therapy at reperfusion (Gonzalez et al., 2008). They found that independent of time or 

ischaemic severity, nitrite afforded both infarct limitation and antiapoptotic effects 

(Gonzalez et al., 2008). The mechanism by which nitrite affords protection has been 

suggested to be similar to that of NO, supported by the abolition of nitrite protection 

when NO scavengers are present (Shiva et al., 2007). Gladwin and colleagues have 

however postulated that reduction of nitrite to NO results in the inhibition of complex I 

of the mitochondrial transport chain by post-translational S-nitrosation. They further 

reported that this dampens electron transfer, reducing ROS generation during early 

reperfusion, ameliorating oxidative inactivation of complexes II-IV, hence preventing 

mPTP opening and cytochrome c release (Gonzalez et al., 2008). In a renal model of 

ischaemia-reperfusion injury, it has been proposed that eNOS may play a role in the 

reduction of nitrite, a mechanism that is enhanced in low oxygen environments (Milsom et 

al., 2010). Whether or not similar mechanisms are employed when myocardial 

ischaemia-reperfusion injury is limited by nitrites remains to be explored. 

1. 22 Soluble guanylyl cyclase 

Like many other areas of research, parallel studies were being carried out during the 

1970’s exploring the different aspects of cyclic nucleotide and NO physiology that, in later 

years, would forge connections that would stimulate our progression and understanding of 

the field enormously. In early studies by Sutherland’s group, they reported that calcium 

infusions stimulate urinary excretion of cGMP and not cAMP (Kaminsky et al., 1970). At 

the same time, it was shown that ACh could increase levels of cGMP indirectly in isolated 
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perfused rat hearts (George et al., 1970), and later that calcium is important for cGMP 

regulation (Schulz et al., 1973). The extensive work carried out during the 1970’s and 

80’s exploring EDRF and NO eventually explained these early observations, particularly 

the work by Rapoport et al. (1983) and Rapoport & Murad (1983), which demonstrated 

that EDRF increases cGMP synthesis in isolated blood vessels and increases protein 

phosphorylation in smooth muscle cells. Price et al. (1967), first used the term guanyl 

(guanylyl) cyclase (GC), to describe the then unknown enzyme that catalysed the 

conversion of GTP to cGMP. It was some years later that a number of laboratories 

reported the presence of a prosthetic haem moiety which was shown to be required for 

stimulation by NO (Gerzer et al., 1981; Ignarro et al., 1982), and also required for 

enzyme purification (Kamisaki et al., 1986a), that a structural understanding of the 

enzyme was developed. 

sGC is a heterodimeric haem protein consisting of both an alpha and beta subunit. To 

date, two alpha and two beta isoforms have been identified. The α1β1 protein has been 

most extensively researched and is found in most tissues, including the kidney, brain, 

heart and vascular organs. sGC mediates a wide range of physiological functions, including 

platelet aggregation, relaxation of smooth muscle, vasodilatation, neuronal signal 

transduction and modulation of the immune system (Collier & Vallance, 1989), but 

requires expression of both subunits for catalytic activity (Buechler et al., 1991; Kamisaki 

et al., 1986b). Russwurm and colleagues have shown that the α2β1 heterodimer exhibits 

ligand-binding characteristics comparable to the α1β1 protein, yet a splice variant of the 

α2 subunit, (α2i) forms a dimer with the β1 subunit to form an inactive protein (Mergia et 
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al., 2003). In the rat, the α1 and β1 subunits are 690 and 619 amino acids in length, 

respectively. Both are made up of four domains, an N-terminal haem binding region, a 

predicted Per/Arnt/Sim (PAS) -like domain, a putative amphipathic helix and the 

C-terminal cyclase catalytic domain (Iyer et al., 2003; Karow et al., 2004; Wedel et al., 

1995). The identification of the haem binding domain on the β subunit required sGC 

truncations and site direct mutagenesis (Cary et al., 2006). Mutating consecutive histidines 

to phenylalanine (Wedel et al., 1994), expressing truncations in E. Coli (Zhao & Marletta, 

1997), and deleting the N-terminal 64 amino acid residues of the β1 subunit (Wedel et al., 

1995), together demonstrated that the N-terminus, specifically histidine 105 was the 

proximal haem ligand. Initially thought to be an exclusive domain, conserved only in 

mammalian sGC for haem binding, it was later discovered that this region is part of a 

highly conserved family of proteins found in prokaryotes as well as eukaryotes (Iyer et al., 

2003). 

1.23 NO activation of sGC 

NO binds to sGC leading to a 200-fold increase in the synthesis of its second messenger, 

cGMP. The rate of reaction in physiological conditions is governed by diffusion;  other 

diatomic gases such as dioxygen and CO, which do not bind, also activate sGC. Our 

understanding of the exact mechanisms by which NO stimulates sGC to act remains 

unclear; however, progression with structural cloning is helping this area advance. 

Although it is beyond the realms of this thesis to explain in detail the chemistry that has 

elucidated the current proposals of NO binding and stimulation of sGC, an overview of 

the process is described below. 
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Initially the model proposed for activation involved rapid binding of NO to the haem 

group, resulting in the breakage of the histidine 105 bond and a conformational change of 

the protein and increased catalytic activity. In this model, disassociation of NO from the 

haem group results in restoration of basal activity (Ignarro et al., 1982; Wedel et al., 

1994). This mechanism however is refuted by in vivo studies which suggest that 

deactivation of sGC occurs rapidly when NO levels drop (Bellamy & Garthwaite, 2001). 

Most recently Cary et al.(2005), and Russwurm & Koesling (2004), reported that NO 

co-ordinate bonding to the haem group was not sufficient for full enzymatic activation. 

Both groups proposed alternative mechanisms of activation. Russwurm and Koesling 

(2004) proposed a two step binding of NO to the haem site, first to the proximal site and 

then the distal haem cofactor site, producing the high activity complex. Cary and 

colleagues suggested that NO binds to the haem pocket for low enzymatic activity, but a 

non-haem site needs to be occupied by further NO to create a fully active complex (Cary 

et al., 2005). These proposals were tested by Derbyshire and Marletta (2007), using the 

haem ligand butyl isocyanide to block NO binding to sGC haem. They showed that NO 

activated the sGC-butyl isocyanide complex without coordinating to the haem cofactor, 

and further supports the notion that there is a non-haem NO binding site. 

1.24 sGC isoform genetic knockouts 

In recent years genetic KO mice have been developed for each of the three physiologically 

expressed sGC enzymes, creating mice deficient in either α1, α2 or β1 protein (Buys et 

al., 2008; Friebe et al., 2007; Mergia et al., 2006). KO of either of the α subunits results 

in only one functional form of sGC being expressed, whereas deletion of the β subunit 
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results in a genotype expressing no functional sGC. In these severely compromised mice, 

phenotypes are similar, and are more pronounced than those of NOS or cGKI knockouts 

displaying poor gastrointestinal smooth muscle action (Ny et al., 2000). Homozygous KO 

mice had only 20 % survival after 48 hours, with 90 % dead within 18 days. As with the 

NOS and cGKI KO’s, gastrointestinal complications such as dysmotility and prolonged 

total gut transit time were reported (Friebe et al., 2007). 

Many cardiovascular specific phenotypes have been characterised using sGC KOs, 

including the surprising observation that the much less expressed (6 % cGMP produced in 

aortic smooth muscle) α2 isoform in aortic smooth muscle was able to completely relax 

aortic smooth muscle rings. This resulted in the characterisation of an unpredicted 

functional role of α2/β1 sGC producing cGMP sufficient to cause vascular relaxation 

(Mergia et al., 2006). They also reported that male but not female KO mice developed 

hypertension, but there was no sex dependency in vascular relaxation experiments 

(Nimmegeers et al., 2007). Blood pressure observations in two different α1 KO mice 

models report contrasting results. Considering that over 90 % of cGMP producing activity 

in this KO is lost, Mergia et al. (2006), only reported a 7 mmHg increase in systolic blood 

pressure, compared to a 26 mmHg increase in β1 subunit KO mice, with no sex 

difference in phenotype. Buys et al. (2008), however reported that in their α1 KO mice, 

males had significantly higher systolic blood pressure (147 vs. 118 mmHg) measured by a 

non-invasive tail cuff system. Hypertension was age and testosterone dependent, and was 

prevented by orchiectomy and/or treatment with an androgen receptor antagonist. The 

authors suggest that discrepancies in gender differences may be because of the different 
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genetic backgrounds of the KO models used. It has also been reported that both male and 

female α1 KO mice have increased cardiac contractility, arterial elastance as well as 

impaired ventricular relaxation, measured by invasive catheterisation of the carotid artery 

(Buys et al., 2008). 

1.25 Guanosine-3’, 5’-cyclic monophosphate 

cGMP is the second messenger produced in a reaction catalysed by the cytosolic sGC, or 

membrane associated pGC, from the purine nucleotide GTP (see Figure 1.5). It was after 

the discovery of cAMP by Sutherland and colleagues (1958), that it was proposed that 

another cyclic nucleotide may also be regulating physiological processes. Smith et al. were 

the first to synthesise cGMP, and it was shown by Drummond & Perrott-Yee (1961), that 

it was degraded in a similar fashion to cAMP, by enzymatic hydrolysis. Price’s laboratory 

confirmed the identification of cGMP when they isolated it in rat urine (Ashman et al., 

1963). At this time, Sutherland’s laboratory demonstrated that steroid, thyroid and 

pituitary hormones affected urine cGMP levels. Although at this time there was no 

proposal of direct production, it was suggested that thyroxine could not completely 

restore cGMP levels in hypophysectomised rats, demonstrating multiple stimulating 

factors (Hardman et al., 1966). It was reported by Tsai et al. (1980), in sGC purified from 

rat liver that the sole products of catalysis of GTP are cGMP and pyrophosphate. Later 

analysis of pGC purified from sea urchin sperm showed that the α-phosphoanhydride bond 

is the site of cleavage during catalysis (Walseth et al., 1981), and that it is a single 

displacement reaction (Senter et al., 1983).  
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Figure 1.5 Schematic representation of guanylyl cyclase mediators and effectors. Both pGC by NPR agonists 
and sGC by NO catalyse the conversion of GTP to cGMP, which can signal through PKG or via independent 
mechanisms. Note that it is proposed that sGC is present in three states, the reduced state which NO can 
stimulate to catalyse the conversion of GTP to cGMP, the oxidised and haem-free states which are insensitive 
to NO and presence is proposed to be increased under pathological conditions. PDE5 catalyses the breakdown 
of cGMP to 5’CMP, acting to regulate PKG cGMP/PKG signalling. 

 

1.26 cGMP localisation 

Like much of our understanding of cGMP physiology, advances in our understanding of its 

cellular localisation developed based on experimental work investigating the same 

paradigm for cAMP. Compartmentation of cGMP was realised in the heart when Honda et 

al. (2001), and Sato et al. (2000), independently described genetically encoded, 

fluorescent cGMP indicators that could highlight cGMP intracellular localisation. 

Fischmeister and colleagues were employing a different technique to investigate diffusion 

of cAMP through frog ventricular myocytes using double-barrelled micro perfusion patch 
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clamping (Jurevicius & Fischmeister, 1996). This enabled them to stimulate one side of a 

cell with a receptor agonist, whilst monitoring its effects on the other side. They later 

employed the same technique for cGMP, documenting that application of a NO-donor to 

one side of a cardiac cell effectively blocked β-AR stimulation of L-type calcium channel 

current but had little effect on the other side of the cell. They interpreted these results to 

suggest that diffusion of cGMP signalling is limited (Dittrich et al., 2001). 

Localised actions of cGMP are not just as result of where an effector has acted. Whether 

cGMP is produced by pGC or sGC has been investigated and has been shown to play a role 

in spatiotemporal localisation of cGMP. Work by Zolle et al. (2000), and Hart et al. 

(2001), explored the responsiveness to congestive heart failure, examining the effects of 

calcium handling and β-adrenergic responsiveness respectively. BNP stimulation of pGC 

leads to inhibition of calcium efflux by the plasma membrane calcium ATPase pump and a 

reduction in cation influx (Zolle et al., 2000). In contrast, activation of sGC did not alter 

calcium handling, but did cause increased uptake of calcium into the sarcoplasmic 

reticulum (Zolle et al., 2000). In another model exploring calcium transients, Su et al. 

(2005), used mouse ventricular myocytes to investigate myocyte shortening after 

stimulation with either CNP or the NO donor SNAP. They reported that percentage 

shortening of myocytes was similar in both settings, however observed that CNP 

significantly reduced the amplitude of calcium transients, whereas SNAP had minimal 

effects. Further studies supporting the differential effects of cGMP produced by different 

GCs comes from work carried out in human umbilical vein endothelial cells (HUVEC). It 

was reported that in endothelial cells incubated with hydrogen peroxide, stimulation with 
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CNP had moderate relaxing effects, compared to NO which afforded much greater 

relaxation (Rivero-Vilches et al., 2003). 

1.27 cGMP dependent protein kinase 

Evidence now supports differential effects of cGMP, determined by subcellular 

localisation and production. Like cAMP, cGMP also mediates its effects through a 

cyclase-dependent protein kinase. After initially identifying a partially purified protein 

kinase in lobster tail that was activated by both cAMP and cGMP (Kuo & Greengard, 

1969), Kuo and Greengard later chromatographically separated the two activities and for 

the first time demonstrated that there is a separate cGMP-regulated protein kinase, 

cGMP-dependent protein kinase (PKG1/cGKI1) only weakly activated by cAMP (Kuo & 

Greengard, 1970). Following its identification, purification was necessary to understand 

and explore its actions. PKG activity was demonstrated in various tissues particularly rat 

brain cerebellum (Hofmann & Sold, 1972). The first full length sequence of PKG was 

reported by Takio et al. (1984), which facilitated the identification of two splice variants of 

PKG, 1α and 1β. They differ only at their N-termini (Wernet et al., 1989; Wolfe et al., 

1989; Wolfe et al., 1987) and are encoded in mammals by the prkg 1 gene (Sandberg et al., 

1989; Wernet et al., 1989). A second, novel, membrane associated kinase was proposed 

by de Jonge et al. (1981), and confirmed as cGMP-dependent protein kinase type II 

(PKGII/cGKII) by Uhler (1993), and Jarchau et al. (1994), encoded by the prkg 2 gene. 

PKG1 is found in high concentrations in many tissues, including smooth muscle, kidney, 

platelets and dorsal root ganglia and found in lower concentrations in cardiac muscle, 

vascular endothelium and osteoclasts (Feil et al., 2005; Lochmann et al., 1981). PKGIα is 
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found in lung, heart and cerebellum and Iβ is found in platelets and hippocampal neurons 

(Geiselhöringer et al., 2004; Weber et al., 2007). Both variants of PKG are composed of a 

regulatory domain and a catalytic domain, which is subdivided into the N-terminal, and 

cGMP biding domains. The binding domain contains the high affinity (cGMP I) and low 

affinity (cGMP II) binding pockets, which act allosterically. The catalytic domain contains 

the MgATP and peptide binding pockets. When cGMP binds to both cGMPI and cGMPII 

domains, inhibition of the catalytic centre is released allowing phosphorylation of 

serine/threonine residues in target proteins (Feil & Kemp-Harper, 2006; Francis & 

Corbin, 1999; Lucas et al., 2000). 

Determining which isozyme of PKG1 affords specific actions in the cardiovascular system 

has proven difficult and controversial. However recent transgenic mouse strains 

expressing either PKG1α or PKG1β only in all smooth muscles has suggested that 

previous in vitro studies may not translate into the in vivo setting. Weber et al. (2007), 

showed reconstitution of basic functions in both mouse lines. Smooth muscle function and 

early lethality were abolished when either isozyme was restored supported by calcium 

lowering and smooth muscle relaxation by both PKG1α and PKG1β. 

1.28 cGMP dependent phosphodiesterases 

Regulation of cGMP and its downstream effectors, as has already been elucidated in 1.25, 

is a complex if not sophisticated process. Phosphodiesterases (PDEs) are responsible for 

the hydrolysis of cGMP by insertion of a hydroxyl group into the phosphate ring, the 

product being an inactive 2nd messenger, 5’GMP. Conversely they can also act as 

downstream effectors of cGMP and to complicate things further, cGMP can modulate the 
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activity of several of the PDE family, by binding to a regulatory domain or 

phosphorylation which can both inhibit or stimulate the enzyme (Feil et al., 2005). PDE 

activity was first reported in the heart. In the laboratory of Sutherland, they hypothesised 

that for cyclic nucleotides to have any real physiological purpose there must be a 

mechanism to remove them from the signalling cascade (Sutherland & Rall, 1958). In 

1958, they reported that heart extract contained PDE activity that regulated cAMP action. 

They also reported that inhibitory action was blocked by methylxanthines such as caffeine 

(Butcher & Sutherland, 1962). 

All mammals have at least 21 PDE genes encoding a superfamily of enzymes subdivided 

into 11 families (PDE1-PDE11) (Conti & Beavo, 2007). Although PDEs of different 

families contain reasonably high sequence homology at the catalytic region, several of the 

families are highly specific for cGMP and not cAMP and vice versa. PDEs 5 (Loughney et 

al., 1998), 6 (Gillespie & Beavo, 1988), and 9 (Fisher et al., 1998), are highly specific for 

cGMP, while 1 (Yan et al., 1996), 2 (Martins et al., 1982), 10 (Fujishige et al., 1999), and 

11 (Fawcett et al., 2000), hydrolyse both cAMP and cGMP. All cell types contain PDEs, 

yet which families are expressed and when varies. Typically, different subcellular 

compartments will contain different subtypes depending on the developmental stage of the 

cell. Evidence suggests that the distribution and sub families of PDEs present in specific 

cell types changes during cell development, particularly during embryogenesis 

(Fischmeister et al., 2005). The theory behind cGMP compartmentalisation stems from 

work investigating the distribution of different PDE subtypes. 
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1.29 Cyclic nucleotide-gated ion channels 

Cyclic nucleotide-gated (CNG) ion channels are another cellular target of cGMP 

signalling. They are activated by both cAMP and cGMP binding to a cyclic 

nucleotide-binding domain (CNBD), and regulate the opening of several classes of cation 

channel. The passage of Na+, K+ and Ca2+ can be regulated by these channels (Armstrong 

& Bezanilla, 1973). They belong to the pore-loop cation channel family, being most 

extensively researched in the signal transduction of photoreceptors and olfactory neurons. 

There is evidence to suggest that the channels are present in other cell types such as brain, 

kidney and endocrine tissues, as well as the heart, however CNG KO experiments have 

provided little evidence to suggest a functional role of the channels outside of the sensory 

systems (Podda et al., 2008). 

1.30 sGC/pGC-cGMP-PKG signalling in cardiovascular disease 

As has already been highlighted in 1.16 and 1.20, and later in Chapters 3, 4 and 5, 

signalling via cGMP and its downstream targets play crucial and diverse roles within the 

cardiovascular system. During ischaemia, production of nitric oxide is reported to 

increase, based on analysis of NOS activity. However during early reperfusion the 

reported burst in ROS is a target for NO and so availability of NO in the first few minutes 

is reduced (Zweier et al., 2010). There has been extensive research carried out 

investigating cGMP production and hydrolysis during ischaemia-reperfusion, yet many of 

the reports are contradictory. Lochner et al. (1998), demonstrated increases in cGMP 

levels during index ischaemia in an isolated perfused rat heart model following IPC, 

compared to non IPC hearts. A less dramatic increase in cGMP levels was reported by 
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Depré et al. (1994), in a working rat heart model, where L-NAME abolished the cGMP 

elevation induced by ischaemia. Another group reported that there was no increase in 

cGMP levels during ischaemia, but there was an increase following perfusion of L-arginine 

10 minutes prior to ischaemia (Maulik et al., 1995). Further studies by Yamaguchi et al. 

(1997), reported a decrease in cGMP levels following ischaemia reperfusion. One 

explanation for the reported differences in cGMP levels during ischaemia and reperfusion 

in isolated heart models would be the specific timing of the measurements. To date there 

have been no reports of a time profile of cGMP production during an 

ischaemia-reperfusion protocol, therefore uniform production or hydrolysis cannot be 

assumed. Both Agulló et al. (2003), and Geisbuhler et al. (1996), report that maintaing 

physiological cardiomyocyte cellular pH is crucial for the successful production of cGMP 

by NPR or sGC stimulation, however cardiomyocyte pH fluctuates during ischaemia and 

reperfusion which may lead to similar changes in intracellular cGMP concentrations. 

1.31 Cardioprotection afforded by downstream targets of PKG 

Cellular targets of PKG are both numerous and diverse. Within the cardiovascular system 

many substrates have been identified including, but not exhaustively, several L-type Ca2+ 

channel subunits, KATP channels, inositol triphosphate receptors, large conductance 

Ca2+-activated K+ channels, Na+/Ca2+ ATPase, PDE5, phospholamban (PLB), ryanodine 

receptors, thromboxane A2 receptor and vasodilator-stimulated phosphoprotein. It is 

generally accepted that signalling through cGMP and activation of PKG contributes to cell 

signalling cascades that afford cardioprotection in both IPC and ischaemia-reperfusion 

postconditioning paradigms. If one thinks of the mechanisms of cell death and the end 



Chapter 1

 

48 

effectors involved in triggering this in cardiomyocytes, it is clear that PKG signalling plays 

an important role (Buja & Vela, 2008; Lucas et al., 2000). 

Hypercontracture occurs because of calcium overload and altered calcium handling, 

which, as mentioned previously, is a consequence of ischaemia-reperfusion injury (Inserte 

et al., 2002). Calcium oscillations occur as a result of altered calcium handling when Ca2+ 

moves back and forwards between the cytosol and intracellular stores (Piper et al., 2004). 

Schäfer et al. (2001), proposed that Ca2+ oscillations caused by reverse mode of the 

Na+/Ca2+ exchanger during early reperfusion played a causal role in hypercontracture. It 

was later reported that cGMP-mediated stimuli enhance the clearing of Ca2+ during early 

reperfusion in the cytosol, reducing Ca2+ oscillations and hence reducing myocyte death 

(Abdallah et al., 2005). They conclude that it is unlikely that calcium transients are due to 

efflux from the Na+/ Ca2+ exchanger as they showed that cGMP signalling had no effect 

on the main Ca2+ extruder. They proposed instead that Ca2+ is sequestered to the SR via 

the Ca2+ ATPase. This Ca2+ uptake was abolished in the presence of the 

sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitor thapsigargin during 

reoxygenation (Abdallah et al., 2005). 

Recent studies have suggested a role for PKG mediated protection during 

ischaemia-reperfusion by inhibiting the mPTP and cytochrome c release, limiting 

ischaemia-induced necrosis. Borutaite et al. (2009), showed that perfusion of an NO 

donor prior to index ischaemia preserved the structural integrity and respiratory function 

of mitochondria, preventing leakage of cytochrome c, which was abolished in the presence 

of PKG inhibition. In similar studies exploring PKG mediated cardioprotection, Costa et 
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al. (2006), reported that PKG mediates opening of mitochondrial KATP channels which has 

been demonstrated to afford cardioprotection in numerous models. Using purified PKG, 

they were able to elicit opening of the KATP channel comparably to the pharmacological 

channel openers, chromakalin and diazoxide. The PKG inhibitor KT-5823 and PKC 

inhibitor RO318220 blocked the channel opening. They concluded that a PKCε 

constitutively expressed in the mitochondrial inner membrane by indirect activation via 

PKG, opens the mitochondrial KATP channel. These observations were the basis of later 

work by Borutaite et al. (2009), who tested whether their previous observations relating 

to cytochrome c release via NO were related to mKATP channel opening. Using the KATP 

channel inhibitor 5-hydroxy decanoate (5-HD) for 15 minutes prior to perfusion of 

DETA-NO, they could not abrogate the NO-induced protection against ischaemia induced 

cytochrome c release. These results oppose those of Qin et al. (2004), who reported that 

inhibition of the KATP channel blocks NO-induced protection against 

ischaemia-reperfusion-induced necrosis. 

Costa et al. (2006), proposed that there were two PKCε-subtypes involved in the distal 

signalling of cardioprotection. PKCε1 is proposed to regulate mKATP channel opening and 

PKCε2 is  suggested to negatively regulate mPTP opening. They propose that the same 

signalling pathway mediates protection afforded by both mKATP channel opening and 

mPTP inhibition. 

Opening of the mKATP via inotropic stimuli ensures efficient energy transfer from the 

mitochondria to the cytosol under conditions of stress such as ischaemia. The opening of 

the channel inhibits the onset of mPTP formation and contributes to inhibition of necrosis 
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(Bopassa et al., 2006). It is prevention of mPTP formation that is believed to be one of the 

major end effectors of the cardioprotective paradigm. Although the mPTP is now widely 

accepted as being a major therapeutic target in cardioprotection, the molecular 

mechanism and composition of mPTP remains unclear. Several proteins have been 

implicated as components of the pore including adenine nucleotide translocase, the 

mitochondrial phosphate carrier and CYPD (Halestrap, 2009). CYPD’s role has been 

explored extensively and following work by Crompton et al. (1988), who showed that 

CSA blocked mPTP opening, Halestrap et al. (1990), showed that the blockade was 

mediated by inhibition of a protein they later identified as CYPD. Yellon’s group later 

went on to show that CYPD was a critical component of mPTP formation, by using a 

CYPD KO mouse model which was maximally protected against ischaemia-reperfusion 

injury (Lim et al., 2007a; Lim et al., 2007b). 

Although there is no evidence to support direct inhibition of mPTP by PKG, recent cell 

based studies by Chanoit et al. (2011), suggest that inhibition of PDEs prevents mPTP 

opening by inactivating GSK3β through both PKA and PKG. This is in disagreement with 

Downey’s group who suggest that, in an isolated rabbit heart model, the protection 

afforded by a GSK3β inhibitor was not abolished by L-NAME or sGC inhibitor ODQ, 

suggesting GSK3β mediated protection is downstream or independent of NO (Cohen et 

al., 2010). Further evidence to support a major role for PKG mediated postconditioning is 

documented by Inserte et al. (2011), who report that PKG contributes to postconditioning 

protection in part by delaying normalisation of pHi during reperfusion; the authors 

propose PKG-mediated inhibition of the Na+/H+ exchanger as the probable mechanism. 
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1.32 PKG regulation of cell death 

PKG’s role in apoptotic cell death remains unclear. There are numerous studies that 

report both pro and anti apoptotic effects of PKG, triggered by NPs and NO. The 

difficulty in reviewing the literature and making any general statements favouring one 

mechanism or another is due to the diverse range of methodologies and cell types used to 

assess the actions of PKG. Both NO and ANP have been shown to induce apoptosis in rat 

vascular endothelial cells in a concentration dependent manner. In rat neonatal 

cardiomyocytes, Shimojo et al. (1999), demonstrated the pro-apoptotic effect of 

NO/cGMP/PKG pathway which was supported by other groups using rat cardiomyocytes 

(Rabkin & Kong, 2000; Taimor et al., 2000; Uchiyama et al., 2002). Using a model of 

simulated ischaemia, the laboratory of Kukreja demonstrated that PKG1α attenuates 

apoptosis following ischaemia/reoxygenation. Adult rat cardiomyocytes infected with 

adenoviral vectors containing hPKG1α were 66 % less likely to undergo apoptosis than 

control cells (Das et al., 2006). This supports a previous study that demonstrated that 

SNAP inhibited cardiomyocytes apoptosis by regulating cyclin A-associated kinase activity 

(Maejima et al., 2003). In an unrelated model investigating apoptosis in neuronal cells, 

Johlfs and Fiscus (2010), reported that the apoptosis regulating protein Bad is 

phosphorylated at serine 155 directly by PKG. The authors showed that inhibition of 

cGMP/PKG by ODQ decreased serine 155 phosphorylation of Bad in N1E-115 cells, 

resulting in increased apoptosis. From the above evidence, it is clear that the mechanisms 

by which PKG may potentiate or attenuate apoptosis are complex and tissue specific, yet 

all evidence is consistent in reporting that PKG plays a role in Bad/Bcl-2 expression. 
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1.33 Cardioprotection afforded by phosphodiesterase inhibitors 

As described above, PDEs facilitate the major pathway of cGMP degradation, and so PDE 

inhibition is a target for cardioprotection. In the myocardium, PDE5 has been described as 

the most significant of the PDEs (Takimoto et al., 2005). Early studies using the selective 

PDE5 inhibitor zaprinast suggested that PDE inhibition abrogated ischaemia-reperfusion 

induced ventricular fibrillation and contractile failure (Pabla et al., 1995). Following the 

success of sildenafil as a specific PDE5 inhibitor, a surge in the literature for its use in 

cardiovascular disease and particularly ischaemia-reperfusion injury has demonstrated that 

it limits infarct size in vivo (Bremer et al., 2005; Das et al., 2008; Kukreja, 2006; Ockaili et 

al., 2002; Rosanio et al., 2006; Vidavalur et al., 2009) and comparable results were 

obtained with tadalafil (Sesti et al., 2006). The mechanism by which PDE5 inhibition 

reduces infarct size has been proposed by Kukreja’s laboratory. They reported that 

sildenafil and vardenafil mediated infarct reduction in ex vivo rabbit hearts was abolished by 

the mKATP channel inhibitor 5-HD (Salloum et al., 2007). In a more recent study, they 

report a novel pathway whereby PKG phosphorylates both ERK 1/2 and GSK3β in 

conjunction with an increase in the Bcl-2/Bax ratio that culminates in mKATP channel 

inhibition. The evidence proposing a PKG dependent phosphorylation of GSK3β is of 

interest as previous studies had suggested that cardioprotection through inhibition of 

GSK3β was mediated by an Akt dependent phosphorylation (Badorff et al., 2002; Cross et 

al., 1995).  
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1.34 Conclusions 

Reviewing the evidence provided above strongly suggests that there is a need to further 

explore the endogenous and exogenous cardioprotective mechanisms and develop adjunct 

therapies to support thrombolysis and PPCI. Up until now, there is increasing evidence to 

suggest that cGMP is a key mediator in cardioprotective signalling. There is also evidence 

to suggest that this protection is in part afforded by distal targets of PKG. Elevation of 

cGMP via activation of pGC has been explored considerably in recent years. 

Cardioprotection afforded by NO mediated sGC targeting has also been well documented, 

as well as the  undesirable tolerance associated with NO donor therapeutics. Experimental 

evidence discussed in this chapter along with the results of experiments documented in the 

following chapters strongly supports the notion that GC/cGMP plays a crucial role in 

survival signalling during ischaemia-reperfusion. Hence, pharmacological targeting of this 

pathway may have therapeutic potential.  
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1.35 Overview of experimental chapters 

The scope of this thesis has been limited to pharmacological targeting of 

ischaemia-reperfusion injury in the myocardium, particularly targeting sGC with NO 

donors and NO-independent stimulators/activators. The method chosen to simulate 

ischaemia-reperfusion was the isolated perfused rat heart according to Langendorff, 

subjecting hearts to regional ischaemia by occluding the left descending coronary artery 

(LDCA) as described in Chapter 2. Two main pharmacological tools were chosen to 

manipulate sGC, BAY 41-2272, a sGC stimulator and BAY 60-2770, a sGC activator. To 

assess the ability of interventions to afford protection, infarct size was determined using 

the well-characterised tetrazolium staining technique again described in Chapter 2. 

Further methods used include radio-immunosorbent assay (RIA) to quantify the amount of 

cGMP present in myocardial tissue samples and to determine whether pharmacological 

intervention modified the amount of cGMP produced. Ozone based chemiluminescence 

(OBC) was employed to measure NOx in samples to ascertain efficacy of pharmacological 

inhibition of NO. SDS-polyacylamide gel electrophoresis was used to investigate the 

expression of proteins proposed to be downstream of the NPR in cardioprotective 

signalling. 

1.36 Questions addressed in this thesis 

i. Can cardioprotection be afforded by exogenous stimulation/activation of sGC? 

 

ii. Can sGC stimulation afford protection independently of NO? 

 

iii. Can greater protection be afforded by targeting different redox states of sGC? 
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1.37 General hypothesis 

This thesis tests the hypothesis that pharmacological stimulation/activation of sGC limits 

myocardial reperfusion injury (see Figure 1.6). 

1.38 Rationale for choice of pharmacological agents used in this thesis (Figure 

1.6) 

BAY 41-2272 was chosen as the pharmacological stimulator of sGC as it has been well 

characterised in rat tissues and was commercially available. It specifically targets the 

reduced (Fe2+) state of sGC and its action is independent of NO. 

ODQ is a selective inhibitor of sGC, oxidising the haem group of the protein rendering 

sGC insensitive to NO. ODQ was chosen as an inhibitor of cGMP production. 

L-NAME was selected as an inhibitor of NOS.L-NAME was therefore used to prevent the 

production of NO from NOS and so limiting concentrations of the endogenous ligand of 

sGC. 

C-PTIO is a NO scavenger and was chosen to  investigate the NO independent action of 

BAY 41-2272. C-PTIO’s ability to scavenge NO ensured that NO produced 

independently of NOS was not able to bind to sGC. 

NOC-9 is an NO donor, which was used to investigate the infarct limiting properties of 

concomitant sGC stimulator and NO donor perfusion. NOC-9 is a member of the 

diazeniumdiolates (NONOates). 

BAY 60-2770 is a sGC activator, which when bound to sGC increases cGMP production. 

It specifically targets sGC in the oxidised (Fe3+) and haem-free states. BAY 60-2770 was 
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chosen to target these so called pathological states of sGC, proposed to be increased 

during ischaemia. 

BNP was used to activate the membrane bound (particulate) guanylyl cyclase receptor. 

BNP was chosen as we have previously extensively investigated BNP in the 

ischaemia-reperfusion setting determining that 10 nM BNP limits infarct size when 

perfused during early reperfusion. 

Wortmannin is a specific inhibitor of PI3K/Akt signalling and was used to investigate the 

downstream signalling of BNP during early reperfusion. 
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Figure 1.6 Illustrates the pharmacological tools used in this thesis. Green arrows highlight agonistic action 
and red lines highlight antagonistic action or inhibition. NO action was manipulated by inhibiting its 
production with L-NAME, scavenging it using C-PTIO or producing it using NOC-9, an NO donor. ODQ 
was used to oxidise sGC from its Fe2+ NO-sensitive state to the Fe3+ NO insensitive state. The NPR ligand 
BNP was used to stimulate production of pGC mediated cGMP and Wortmannin was used to block signalling 
through the proposed PI3K/eNOS pathway (dotted grey line). BAY 41-2272 stimulated cGMP production 
through reduced sGC and BAY 60-2770 activated the oxidised and haem-free sGC to produce cGMP. All 
pharmacological interventions are proposed to act upstream of cGMP and ultimately mediate infarct 
limitation. 
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Chapter 2 
General Methods
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2 Materials and Methods 

 2.1 The isolated perfused heart according to Oscar Langendorff 

Isolated heart perfusion has been a highly valued technique for studying numerous 

physiological and pathophysiological aspects of the myocardium for more than a century. 

Oscar Langendorff first reported his method of studying the mechanics of the completely 

isolated mammalian heart in 1895 (Langendorff, 1895). The basic principles of the 

method were to create a preparation whereby the heart could be studied in an ex vivo 

setting, whilst perfusing the organ and maintaining basic cardiodynamic function. 

Perfusate, whether it be whole blood or other physiological fluid such as Krebs’ buffer is 

forced towards the heart through a cannula inserted in the ascending aorta. The pressure 

of the perfusate flowing through the ascending aorta in a retrograde direction (reverse to 

that in vivo) causes the aortic valve to close, diverting the perfusate through the coronary 

arteries. The direction of flow then follows that of blood in vivo, through the arterioles, 

capillaries, the venous system and finally through the coronary sinus into the right atrium. 

Unlike the in vivo heart the cardiac cavities remain basically empty throughout the 

experiment (Doring & Dehnert, 1988) (Figure 2.1). 
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Figure 2.1 Diagram of the myocardium highlighting the retrograde perfusion of Krebs Henseleit buffer 
through the coronary ostia. Also shown is the placement of a ligature to occlude the LDCA. 

 

The fact that the Langendorff perfused heart preparation has been employed as the method 

of choice when studying many diverse myocardial parameters is a testament to its 

simplicity and utility. With the increasing number of genetic knock-out and knock-in 

animals available, the Langendorff method allows for the characterisation of phenotype, 

investigation of complex signalling processes, pharmacological intervention and isolation 

of myocytes for primary culture. It does, however, have to be acknowledged that the 

isolated perfused heart is a deteriorating preparation; work by Sutherland and Hearse 

(2000) using a mouse model and others since have reported a decrease in contractile and 

chronotropic function of between 5 and 10 % per hour under control conditions. Whilst 

important to note, suitable experimental protocols can be designed within these 

parameters. 
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There are two methods widely described to perfuse the isolated heart in the Langendorff 

model. Both constant pressure and constant flow systems have been used; each offers 

advantages and disadvantages. Constant pressure perfusion allows the accommodation of 

the heart’s natural regulation of coronary tone and can be achieved by maintaining a 

constant hydrostatic pressure between the meniscus of the buffered perfusate and the tip 

of the cannula attached to the ascending aorta (Doring & Dehnert, 1988). Constant 

pressure can be achieved reasonably inexpensively using standard laboratory glassware and 

tubing or using a pump system with pressure feedback control. The latter is typically the 

set up of the commercially available perfusion systems which have the advantage over the 

hydrostatic systems of reducing dead space which, when perfusing pharmacological agents, 

can be an important cost consideration. The constant flow system allows the perfusion 

apparatus to be much more compact, again removing dead space and is the method of 

choice if vasoactive parameters and resistance are of interest (Bell et al.). However, a 

constant pressure system overrides the auto-regulatory functions of the heart and 

therefore there is no feedback on the flow demands of the heart when vascular 

interventions are performed, such as occlusion of a major vessel in an ischaemia-

reperfusion protocol. This can cause shear stress and damage to the vasculature in this 

setting (Sutherland & Hearse, 2000). 

The longevity of the Langendorff perfused heart method may also be attributed to the 

wide variety of species that can be used. For the most part, the rat is the species of choice. 

The isolated rat heart has been experimentally characterised, especially with respect to 

ischaemia-reperfusion studies. However for experiments where genetically modified 
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animals are needed, then the mouse heart has been extensively used. In early work, the 

canine heart was reported as well as the rabbit. Practical considerations need to be 

reviewed when selecting animal models, particularly the economics of perfusing larger 

animal hearts, especially when pharmacological agents are to be used. The anatomy of the 

heart must also be considered. The guinea-pig heart has been Langendorff perfused but for 

regional ischaemia models is not suitable because of its extensive native collateral 

circulation; it is more suited for global ischaemia studies. The pig isolated heart is still 

used in some laboratories, for transplant and stem cell studies due to the continuing 

exploration of the similarities between the swine and human hearts. 

 2.2 Animals 

Male Sprague Dawley rats sourced from B&K Universal Ltd. (Bristol, UK), Harlan UK 

Ltd (Oxfordshire, UK) and Charles River Laboratories Inc. (Maidenhead, UK) were 

selected for use in this thesis. Rats were housed in the institutional animal house and 

allowed to acclimatise for 7 days. The care and use of animals was in accordance with the 

Animals (Scientific Procedures) Act 1986 (The Stationery Office, London, UK). Both 

water and food were available ad libitum. Food pellets contained 4 % fat and 18 % protein. 

Animals were exposed to 12 h on, 12 h off light cycles. 

 2.3 Langendorff heart perfusion 

Group sizes were determined based on historical data from our laboratory and others that 

suggests that n=5-6 is sufficient to resolve statistical differences between groups. Animals 

were used at 300-400g body weight. The animals were placed under surgical anaesthesia 

using pentobarbital sodium (175mg/kg) with heparin (200 units) given concomitantly by 
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intraperitoneal injection. Once animals were unconscious and surgical plane anaesthesia 

had been reached, (characterised in part by a lack of pedal reflex), the animal was placed 

in the supine position, a sagittal incision was made ventrally exposing the xiphoid process 

and diaphragm. The thoracic cavity was then entered by bilateral caudal-cranial dissection 

of the rib-cage. The ribcage was then reflected cranially to expose the thoracic cavity 

containing the heart. Excision of the heart was then performed by cradling the heart gently 

between the thumb and fore-finger and cutting above the heart ensuring a sufficient length 

of ascending aorta was also removed. The heart was immediately placed in ice cold 

modified Krebs Henseleit (KH) buffer, NaCl 118.5 mM, NaHCO3 24.8 mM, d-Glucose 

11 mM, KCl 4.7 mM, MgSO4.7H2O 1.2 mM, KH2PO4 1.2 mM, CaCl2.2H2O 1.3 mM 

aerated with 95 % O2/5 % CO2 (pH 7.3-7.5 at 37.0 ˚C). 

The ascending aorta of the rat heart was cannulated with a metal cannula (Fisher Scientific) 

using mini surgical forceps, and initially held with a small metal clip. The heart was 

rotated so that the anterior surface of the heart was facing forward. At this point the heart 

was perfused only partially (half opened tap) with modified KH buffer to ensure that there 

was no leaking of perfusate whilst positioning the heart. Once the heart was positioned 

correctly it was secured with two braded silk ligatures, the metal clip was removed and 

the heart was perfused fully at a constant hydrostatic pressure of 74 mmHg (100 cm 

H2O). Warming of KH buffer was achieved by warming the jacketed pre-warmers and 

Baker coil by a thermo-regulated circulator (see Figure 2.2). Actual heart temperature 

was monitored by a thermocouple probe positioned under the right atrium and maintained 

between 36.8-37.4 °C. 
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The left atrial appendage was removed to expose the atrial chamber. An 80 mm length of 

3-0 suture material (Ethicon, UK) was placed through the myocardium to sit posterior to 

the LDCA at its origin, ensuring a margin of approximately 2 mm either side of the 

anterior LDCA was achieved on entrance and exit of the heart tissue. 

A latex balloon (Harvard Apparatus, UK) attached to a polypropylene cannula was then 

inserted through the bicuspid valve into the left ventricle (LV) and held just above the 

apex (see Figure 2.3). The balloon was then filled with distilled water and the cannula was 

attached to a pressure transducer and Powerlab data acquisition system apparatus (AD 

instruments, Abington, UK). The left ventricular end diastolic pressure (LVEDP) was set 

between 5 and 10 mmHg. This allowed isovolumetric pressure measurements to be 

recorded continuously. Coronary flow rate (CFR) was measured by collecting the 

coronary effluent from the apex of the heart for 30 seconds and expressed in mL/min. 
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Figure 2.2 Diagram representing the apparatus used for Isolated Heart perfusion experiments. Of importance 
is the difference in height between the perfused heart and the KH level in the reservoir. Yellow indicates glass 
wear that is jacketed and warmed to 37 ˚C by the heated circulator. The bubble trap ensures that any air in 
the system is captured and does not pass into the myocardium through the aorta. 
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 2.4 Stabilisation 

A period of stabilisation was initiated to ensure that the haemodynamic functions of the 

heart met the inclusion criteria. These included a LVEDP of between 5 and 10 mmHg, a 

left ventricular developed pressure (LVDP) of at least 50 mmHg, a CFR between 10 and 

24 mL/min, heart rate (HR) of 200-350 beats per minute (BPM) and a maintained 

temperature of 36.8-37.4 ˚C. During stabilisation these haemodynamic measurements 

were monitored. 

 

 
 

Figure 2.3 Isolated rat heart with balloon inserted into the left ventricle and connected to a pressure 
transducer via a sealed water filled cannula. 

 

 2.5 Induction of ischaemia 

Regional ischaemia was induced following the stabilisation period by occluding the 

anterior LDCA by threading both ends of the silk suture though a shortened 200 μL 



Chapter 2

 

67 

pipette tip. A second 200 μL pipette tip was placed inside the first creating a snare that 

could be tightened, occluding the LDCA with the surrounding tissue. Confirmation that 

the artery was sufficiently occluded was gained by a >30 % decrease in CFR. The heart 

was subjected to 35 min regional ischaemia and then reperfused for 120 min. Reperfusion 

was achieved by removing the pipette tip snare, ensuring that the silk suture was still in 

place, but not occluding the artery, confirmed by an increase in CFR towards baseline. 

120 min of reperfusion allowed washout of reducing enzymes and co-factors from 

irreversibly damaged cells that would otherwise have interfered with staining the heart in 

the next part of the protocol. 

 2.6 Re-occluding and staining 

Following 120 min of reperfusion the LDCA was ligated with a surgeon’s knot using the 

silk ligature that was already in place. Between 0.5 and 1.0 mL of Evans Blue (0.4 %), dye 

was then perfused through a side arm in the cannula tap into the heart, staining the 

non-risk zone (see Figure 2.4). The heart was then removed from the cannula and frozen 

at -20˚C for 3-24 hours. 
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Figure 2.4 Isolated rat heart, which has had the LDCA permanently occluded by tying the ligature with a 
surgeon’s knot. The heart has been perfused with 0.4 % Evans Blue, which delineates non risk (blue) and risk 
zone (pink) tissue. 

 

The frozen heart was allowed to partially thaw for 2-3 min and then sectioned transversely 

from the apex into 2 mm thick sections. These sections were then thawed completely 

before being incubated in 1 % triphenyltetrazolium chloride (Sigma-Aldrich, UK) at 

37.0 ˚C for 20 min, with frequent agitation. The red formazan pigment observed in the 

non-blue stained regions was produced by the reduction of the triphenyltetrazolium 

chloride by enzymes and the nicotinamide adenine dinucleotide phosphate (NADPH) 

cofactors in viable tissue. The stained sections were then fixed in 10 % formalin for 48 

hours before being imaged from both sides of the cross section using computer imagery 

software ImageJ version 1.45q (National Institute of Health, USA) (Figure 2.5). 
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Planimetry was then performed on each image using a graphics tablet (Trust, USA), 

measuring the total area, risk zone and infarct size of each section. Planimetry was 

performed blindly and the recorded values were converted into volumes and combined to 

give total heart area at risk and infarct size as a percentage of the risk zone. 

 

 
 

Figure 2.5 Scanned image of heart sections following tetrazolium staining and 48 hours fixation in 
formalin. Blue colouring delineates tissue not subjected to ischaemia. Red coloured tissue delineates tissue 
subjected to ischaemia but not infarcted. White colouring highlights infarcted tissue. The sum of red and 
white tissue equals the risk zone.  

Ischaemic risk zone 
(Area at risk (AR))

Infarct (I)

Non risk zone 
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stained)



Chapter 2

 

70 

 2.7 Statistical analysis 

Experimental data were analysed using Prism 5.0. Data are expressed as mean ± standard 

error of the mean (SEM). Normality testing was performed prior to subsequent analysis. 

All data sets were found to be normally distributed, confirmed by the 

Kolmogorov-Smirnov test. ONE-way ANOVA was used when stated to analyse the 

arithmetic means followed by Newman-Keuls post-hoc test when significance was 

reported. This was used to compare arithmetic means for raw data corresponding to 

specific treatment groups. Cardiodynamic data including HR, LVDP and rate pressure 

product (RPP, heart rate multiplied by LVDP) were analysed using repeated measures 

ANOVA followed by Newman-Keuls post-hoc test. Values were considered statistically 

significant if p<0.05.  
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Chapter 3 
NO-independent stimulation of sGC in the reperfused myocardium
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3.1 Introduction 

3.1.1 Direct targeting of sGC/cGMP/PKG 

As described previously in Chapter 1, a series of kinases was identified to play a crucial 

role in postconditioning, later described as the RISK pathway (Hausenloy & Yellon, 

2004). Targeting this pathway became the focus of many research groups. Agullo et al. 

(1999) reported that administration of L-arginine, a precursor of NO production, was 

protective, because it limited infarct size in the pig isolated heart; this suggests an NO 

mediated protection. 

Extensive focused research on the components of the RISK pathway and how it can be 

targeted to modify reperfusion and ultimately limit infarct size have led to specific interest 

in cGMP and its downstream kinase PKG. cGMP has been shown to reduce contractility 

during reperfusion by inhibition of Na+/Ca2+ exchange and activation of SERCA via PKG 

mediated phosphorylation of PLB. PKG has also been shown to activate BKCa channels 

which when inhibited at reperfusion abolish protection afforded by upstream targets of 

cGMP (Burley & Baxter, 2007). 

D’Souza et al. (2003) reported that low concentrations of 8-Br-cGMP, a synthetic cGMP 

analogue given just prior to ischaemia through to early reperfusion limited infarct size in a  

isolated rat heart model. It was later shown that  8-Br-cGMP also showed infarct limiting 

properties when given at reperfusion, reducing infarct size by 40 % compared to control 

hearts (Giricz et al., 2009). These data demonstrated that targeting cGMP/PKG directly 

could afford infarct limitation mediated by elevating cGMP. 
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The long history of the use of nitrates in the treatment of cardiovascular pathologies has 

been well documented (Ferdinandy & Schulz, 2003; Furchgott, 1995), with many of their 

protective effects being mediated through sGC-cGMP-PKG signalling. However, 

tolerance is a major problem when NO donors are used for any length of time (Csont et 

al., 1998; Gori & Parker, 2002). Infarct limitation afforded by NO donors is discussed in 

detail in Chapter 4. The potential for targeting the RISK pathway downstream of NO is 

desirable, attempting to eliminate tolerance issues from future treatment protocols. 

Compounds that target sGC/cGMP/PKG independently of NO have become an 

attractive option. The rationale is that the beneficial actions of NO such as platelet 

aggregation and vasodilatation are almost exclusively mediated through sGC/cGMP, 

whilst the undesirable effects such as tyrosine nitration and DNA damage are 

predominantly cGMP-independent. 

3.1.2 NO-independent haem-dependent stimulators of sGC 

Following the discovery of several light enhanced compounds reported to stimulate 

production of cGMP, Ko et al. (1994) described a structurally related indazole derivative, 

5-[1-(phenylmethyl)-1H-indazol-3-yl]-2-furanmethanol (YC-1), which unlike the earlier 

compounds has light-independent pharmacokinetics. YC-1 was later described as the first 

NO-independent, haem-dependent stimulator of sGC (Friebe et al., 1996). This discovery 

prompted scientists at Bayer Pharma AG (Wuppertal, Germany) to run a screening 

programme in the late 1990’s with the intention of further developing NO-independent, 

haem-dependent stimulators of sGC (Straub et al., 2001). Using porcine endothelial cells, 

they screened over 20,000 potential compounds that could stimulate production of 
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cGMP, independently of NO. As a result, structurally related compounds were 

discovered that stimulate sGC by similar mechanisms, including 3-(4-amino-5-

cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine 

(BAY 41-2272) (see Figure 3.1) and Methyl N-[4,6-diamino-2-[1-[(2-

fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-pyrimidinyl]-N-methyl-

carbaminate (BAY 63-2521/Riociguat) (Stasch et al., 2001). The synthesis of these 

compounds was based on YC-1 as a lead structure and resulted in compounds that were 

more than two orders of magnitude more potent (Stasch et al., 2001). The mechanisms by 

which these compounds stimulate the activation of sGC are still debated. It is known that, 

like NO, these stimulators require the presence of the prosthetic haem moiety (Friebe et 

al., 1996). Koglin et al. (2002) have identified specific areas of the beta subunit that are 

required for enzymatic activation of BAY 41­2272. Stasch et al. (2002a) used photo affinity 

labelling to identify two cysteine residues on the alpha subunit were also needed for 

enzymatic activation. The lack of crystal structure of either of the sub-units has made it 

difficult to confirm any activation theories, with further studies involving the mutation of 

specific residues on the alpha sub-unit failing to inhibit enzymatic activity (Schmidt et al., 

2004). Our understanding of the NO-sGC-cGMP signalling pathway and the ability of 

these compounds to stimulate sGC led to experimental studies that report that they may 

be suitable compounds for the treatment of pulmonary hypertension. Evgenov et al. 

(2006) and Dumitrascu et al. (2006) reported that BAY 41-2272 caused a significant 

decrease in pulmonary arterial pressure and reversal of right ventricular hypertrophy in a 

mouse model. A pharmacologically-related compound BAY 63-2521 (Riociguat) is now 

being used in phase III clinical trials for the treatment of two major forms of pulmonary 
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hypertension, chronic thromboembolic pulmonary hypertension (CTEPH) and primary 

pulmonary arterial hypertension (PAH) (Mittendorf et al., 2009). Other family members 

are still being used as pharmacological tools to further elucidate the complexity of the 

sGC/cGMP signal transduction pathway. 

 

 
 

Figure 3.1 Chemical structure of 3-(4-Amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-
pyrazolo[3,4-b]pyridine (BAY 41-2272) (Schmidt, P.M., Schmidt, H.H.H.W., Hofmann, F., Stasch, J.-P. 
(2009) Handbook of Experimental Pharmacology: cGMP: Generators, Effectors and Therapeutic Implications 
Vol. 191, pp 281 Springer Berlin Heidelberg). 

  

http://en.wikipedia.org/wiki/Chronic_thromboembolic_pulmonary_hypertension
http://en.wikipedia.org/wiki/Pulmonary_arterial_hypertension
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3.1.3 Hypotheses 

The aim of this study was to investigate the effect of sGC stimulation at reperfusion by 

means of an NO-independent stimulator. The commercially available compound 

BAY 41-2272 was selected for these experiments. 

Based on the work of others it was hypothesised that  

i. Exogenous stimulation of sGC by BAY 41-2272 at reperfusion in the isolated rat 

heart would limit infarct size compared to controls;  

ii. Oxidation of the haem site of sGC by ODQ would abrogate the protection 

afforded by BAY 41-2272; 

iii. The infarct limitation would be at least in part as a result of elevated cGMP levels 

at reperfusion in the left ventricle of the myocardium. 

The specific objectives were to: 

1. Undertake a concentration response for BAY 41-2272 during early reperfusion in a rat 

isolated heart model 

 

2. Concomitantly perfuse the haem site oxidiser ODQ with BAY 41-2272 during early 

reperfusion 

 

3. Measure cGMP levels in LV and RV tissue samples from hearts perfused with 

BAY 41-2272   
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3.2 Materials and Methods 

3.2.1 Pharmacological compounds 

All salts used to make modified KH solution were sourced from Fisher Scientific LTD 

(UK) and were of analytical or ultrapure quality. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-

1-one (ODQ) (selective sGC inhibitor) was sourced from Tocris Bioscience (UK) and 

BAY 41-2272 (NO-independent, haem-dependent sGC stimulator) from Sigma-Aldrich 

(UK). ODQ and BAY 41-2272 were dissolved in dimethyl sulphoxide (DMSO), the final 

concentrations of DMSO in the KH was 0.04 % v/v and 0.05 % v/v respectively. 

3.2.2 Rat isolated heart perfusion 

Animals used in this chapter were sourced from B&K Universal Ltd. (Bristol, UK). Rat 

isolated hearts were retrograde perfused as described in Chapter 2. Once a period of 20 

min haemodynamic stabilisation had been established, rat hearts were randomised and 

assigned to one of the groups described in 3.2.3 and 3.2.4. All hearts were subjected to 35 

min LDCA occlusion followed by 120 min of reperfusion. 

3.2.3 Concentration response to BAY 41-2272: Study 1 

This study was undertaken to assess the infarct limiting properties of the sGC stimulator 

BAY 41-2272. A concentration response to BAY 41-2272 was carried out by perfusing 

hearts with BAY 41-2272 100 nM - 3 μM at reperfusion (see Figure 3.2). 

Group 1, Control, (n=17). This group includes some hearts that were perfused with the 

vehicle DMSO 0.05 % v/v from 30 min ischaemia until 10 min reperfusion. There was no 

statistical significant difference between control hearts perfused with or without DMSO 

vehicle and so all hearts were pooled for statistical analysis. 
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Group 2, BAY 41-2272 3 µM, (n=7). BAY 41-2272 3 µM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 3, BAY 41-2272 1 µM, (n=6). BAY 41-2272 1 µM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 4, BAY 41-2272 300 nM, (n=6). BAY 41-2272 300 nM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 5, BAY 41-2272 100 nM, (n=6). BAY 41-2272 100 nM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 6, ODQ 2 µM (n=6). ODQ 2 µM was perfused from 28 min ischaemia through 

until 10 min reperfusion. 

Group 7, ODQ 2 µM + BAY 41-2272 3 µM, (n=7). ODQ 2 µM was perfused from 28 

min ischaemia and BAY 41-2272 3 µM from 30 min ischaemia, both until 10 min 

reperfusion. 

 
Figure 3.2 Experimental protocol for groups 1-7 in Study 1. All hearts were stabilised for 20 min followed 

by 35 min regional ischaemia and then reperfused for 120 min. BAY 41-2272 was perfused at 1 μM, 3 μM, 
300 or 100 nM. 
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3.2.4 cGMP Radio immuno-sorbent assay: Study 2 

RIA was performed to investigate further the pharmacological action of BAY 41-2272. A 

commercially available radioimmunoassay kit (IBL-Transatlantic Corp., Toronto, Canada) 

was used. The assay is based upon competition binding of the cyclic nucleotide with 

radiolabelled cyclic nucleotide derivatives for  sites on antibody specific for the cyclic 

nucleotide (Steiner et al., 1972). Tissue samples were prepared from rat hearts randomly 

assigned to one of 4 groups shown in Figure 3.4. Hearts that were subjected to regional 

ischaemia were treated as described for Study 1. 

Hearts were removed from the cannula and rapidly sliced. Hearts were sectioned as 

described below to ensure that cGMP measurements were made on consistent samples 

that contained both infarcted and non-infarcted tissue as specifically targeting infarcted 

tissue is not possible without carrying out staining delineation. The apex was removed 

along with the base and the left and right ventricles were separated. The left ventricle was 

then cut caudo-cranially and each of these sections was then cut in the same way again. 

Without moving the sections around, pieces one and three (LV1) and two and four (LV2) 

were grouped. Each piece was further cut into 3-4 smaller pieces, blotted dry and 

immediately frozen in liquid nitrogen and stored at -80 ºC until required for analysis (see 

Figure 3.3). 
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Figure 3.3 Schematic illustrating preparation of myocardial tissue for cGMP RIA. The crown was removed 
and discarded. The apex was removed, cut into 3-4 pieces and snap frozen in liquid N2 for later use. 
Similarly, the right ventricle was removed, cut into 3-4 pieces and snap frozen. The remaining left ventricle 
was cut in half and each half cut again as shown above. The four pieces were separated into two groups (pieces 
1&3 and 2&4) and further cut in to 3-4 small pieces and snap frozen. Left ventricle RIA was performed using 
tissue from pieces 1&3.  
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The following was performed by Yvonne Keim at Bayer Pharma AG, (Wuppertal, 

Germany). Samples were powdered under liquid N2 using a mortar and pestle and were 

homogenised in lysis buffer with 0.1 M 3,7-Dihydro-1-methyl-3-(2-

methylpropyl)1H-purine-2,6-dione (IBMX). Samples were then sonicated for 40 s and 

centrifuged for 60 min at 10,000 rpm. The supernatant was then transferred into new 

tubes with the addition of 400 µL trichloroacetic acid (TCA) 10 % and left for 30 min at 

37 ºC. Samples were then spun further for 10 min at 5,000 rpm. The supernatant was 

solvent cleaned 3 times with 700 µL diethyl ether, saturated in water. The aqueous phase 

was then dried in a speed vacuum. The pellet was then dissolved in 300 µL 

cGMP-RIA-buffer. 

Standards (100 µL) and samples (20 µL) were pipette in duplicate into their respective 

tubes. Assay buffer (100 µL) was added to the non-specific binding (NSB), B0 and sample 

tubes followed by 200 µL of NSB solution to the NSB tubes.125I-Tracer (100 µL) was 

added into each tube including two tubes for total activity. 

Antiserum (200 µL) was pipette into all but the NSB and total activity tubes. All tubes 

were then vortexed and incubated for 24 h at 4 ºC. After incubation, 1 mL of cool 

separation reagent was added to all but the total activity tubes and vortexed. All tubes 

were then centrifuged for 15 min at 2,500 rpm at 4 ºC. Each of the tubes except those 

measuring total activity were then carefully decanted and drained onto blotting paper. 

Each of the tubes was then counted in a Gamma counter for 1 min. Using a standard curve 

plotted using the standards, cGMP values were directly calculated for each sample 

expressed as fmol/mg tissue. The following groups were analysed. 
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Group 1, Naive, (n=6). Hearts were excised and washed in KH to remove any blood and 

then sectioned. 

Group 2, Stabilisation, (n=6). Hearts were excised and perfused under normoxic 

conditions for 20 min. 

Group 3, 10 min reperfusion, (n=6). Hearts were stabilised, subjected to LDCA 

occlusion for 35 min and reperfused for 10 min. 

Group 4, 10 min reperfusion + BAY 41-2272 3 µM, (n=6). Hearts were stabilised, 

subjected to LDCA occlusion for 35 min and reperfused for 10 min. BAY 41-2272 3 µM 

was perfused as described for Group 2 in 3.2.3. 

 

 
Figure 3.4 Experimental protocol for hearts prepared for RIA Study 2. Red arrows indicate time points at 
which hearts were sampled.  
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3.3 Results 

3.3.1 Summary of experiments 

In Study 1, 63 rats were used. Two animals died before their hearts were excised and five 

hearts were excluded from the study due to technical error, thus 56 completed 

experiments are reported. In Study 2, 24 rats were used for RIA, there were no 

exclusions and so data for 24 hearts are reported. The period of stabilisation before the 

onset of ischaemia was carried out to allow the hearts to stabilise and reach pre 

determined criteria (see below). For a heart to be included and subjected to ischaemia it 

had to achieve the following baseline cardiodynamic criteria: 

CFR between 10 and 24 mL/min, LVEDP 5-10 mmHg, HR 200-350 BPM, LVDP 

greater than 50 mmHg and a steady sinus rhythm. Hearts were also excluded during 

analysis if there was inadequate delineation of the risk zone and infarcted tissue (poor 

staining). 

3.3.2 Infarct size data: Study 1 

Study 1 contains Langendorff perfusion experiments for the initial dose response to 

BAY 41-2272 and pharmacological inhibitor of sGC, ODQ. The area at risk for all hearts 

in all groups was 45 to 55 % of the combined left and right ventricular tissue. There were 

no statistical differences between groups for risk zone sizes. Infarct size was expressed as a 

percentage of the risk zone, calculated as described in Chapter 2 and reported in Figures 

3.5 & 3.6. Under control conditions (35 min ischaemia followed by 120 min reperfusion) 

hearts had infarct sizes of 31.5 ± 2.8 % (n=17) compared to 17.0 ± 2.1 % (n=7) 

(p<0.05) for hearts treated with the highest concentration of BAY 41-2272 (3 μM). 
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Treatment with 1 μM, 300 nM and 100 nM BAY 41-2272 showed a concentration 

dependent reduction in infarct size compared to control (20.7 % ± 2.8 (n=6), 26.1 % ± 

2.2 (n=6) and 28.1 % ± 3.8 (n=7) respectively). The highest concentration of 

BAY 41-2272 showed a 46 % relative reduction in mean infarct size compared to control 

hearts demonstrating that at the highest concentration BAY 41-2272 is cardioprotective 

(Figure 3.5). 

Concomitant perfusion of the haem oxidising agent ODQ 2 μM with BAY 41-2272 at the 

highest concentration was carried out to explore the requirement of the prosthetic haem 

group on the beta subunit of sGC for catalytic activity and cGMP production. It was 

decided that co-treatments would be perfused alone for 2 minutes prior to BAY 41-2272 

to allow them to reach the heart tissue and cause their inhibitory action, prior to 

BAY 41-2272 reaching the heart. Treatment with ODQ alone had no statistically 

significant effect on infarct size (32.5 ± 4.2 % (n=6)) (p<0.05) compared to controls. 

However, ODQ abrogated the effect of BAY 41-2272 (29.6 ± 1.7 % (n=7)) (Figure 3.6). 
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Figure 3.5 Infarct size expressed as percentage of ischaemic risk zone for BAY 41-2272 concentration 
response (* p<0.05 vs. control) ONE-way ANOVA + Newman-Keuls post-hoc (n=6-17). 

 

 
 

Figure 3.6 Infarct size expressed as percentage of ischaemic risk zone (** p<0.01 vs. control) ONE-way 
ANOVA + Newman-Keuls post-hoc (n=6-17).  
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3.3.3 Cardiodynamic data: Study 1 

Baseline cardiodynamic data are presented in Table 3.1. There was no statistical difference 

in any of the parameters between groups. RPP dropped by as much as 95 % upon 

induction of ischaemia in all treatment groups, recovering partially throughout ischaemia 

and then dropping again upon reperfusion due to the tendency for the hearts to fibrillate. 

This recovered before a gradual decline throughout reperfusion (Figures 3.7A & 3.8A). 

Upon induction of ischaemia, CFR dropped in all experiments by at least 30 % (Figures 

3.7B & 3.8B). CFR increased towards baseline once the ligature had been removed from 

the LDCA, confirming successful reperfusion and then decreased gradually during 

reperfusion.  
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Figure 3.7 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 3.5. 
SEM bars have been removed for clarity. There were no statistically significant differences between treatment 
groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were perfused.  
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Figure 3.8 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 3.6. 
SEM bars have been removed for clarity. There were no statistically significant differences between treatment 
groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were perfused.  
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3.3.4 RIA cGMP measurements: Study 2 

Tissue levels of cGMP were measured in hearts that had been treated with or without 

BAY 41-2272 and subjected to 35 min regional ischaemia by occlusion of the LDCA. In 

both left and right ventricular samples, cGMP levels were significantly elevated in tissue 

that had been perfused with BAY 41-2272 compared to control tissue. Tissue samples 

from BAY 41-2272 perfused left ventricle had cGMP levels 88 % greater than those not 

perfused with BAY 41-2272 (17.76 ± 1.87 (n=6) vs. 9.44 ± 0.61 (n=6) fmol/mg tissue, 

p<0.01) and 57 % greater than naive samples. RV samples that were not subjected to 

LDCA occlusion had cGMP levels 126 % greater when perfused with BAY 41-2272 at 

reperfusion compared to control samples. Interestingly, cGMP levels were significantly 

higher in naive right ventricle compared to the adjacent left ventricle samples (11.28 ± 

0.54 (n=6) vs. 17.87 ± 2.56 (n=6) fmol/mg tissue, p<0.01) (Figure 3.9 A and B).  
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Figure 3.9 cGMP levels in LV (A) and RV (B) heart samples perfused with or without BAY 41-2272 3 µM 
(** p<0.01) ONE-way ANOVA + Newman-Keuls post-hoc (n=6).  
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3.4 Discussion 

3.4.1 Summary of findings 

The major findings of the studies in this chapter are: 

i) BAY 41-2272 limited infarct size when given at reperfusion in a concentration-

dependent manner 

ii) The haem moiety on the beta subunit of sGC was required in its reduced state 

for BAY 41-2272 to afford protection 

iii) The sGC stimulator, when given at reperfusion, elevated tissue cGMP levels 

up to 126 % compared to naive tissue levels 

The findings in these studies support and add to our understanding of the 

GC/cGMP/PKG pathway and its importance as a cardioprotective signalling cascade for 

reperfusion salvage. 

3.4.2 Infarct limitation 

Previous work by Giricz and colleagues (2009) and D’Souza et al., (2003) has shown that 

administration of 8Br-cGMP, a cGMP analogue at early reperfusion limits infarct size. It 

was from these studies that our initial hypothesis was derived. That is, that administration 

of BAY 41-2272 at early reperfusion would limit infarct size in the isolated perfused rat 

heart. At the highest concentrations of BAY 41-2272, infarct size was significantly 

reduced. These results are reproducible and demonstrated again in Chapters 4 and 5. 

These results support the work of many others that have reported the crucial role of the 

sGC-cGMP pathway in post conditioning (Cohen et al., 2010; Hamid et al.; Penna et al., 

2006; Tsang et al., 2004). 
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The extensive literature characterising the effects of BAY 41-2272 in a number of different 

models documents its ability to stimulate sGC to produce cGMP independently of NO. In 

a purified sGC model, Stasch et al. (2001) reported that BAY 41-2272 could stimulate 

sGC activity 20 fold above baseline. It was also reported that, unlike YC-1, BAY 41-2272 

does not have PDE5 inhibitory actions. Koesling’s group refuted this in an in vitro model 

that suggests that although the sGC stimulator increases the activity of basal sGC, at high 

cGMP levels there was an inhibitory component of BAY 41-2272 on PDE5 activity 

(Mullershausen et al., 2004). Further literature that supports the consensus view that 

BAY 41-2272 does not inhibit PDE5 activity includes work by Evgenov et al., (2004). 

They reported that infusion of BAY 41-2272 in lambs with acute pulmonary hypertension 

caused strong pulmonary vasodilatation but did not inhibit PDE5. They also showed the 

pulmonary vasodilator effects of BAY 41-2272 were not suppressed by NOS inhibition 

with L-NAME, yet Weimann et al., (2000) reported that pre-treatment with L-NAME 

completely blocked the vasodilatation afforded by sildenafil. 

3.4.3 cGMP levels in the heart 

Previous work in our laboratory showed that the PKG inhibitor KT5823 abolished 

protection seen by cGMP elevation (Burley & Baxter, 2007). Results from experiments in 

this chapter support the notion that the protection afforded by BAY 41-2272 is associated 

with cGMP elevation. Tissue levels of cGMP in LV heart samples that had undergone 

ischaemia but received treatment with BAY 41-2272 3 µM at reperfusion were 88 % 

higher than those not treated and 56 % higher than naive LV tissue. Interestingly, cGMP 

levels were significantly higher in the RV compared to LV in naive tissue samples. It has 
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been reported that PDE distribution is altered throughout embryogenesis in the heart, 

which suggests there may be differences in cyclic nucleotide regulation also. Whether this 

is transferred into the adult heart is unclear (Fischmeister et al., 2005). Further 

exploration into cGMP distribution within the LV and RV could be of benefit for specific 

therapeutic targeting. 

3.4.4 Inhibition of sGC and use of ODQ 

Garthwaite and colleagues (1995) first described ODQ as a selective inhibitor of sGC, 

following tests in slices of cerebellum. They reported that ODQ was a selective, potent 

and reversible inhibitor of NO-stimulated sGC. ODQ has since been used as the drug of 

choice when investigating sGC-cGMP signalling. However, it must be acknowledged that 

several publications have documented non-specific effects. Feelisch et al. (1999) 

investigated the functional and biochemical inhibitory actions of ODQ on isolated rat 

aortic rings, concluding that ODQ may have non-specific effects on other haem containing 

proteins such as cytochrome c oxidase. These observations were however, concentration 

dependent, with effects being documented with concentrations of ODQ 10 fold higher 

than those used in experiments in this thesis. Work by Weisbrod et al. (1998) and Onoue 

et al. (1998) suggest that non-specific activity of ODQ depends heavily on concentration 

and whether ODQ is pre-incubated for any length of time. The concentration of ODQ 

used in this study was based on previous work reporting successful inhibition of 

sGC-mediated effects (Hamid et al., 2010). Other sGC inhibitors available were 

considered. Methylene blue was discounted as it has a strong blue colour in its hydrated 

form that would interfere with infarct delineation. NS 2028, a compound 
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structurally-related to ODQ was also discounted as previous pharmacological studies had 

used ODQ to confirm mechanistic actions of BAY 41-2272 (Koglin et al., 2002; Stasch et 

al., 2002a; Stasch et al., 2001). 

The use of ODQ as an inhibitor of sGC by oxidation of the prosthetic haem group 

supports the work of others, particularly Stasch et al. (2002a), that BAY 41-2272 is haem-

dependent in its sGC stimulation. Infarct size was comparable to controls in hearts treated 

with ODQ and those treated concomitantly with BAY 41-2272 showed no significant 

infarct limitation. This is unsurprising as the documented mechanism of action for 

BAY 41-2272 reports that the haem moiety in its oxidised state is imperative for 

enzymatic activation and cGMP elevation (Stasch et al., 2001). It is acknowledged that 

cGMP measurements from LV tissue samples perfused with ODQ would add support to 

the conclusion; however, priority was made for BAY 41-2272 treated hearts.  
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3.5 Conclusions 

Results from these studies support previous work that demonstrates that BAY 41-2272 

stimulates sGC (Bischoff & Stasch, 2004; 2001; Zhou et al., 2008). They further 

contribute by showing that administration of the highest concentrations of the drug at 

early reperfusion limits infarct size in regionally ischaemic isolated rat hearts. RIA 

confirms that BAY 41-2272 elevates cGMP levels in LV and RV when given at reperfusion 

suggesting that the protection afforded could be associated with cGMP elevation. Further 

studies need to be performed to investigate the interaction of exogenous NO and 

BAY 41-2272 and whether concomitant perfusion of both the endogenous ligand and 

stimulator is a better therapeutic target. 



Chapter 4

 
 

97 

Chapter 4 
The role of endogenous and exogenous NO in BAY 41-2272 mediated 

infarct limitation
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4.1 Introduction 

4.1.1 Endogenous nitric oxide and postconditioning 

Nitric oxide has been identified as an important mediator in the postconditioning 

paradigm. Tsang et al. (2004), first reported that ischaemic postconditioning requires 

activation of the prosurvival kinases PI3K-Akt and eNOS in an isolated perfused rat heart 

model. They demonstrated that mechanical postconditioning causes a significant increase 

in phosphorylation of these kinases and pharmacological inhibition of PI3K-Akt abrogated 

protection afforded by post conditioning. Further evidence that supports the need for 

NOS and therefore NO in postconditioning came from Downey’s group who 

demonstrated that postconditioning was abolished by L-NAME and ODQ, suggesting that 

NO and cGMP produced by sGC are required to afford protection (Yang et al., 2005; 

Yang et al., 2004). It was further demonstrated that eNOS activation was dependent on 

the upstream phosphorylation of Akt, as the PI3K/Akt inhibitors Wortmannin and 

LY294002 attenuated eNOS phosphorylation (Cohen et al., 2006; Hausenloy et al., 2004; 

Hausenloy & Yellon, 2004; Tsang et al., 2004) (see Figure 1.4). 

As well as the evidence for the importance of eNOS during early reperfusion, studies by 

Bolli’s laboratory demonstrated the importance of iNOS during reperfusion to afford 

cardioprotection by means of decreased reperfusion induced oxygen radicals and inhibition 

of both mitochondrial swelling and mitochondrial pore formation (West et al., 2008). 

Using a genetic mouse model that had cardiomyocyte specific over expression of iNOS, 

they reported a decrease of over 50 % in infarct size compared to their wild type 

littermates. Furthermore, they proposed that this protection was mediated by limiting 
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reperfusion-induced oxygen free radical generation and formation of the mPTP (West et 

al., 2008). 

4.1.2 Autacoids and protection 

Earlier work investigating autacoid action during early reperfusion helps to substantiate 

the salvage kinase targeted experiments. Bradykinin and adrenomedullin have been shown 

to afford protection when given at reperfusion and their mechanisms of action have been 

documented to involve the PI3K/Akt/eNOS pathway. The infarct limiting effects of 

exogenous bradykinin at reperfusion were associated with phosphorylation of both Akt 

and eNOS in an isolated mouse heart model (Bell & Yellon, 2003). Similar effects were 

recorded when adrenomedullin was administered at reperfusion in an isolated rat heart 

model whereby Akt phosphorylation was increased (Hamid & Baxter, 2005). It was also 

shown that L-NAME blunted the protective effects of the peptide. Further support of this 

mechanism was demonstrated in a mouse model, where the protection was abrogated by 

ODQ suggesting the protective signalling of adrenomedullin extends to sGC/cGMP 

(Hamid & Baxter, 2005). A comprehensive review of autacoid mediated protection can be 

found in Burley and Baxter (2009). 

4.1.3 Gaseous anaesthesia mediated protection 

It has been known for some time that gaseous anaesthetics can afford protection in models 

of ischaemia-reperfusion (Pagel, 2008), and their protective effects have been implicated 

to be mediated through the PI3K/Akt pro survival pathway (Feng et al., 2005). Inamura et 

al. (2009) reported that protection afforded by sevoflurane in a global ischaemia guinea 

pig model was abrogated by aprotinin, an antifibrinolytic serine protease inhibitor used to 
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prevent peri-operative bleeding. What makes this observation interesting in this setting is 

that aprotinin has been shown to inhibit eNOS in rat coronary endothelial cells (Ulker et 

al., 2002). This suggests the need for eNOS phosphorylation in sevoflurane mediated 

infarct limitation. Similarly, Ge et al. (2010), demonstrated in an ex vivo mouse heart 

model that isoflurane induced infarct limitation was abrogated in eNOS-/- mice. 

Furthermore, they reported that isoflurane-triggered mPTP inhibition was abolished in 

eNOS-/- mice, supplying evidence that NO mediated protection at reperfusion is in part 

afforded by inhibition of mPTP formation. 

4.1.4 Statin mediated NO protection 

In recent years, it has been shown that the cholesterol lowering drugs, 

hydroxymethylglutarate coenzyme A reductase inhibitors (statins), limit infarct size when 

given during early reperfusion. Yellon’s laboratory provided evidence that the survival 

kinases and endogenous NO mediate the protection afforded. They reported that the 

PI3K/Akt inhibitor Wortmannin abolished the protective effects of atorvastatin and 

showed similar results in eNOS-/- mice. This is in agreement with Wolfrum et al. who 

demonstrated that simvastatin reduced infarct size in an in vivo rat model, which was 

inhibited by L-NAME (Wolfrum et al., 2004). In contrast, Ferdinandy’s laboratory 

reported that acute and chronic administration of another statin, lovastatin, interferes with 

the survival kinases in myocardial tissue samples. They demonstrated that both chronic 

and acute administration of lovastatin attenuated phosphorylation of Akt without effecting 

total Akt. They further reported that only acute lovastatin potentiated p42 MAPK/ERK 

phosphorylation; again total kinase levels were unaffected (Kocsis et al., 2008). In 
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addition, it was shown that chronic lovastatin treatment reduced infarct size in 

nonconditioned rats and did not abrogate the infarct limitation afforded by IPC. However, 

it did reduce the protection afforded by postconditioning. Conversely, acute treatment of 

lovastatin did not abrogate the infarct limitation afforded by postconditioning, but did 

abolish the protection afforded by IPC and did not limit infarct size in nonconditioned 

animals as was shown with chronic treatment of lovastatin (Kocsis et al., 2008). Assuming 

the infarct size results are as a result of the survival kinase pathways highlighted in other 

statin studies, it would be fair to speculate that eNOS and NO levels would be similarly 

affected as their upstream kinases; however, these experiments have not been reported. 

4.1.5 Exogenously administered nitric oxide 

As mentioned in Chapter 1, NO has been used clinically in the form of organic nitrate or 

nitrite for over a century mainly for the treatment of angina pectoris. In the setting of 

pharmacological postconditioning, data thus far are inconsistent. Early evidence from Liu 

et al. (1998), reported that the NO donor SP/W-5186 given just before reperfusion in an 

in vivo rabbit model reduced infarct size compared to non-treated animals. They went on 

to show in the same experimental model that S-nitrosoglutathione limited infarct size 

comparably (Ma et al., 1999). Yellon’s group subsequently reported that the NO donor 

SNAP could restore protection that was abrogated in bradykinin perfused eNOS-/- mice, 

suggesting that bradykinin afforded protection during early reperfusion through eNOS 

mediated production of NO (Bell & Yellon, 2003). In contrast to evidence supporting a 

protective effect of exogenous NO, previous work by our laboratory demonstrated that 

SNAP could not afford significant protection when given during early reperfusion over a 
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range of concentrations (1, 2, 5 and 10 μM) (Burley & Baxter, 2007). It is worthy of note, 

that these differences in results could be attributable to a number of factors. Differing NO 

donors used and their mechanism of action could be one reason for the differences. In 

addition, the speed at which the donor produces or releases NO and the logistics of 

perfusing the drug at the right time will play a part. Interestingly, Downey’s group have 

most recently published data that shows concentration dependent protection afforded by 

SNAP during early reperfusion in an isolated rabbit model. They also reported that this 

protection was not abrogated in the presence of L-NAME at the highest doses of SNAP 

(4 and 6 μM) (Cohen et al., 2010). 

4.1.6 NO-independent stimulation of sGC 

The sGC stimulator BAY 41-2272, described in the previous chapter, was identified as a 

NO-independent, haem-dependent stimulator of sGC. Stasch et al. (2001) demonstrated 

the ability of BAY 41-2272 to stimulate purified sGC to a level that would be expected to 

cause biologically important increases in cGMP at concentrations as low as 10 nM. They 

also describe the ability of sGC to be stimulated/activated by concomitant NO and 

BAY 41-2272, suggesting synergistic effects (Stasch et al., 2001). It is suggested that 

BAY 41-2272, like YC-1, binds allosterically to NO adjacent to the histidine 105 bond of 

the haem group stabilising it for NO binding. It has been proposed that binding at a sixth 

coordinate of the haem confers ligand specificity for NO activation. Cys 238 and Cys 243 

of the α1-subunit have been speculated to be important as the NO-independent regulatory 

site (Becker et al., 2001; Stasch et al., 2001). Schmidt et al. (2003) investigated the 

mechanism further using BAY 41-8543, a structurally similar sGC stimulator. Their data 
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support the previous idea of an allosteric binding site that when occupied sensitises the 

enzyme to NO, increasing the catalytic rate but not the affinity of the substrate GTP. The 

lack of crystal structures of any of the sGC subunit isoforms prevents certainty concerning 

the exact regions involved.  



Chapter 4

 
 

104 

4.1.4 Hypotheses 

The aim of this study was to investigate the effects of endogenous and exogenous NO on 

the infarct limiting properties of the NO-independent sGC stimulator BAY 41-2272. 

NOC-9 was selected as the NO donor for these experiments as it has rapid NO release 

characteristics. 

It was hypothesised that; 

i. Inhibition of endogenous NO would not abrogate the infarct limiting properties of 

BAY 41-2272 

ii. Concomitant perfusion of an exogenous NO donor and BAY 41-2272 would afford 

greater protection than either individual component 

The specific experimental objectives were to: 

1. Concomitantly perfuse the NOS inhibitor L-NAME, or NO scavenger C-PTIO with 

BAY 41-2272 during early reperfusion 

2. Undertake a concentration response for the NO donor NOC-9 during early 

reperfusion in a rat isolated heart model 

3. Concomitantly perfuse submaximal concentrations of NOC-9 with BAY 41-2272 

during early reperfusion 

4. Measure cGMP levels in LV and RV tissue samples from hearts perfused with 

C-PTIO, L-NAME or NOC-9  

5. Measure NOx levels in coronary effluent of hearts perfused with C-PTIO, L-NAME 

or NOC-9   
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4.2 Materials and Methods 

4.2.1 Pharmacological compounds 

All salts used to make modified KH solution were sourced from Fisher Scientific LTD 

(UK) and were of analytical or ultrapure quality. L-NAME (NOS inhibitor) and C-PTIO 

(NO scavenger) were sourced from Tocris Bioscience (UK) and NOC-9 (NO donor) and 

BAY 41-2272 (NO-independent, haem-dependent sGC stimulator) from Sigma-Aldrich 

(UK). BAY 41-2272 was dissolved in DMSO, the final concentration of DMSO in the KH 

was 0.05 % v/v. 

4.2.2 Rat isolated heart perfusion 

Rat isolated hearts were excised and retrograde perfused as described in Chapter 2. Once 

a period of 20 min haemodynamic stabilisation had been established, rat hearts were 

randomised and assigned to one of the groups mentioned in 4.2.3 and 4.2.4. All hearts 

were subjected to 35 min LDCA occlusion followed by 120 min of reperfusion unless 

otherwise stated. 

4.2.3 Inhibition of endogenous NO: Study 1 

Animals used in this Study were sourced from B&K Universal Ltd. (Bristol, UK). This 

study was undertaken to explore the role of endogenous NO on BAY 41-2272 mediated 

infarct limitation. Hearts were perfused as described above and either NOS was inhibited 

by L-NAME or NO was scavenged at reperfusion by C-PTIO alone and or in the presence 

of BAY 41-2272 3 μM (see figure 4.1). 

Group 1, Control, (n=17). This group includes some hearts (n=5) that were perfused 

with the vehicle DMSO 0.05 % v/v from 30 min ischaemia until 10 min reperfusion. 
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There was no statistical significant difference between control hearts perfused with or 

without DMSO vehicle and so all hearts were pooled for statistical analysis. 

Group 2, BAY 41-2272 3 µM, (n=7). BAY 41-2272 3 µM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 3, L-NAME 100 µM, (n=6). L-NAME 100 µM was perfused from 28 min 

ischaemia until 10 min reperfusion. 

Group 4, L-NAME 100 µM + BAY 41-2272 3 µM, (n=8). L-NAME 100 µM was perfused 

from 28 min ischaemia and BAY 41-2272 3 µM from 30 min ischaemia, both until 10 min 

reperfusion. 

Group 5, C-PTIO 30 µM (n=6). C-PTIO 30 µM was perfused from 28 min ischaemia 

until 10 min reperfusion. 

Group 6, C-PTIO 30 µM + BAY 41-2272 3 µM, (n=6).C-PTIO 30 µM was perfused from 

28 min ischaemia and BAY 41-2272 3 µM from 30 min ischaemia, both until 10 min 

reperfusion. 
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Figure 4.1 Experimental protocol for groups 1-6 in Study 1. All hearts were stabilised for 20 min followed 
by 35 min regional ischaemia and then reperfused for 120 min. 
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4.2.4 Exogenous NO and BAY 41-2272: Study 2 

This study was undertaken to investigate the effect that exogenous NO has on 

BAY 41-2272 mediated infarct limitation and whether they act synergistically to afford 

protection. Hearts were perfused as described in Chapter 2, with NOC-9 1 nM - 1 μM, 

or BAY 41-2272 1 or 3 μM (see figure 4.2) 

Group 1, Control, (n=12). This group includes some hearts that were perfused with the 

vehicle DMSO 0.05 % v/v from 30 min ischaemia until 10 min reperfusion. There was no 

statistical significant difference between control hearts perfused with or without DMSO 

vehicle and so all hearts were pooled for statistical analysis. 

Group 2, BAY 41-2272 3 µM, (n=6). BAY 41-2272 3 µM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 3, BAY 41-2272 1 µM, (n=5). BAY 41-2272 1 µM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 4, NOC-9 1 µM, (n=9). NOC-9 1 µM was perfused from 30 min ischaemia until 

10 min reperfusion. 

Group 5, NOC-9 100 nM, (n=6). NOC-9 100 nM was perfused from 30 min ischaemia 

until 10 min reperfusion. 

Group 6, NOC-9 10 nM, (n=6). NOC-9 10 nM was perfused from 30 min ischaemia until 

10 min reperfusion. 

Group 7, NOC-9 1 nM, (n=6). NOC-9 1 nM was perfused from 30 min ischaemia until 

10 min reperfusion. 
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Group 8, BAY 41-2272 1 µM + NOC-9 1 nM, (n=6). BAY 41-2272 1 µM and 

NOC-9 1 nM were perfused from 30 min ischaemia until 10 min reperfusion. 

 

 
Figure 4.2 Experimental protocol for groups 1-8 in Study 2. All hearts were stabilised for 20 min followed 

by 35 min regional ischaemia and then reperfused for 120 min. BAY 41-2272 1 and 3 μM perfused alone, 

NOC-9 1 μM, 100, 10 and 1 nM perfused alone. Concomitant perfusion of BAY 41-2272 1 μM and 
NOC-9 1 nM respectively. 

 

4.2.5 cGMP Radio immuno-sorbent assay: Study 3 

To examine the effects of BAY 41-2272 and endogenous and exogenous NO on cGMP 

production, RIA was performed as described in Chapter 3.2.4. Tissue samples were 

prepared from rat hearts randomly assigned to one of 5 groups shown in figure 4.3. Hearts 

that were subjected to regional ischaemia were treated as described for Study 1. Animals 

used for RIA in this study were supplied by Charles River Laboratories Inc. (Maidenhead, 

UK). 
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Group 1, Naive, (n=6). Hearts were excised and washed in KH to remove any blood and 

then sectioned. 

Group 2, 10 min reperfusion, (n=6). Hearts were stabilised, subjected to LDCA 

occlusion for 35 min and reperfused for 10 min. 

Group 3, 10 min reperfusion + BAY 41-2272 3 µM, (n=6). Hearts were stabilised, 

subjected to LDCA occlusion for 35 min and reperfused for 10 min. BAY 41-2272 3 µM 

was perfused as described for Group 2 in 3.2.3. 

Group 4, 10 min reperfusion, BAY 41-2272 3µM + L-NAME 100 µM, (n=5). Hearts 

were stabilised, subjected to LDCA occlusion for 35 min and reperfused for 10 min. 

BAY 41-2272 3µM and L-NAME 100 µM were perfused as described for Group 4 in 4.2.3. 

Group 5, 10 min reperfusion, BAY 41-2272 3µM + C-PTIO 30 µM, (n=5). Hearts were 

stabilised, subjected to LDCA occlusion for 35 min and reperfused for 10 min. 

BAY 41-2272 3µM and C-PTIO 30 µM were perfused as described for Group 6 in 4.2.3. 

Group 6, 10 min reperfusion, BAY 41-2272 1µM + NOC-9 1 nM, (n=5). Hearts were 

stabilised, subjected to LDCA occlusion for 35 min and reperfused for 10 min. 

BAY 41-2272 1µM and NOC-9 1 nM were perfused as described for Group 8 in 4.2.4. 
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Figure 4.3 Experimental protocol for hearts prepared for RIA in Study 3. Red arrows indicate time points at 
which hearts were sampled. (N.B. L-NAME and C-PTIO perfused from 28 min, whilst NOC-9 perfused from 
30 min).  
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4.2.6 NO2
- measurement by ozone based chemiluminescence: Study 4 

OBC was used to determine total NO2
- levels in coronary effluent collected after 

ischaemia-reperfusion and perfusion with an NO donor (NOC-9), NOS inhibitor 

(L-NAME) or NO scavenger (C-PTIO). This method utilises the luminescent properties 

of an electrically excited state of NO2, which is formed in the nitric oxide analyser 

(NOA). For NO levels to be quantified in this way it must be cleaved from its parent 

compound or reduced back to its radical state. This can be achieved using a tri-iodide 

cleavage reagent and NO is carried in an argon gas stream to the NOA at constant flow. A 

supply of oxygen in the NOA generates O3, which reacts with NO to form NO2 and O2. A 

small proportion of the NO2 produced is formed in an electrically excited state. The 

unstable electrons return to their original ground state releasing energy in the form of 

photons. The released photons are focused through a low pass filter (<900 nm 

wavelength) which amplifies the signal enabling an electrical (millivolt) signal to be 

recorded.  
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Figure 4.4 Experimental apparatus for OBC. Purge vessel suspended in water bath (50 ºC). Samples were 
injected through the rubber septum on the side of the purge vessel. Reaction mixture then passed through 
NaOH trap and into the NOA where emitted light (hv) was converted into an electrical signal (Adapted from 
Pinder et al. 2009).  
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1 mL of coronary effluent was collected from each heart as described in Figure 4.5 and 

immediately snap frozen in liquid N2 to be used in the NOA. The cleavage reagent was 

made by dissolving 1 g KI in 20 mL high performance liquid chromatography (HPLC) 

water and added to 70 mL acetic acid. This solution was stirred for 30 min ensuring the I2 

was dissolved. 5 mL of cleavage reagent was then loaded into the purge vessel and sealed 

with a rubber bung connected to the argon flow and a 25 mL 1 M NaOH trap and solvent 

filter (Figure 4.4). The alkali trap and solvent filter are used to protect the NOA from hot 

acid vapour produced by the cleavage reagent. The purge vessel was held by a boss and 

clamp and submerged in a heated water jacket (50 ºC). The NOA (Sievers NOA 280i 

(Analytix, UK)) was calibrated by injecting 100 μM of known S-nitrosoglutathione 

(GSNO) standards (62.5, 125, 250, 500, 1000 nM) and HPLC grade ultra pure water into 

the purge vessel using a Hamilton syringe. A standard curve was produced by plotting 

peak area under the curve (AUC) against NO concentration. A straight line was achieved 

by subtracting the peak AUC for HPLC ultra pure water from the GSNO standards, which 

accounts for impurities in the water. 

The frozen samples were thawed and 100 μL of each sample was injected into the purge 

vessel. Subsequent samples were added once the peak on the live trace returned to 

baseline. The cleavage reagent was replaced after 10 samples had been injected. Using the 

standard curve, total NO2
- levels were calculated for each sample and were then 

standardised to CFR for each respective heart.  
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Figure 4.5 Experimental protocol for OBC supplementary Study 4. (N.B. L-NAME and C-PTIO perfused 
from 28 min, whilst NOC-9 perfused from 30 min). Blue arrows indicate time points at which coronary 
effluents was collected for OBC.  
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4.3 Results 

4.3.1 Summary of experiments 

In Study 1, 30 rats were used in addition to the shared control group (n=17) and 

BAY 41-2272 3 μM (n=7) from Chapter 3, Study 1. Four hearts were excluded from the 

study due to technical error; thus, a total of 26 (+24) completed experiments are 

reported. In Study 2, 62 rats were used, six hearts were excluded due to technical error; 

thus a total of 56 completed experiments are reported. In Study 3, 27 rats were used for 

RIA in addition to the previously reported BAY 41-2272 3 μM group (n=6) from Chapter 

3, Study 2. There were no exclusions and so data from 27 (+6) hearts are reported. In 

Study 4, 20 rats were used for OBC NO2
- measurements. There were no technical 

exclusions and so data from 20 hearts are reported. The period of stabilisation before the 

onset of ischaemia was carried out to allow the hearts to stabilise and reach pre-

determined criteria (see below). For a heart to be included and subjected to ischaemia, it 

had to achieve the following baseline cardiodynamic criteria: 

CFR between 10 and 24 mL/min, LVEDP 5-10 mmHg, HR 200-350 BPM, LVDP 

greater than 50 mmHg and a steady sinus rhythm. Hearts were also excluded during 

analysis if there was inadequate delineation of the risk zone and infarcted tissue (poor 

staining). 

4.3.2 Infarct size data: Study 1 

Study 1 contains Langendorff perfusion experiments for the pharmacological inhibition of 

NO, either with the NOS inhibitor L-NAME or NO scavenger C-PTIO. The area at risk 

for all hearts in all groups was between 44.7 and 53.4 % of the combined left and right 
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ventricular tissue. Statistical analysis of the risk zone sizes for each of the treatment groups 

showed that there were no statistical differences between groups. Infarct size was 

expressed as a percentage of the risk zone, calculated as described in Chapter 2 and 

reported in Figures 4.6 & 4.7. Under control conditions (35 min ischaemia followed by 

120 min reperfusion) hearts had infarct sizes of 31.5 ± 2.8 % (n=17). 

Infarct size for hearts treated with 100 μM L-NAME at reperfusion was 29.1 ± 1.9 % 

(n=6) with no statistical difference compared to control hearts, while treatment with both 

100 μM L-NAME and BAY 41-2272 resulted in mean infarct sizes of 20.5 ± 2.5 % (n=8), 

(p<0.05 compared to control) (Figure 4.6). Perfusion with the NO scavenger C-PTIO 

resulted in a mean infarct size of 30.7 ± 2.3 % (n=6), while co-administration with 

BAY 41-2272 caused a reduction in infarct size to 23.6 ± 0.9 % (n=6), (p<0.05 

compared to control) (Figure 4.7). 
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Figure 4.6 Infarct size expressed as percentage of ischaemic risk zone for L-NAME and L-NAME + 
BAY 41-2272 treated hearts (* p<0.05, ** p<0.01 vs. control) ONE-way ANOVA + Newman-Keuls 
post-hoc (n=6-17). 

 

 
 

Figure 4.7 Infarct size expressed as percentage of ischaemic risk zone for C-PTIO and C-PTIO + 
BAY 41-2272 treated hearts (* p<0.05, ** p<0.01 vs. control) ONE-way ANOVA + Newman-Keuls 
post-hoc (n=6-17).  
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4.3.3 Cardiodynamic data: Study 1 

Baseline cardiodynamic data are presented in Table 4.1. There was no statistical difference 

between any of the parameters between treatment groups. RPP dropped by as much as 

95 % upon induction of ischaemia in all treatment groups, recovering partially throughout 

ischaemia and then dropping upon reperfusion due to the tendency for the hearts to 

fibrillate; RPP recovered before gradually decreasing throughout reperfusion (Figures 

4.8A & 4.9 A). 

Upon induction of ischaemia, CFR dropped in all experiments by at least 30 % (Figures 

4.8B & 4.9B). CFR increased towards baseline once the ligature had been removed from 

the LDCA confirming successful reperfusion, and then decreased gradually during 

reperfusion.  
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Figure 4.8 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 4.6. 
SEM bars have been removed for clarity. There were no statistically significant differences between treatment 
groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were perfused.  
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Figure 4.9 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 4.7. 
SEM bars have been removed for clarity. There were no statistically significant differences between treatment 
groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were perfused.  
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4.3.4 Infarct size data: Study 2 

Study 2 contains Langendorff perfusion experiments for the initial dose response to the 

NO donor NOC-9. The study also contains experiments where BAY 41-2272 and NOC-9 

have been perfused concomitantly. The area at risk for all hearts in all groups was between 

44 and 60 % of the combined left and right ventricular tissue. There were no statistical 

differences between the risk zone sizes for each of the treatment groups. Infarct size was 

expressed as a percentage of the risk zone, calculated as described in Chapter 2 and 

reported in Figures 4.10 & 4.11. Under control conditions (35 min ischaemia followed by 

120 min reperfusion) hearts had infarct sizes of 34.7 ± 1.6 % (n=12) compared to 20.5 ± 

1.3 % (n=9) (p<0.001) for hearts treated with the highest concentration of NOC-9 (1 

μM). Treatment with 100 nM, 10 nM and 1 nM NOC-9 showed a concentration 

dependent reduction in infarct size (22.6 ± 0.8 (p<0.001, n=6), 25.5 ± 2.6 (p<0.01, 

n=6) and 28.2 ± 3.1 (p<0.05, n=6) respectively). The highest concentration of NOC-9 

showed a 41 % relative reduction in infarct size compared to control hearts, and the 

lowest concentration affording an 18 % reduction, suggesting that at all concentrations 

examined, NOC-9 was cardioprotective (Figure 4.10). 

Perfusion of BAY 41-2272 at 3 μM limited infarct size to 16.9 ± 2.0 % (p<0.001, n=6) 

and at a submaximal concentration (1 μM) to 29.3 ± 2.9 % (n=5). Concomitant 

perfusion of the submaximal concentration of BAY 41-2272 and the lowest concentration 

of NOC-9 limited infarct size to 21.5 ± 2.2 % (n=6) (p<0.05 vs. BAY 41-2272 1 μM and 

NOC-9 1 nM) (Figure 4.11). 
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Figure 4.10 Infarct size expressed as percentage of ischaemic risk zone for NOC-9 concentration response 
(* p<0.05, ** p<0.01, *** p<0.001 vs. control) ONE-way ANOVA + Newman-Keuls post-hoc (n=6-
12). 

 

 
 

Figure 4.11 Infarct size expressed as percentage of ischaemic risk zone for concomitant perfusion of NOC-9 

and BAY 41-2272 (*** p<0.001 vs. control, # p<0.05 vs.BAY 41-2272 1 μM, † p<0.05 vs. NOC-9 
1 nM) ONE-way ANOVA + Newman-Keuls post-hoc (n=5-12). 
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4.3.5 Cardiodynamic data: Study 2 

Baseline cardiodynamic data are presented in Table 4.2. There was no statistical difference 

between any of the parameters between groups. RPP dropped by as much as 80 % upon 

induction of ischaemia in all treatment groups, recovering partially throughout ischaemia 

and then dropping upon reperfusion due to the tendency for the hearts to fibrillate; RPP 

recovered before gradually decreasing throughout reperfusion (Figures 4.12 & 4.13 A). 

Upon induction of ischaemia, CFR dropped in all experiments by at least 30 % (Figures 

4.12B & 4.13B). CFR increased towards baseline once the ligature had been removed 

from the LDCA confirming successful reperfusion, and then decreased gradually during 

reperfusion. 
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Figure 4.12 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 
4.10. SEM bars have been removed for clarity. There were no statistically significant differences between 
treatment groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were 
perfused. 
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Figure 4.13 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 
4.11. SEM bars have been removed for clarity. There were no statistically significant differences between 
treatment groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were 
perfused. 
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4.3.6 RIA cGMP measurements: Study 3 

Tissue levels of cGMP were measured in hearts that had been treated with or without 

BAY 41-2272 and subjected to 35 min regional ischaemia by occlusion of the LDCA. 

Measurements were also made in hearts perfused with BAY 41-2272 concomitantly with 

L-NAME, C-PTIO or NOC-9. In both left and right ventricular samples, cGMP levels 

were significantly elevated in tissue that had been perfused with BAY 41-2272 compared 

to samples that had not. Tissue samples from concomitant BAY 41-2272 and L-NAME 

perfused LV had cGMP levels 48 % lower than those perfused with BAY 41-2272 alone 

(11.15 ± 0.91 (n=5) vs. 17.76 ± 1.87 (n=6) fmol/mg tissue, p<0.05). Similarly, cGMP 

levels in LV tissue perfused with both C-PTIO and BAY 41-2272 were 54 % lower than 

BAY 41-2272 alone (8.29 ± 0.52 (n=5)  vs. 17.76 ± 1.87 (n=6) fmol/mg tissue, 

p<0.001). LV tissue samples from hearts perfused with both NOC-9 1 nM and a 

submaximal concentration of BAY 41-2272 (1 μM) contained cGMP levels 46 % higher 

than reperfusion only hearts (13.44 ± 1.01 (n=5) vs. 9.44 ± 0.61 (n=6) fmol/mg 

tissue). Of interest, RV samples, which were not subjected to LDCA occlusion, had 

cGMP levels greater than their adjacent LV in all groups. Like cGMP measurements in 

Chapter 3, levels were 2-fold higher in naive RV compared to the adjacent LV samples 

(Figure 4.14 A and B).  
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Figure 4.14 cGMP levels in LV (A) and RV (B) heart samples perfused with or without BAY 41-2272 

(3 μM) at reperfusion or concomitantly with L-NAME (100 μM), C-PTIO (30 μM) or NOC-9 (1 nM) 
(* p<0.05, **p<0.01, *** p<0.001 vs. 10’R BAY 41) ONE-way ANOVA + Newman-Keuls post-hoc 
(n=5-6). 
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4.3.7 NO2
- levels measured by ozone based chemiluminescence: Study 4 

Nitrite levels were measured in coronary effluent collected from Langendorff perfused rat 

hearts 2 min after reperfusion. Because the estimation of NO2
- was measured at a specific 

time point and CFR varied between hearts, data are represented as NO2
- produced per 

minute in coronary effluent. Control samples demonstrated levels of 2582 ± 486 (n=5) 

pmoles/min compared to 4815 ± 634 pmoles/min (n=5) in L-NAME treated hearts. 

Hearts perfused with C-PTIO and NOC-9 recorded levels of 3380 ± 483 (n=5) and 3421 

± 174 pmoles/min (n=5) respectively (Figure 4.15). 

 

 
 

Figure 4.15 NO2
- levels in coronary effluent samples of hearts subjected to 35 min regional ischaemia 

followed by 2 min reperfusion, perfused with L-NAME (100 μM), C-PTIO (30 μM) or NOC-9 (1 nM) from 
28 min ischaemia (30 min for NOC-9) until sampling at 2 min reperfusion measured by OBC (* p<0.05 vs. 
2’R) ONE-way ANOVA + Newman-Keuls post-hoc.  
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4.4 Discussion 

4.4.1 Summary of findings 

The major findings of the studies in this chapter are: 

i) BAY 41-2272 afforded infarct limitation independently of endogenous NO 

ii) The NO donor, NOC-9 limited infarct size when given at reperfusion in a 

concentration dependent manner 

iii) NOC-9 and BAY 41-2272 acted synergistically to afford infarct limitation when 

submaximal concentrations of both drug were given concomitantly 

iv) cGMP levels were significantly lower at reperfusion in hearts perfused with 

BAY 41-2272 and a NOS inhibitor or NO scavenger compared to BAY 41-2272 

alone 

The findings in these studies support and add to our understanding of the NO/GC/cGMP 

pathway and its importance as a cardioprotective signalling cascade for reperfusion 

salvage. 

4.4.2 Infarct limitation 

The NOS inhibitor L-NAME was given with or without BAY 41-2272 3 µM at reperfusion 

to investigate the dependency of endogenous NO on BAY 41-2272 induced infarct 

limitation. Concomitant perfusion of L-NAME did not abrogate the protection afforded by 

the highest concentration of BAY 41-2272 suggesting that this protection is independent 

of NOS function. Administration of the NOS inhibitor alone resulted in an infarct size 

similar to that of the control experiments; this observation is consistently seen in many 

laboratories (Burley & Baxter, 2007; Krieg et al., 2009; Ren et al., 2007). This suggests 

that inhibition of NO production by NOS at reperfusion does not increase infarct size 
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beyond control levels. It remains to be elucidated whether compensatory mechanisms are 

activated or increased to protect the heart from further damage. Pre-ischaemic treatment 

of the myocardium with L-NAME has however been shown to improve contractile 

recovery (Andelova et al., 2005). It has been suggested that this may be of benefit as less 

NO produced during early reperfusion will limit the amount of deleterious ROS species 

produced (Zweier & Talukder, 2006). There is no evidence to suggest that this translates 

to infarct limiting protection in a model of reperfusion. 

Infarct sizes in hearts treated with the NO scavenger C-PTIO also resulted in infarct sizes 

similar to those of control experiments in agreement with work conducted by Jung et al. 

(2010), who report control level infarct sizes in C-PTIO treated rats in a global model of 

ischaemia-reperfusion. The rationale for using an NO scavenger as well as an NO inhibitor 

was to eliminate any NO present at the time of administration of the sGC activator, not 

possible with L-NAME, which only inhibits the production of NO by inhibiting NOS. The 

half-life of endogenously produced NO in the vasculature is of the order of 5 seconds 

(Archer, 1993; Bates et al., 1991). It has to be acknowledged that during ischaemia NO is 

produced by other means such as reduction from nitrite which further supports the need 

for an NO scavenger and not just a NOS inhibitor (Ferdinandy & Schulz, 2003). 

Concomitant perfusion of the NO scavenger and BAY 41-2272 abrogated some of the 

infarct limitation afforded by BAY 41-2272 alone. Stasch et al. (2001), reported that high 

concentrations of PTIO (65 μM), a structurally similar NO scavenger could not block 

BAY 41-2272 stimulation of purified sGC; however no data were shown and no numerical 

values were reported. The results of our study suggest that the NO scavenger was more 
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effective at limiting NO in the tissue at reperfusion and suggests that there is a component 

of endogenous NO dependency in BAY 41-2272 induced infarct limitation. 

Boerrigter & Burnett (2007) suggested the theoretical possibility of a “coronary steal” 

phenomenon when using BAY 41-2272 and other sGC activators. They argue that because 

direct haem-dependent stimulators of sGC act synergistically with NO there is the 

possibility that non-diseased vessels will produce more NO than stenotic vessels do and so 

relax more in response to BAY 41-2272 with blood flow, or in the Langendorff 

preparation, perfusate being directed away from the stenotic vessels thereby aggravating 

ischaemia. Treatment with BAY 41-2272 and L-NAME or C-PTIO suggest that the 

possible steal phenomenon does not contribute to infarct size, similarly supported by the 

unremarkable vasodilatation as indicated by CFR seen in BAY 41-2272 only treated hearts 

where infarct limitation was greatest. 

In Study 2, results support those of Yang et al. (2005), who demonstrated that exogenous 

NO limits infarct size when given at reperfusion. It further corroborates with studies that 

highlight the importance of NO/GC/cGMP signalling during early reperfusion (Cohen et 

al., 2010; Hausenloy & Yellon, 2004; Tsang et al., 2004). NOC-9 was chosen as the NO 

donor based on its rapid NO production and active concentration range of between 1 nM 

and 100 μM. A secondary reason for its selection was based on previous work by our 

laboratory that reported no protective effects of SNP when given at reperfusion in a model 

of ischaemia-reperfusion (Burley & Baxter, 2007). NOC-9 is a member of the 

diazeniumdiolates (NONOates) which have the attractive property, unlike other NO 

donors, that their decomposition is not catalysed by thiols or in biological tissue (Keefer et 
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al., 1996). The results of Study 2 show that at all concentrations, NOC-9 was able to 

afford significant infarct limitation. 

BAY 41-2272 3 μM was again able to afford significant infarct limitation when given at 

reperfusion, supporting the findings of Study 1 in Chapter 3. This is in comparison to 

BAY 41-2272 1 μM which only demonstrated a 16 % reduction in infarct size compared 

to 34 % in Study 1, Chapter 3. A sub-threshold concentration of BAY 41-2272 was 

needed for analysis of concomitant NO donor and BAY 41-2272 treated hearts to detect a 

synergistic effect so this concentration was used for the remainder of the study. To 

investigate the proposed pharmacology of BAY 41-2272 and its ability to sensitize sGC to 

NO, submaximal BAY 41-2272 (1 μM) was perfused concomitantly with the lowest 

concentration of NOC-9 (1 nM). The results of these experiments support the 

mechanistic actions of BAY 41-2272 in the presence of NO as described by Stasch et al. 

(2001), and Schmidt et al. (2003). It is however the first demonstration that a combination 

of submaximal sGC stimulator and NO donor can afford greater protection than each dose 

independently. It also suggests that NO and BAY 41-2272 are not competing for the same 

active site and so not saturating the enzyme. 

4.4.3 cGMP levels in the heart 

cGMP levels were measured in LV and RV tissue samples similarly to Chapter 3. 

Convincingly, cGMP measured in both naïve and reperfusion only LV samples were very 

similar to the same groups in the previous chapter. cGMP levels in the adjacent RV for 

each group were also reproducible in the current study. To explore the relationship 

between NO inhibition and BAY 41-2272 mediated protection further, cGMP levels were 
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measured in LV and RV samples from hearts perfused in the same way as infarct Study 1. 

Concomitant perfusion of L-NAME and BAY 41-2272 resulted in a decrease of 37 % in 

cGMP compared to BAY 41-2272 perfused alone; however, cGMP levels were still 20 % 

higher than control (10’R) LV samples. These results suggest that only modest increases in 

cGMP at reperfusion are needed to limit infarct size. Similarly, cGMP levels in LV 

samples perfused with both BAY 41-2272 and C-PTIO at reperfusion resulted in a 53 % 

reduction in cGMP. These results support the infarct data reported in 4.3.3, suggesting 

that the ability of C-PTIO to scavenge NO has greater deleterious action than NOS 

inhibition by L-NAME. cGMP levels in LV control tissue were comparable to those 

treated with BAY 41-2272 and C-PTIO, yet the corresponding infarct study reported a 

reduction in infarct size of 25 %. This highlights the need for more specific investigation of 

intracellular cGMP production. Concomitant perfusion of submaximal NOC-9 and 

BAY 41-2272 increased LV tissue cGMP levels by 45 % compared to controls, supporting 

the infarct limitation observed in 4.3.4. These results suggest that there is not a linear 

relationship between cGMP levels and infarct size, but do suggest that a more extensive 

profile of cGMP levels for a given protective state would be valuable. 

4.4.4 NO2
- levels in coronary perfusate 

Measurement of NO in biological samples has been carried out for many years, and there 

are many ways in which it can be done. The difficulty is measuring NO in situ, as apparatus 

and reagents make this technically challenging. Collecting samples and later analysing 

them is the way in which this can be overcome. However NO has a very short half-life and 

so measurements are usually made using NO metabolites or by trapping NO in a spin trap 
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for electroparamagnetic resonance (EPR). In an attempt to quantify NO levels during 

early reperfusion in the presence of the pharmacological NO manipulating drugs, OBC 

was used. 

NO2
- levels measured in coronary effluent samples following 2 min reperfusion were 

approximately 8 times higher in the current study, compared with previous work carried 

out in our laboratory (Hamid et al., 2010), in an isolated mouse heart model. In the 

previous study, coronary effluent was collected over 60-120 seconds whereas samples in 

the current study were collected over 5 seconds. Apart from species differences and 

differing flow rates, this may in part explain the difference in NO2
- levels as time point 

samples in the current study would be diluted less and preserved much quicker because of 

the smaller quantity of coronary effluent collected. Surprisingly, NO2
- levels measured in 

coronary effluent samples that had been perfused with L-NAME during early reperfusion 

were significantly higher than untreated controls (p<0.05). It would have been expected 

that inhibition of NOS by L-NAME would result in a reduction in NO2
- levels (Hamid et 

al., 2010). Also unexpected were the results of perfusion with the NO donor NOC-9, 

which resulted in an insignificant increase in NO2
-, comparable to the results for C-PTIO 

treated hearts. I would speculate that the concentration of NOC-9 used was not high 

enough to sustain a sufficient production of NO that could be measured in the coronary 

effluent. However, this concentration was sufficient to elicit a biological response in the 

previous infarct study.  
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4.5 Conclusions 

Results from these studies support previous work that demonstrates that exogenous NO is 

cardioprotective when given at reperfusion. They also demonstrate that endogenous NO 

is not required to afford BAY 41-2272 mediated protection. However, NO can act 

synergistically with BAY 41-2272 to afford infarct limitation, when perfused at 

submaximal concentrations. These data also suggest that only small elevations in total 

tissue cGMP content are required to mediate infarct limitation. 
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Chapter 5 
NO-independent, haem-independent sGC activation and protection of 

reperfused myocardium
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5.1 Introduction 

5.1.1 Three states of sGC 

Understanding of NO/GC/cGMP signalling as a potential cardioprotective pathway has 

gained momentum in recent years. A potential limitation was identified in reduced NO 

generation under pathological conditions (see Chapter 1). However, it has recently been 

demonstrated that sGC expression and function can also be modified in pathological 

environments (Ruetten et al., 1999; Schermuly et al., 2008). Exploration of these 

concepts was helped by the discovery of a second distinct class of sGC modulating 

compounds, described as sGC activators. Similarly to the sGC stimulators described in 

Chapter 3, this unique class of compound was developed through a high throughput 

screening of around 250,000 compounds using a Chinese hamster ovary (CHO) cell line 

expressing a cGMP sensitive cation channel (Stasch et al., 2002b). The result of the 

screening programme was a new class of aminodicarboxylic acids, which after 

optimisation led to the development of 4-(4-carboxybutyl)(2-((4-phenethylbenzol) 

oxy)phenethyl)amino)methyl)benzoic acid (BAY 58-2667). Described as the first and 

most potent NO-independent, haem-independent sGC activator, Stasch et al. (2002b) 

demonstrated that BAY 58-2667 activated sGC even after it had been oxidised by the sGC 

inhibitor ODQ, or even after losing its haem group. 

5.1.2 Oxidised and haem-free sGC 

Investigation of the pharmacology of this class of compound and the chemistry underlying 

its action highlighted that sGC activation goes beyond NO binding to the haem site on the 

β subunit. Stasch et al. (2006) demonstrated for the first time that oxidised sGC exists in 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pcsubstance&term=%224%2d((4%2dcarboxybutyl)(2%2d((4%2dphenethylbenzol)%20oxy)phenethyl)amino)methyl(benzoic)acid%22%5bSynonym%5d%209808022%5bstandardizedcid%5d
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pcsubstance&term=%224%2d((4%2dcarboxybutyl)(2%2d((4%2dphenethylbenzol)%20oxy)phenethyl)amino)methyl(benzoic)acid%22%5bSynonym%5d%209808022%5bstandardizedcid%5d
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vivo and increases under conditions of oxidative stress associated with cardiovascular 

disease (see Figure 5.1). Up until this point, it was assumed that the haem-free and 

oxidised forms of sGC were biological artefacts and there was no evidence to suggest any 

clinical relevance to their presence. Using endothelial cells, Stasch et al. (2006), 

demonstrated that BAY 58-2667 could significantly increase cGMP levels in tissue 

incubated with the peroxynitrite donor SIN-1, yet an NO donor reduced cGMP 

production in this environment. They also demonstrated that BAY 58-2667 caused a 

greater increase in cGMP concentration in aortic rings from spontaneously hypertensive 

rats compared to the same treatment in normotensive Wistar Kyoto preparations. 

Furthermore, in the presence of the haem oxidising agent ODQ, cGMP levels were 

elevated between two and three fold. Using the structurally unrelated sGC activator 

HMR 1066, Schindler et al. (2006), demonstrated both with purified sGC and rat aortic 

rings that this compound preferentially activates the oxidised or haem-free portion of 

sGC. They also reported the presence of a small proportion of haem-oxidised enzyme in 

some sGC preparations by UV visible spectra. This observation corroborates the findings 

of Stasch et al. (2006), who demonstrated the presence of haem-oxidised sGC in living 

cells. Further evidence suggesting that under pathological conditions, sGC activators elicit 

greater cGMP elevating properties came from Zhou et al. (2008) who demonstrated that 

HMR 1066, another sGC activator, was able to elicit greater cGMP production in rat 

aortic smooth muscle cells exposed to oxidative stress than normoxic cells. 

These observations led Stasch et al. (2006) to conclude that because oxidation of the haem 

group also creates a BAY 58-2667 sensitive state, a similar oxidative mechanism is likely in 
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diseased vessels. They also acknowledged that evidence for the existence of 

haem-free/oxidised sGC in vivo was circumstantial, but the profiles of the sGC activators 

are indistinguishable and so the physiological existence of oxidised and haem-free sGC 

could no longer be rejected. 

Most recently, Roy et al. (2008), provided evidence that BAY 58-2667 and other sGC 

activators such as HMR 1766 target only the haem-free state of sGC. They suggested that 

oxidation of the haem group by pharmacological means or the proposed 

pathophysiological mechanisms creates a weakly bound haem state which has increased 

spontaneous haem loss, which allows BAY 58-2667 to bind to the haem-free pocket. The 

results reported are convincing but do not detract from the proposal of a so-called 

pathological state of sGC that can be targeted by sGC activators. The oxidation of sGC 

and subsequent haem loss, creating a larger proportion of NO-insensitive sGC, is plausible 

in the ischaemia-reperfusion setting, resulting from increased ROS. This makes sGC 

activators attractive pharmacological tools when targeting sGC in this environment. 

However, quantifying these states and characterising their dynamics is not yet possible.  
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Figure 5.1 Schematic demonstrating the redox balance between reduced and oxidised/haem-free sGC and the 
proposed mediators that could shift the redox towards the oxidised/haem-free state of sGC rendering it NO 
insensitive and a plausible target during early reperfusion. Blue colouring symbolises physiological activation 
of sGC, whilst red coloured components identify pathological stimuli oxidising sGC (Adapted from Stasch et 
al. 2011). 
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5.1.3 sGC degradation 

The association of sGC with several proteins including heat shock protein (HSP) HSP90, 

HSP70 and eNOS has been described in aortic endothelial cells. This association has been 

suggested to facilitate the activation of sGC by NO produced by eNOS, preventing NO 

inactivation by superoxide and peroxynitrite (Venema et al., 2003). As a result of these 

observations, Papapatropoulos et al. (2005), and Nedvetsky et al. (2008), reported that 

sGC protein levels are decreased in the presence of the HSP90 inhibitor geldanamycin. 

Studies by Mingone et al. (2008), and Nedvetsky et al. (2008), have demonstrated that 

haem-oxygenase 1 depletes sGC of haem and HSP90 stabilises long term expression of 

sGC. It has recently been suggested that the E3 C terminus of heat shock cognate protein 

70 (Hsc70)-interacting protein (CHIP), which interacts with the sGC/HSP90/HSP70 

complex, plays a crucial role in mediating the ubiquitinylation of sGC (Xia et al., 2007). In 

fact, Stasch et al. (2006), and Meurer et al. (2009), have reported that BAY 58-2667 is 

able to stabilise haem-free sGC and prevent CHIP-mediated ubiquitinylation, 

furthermore, increasing sGC protein levels above baseline. This effect is not seen by other 

cGMP generating or enhancing compounds such as BAY 41-2272, NO or PDE5 inhibitors 

(Hoffmann et al., 2009). 

5.1.4 Cinaciguat 

Promising in vivo and ex vivo experimental studies led to a phase I clinical trial using 

BAY 58-2667 (Cinaciguat), with the ambition that it could be used for the treatment of 

acute decompensated heart failure. The authors of the trial reported that BAY 58-2667 

had dose-dependent haemodynamic effects on diastolic blood pressure, mean arterial 
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pressure and HR and had desirable pre-load and after-load reducing cardiovascular effects 

(Frey et al., 2008). Most recently phase IIb studies have been completed investigating the 

tolerability and efficacy of BAY 58-2667 given i.v. at high (150 and 100 μg/h) and low 

(50 and 25 μg/h) doses; however the results of these trials are yet to be published.  
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5.1.5 Hypotheses 

The aim of this study was to investigate the effect of manipulating and targeting 

oxidised/haem-free sGC at reperfusion by means of a sGC activator. (4-(((4-

carboxybutyl) [2- (5-fluoro-2-([4'-(trifluoromethyl) biphenyl-4-yl]methoxy)phenyl)ethyl] 

amino)methyl)benzoic acid) (BAY 60-2770) (see Figure 5.2), an aminodicarboxylic acid 

compound of the same class as BAY 58-2667 was selected for these experiments. 

It was hypothesised that; 

i. exogenous activation of sGC by BAY 60-2770 at reperfusion would limit infarct size; 

ii. concomitant perfusion of BAY 60-2770 and the haem site oxidiser ODQ would afford 

greater protection than BAY 60-2770 perfusion alone; 

iii. targeting both the reduced and oxidised/haem-free portions of sGC at reperfusion 

with the sGC stimulator BAY 41-2272 and the sGC activator BAY 60-2770 would 

afford greater protection than either compound alone; 

iv. infarct limitation would be associated with elevated myocardial cGMP levels at 

reperfusion. 

The specific experimental objectives were to: 

1. Undertake a concentration response for BAY 60-2770 during early reperfusion in a rat 

isolated heart model 

2. Concomitantly perfuse the haem site oxidiser ODQ, NO scavenger C-PTIO or sGC 

stimulator BAY 41-2272 with BAY 60-2770 during early reperfusion 
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3. Measure cGMP levels in LV and RV tissue samples from hearts perfused with 

BAY 60-2770 

 

 
 

Figure 5.2 Chemical structure of (4-(((4-carboxybutyl) [2- (5-fluoro-2-([4'-(trifluoromethyl) biphenyl-4-
yl]methoxy)(phenyl)ethyl] amino)methyl)benzoic acid) (BAY 60-2770) (Schmidt, P.M., Schmidt, 
H.H.H.W., Hofmann, F., Stasch, J.-P. (2009) Handbook of Experimental Pharmacology: cGMP: 
Generators, Effectors and Therapeutic Implications Vol. 191, pp 315 Springer Berlin Heidelberg). 
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5.2 Materials and Methods 

5.2.1 Pharmacological compounds 

All salts used to make modified KH solution were sourced from Fisher Scientific LTD 

(UK) and were of analytical or ultrapure quality. ODQ (selective sGC inhibitor) and 

C-PTIO (NO scavenger) were sourced from Tocris Bioscience (UK). BAY 41-2272 

(NO-independent, haem-dependent sGC stimulator) and BAY 60-2770 

(NO-independent, haem-independent sGC activator) were kind gifts from Bayer Pharma 

AG, (Wuppertal, Germany). BAY 41-2272 was dissolved in DMSO, the final 

concentration of DMSO in the KH was 0.05 % v/v. 

5.2.2 Rat isolated heart perfusion 

Rat isolated hearts were excised and retrograde perfused as described in Chapter 2. Once 

a period of 20 min haemodynamic stabilisation had been established, rat hearts were 

randomised and assigned to one of the groups mentioned in 5.2.3. All hearts were 

subjected to 35 min LDCA occlusion followed by 120 min of reperfusion unless otherwise 

stated. 

5.2.3 Concentration response to BAY 60-2770: Study 1 

A concentration response to BAY 60-2770 was carried out by perfusing hearts with 

BAY 60-2770 5 nM - 1 μM at reperfusion (see Figure 5.3). Although there are no 

published data using BAY 60-2770 in an isolated rat heart model, there are several reports 

of the structurally related sGC activator BAY 58-2667 being used. Krieg et al. (2009) 

reported infarct limitation when BAY 58-2667 was perfused at 50 nM and so a range 
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between 5 nM and 1 μM was chosen for BAY 60-2770. Rats used in this study were 

sourced from Harlan UK Ltd (Oxfordshire, UK). 

Group 1, Control, (n=18). This group includes some hearts (n=4) that were perfused 

with the vehicle DMSO 0.05 % v/v from 30 min ischaemia until 10 min reperfusion. 

There was no statistical significant difference between control hearts perfused with or 

without DMSO vehicle and so all hearts were pooled in this group for statistical analysis. 

Group 2, BAY 60-2770 1 µM, (n=7). BAY 60-2770 1 µM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 3, BAY 60-2770 500 nM, (n=8). BAY 60-2770 500 nM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 4, BAY 60-2770 50 nM, (n=8). BAY 60-2770 50 nM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 5, BAY 60-2770 5 nM, (n=6). BAY 60-2770 5 nM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 6, ODQ 2 µM, (n=6). ODQ 2 µM was perfused from 28 min ischaemia until 10 

min reperfusion. 

Group 7, ODQ 2 µM + BAY 60-2770 5 nM, (n=7). ODQ 2 µM was perfused from 28 

min ischaemia and BAY 60-2770 5 nM from 30 min ischaemia, both until 10 min 

reperfusion. 

Group 8, C-PTIO 30 µM (n=6). C-PTIO 30 µM was perfused from 28 min ischaemia 

until 10 min reperfusion. 
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Group 9, C-PTIO 30 µM + BAY 60-2770 5 nM, (n=6).C-PTIO 30 µM was perfused 

from 28 min ischaemia and BAY 60-2770 5 nM from 30 min ischaemia, both until 10 min 

reperfusion. 

Group 10, BAY 41-2272 1 µM (n=6). BAY 41-2272 1 µM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 11, BAY 41-2272 1 µM + BAY 60-2770 5 nM (n=6). BAY 41-2272 1 µM and 

BAY 60-2770 5 nM were perfused from 30 min ischaemia until 10 min reperfusion. 

 

 
Figure 5.3 Experimental protocol for groups 1-11 in Study 1. All hearts were stabilised for 20 min followed 
by 35 min regional ischaemia and then reperfused for 120 min. BAY 60-2770 was perfused at 5, 50, 500 

nM and 1 μM. 
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5.2.4 cGMP Radio immuno-sorbent assay: Study 2 

To investigate further the pharmacological action of BAY 60-2770 and concomitant 

perfusion with BAY 41-2272, RIA was performed as described in Chapter 3.2.4. Tissue 

samples were prepared from rat hearts randomly assigned to one of 5 groups shown in 

Figure 5.4. Hearts that were subjected to regional ischaemia were treated as described for 

Study 1. Groups 1 and 2 have already been reported in Chapter 4. Animals used for RIA 

in this study were supplied by Charles River Laboratories Inc. (Maidenhead, UK). 

Group 1, Naive, (n=6). Hearts were excised and washed in KH to remove any blood and 

then sectioned. 

Group 2, 10 min reperfusion, (n=6). Hearts were stabilised, subjected to LDCA 

occlusion for 35 min and reperfused for 10 min. 

Group 3, 10 min reperfusion + BAY 60-2770 5 nM, (n=5). Hearts were stabilised, 

subjected to LDCA occlusion for 35 min and reperfused for 10 min. BAY 60-2770 5 nM 

was perfused as described for Group 5 in 5.2.3. 

Group 4, 10 min reperfusion + BAY 60-2770 5 nM + ODQ 2 µM, (n=5). Hearts were 

stabilised, subjected to LDCA occlusion for 35 min and reperfused for 10 min. 

BAY 60-2770 5 nM and ODQ 2 µM were perfused as described for Group 7 in 5.2.3. 

Group 5, 10 min reperfusion + BAY 41-2272 1 µM and BAY 60-2770 5 nM, (n=5). 

Hearts were stabilised, subjected to LDCA occlusion for 35 min and reperfused for 10 

min. BAY 41-2272 1 µM and BAY 60-2770 5 nM were perfused as described for Group 11 in 

5.2.3. 
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Figure 5.4 Experimental protocol for hearts prepared for RIA in Study 2. Red arrows indicate time points at 
which hearts were sampled. 
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5.3 Results 

5.3.1 Summary of experiments 

In Study 1 93 rats were used. Nine hearts were excluded from the study due to technical 

error; thus, 84 completed experiments are reported. In Study 2, 15 rats were used for 

RIA + 12 from Study 3 in Chapter 4. There were no exclusions and so data from 27 

hearts are reported. The period of stabilisation before the onset of ischaemia was carried 

out to allow the hearts to stabilise and reach pre-determined criteria (see below). For a 

heart to be included and subjected to ischaemia, it had to achieve the following baseline 

cardiodynamic criteria; 

CFR between 10 and 24 mL/min, LVEDP 5-10 mmHg, HR 200-350 BPM, LVDP 

greater than 50 mmHg and a steady sinus rhythm. Hearts were also excluded during 

analysis if there was inadequate delineation of the risk zone and infarcted tissue (poor 

staining). 

5.3.2 Infarct size data: Study 1 

Study 1 contains Langendorff perfusion experiments for the initial concentration response 

to BAY 60-2770; pharmacological oxidation of sGC with ODQ; inhibition of NO with the 

NO scavenger C-PTIO; and concomitant perfusion of both the sGC stimulator and 

activator. The area at risk for all hearts in all groups was between 38.6 and 55.8 % of the 

combined left and right ventricular tissue; there were no statistical differences between 

groups. Infarct size was expressed as a percentage of the risk zone, calculated as described 

in Chapter 2 and reported in Figures 5.5, 5.6, 5.7 and 5.8. Under control conditions (35 

min ischaemia followed by 120 min reperfusion) hearts had infarct sizes of 33.0 ± 2.6 % 
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(n=18) compared to 22.0 ± 2.8 % (n=7) (p<0.01) for hearts treated with the highest 

concentration of BAY 60-2770. Treatment with 500 nM, 50 nM and 5 nM BAY 60-2770 

also showed comparable infarct limitation (23.4 ± 2.2 % (n=8), 20.9 ± 2.3 % (n=8) and 

19.7 ± 2.8 (n=6) % respectively). There were no statistical differences between 

BAY 60-2770 treated groups. All concentrations afforded between 29 and 41 % reduction 

in infarct size compared to controls, but there was no obvious concentration dependency 

in the range examined (Figure 5.5). 

2 μM ODQ alone had no statistically significant effect on infarct size, (32.9 ± 2.2 % 

n=6). However, concomitant perfusion of ODQ with the lowest concentration of 

BAY 60-2770 reduced infarct size to 17.6 ± 2.0 % (n=7) (Figure 5.6). Perfusion with the 

NO scavenger C-PTIO produced infarct sizes similar to controls (32.0 ± 2.8 % n=6). 

Furthermore, C-PTIO did not abrogate the protection afforded by BAY 60-2770 (22.2 ± 

2.2 % n=6) (Figure 5.7). Consistent with results reported in Chapter 4, perfusion of 

submaximal BAY 41-2272 (1 μM) did not afford statistically significant protection. 

Concomitant perfusion of BAY 60-2770 5 nM and BAY 41-2272 1 μM resulted in only a 

modest 21 % reduction in infarct size (24.8 ± 2.7 % n=6) (Figure 5.8).  
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Figure 5.5 Infarct size expressed as percentage of ischaemic risk zone for BAY 60-2770 concentration 
response (** p<0.01 vs. control) ONE-way ANOVA + Newman-Keuls post-hoc (n=6-18). 

 

 
 

Figure 5.6 Infarct size expressed as percentage of ischaemic risk zone for ODQ and ODQ + BAY 60-2770 
treated hearts (** p<0.01 vs. control) ONE-way ANOVA + Newman-Keuls post-hoc (n=6-18).  
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Figure 5.7 Infarct size expressed as percentage of ischaemic risk zone for C-PTIO and C-PTIO + 
BAY 60-2770 treated hearts (** p<0.01 vs. control) ONE-way ANOVA + Newman-Keuls post-hoc 
(n=6-18). 

 

 
 

Figure 5.8 Infarct size expressed as percentage of ischaemic risk zone for BAY 41-2272 and BAY 41-2272 
+ BAY 60-2770 treated hearts (* p<0.05, *** p<0.001 vs. control) ONE-way ANOVA + Newman-
Keuls post-hoc (n=6-18).   
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5.3.3 Cardiodynamic data: Study 1 

Baseline cardiodynamic data are presented in Table 5.1. There was no statistical difference 

between any of the parameters between groups. RPP dropped by as much as 85 % upon 

induction of ischaemia in all treatment groups, recovering partially throughout ischaemia 

and then dropping again upon reperfusion due to the tendency for the hearts to fibrillate. 

RPP recovered before gradually decreasing throughout reperfusion (Figures 5.9A, 5.10A, 

5.11A & 5.12 A). 

Upon induction of ischaemia, CFR dropped in all experiments by at least 30 % (Figures 

5.9B, 5.10B, 5. 11B & 5.12B). CFR increased towards baseline once the ligature had been 

removed from the LDCA confirming successful reperfusion, and then decreased gradually 

during reperfusion.  
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Figure 5.9 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 5.5. 
SEM bars have been removed for clarity. There were no statistically significant differences between treatment 
groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were perfused.  
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Figure 5.10 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 5.6. 
SEM bars have been removed for clarity There were no statistically significant differences between treatment 
groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were perfused.  
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Figure 5.11 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 5.7. 
SEM bars have been removed for clarity. There were no statistically significant differences between treatment 
groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were perfused. 
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Figure 5.12 Percentage change from baseline, rate pressure product [A] and coronary flow rate [B] from -1 
min stabilisation [19 min] through 120 min reperfusion [175 min] for I-R experiments shown in figure 5.8. 
SEM bars have been removed for clarity. There were no statistically significant differences between treatment 
groups at each time point (repeated measures ANOVA). Red box indicates time at which drugs were perfused.  
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5.3.4 RIA cGMP measurements: Study 2 

Tissue levels of cGMP were measured in hearts that had been treated with or without 

BAY 60-2770 and subjected to 35 min regional ischaemia by occlusion of the LDCA. 

Measurements were also made in hearts perfused with BAY 60-2770 concomitantly with 

ODQ or BAY 41-2272. Tissue samples from concomitant BAY 60-2770 and ODQ 

perfused LV had cGMP levels 60 % higher than those perfused with BAY 60-2770 alone 

(20.16 ± 2.25 (n=5) vs. 12.60 ± 1.65 (n=5) fmol/mg tissue, p<0.01). An increase of 

36 % from control was also seen in LV samples perfused with both the sGC stimulator and 

activator (17.11 ± 1.90 (n=5) vs. 12.60 ± 1.65 (n=5) fmol/mg tissue, p<0.05), an 

increase of 86 % compared to untreated hearts. RV samples which were not subjected to 

LDCA occlusion had cGMP levels greater than their adjacent LV in all groups (Figure 5.13 

A and B).  
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Figure 5.13 cGMP levels in LV (A) and RV (B) heart samples perfused with or without BAY 60-2770 5 nM 

at reperfusion or concomitantly with ODQ 2 μM or BAY 41-2272 1 μM (**p<0.01, *** p<0.001 vs. 
10’R, †p<0.05, †† p<0.01 vs. 10’R BAY 60) ONE-way ANOVA + Newman-Keuls post-hoc (n=5-6). 
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5.4 Discussion 

5.4.1 Summary of findings 

The major findings of the studies in this chapter are: 

i) BAY 60-2770 limited infarct size when given at reperfusion 

ii) Concomitant perfusion with the haem oxidiser ODQ did not abrogate this 

protection 

iii) Targeting both redox states of sGC could not afford additive/greater protection 

than either redox state alone 

iv) Infarct size limitation was associated with elevated cGMP levels in the LV although 

there was not a direct correlation between elevated cGMP and reduced infarct size 

The findings in these studies further support the notion that elevation of cGMP during 

early reperfusion contributes to infarct limitation. However, the data also suggest that 

there is not a linear relationship between cGMP production and infarct size. 

5.4.2 Targeting oxidised/haem-free sGC limits infarct size 

In order to explore the infarct limiting effects of targeting the oxidised/haem-free 

component of sGC, the sGC activator BAY 60-2770 was perfused during early 

reperfusion. All concentrations tested afforded significant infarct limitation suggesting that 

the EC50 must be in the picomolar range. However, to date there are no other published 

data using this compound in a model of ischaemia-reperfusion. The structurally similar 

compound BAY 58-2667 has been used in isolated rat and rabbit heart models, as well as 

in situ rabbit experiments (Cohen et al., 2010; Krieg et al., 2009). BAY 60-2770 differs 

only in the addition of a trifluoro group at the distal alkoxyaryl region and additional 

fluorine at the haem binding region. These modifications may increase the log P of 
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BAY 60-2770 and may increase its lipophilicity. Mechanistically it should act in the same 

way as BAY 58-2667, activating sGC by interaction with the α subunit at residue 371 and 

the β subunit between residues 231 and 310 (Stasch et al., 2006). Using the structurally 

similar sGC activator, Krieg et al. (2009) demonstrated significant infarct reduction in the 

isolated rat heart when BAY 58-2667 was given at reperfusion. They reported almost 

twice the protection reported in this study; however in their experiments the sGC 

activator was perfused throughout reperfusion and they used a global ischaemia model. 

Whether the protective effects are attributed only during early reperfusion was not 

investigated. In an ex vivo rabbit heart model Cohen et al. (2010) reported reduction in 

infarct size of 54 %. However, BAY 58-2667 was perfused for 1 hour, starting 5 min prior 

to reperfusion. Although these results were obtained in a different species, it may suggest 

that infarct size reduction is greater when the sGC activator is perfused beyond the first 

few minutes of reperfusion. 

Reductions in infarct size in hearts perfused with the sGC activator are supported by 

elevation in cGMP levels in hearts perfused with BAY 60-2770 at reperfusion. An increase 

of 27 % compared to untreated hearts was recorded suggesting that protection is mediated 

by increased cGMP levels at reperfusion. Krieg  et al. (2009), also reported significant 

elevation in cGMP levels in isolated rat hearts perfused with BAY 58-2667. The increase 

they reported is much more pronounced than that observed in this study. They reported 

an elevation in cGMP levels of around 40 times compared to controls, although these 

elevated levels were 5 times lower than treated hearts in the current study. They did not 
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distinguish between left and right ventricle and infarct distribution in global ischaemia is 

less uniform, compared to the regional ischaemia model used here. 

5.4.3 Oxidising sGC with ODQ potentiates BAY 60-2770 infarct limitation 

In order to characterise the mechanistic action of BAY 60-2770 in the 

ischaemia-reperfusion setting further, the haem oxidiser ODQ was concomitantly 

perfused with BAY 60-2770 at reperfusion. Unsurprisingly, ODQ did not abrogate the 

protection afforded by BAY 60-2770, which is in support of the pharmacology of the sGC 

activators described by Stasch et al. (2006), which confirms the haem-independence of this 

class of compound. Furthermore, the infarct limitation in hearts perfused with both ODQ 

and BAY 60-2770 was similar to BAY 60-2770 alone. Again, this supports the work of 

Stasch et al (2006), who reported the ability of ODQ to potentiate BAY 58-2667 

stimulated relaxation of aortic smooth muscle by oxidising reduced sGC rendering it 

sensitive to the sGC activator. Conversely, addition of BAY 58-2667 stabilised oxidised 

sGC from ubiquitin-mediated degradation (Hoffmann et al., 2009). It is speculated by 

several research groups that this observation may be of clinical relevance if there is an 

increased pool of oxidised sGC, a conjecture being investigated in several cardiovascular 

pathologies (Schmidt et al., 2009). 

In support of these results and the published studies documenting the pharmacokinetics of 

sGC activators, cGMP levels were elevated by 120 % compared to untreated controls 

(Figure 5.13A). This is in agreement with Stasch et al. (2006), who reported that ODQ 

stabilises sGC and potentiates cGMP production when BAY 58-2667 was also added. 
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5.4.4 NO-independence of BAY 60-2770 mediated infarct limitation 

Using the NO scavenger C-PTIO, it was demonstrated that BAY 60-2770 mediated 

protection was independent of NO. Concomitant perfusion of the NO scavenger and sGC 

activator afforded protection not dissimilar to that seen with BAY 60-2770 alone. There 

was a tendency for infarct size to be slightly greater in hearts perfused with both 

compounds, which may suggest that some of the infarct limitation is due to NO mediated 

sGC activation. Previous cell based studies have reported that the aminodicarboxylic acids 

produce cGMP additively to NO, not synergistically like the Bayer sGC stimulators 

(Schmidt et al., 2003; Stasch et al., 2002b; Stasch et al., 2006). Therefore, it could be 

speculated the difference between the infarct size in the BAY 60-2770 group and that 

perfused concomitantly with C-PTIO is attributable to NO activated sGC. 

In support of the NO-independence shown in this study, Krieg et al. (2009) reported that 

concomitant perfusion of BAY 58-2667 and the NOS inhibitor L-NAME did not 

significantly abrogate protection afforded by the sGC activator alone in an isolated rat 

heart model. However, a recent study by Downey’s laboratory demonstrated that 

co-perfusion of L-NAME abrogated over 90 % of the infarct limitation afforded by 

BAY 58-2667 alone in an isolated rabbit heart model (Cohen et al., 2010). Whether this 

divergence in observation is due to species differences remains to be elucidated; however, 

the concentration of L-NAME used in both studies was 200 μM, double the concentration 

our laboratory has used in the isolated rat heart (Burley & Baxter, 2007; D'Souza et al., 

2003). 
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5.4.5 Targeting both oxidised and reduced sGC 

Based on the emerging evidence that there are both reduced and oxidised/haem-free sGC 

pools present in tissues (Stasch et al., 2006), concomitant perfusion of both a sGC 

stimulator, BAY 41-2272 and a sGC activator, BAY 60-2770 was explored to determine 

whether targeting both states of sGC could limit infarct size beyond either drug perfused 

alone. Results suggest that targeting both states of sGC does not afford additive infarct 

limitation; in fact, infarct sizes for hearts perfused with both compounds were larger than 

hearts perfused with the sGC activator alone. Surprisingly cGMP levels in LV tissue 

samples perfused with both compounds at reperfusion are 36 % higher than those of tissue 

samples perfused only with the sGC activator. This suggests that targeting both states of 

sGC produces more cGMP; however, this does not translate into infarct limitation. I 

would speculate that cGMP produced by each of the sGC states is produced at spatially 

different locations within the cell. Whether in attempting to regulate the distal signals and 

activate PKG, phosphodiesterase prevent signalling remains to be elucidated. It is however 

well documented that only small increases in cGMP can elicit physiological responses 

(Evgenov et al., 2006; Stasch et al., 2002b). Quantification of cGMP produced by each 

state of sGC as well as the ratio of the forms of sGC would be desirable to explain these 

observations further.  



Chapter 5

 
 

170 

5.5 Conclusions 

Taken together, results from Studies 1 and 2 demonstrate that activation of sGC using the 

NO-independent, haem-independent activator, BAY 60-2770 limit infarct size when given 

during early reperfusion. Furthermore, this protection is mediated, in part by an increase 

in cGMP levels. The data in this study also demonstrate that protection can be afforded 

independently of endogenous NO and can be increased by oxidising the haem group of 

sGC. The hypothesis regarding targeting both states of sGC at reperfusion was refuted, 

yet the data suggest that total tissue cGMP production is not linearly linked to infarct 

limitation.
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Chapter 6 
sGC component of pGC mediated protection of reperfused myocardium
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6.1 Introduction 

6.1.1 Natriuretic peptides as an indicator of infarct size 

As mentioned in Chapter 1, NPs play a fundamental role in cardiovascular homeostasis, 

their release being primarily regulated by pressure overload and myocardial stretch. In 

1991, Mukoyama et al. reported for the first time that BNP levels were elevated during 

myocardial infarction. It was later reported that elevation of BNP correlates with infarct 

size, both in lethal (Arakawa et al., 1994) and sublethal ischaemic insult (Kyriakides et al., 

2000). Since then several experimental studies have documented elevation of ANP (Arad 

et al., 1994; Chen et al., 1993; Zhang et al., 2004) and BNP (D'Souza et al., 2003; Hama et 

al., 1995) in models of myocardial ischaemia. Most recently, numerous clinical studies 

confirmed the usefulness of measuring BNP levels in patients presenting with STEMI, and 

suggest that they are a good indicator of prognosis and infarct size (Fertin et al., 2010; 

Neyou et al., 2011; Seo et al., 2011). 

6.1.2 Natriuretic peptides during preconditioning 

Knowledge that NP levels are closely linked to infarct size led to experimental studies 

investigating the infarct limiting properties of NPs given prior to, or post ischaemia. 

Previous work by our laboratory demonstrated that perfusion of BNP just before and 

throughout ischaemia in an isolated rat heart model of regional ischaemia reduced infarct 

size in a concentration dependent manner correlating with myocardial cGMP elevation 

(D'Souza et al., 2003). Further exploration demonstrated that this protection was 

inhibited by KATP channel inhibitor, 5-HD (D'Souza et al., 2003). Both ANP (Okawa et al., 
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2003), and CNP (Hobbs et al., 2004), have also been demonstrated to limit infarct size 

when administered prior to normothermic global ischaemia. 

6.1.3 Natriuretic peptides at reperfusion 

More recent studies have identified that NPs administered at reperfusion afford protection 

in both rat and rabbit models of ischaemia-reperfusion. Downey’s group reported that 

administration of ANP just prior to reperfusion limited infarct size in the rabbit heart. 

They also demonstrated that the protection afforded required KATP activity as inhibition of 

the channel with 5-HD abrogated the protective effects of ANP (Yang et al., 2006). BNP 

was also shown to limit infarct size in an in situ rat heart model, limiting infarct size in a 

concentration dependent manner (Ren et al., 2007). Our laboratory reported similar 

results in an ex vivo rat heart model, demonstrating concentration dependent infarct 

limitation with BNP, which like previous studies was dependent on KATP channel activity 

(Burley & Baxter, 2007). Furthermore, we reported that NPs play a role in 

post-conditioning mediated protection as the non-specific NPR-A/NPR-B antagonist 

isatin abolished the infarct limitation afforded by a 6 x 10 sec post-conditioning protocol 

(Burley & Baxter, 2007). Most recently, George et al. (2010), reported that perfusion of 

BNP for 7 days post AMI significantly improved LV function and decreased LV 

remodelling in the rat heart. 

6.1.4 PI3K/Akt and eNOS in natriuretic peptide mediated infarct limitation 

Infarct limitation afforded by NPs has been demonstrated to require KATP activity as 

described above. It has also been demonstrated that protection was mediated by elevation 

of cGMP and distal PKG targets converging on the same effectors as NO/sGC signalling, 
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i.e. regulating calcium via PLB and L-type calcium channels and potassium efflux through 

the KATP channel (D'Souza et al., 2003; Lincoln et al., 2001; Lucas et al., 2000). 

Other signalling pathways have been suggested to play a part in NP mediated infarct 

limitation. D’Souza et al. (2004) reported that concomitant perfusion of L-NAME prior to 

LDCA occlusion abrogated the protection afforded by BNP alone. Similarly, perfusion of 

ODQ abolished BNP induced infarct limitation (D'Souza et al., 2004). These results 

suggested that activation of NOS and sGC are required to afford BNP protection. 

Whether cGMP generated by pGC, sGC or both was needed to afford BNP protection 

remains unclear and little has been done to investigate this cardioprotective mechanism 

further. Similar observations were made in a reperfusion targeted treatment by Ren et al. 

(2007), who report that L-NAME reversed the protection afforded by BNP when given 

just prior to and throughout reperfusion in an in situ rat heart model. This was supported 

by Western blotting analysis that demonstrated that a cardioprotective dose of BNP 

significantly increased eNOS expression. The reversal of BNP induced infarct limitation by 

L-NAME at reperfusion has been demonstrated in an ex vivo rat heart model in our 

laboratory (Burley & Baxter, 2007). Concomitant perfusion of BNP and L-NAME just 

prior to and for the first 10 min of reperfusion abrogated the protection afforded by BNP 

and in fact increased infarct size beyond controls. In an isolated perfused rabbit heart 

model, Yang et al. (2006) demonstrated that the upstream activators of eNOS in the 

proposed RISK pathway are also essential for ANP mediated protection. Wortmannin, an 

inhibitor of PI3K, and PD98059, an inhibitor of ERK, independently blocked ANP 

mediated infarct limitation in the rabbit heart. Furthermore they reported that 
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concomitant perfusion of ODQ and ANP abrogated ANP mediated infarct limitation. 

Taken together these data strongly suggest that a pathway converging on sGC 

(PI3K/Akt/eNOS/NO/sGC) plays a critical role in NP mediated infarct limitation. 

However, biochemical confirmation of these observations is lacking. These studies also 

question whether there is a direct pGC/cGMP/PKG component to the RISK pathway or 

whether pGC mediated protection is mediated indirectly instead via 

PI3K/Akt/eNOS/NO/sGC. 

6.1.5 Differential regulation and action of pGC and sGC mediated cGMP 

Although it has long been documented that cGMP is produced by two forms of GC, a 

growing body of research suggests that the cGMP produced by different enzymes mediates 

different responses, regulated by specific PDEs (Fischmeister et al., 2006). As mentioned 

previously in Chapter 1, pGC and sGC can mediate different calcium handling in cardiac 

myocytes. Castro et al. (2006), suggest that this differential action is a result of spatially 

separated pools of cGMP within the cell acting locally to elicit a response. 

Using purified adult rat ventricular myocytes , Fischmeister’s laboratory demonstrated the 

differential action of PKG on cGMP measured by recording the activity of the wild-type 

rat olfactory nucleotide-gated channel (Castro et al., 2010). Their results suggest that 

PKG limits the production of sGC-mediated cGMP via PDE5 stimulation, in contrast to 

pGC mediated cGMP production, which is increased. They proposed that PKG initiates a 

positive feedback on pGC to produce more cGMP, compartmentalised by PDE2. They 

further suggested that PKG activated by sGC mediated cGMP production phosphorylates 

PDE5, limiting diffusion of cGMP locally (Castro et al., 2010). These data support the 
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compartmentalisation theories of cGMP production. Furthermore, it demonstrates that 

pGC and sGC may elicit different responses through cGMP/PKG, highlighting the need 

to explore where and how pGC and sGC signalling converges, specifically during early 

reperfusion.  
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6.1.6 Hypotheses 

The aim of this study was to investigate the signalling cascade between pGC and sGC and 

whether elevation of cGMP by pGC during ischaemia-reperfusion is mediated by 

recruiting PI3K/Akt/eNOS/NO/sGC. 

It was hypothesised that; 

i. Perfusion of BNP during early reperfusion would elevate phosphorylated Akt and this 

elevation would be inhibited by the PI3K inhibitor Wortmannin; 

ii. BNP would elevate NO levels in the myocardium; 

iii. BNP mediated elevation of cGMP during early reperfusion would be blocked by ODQ 

The specific experimental objectives were to: 

1. Semi-quantify the change in pAkt (by Western blot) in normoxic and 

ischaemia-reperfused rat isolated perfused heart 

2. Measure cGMP levels in hearts perfused with BNP 

3. Measure NOx by OBC in coronary effluent collected from hearts perfused with BNP  
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6.2 Materials and Methods 

6.2.1 Pharmacological compounds 

All salts used to make modified KH solution were sourced from Fisher Scientific LTD 

(UK) and were of analytical or ultrapure quality. ODQ (selective sGC inhibitor) was 

sourced from Tocris Bioscience (UK). Wortmannin (PI3K inhibitor) and rat BNP-32 were 

purchased from Sigma-Aldrich (UK). 

6.2.2 Rat isolated heart perfusion 

Rat isolated hearts were excised and retrograde perfused as described in Chapter 2. Once 

a period of 20 min haemodynamic stabilisation had been established, rat hearts were 

randomised and assigned to one of the groups mentioned in 6.2.3. All hearts were 

subjected to 35 min LDCA occlusion followed by 10 min of reperfusion unless otherwise 

stated. 

6.2.3 Western blotting: Study 1 

Animals used in this study were sourced from Harlan UK Ltd (Oxfordshire, UK). Two 

sets of samples were prepared for Western blotting. Groups 1-4 underwent stabilisation 

and were treated with 15 min of normoxic drug perfusion (Figure 6.1), whilst groups 5-8 

underwent a standard ischaemia-reperfusion protocol and were treated from 5 min prior 

to until 10 min after reperfusion (Figure 6.2). 

To determine the effects of BNP on PI3K/Akt activity, Western blotting was performed 

to analyse the phosphorylation of Akt, using polyclonal immunoglobulins. As described 

previously, Akt is a kinase proposed to be involved in the RISK pathway of cell survival 

against reperfusion injury. 
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Hearts that had been perfused for Western blotting analysis were sectioned as described in 

Chapter 3.2.4 and each portion was further divided into 4-5 pieces, blotted dry, snap 

frozen in liquid nitrogen, and stored at -80 º C until required for analysis. Samples were 

powdered by hand with a mortar and pestle and kept cool on a bed of dry ice. The 

powdered tissue was then homogenised in lysis buffer with protease and phosphatase 

inhibitor cocktails (Sigma-Aldrich, UK). The homogenates were sonicated for 3 sec and 

then centrifuged for 15 min at 13,000 g. The supernatant was aliquoted and kept on ice. 

Total protein concentration was determined using the bicinchoninic acid (BCA) protein 

assay kit (Pierce, UK). Protein quantification was achieved by the reaction of protein with 

cupric (Cu2+) reduced to cuprous (Cu+) cations, in an alkaline biuret solution. A purple 

chromophore is formed when the cuprous ions react with BCA. 10 µL of aliquoted sample 

was mixed with 200 µL of working reagent in a 96-well plate and incubated for 30 min at 

37 ºC. Absorbance at 540 nm was measured (Dynex Technology MRX TC Revolution 

4.22, UK). Protein concentration was determined and calculated using a standard curve 

produced from different concentrations (0, 20, 250, 500, 103, 103.3, 103.6, 103.9 and 104 

µg/mL) of BSA in lysis buffer. 

For each sample ((tissue homogenate in Laemmli sample buffer (4 % w/v sodium dodecyl 

sulphate (SDS), 20 % v/v glycerol, 10 % 2-mecaptoethanol, 0.0004 % bromophenol 

blue, 0.125 m Tris HCl), 1:1 ratio), 30 µg of protein was loaded. Proteins were then 

separated using a mini-PROTEAN 3 cell and tank system (Bio-Rad Laboratories Inc., UK) 

and wet transferred to polyvinylidene difluoride membrane (PVDF), (Hybond P, 

Amersham Biosciences Ltd., UK). The PVDF membrane was then immersed in 5 % w/v 
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skimmed milk powder solution for 3 h, to reduce the amount of non-specific binding of 

proteins during subsequent steps of the assay. PVDF membranes were probed with pAkt 

or tAkt primary antibodies (1:1000) at 4 ºC overnight on a roller plate. PVDF membranes 

were washed in TBS-Tween (3 x 15 mini washes), then probed with a goat-anti rabbit 

horseradish peroxidase (HRP)-conjugate secondary antibody (1:10,000) for 1 hour, 

followed by further washing steps as described above. Bands were detected using Western 

blotting Luminol reagent (GE Healthcare, UK) which was evenly spread over the PVDF 

membranes and placed in a developing cassette for 5 min. Using double coated film 

sensitive to both blue and green light chemiluminescence systems, images were 

developed. Films were left to dry for two hours before being scanned using a Canon 

MP610 all in one printer, scanner, copier. Densitometry was performed using computer 

imagery software ImageJ 1.45q. Mean grey values were then converted into optical 

densities using a standard curve produced from a Kodak calibrated step tablet with known 

optical density values for each grade of colour. 

Normoxic treatment protocols 

Group 1, Control, (n=5). 20 min stabilisation followed by 15 min perfusion. 

Group 2, BNP 10 nM, (n=5). 20 min stabilisation followed from 15 min perfusion with 

BNP 10 nM (concentration determined by previous studies in our laboratory). 

Group 3, Wortmannin 100 nM, (n=5). 20 min stabilisation followed by 15 min 

perfusion with Wortmannin 10 nM (concentration determined from previous studies in 

our laboratory). 
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Group 4, BNP 10 nM + Wortmannin 100 nM, (n=5). 20 min stabilisation followed by 

15 min concomitant perfusion of BNP 10 nM and Wortmannin 100 nM. 

 

 
 

Figure 6.1 Experimental protocol for groups 1-4 in Study 1. All hearts were stabilised for 20 min followed 
by 15 min normoxic perfusion. Red arrows indicate time points at which hearts were sampled for Western 
blotting. 

 

Ischaemia-reperfusion treatment protocols 

Group 5, Control, (n=5). 20 min stabilisation followed by 35 min LDCA occlusion and 

then 10 min reperfusion. 

Group 6, BNP 10 nM, (n=5). BNP 10 nM was perfused from 30 min ischaemia until 10 

min reperfusion. 

Group 7, Wortmannin 100 nM, (n=5). Wortmannin 100 nM was perfused from 30 min 

ischaemia until 10 min reperfusion. 

Group 8, BNP 10 nM + Wortmannin 100 nM (n=5). BNP 10 nM + Wortmannin 

100 nM were perfused from 30 min ischaemia until 10 min reperfusion. 

Time 
(min)

-20 0 15

Stabilisation

BNP 10 nM 

Group 2

Group 3

Group 4

Group 1
Perfusion

Wortmannin 100 nM 



Chapter 6

 
 

182 

 
 

Figure 6.2 Experimental protocol for groups 5-8 in Study 1. All hearts were stabilised for 20 min followed 
by 35 min regional ischaemia and then reperfused for 10 min. Red arrows indicate time points at which 
hearts were sampled for Western blotting. 

 

  

Time 
(min)

-20 0 3530 45

Stabilisation
Ischaemia (CAO)

BNP 10 nM 

Group 6

Group 7

Group 8

Group 5

Reperfusion

Wortmannin 100 nM 



Chapter 6

 
 

183 

6.2.4 cGMP Radio immuno-sorbent assay: Study 2 

To investigate the cGMP elevating action of BNP given during early reperfusion RIA was 

carried out as described in Chapter 3.2.4. Tissue samples were prepared from rats 

randomly assigned to one of four groups described below (see Figure 6.3). Animals used 

for RIA in this study were supplied by Charles River Laboratories Inc. (Maidenhead, UK). 

Group 1, Naive, (n=6). Hearts were excised and washed in KH to remove any blood and 

then sectioned. 

Group 2, 10 min reperfusion, (n=6). Hearts were stabilised, subjected to LDCA 

occlusion for 35 min and reperfused for 10 min. 

Group 3, 10 min reperfusion + BNP 10 nM, (n=5). Hearts were stabilised, subjected to 

LDCA occlusion for 35 min and reperfused for 10 min. BNP 10 nM was perfused as 

described for Group 6 in 6.2.3. 

Group 4, 10 min reperfusion + BNP 10 nM + ODQ 2 µM, (n=5). Hearts were 

stabilised, subjected to LDCA occlusion for 35 min and reperfused for 10 min. BNP 

10 nM and ODQ 2 µM were perfused concomitantly from 30 min ischaemia to 10 min 

reperfusion. 
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Figure 6.3 Experimental protocol for hearts prepared for RIA in Study 2. Red arrows indicate time points at 
which hearts were sampled for cGMP measurement. 

 

6.2.5 NO2
-
 measurement by ozone based chemiluminescence: Study 3 

To explore downstream targets of BNP signalling, OBC was employed to investigate its 

action on NO levels in the myocardium as described in Chapter 4.2.6. Hearts were 

cannulated and stabilised as described in Chapter 2 and then perfused for a further 15 min 

either with KH buffer alone or for 15 min with BNP 10 nM. Coronary effluent was 

collected for 2 sec on completion of treatment and snap frozen in liquid nitrogen (see 

Figure 6.4). 

Group 1, Control, (n=4). Hearts were stabilised, followed by a further 15 min perfusion. 

Coronary effluent was then collected. 

Group 2, 15 min BNP 10 nM, (n=4). Hearts were stabilised, followed by 15 min BNP 10 

nM perfusion. Coronary effluent was then collected. 
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Figure 6.4 Experimental protocol for OBC Study 3. Red arrows indicate time points at which coronary 
effluent was collected for OBC.  
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6.3 Results 

6.3.1 Summary of experiments 

In Study 1 44 rats were used. Four hearts were excluded from the study due to technical 

error; thus, 40 completed experiments are reported. In Study 2, 10 rats were used for 

RIA + 12 from Study 3 in Chapter 4. There were no exclusions and so data from 22 

hearts are reported. In Study 3, 8 rats were used for OBC measurements, with no 

exclusions so data for 8 experiments are reported. The period of stabilisation before the 

onset of ischaemia was carried out to allow the hearts to stabilise and reach pre-

determined criteria (see below). For a heart to be included and subjected to ischaemia, it 

had to reach the following baseline cardiodynamic parameters; 

CFR of between 10 and 24 mL/min, LVEDP of 5-10 mmHg, HR of 200-350 BPM, 

LVDP greater than 50 mmHg and a steady sinus rhythm. 

6.3.2 Western blotting analysis: Study 1 

Total and phosphorylated (Ser 473) Akt immunoreactivity measurements were made to 

evaluate PI3K/Akt activity upon treatment with BNP (Figure 6.5). Following 20 min 

stabilisation and 15 min perfusion of BNP, pAkt/tAkt ratio increased compared to 

controls, but did not reach statistical significance (p=0.163 for ONE-way ANOVA, n=5). 

Measurements made in tissue samples taken from hearts that had undergone 35 min 

LDCA occlusion and 10 min reperfusion showed a similar pattern of results. BNP 

treatment resulted in an increased pAkt/tAkt ratio compared to control, (p<0.05 vs. 

Control, n=5). Furthermore perfusion of Wortmannin alone and concomitantly with 

BNP limited phosphorylation of Akt (p<0.05 vs. BNP, n=5) (Figure 6.5B) 
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Figure 6.5 Representative Western blots illustrating changes in pAkt in myocardial tissue samples from 
stabilised [A] and ischaemia-reperfused [B] hearts treated with BNP 10 nM, Wortmannin 100 nM or BNP 
and Wortmannin concomitantly. Perfusion of BNP during reperfusion increased the pAkt/tAkt ratio 
(*p<0.05 vs. Control). Wortmannin perfused alone or concomitantly with BNP at reperfusion abrogated this 
increase (# p<0.05 vs. BNP). ONE-way ANOVA + Newman-Keuls post-hoc (n=5) 

  

0.0

0.5

1.0

1.5

O
p

ti
ca

l D
en

si
ty

 R
at

io
:

p
A

kt
/t

A
kt

vs
 C

o
n

tr
o

l

0.0

0.5

1.0

1.5

2.0

O
p

ti
ca

l D
en

si
ty

 R
at

io
:

p
A

kt
/t

A
kt

vs
 C

o
n

tr
o

l

A

B

pAkt 60 kDa

tAkt 60 kDa

pAkt 60 kDa

tAkt 60 kDa

*

#
#



Chapter 6

 
 

188 

6.3.3 RIA cGMP measurements: Study 2 

Tissue levels of cGMP were measured in hearts that had been treated with or without 

BNP 10 nM and subjected to 35 min regional ischaemia by occlusion of the LDCA. 

Measurements were also made in hearts perfused with BNP concomitantly with ODQ 

2 μM. In LV samples, cGMP levels were reduced in tissue that had been subjected to 

ischaemia-reperfusion compared to naïve tissue. In LV, perfusion of BNP showed a 25 % 

increase in the mean from 9.20 ± 0.70 (n=6) to 11.49 ± 1.40 (n=5) fmol/mg tissue, 

compared to untreated controls. Similar differences between means (23 %) were seen in 

tissue samples perfused with both BNP and ODQ; however statistical significance was not 

reached (p=0.329 for ONE-way ANOVA, n=5). RV samples, which were not subjected 

to LDCA occlusion, had cGMP levels greater than their adjacent LV in all groups. There 

was a 23 % decrease from 15.60 ± 2.36 (n=5) to 11.97 ± 1.62 (n=5) fmol/mg tissue of 

cGMP in RV tissue samples perfused with BNP compared to control (p=0.218 for 

ONE-way ANOVA) (Figure 6.6 A and B). 
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Figure 6.6 cGMP levels in LV (A) and RV (B) heart samples perfused with or without BNP 10 nM or 

concomitantly with ODQ 2 μM (p>0.05) ONE-way ANOVA (n=5-6).  
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6.3.4 NO2
- levels measured by ozone based chemiluminescence: Study 3 

Nitrite levels measured in coronary effluent from Langendorff perfused hearts after 20 

min stabilisation and 15 min further perfusion were 3189 ± 234 pmoles/min (n=4). NO2
- 

levels in coronary effluent collected from rat hearts stabilised for 20 min followed by 15 

min perfusion with BNP 10 nM were elevated by 146 % to 7865 ± 489 pmoles/min 

(p<0.001, n=4) (see Figure 6.7). 

 

 
 

Figure 6.7 NO2
- levels in coronary effluent samples of hearts stabilised for 20 min followed by 15 min 

further perfusion or 15 min perfusion with BNP 10 nM measured by OBC (***p<0.001 vs. control) 
unpaired two-tail t-test (n=4).  
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6.4 Discussion 

6.4.1 Summary of findings 

The major findings of the studies in this chapter are: 

i) PI3K/Akt activity was modestly increased during reperfusion in the presence 

of BNP 

ii) ODQ did not block BNP mediated cGMP production in the myocardium 

iii) Nitrite levels were elevated in coronary effluent of hearts perfused with BNP 

The findings of these studies form a body of preliminary work and so extensive 

conclusions cannot be drawn. However, they do suggest that NP mediated protection is 

associated with the activation of much of the PI3K/Akt/eNOS/NO/sGC/cGMP pathway 

and compliment earlier studies. 

The modest elevation of pAkt seen in hearts treated with BNP during early reperfusion 

supports the notion that pGC signals through the PI3K/Akt pathway during early 

reperfusion. This biochemical analysis is in agreement with infarct studies mentioned 

earlier that reported loss of protection in rabbit hearts perfused with ANP and the PI3K 

inhibitor Wortmannin (Yang et al., 2006). Taken together with the work of Ren et al. 

(2007), who reported increased levels of eNOS expression following BNP perfusion, the 

data suggest that pGC signals through the PI3K/Akt/eNOS part of the RISK pathway to 

afford infarct limitation. Further support for this paradigm comes from the preliminary 

NO2
- measurements made in coronary effluent from hearts perfused with BNP under 

normoxic conditions. The results demonstrate that BNP perfusion can elevate NO 

convincingly by 146 %, supporting the previous infarct study that demonstrated that 
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inhibiting NO by L-NAME during BNP perfusion abrogates infarct limitation (Burley & 

Baxter, 2007). 

The cGMP measurements recorded in this study are somewhat surprising. BNP perfusion 

only produced modest (25 %) increase in cGMP compared to untreated controls. More 

surprising are the cGMP levels, which were reduced in BNP perfused RV tissue compared 

to untreated controls. Concomitant perfusion of BNP and ODQ resulted in very similar 

(11.34 vs. 11.49 fmol/mg tissue) cGMP levels as hearts perfused only with BNP. 

Considering that ODQ abrogated infarct limitation afforded by ANP, suggesting the need 

for sGC in NP mediated protection (Yang et al., 2006), the cGMP measurements in this 

study suggest that it may not be total cGMP level mediated but maybe a localised 

production of cGMP.  
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6.5 Conclusions 

The results of these studies provide preliminary biochemical evidence that NP/pGC 

mediated infarct limitation requires activation of PI3K/Akt/eNOS. Furthermore, they 

suggest that in terms of infarct limitation pGC and sGC may be closely associated. Taken 

together these results suggest a need to investigate further the relationship between pGC 

and sGC mediated cGMP production and ultimate infarct limitation. 
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Chapter 7 
General Discussion
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Discussion 

7.1 Fundamental findings 

The major findings from the studies included in this thesis are summarised as follows; 

Production of cGMP during early reperfusion via exogenous targeting of sGC is 

cardioprotective by means of infarct limitation. This was demonstrated in Chapter 3 with 

the use of the sGC stimulator BAY 41-2272, which significantly limited infarct size in the 

isolated rat perfused heart when administered during early reperfusion. This observation 

was also demonstrated in Chapter 5 when administration of BAY 60-2770, a sGC activator 

during the same period significantly limited infarct size compared to control experiments. 

In Chapter 4, it was shown that perfusion with an NO donor during early reperfusion 

could afford infarct limitation; further corroborating the notion, that sGC is a key 

mediator in limiting reperfusion injury. 

Pharmacological observations of the mechanisms by which the sGC stimulators and 

activators elevate cGMP levels are translated in the ischaemia-reperfusion infarct 

limitation model. Experiments in Chapter 3 showed that concomitant perfusion of the 

sGC stimulator BAY 41-2272 with the haem site oxidiser ODQ abrogated the protection 

afforded by the sGC stimulator alone, suggesting haem dependence in its action. 

Conversely, in Chapter 5 it was demonstrated that concomitant perfusion of the sGC 

activator BAY 60-2770 with ODQ showed a trend towards increased protection above 

BAY 60-2770 only perfusion. This supports previous cell based models that suggest that 

BAY 60-2770 acts in a haem-independent manner. The NO component of both BAY 

compounds was also explored, confirming that endogenous NO is not required for either 
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BAY compound to afford protection. This was reported in Chapters 4 with concomitant 

perfusion of BAY 41-2272 with the NOS inhibitor L-NAME and in Chapters 3 and 5 with 

concomitant perfusion of C-PTIO with either BAY 60-2770 or BAY 41-2272. 

In Chapter 5, it was demonstrated that targeting both the reduced and oxidised portions of 

sGC by concomitantly perfusing BAY 41-2272 and BAY 60-2770 could not afford greater 

infarct limitation than either treatment alone. In fact, concomitant perfusion resulted in 

reduced infarct limitation. It was also demonstrated in Chapter 4 that exogenous NO and 

BAY 41-2272 could act synergistically to afford greater infarct limitation than the sum of 

the two independent treatments. 

Finally, total tissue cGMP measurements reported in Chapters 3, 4 and 5 suggest that 

there is linear relationship between total cell cGMP production and infarct limitation. 

7.2 Context within the broad ischaemia-reperfusion setting 

The data presented in this thesis focus only on one lyase enzyme, GC and the immediate 

product of its activity, cGMP. As eluded to throughout this thesis, the intracellular 

signalling that culminates in limitation of infarct size is both large and diverse. Like many 

other studies this work demonstrates that targeting a specific component of the so-called 

RISK pathway can afford infarct limitation. The fact that inhibition of some components of 

the pathway does not exacerbate infarct size beyond control levels demonstrates the 

dynamic non-linear structure of the signalling. An example of this can be taken from 

infarct studies documented in Chapters 3 and 4. Perfusion of the haem site oxidiser ODQ 

did not produce infarct sizes greater than control experiments. Similarly, perfusion of the 
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NOS inhibitor L-NAME or the NO scavenger C-PTIO produced infarct sizes comparable 

to controls. This suggests that other components of the pathway can be activated, or that 

components can be bypassed by non-linear signalling. 

Adjunct data in the form of RPP and CFR recorded during the infarct experiments 

highlight no haemodynamic or functional differences between groups. These data in the 

form of CFR suggest that any infarct limitation documented for a given treatment group is 

independent of vasodilatation. However, specific investigation of any vasoactive properties 

of the interventions used would require an adapted protocol. Hearts would be perfused at 

constant flow and not constant pressure and any changes in vascular tone would be 

recorded as a change in pressure. This model is better suited to investigating vasoactive 

parameters, but is not optimal for infarct studies as constant pressure represents 

physiological conditions more robustly. 

RPP is a reliable indicator of heart function, represented as a function of both HR and 

LVDP. Heart rate fluctuates very little throughout the described Langendorff experiments 

and so any large changes in RPP are because of changes in LVDP. No differences were 

reported for RPP between different treatment groups irrespective of their ability to limit 

infarct size. Although this may appear surprising, the percentage of the total heart 

damaged by CAO in our model varies only between approximately 8-17 %, insufficient to 

observe differences in LVDP. These observations are consistent with previous studies that 

report comparable limitation in infarct size following pharmacological interventions, yet 

document no difference in either LVDP or RPP (Burley & Baxter, 2007; D'Souza et al., 

2003; Hausenloy et al., 2002) 
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The data presented in this thesis are limited to infarct size and biochemical studies. 

Experiments in Chapters 3 and 5 demonstrate that during early reperfusion both the 

reduced and oxidised forms of sGC are present in the myocardium. This conclusion can be 

made based on the cell based pharmacological studies conducted by Schmidt et al. (2003), 

and Stasch et al.(2006), who demonstrated that the sGC activators act only on oxidised or 

haem-free sGC. Both BAY 41-2272 and BAY 60-2770 were able to significantly elevate 

cGMP levels in LV myocardial tissue samples. In agreement with comments made by 

Stasch et al. (2006) supported by the above-mentioned experiments, a portion of the sGC 

present in the myocardium during early reperfusion is in the so-called pathological 

oxidised state. There is accumulating evidence to suggest that cGMP is produced in 

co-localised pools, depending on whether the particulate or soluble cyclase catalysed its 

conversion from GTP. How this transfers to RISK pathway signalling remains unclear, yet 

evidence suggests that total cGMP levels are not the limiting factor in affording 

protection. It also remains unclear whether sGC in different redox states is localised to 

spatially distinct areas of the cell, possibly further contributing to cGMP localisation. 

Investigating this further may highlight so-called cardioprotective cGMP, or more 

specifically infarct limiting cGMP that originates from specific localised pools that signals 

through the RISK pathway. It may also be of benefit to explore the production of cGMP in 

the myocardium over a wider time course, specifically during late ischaemia and early 

reperfusion. Continuous recordings of myocardial cGMP during this period would allow 

exploration of the specific production/hydrolysis of the cyclic nucleotide and ascertain the 

optimum period for elevating cGMP. In our studies, we were limited to only one 

reperfusion sampling time point. Further investigation is required to document whether 
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an earlier sampling time point, possibly 2 min reperfusion would have highlighted greater 

elevations of myocardial cGMP, before PDEs shift the equilibrium towards hydrolysis. 

Specifically targeting sGC has been shown to be a promising therapeutic target. As 

discussed in Chapter 5, successful clinical trials have been carried out using both the sGC 

stimulator Riociguat and the sGC activator Cinaciguat in the treatment of primary 

pulmonary hypertension and acute decompensated heart failure respectively. The obvious 

benefits of using these compounds over other drugs are their targeting more distally in the 

signal transduction pathway, potentially limiting undesirable effects. A desirable property 

of both cGMP-elevating compounds reported in this thesis is their independence of NO. 

There could be real potential in their use as adjunct therapies to NO donors, which have 

well characterised tolerance issues when used chronically, although it is not clear if 

vascular tolerance contributes to a reduction in cardioprotection. 

Development and introduction of new therapies specifically for the treatment of 

reperfusion injury post AMI has been slow considering the extensive body of research 

reporting the infarct limiting properties of many compounds (Downey & Cohen, 2009). It 

is conceivable that part of the problem is the number of protective agents being reported. 

Clinical trials have been conducted investigating the adjunct therapy of NPR targeting 

alongside PPCI. Carperitide, an NPR1 agonist afforded infarct limitation, reduced 

malignant arrhythmias and lowered the incidence of ST-segment elevation (Kitakaze et al., 

2007). Considering the data presented in Chapter 6 that suggests NPR mediated infarct 

limitation signals through the same upstream kinases as sGC to elevate cGMP, it may 

therefore prove beneficial to target downstream of the NPR nearer the proposed effector 
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kinases. This concept was investigated in a preliminary proof of concept clinical study that 

reported that a single dose of CSA could limit infarct size in human patients. CSA has been 

demonstrated to act directly on the mPTP, proposed as one of the end effectors in the 

RISK pathway (Piot et al., 2008). Furthermore there was no detrimental effect on LV 

remodelling following assessment at 6 months post AMI (Mewton et al., 2010). More 

comprehensively designed clinical trials need to be conducted in association with more 

specifically designed in vivo and ex vivo studies. 

7.3 Limitations and obstacles 

In Chapter 3, it was concluded that BAY 41-2272 afforded infarct limitation when given at 

reperfusion and was associated with elevation of total tissue cGMP levels. It was further 

concluded that the protection afforded was sGC mediated and required the haem to be in 

the reduced state. cGMP measurements recorded in comparable experiments perfused 

with ODQ would have potentially supported this observation further by demonstrating a 

reduction in cGMP levels compared to BAY 41-2272 treated hearts. The practicalities of 

preparing large numbers of whole tissue samples for RIA and the time it takes to carry out 

the initial heart perfusion were the reasons these experiments were not carried out. 

As mentioned previously, measuring NO levels in any biological sample is difficult. Total 

NO2
- levels presented in Chapters 4 and 6 provide superficial evidence of NO changes in 

the myocardium. The somewhat inconsistent data investigating the NO donor NOC-9 in 

the infarct size and OBC models suggests that the concentration of the NO donor chosen 

for OBC was too low. Although at this concentration (1 nM) infarct limitation was 

observed, it was not a sufficiently high concentration to produce quantities of NO that 



Chapter 7

 
 

201 

were measureable in the coronary effluent. As described in Chapter 4, the biology of this 

particular NONOate results in rapid production of NO over a short period. It is 

conceivable that the NO produced following perfusion of NOC-9 was metabolised or 

even reduced to NO2
- before it could be measured. Increasing the concentration of 

NOC-9 perfused for the OBC experiments may have elicited a measureable elevation in 

NO in the coronary effluent, however the concentration chosen was for comparison with 

infarct limitation documented in earlier experiments. 

EPR may provide more precise tissue levels of NO however employing these methods in 

an isolated perfused heart model is difficult. The spin traps required to trap NO cause 

technical issues when trying to perfuse them though the Langendorff apparatus alongside 

NO manipulating tools such as those used in this thesis. The need for iron in the spin trap 

mixture produces a viscous liquid that blocks the flow of buffer through the apparatus 

which is problematic when attempting to perfuse pharmacological tools. If apparatus were 

being dedicated solely to EPR measurements, it would be possible to record more 

consistent tissue NO levels in this model. 

In Chapter 6, Western blotting analysis suggested that pAkt levels were elevated during 

early reperfusion in the presence of BNP. Sampling time points were chosen so 

consistency was kept with infarct studies previously reported where BNP was perfused 

until 10 min reperfusion. In future studies it may be of benefit to explore an earlier 

reperfusion time point to investigate the possibility that there may be a more marked 

elevation in pAkt expression immediately after reperfusion. I believe that the 

concentration of BNP (10 nM) used in the current studies should still be employed in 
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future experiments as there is robust evidence to suggest that it is cardioprotective in 

terms of infarct limitation when administered during early reperfusion (Burley & Baxter, 

2007). 

A general limitation of this thesis is that the cGMP measurements made are of total tissue 

cGMP. Although they provide convincing evidence that cGMP levels are elevated after 

certain pharmacological interventions, they do not provide subcellular detail of cGMP 

production. This would indeed be desirable to further explore the compartmentalisation 

hypothesis (described in Chapter 1.26, 1.28 and 6.1.5) of cGMP and whether this plays a 

role in tissue salvage signalling in the myocardium. It is conceivable that it is not total 

cGMP elevation that is important in terms of protection but elevation of specific pools 

associated with local downstream targets in the RISK pathway. Using a cell based model, 

it would be useful to employ fluorescence resonance energy transfer (FRET) to investigate 

specifically where cGMP is being produced following treatments and how this may change 

following a sustained period of hypoxia. Leroy et al. (2008), have employed this method in 

the exploration of cAMP distribution in adult rat ventricular myocytes, reporting that 

there are temporary cAMP compartments formed during β-adrenergic receptor 

stimulation with isoprenaline. 

Stasch’s laboratory have recently published data that demonstrates the possibility of 

monitoring changes in the cellular sGC haem status (Hoffmann et al., 2011). They 

conclude that this method is limited to recombinant expression systems, utilising an 

engineered sGC variant but propose that in time may be used in vivo. It would be of 

benefit to utilise this technique in the ischaemia-reperfusion setting, helping us to 
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understand the changes in the redox state of sGC and specifically target cGMP pools that 

could maximise infarct limitation. 

Recent studies by Brouckaert’s laboratory have demonstrated the utilisation of siRNA 

technologies to investigate the necessity for specific isoforms of sGC in inhaled NO 

mediated reduction in pH and in infarct size following index ischaemia (Nagasaka et al.). It 

may be of benefit to utilise this technique as an alternative to the pharmacological methods 

used to explore the mechanisms that afford infarct limitation. Using siRNA to silence the 

genes required to produce components of the RISK pathway would provide an alternative 

approach to using pharmacological tools to manipulate this pathway, specifically exploring 

the downstream targets of cGMP such as PKG. It may also be possible to manipulate the 

production of different states of sGC to control artificially the redox equilibrium in the 

ischaemia-reperfusion setting. 

Other methods employed to simulate AMI and investigate infarct limiting interventions 

include in situ models whereby animals are allowed to recover following LDCA occlusion 

for a period of time and then sacrificed for analysis of their myocardium. This model is by 

definition suited to exploring recovery over time and is not suitable for exploring the 

immediate effects of pharmacological intervention. Early reperfusion is the period in 

which the RISK pathway has been reported to be activated and so the ex vivo model 

reported in this thesis is deemed most suitable. A similar argument can be made for the 

reperfusion duration used in these experiments. Two hours is chosen as it is a sufficient 

length of time for the washout of metabolites and dehydrogenase enzymes that may be 

present in the infarcted tissue immediately following reperfusion. Failure to wash these 
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enzymes out of the heart sufficiently would give false positive staining results. Similarly, 

over longer periods, the viability of the heart is reduced (described in Chapter 2). Pacing 

is a possibility and would allow longer reperfusion, however, eliminating spontaneous 

electrical activity and associated arrhythmias would not be physiologically representative, 

particularly during early reperfusion when there is a high occurrence of these events. It has 

been documented that anti arrhythmic interventions can contribute to infarct limitation 

(Wit & Duffy, 2008). 

7.4 Correlation between cGMP elevation and infarct limitation 

In an attempt to explore the relationship between infarct size and total LV cGMP levels, 

infarct size data against corresponding treatment groups that measured cGMP levels have 

been plotted (Figure 7.1). Analysis of this data shows that there is correlation between the 

two variables, specifically that when infarct size is reduced, total LV cGMP levels 

increase. Spearman’s rank correlation coefficient reports an r-value of -0.7 and a p value 

of 0.04. This observation demonstrates that pharmacological targeting of cGMP elevation 

during early reperfusion is a worthwhile therapeutic target to investigate further. It would 

be desirable to collect further cGMP measurements from heart samples treated with other 

pharmacological interventions matched to infarct studies to build a more extensive data set 

and profile the correlation further. It may also be of interest to investigate the 

corresponding infarct size/cGMP data for hearts perfused with NPR agonists to ascertain 

whether there are comparable observations. If further studies support the observation 

shown in Figure 7.1, cGMP measurements immediately post MI maybe of clinical benefit 

in determining the extent of injury. As described in Chapter 6.1.1, BNP measurements in 



Chapter 7

 
 

205 

patients presenting with STEMI provide a good indication of the extent of injury and 

prognosis. 

 

 
Figure 7.1 Representative schematic of the relationship between infarct size and LV total cGMP levels in 
corresponding experimental groups. Spearman’s test shows negative correlation with an r value of -0.7 
(p<0.05, n=6-18). The major outlier being the concomitant perfusion of both the sGC stimulator and 
activator (BAY 41 + BAY 60), which resulted in large cGMP elevation compared to controls but 
corresponding infarct experiments did not show the expected reduction in infarct size. SEM shown for both 
infarct size and LV total cGMP levels. 

 

7.5 Concluding thoughts 

The experiments reported in this thesis have been conducted to explore the role of 

targeting sGC during early reperfusion to afford cardioprotection by means of infarct 

limitation. Using novel sGC stimulators and activators as pharmacological tools it has been 

possible to address the questions posed and come to some key conclusions: 

Can cardioprotection be afforded by exogenous stimulation/activation of sGC? 

The experiments in Chapters 3 and 5 clearly demonstrate that perfusion of the sGC 

stimulator BAY 41-2272 and the sGC activator BAY 60-2770 limit infarct size when 
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administered during early reperfusion. Furthermore, the protection afforded is associated 

with total LV cGMP elevation. 

Can sGC stimulation afford protection independently of NO? 

Both BAY 41-2272 and BAY 60-2770 afforded protection independently of NO as shown 

by reduced infarct sizes in experiments in which concomitant perfusion of the NOS 

inhibitor L-NAME or NO scavenger C-PTIO with the BAY 41-2272 or C-PTIO and 

BAY 60-2770. 

Can greater protection be afforded by targeting different redox states of sGC? 

Experiments in Chapter 5 suggest that targeting both the reduced and oxidised states of 

sGC do not afford increased protection by means of reduced infarct size. Furthermore, 

targeting the oxidised form of sGC did not afford greater protection than targeting the 

reduced form of sGC. 

The results reported in this thesis demonstrate that the sGC/cGMP pathway plays an 

important role in the ischaemia reperfusion injury setting. Further exploration to 

investigate this signalling pathway is warranted, specifically investigating the localised 

production of cGMP and how these changes affect infarct size. There is clearly a need to 

continue investigating the ischaemia-reperfusion field and develop pharmacological 

adjunct therapies to PPCI, possibly cGMP elevating compounds. 
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