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4 Abstract 

Abstract  
 

The heterozygous mutation, B6;C3-Opa1Q285STOP, leads to a 50% reduction in Opa1 transcript 

and protein in the mouse retina and neural tissues and models autosomal dominant optic 

atrophy and presents with visual dysfunction and structural changes in the retina and optic 

nerve. This thesis explores the intimate relationship between retinal ganglion cell dendritic 

architecture, health and synaptic connectivity as influenced by the mitochondrial fusion 

protein Opa1.  

Using a range experimental paradigms it is reported here retinal ganglion cell dendritic 

atrophy which is exacerbated with age and localised exclusively to sublamina b of the inner 

plexiform layer. There is a marked reduction in the number of glutamatergic synaptic sites 

and PSD95 levels on ON-centre retinal ganglion cells. In addition, there is a significant 

increase in synaptic vesicle number and density in both ON and OFF bipolar cells. 

These processes cast light on the intimate relationship between normal mitochondrial 

fusion and fission balances, as influenced by the OPA1 protein, in neural cell connectivity in 

the mammalian retina and the changes shown here serve as an exciting biomarker for 

disease and rescue and recovery therapeutics. 
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Mfn1 Mitofusin 1 
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mtDNA Mitochondrial DNA 

n Number 
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NS Non-Significant 

OCT Optimal Cutting Temperature 

OKN Optokinetic Drum 

ONL 

OPA1 

Outer Nuclear Layer 

Optic Atrophy 1 (gene) 

Opa1 Optic Atrophy 1 (protein) 

Opa1+/- Heterozygous Opa1 Mutant Mouse 

OPL Outer Plexiform Layer 

P Post-Natal Day 

PBS Phosphate Buffered Saline 

PBST PBS with 0.1% Triton-X 
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PFA Paraformaldehyde 
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PKC-α Protein Kinase C Alpha 

PSD-95 Post-Synaptic Density 95 

RGC Retinal Ganglion Cell 

ROS Reactive Oxygen Species 

RT Room Temperature 

SEM Standard Error of the Mean 

Thy-1 Thymocyte Differentiation Antigen 1 

VEP Visual Evoked Potential 

wt Wild Type 

XFP X Fluorescent Protein 

YFP Yellow Fluorescent Protein 

ΔEqCl Chloride Equilibrium Potential 
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13 Chapter 1: Introduction 

There are no small problems. Problems that appear small are large 

problems that are not understood. 

Ramón y Cajal 

from Advice for a Young Investigator (1897) 

Chapter 1: Introduction 
 

1.1: Mitochondria 
 

Mitochondria are essential organelles in almost all eukaryotic cells and serve a bioenergetic 

function. They provide this role through a series of well-defined biochemical reactions that 

lead to the generation of ATP through oxidative phosphorylation (Lawrence, 2005; Chan, 

2006a; Chen and Chan, 2006). Mitochondria also have a role in cell signalling (calcium 

signalling), apoptosis (Delivani and Martin, 2006) and steroidogenesis (Poderoso et al., 

2008) and, further to this, provide structure and organisation to the synaptic bouton (Chan, 

2006a) (Figure I). 

Within eukaryotic cells there is a substantial ionic gradient between the cytosolic 

concentration of Ca2+ ions (~100nM) and the extracellular concentration of Ca2+ ions 

(~1mM) which is kept in balance, in part, by ions pumps, Ca2+ exchangers (Na+/Ca2+ 

exchanger found in plasma membranes, ER and mitochondria), Ca2+ binding proteins (e.g. 

calmodulin) and the mitochondria (Rizzuto et al., 2009). Here the mitochondria can have a 

role buffering changes in intracellular Ca2+ and sequestering Ca2+ as they readily take up Ca2+ 
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when the concentration in the cytosol is high. This allows Ca2+ to rapidly accumulate within 

the mitochondria lowering the cytosolic Ca2+ concentration (Rossier, 2006).    

Mitochondria display considerable morphological diversity in terms of their number and 

distribution as well as their inner membrane structure which is mostly in part due to their 

dynamic behaviour driven by the balance of mitochondrial fusion and fission (Cerveny et al., 

2007). When this balance shifts towards fusion the mitochondria become long and 

interconnected and when this balance shifts towards fission the mitochondria become 

fragmented (Zhang and Chan, 2007) (Figure II). Ultimately mitochondrial fusion and fission 

play a key role in cell physiology and homeostasis (Liesa, Palacin and Zorzano, 2009) and an 

improper balance in this can lead to mitochondrial dysfunction leading on to 

neurodegenerative diseases including, but not limited to Parkinson’s disease (Abou-Sleiman, 

Muqit and Wood, 2006), Alzheimer’s disease (Knott and Bossy-Wetzel, 2008; Wang et al., 

2008), Huntington’s disease (Kieper et al., 2010), Charcot-Marie-Tooth disease (Cerveny et 

al., 2007), Leber’s hereditary optic neuropathy (Carelli et al., 2009) and dominant optic 

atrophy (Olichon et al., 2006).    

There are several proteins that have a role in mitochondrial dynamics (fusion and fission) 

and these shall be discussed. 
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Figure I: Mitochondrial structure 

An electron micrograph showing the internal organisation of a mitochondrion within a 

retinal ganglion cell dendrite. Mitochondria are found at a high density within the retinal 

ganglion cell especially within the axon where they are required for efficient saltatory 

conduction of action potentials and within the dendrite for synaptic transfer.  

Key: C = cristae, IM = inner membrane, IMS = intermembrane space, M = matrix, OM = outer 

membrane 
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Figure II: Mitochondrial fusion and fission I 

Schematic showing the balance of mitochondrial fusion and fission as regulated by the 

proteins Drp1, Fis1, Mfn1, Mfn2 and Opa1. Increased fusion leads to elongated 

mitochondria, whereas increased fission leads to small, fragmented mitochondria. Adapted 

from Liesa et al., 2009.  
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1.2: Mitochondria: Fusion and Fission 
 

1.2.1: Opa1 

 

The OPA1 gene codes for the protein Opa1 a dynamin-like mitochondrial related guanosine 

triphosphatase (GTPase) and a 100K member of the GTPase superfamily (Hinshaw and 

Schmid, 1995; Votruba, Thiselton and Bhattacharya, 2003; Ju et al., 2005) located primarily 

in the mitochondrial inner membrane, the mitochondrial outer membrane, the cristae and 

the inner membrane space (Ju et al., 2005) and is homologous with the yeast (S. cerevisae) 

gene Mgm1 (Olichon et al., 2002). Mgm1 has roles in the maintenance of mitochondrial 

morphology (which is important for mitochondrial stability due to its role in the 

mitochondrial inner membrane structure and integrity), endocytosis, vesicular traffic and 

coated vesicle formation (Hinshaw and Schmid, 1995), the structure and maintenance of 

mitochondrial networks, mitochondrial motility and dynamics (including mitochondrial 

fission and fusion) (Figure III) as well as ensuring an appropriate distribution of mitochondria 

and ensuring a good ATP supply to cytoplasmic regions. OPA1 can act as an anti-apoptotic 

GTPase protecting the cells from the “detrimental consequences of apoptotic stimuli” 

(Davies et al., 2007) by modifying the mitochondrial cristae (for which the inner membrane 

rhomboid protease, PARL, is required) which regulates cytochrome c release (Frezza et al., 

2006; Tang et al., 2009). In addition, Opa1 has roles in oxidative phosphorylation and, in 

ADOA, the activity of OXPHOS complexes II and III is significantly increased (Van Bergen et 

al., 2011).  

The OPA1 gene comprises 90kb of genomic DNA coded for by 31 exons (of which the last 

one is non-coding) and there are eight splice variants. The peptide comprises 960 amino 

acids. The mature protein is 90/80kDa (depending on the isoform) (Davies et al., 2007). The 
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gene is located on chromosome 3q28 (Votruba, Moore and Bhattacharya, 1997; Alexander 

et al., 2000; Delettre et al., 2002) and mutations occur throughout the gene (Votruba, 2004).  

Opa1 protein is expressed ubiquitously throughout the body with high levels in the retina, 

brain (Misaka, Miyashita and Kubo, 2002), liver and heart. Within the retina it is 

predominantly found in the ganglion cell layer of the retina with lower levels of expression 

in the IPL, OPL and INL (Aijaz et al., 2004).  

The exact mechanism of how Opa1 mediates mitochondrial fusion is yet to be fully 

elucidated although it is known that Opa1 is essential for mitochondrial fusion. 

Mitochondrial fusion, as influenced by Opa1, is essential for the redistribution of mtDNA 

that, over time, may become damaged (Chan, 2006b). Opa1 exists primarily in the inner 

mitochondrial membrane and is not exposed to the cytosol yet yeast deficient in Mgm1 

show no evidence of outer membrane fusion. It is unclear whether this is a direct effect or 

as a consequence from aberrant inner membrane fusion events. Members of the GTPase 

superfamily are involved in the curvature and moulding of the inner mitochondrial 

membrane and as Opa1 shows a high homology to members of this family it is likely that 

Opa1 also has a role.    

 

1.2.2: Mfn1 

 

Mfn1 is the human homologue of the Drosophila GTPase Fzo and is an outer mitochondrial 

membrane protein helps regulates mitochondrial morphogenesis through mitochondrial 

fusion by mitochondrial tethering and the merging of lipid bilayers (Santel et al., 2003; 

Cerveny et al., 2007). The gene, MFN1, is located on chromosome 3 at 3q27.1 and, in 

humans, shows a 63% sequence identity with another mitochondrial fusion protein; Mfn2. 
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MFN1 and MFN2 are widely expressed throughout the body with high levels in the heart, 

liver and pancreas although there are higher levels of Mfn1 over Mfn2. Both Mfn1 and Mfn2 

have a role in tethering of mitochondria (Mfn1 being required on both mitochondria) and 

this again is shown to be at a higher level in Mfn1 (Chen et al., 2003; Zhang and Chan, 2007; 

Liesa et al., 2009).  

Mfn1 is seen to be essential to the mammalian system and embryonic development as 

deficient mice show severely fragmented mitochondria which lead to embryonic lethality 

(Chen et al., 2003; Zhang and Chan, 2007). Over expression of MFN1 leads to an increase in 

the number of Mfn1 protein which, in turn, leads to the formation of perinuclear clusters of 

mitochondria (Santel et al., 2003).  

 

1.2.3: Mfn2 

 

Mfn2 is located in the outer mitochondrial membrane (Liesa et al., 2009) and has a 

secondary role in mitochondrial fusion working in concert with Opa1 and Mfn1 (Merkwirth 

and Langer, 2008; de Brito and Scorrano, 2009). Mfn2 was first identified by homology with 

the Drosophila protein Fzo where disruption of Fzo prevents mitochondrial fusion. Recent 

studies (Chen et al., 2003; Chen and Chan, 2006) have shown Mfn2 to be essential for 

embryonic development in mice where Mfn2 knockout mice show reduced mitochondrial 

fusion and motility due to fragmented mitochondria. This leads to a disruption in placental 

development and ultimately Mfn2 knock-out mice die mid-gestation. It has been shown that 

cells with high metabolic demands are more susceptible to Mfn2 disruptions. More recent 

work (de Brito and Scorrano, 2009) shows that Mfn2 has a role in tethering mitochondria 
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and ER by forming interorganellar bridges which are essential for the funnelling of Ca2+ 

(Rizzuto et al., 1998). Mfn2-/- cells are shown to have much smaller mitochondria and have 

an alteration in their ER morphology. 

In human mutations in Mfn2 can lead to Charcot-Marie-Tooth neuropathy type 2A (CMT2A); 

a primary neuropathy that affects both the sensory (including optic atrophy) and muscle 

systems leading to muscle atrophy over time. CMT2A disease is one of the most common 

hereditary diseases affecting 1 in 2500 with a loss of deep tendon reflexes and feet 

deformities among its symptoms (Chen and Chan, 2006; Liesa et al., 2009).  

 

1.2.4: Drp1 

 

The GTPase Drp1 has been shown to have a role in several intracellular functions including, 

but not limited to, controlling ER morphology, as a driver for mitochondrial fission as well as 

a role in mitochondria-dependent apoptosis (Frank et al., 2001; Lackner and Nunnari, 2009). 

Identified by its yeast homologue, Dnm1, it has been shown that Drp1 has a role in the 

scission of the mitochondrial membrane. Drp1 itself possesses a highly conserved GTPase 

domain and is found in all tissues tested with the highest levels found in the brain, heart and 

skeletal muscle (Liesa et al., 2009). Although Drp1 has a role in mitochondrial fission only a 

fraction of the protein actually exists in the mitochondria, the rest being dispersed 

throughout the cytosol. Drp1 can regulate mitochondria morphology without actually 

affecting endocytic pathways or triggering apoptosis.  

During mitochondrial fission Drp1 acts by assembling into ogliomeric complexes that then 

form rings or spirals around the mitochondrial outer membrane, compressing it and 
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effectively causing mitochondrial fission. An absence of Drp1 (homozygous negative) in C. 

elegans shows no membrane scission (Frank et al., 2001; Knott and Bossy-Wetzel, 2008). 

A recent clinical case showed that, in one patient, a deficiency in the Drp1 gene lead to 

defective mitochondrial fission causing  tubular, elongated and interconnected 

mitochondria which lead to severe, lethal brain abnormalities (microcephaly as well as optic 

atrophy) with the subject dying after 37 days (Waterham et al., 2007).      

 

1.2.5: Fis1 

 

Fis1, the mammalian homologue of the yeast protein Fis1p (and human homologue hFis1), 

is a small 17kDa protein comprising of 152 amino acids found on the mitochondrial outer 

membrane and is ubiquitous across tissues (Liesa et al., 2009). Recent work has found that 

Fis1 has a role in mitochondrial fission (Mozdy, McCaffery and Shaw, 2000; Knott and Bossy-

Wetzel, 2008) by recruiting Drp1 to the mitochondrion (Stojanovski et al., 2004). Fis1 is 

coupled to the mitochondrion at its C-terminus leaving the majority of its structure in the 

cytosol (Yu et al., 2005). The cytosolic N-terminus forms six α (α1-6) helices which mediate 

protein-protein interactions with Drp1 which leads to mitochondrial fission in a multistep 

pathway (Mozdy et al., 2000; Yoon et al., 2003; Dohm et al., 2004). In vitro Fis1 

overexpression has been shown to cause mitochondrial fragmentation mediated by Drp1 

(Yu et al., 2005) and to cause cytochrome c release (Liesa et al., 2009). Cells lacking Fis1 

have been shown to have flat, elongated mitochondria and deletions in hFis1 and OPA1 

leads to mitochondrial fragmentation (Lee et al., 2007).    
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Figure III: Mitochondrial fusion and fission II 

Mitochondrial fusion is mediated by Mfn, a mitochondrial outer membrane protein (orange 

molecule) with the coiled C-terminus mediates oligomerization between Mfn molecules on 

adjacent mitochondria, and Opa1 situated in the intermembrane space (top).  

Mitochondrial fission is mediated by Drp1 within the cytosol, and Fis1 located on the 

mitochondrial outer membrane (bottom). Adapted from (Chen and Chan, 2005).   
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1.3: Mitochondria: Importance in Neuronal Health and Survival 
 

The appropriate intracellular distribution and morphology of mitochondria is crucial in most 

eukaryotic cells and this is even more so in neural tissue where neurons exist on a 

‘metabolic knife-edge’ which relates to the level of energy dependence over the level of 

energy produced. If the bioavailability of ATP is too low neurons will not function properly, 

cell atrophy and dendropathy (dendritic atrophy) will ensue resulting in cell death. High 

metabolic rates and associated lipid peroxidation can increase mitochondrial ROS release, 

resulting in ATPase and glucose transport dysfunction. This in turn can lead to excitotoxicity 

and cell death (Li et al., 2004; Chen and Chan, 2006; Mattson and Magnus, 2006). 

The intracellular distribution of the mitochondria plays a role in neuron health since neurons 

have high energy demands. In the healthy neuron mitochondria are found in abundance 

throughout the cell especially near sites of concentrated bioenergetics, for example the 

dendrites and synapses where mitochondria are required to regulate ATP and buffer Ca2+ 

levels to maintain proper synaptic function (Chen and Chan, 2006; Knott and Bossy-Wetzel, 

2008).        

Mitochondria are highly dynamic organelles and mitochondrial dysfunction is increasingly 

recognised as a key contributor to neuronal dysfunction and loss in classic 

neurodegenerative diseases such as Alzheimer’s (Wang et al., 2008), Huntington’s (Kieper et 

al., 2010) and Parkinson’s disease (Abou-Sleiman et al., 2006; Mattson, Gleichmann and 

Cheng, 2008) as well as dominant optic atrophy (driven by deficits in Opa1) and CMT disease 

(deficits in Mfn2).  In these disease states, the rate of neuronal loss is slow and accompanied 

by prolonged periods of neural dysfunction in the absence of demonstrable neuronal loss 

and atrophy. The high dependence of neurons on mitochondria leaves them highly 
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susceptible to any changes in energy stasis (Mattson and Magnus, 2006).  Mitochondrial 

structure, number and their distribution within the axon, dendrite and synapse are thus 

integral to neuronal physiological function and health (Selkoe, 2002; Mattson et al., 2008; 

Cheng, Hou and Mattson, 2010; Cho, Nakamura and Lipton, 2010; Saxena and Caroni, 2011).  

In dominant optic atrophy quite how a mitochondrial mutation manifests as a specific loss 

or degeneration of retinal ganglion cells is currently unknown, however, retinal ganglion 

cells face a unique challenge in the central nervous system. Retinal ganglion cells have, by 

far, the most extended processes in the retina, and the axons of these cells only myelinate 

in the retrolaminar part of the optic nerve head. These unmyelinated sections of axons can 

be as long as 1cm for retinal ganglion cells in the human peripheral retina and these axons 

have a huge metabolic demand that needs to be met by the mitochondria within the cell as, 

at this point in the axon, action potential transmission is non-saltatory.       
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1.4: The Retina 
 

The neuronal structure of the retina has been studied intensely for over a century. The 

visual cells, the photoreceptors (rods and cones), were once thought to make direct 

connections from the eye to the brain and thanks, in part, to Ramón y Cajal’s work in the 

late 19th century we now know that this is not the case. Cajal improved on Golgi’s silver 

nitrate straining of neurones (Ramon y Cajal, 1889ab) and thanks to his meticulous method 

he showed that retina is made up of many different layers of cells, each with distinct 

morphologies and functions and these groups of cells work as a unit with one another to 

form a very approachable part of the brain (Dowling and Werblin, 1969; Werblin and 

Dowling, 1969; Werblin, 1972; Dowling, 1987; Matthews, 2005).  

The neural retina is designed to perform two major roles; to respond to photons in light at 

the level of the photoreceptive cells through the isomerisation of photopsins or rhodopsins 

and to convert these biochemical changes into a series of coordinated, filtered neural 

responses.  The structural organisation of the mammalian retina is organised to perform this 

role with two synaptic layers (the inner and outer plexiform layers) and which are 

intercalated between three somal layers (the ganglion cell layer and the inner and outer 

nuclear layers).  

The outer nuclear layer is the start of the phototransduction pathway. The outer nuclear 

layer contains the photoreceptors; rods, the most populous which are used for scoptic 

vision; and cones, used for photopic vision. Photons in light are absorbed by the 

photoreceptive cells causing rhodopsin (in rods) or a photopsin (cones) to isomerise 

between their cis and trans isoforms. This instigates a series of biochemical reactions that 

leads to a change in the photoreceptor’s membrane potential, closing the voltage-gated 



 
26 Chapter 1: Introduction 

calcium channels and causing a decrease in the intracellular calcium concentration. This lack 

of calcium leads to less glutamate being released onto the bipolar cell which can have an 

inhibitory or excitatory effect leading to depolarisation or hyperpolarisation. This takes 

place in the outer plexiform layer, the junction between the inner and outer nuclear layers 

which contains the processes and synapses of bipolar cells and horizontal cells and their 

connections to the photoreceptive cells. 

The inner nuclear layer is home to the cell bodies of three classes of cells that connect 

between the photoreceptors (biochemical transduction of light) and the retinal ganglion 

cells (the neural conductors of filtered neuronal information to the visual regions of the 

brain). These cells are the amacrine cells, horizontal cells and two classes of bipolar cells; the 

rod bipolar cells and cone bipolar cells. Amacrine cells are the axonless interneurons of the 

retina functioning in feedback and feedforward loops with bipolar cells and retinal ganglion 

cells with dendrites that ramify in the inner plexiform layer. Horizonal cells integrate signals 

from the photoreceptive cells and their dendrites travel distally, ramifying in the outer 

plexiform layer, whereas their axons carry on horizontal to the cell body and ramify in the 

inner nuclear layer. Bipolar cells transmit signals between the photoreceptive cells and the 

retinal ganglion cells. Essentially; bipolar cells copy rod information and converge cone 

colour channels to produce the functional dichotomy of the mammalian retina; ON and OFF 

channels (Boycott, Dowling and Kolb, 1969; Nelson, Famiglietti and Kolb, 1978). ON bipolar 

cells have a depolarising response to light with processes that ramify distally to their soma 

in sublamina b of the inner plexiform layer close to the ganglion cell layer. OFF bipolar cells 

have a hyperpolarising response to light with processes that ramify proximal to their soma 

in sublamina a of the inner plexiform layer close to the inner nuclear layer.  
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The ganglion cell layer contains the cell bodies of the majority of retinal ganglion cells and of 

displaced amacrine cells. The unmyelinated axons of retinal ganglion cells trace towards the 

optic disc where they myelinate and form the optic nerve leading to the lateral geniculate 

nucleus and superior colliculus. The dendrites of retinal ganglion cells ramify within the 

inner plexiform layer where they form the first true neural synapses with amacrine cells and 

bipolar cells (Dacey and Petersen, 1992; Bodnarenko, Jeyarasasingam and Chalupa, 1995; 

Chalupa and Werner, 2004; Dong et al., 2004). 

A detailed diagram and schematic of the mammalian neural retina can be seen in Figure IV.  
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Figure IV: Mammalian retina and visual system 

Mammalian visual system (left) showing cell somas, dendrites and axons of cells in the 

retina with the axons of retinal ganglion cells leading through to the LGN (and its projections 

to the primary visual cortex) and SC. Immunostained mature mouse retina retina (right) 

showing photoreceptors (purple), horizontal cells (bright red), bipolar cells (green) and 

amacrine cells (crimson). Adapted from (Morgan and Wong, 2007; Sanes and Zipursky, 

2010).  



 
29 Chapter 1: Introduction 

1.5: Retina Ganglion Cells: Morphology, Structure and Function 
 

In the early 19th century Treviranus made the first description of what would later be 

referred to as ‘retinal ganglion cells’, “papillae” on the vitreal/inner surface of the retina. 

Further work by the anatomists Müller and Kölliker lead to understanding that the major 

direction of retinal flow was from the photoreceptive cells to the ganglion cells and the optic 

nerve. Thanks to Ramón y Cajal’s meticulous method later that century, using Golgi’s silver 

nitrate staining, gave further qualitative information towards the understanding of the 

retina. Ramón y Cajal showed that the retina was more than just photoreceptive cells and 

their afferent fibres but that there were further subsets of cells, the retinal ganglion cells, 

with interconnecting bipolar cells in between them. He showed retinal ganglion cells to have 

multiple morphological subtypes based on their patterns of dendritic arborisation within the 

inner plexiform layer. 

RGCs are the on-off visual information cells of the retina with the cell soma found in the 

ganglion cells layer (with an average density of 3300cells/mm2 in the mouse (Jeon, Strettoi 

and Masland, 1998)) and their dendrites ramifying in the inner plexiform layer. It is here 

that the RGCs can be subcategorised as, although all retinal ganglion cell dendritic trees 

show laminar or multi-laminar radiation, they vary massively in terms of both structure and 

function (Dowling, 1987; Stuart, Spruston and Hausser, 1999; Coombs et al., 2006; Marc, 

2008).    

The morphology of RGC dendritic architecture can be used as a guide to retinal ganglion cell 

function, with retinal ganglion cells in mice subcategorised into as many as 14 different 

classes (Sun, Li and He, 2002b; Kong et al., 2005; Coombs et al., 2006). A comparison of 

retinal ganglion cells classes of different species can be seen in Table I. Grossly, retinal 
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ganglion cells can be categorised into ON- and OFF- centre and ON-OFF (bistratified) where 

each have their own morphology. ON-centre retinal ganglion cells ramify in sublamina b of 

the IPL making, but not exclusive to, glutaminergic synapses with bipolar cells forming a 

light-sensitive pathway. OFF-centre retinal ganglion cells on the other hand ramify in 

sublamina a of the IPL making, as well as the glutaminegic synapses with bipolar cells, GABA-

ergic synapses with amacrine cells forming a dark sensitive pathway (Nelson et al., 1978; 

Dowling, 1987). Bistratified cells ramify in a multi-lamina fashion in both sublaminae of the 

IPL and are involved with colour vision and may also be motion sensitive. 

Some retinal ganglion cells are also receptive to light (intrinsically photosensitive retinal 

ganglion cells [ipRGCs]), make direct connections to the suprachiasmatic nucleus and have a 

role in pupil-light reflex and circadian rhythms (Figure V). 

Figure V: Melanopsin in the visual system (overleaf) 

(A) Schematic of the retina showing the conventional ON- and OFF-centre retinal ganglion 

cells (black) and the relationship between photoreceptors (blue, green) and intrinsically 

photoreceptive retinal ganglion cells (red). Traditionally, the light transduction pathway 

starts at the level of the photoreceptors which makes its way to the retinal ganglion cells 

and the brain. Here melanopsin containing ipRGCs receive light input and transfer this 

directly to the brain without intermediary retina cell types. (B) The principle targets for 

ipRGC axons (blue) are the suprachiasmatic nucleus (SCN) as well as the ventral lateral 

geniculate nucleus (LGNv), the intergeniculate leaflet (IGL) and the olivary pretectal nucleus 

(OPN) which is part of the pupil-light reflex (circuit in cyan). Primary synapses and targets of 

this pathway are the iris (I), the ciliary ganglion (CG) and the Edinger-Westphal nucleus 

(EW). The orange pathway shows a polysynaptic circuit that regulates melatonin release 

from the pineal gland (P) in a circuit that includes the paraventricular nucleus (PVN), the 

intermediolateral nucleus (IML) and the superior cervical ganglion (SCG). Adapted from 

(Berson, 2003). 
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Table I: Comparative retinal ganglion cell classes across species 

The retinal ganglion cell population is a morphologically diverse group and many variants in 

nomenclature exist between species. Table I compares the various retinal ganglion cell 

subcategories in animals from the order Primate, Rodentia, Lagomorphia and Scandentia. 

Names marked with ‘*’ indicate nomenclature individual to this researcher (Boycott et al., 

1969; Watanabe and Rodieck, 1989; Dacey and Petersen, 1992; Akaishi et al., 1995; Doi, Uji 

and Yamamura, 1995; Ghosh et al., 1996; Jeon et al., 1998; Yamada et al., 2001; Sun et al., 

2002b; Diller et al., 2004; Coombs et al., 2006; Ghosh et al., 2006; Laycock, Crewther and 

Crewther, 2007; Dhruv et al., 2009; Ruggiero et al., 2009).  

 Midget Parasol BiStratified Photosensitive 

 (Parvocellular) (Magnocellular) (Koniocellular) (ipRGC) 

     

Mouse (Sun*) RGB RGA RGD  

Alternate Mouse Type III Type II M11, M12, M13, M14 Melanopsin-Expressing Cells 

Rabbit β α   

Pika Type I Type III   

Tree Shrew Group A Group B  ipRGC 

Owl Monkey Midget Parasol   

Capuchin Midget Parasol   

Rhesus Macaque Midget Parasol   

Baboon Midget Parasol   

Marmoset (Ghosh*) Group B Group A Group C  

Alternate Primate Pβ Pα   

2nd Alternate Primate A B   

3rd Alternate Primate P1/P2 M   
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1.6: Dendrites: Structure, Function and Importance 

 

Ramón y Cajal called neurons the “mysterious butterflies of the soul” and, although a rather 

beautiful analogy was made of the neuron, little was said about their processes and 

extensions; the dendrite. The reality is that dendrites are far much more than just passive 

neuronal extensions (Johnston and Narayanan, 2008). Dendrites are elaborate processes 

extending from the cell body of neurons. Here they receive almost all synaptic inputs to the 

cell. Synapse formation on the dendrite involves communication between both the pre- and 

post- synaptic cell although not all dendrites receive synaptic input (for example some 

sensory neurones) (Jan and Jan, 2001).      

Dendrites act by increasing the total cell surface area and in some neural populations as 

much as 97% of the total surface area can be attributed to dendritic processes (Ulfhake and 

Kellerth, 1981). The dendritic architecture of neurones show considerable differences in 

organisation and morphology between different neuronal populations and within the 

groups themselves. Dendritic architecture and morphology therefore is often used to 

categorise the many types of neuronal cells (Akaishi et al., 1995; Stevens, 1998; Sun, Li and 

He, 2002a; Sun et al., 2002b).   

Many dendrites are further specialised in that they have specialised extensions on 

themselves, dendritic spines. Increased activity at dendritic spines can increase their size 

and promote morphological changes (Stuart et al., 1999). However, dendritic spines are not 

present in all neuronal cell groups, for example RGCs, and instead, for RGCs at least, 

synaptic contact is conducted on the actual shaft of the dendrite. In RGCs dendrites act by 

increasing the total cell surface area by many times, ramifying in distinctly lamina fashion 

allowing differing stimuli to affect different cell populations with differing local 
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neurotransmitter demands (Stuart et al., 1999; Johnston and Narayanan, 2008; Shah, 

Hammond and Hoffman, 2010). 

Neuronal processing also occurs within dendrites. In the axon and soma of a neurone, 

sodium and potassium channels are required to generate action potentials which is initiated 

by the initial depolarization of the soma by synaptic inputs in the dendrite (Chalupa and 

Werner, 2004; Silver, 2010). Action potentials generated in the soma can back propagate 

into the dendrite which informs synapses in the dendrite that neuronal output has occurred. 

Therefore, to allow the neuron to generate controlled action potentials, sodium and 

potassium channels on the dendrite are necessary (Hausser, Spruston and Stuart, 2000; Jan 

and Jan, 2001). Sodium channels are also present on direction-selective retinal ganglion 

cells. The direction-selective retinal ganglion cells fire action potentials in a specific direction 

which signals the direction of an image motion across their receptive field (Oesch, Euler and 

Taylor, 2005). When the image moves in the preferred direction across the dendritic field, 

the direction-selective cell exhibits a large excitatory post-synaptic potential and a large 

inhibitory post-synaptic potential in the opposite direction (Sun et al., 2006). In addition to 

sodium and potassium there is considerable calcium ion (Ca2+) influx into the cytoplasm of 

dendrites which can arise from several sources including synaptically from glutamate 

receptors (both NMDA and AMPA type) and voltage sensitive calcium channels as well as 

from the mitochondria (and other internal stores such as the smooth endoplasmic 

reticulum). Ca2+ influx into dendrites and dendritic spines has been shown to regulate 

different forms of long- and short- term synaptic plasticity including long-term depression 

(LTD) and long-term potentiation (LTP) (Higley and Sabatini, 2008). This regulation of LTP 

and LTD is dependent on the frequency and the timing of Ca2+ influx (Bear, 1995).    



 
35 Chapter 1: Introduction 

1.7: The Inner Plexiform Layer: Neurotransmitters and Localisation 
 

Synaptic transmission within the mammalian retina encodes pre-synaptic voltages and 

biochemical changes into a coordinated neurotransmitter release which is decoded post-

synaptically into a filtered neuronal message. This role is fulfilled by several major retinal 

neurotransmitters acting on a sub-population of cell. These neurotransmitters are, most 

notably, glutamate, GABA (γ-aminobutyric acid), glycine, dopamine and acetylcholine.  

At the level of the outer plexiform layer two major glutamatergic signalling pathways have 

been observed; metabotropic glutamatergic signalling between photoreceptors and ON 

bipolar cells and ionotropic glutamatergic signalling between photoreceptors and horizontal 

cell and OFF bipolar cells. Glutamatergic signalling in the outer plexiform layer occurs as 

photoreceptors hyperpolarise, decreasing the synaptic glutamate levels and depolarizing 

bipolar cells. Depolarised bipolar cells pass this neural message onto retinal ganglion cells 

through ionotropic glutamatergic signalling where the encoded neural message continues 

towards the brain’s visual centres.  

While this vertical channel of glutamatergic signalling is taking place amacrine cells act to 

oppose this neural firing through lateral, fast inhibition onto bipolar cells, retinal ganglion 

cells and other amacrine cells. Amacrine cells perform this function through iontropic and 

metabotropic GABA and glycine release. In ionotropic inhibitory signalling GABA and / or 

glycine release from amacrine cells bind to ionotropic receptors opening Cl- channels.  This 

hyperpolarises the target cell and leads to inhibition. In metabotropic inhibitory signalling 

GABA release from amacrine cells bind to metabotropic GABA receptors decreasing the 

voltage sensitivity of Ca2+ channels which depresses glutamate release. Amacrine cells can 

also excite each other through acetylcholine signalling, dopamine is also expressed in 
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amacrine cells acting as a synaptic modulator (Figure VI) (Pourcho, 1982; Davanger, 

Ottersen and Stormmathisen, 1991; Crooks and Kolb, 1992; Pourcho, 1996; Marc, 2008). 
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Figure VI: Neurotransmitters in the retina 

Schematic showing the various neurotransmitters involved in synaptic transfer within the 

inner plexiform layer. The two most common neurotransmitters, gluatamate and GABA, are 

present across the whole inner plexiform layer, less common neurotransmitters, glycine, 

acetylcholine and dopamine, are present only at synapses between specific cell classes. 
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1.8: Synapses: Structure, Function and Importance 
 

Chemical synapses (from the Greek; syn – together, haptein – to clasp) are the functional 

connections between neurons be that axon – axon (axoaxonal), axon – dendrite 

(axodendritic) or dendrite – dendrite (dendrodendritic). Chemical synapses are the most 

common synapse in the mammalian nervous system and are asymmetrical in structure (i.e. 

they have a pre- and a post- synaptic site). Take, for example, a dendrodendritic synapse; at 

the presynaptic site, the presynaptic bouton, neurotransmitters are encased in synaptic 

vesicles (made from lipid bilayers) which dock at the active zone to form the readily 

releasable pool of synaptic vesicles. When the membrane potential is reduced by graded 

fluctuations from an action potential calcium channels open and Ca2+ diffuses into the 

dendrite. This triggers synaptic vesicle fusion to the plasma membrane at the pre-synaptic 

site releasing the stored neurotransmitter into the synaptic cleft (the area between the pre- 

and post- synaptic sites). On the opposite side of the cleft, on the postsynaptic membrane, 

are specialised neurotransmitter receptors. The released neurotransmitter binds to the 

complimentary receptor causing it to be activated allowing ions to enter or exit the neuron 

resulting in a change in voltage leading to either an excitatory or inhibitory response which 

subsequently becomes an EPSP (excitatory post-synaptic potential) or IPSP (inhibitory post-

synaptic potential). At the post-synaptic site the bound neurotransmitter molecule must be 

removed in order for an EPSP or IPSP to occur either through reuptake from the pre-

synaptic site for reuse (recycling) or metabolically broken down. Depending on the 

neurotransmitter synaptic transfer maybe rapid or protracted. Rapid synaptic transfer 

occurs when specific neurotransmitters (for example GABA) bind to ionotropic receptors 

forming active ion channels in the membrane. Slower synaptic transfer occurs in the case of 
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slowly acting neurotransmitters (for example glutamate) which bind to metabotropic 

receptors associated with G-proteins (G-protein coupled receptors). Metabotropic receptors 

are also involved with channel opening, but, unlike ionotropic receptors, do not form the 

ion pore themselves. Instead this involves a range of intracellular second messaging 

systems.     

One important factor governing neuronal connectivity is the ability for synaptic transmission 

to be modulated (either depression or potentiation) by previous synaptic activity or through 

the number of receptors located on the synapse, i.e. synaptic plasticity. Synaptic plasticity 

can occur in the short-term or long-term. Short-term synaptic plasticity happens at the level 

of the microsecond to the second and exists to strengthen or weaken existing synaptic sites. 

Synaptic enhancement occurs after synaptically active periods resulting in an increased 

chance that the synapse will release neurotransmitters by increasing the vesicle pool or 

increasing the amount of neurotransmitter in the synaptic vesicles. Long-term synaptic 

plasticity (long-term potentiation; LTP) is an increase in synaptic response following a 

continued burst of electrical stimulus (a tetanus) and is important, among other reasons, for 

memory formation in the hippocampus (Malenka, 1995).           

 

 

 

 

 

 

 

 



 
40 Chapter 1: Introduction 

1.9: Dominant Optic Atrophy 
 

Mutations in OPA1 lead to dominant optic atrophy, (Alexander et al., 2000; Delettre et al., 

2002) the most common optic neuropathy, with an estimated prevalence of 1:12,000 

(Carelli, Ross-Cisneros and Sadun, 2002) rising to 1:10,000 in certain populations (Danish; 

(Kjer, Jensen and Klinken, 1983)) (Delettre et al., 2002). DOA typically presents in the first 

decade of life as bilateral visual loss with pallor of the optic disc, centrocaecal visual field 

scotoma and tritanopia (Votruba, Moore and Bhattacharya, 1998; Delettre et al., 2002). 

Visual loss may be slowly progressive. There is considerable intra- and inter-familial 

variability in severity of visual loss ranging from legally blind to asymptomatic carriers. Some 

pedigrees have associated clinical features such as ptosis, myopathy and progressive 

external ophthalmoplegia. Histological assessment from donor eyes shows thinning of the 

retinal ganglion cell layer suggesting degeneration of retinal ganglion cells. Demyelination 

has been observed in the optic nerve, chiasm and tract (Kjer et al., 1983; Milea et al., 2010). 

The shape of the optic nerve has been reported to be characteristic (Fournier et al., 2001; 

Votruba et al., 2003) and the size of the optic nerve head is reduced (Barboni et al., 2010). 

Over 200 different OPA1 mutations have been reported to date (Ferré et al., 2005; Olichon 

et al., 2006) (Figure VII). Isolated mutations in the OPA1 gene have also been shown to 

cause a ‘DOA plus syndrome’, in which optic atrophy is accompanied by sensorineural 

deafness, ataxia, axonal sensory-motor polyneuropathy, chronic progressive external 

ophthalmoplegia and mitochondrial myopathy with cytochrome c oxidase negative and 

Ragged Red Fibres (Amati-Bonneau et al., 2009; Huang, Santarelli and Starr, 2009; Milone et 

al., 2009; Yu-Wai-Man et al., 2010). Remarkably, it has recently emerged that, in rare 
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cases,OPA1 mutations can be associated with hearing loss, ptosis and oculomotor deficits in 

the absence of any detectable optic atrophy (Milone et al., 2009).  
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Figure VII: Opa1 mutations 

Diagrammatic and image of an unstained chromosome (A) shows the location of the Opa1 

gene, the structure of which is seen in B in comparison to dynamin. Note the similar 

features between Opa1 and dynamin including an almost identical GTPase domain and 

GTPase effector domain (GED). Opa1 contains an N-terminal coiled region (CC), two 

hydrophobic segments (HS) and a mitochondrial import sequence (MIS) whereas dynamin 

contians a pleckstrin homology domain for lipid binding and a C-terminal regulator prolin 

rich domain (PRD).  The majority of Opa1 mutations occur within the GTPase domain or 

middle domain (C, mutations by domain). Adapted from (Delettre et al., 2000; Olichon et al., 

2006). 
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1.10: Mouse Models of Dominant Optic Atrophy: A Comparison 

1.10.1: Mouse Model of Dominant Optic Atrophy 

 

Ocular and CNS tissue from patients with DOA is scarce and the published histology of DOA 

has come from a very small number of elderly patients with severe disease (Johnston et al., 

1979; Kjer et al., 1983). This limitation has created a pressing need for an animal model of 

DOA. Such a model must combine the genetic and clinical characteristics of DOA in animals 

that are suitable for genetic analysis. Mice are widely used as genetic disease models due to 

the relative ease of genetic manipulation and high homology to the human genome. The 

murine retina shows relatively good homology to the human retina rendering the mouse 

suitable for modelling a wide range of human visual diseases with a genetic basis (Smith et 

al., 2002). However, there is a range of anatomical limitations, and it should be recognised 

that although the murine eye is a good model for human eye disease it is by no means 

perfect. Despite this, much has been learnt from mouse models of human genetic eye 

disease. In the last five years two mouse models of Opa1 DOA (based on OPA1 

haploinsufficiency) have been published: the B6;C3-Opa1Q285STOP Opa1 mutant mouse 

(Davies et al., 2007) and the B6;C3-Opa1329-355del Opa1 mutant mouse (Alavi et al., 2007). 

Both display a broad correlation with the human DOA phenotype. (The two models are 

compared and contrasted in Table II and a timeline of disease progression for the B6;C3-

Opa1Q285STOP mutant mouse is seen in Figure VIII).  
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Figure VIII: DOA disease progression timeline (previous page) 

Timeline showing the disease progression of DOA in patients (lower) and the B6;C3-

Opa1Q285STOP mouse model (upper). References: [1] (Davies et al., 2007), [2] (Williams, 

Morgan and Votruba, 2010), [3] (White et al., 2009), [4] (Taylor et al., 2010), [5] (Votruba et 

al., 1998), [6] (Yu-Wai-Man et al., 2010), [7] (Kjer et al., 1983), [8] (Johnston et al., 1979).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II: Comparison of Opa1 mouse models (overleaf) 

A comparison of the B6;C3-Opa1Q285STOP and B6;C3-Opa1329-355del Opa1 mouse models. 

References:  (Barnard et al.; Johnston et al., 1979; Kjer et al., 1983; Kjer et al., 1996; Holder 

et al., 1998; Votruba et al., 1998; Carelli et al., 2002; Ferré et al., 2005; Alavi et al., 2007; 

Davies et al., 2007; Alavi et al., 2009; Amati-Bonneau et al., 2009; Lenaers et al., 2009; White 

et al., 2009; Yu-Wai-Man et al., 2009; Heiduschka et al., 2010. 
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 Clinical Phenotype 
Opa1 DOA 

B6;C3-Opa1Q285STOP B6;C3Opa1329-355del 

Mutation All exons except exon 4, 
4b and 5 
Substitutions, deletions 
and insertions 
Evidence for 
haploinsufficiency 

Exon 8 
Nonsense mutation 
At DNA level: c.1051 C>T 
At protein level: p.Q285X 
50% reduction in protein levels 

Intron 10. 
Splice site mutation 
At DNA Level: c.1065+5G>A 
At Protein Level: p.329-355del 
50% reduction in protein levels 

Mitochondria Loss of mtDNA in ‘plus’ 
mutations 
Morphology: 
fragmentation in patient 
fibroblasts 

mtDNA copy number: no 
significant difference compared 
to wt counterparts 
Morphology: powdered 
appearance  
Increased mitophagy 

mtDNA copy number: no 
significant difference compared 
to wt counterparts. 
Morphology: disorganised cristae 

Mouse N/A Strain: C3H:C57Bl/6J. 
Generation: >G4 

Strain: C3H:C57Bl/6 
Generation: Inter-crosses of F1 

Homozygous 
Mutant 

Presumed embryonic 
lethal 

Embryonic lethality <E13.5 Embryonic lethality  ca. E8.5 

 Phenotype 
Age Observed (Months, * = Most Significant) 

Visual Function 
and 
Electrophysiology 

Acuity range from 6/6 to 
registered blind  
Optic atrophy with disc 
pallor 
VEP decreased 
amplitude,+/- increased 
latency, PERG P50:N95 
ratio decreased   
 

Decreased visual function 
assessed by OKN (6, 12*) 
Reduction in PhNR (light adapted 
ERG)(11-13*) 
Reduction in P2 (Light adapted 
Flash-VEP)(11-13*) 
 

Decrease in VEP amplitude  
(20-24*) 
No significant change in ERG even 
in aged mice (2, 9, 24) 

‘Plus’ Phenotype Sensorineural deafness, 
ataxia, axonal sensory-
motor polyneuropathy, 
chronic progressive 
external 
ophthalmoplegia and 
mitochondrial myopathy 
with cytochrome c 
oxidase negative and 
Ragged Red Fibres  
 

Increased transfer arousal 
Longer freezing periods 
Decreased locomotor activity  
No COX-SDH ragged red fibres  
(6* for all) 
 

Abnormal clutching reflex. 
Tremor (22*) 
Decreased locomotor activity 
(22*) 
Lighter than wt counterparts 
(22*) 
Less body fat than wt 
counterparts (21*) 
No COX-SDH ragged red fibres 
(21*) 
 

RGC Population 
and Morphology 

RGC loss No significant difference in 
population 
Dendritic atrophy with age 
limited to sublamina b (10-15, 
>20*) 
 

Reduction with age starting in 
peripheral retina confirmed by 
retrograde labelling (13, 17, 20*) 

Optic Nerve Demyelination  
Ascending optic 
neuropathy 

Demyelination (24*) 
Myelin clumping (18, 24*) 
Watery degeneration (9, 24*) 
Dark degeneration (9, 24*) 
No axon loss (6, 9, 24) 

Demyelination 
Disorganisation 
Swollen and distorted axons 
Complete loss of large axons 
Significant loss of small axons 
(8* for all) 
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1.10.2: Generation of the B6;C3-Opa1Q285STOP and B6;C3-Opa1329-355del Opa1 Mutant Mice 

 

Both the B6;C3-Opa1Q285STOP mutant mouse (Davies et al., 2007) and the B6;C3-Opa1329-355del 

mutant mouse (Alavi et al., 2007) were generated after screening an ENU-mutagenized DNA 

library of mouse DNA (Ingenium, Martinsried, Germany) for mutants with sequence changes 

in Opa1. 

The B6;C3-Opa1Q285STOPOpa1 mutant mouse was generated by screening an ENU-

mutagenized DNA archive from C3HeB/FeJ males for point mutations in Opa1 exons 1, 8, 9, 

10, 12 and 28, selecting a heterozygous nonsense mutation in exon 8, which codes for a C-T 

transition at 1051 bp (Q285STOP). This mutation causes protein truncation at the beginning 

of the dynamin GTPase, close to the location of a number of human disease mutations 

(c.868C>T (R290W) and c.869G>T (R290Q) (Ferré et al., 2005)). The Opa1 mutant mouse line 

(B6;C3-Opa1Q285STOP) was produced through in vitro fertilization with mutant sperm and 

C57Bl/6J females to produce a heterozygous, Opa1+/-, mouse. The founder (F1) generation 

was then systematically outcrossed to C57Bl/6J up to at least G4.  The pde (RD1 mutation), 

carried by the C3H line, was excluded by systematic genotyping and breeding. Heterozygous 

Opa1+/- mice were intercrossed to generate generation cohorts.  

The B6;C3-Opa1329-355del Opa1 mutant mouse was also generated by screening an ENU-

mutagenized DNA library of mouse DNA and this time identifying a splice site mutation in 

murine Opa1 intron 10: c.1065 + 5G → A. Using a purebred C3HeB/FeJ outcross on C57Bl/6 

a mouse model for DOA carrying this splice site mutation in the Opa1 gene was created. The 

mutation is close to three reported human mutations (c.1065 +2T > C, c1065 + 2T > G and 

c.1065 + 3A > C (Ferré et al., 2005)) and results in  skipping of exon 10 in the OPA1 gene 

causing an in-frame deletion of 27 amino acid residues in the dynamin GTPase domain.  
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Both models show ~50% reduction in Opa1 transcript in retinal tissue and a ~50% reduction 

in Opa1 protein across a range of tissues, suggesting that haploinsufficiency underlies the 

pathophysiological mechanism.  Both the B6;C3-Opa1Q285STOP and B6;C3-Opa1329-355del 

mutant mouse are embryonic lethal when homozygous; at <E13.5 in the B6;C3-Opa1Q285STOP 

mutant mouse (Davies et al., 2007) and ca. E8.5 (between E3.5 and E12) in the B6;C3-

Opa1329-355del  mutant mouse (Alavi et al., 2007). 

 

1.10.3: Visual, Neurological and Neuromuscular Abnormalities 

 

Visual function in the B6;C3-Opa1Q285STOP mutant mouse has been assessed with a rotating 

optokinetic drum (OKN) using high (2˚, corresponding to 0.25 cycles/degree) to low (4˚ and 

8˚, 0.125 and 0.0625 cycles/degree) resolution gratings. Two studies (Davies et al., 2007; Yu-

Wai-Man et al., 2009) have looked at visual function at 6, 12, 13 and 18 month old mice. 

Significantly decreased mean tracking frequencies from 12 months in Opa1+/- mice were 

detected at high and low spatial frequencies.  Furthermore, reduced detection of the low 

resolution gratings was documented from 18 months onwards in Opa1+/- mice. Visual 

electrophysiological testing (ERG and Flash-VEP) has recently been performed on 11-13 

month B6;C3-Opa1Q285STOP mice. There were no detectable differences in a- or b-wave in 

dark and light adapted ERG; however there was a significant reduction in the PhNR in the 

light adapted ERG. There was also a decrease in the P2 deflection in the dark adapted Flash-

VEP (Barnard et al., 2011). The results of the visual electrophysiological testing are 

consistent with retinal ganglion cell dysfunction.    

Given the ubiquitous expression of Opa1 (Alexander et al., 2000) an Opa1 deficiency may be 

expected to adversely affect other organ systems, especially those with high levels of 
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mitochondria and high metabolic demands. Detailed (non ocular) phenotyping of the B6;C3-

Opa1Q285STOP mouse model by SHIRPA neurological testing has revealed subtle systemic 

neurological and neuromuscular abnormalities (Davies et al., 2007), such as decreased 

locomotor activity.  

There are several reported neurological and metabolic abnormalities in the B6;C3-Opa1329-

355del  mutant mouse phenotype (Alavi et al., 2009). SHIRPA testing showed that over a half 

of the Opa1 mutant mice had an abnormal clutching reflex with a third (11 males and 2 

females) suffering a tremor by 22 months of age. Opa1 mutant mice also performed 

significantly worse than controls on the Rotarod; a rotating rod used to test the physical 

performance of rodents. Although Opa1 mutant mice maintained a normal food intake they 

were significantly lighter than controls regardless of sex. Post-mortem examination revealed 

significantly less body fat than controls though the muscle fibre morphology was unaffected. 

The extra-ocular phenotype reported in the B6;C3-Opa1329-355del mutant mouse has recently 

been supported by findings on Rotarod in the B6;C3-Opa1Q285STOP. This also applies to the 

tendency for B6;C3-Opa1Q285STOPmutants to have lower body weight (Taylor et al., 2010).Of 

significance is the fact that neither model displayed hearing loss.  

Both models have been aged up to 24+ months but no robust quantitative data on life 

expectancy has been published.  
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1.10.4: Retinal Ganglion Cell Populations 

 

Both models show normal clinical fundal appearances on dilated ophthalmoscopy. Pattern 

electroretinogram (PERG) data from patients with DOA show a consistent reduction in the 

retinal ganglion cell specific P50: N95 ratio (Holder et al., 1998; Holder, 2004). Visually 

evoked potential (VEP) data in DOA patients show variable reduction in amplitude with 

occasional delay documented in some patients, consistent with axon dysfunction/damage. 

Further electrophysiological testing (ERG) (Miyata et al., 2007) shows a reduction in 

oscillatory potential and PhNR suggestive of retinal ganglion cell loss / dysfunction. 

Electroretinography (ERG) in the B6;C3-Opa1329-355del mutant mouse at 2 and 9 months was 

normal (Alavi et al., 2007). Reductions in the ERG could not be detected at 24 months of age 

when the disease might be regarded as ‘end-stage’ (Heiduschka et al., 2010). (Reductions 

were seen in the scotopic a-wave (photoreceptors) and b-wave (rod bipolar cells (Pinto et 

al., 2007)) and photopic b-wave amplitudes in the Opa1 mice). However, assessment of the 

visual pathway by visual evoked potential (VEP) (Heiduschka et al., 2010) showed a 

significant reduction in the amplitude of scotopic VEPs in Opa1 mice and a reduction in the 

amplitude of photopic VEPs, but in neither case was the VEP delayed. This was interpreted 

as a loss of RGCs, which could be confirmed by reterograde labelling.  

Retrograde labelling from both superior colliculi using hydroxystilbamidine and by 

Haematoxylin and Eosin staining was undertaken to quantify any changes in RGC 

populations (Alavi et al., 2007). RGC counts were unchanged in 2 and 4 month old Opa1 

mutant mice but showed a slight reduction by 13 months. These changes were first seen at 

9 months, appearing first in the peripheral and mid peripheral retina.  By 23 months Opa1 

mutant mice showed a marked reduction in RGC layer counts which was confirmed by 
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retrograde RGC labelling. RGCs were reported to be phagocytosed by retinal microglia 

(Heiduschka et al., 2010). Histology of the retina confirms that there is no abnormality in the 

photoreceptor or other retinal layers.  

Conversely, histological examination of B6;C3-Opa1Q285STOP mutant mouse retinas by 

Haematoxylin and Eosin, Hoechst 33258 staining and TUNEL staining reveals no significant 

cell loss in the retinal ganglion cell layer or death across all age groups, even at 24 months of 

age (Davies et al., 2007). Retinal architecture and morphology is normal on histology with no 

defect in photoreceptors, however, there was a significant increase in the number of 

autophagosomes in the RGCs in the retina and surrounding the axons in the 24 month old 

Opa1+/- mice (White et al., 2009) compared to age matched wild type littermate controls.  

Since Opa1 is downregulated by ca. 50%, it is hypothesised that there is a reduction in 

mitochondrial membrane potential forming dysfunctional depolarized mitochondria, which 

must be eliminated by autophagosomes, or recovered by mitochondria fusion. Since 

mitochondrial fusion is impaired in this mouse model of DOA, autophagy of mitochondria 

(mitophagy) is a likely outcome. These data suggest that RGC dysfunction rather than 

significant RGC loss underlies visual dysfunction in this mouse model. 
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1.10.5: Optic Nerve Pathology 

 

Although optic nerve pallor is a cardinal feature of human DOA, clinical optic atrophy is hard 

to categorise in the mouse eye and it has not been a robust phenotypic marker in either 

model. In the B6;C3-Opa1Q285STOP mouse model transmission electron microscopic analyses 

have indicated little change relative to controls in the optic nerves of 6 month old Opa1+/- 

mice. However, from 9 months to 18 months there were significant abnormalities in the 

optic nerve fascicles and myelin bundles, which appeared as large abnormal whirls of myelin 

as well as the appearance of noticeable demyelination (Davies et al., 2007) associated with 

significant intra-axonal  changes (White et al., 2009). From 9 months of age these were 

evident as early signs of watery and dark axonal degeneration in the Opa1+/- mice, and 

reached statistical significance by 24 months, by which time axons counts were significantly 

reduced. Since axon loss was evident in both the 24 month Opa1+/- mice and age matched 

wild-type controls, it is likely that the changes reflected age related axon loss and not just 

the effects of Opa1 deficiency. 

Similar electron microscopic analysis on the B6;C3-Opa1329-355del mutant mouse (Alavi et al., 

2007) has shown a more severe phenotype to that of the B6;C3-Opa1Q285STOP mutant mouse 

showing a complete loss of large axons and a significant loss of small axons by 8 months of 

age indicative of RGC degeneration. Optic nerve axons were swollen and distorted with 

associated demyelination and the presence of membranous whorls. The neurofibrillary and 

collagen contents were both reduced in the optic nerve.  
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1.10.6: Clinical Relevance of the B6;C3-Opa1Q285STOP and B6;C3-Opa1329-355del Mouse Models 

 

The B6;C3-Opa1Q285STOP mouse model is a useful resource for the study of DOA disease 

mechanisms since it shows late onset and subtle changes in RGCs and optic nerve which are 

associated with slow progression of the disease. The precise mechanisms linking defects in 

mitochondrial fusion to visual dysfunction remain unknown. The B6;C3-Opa1Q285STOP model 

shows evidence of mitochondrial dysfunction with Opa1+/- mouse muscle fibroblast culture 

displaying punctuated and dispersed mitochondria, giving an abnormal ‘powdered’ 

appearance (Davies et al., 2007). Apoptosis of RGCs has been proposed as a 

pathophysiological mechanism in DOA, but cell counts and TUNEL labelling in this mouse 

model show that visual dysfunction must exist prior to widespread RGC loss. Thus, this 

model supports dysfunction of RGCs as an early stage in DOA pathophysiology. From the 

data presented it appears that dendritic pruning of RGCs precedes visual deficit as well as 

changes in RGC axons and the optic nerve giving a potential timescale for the progression of 

the disease. The B6;C3-Opa1Q285STOP mutant mouse harbours no mtDNA deletions associated 

with the DOA ‘plus’ phenotype in patients yet there are subtle extra-ocular neurological 

abnormalities present suggesting that even those OPA1 mutations not associated with 

mtDNA loss in patients can be associated with neuromuscular defects. This highlights the 

importance of conducting full neurological assessments in all DOA patients (Aijaz et al., 

2004; Amati-Bonneau et al., 2009; Yu-Wai-Man et al., 2009). 

The B6;C3-Opa1329-355del mutant mouse provides a good model of DOA since it retains the 

key clinical features documented in patients with similar mutation in OPA1 close to intron 

10 c.1065 (c.1065 +2T > C, c1065 + 2T > G and c.1065 + 3A > C (Pesch et al., 2001; Ferré et 

al., 2005; Puomila et al., 2005)). The B6;C3-Opa1329-355del mouse model of DOA displays no 
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mtDNA deletions (Alavi et al., 2009). Changes in the optic nerve, RGC populations and 

abnormal mitochondria (Alavi et al., 2007) are all present and these follow clinical 

observations in patients with DOA. The Opa1 mutant mouse also has reduced VEP 

amplitude strongly suggesting RGC loss, a finding supported by retrograde labelling of RGCs.  

The evidence for retinal ganglion cell loss as the only mechanism of disease in clinical DOA is 

partly based on histological data conducted over 30 years ago on a small cohort of two very 

elderly patients with severe visual loss/‘end stage’ disease (Johnston et al., 1979; Kjer et al., 

1983). This histology shows retinal thinning and widespread retinal ganglion cell loss.  

Recent OCT data (Milea et al., 2010) confirm the retinal nerve fibre layer thinning. Based on 

this data widespread retinal ganglion cell loss in DOA must be a relevant mechanism, but it 

may not be the earliest change and not necessarily even the only one (Table II). 

 VEP data from patients, with reduced amplitude, supports retinal ganglion cell loss; 

however, some patients’ VEP readings show an increased VEP latency (Holder et al., 1998) 

indicative of retinal ganglion cell dysfunction, in association with cell loss. With over 200 

mutations recorded (Ferré et al., 2005) and electrophysiology available for only a proportion 

of these, it may be possible that retinal ganglion cell dysfunction precedes loss as the driver 

for visual dysfunction, and this effect may be mutation specific. Unfortunately, due to the 

constraints of human retinal phenotyping in patients with early disease it may prove difficult 

to explore this hypothesis fully.       

Drawing from murine models of other neurodegenerative diseases, such as Alzheimer’s and 

Parkinson’s disease, there is evidence of both dendritic atrophy (Grutzendler et al., 2007) 

and widespread neural cell loss (Beal, 2001) as drivers for the disease and as the major 

mouse phenotype. Mitochondrial fusion and fission are essential for proper dendritic 
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morphology and we see rapid dendritic remodelling in terms of dendritic spine morphology 

when the fusion/fission balance is disturbed (Li et al., 2004). Retinal ganglion cells do not 

possess dendritic spines but there is evidence for dendritic remodelling over a longer time 

frame (Marc et al., 2003). It is feasible that this process is happening in a subset of DOA 

patients as an early disease marker (as in the B6;C3-Opa1Q285STOPmouse) and that 

widespread retinal ganglion cell loss (as in the B6;C3-Opa1329-355del mouse) occurs prior to 

gross visual dysfunction in that same way that there is a 70% neural loss in the substantia 

nigra in Parkinson’s disease patients before the disease is clinically apparent. 
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1.11: Aims and Hypothesis 

 

As outlined here, Opa1 is shown to be essential for embryonic growth in mice, dendritic 

architecture in neuronal cell culture and retinal ganglion cell integrity (as shown by its role 

in dominant optic atrophy both clinically and in animal models) through its roles in, but not 

exclusive to, mitochondrial fusion, oxidative phosphorylation, apoptosis and mtDNA content 

control. 

Using a range of experimental paradigms this thesis aims to uncover the mechanism that 

underpins visual deficit in the B6; C3-Opa1Q285STOP mouse model of dominant optic atrophy 

which occurs without retinal ganglion cell loss, a hallmark feature of the clinic phenotype.  

In the absence of observable retinal ganglion cell loss this thesis first aims to establish the 

morphology and distribution of mitochondria within the retinal ganglion cells themselves 

using electron microscopy for mitochondrial ultrastructure and biolistic transfection for 

mitochondrial distribution within the retinal ganglion cells as previous reports have 

primarily focused on mitochondrial morphology in muscle biopsies and mouse embryonic 

fibroblasts. This thesis hypothesises abnormal mitochondrial morphology similar to that 

seen in previous ultrastructure analysis (abnormal cristae structure) that may drive retinal 

ganglion cell dysfunction. 

Previous retinal ganglion cell counts in patient histology come from two elderly patients 

with end stage disease and cell counts in animal models come from either generic nuclear 

cell labelling (unspecific for retinal ganglion cells; B6; C3-Opa1Q285STOP model) or retrograde 

labelling (which may not give a true count of retinal ganglion cells if the optic nerve is 

damaged; B6; C3-Opa1329-355del model). Using specific cell labels (through 
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immunohistochemistry) this thesis next aims to establish a full count of retinal ganglion cells 

populations and their input cells, the bipolar cells. This thesis hypothesises that previous 

reports in this model are correct and that there is indeed no cell loss across the retina.  

In the absence of cell loss in retina this thesis next aims to seek for an anatomical basis for 

the retinal ganglion dysfunction and the changes seen in the optic nerve by analysing the 

connections between the retinal ganglion cells and the bipolar cells using DiOlistics to label 

the soma and dendritic tree of the retinal ganglion cells, biolistics to image synapse 

distribution along the dendrite, immunohistochemistry, western blotting and qPCR to 

analyse specific synapse and synaptic receptor distribution and number in the inner 

plexiform layer as well as electron microscopy to analyse the number and distribution of 

bipolar cell to retinal ganglion cell synapses. This thesis hypothesises a decrease in retinal 

ganglion cell dendritic architecture coupled with the associated degeneration or loss of 

synaptic sites. 

The methods used throughout this thesis will now be discussed.  
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Chapter 2: Materials and Methods 
 

2.1: Opa1+/- Mice 
 

Mice were kept in a 12 hour light (10 lux) / 12 hour dark cycle with food and water available 

ad libitum. Breeding and all experimental procedures were undertaken in accordance with 

the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and 

approved by ethical and legal authorities (Home Office). The mutant strain has been 

described in detail elsewhere (B6; C3-Opa1Q285STOP) (Davies et al., 2007). All animals were 

out-crossed to a C57Bl6/J background (F1) and the experiments were performed on mice 

bred to generations F4 to F5. Animals were genotyped by Opa1 allele-specific PCR (Davies et 

al., 2007). A table detailing exact mouse numbers and ages is seen in Table III. 
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Table III: Numbers and ages of mice used per experiment 

Table detailing the exact age and genotype of each mouse used throughout this series of 

experiments. Upper table, wt; lower table, Opa1+/-.  

wt 

Experiment Total Number Used Ages (n x Month) 

DiOlistics 22 2 x 4, 2 x 7, 4 x 10, 6 x 15, 1 x 20, 1 x 23, 5 x 24 

Biolistics 3 3 x 12 

Immunohistochemistry 12 4 x 12, 4 x 14, 4 x 15 

γ-Synuclein Labelling 2 2 x 24 

Melanopsin Labelling 2 1 x 23, 1 x 4 

Western Blots 6 2 x 12, 2 x 14, 2 x 15 

Electron Microscopy 6 2 x 12, 2 x 14, 2 x 15 

Total 53  

 

 

Opa1+/- 

Experiment Total Number Used Ages (n x Month) 

DiOlistics 28 2 x 4, 2 x 7, 4 x 10, 7 x 15, 2 x 20, 2 x 21, 4 x 23, 5 x 24 

Biolistics 3 3 x 12 

Immunohistochemistry 12 4 x 12, 4 x 14, 4 x 15 

γ-Synuclein Labelling 2 2 x 24 

Melanopsin Labelling 4 2 x 23, 2 x 4 

Western Blots 6 2 x 12, 2 x 14, 2 x 15 

Electron Microscopy 6 2 x 12, 2 x 14, 2 x 15 

Total 61  
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2.2: Retinal Dissections and Flat Mounts 
 

For dendritic morphology of retinal ganglion cells using DiOlistic labelling adult Opa1+/- 

experimental mice (Opa1+/-) and their age and sex matched littermate controls (wt) were 

analysed as 3 age groups; less than 10 months old (<10 month), between 10 and 15 months 

old (10-15 month) and older than 20 months (>20 month). For synaptic and mitochondrial 

number and morphology using Biolistics adult Opa1+/- and their age and sex match wt 

controls were analysed at 12 months.  

Mice were killed by cervical dislocation and the eyes immediately enucleated and placed in 

chilled (4°C) HBSS (Invitrogen, UK) in 7ml bijous. The eye was punctured at the limbus and a 

slit cut in sclera to remove the cornea and sclera anterior to the ora serrata, lens and 

vitreous.  Three cuts were made in the retina using micro-ophthalmic scissors  before being 

flat-mounted ganglion cell layer up on a cell culture insert (Millipore, Billerica, MA) and 

submerged in custom media containing Neurobasal media,  1% N-2 supplement and 0.5mM 

glutamine (Invitrogen, UK) (Figure IX). Retinas were incubated at 37°C and 4% CO2 ready for 

DiOlistic labelling using a gene gun or labelling with Hoechst 33258 stain. The total time 

between death and labelling was less than 10 minutes. 
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Figure IX: Retinal dissections 

In order to perform DiOlistic and Biolistic labelling of retinal ganglion cells, mouse retinas 

were first dissected and maintained in culture. Once the eye is enucleated a hole is made (A) 

at the site of the limbus between the cornea (red line) and the sclera (white line) allowing 

the cornea to be fully removed (B) by cutting around the limbus. Several slits are then made 

in the retina (C) in order to flat mount the retina (D) ganglion cell layer up on a cell culture 

membrane in custom media. Following this, the retina can be DiOlistically or Biolistically 

labelled (E), imaged and analysed (F). Adapted from (Sholl, 1953; Sawamiphak, Ritter and 

Acker-Palmer, 2010)  
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2.3: Hippocampal Sections 

The animals were killed by cervical dislocation and brain sectioned sagittally at 250µm in ice 

cold PBS using a Leica VT1000S vibratome (Leica Microsystems, UK). Hippocampal sections 

were immediately placed into 6 well plates containing HBSS (Invitrogen, UK). The HBSS was 

then removed in preparation for DiOlistic labelling. Sections were then immersed in 

Neurobasal media (Invitrogen) and incubated at 37°C and 4% CO2 for 30 minutes. Total time 

between death and DiOlistic labelling of brain slices was less than 25 minutes. 

 

2.4: Quantitative RT-PCR 
 

Retina and hippocampus tissue from 12 month wt and Opa1+/- mice were harvested and 

placed in RNAlater (Ambion). Total RNA was isolated using Trizol-Reagent and purified using 

the RNeasy Clean Up kit (Qiagen). 1 μg of total RNA from each sample was reverse-

transcribed using the High Capacity cDNA reverse transcription kit (Applied Biosystems). 

Quantitative PCR reactions were prepared using TaqMan® Universal PCR Master Mix, No 

AmpErase® UNG (Applied Biosystems) and mixed with cDNA, Taqman primers and probe 

gene specific assay mix. TaqMan gene expression assays (Applied Biosystems) were used for 

Mus musculus Opa1 (Assay ID: Mm00453879_m1), Syp (Mm00436850_m1) and Psd95 

(Mm00492193_m1). qPCR was performed using an ABI Prism 7900HT (Applied Biosystems). 

Assays were carried out in triplicate with the mean CT values used to calculate the relative 

gene expression levels after normalizing to 18S RNA levels (endogenous control: VIC/MGB 

Probe, Primer Limited). Analysis of relative gene expression data was performed using the 2-

∆∆C T method. Statistical analysis was carried out by Tukey Post Test and expressed as 

ANOVA p-values. This was performed at Central Biological Services, Cardiff University. 
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2.5: Western Blots 
 

Retina and hippocampus protein samples from Opa1+/- and wt mice aged 12, 14 and 15 

months were boiled for 5min at 95°C in a sample loading buffer. 20μg of protein extracts 

were separated by 8% SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis) in Tris/Glycine/SDS running buffer (Bio-Rad, UK).  

Precision Plus Protein Standard (Bio-Rad, UK) was loaded in a volume of 10μl/ lane to show 

the location of proteins at the distinct size in the gel. Electrophoresis was run for 1hr15min 

at 100V followed by transfer to 0.2μm nitrocellulose membrane (Bio-Rad, UK) for 75 mins at 

250mA in a cold Tris/Glycine transfer buffer (Bio-Rad, UK) with 20% methanol (v/v). After 

the transfer, membranes were blocked with 5% BSA (Bovine Serum Albumin (Sigma)) in 

PBST for 1hr at room temperature.  

The membranes were incubated with either rabbit anti-PSD95 as a marker of NMDA and 

AMPA receptors (monoclonal; 1:500), rabbit anti-synapsophysin as a marker of synaptic 

vesicles (polyclonal; 1:500), rabbit anti-GABA A RαS1; the most populous receptor on OFF-

centre retinal ganglion cells (polyclonal; 1:500) or rabbit anti-mGluR2&3; the most populous 

receptors on ON-centre retinal ganglion cells (polyclonal; 1:500) (Abcam, UK) in 1% BSA in 

PBST; β-actin (monoclonal; 1:400) was used a loading control. The membranes were washed 

three times in PBST and incubated for another hour with a secondary goat anti-rabbit 

antibody (1:10000) or goat anti-mouse (1:10000) in 1% BSA in PBST. After three washing in 

PBST blots were subjected to chemiluminescent detection with Pierce ECL Western Blotting 

Substrate (Thermo-Fisher Scientific, Rockford, IL) for 5mins and exposed to blue sensitive 

radiographic film (Kodak, UK).  
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2.6: Electron Microscopy 
 

Electron microscopy was done in collaboration with Medical Microscopy Sciences, Cardiff 

University School of Medicine. wt and Opa1+/- mice were killed by cervical dislocation and 

their whole retinas fixed in 1% glutaraldehyde in Sorensen’s PB. Retinas were post fixed in 

1% osmium tetroxide for 2hrs, thoroughly washed, dehydrated through graded ethanol (50, 

70, 90 and 100% for 15 minutes each) followed by 3 exchanges of propylene oxide for 10 

minutes each. Retinas were then infiltrated for 45 minutes in 50% TAAB embedding resin 

(TER) (TAAB Laboratories Equipment Ltd. UK) in propylene oxide, followed by 3 x 1 hour in 

100% TER before being embedded in 100% TER at 60°C for 48 hours. 80nm thick sections 

were collected onto 300 mesh copper grids and stained for 30 minutes in saturated uranyl 

acetate, washed, and stained again using Reynolds lead citrate (Reynolds, 1963) for 15 

minutes before being air dried. Samples were examined in a Philips CM12 TEM (FEI U. K. Ltd. 

UK) at 80kV. Images captured with a Megaview III camera and AnalySIS software (Soft 

Imaging System GmbH, Munster, Germany). 

 

2.7: Immunohistochemistry 
 

Mice were killed by cervical dislocation and the eyes quickly enucleated, punctured at the 

limbus and then submerged in 4% PFA at 4°C for 1 hour. Eyes were washed (1% PBS) and 

placed in a 25% sucrose solution in PBS at 4°C for 24 hours. Eye cups were then frozen in 

OCT compound (Sakura Finetek, UK) and cut at 20μm using a cryostat at (-23°C). For 

immunohistochemical (IHC) staining the techniques outlined in the literature (Chetkovich et 

al., 2002) were followed with a few alterations. Briefly, slide mounted sections were 
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warmed to room temperature (RT) for 30 minutes and then permeabilised with 0.2% Tween 

(PBST). Sections were blocked with 5% chick serum in PBS at RT for 1 hour and then  

incubated with rabbit anti-PSD95 as a marker of NMDA and AMPA receptors  (monoclonal; 

1:400), rabbit anti-PKC-α as a marker of rod bipolar cells (monoclonal; 1:200), rabbit anti-

synaptophysin  as a marker of synaptic vesicles (polyclonal; 1:250), rabbit anti-GABA A RαS1 

; the most populous receptor on OFF-centre retinal ganglion cells (polyclonal; 1:250), rabbit 

anti-mGluR2&3; the most populous receptors on ON-centre retinal ganglion cells 

(polyclonal; 1:250)(Abcam, UK) or rabbit anti-γ-synuclein as a specific marker of retinal 

ganglion cells (monoclonal; 1:200) in 5% chick serum in PBS at 4°C overnight. Sections were 

washed 3 times for 2 minutes in PBST and incubated with donkey anti-rabbit AF488-

conjugated antibody (1:500) and To-Pro-3-Iodide (1:500) (Invitrogen, UK) at RT for 2 hours. 

They were washed again 3 times for 2 minutes in PBST, mounted in ProLong Gold AntiFade 

Reagent, coverslipped and sealed with nail polish. For ipRGC labelling, retinal flat-mounts 

were warmed to RT for 30 minutes and permeabilised with 0.2% Tween (PBST), blocked 

with 5% chick serum in PBS at RT for 1 hour and then  incubated with rabbit anti-melanopsin 

(monoclonal; 1:2500) in 5% chick serum in PBS at 4°C for 72 h. Following this; sections were 

washed 3 times for 2 minutes in PBST and incubated with chick anti-rabbit AF488-

conjugated antibody (1:500) and To-Pro-3-Iodide (1:500) at 4°C for 72 h. Retinas were 

washed again 3 times for 2 minutes in PBST, mounted in ProLong Gold AntiFade Reagent, 

coverslipped and sealed with nail polish. 
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2.8: Custom Media 

Custom media for supporting retinal and hippocampus tissue for both short term (DiOlistics) 

and long term (Biolistics) are detailed below. Components were added in the order below to 

a sterile 25ml Falcon tube, warmed to 37°C and used immediately.    

Culture media components: 

i. 10ml of neurobasal media 

i. Used for the long-term maintenance of retina in culture. 

ii. 100μl of 1% N-2 supplement 

i. Contains: Human transferrin, Insulin recombinant full chain, Progesterone, 

Putrescine and Selenite. 

ii. Used for neuronal growth and survival 

iii. 100μl of 0.8mM penicillin/streptomycin complex 

i. Used as an antibiotic/antimycotic to limit infection and contamination that 

may damage the culture. 

iv. 50μl of 0.5mM glutamine  

i. Used to promote viability of retinal ganglion cells in culture. There is a lower 

recorded survival of retinal ganglion cells long term without the use of 

glutamine 

 

2.9: DiOlistic Labelling Using the Gene Gun 
 

The setting for the bead delivery and preparation was followed used published methods 

(Gan et al., 2000; Sun et al., 2002b; Pignatelli and Strettoi, 2004). For preparation of the 

DiOlistic bullets; 100mg of tungsten particles (1.7m; Bio-Rad, Hercules, CA) was placed in a 

thin even layer on a clean, glass slide in a fume cupboard. Following this 80mg of 1,1'-

dioleyl-3,3,3',3'-tetramethylindocarbocyanine methanesulfonate (DiI; Invitrogen, UK) or 

3,3’-dihexadecyloxacarbocyanine perchlorate (DiO; Invitrogen, UK) was suspended in 800l 
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of methylene chloride, mixed, and applied over the tungsten particles. The methylene 

chloride evaporated quickly to leave DiI or DiO coated tungsten particles which were then 

scraped off using a surgical blade onto clean wax-paper. This powder was then funnelled 

into a length of tubing (Bio-Rad, Hercules, CA), gently inverted and vortexed before being 

allowed to settle resulting in a light application of the powder upon the inside of the tubing. 

Excess powder was funnelled off and the tubing was cut into 1.2cm lengths using a surgical 

blade for storage in the dark at room temperature ready for use.  

Retinas were shot once at 100psi using a Helios gene gun (Bio-Rad, Hercules, CA) from 5cm 

with a 3.0m pore size, high pore density, cell culture insert  (Becton Dickinson, Franklin 

Lakes, NJ) to block clumps of tungsten particles that were not properly separated. Retinas 

were then incubated for 25 minutes to facilitate dye diffusion before being placed in 4% 

paraformaldehyde at room temperature for a further 35 minutes. Retinal preparations were 

then mounted on a slide with ProLong Gold AntiFade Reagent (Invitrogen, UK) and sealed 

with nail polish. Additional retinas were mounted with a 1g/ml Hoechst 33258 stain for 

retinal ganglion cell counts. Retinas were imaged within 48 hours of being labelled.   

 

2.10: Bacterial Cell Cultures and Plasmid Preparation 
 

For Biolistic labelling the preparation of large numbers of plasmid DNA was required. DH5-α 

cells (E.Coli) were chosen as the competent cell line for the transformation reaction. For the 

transformation reaction 50µl of DH5-α competent cells and 1µl of stock plasmid DNA 

(either: PSD95:GFP [with ampicillin resistance], pDsRed2-Mito [with kanamycin resistance], 

pCMV-E2-Crimson [kanamycin] or pEGFP-N1 [kanamycin]) were thawed on ice for 20 

minutes before being gently added together in an Eppendorf tube. This was left on ice for a 



 
68  

futher 30 minutes, heat shocked at 42°C for 30 seconds and then returned to ice for a 

further 30 minutes. Following this the cell and plasmid solution was added to 80µl of S.O.C. 

medium (Invitrogen) (Super Optimal broth with Catabolite repression) and incubated at 

37°C for 60 minutes in an orbital incubator. Fresh agar plates were prepared using agar 

powder (Invitrogen) and the relevant antibiotic (1:500) in a fume cupboard and the cell 

suspension was spread on dry agar plates using glass spreaders at a ratio of 60:40 or 80:20. 

Plates were inverted and incubated at 37°C overnight. After this period individual colonies 

were selected and isolated carefully using a 10µl pipette tip and placed into 10ml of LB 

(lysogeny broth; Invitrogen) containing the relevant antibiotic (1:500) before being 

incubated in an orbital incubator at 37°C overnight. 2ml of this culture was removed and 

used for miniprep kits.     

For isolation of plasmids from the DH5-α E.Coli cells a PureLink Quick Plasmid Miniprep Kit 

was used (Invitrogen). 1ml of culture was centrifuged at 12000g to pellet cells and the 

supernatant removed before being resuspended in 250µl resuspension buffer, 250µl lysis 

buffer, inverted 5 times and incubated for 5 minutes. Following this 350µl of precipitation 

buffer was added, solution centrifuged at 12000g for 10 minutes and loaded into a spin 

column inside a wash tube. The spin column was centrifuged at 12000g for 1 minute and the 

flow-through discarded and 700µl of wash buffer with ethanol was added and centrifuged at 

12000g for 1 minute. The flow-through was discarded and the process repeated once again 

before the DNA was eluted into 75µl of either TE buffer or MilliQ water. Plasmid DNA was 

aliquotted into small Eppendorf tubes and stored at -20°C for up to 1 month before use. 

Plasmid DNA concentrations were tested using a Picodrop Spectrophotometer.     
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2.11: Biolistic Transfection of Plasmid DNA 
 

For biolistic tranfection retinas from 12 month old mice were used. The preparation and 

delivery of plasmid DNA biolistcially was followed using available published material 

(O'Brien and Lummis, 2006). For Biolistic bullet preparation 100µl of 0.05M Spermidine was 

added to 20µg of gold particles (1µg per bullet; 1µm in diameter; Bio-Rad, Hercules, CA) plus 

the addition of plasmid DNA material; either PSD-95:GFP and pCMV-E2-Crimson (Crimson) 

(Clontech, CA) for synaptic analysis or pDsRed2-Mito (MitoDsRed) (Clontech) and pEGFP-N1 

(GFP) (Clontech) (1µg DNA per bullet). The mixture was vortexed and 100µl of 2M CaCl2 was 

added drop-wise before being incubated at room temperature for 15 minutes. 1ml of 

ethanol was added before being vortexed and then centrifuged at 12,000rpm for 5 seconds. 

The supernatant was removed and an additional 300µl of fresh ethanol was added. A 20cm 

length of tubing was purged using N2 and the solution funnelled in using a 50ml syringe. The 

N2 flow was reduced and the tubing gently rotated allowing an even dispersion of the 

plasmid-coated gold particles. Once dry (approx. 20 minutes), N2 flow was turned off, tubing 

removed and stored in a sealed, dark container at 4°C. 1.2cm bullets were cut when 

required and used within 2 weeks of preparation. 

For Biolistic labelling flat-mounted retinas were shot at approx. 150 psi using the Helios 

Gene Gun (Bio-Rad). Transfected retinas were incubated on cell culture inserts in a custom 

media described above at 37°C / 4% CO2 for 48 h before being fixed for 30 mins in 4% PFA, 

mounted on slides using ProLong Gold AntiFade Reagent, coverslipped and sealed using nail 

polish. Retinas were imaged within 24 hours of being mounted. 
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2.12: Analysis: Image and Statistical 
 

For analysis of dendritic morphology of DiOlistically labelled retinal ganglion cells image 

stacks of retinal ganglion cells were collected using a Zeiss LSM 510 confocal microscope 

(Carl Zeiss Ltd, UK) captured at a 20x objective allowing the whole dendritic field to be 

shown. Cells were considered to be retinal ganglion cells if an axon running towards the 

optic disc was present. Cells were pseudo-coloured cyan using a custom LUT (look up table) 

for better contrast. Specific dendritic morphologies were analysed using ImageJ to measure 

dendritic field area (measured using the convex polygon tool to join the outer most points 

of the dendritic tree), an ImageJ plugin, NeuronJ to measure total dendritic length, and a 

custom Matlab macro to run a Sholl analysis which quantitatively analyses dendritic 

morphology and architecture (Sholl, 1953; Gutierrez and Davies, 2007) (Figure X). All retinal 

ganglion cells imaged were analysed. 

For cell counts and populations retinas were stained with the nuclear Hoechst 33258 stain. 

Images were taken from the retinal ganglion cell layer at 3 locations of the retina 1mm from 

the optic disc (directly dorsal to the centre of the optic disc, at 120° to this; ventral-nasally, 

and at 120° to this again; ventral-temporally, Figure XI) using a Leica DM6000 B confocal 

microscope (Leica Microsystems, UK) with a 20x objective. Cells were manually counted in a 

250m² area using the ImageJ counter plugin. Data were expressed as a percentage change 

between wt and Opa1+/-. For bipolar cell counts and retinal ganglion cell counts 20µm thick 

sections were labelled with either PCK-α (rod bipolar cells) or γ-synuclein (retinal ganglion 

cells). Z-stack images of were imaged using a Zeiss LSM510 confocal microscope using a 20x 

objective. Stacks were Z-projected and the total number of PKC-α or γ-synuclein positive 

cells were counted and expressed as a percentage change between wt.  
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For analysis of mitochondria and synapses using a Biolistic method retinas were mounted 

and image stacks of retinal ganglion cell dendrites were acquired using a Zeiss LSM510 

confocal microscope at 40x. Dendrites and mitochondria were measured using ImageJ’s 

freehand measure tool and ‘cell counter’ plugin, a modified Sholl analysis of synaptic and 

mitochondria numbers was performed using SynD and MATLAB (Schmitz et al., 2011).  

For analysis of synaptic and neurotransmitter receptor density 20µm sections were labelled 

with a variety of antibodies (see above), image stacks were created at 20x using a Zeiss 

LSM510 confocal microscope and the relative density of the secondary fluorophore was 

recorded using ImageJ and compared to a negative control (i.e. sections labelled as above 

but without a primary antibody of which the optic density was measured and then 

subtracted from the experimental data).    

For mitochondrial analysis, synaptic counts and synaptic vesicle counts images of a high 

magnification were taken using electron microscopy. Average mitochondria length and total 

mitochondrial and cristae areas were measured using the freehand selection tool in ImageJ 

(Figure XII). Synapses were counted using ImageJ’s Cell Counter Plugin with a region of 

interest with fixed area of 85µm² selected from sublaminas a and b of the IPL. For vesicle 

densities, bipolar cell terminal areas were measured and all synaptic vesicles counted with 

and results expressed as a density (synaptic vesicles/µm²). 

For Western blot protein analysis blots were scanned and the optical density was recorded 

using the cell lane and densitometry tools in ImageJ to form a graph of optical density. The 

area under the curve minus background was measured and was taken as the true optical 

density. 
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For dendritic spine analysis, high resolution, image stacks of hippocampal pyramidal 

dendrites were taken from the CA1 region of the hippocampus at x40 using a Zeiss LSM510 

confocal microscope. Dendrites were subcategorised (apical proximal, apical distal, basal 

proximal and basal distal) with proximal dendrites considered to be no further than 120μm 

from the cell soma (Perez-Cruz et al., 2011). The length of the dendritic spines was 

measured and the number of dendritic spines counted to calculate a density. All image 

analysis was done using ImageJ. 

Statistical analyses were performed using Minitab 14 and Microsoft Excel. Data sets were 

checked for normality using the Anderson-Darling test for normality (Minitab 14) with a 95% 

confidence level. If P > 0.05 the data was assumed to be normal, is P ≤ 0.05 the data was 

assumed to not be normally distributed. Normally distributed data (P > 0.05) were analysed 

using Student’s t-test (Excel) with a confidence level of 95%. Data that were not normally 

distributed (P ≤ 0.05) were analysed using a non-parametric statistic test, Mann-Whitney-U 

(Minitab 14), with a confidence level of 95%. To test for variance between groups (e.g. the 

effect of genotype and age) an ANOVA was performed (Excel). If F < Fcrit and P ≥ 0.05 the H0 

(null hypothesis) was accepted (i.e. no significant difference). 

P values are displayed within the text and figure legends along with the name of the 

corresponding test. Unless stated otherwise, data were displayed as mean values ± the 

standard error of the mean (SEM). All analyses of wt and Opa1+/- data were performed in a 

masked fashion. 
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Figure X: Sholl analysis 

Diagrammatic of a Sholl analysis showing a neuron with concentric circles radiating from the 

soma superimposed. The number of dendritic intersections is taken from these circles to 

create a measure of dendritic architecture, the Sholl analysis (Sholl, 1953). 
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Figure XI: Retinal ganglion cell count locations 

Diagrammatic of a flat-mounted retina showing the locations used for retinal ganglion cell 

and ipRGCs counts.  

 

 

 

Figure XII: Mitochondria morphometrics 

In order to fully analyse mitochondrial morphology 3 major measurements were taken: 

mitochondrial length (taken as the longest length along the mitochondria, yellow), total 

mitochondrial area (as traced around the mitochondrial outer membrane, magenta) and 

total mitochondrial cristae area (as traced around all individual cristae and summed, cyan). 
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Chapter 3: Aberrant Mitochondrial Morphology in Opa1+/- Dendrites 
 

3.1: Introduction 
 

Reduction in Opa1 protein levels leads to a deficit in mitochondrial fusion and dysfunctional 

mitochondria have already been shown in other tissues and cell cultures (Li et al., 2004). 

Therefore the morphology of mitochondria from retinal ganglion cell dendrites in the inner 

plexiform layer was quantitatively assessed using two methods: 

1) Electron microscopy to analyse mitochondrial size (length) and matrix to cristae 

ratio, and; 

2) Biolistic transfection of plasmid DNA (MitoDsRed: mitochondria) into retinal ganglion 

cells to allow the specific location of mitochondria in the dendrite to be analysed 

(Figure XIII). 

 

3.2: Mitochondrial Morphology 
 

The retinas of 12 mice (wt; n = 6, Opa1+/-; n = 6) aged 12, 14 and 15 months were imaged 

using electron microscopy to quantitatively assessed mitochondrial morphology (n = 1323 

mitochondria). Mitochondrial average length (AL) was significantly reduced in Opa1+/- in all 

age groups (15 months; AL (nm) ±SEM; wt, 730±20; Opa1+/-, 602±17; P < 0.0001), as well as 

cristae to matrix ratio (C:M)  (15 months; C:M (%) ±SEM; wt, 31±1; Opa1+/-, 15±1; P < 

0.0001).The mitochondrial AL and C:M ratio were similar in sublamina a and sublamina b 

within age groups. Results show aberrant, fragmented mitochondria compared to wt 

controls. 



 
76 Chapter 3: Aberrant Mitochondrial Morphology in Opa1+/- Dendrites 

3.3: Mitochondrial Location and Distribution 

 

ON-centre RGCs of 12 month mice were biolistically labelled with pDsRed2-Mito 

(MitoDsRed) and pEGFP-N1 (GFP) to label neuronal processes and mitochondria. There was 

an observed decrease in the dendritic mitochondrial index in Opa1+/- mice (i.e. less 

mitochondria per µm of dendrite) (wt; 0.775±0.027, Opa1+/-; 0.419±0.016) as well as an 

increase in mitochondrial number in those dendrites (i.e. many small, fragmented 

mitochondria) (wt; 0.113±0.008, Opa1+/-; 0.195±0.007). 

 

3.4: Summary 

 

In summary these data show the importance of mitochondrial fusion as dictated by Opa1 on 

the structural integrity of the mitochondrial inner membrane / cristae structure as well as 

mitochondrial location within the dendrite. It is shown here that retinal ganglion cells in the 

Opa1+/- mouse have aberrant mitochondria with increased levels of mitochondrial fission 

leading to small mitochondria with abnormal cristae structures. Additionally; in ON-centre 

retinal ganglion cells there is a shift in the distribution of mitochondria away from the 

outmost dendrites and towards the cell soma.  
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Figure XIII: Aberrant mitochondrial morphology in Opa1+/- mice 

In order to explore mitochondrial morphology in wt and Opa1+/- retinal ganglion cell 

dendrites, mitochondria were imaged using EM or ex vivo in retinal whole mounts using 

Biolistics and their morphometrics (average length, cristae to matrix ratio and mitochondria 

to dendrite ratio (Den. Mito. Index)) measured using ImageJ.  
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(A) Total cristae area as a function of mitochondrial area is reduced in Opa1+/- mice 

compared with wt controls (P < 0.0001). (B) Representative panel of mitochondria from the 

3 age groups observed (12, 14, 15 months). (C-E) Samples of biolistically labelled ON-centre 

RGCs from wt (C-E) and Opa1+/- mice (F-H). The square panel shows the en face view 

(compressed Z stack- max intensity) the underlying rectangular panels shows a single 

dendrite typical of the selection used for quantification.  Inset plots show the change in 

mitochondria number (J) (mitochondria / µm dendrite) and a decreased dendritic 

mitochondrial index (I) (total mitochondrial length / total dendrite length) as a function of 

genotype. 

Scale bar = 500 nm (EM images), 50µm (C-H; en face views panels), 10 µm (C-H; single 

dendrite views panel). Error bars = standard error of the mean. * = P < 0.05, *** = P < 0.001 

(Mann-Whitney-U).  
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Chapter 4: Retinal Ganglion Cell Dendropathy in Opa1+/- Mice Occurs 

Without Cell Loss, Is Exacerbated With Age and Localised Exclusively 

to Sublamina b of the Inner Plexiform Layer 
 

4.1: Introduction 
 

Histological assessments of retinas from patients with dominant optic atrophy show a 

decrease in the retinal ganglion cell numbers (Kjer et al., 1983) and a thinning of the retinal 

nerve fibre layer (Milea et al., 2010). Retinal cell populations in wt and Opa1+/- mice were 

explored using common nuclear counter stains (Hoechst and To-Pro), γ-synuclein (a retinal 

ganglion cell specific marker), melanopsin (an intrinsically photosensitive retinal ganglion 

cell marker (ipRGCs); ipRGCs are γ-synuclein negitive) and PKC-α (a rod bipolar cell marker). 

Upon inspection of Opa1+/- retinas there was no observable deficit in any retinal cell 

populations, including the retinal ganglion cells, which is a hallmark feature of the human 

disease. This pointed to retinal ganglion cell dysfunction or atrophy driving visual 

dysfunction rather than cell loss. To explore this retinal ganglion cells were DiOlistically 

labelled using carbocyanine dyes which allowed the dendritic trees to be visualised and 

morphometrically assessed. Changes in retinal ganglion cell dendritic architecture could 

then be used as a marker of disease. The DiOlistic method was selected to avoid the 

confounding effects of defective gene expression giving a misleading readout of dendritic 

structure or the absence of labelled cells through retrograde labelling should there be 

deficient axonal transport or considerable axonal damage.      
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4.2: Retinal Cell Populations 
 

Retinal ganglion cell counts were performed on serial 20µm thick retinal sections and on 

whole retinal flat-mounts. For cell counts from retinal flat-mounts counts were taken in a 6 

pre-defined areas of retina measuring 300µm2 (500µm from the optic disc; either superior, 

ventral-nasal or ventral-temporal; or 1000µm from the optic disc; either superior, ventral-

nasal or ventral-temporal). 

Upon examination there was no cell loss across the retina in Opa1+- mice (Figure XIV). 

Changes in retinal ganglion cell dendritic and synaptic architecture and connectivity were 

explored to elucidate the factors that underlie visual loss in these animals.    

The retinal thickness was similar at all ages (P > 0.05), and a summary of individual nuclear 

layer thicknesses is shown in Table V. There was no change in nuclear layer thicknesses 

between Opa1+/- and wt mice (P > 0.05 in all instances).   

 

4.2.1: Retinal Ganglion Cells 

 

Immunohistochemical labelling of γ-synuclein as a retinal ganglion cell specific marker 

(Surgucheva et al., 2008) indicated preservation of retinal ganglion cell populations (P > 

0.05) confirming the absence of significant RGC loss in Opa1+/- retinas (Davies et al., 2007). 

To account for ipRGCs flat-mounted retinas were labelled using a melanopsin antibody. 

ipRGCs populations were unchanged at 24 months (wt; 2.15% RGCs = ipRGCs, Opa1+/-; 

2.21%, P > 0.05). 
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4.2.2: Bipolar Cells 

 

Neuron counts in the inner nuclear layers was based on cell labelling with anti-PKC-α 

antibodies (rod bipolar cells) There was no change from wt bipolar cell count in either the 

12 (+3.6%; P > 0.05), 14 (-8.3%; P > 0.05) or 15 (+2.6%; P > 0.05) month age groups, 

suggesting dysfunction of post- but not pre- synaptic sites. 

 

4.2.3: Photoreceptors 

 

Photoreceptor counts were undertaken using To-Pro-3-Iodide as a nuclear stain in the outer 

nuclear layer. There was no significant difference in photoreceptor numbers between wt 

and Opa1+/- mice (no change; P > 0.05). 
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Figure XIV: Retinal cell populations are preserved in Opa1+/- mice 
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Figure XIV: Retinal cell populations are preserved in Opa1+/- mice (previous page) 

Immunohistochemical labelling against γ-synuclein (green) as a marker of RGCs reveals no 

loss of RGC populations (B) in the GCL in Opa1+/- mice (A) (P > 0.05). Additionally, labelling 

against melanopsin (green) as a marker of ipRGCs on retinal flat mounts (wt; (C), Opa1+/-; 

(D) ) reveals stable ipRGCs populations (E).  

Labelling against PKC-alpha (green) as a marker of bipolar cells reveal no loss of bipolar cell 

populations (F) and no gross anatomical differences in bipolar cell morphology in Opa1+/- 

mice (H) compare to their wt controls (G) (P > 0.05). Error bars = standard error of the 

mean. Scale bars = 50µm. 

 

Table IV: Individual nuclear layer thicknesses in wt and Opa1+/- retina sections 

Nuclear layer thickness was calculated from retinal sections of wt and Opa1+/- mice (wt; n = 

12, Opa1+/-; n = 12) labelled with To-Pro as a nuclear counter stain. There is no change 

observed in individual nuclear layer thicknesses between wt and Opa1+/- mouse retinas in 

all ages. There is no change in retinal cell populations across the retina (Fig ii).  

Key: ONL = outer nuclear layer, INL = inner nuclear layer, GCL = ganglion cell layer, SEM = 

standard error of the mean, P = Student’s t-test P-value.  

 

Layer Age (months) wt (µm±SEM) Opa1+/- (µm±SEM) t-test (P) 

ONL 12 51.9±1.6 53.7±1.9 0.46 

INL 12 35.9±1.8 37.2±1.9 0.63 

GCL 12 9.2±0.4 10.5±0.5 0.06 

     

ONL 14 55.7±1.0 58.6±1.0 0.21 

INL 14 35.9±1.3 38.1±1.2 0.21 

GCL 14 9.6±0.3 10.6±0.4 0.06 

     

ONL 15 52.5±1.4 51.8±2.8 0.81 

INL 15 28.0±1.1 31.2±1.8 0.14 

GCL 15 9.8±0.8 10.1±0.7 0.74 
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4.3: Retinal Ganglion Cell Dendropathy 
 

In an absence of cell loss it was hypothesised that low levels of the Opa1 protein would lead 

to decreased levels of mitochondrial function. This dysfunction could lead to a low 

bioavailability of ATP and could lead to retinal ganglion cell atrophy. This atrophy could 

manifest as dendritic pruning. To explore the possibility of retinal ganglion cell dendritic 

atrophy flat-mounted adult mice retinas (aged <10 months, 10-15 months or >20 months) 

were DiOlistically labelled with lipophilic carbocyanine dyes (DiI and DiO) to fully label 

retinal ganglion cell dendritic processes. Retinal ganglion cells were imaged using an LSM510 

confocal microscope and analysed using ImageJ and MATLAB.   

In total 145 retinal ganglion cells were identified as ON-centre based on their ramification 

within the inner plexiform layer and their dendritic field areas, total dendritic lengths and 

dendritic complexities measured as outlined in Materials and Methods. A panel of ON-

centre RGCs across all age groups can be seen in (Figure XV). All cells were confirmed to be 

retinal ganglion cells by the presence of axons running in the retinal nerve fibre layer toward 

the optic disc. 

 

4.3.1: Dendropathy with Age 

 

These results show a significant decrease in the average total dendritic area of Opa1+/- ON-

centre retinal ganglion cells in both the 10-15 month group (-24.24%; CV=0.68; P = 0.054) 

(Student’s t-test)) and the >20 month group (-43.22%; CV=0.75; P = 0.025) but not in the <10 

month group (-9.24%, Cv=0.58, P = 0.584).  
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Similar changes were also seen with measurements of total dendritic length of Opa1+/- ON-

centre retinal ganglion cells in both the 10-15 month group (-31.66%; CV=0.67; P = 0.008) 

and the >20 month group (-49.55%; CV=0.63; P = 0.021) but not the <10 month group (-

0.30%; CV=0.49; P = 0.984) (Figure XVI). A two-way ANOVA was performed to see if age has 

an addition affect on dendritic atrophy. For both total dendritic field area and total dendritic 

length the F > Fcrit and P < 0.05, showing that dendritic atrophy is exacerbated with age. 

Dendritic complexities were also analysed using a custom Matlab macro to run a Sholl 

analysis where dendrites are measured when they intersect graded concentric circles of 

10m around the soma (see Gutierrez, 2007). Sholl analyses were run using a ring interval of 

10m.  Results show a decrease in the dendritic complexities of ON-centre RGCs in both the 

Opa1+/- 10-15 (AUC -21.67%; P > 0.05) month group and >20 (AUC -42.12%; P < 0.05) 

month group but not in the <10 month group (AUC -1.29%; P > 0.05) (Figure XVII).  

To quantify individual dendrite loss across the dendritic field the number of primary, 

secondary and tertiary dendrites were counted in all retinal ganglion cells. There was a 

significant decrease in the number of tertiary dendrites in all ages most significant in the 

>20 month age group (wt±SEM/Opa1+/-±SEM; 16.1±1.9 / 11.3±1.0) as well as an unchanged 

dendritic density (>20 month age group; 0.050±0.002 / 0.059±0.008; P > 0.05) signifying a 

loss of the outer most dendrites in the dendritic field without loss of primary dendrites 

(Figure XVIII).  
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4.3.2: Localisation 

 

A further twenty one retinal ganglion cells were identified as OFF-centre based on their 

ramification within the inner plexiform layer (Xu et al, 2007). There was no significant 

change in the dendritic morphologies of Opa1+/- OFF-centre RGCs even in the >20 months 

group. OFF-centre retinal ganglion cells appear to have an unchanged (P > 0.05) dendritic 

field area and total dendritic length as well as unchanged (AUC; P > 0.05) dendritic 

complexities (Figure XIX, XX).  

 

4.4: Summary 
 

In summary this chapter shows retinal ganglion cell dendritic atrophy which is exacerbated 

with age and localised to sublamina b of the inner plexiform layer (ON-centre retinal 

ganglion cells). The dendritic atrophy becomes apparent after 10 months making this finding 

the earliest observable change in this mouse model.  This occurs without retinal ganglion 

cell loss as made evident by specific labelling using anti-γ-synuclein (specific for retinal 

ganglion cells) and anti-melanopsin (specific for ipRGCs) and without loss from the retinal 

ganglion cells input cells, bipolar cells (labelled with anti-PKC-α).    
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Figure XV: DiOlistically labelled ON-centre retinal ganglion cells 

Compressed confocal stacks of DiOlistically labelled wild-type and Opa1+/- ON-centre retinal 

ganglion cells. There is no apparent retinal ganglion cell dendropathy in Opa1+/- mice aged 

<10 months (n = 4) compared with their wild-type controls (n = 4). There is significant ON-

centre retinal ganglion cell dendropathy in both the 10- to 15-month-old Opa1+/- mice (n = 

5) compared with their wild-type controls (n =5) and of the >20-month-old Opa1+/- mice (n 

= 7) compared with their wild-type controls (n = 2). Bird’s-eye views (xy plane) (top) and 

side-on views (xz plane) (bottom) are shown for cells. Scale bar = 100 µm and is 

representative of both planes of view; arrow heads = axon. 
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Figure XVI: Dendritic pruning in ON-centre retinal ganglion cells 

Opa1 deficiency leads to a reduction in dendritic field area and total dendritic length in on-

centre retinal ganglion cells. Average retinal ganglion cell dendritic field area (A) and 

average total retinal ganglion cell dendritic length (B) in the wild-type and Opa1+/- mouse. 

Results show a significant decrease in both the total dendritic area and average total retinal 

ganglion cell dendritic length of Opa1+/- retinal ganglion cells in both the 10- to 15-month-

old group (wild-type n = 34, Opa1+/-  n = 25) and the >20-month-old group (wild-type n =5, 

Opa1+/- n = 44) but not the <10-month-old group (wild-type n = 21, Opa1+/- n = 16). This 

decrease is exacerbated in the older (>20-month-old) group. *P<0.05; ***P<0.01; error bars 

indicate SEM. 
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Figure XVII: Sholl analysis of ON-centre retinal ganglion cells 

Retinal ganglion cell Sholl analyses of wild type and Opa1+/- mice. Results show no 

difference in dendritic complexity of ON-centre retinal ganglion cells in the <10-month-old 
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group (A) (wild-type n = 21, Opa1+/- n = 16) (AUC P = 0.949) but a clear difference in the 10- 

to 15-month-old group (B) (wild-type n = 34, Opa1+/- n = 25) (AUC P = 0.137) and a 

significant difference in the >20-month-old group (C) (wild-type n =5, Opa1+/- n = 44) (AUC 

P = 0.047). Error bars indicate SEM; wt =wild-type. 

 

Figure XVIII: Reduction in ON-centre secondary and tertiary dendrites (overleaf) 

Opa1 deficiency leads to ON-centre specific dendritic degeneration. Quantification of 

primary, secondary and tertiary dendrites in these retinal ganglion cells shows a decrease in 

secondary and tertiary dendrites but not in primary dendrites. *P<0.05. 
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Figure XVIII: Reduction in ON-centre secondary and tertiary dendrites 
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Figure XIX: OFF-centre retinal ganglion cells are unaffected by Opa1 deficiency 
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Figure XIX: OFF-centre retinal ganglion cells are unaffected by Opa1 deficiency (previous 

page) 

Opa1 deficiency has no effect on the dendritic morphology of OFF-centre retinal ganglion 

cells. Where severe dendritic atrophy is present in the >20-month-old Opa1+/- ON-centre 

retinal ganglion cells, results show no significant change in the dendritic morphologies of 

Opa1+/- OFF-centre retinal ganglion cells (n = 8) compared with wild type (n = 3). 

Compressed confocal stacks of DiOlistically labelled wild-type (A) and Opa1+/- (B) OFF-

centre retinal ganglion cells. Bird’s-eye views (xy plane) (top) and side-on views (xz plane) 

(bottom) are shown for cells. Scale bar = 100 µm and is representative of both planes of 

view; arrow heads = axon. Average retinal ganglion cell dendritic field area (C) and average 

total retinal ganglion cell dendritic length (D) in the wild-type and Opa1+/- mouse. Results 

show no significant change between wild-type and Opa1+/- mice. P>0.05 for all bars; 

Student’s t-test. (E) Retinal ganglion cell Sholl analyses of wild-type and Opa1+/- mice. 

Although there is a great difference in dendritic complexity of ON-centre retinal ganglion 

cells in the Opa1+/->20-month-old group, results show no difference in dendritic complexity 

of OFF-centre retinal ganglion cells in the >20-month-old group. Error bars indicate SEM. 
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Figure XX: Selective pruning of ON-centre retinal ganglion cells 

Opa1 deficiency leads to selective dendritic pruning of ON-centre retinal ganglion cells. 

Examples of ON- (A) and OFF- (B) centre retinal ganglion cells from an adult (10-month-old) 

wild-type mouse noting the different levels of dendritic ramification in the inner plexiform 

layer (Xu et al., 2007) with the dendrites of ON-centre retinal ganglion cells ramifying in 

sublamina b (close to the level of the cell body) and the dendrites of OFF-centre retinal 

ganglion cells ramifying in sublamina a (close to the inner nuclear layer). Scale bar = 25 µm. 

Total dendritic length is dramatically reduced in the ON-centre retinal ganglion cells of 10- 

to 15-month-old and >20-month-old mice (C) while remaining statistically unchanged in 

OFF-centre retinal ganglion cells. P = Student’s t-test, %Δ= percentage change from wild-

type. GCL = ganglion cell layer; IPL = inner plexiform layer. 
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Chapter 5: Opa1+/- Deficiency Leads to the Selective Loss of 

Glutamatergic Synapses on ON-Centre Retinal Ganglion Cells 
 

5.1: Introduction 
 

Dendritic atrophy was solely localised to sublamina b of the inner plexiform layer i.e. it was 

only observed in ON-centre retinal ganglion cells. To explore this selective neuronal 

vulnerability sections of the same retinas were labelled with antibodies against mGluR2+3 

(the most common glutamate receptor on ON-Centre retinal ganglion cell dendrites) and 

against GABA A R α S1 (the most common GABA A-ergic receptor on OFF-Centre retinal 

ganglion cell dendrites), for which the relative luminance of the secondary fluorophores 

were quantified. In addition, the density of dark, post-synaptic sites specifically on retinal 

ganglion cell dendrites was quantitatively assessed using electron microscopy.  

 

5.2: Neurotransmitters 

 

mGluR2+3 labelling was reduced at all ages but this was only significant from 14 months (12 

month; -5.96%; P = 0.7535. 14 month; -22.96%; P = 0.0347. 15 month; -23.76%; P = 0.0113) 

consistent with preferential loss of ON-centre retinal ganglion cell dendrites. In contrast, 

GABA A-ergic relative luminance increased in all age groups (12 month; +21.96%; P = 

0.4350. 14 month; +37.12%; P = 0.0457. 15 month; +58.81%; P < 0.0001) (Figure XXI). These 

results are mirrored in the Western blot analysis (Figure XXV).  
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Figure XXI: Glutamatergic synapses are specifically eliminated in Opa1+/- mice 

Retinal sections were immunohistochemically stained for mGluR2+3 (A, wt; left, Opa1+/-, 

right) and GABA A R α S1(B, wt; left, Opa1+/-, right). There was an general decrease from 14 

months in mGluR2+3 expression in Opa1+/- retinas (C) consistent with the changes seen in 

synaptic density within sublamina b of the inner plexiform layer and ON-centre retinal 

ganglion cell dendritic degeneration. There was a general increase in GABA A R α S1 

expression in all ages which reached significant at 14 months (D). 

Key: Error bars = standard error of the mean. * = P < 0.05, *** = P < 0.0001 (Student’s t-

test). Black bars = wt, white bars = Opa1+/- 
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5.3: Synapses 

 

In order to see whether dendritic pruning is a consequence of a loss of synaptic connectivity 

20µm thick sections of fixed retinal tissue were labelled with antibodies against PSD-95 to 

quantify synaptic integrity within the inner plexiform layer in Opa1+/- mice. Secondary 

fluorophore luminance was reduced in Opa1+/- mice at 12 (-21.51%; P = 0.0626), 14 (-

29.090%; P = 0.0246) and 15 (-44.22%; P = 0.0018) month age groups. Electron microscopy 

analysis of post-synaptic sites in Opa1+/- and wt IPL revealed a steady decrease in post-

synaptic density with age and was significant for sublamina b (15 months; %Δ sublamina a, -

19.1%, P > 0.05; %Δ sublamina b, -33.3%, P < 0.01) (Figure XXII). These observations were 

supported by Western blot analysis and qPCR analysis (Figure XXVI). 

To determine the change at a cellular level in the dendritic distribution of synapses and 

associated mitochondria, retinal ganglion cells of 12 month mice were biolistically labelled 

with pE2-Crimson (Crimson) and PSD95:GFP (PSD95) to label neuronal processes and post-

synaptic sites.  Representative labelled ON- centred retinal ganglion cells are shown in 

Figure XXIII. Quantitative analysis indicates reduced synaptic density along the dendrite. The 

left shift in the Sholl analysis of post-synaptic sites and mitochondria indicate that a synaptic 

and mitochondrial deficit towards the most distal portion. The area under the Sholl curve 

(AUC) showed a 79% (P < 0.001) reduction for post-synaptic sites and a 88% reduction (P < 

0.01) for mitochondria.  
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Figure XXII: Reduced retinal connectivity in Opa1+/- mice 
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Figure XXII: Reduced retinal connectivity in Opa1+/- mice (previous page) 

To explore synaptic density within the inner plexiform layer retinal sections (A) were 

labelled with antibodies against PSD-95 and the relative intensity of the secondary 

fluorophore measured. There was a general decrease in synaptic density within the inner 

plexiform layer (B) observed in Opa1+/- IPL (A, right) over wt controls (A, left).  

The number of synaptic sites on ON- and OFF- centre retinal ganglion cell dendrites was 

calculated from EM images from sublamina a (OFF-centre) and sublamina b (ON- centre) of 

the inner plexiform layer. The reduction in synaptic density is greater in sublamina b and 

significant by 12 months. 

Error bars = standard error of the mean. * = P < 0.05, *** = P < 0.001 (Student’s t-test).  

 

Figure XXIII: Mitochondria and synapses in Opa1+/- mice (overleaf) 

Representative samples from wt (A-C) and Opa1+/- (D-F) ON-centre RGCs labelled 

biolistically with pE2-Crimson (Crimson) and PSD95:GFP (PSD95). 

Plots of PSD95 label per unit length of dendrite in wt and Opa1+/-  to show neuronal 

processes and post-synaptic sites showing a decrease in synaptic density (I). Sholl analyses 

of post-synaptic sites (G) and mitochondria (H) suggest a synaptic and mitochondrial deficit 

towards the most distal portion of the dendrite demonstrated by the left-wards shift in the 

Sholl curve. Percentage comparisons of the area under the curve (AUC) (J) show a 79% 

reduction in the AUC for post-synaptic sites and an 88% reduction for mitochondria.  

Key: black = wt, white = Opa1+/- in all figures. Error bars = standard error of the mean, scale 

bars = 50µm, ** = P < 0.01, *** = P < 0.001 (Mann-Whitney-U).  
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Figure XXIII: Mitochondria and synapses in Opa1+/- mice 
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5.4: Synaptic Vesicles 
 

To determine the subcellular changes underlying the loss of synaptic connectivity we 

explored synaptic vesicle levels within the synaptic bouton. Retinal sections were labelled 

with synaptophysin as a marker of synaptic vesicles. An increase in the relative luminance of 

the secondary fluorophore in the 12 (+122.51%; P = 0.0026), 14 (+129.88%; P = 0.0001) and 

15 (+48.85%; P = 0.0124) month age groups. 

Electron micropscopy analysis of Opa1+/- bipolar cell terminals confirmed the increase in 

the number of synaptic vesicles in aged Opa1+/- compared to wt (at 15 months (density: 

synaptic vesicles/µm²±SEM); wt sublamina a (93.9±15), b (100.0±11); Opa1+/- sublamina a 

(194.6±16.7; P = 0.0001), b (240.8±30.3; P = 0.0003) (P = Mann-Whitney-U) (Figure XXIV).  

 

5.5: Summary 

 

This chapter explores the retinal synaptic events happening between 12 and 15 months in 

the Opa1+/-, the time seen to be most vulnerable to the effects of decreased levels of Opa1 

as discussed in the previous chapter. In the 10-15 month age group there was active 

dendritic degeneration which is accompanied by a decrease in synaptic density and 

significant changes in both pre- and post- synaptic structure which becomes more 

prominent with age. In addition there is significant decrease in the levels of mGluR2+3 (the 

most prominent receptor on ON-centre retinal ganglion cells) which coincides with the 

dendritic atrophy of ON-centre retinal ganglion cells in this model.  
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Figure XXIV: Increased synaptic vesicle density in Opa1+/- mice (overleaf) 

Increased synaptic vesicle count is observed in Opa1+/- IPL over wt controls as assessed by 

IHC (A) and EM (F). Representative samples of synapses are shown in B-E (wt sublamina a 

(B); b (C) and Opa1+/- sublamina a (D); b (E). Scale bar = 250nm. 

Error bars = standard error of the mean. * = P < 0.05, *** = P < 0.001 (Mann-Whitney-U). 
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Figure XXIV: Increased synaptic vesicle density in Opa1+/- mice 
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Figure XXV: Western blot densitometry of wt and Opa1+/- retinas 

Western blot densitometry data from retinas of 12 mice (wt; n = 6, Opa1+/-; n = 6) validates 

findings found by IHC and EM. There is a general decrease in age in PSD-95 (post-synaptic 

densities) and mGluR2+3 (glutamatergic synapses) which supports previous findings of ON-

centre retinal ganglion cell specific degeneration. There is also a general increase in 

synaptophysin (pre-synaptic vesicles) and GABA A R α S1 (GABA A-ergic synapses).  β-actin 

was used as a loading control. As the data was normalised to a loading control there are no 

applicable error bars. 
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Figure XXVI: qPCR analysis of wt and Opa1+/- retinas 

qPCR analysis of Opa1 (A), PSD95 (B) and synaptophysin (C) transcripts from 12 month wt 

and Opa1+/- retina show an expected decrease in Opa1 transcript and increase in 

synaptophysin transcript as mirrored in the data collected from EM, IHC and WB analysis. 

Interestingly, PSD95 transcription levels are higher in Opa1+/- mice suggesting upregulation 

of PSD95 in response to the destruction of functional synapses on the retinal ganglion cells. 

The data is presented as ANOVA p-values and therefore there are no applicable error bars. 
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Chapter 6: Dendritic Spine Atrophy in CA1 Region Pyramidal 

Neurones 
 

6.1: Introduction 
 

Morphological assessment of the retina of the B6:C3-Opa1Q285STOP mouse has shown that 

there is a loss of dendrites on ON-centre retinal ganglion cells occurring without soma loss 

or apoptosis. This work has shown that glutamatergic synapses are particularly affected in 

Opa1 deficient mice, and therefore such changes may be present in other parts of the 

central nervous system with a high glutamatergic neuronal population, such as the 

hippocampus.  

Pyramidal neurons of the CA1 region of the hippocampus express Opa1 protein in both their 

soma and dendrites (Bette et al., 2005). Cognitive deficits have not been documented in 

patients who carry heterozygous mutations in OPA1 and have clinical signs of ADOA, despite 

the fact that Opa1 expression is reduced throughout the brain (haploinsufficiency). In the 

hippocampus approximately 90% of the neuronal cells are glutamatergic and their high 

energy demand must be met by fully functional mitochondria undergoing the correct ratio 

of fusion to fission (Vizi and Kiss, 1998; Attwell and Laughlin, 2001). A decrease in 

spinogenesis in the hippocampus may present as a decrease in hippocampal function i.e. 

memory formation and learning. Using neuronal and synaptic labelling techniques the 

dendritic architecture and synapse density of Opa1+/- CA1 region pyramidal neurones was 

assessed. 
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6.2: Changes in Dendritic Spine Density and Morphology 
 

There was a significant decrease in dendritic spine density on both proximal (17% reduction, 

P < 0.05) and distal (15% reduction, P < 0.05,) basal hippocampal pyramidal dendrites in 15 

month old Opa1+/- mice compared to wt controls. Spine density on the apical proximal 

dendrites was also significantly decreased (18% reduction, P < 0.05) in Opa1+/- mice 

compared to wt controls. There was no significant difference in spine density on apical distal 

dendrites (8% reduction, P > 0.05) however they too follow the trend. There was a 

significant decrease in dendritic spine length on the proximal and distal portions of both 

apical (proximal; 26% reduction, P < 0.0001, distal; 25% reduction, P < 0.0001) and basal 

(proximal; 18% reduction, P < 0.001, distal; 15% reduction, P < 0.0001) dendrites.  

There was a decrease in the number of dendritic spines on the apical dendrites of 23 month 

old Opa1+/- hippocampal pyramidal neurons. This decrease in spine density was significant 

for both the proximal (28% reduction, P < 0.01) and distal (42% reduction, P < 0.001) 

dendrites. There was no significant difference in the spine density on the basal dendrites 

(proximal; 2% increase, P > 0.05, distal; 18% reduction, P > 0.05).  There was a significant 

decrease in dendritic spine length on both proximal (26% reduction, P < 0.0001) and distal 

(13% reduction, P < 0.001) apical dendrites. There was also a highly significant decrease in 

spine length on basal proximal dendrites (13% reduction, P < 0.0001) but no difference in 

the spine length on basal distal dendrites (4% reduction, P > 0.05). 
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6.3: Quantification of Post-Synaptic Sites (PSD95) in Opa1+/- Mice 
 

Separate brain sections of the same animals were fixed immediately after sectioning and 

labelled for PSD95 as a marker of post-synaptic sites and the optical density of the 

secondary fluorophore measured in order to quantify synaptic density in the CA1 region of 

the hippocampus.  

We observed a significant decrease in dendritic complexity in the 23 month Opa1/- mice 

(optical density±SEM; wt; 32±2.9, Opa1+/-; 25±1.8, P < 0.0001) but not in the 15 month 

Opa1+/- mice (wt; 31±17.9, Opa1+/-; 28±19.6, P  > 0.05). This trend suggests a progressive 

loss of synapses in line with the changes we see at the level of the dendrite.     

 

6.4: Western Blot and qPCR Analysis of Post-Synaptic Sites and Pre-Synaptic 

Vesicles 
 

Western blot densitometry data from the hippocampus of 12 mice (wt; n = 6, Opa1+/-; n = 

6) validates findings found by immunohistochemistry in hippocampal tissue. We observed 

lower levels of the synaptic scaffolding protein PSD95 indicating a loss of post-synaptic sites 

on hippocampal pyramidal neurons as well as a similar number of pre-synaptic vesicles 

between Opa1+/- and wt mice using the vesicle marker synaptophysin indicating that the 

pre-synaptic sites remain unchanged.  

qPCR analysis was performed on dissected mouse hippocampi to detect changes in 

transcript levels of Opa1 (expected 50% reduction), PSD95 and synaptophysin. (Similar 

results to the Western blot densitometry were found in the analysis of the qPCR.) 

Interestingly, there was an increase in PSD95 transcript suggesting an upregulation of PSD95 
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transcript in response to the absence of functional synapses on hippocampal pyramidal 

neurones. An overview of results is shown in Figure XXII, XXVIII. 

 

6.5: Summary 
 

Chapter 4 and 5 of this thesis show a reduction in the dendritic architecture of ON-centre 

retinal ganglion cells which are primarily glutamatergic. To explore this further the dendritic 

integrity of another predominantly glutamatergic neuronal population that expresses Opa1 

was analysed, CA1 region pyramidal neurones. This chapter shows a decrease in dendritic 

spine size and density on CA1 region pyramidal neurones with an associated loss of synaptic 

sites. Neurological testing performed previously on these mice (see 1.10.3) show a subtle 

phenotype and it is plausible that there are other Opa1 related changes happening in other 

brain regions as well as the hippocampus. This supports the idea of a DOA+ phenotype in 

this model. 

Figure XXVII: Dendritic spine and synapse loss in Opa1+/- mice (overleaf) 

Hippocampal pyramidal neurons dendrites were quantified in Opa1+/- mice to observe 

whether Opa1 deficiency has an effect on dendritic spine density or morphology. Using 

DiOlistic labelling of freshly sectioned hippocampi we observed a significant decrease in 

spine density on both 15 month (A) and 23 month (B) Opa1+/- apical dendritic segments of 

hippocampal pyramidal neurons (representative samples are shown in C). We also explored 

synaptic loss in the CA1 region of the hippocampus using antibody labelling against PSD95. 

We observed no change in 15 month old mice (D, representative samples in E), however 

there was a significant decrease in synaptic density in 23 month old mice (D, representative 

samples in F) suggesting a gradual loss of synaptic sites which may manifest into the 

changes we see at a dendritic level on the Opa1+/- pyramidal neurons. 
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Figure XXVIII: Opa1, PSD95 and synaptophysin protein and transcript levels 

To validate the findings made by immunohistochemistry, Western blot and qPCR analysis 

was performed on dissected mouse hippocampi. Western blot densitometry shows the 

expected changes in PSD95 (D, E) and synaptophysin (D, F) protein levels as observed by 

immunohistochemistry (β-actin was used a loading control). Similar results are found in the 

analysis of the qPCR (A, C). Interestingly there was an increase in PSD95 transcript (B) 

(although a decrease in protein levels as assessed by Western blot and 

immunohistochemistry) suggesting an upregulation of PSD95 transcript in response to the 

elimination of functional synapses / dendritic spines on hippocampal pyramidal neurones. 

The qPCR data is presented as ANOVA p-values and therefore there are no applicable error 

bars. 
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Chapter 7: Method Development of Magnetofections for Neuronal Cell 

Transfection 
 

7.1: Introduction 
 

The transfection of nucleic acids, especially plasmid DNA and RNAi, into neuronal cells is 

almost essential for any neurobiologist wanting to investigate the morphology of certain 

neurons or the role of certain genes or organelles in a subgroup of neurons. The ideal gene 

transfer method needs to have a high transfection rate / efficiency (or a transfection rate 

appropriate for use in the study), long expression rates / prolonged expression lasting long 

enough to see through the experiment and with minimal toxicity. Each one of these factors 

can be optimised individually but getting all these right for certain applications has proven 

to be tricky. Neurons especially are hard to deal with being highly sensitive to changes in 

their environment which included the cells around them.  

Magnetofection is the transfection of nucleic acids adhered to cationic magnetic 

nanoparticles into living cell populations using a magnetic field (a handheld magnet, or a 

bed of magnets under a culture dish) (McBain et al., 2008; Pankhurst et al., 2009; Yiu et al., 

2011). The magnetic nanoparticles are formed from iron oxide and coated with cationic 

molecules which electrostatically interact with nucleic acids. Using a local magnetic field the 

magnetic nanoparticles can be concentrated towards the cells / tissue of interest which take 

up the genetic material by endocytosis. This process can take as little at 10 minutes. Cells 

and tissue can be kept at their normal culture conditions and within 48 hours the magnetic 

nanoparticles are localised within the cell cytoplasm or nucleus.  

There are several inherent advantages with Magnetofections over traditional transfection 

techniques (e.g. electroporation, lipofection, biolistic transfection) especially when it comes 
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to neuronal cell lines or neuronal tissue. Primarily; the magnetic nanoparticles are 

biodegradable and so the issue of toxicity is kept low. Even at very high concentrations the 

nanoparticles have been shown to be no toxic. The nanoparticles are taken up by the cell, 

and once degraded, no longer exist in the system and can no longer be effected by extra 

environmental magnetic fields. The magnetic nanoparticles are relatively cost effective, 

needing only a small amount for a large application, and there is no need for additional 

transfection reagents. In addition, there is no need for extra specialised equipment. 

Magnetofection has been shown to be viable in many cells (and some tissues), with a higher 

transfection rate, and is simpler and quicker to setup and to run than other transfection 

techniques (unpublished data, nanoTherics Ltd. UK).  

Currently, Magnetofections have been used in a wide range of cell lines and in some tissue 

explants (unpublished data, nanoTherics Ltd. UK). A key application for Magnetofection 

therefore must be the delivery of a gene vector or a pharmacological agent to a living 

system for purposes of gene knockdown in a system (i.e. an isolated model of disease), 

morphological tracking of a cell population (e.g. neuronal morphology in a disease state 

over time) or the addition of a targeted pharmacological agent. The advantage to 

Magnetofections over traditional transfection techniques is the possibility that a single cell 

(for example a single retinal ganglion cell) can be imaged in its entirety and that the 

properties of this cell could be altered limiting the cost for the development of a model. 

Magnetofections could, potentially allow us to image afferents and dendrites in the same 

cell. In addition, Magnetofections would also allow larger DNA constructs to be inserted as 

they get over the cassette limit of AAVs (4.7kb).  
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Current animal imaging modalities allow scientists to view the retina with a variety of 

imaging devices allowing single neurons to be imaged in real-time. The series of 

experiments that follow are designed to see if Magnetofections can be employed to 

transfect retinal ganglion cells for the purposes of tracking neuronal morphology, 

mitochondrial distribution and synaptic numbers. The methods and results are detailed 

below.            
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7.2: Method Development 
 

7.2.1: In vitro retinal labelling using lipophilic dye coated magnetic nanoparticles 

 

Mice were killed by cervical dislocation and the eyes quickly enucleated and placed in chilled 

(4°C) HBSS (Invitrogen, UK) in 7ml bijous. The eye was punctured at the limbus and a slit cut 

in sclera to remove the cornea and sclera anterior to the ora serrata and lens. Vitreous was 

kept intact.  Three cuts were made in the retina using micro-ophthalmic scissors  before 

being flat-mounted ganglion cell layer up on a cell culture insert (Millipore, Billerica, MA) 

and submerged in custom media. Retinas were incubated at 37°C and 4% CO2.  

For magnetic nanoparticle : lipophilic dye compounds, 80µg of DiI was dissolved in 100µl of 

methylene chloride at room temperature and 2µl of nTMag100 magnetic nanoparticles 

(NanoTherics, UK) was added in a fume cupboard, sonicated for 30 minutes and the 

methylene chloride was left to evaporate. This precipitate was sonicated for 30 minutes; 

100µl of PBS was added and sonicated again for 30 minutes.  

For in vitro retinal labelling using DiI coated magnetic nanoparticles 20-100µl of nanoparticle 

solution was gently pipetted onto the retina and a handheld rare earth magnet was held 

underneath the culture for 30 seconds – 2 minutes either stationary or gently moved 

around. After this time retina cultures were returned to the incubator at 37°C and 4% CO2 

for 35 minutes to allow diffusion of dye through neuronal processes. Retinas were then 

fixed in 4% PFA, mounted in ProLong Gold AntiFade Reagent, coverslipped and sealed with 

nail polish. Retinas were imaged within 24 hours.  
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7.2.2: In vivo retinal labelling using lipophilic dye coated magnetic nanoparticles 

 

For in vivo retinal labelling, male, brown Norwegian rats were anaesthetised using iso-

fluorane and pupils dilated using tripicamide. DiI coated magnetic nanoparticles were 

prepared as above and 5µl of solution was injected intravitreally. Following this a handheld 

rare earth magnet was held close to the eye at four different quadrants (nasal, temporal, 

inferior, superior) to the eye for 30 seconds (2 minutes in total) to allow dispersal of the 

solution across the retina. Rats were allowed to recover and were sacrificed 72 hours later. 

Retinas were prepared as above and imaged within 24 hours.  

 

7.2.3: In vitro retinal and neuronal labelling using plasmid coated magnetic nanoparticles 

 

For magnetic nanoparticle : plasmid DNA compounds 200ng of plasmid DNA (either GFP, 

YFP or DsRed2-mito (Clontech)) was added to 10µl of serum free media and 0.2µl of 

nTMag100 magnetic nanoparticles and incubated at room temperature for 20 minutes after 

which 100µl of custom media was added and the solution was kept at 37°C. 

For in vitro retinal labelling adult mouse retinas were dissected as previously described and 

kept at 37°C and 4% CO2 in custom media. 20-100µl of magnetic nanoparticle : plasmid DNA 

solution was gently pipetted onto the retina and a handheld magnet was held underneath 

the culture for 30 seconds – 2 minutes either stationary or gently moved around. Retinas 

were returned to the incubator at 37°C and 4% CO2 for 48-72 hours and then processed as 

above.  

For in vitro labelling of cells cell cultures of RGC5 (retinal cell line) cells were kept in 

compliment media at 37°C and 4% CO2, magnetic nanoparticle : plasmid DNA solution was 
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prepared as above and the ratios of components changed over various experiments (see 

results). The solution was applied over cells in culture and a handheld magnet was held 

underneath the culture for 30 seconds – 2 minutes either stationary or gently moved 

around or stationary for 24 hours. Retinas were returned to the incubator at 37°C and 4% 

CO2 for 48-72 hours and then processed as above. 

 

7.2.4: In vivo retinal labelling using plasmid coated magnetic nanoparticles 

 

For in vivo retinal labelling, male, brown Norwegian rats were anaesthetised using iso-

fluorane and pupils dilated using tripicamide. Plasmid DNA coated magnetic nanoparticles 

were prepared as above and 5µl of solution was injected intravitreally. Following this a 

handheld rare earth magnet was held close to the eye at four different quadrants (nasal, 

temporal, inferior, superior) to the eye for 30 seconds (2 minutes in total) to allow dispersal 

of the solution across the retina. Rats were allowed to recover and were sacrificed 72 hours 

later. Retinas were prepared as above and imaged within 24 hours.  

 

7.2.5: Plasmid validation  

 

For plasmid validation cell cultures of SH-SY5Y (human neuroblastoma cell line) cell lines 

were kept in complete media at 37°C and 4% CO2. The magnetic nanoparticle : plasmid DNA 

solution was prepared as above. The solution was applied over cells in culture and 24-well 

plates were placed on a magnefect-nano cell transfection device (NanoTherics) at 3Hz for 1 

hour at 37°C. Cell lines were kept for 48 hours, fixed in 4% PFA, mounted, coverslipped and 

imaged within 24 hours.  
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7.3: Results 
 

7.3.1: In vitro labelling of retinal ganglion cells using lipophilic dyes  

 

Whole adult mouse retinas in culture were labelled using lipophilic dye (DiI) coated 

magnetic nanoparticles and subjected to a small local magnetic field (from a rare earth 

magnet) for 10 seconds to 2 minutes. Times greater than 45 seconds lead to the retinas 

being overly labelled (i.e. many dendrites and cells labelled so that individual morphologies 

of cells was unclear, similar to that of ‘over shooting’ using a DiOlistic method). Retinas were 

sufficiently labelled after just 30 seconds compared with control retinas (i.e. retinas treated 

with just the magnet and no magnetic beads, or retinas treated with the dye : magnetic 

nanoparticle solution but no magnet) allowing morphologies of individual retinal ganglion 

cells to be shown (Figure XXIX). This was sufficient data to move onto the next stage of 

experimentation: in vivo labelling of retinal cells.  
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Figure XXIX: Magnetolistically labelled retinal ganglion cells 

Magnetic nanoparticles in PBS were coated in a DiI solution, pipetted onto mouse retina in 

culture and subjected to a local magnetic field from a hand-held rare-earth magnet. (A) 

shows two retinal ganglion cells that have had the dye ‘pulled’ into them by the magnet. No 

labelling was present on control retinas with no magnet field (B). 
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7.3.2: In vivo labelling of retinal ganglion cells using lipophilic dyes 

 

Adult brown Norwegian rats were intravitreally injected with the DiI coated nanoparticles 

previously described and a small local magnetic field was applied to the nasal, temporal, 

superior and inferior quadrants of the eye for 30 seconds per quadrant. The rat was left to 

recover and sacrificed 72 hours later. Although there was no staining of retinal ganglion cells 

there was labelling of axonal processes throughout the eye (Figure XXX).  

 

 

 

 

 

 

 

 

 

Figure XXX: Magnetolistically labelled retinal ganglion cell axons in vivo (overleaf)  

Magnetic nanoparticles coated in a DiI solution were intravitreally injected into the eyes of 

adult brown Norwegian rats and a local magnetic field was created at the nasal, temporal, 

superior and inferior quadrants of the eye. Although there was no labelling of retinal 

ganglion cell dendritic processes there was substantial labelling of retinal ganglion cell 

bodies (A) and axons (B-F). 



 
121 Chapter 7: Method Development of Magnetofections for Neuronal Cell Transfection 

 

Figure XXX: Magnetolistically labelled retinal ganglion cell axons in vivo 
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7.3.3: In vitro labelling of cell cultures using plasmid DNA 

 

RGC5 cells were kept in culture and treated with plasmid DNA adhered to magnetic 

nanoparticles in complete media. The cell cultures were subjected to a light magnetic field 

using the same magnet (mentioned above) for 30, 60, 90, 120 or 210 seconds or 24 hours. 

Cells were sufficiently labelled compared to control counterparts with YFP and DsRed2-Mito 

with just seconds of applied magnet time. Additional magnet time (i.e. the 24 hour scenario) 

made no noticeable difference (Figure XXXI). 
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Figure XXXI: Magnetofections: RGC-5 culture 

RGC-5 cultures was successfully labelled using magnetic transfection of plasmid DNA 

(DsRed2-mito; mitochondria, YFP; cell labelling, ToPro3, nuclear counter stain). Labelling 

was efficient with just 90 seconds exposure to a local magnetic field (B) compared with non-

magnetic field control (A). There was no increase in labelling efficiency when the magnetic 

field exposure time was increased up to 24 hours (C).  
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7.3.4: In vivo labelling of retinal cells using plasmid DNA 

 

Intact adult mouse retinas were kept in culture conditions (as previously described) and 

treated with plasmid DNA adhered to magnetic nanoparticles in complete media. Retinas 

were subjected to a light magnetic field using the same magnet (mentioned above) for 30, 

60 or 90 seconds or 24 hours. Retinas were processed and imaged but there was no 

labelling compared with control retinas (Figure XXXII).  

In addition, retinas were placed in 6-well culture plates and subjected to a light magnetic 

field for 30-60 minutes using a magnefect-nano cell transfection device with the same 

plasmid DNA : magnetic nanoparticle solution. There was no labelling compared with 

control retinas. 

The plasmid DNA : magnetic nanoparticle : media ratio was changed throughout these two 

experiments. A detailed table of ratios attempted are seen in Table IV. 
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Figure XXXII: Magnetofection: Intraocular injections 

The eyes of brown Norwegian rats were intravitreally injected with plasmid coated magnetic 

nanoparticles. There was moderate labelling of cell bodies in the photoreceptive cell layer 

with YFP and in the processes of a few cells with DsRed2-Mito. 
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7.3.5: Plasmid validation 

 

For plasmid validation cell cultures of SH-SY5Y cell lines were kept in compliment media and 

the same magnetic nanoparticle : plasmid DNA solution was prepared as above. The 

solution was applied over cells in culture and 24-well plates were placed on a magnefect-

nano cell transfection device 1 hour at 37°C. Cell cultures were processed and imaged. 

Biolistic transfection of retinal ganglions (mentioned above) added an additional plasmid 

validation trail.   
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Table V: Magnetofection trails 

Tables detailing the Magnetofection trails performed on health retinal flat-mounts in culture 

including the combinations of reagents (upper table), combinations of plasmids (middle 

table) and combinations of settings on the nanoTherics  ‘magnetfect nano II’ (lower table). 

 

Trials Plasmid DNA nTMag Beads Serum Free Media Complete Media 

1 1 1 1 1000 

2 1 1 1 2000 

3 2 2 1 1000 

4 2 2 2 1000 

5 1 5 20 500 

6 1 5 50 500 

7 10 1 1000 1000 

 

Combination GFP YFP E2-Crimson DsRed2-Mito PSD-95GFP 

1 x     

2  x    

3   x   

4   x x  

5 x   x  

6   x  x 

7  x x  x 

 

Setting Time Hz 

1 30 3 

2 30 4 

3 45 3 

4 45 4 

5 60 3 

6 60 4 

 

 
 

 

 

 

 



 
128 Chapter 7: Method Development of Magnetofections for Neuronal Cell Transfection 

7.5: Magnetofections Discussion 
 

Although the ultimate goal of the experiment, to label retinal cells using plasmid DNA 

adherant to magnetic nanoparticles in vivo, was not achieved, the labelling of axonal 

processes in vivo using lipophilic dyes and the labelling of cell cultures with plasmid DNA 

without using proprietary equipment is promising. The best setting for plasmid DNA delivery 

by Magnetofection was using YFP and DsRed2-mito plasmids with an applied magnet time 

of 60 seconds on RGC5 cultures. This gave a high yield of clearly labelled cells with complete 

mitochondrial labelling and labelling of cell processes. The simplicity of the experiment, 

coupled its low cost, short preparation time and its reproducibility means that this is an 

experimental paradigm that could easily be used in a laboratory setting. In addition there 

was no obvious toxicity in either the cell or retina cultures.  

There are several possible explanations as to why in vivo Magnetofections did not work. 

Originally it was suggested that the vitreous on the retina provided a barrier stopping the 

magnetic particles from moving. This posed two problems. Firstly; this would mean that 

Magnetofection could not be used in an in vivo setting as the vitreous could not be 

removed, and secondly, on in vitro retinal cultures with the vitreous removed 

Magnetofection of retinal cells was unobtainable. The magnet strength was then optimised. 

Changing the parameters using a range of various rare earth magnets and magnetic plates 

provided by NanoTherics the experiments were repeated but Magnetofection was still 

unachievable. There was no change when changing the parameters of the plasmid DNA : 

magnetic nanoparticles : media ratio. It is plausible that the varicosity of the retina, as well 

as, magnet strength, field size and the cell’s own intrinsic ability to endocytose the bead 

construct all have a role to play in as to why in vivo Magnetofections didn’t work.  
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Theoretically, in vivo magnetofection is attainable; however the magnetic and bead 

parameters have to be optimised even further. Future research should focus on specialised 

magnetic field generators (e.g. can fit closer to the eye), working out the exact varicosity of 

the retina and how this will affect bead : plasmid DNA constructs and the need for any 

additional transfection reagents or bead coatings.           
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Chapter 8: Discussion 
 

8.1: Retinal Ganglion Cell Dendropathy in a Mouse Model of Dominant Optic 

Atrophy  
 

Evidence of dendritic pruning in a mouse model of Opa1 dominant optic atrophy is shown 

here for the first time. The effects of the Opa1Q285STOP (exon 8) mutation in this mouse 

model appear to be more subtle than those seen in some patients with ADOA allowing the 

mechanism of disease to be elucidated leading to the development of potential therapeutics 

rather than attempting to solve irreversible neuronal loss without a tangible marker of 

disease state.   

The Opa1+/- mouse phenotype becomes clinically apparent only after ca. 12 months and is 

slowly progressive with age. Visual deficits manifest as a reduction in visual acuity 

(measured by optokinetic drum (Davies et al., 2007)), a reduction in the photopic negative 

response (light adapted ERG) thought to represent retinal ganglion cell function and 

reduction in the P2 positive deflection (light adapted visual evoked potential) at 11-13 

months (Barnard et al., 2011). An accompanying reduction in muscle power is apparent on 

rotarod testing (unpublished data) as well as wider neurological defects. Previous 

examination of the optic nerve in the Opa1+/- mouse by electron microscopy reveals a loss 

of fibre bundle myelination as well as disrupted mitochondrial morphology which is 

accompanied by increased autophagy in retinal ganglion cells from 12 to 24 months of age 

(White et al., 2009). The retinal ganglion cell dendropathy shown here precedes clinical 

visual loss and occurs without retinal ganglion cell loss as confirmed by nuclear staining, γ-

synuclein staining and labelling of ipRGCs using melanopsin. 
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But why do retinal ganglion cells show a specific vulnerability to mitochondrial dysfunction? 

The retinal ganglion cell population is unique in the challenges it faces in the central nervous 

system. Retinal ganglion cell axons are only myelinated when they exit the eye and enter 

the optic nerve. This places a high metabolic demand on the retinal ganglion cell as saltatory 

conduction of action potentials can only occur after exiting the eye (which can be as much 

as 2000µm for cells in the periphery of the retina). These requirements manifest as the 

presence of a large number of mitochondria within axon hillock, at the nodes of Ranvier and 

within dendritic processes. If mitochondrial motility ceases or the throughput of energy 

from functional mitochondria decreases this could have dire repercussions on the retinal 

ganglion cell. Whilst this theory is convincing it may nevertheless not be the case. The 

evidence put forward in this thesis points towards the specific elimination of glutamatergic 

synapses and in order to explore this further pilot studies were performed on another highly 

glutamatergic region of the central nervous system, the CA1 region of the hippocampus. 

Using a DiOlistic method our group explored the dendritic integrity of CA1 region pyramidal 

neurons in adult (15 month) and aged (23 month) Opa1+/- mice. We observed a decrease in 

dendritic spine density on the apical proximal sections (closer than 100µm to the cell soma) 

of Opa1+/- pyramidal neuron dendrites in both ages. Repeated trails showed the same 

findings. We observed lower levels of the synaptic scaffolding protein PSD95 as observed by 

immunohistochemistry indicating a loss of post-synaptic sites on hippocampal pyramidal 

neurons as well as a similar number of pre-synaptic vesicles between Opa1+/- and wt mice 

using the vesicle marker synaptophysin indicating that the pre-synaptic sites remain 

unchanged. This was validated in our Western blots. We also observed a high proportion of 

short spines in the Opa1+/- mice, which may be due to a decrease in synaptic activity and a 
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reduction in PSD95. Interestingly this degeneration occurs without apparent deficits in 

learning and memory tasks.  

A high proportion of short spines in the Opa1+/- mice was observed, which may be due to a 

decrease in synaptic activity and a reduction in the synaptic scaffolding protein PSD95. 

Dominant optic atrophy would not be unique in this; a reduction in spine size is observed in 

various neurological disorders including schizophrenia and Down’s syndrome. 

In wildtype mice an increase in synaptic activity or induction of LTP causes an increase in 

spine growth which is not seen in the Opa1+/- mice. In vivo imaging studies on dendritic 

spines have shown that they may be highly motile.  Their shape and length may change 

rapidly, with some smaller spines retracting and disappearing completely.  However in aged 

animals this motility decreases and spines become more stable (Stuart et al., 1999).  

Li et al. (2004) found that an overexpression of OPA1, leading to increased mitochondrial 

fusion, reduced the number of dendritic mitochondria and led to a decrease in spine and 

synapse number. In this model a ca. 50% decrease in Opa1 expression leads to a decreased 

spine density and a decrease in synaptic density. This suggests that the fine balance of 

mitochondrial fusion and fission is essential in maintaining dendritic spine and synapse 

density in health and disease. 

These data highlight the role that Opa1 has to play on other neurones in the central nervous 

system and in the body as a whole. This is seen clinically in patients with ADOA+ phenotype 

symptoms which include heart defects and sensorineural deafness. It would be interesting 

to examine, post-mortem, the hippocampus of ADOA patients as well as their ability to 
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perform memory tasks to see whether the observations found in the mouse model translate 

to the human population.    
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8.2: Mechanism of Disease 
 

Mitochondria are dynamic, morphologically diverse organelles and the classic text book 

image of a perfectly oval, bean shaped mitochondria floating in a cytoplasmic soup could 

not be further from the truth. Mitochondria continuously fuse, divide and move throughout 

the cell to sites of requirement, for example the synapse. Functional mitochondria are 

actively recruited to the synapse whereas dysfunctional mitochondria are actively 

transported to the soma and undergo mitophagy. Once at the synapse mitochondrial 

movement is inhibited in properly functioning neurones (i.e. synaptically active) by a 

morphological change from elongated to a rounder morphology  (Greenwood and Connolly, 

2007). Mitochondrial morphology is therefore crucial so that mitochondria travel in the right 

direction along the dendrite. This is probably an integral component of the Opa1+/- disease 

model where mitochondrial dynamics are shifted towards fission leaving small, fragmented 

mitochondria at synaptic sites which are then actively returned to the soma and undergo 

mitophagy thereby reducing the number of mitochondria at an already compromised 

synaptic site. Studies show there are less mitochondria generally in dendrites than there are 

in axonal segments and that the mitochondria in dendrites are more metabolically active as 

well as being less motile (Overly, Rieff and Hollenbeck, 1996; Cheng et al., 2010). This can 

only act to increase the cellular stress imposed on synaptic sites within the retinal ganglion 

cell. This may also help explain why there is relatively little axonal loss in the optic nerve and 

considerable dendritic degeneration in this model.       

The process connecting changes in mitochondrial fusion with reduced visual function has 

been elusive (Yu-Wai-Man, Griffiths and Chinnery, 2011). Whilst loss of retinal ganglion cells 

by apoptosis has been proposed as the mechanism (Heiduschka et al., 2010), the Opa1+/- 
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mice do not show statistically significant age-dependent loss of retinal ganglion cells on 

retinal sections and whole mounts and TUNEL staining has not indicated an increase in 

apoptosis (unpublished data), which is consistent with this observation. In contrast, these 

data indicate a marked change in retinal ganglion cell connectivity as the origin of the 

development of visual defects.  

Studies in human OPA1 ADOA patients have been limited by the paucity of pathological 

material. Retinal ganglion cell numbers from patients with ADOA are lacking and broad 

conclusions are based on the study of two elderly ADOA patients with severe and advanced 

end-stage disease, in whom no retinal ganglion cell counts were undertaken only measures 

of thickness and arbitrary measures of ‘degeneration’ (Kjer et al., 1983). However, 

electrophysiological studies in patients are consistent with both the loss of retinal ganglion 

cells as evidenced by changes in the PERG P50:N95 ratio, as well as retinal ganglion cell 

dysfunction resulting in delayed visually evoked potential responses (Berninger, Jaeger and 

Krastel, 1991; Holder et al., 1998; Holder, 2004).  

In the Opa1+/- mouse dendritic atrophy appears to be most active around 10-15 months of 

age with some retinal ganglion cells appearing relatively healthy (non-significant levels of 

degeneration observed) with others having severely compromised dendritic architectures. 

To investigate the time-course and mechanism of dendritic atrophy the 10-15 month age 

group was subcategorised into 12, 14 and 15 month cohorts. Elucidation of the mechanism 

of disease was sought by proposing the following questions using a range of methodologies 

including electron microscopy, immunohistochemistry, Biolistics, Western blot analysis and 

quantitative RT-PCR: 
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i) Is dendritic atrophy driven post-synaptically at a synaptic level; 

ii) Is dendritic atrophy driven pre-synaptically by loss of input from bipolar cells; 

iii) Do Opa1+/- retinal ganglion cells maintain a normal distribution of mitochondria 

and synapses? 

The density and localisation of post-synaptic sites were explored using various experimental 

modalities. A reduction in the synaptic scaffolding protein, PSD95, analysed using 

immunohistochemistry was found in all age cohorts which was exacerbated with age. This 

was mirrored in the Western blot analysis. As with retinal ganglion cell dendritic atrophy 

analysis of dark post-synaptic densities by electron microscopy revealed synaptic loss was 

restricted to sublamina b of the inner plexiform layer i.e., ON-centre retinal ganglion cells. 

These data are indicative of synaptic atrophy and suggests synaptic atrophy that coincides 

or precedes dendritic pruning.  

Further data confirm the hypothesis that visual dysfunction is driven from the retinal 

ganglion cell rather than earlier in the visual pathway. Counts of photoreceptive cells and 

bipolar cells using nuclear stains and PKC-α (a marker of rod bipolar cells) show that cell 

populations are maintained across all age groups compared with wt controls.  Published 

visual electrophysiology data on Opa1+/- mice at 11-13 months of age show deficits at the 

level of the retinal ganglion cell without deficits to cells in the outer retina, again supporting 

retinal ganglion cell dysfunction over retinal ganglion cell loss or loss of input from other 

parts of the visual pathway (Barnard et al. 2011).  

Synaptic vesicle density in the terminal arbors of bipolar cells in whole retinal sections were 

examined by electron microscopy and immunohistochemistry labelling for the synaptic 

vesicle protein synaptophysin. There was an increased luminance of the secondary 
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fluorophore in immunohistochemically labelled retinas for synaptophysin in all ages 

indicating an increase in synaptic vesicle number which was mirrored by the Western blot 

analysis and increased synaptophysin transcript levels as assessed by qPCR. Electron 

microscopy analysis of bipolar cell terminal arbors as well shows an increase in synaptic 

vesicle density in all ages analysed. This again suggests that bipolar cells undergo normal 

inputs and function (i.e. producing vesicle bodies) but the increased synaptic vesicle density 

may be due to low levels of recycling at the post-synaptic site or the bipolar cell itself not 

having enough available energy to undergo proper or efficient synaptic vesicle transfer 

leading to a build up of vesicles. Within the synaptic bouton mitochondria are essential for 

cycling of the reserve pool synaptic vesicles as well as being essential for the general 

organisation of the synaptic bouton therefore it is unsurprising that Opa1 deficiency 

manifests as a build of synaptic vesicles possibly representing decreased levels of vesicle 

recycling (Chan, 2006a).    

The retinal ganglion cell soma and dendrite is unique in the central nervous system in that it 

is frequently exposed to high levels of light. This has lead to theories (Wataha et al., 2004; 

Osborne et al., 2006) that ambient light may exacerbate mitochondrial dysfunction by 

mechanisms including higher generated levels of reactive oxygen species from 

mitochondrial photosensitisers and suppressed levels of oxidative phosphorylation. Light 

exposure studies on rat retinal cultures show enhanced levels of apoptosis (increased 

number of TUNEL positive cells) caused by cleavage of caspase-3 by light into the caspase-3 

active form (Lascaratos et al., 2007).  
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8.3: The Pharmacological Properties of Retina Ganglion Cells Determines 

Their Fate 
 

ON and OFF pathways in the mammalian retina are partially separated in the visual 

pathways at the thalamic and cortical levels, with different stimulus and neurotransmitter 

requirements (Pourcho, 1996; Xu and Tian, 2007; Marc, 2008). The differential effects of the 

mutation on dendritic morphology in the ON and OFF pathways are of interest since it may 

shed light on the mechanisms of dendrite change in Opa1+/- mice. 

The neuropharmacology of the retinal ganglion cell has a strong influence on neuronal 

viability in the Opa1+/- mouse. A selective loss of glutamatergic but not GABAergic synaptic 

sites with age in Opa1+/- mice as indicated by changes on immunohistochemistry and 

western-blot analysis was observed. One explanation for this is that these GABAergic 

synapses on OFF-centre retinal ganglion cells have a lower energy demand as they operate 

near the EqChl and the polarized changes are small. The observed selective neuronal 

vulnerability may therefore reflect the higher energy demands of ON-centre retinal ganglion 

cells (Mattson and Magnus, 2006). This higher energy requirement may be the cells’ 

downfall as the OPA1 deficient mitochondria may not be able to support the cells’ metabolic 

needs. The retinal ganglion cell may go through a phase of low bioavailability of ATP leading 

to a lower rate of synaptic firing. This leads to a period of low activity whereby synaptic sites 

are depleted, synaptic connections fail and the dendrites atrophy, leading to the loss of 

visual function we see in this mouse phenotype. It has been previously shown that the 

maintenance of retinal ganglion cell dendritic architecture depends on glutamatergic 

signalling in both the mature and immature retina, supporting our findings that an absence 
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of glutamatergic synapses leads to dendritic degeneration (Bodnarenko et al., 1995; Wong 

et al., 2000; Sernagor, Eglen and Wong, 2001).  

A further suggestion to the mechanism of the specific dendritic degeneration in ON- centre 

retinal ganglion cells is that the retinal ganglion cells go through the starting sequence of 

excitotoxicity leading up to dendrite loss. Under the conditions of low energy availability 

caused by dysfunctional mitochondria and continued stimulation at glutamatergic synapses 

there is a higher influx of Ca2+ into the postsynaptic membrane which can trigger apoptosis 

(although this is not seen in this model) and higher levels of reactive oxygen species 

produced. High concentrations of reactive oxygen species can induce lipid peroxidation 

leading to the dysfunction of ATPases which further decreases the bioavailability of ATP, the 

dysregulation of ions (e.g. Ca2+) and lead to excitotoxicity. Loss of synaptic sites has shown 

to be a cellular defence against excitotoxicity (Ikegaya et al., 2001; Mizielinska et al., 2009). 

This is a pathway that is commonly shared in other neurodegenerative disorders which is 

exacerbated by certain proteins that sensitise neurones to excitotoxic damage; for example 

amyloid β in Alzheimer’s disease, dopamine in Parkinson’s disease and huntingtin in 

Huntington’s disease. Additionally, glutamate, rather than GABA is essential for retinal 

ganglion cell stratification during and post- development (Bodnarenko et al., 1995).  

The dendropathy shown in ON-centre retinal ganglion cells increases with age and this may 

be due to the increased reactive oxygen species production in these cells as mentioned 

above. Evidence for this comes from studies in the rat cerebral cortex where older rats have 

increased reactive oxygen species levels and enhanced mitochondrial swelling in response 

to higher Ca2+ loads. This may be a contributing factor to dendritic loss in this model.   
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The functional difference between the ON- and OFF- centre pathways may hold a clue as to 

the specific degeneration of ON-centre retinal ganglion cells. It has been shown in humans 

(Komban, Alonso and Zaidi, 2011) that the OFF- centre pathway is processed at a higher rate 

than the ON-, light sensitive pathway, and that the OFF- pathway is better represented in 

the visual cortex, perhaps promoting OFF- pathway survival. If these findings hold true in 

mice then the faster processing of the OFF- pathway could promote synaptic exchange 

quicker and strengthen synapses on OFF-centre retinal ganglion cells thus increasing 

mitochondrial recruitment to the synapse and effectively saving the OFF- centre retinal 

ganglion cells from degeneration.  

Although not observed in this mouse model, the glutamatergic synapses on retinal ganglion 

cell dendrites may already be destined to their fate. The selective blocking of glutamatergic 

receptors (either/both AMPA or NMDA receptors) in isolated retina leads to a decrease in 

dendritic growth, leading to a decrease in overall dendritic complexity. AMPA receptor 

trafficking in the synapses stabilises dendritic branches and, in addition, also escorts other 

proteins to the synapse. A problem with AMPA trafficking (perhaps caused by low energy 

bioavailability or dysfunctional mitochondria for example) therefore can have dire 

consequences downstream. Proteins are not recruited efficiently to the synapse leading to 

poor assembly of the post-synaptic density which, in turn, can lead to the synaptic failure of 

glutamatergic synapses, leading to defects in retinal ganglion cell dendritic architecture (Xia, 

Nawy and Carroll, 2007). 

Downstream problems associated with altering AMPA receptor trafficking may also shed 

light onto why the bipolar cell terminal arbours were becoming highly densely populated 

with pre-synaptic vesicles. By interfering with AMPA receptor trafficking, one group 
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(Ruthazer and Aizenman, 2010) showed that the post-synaptic sites take longer to mature 

(i.e., less instances of mature sites) and that pre-synaptic sites become clustered with 

vesicles over the course of hours. This effect was more prominent in the brains of older 

animals. 
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8.4: The Importance of Mitochondria in Neuronal Health, Survival and 

Plasticity 
 

The role of mitochondria in synaptic plasticity has mostly been studied in glutamatergic 

neurons where they are essential members of the synaptic transmission process as they are 

the major contributors to the neurons’ energy demands. This energy is required for the 

influx and release of calcium ions as well as maintaining various ion gradients. Mitochondria, 

therefore, are found in areas of high energy demand; around the nucleus and in the 

dendritic shafts of the neuron with their movement and distribution coordinated by the 

balance of mitochondria fusion and fission as dictated by Drp1 and OPA1.     

The role of OPA1 and disrupted mitochondrial fusion in the pathophysiology of ADOA is not 

an unique association; mitochondrial dysfunction is increasingly recognised as a key 

contributor to neuronal dysfunction and loss in classic neurodegenerative diseases such as 

Alzheimer’s (Wang et al., 2008), Huntington’s (Kieper et al., 2010) and Parkinson’s disease 

(Abou-Sleiman et al., 2006; Otera and Mihara, 2011). In Alzheimer’s disease models (Wang 

et al., 2008) a decrease in synaptic and mitochondrial density in the periphery of the cell has 

been shown in addition to a general redistribution of mitochondria towards the soma, 

similar to the findings shown in the Opa1+/- mouse. In these neurodegenerative disease 

states the rate of neuronal loss is slow and accompanied by prolonged periods of neural 

dysfunction in the absence of demonstrable neuronal loss and atrophy and changes in 

mitochondrial dynamics may be a common final pathway that leads to neuronal dysfunction 

(Cho et al., 2010). The high dependence of neurons on mitochondria leaves them highly 

susceptible to any changes in energy stasis (Mattson and Magnus, 2006).  Mitochondrial 

structure, number and their distribution within the axon, dendrite and synapse are thus 
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integral to neuronal physiological function and health (Selkoe, 2002; Mattson et al., 2008; 

Cheng et al., 2010; Cho et al., 2010).  

The role of Opa1 itself is of consequence in another optic neuropathy, glaucoma (Ju et al., 

2008; Ju et al., 2009a; Ju et al., 2009b; Ju et al., 2010). Recent studies show that transfection 

of pre-glaucomatous DBA/2J eyes (a mouse model of heredity glaucoma) with mOpa1 using 

AAV2 lead to increased retinal ganglion cell survival at 2 months of age suggesting a role for 

Opa1 in glaucoma. These results however are not conclusive; DBA/2J mice have a variable 

phenotype including the levels of retinal ganglion cell death observed and these mice were 

examined at 2 months of age were widespread retinal ganglion cell loss is not observed until 

9 months of age. A repeat of this study on mice of this age would yield interesting results. In 

addition, in retinal ganglion cell cultures (RGC-5) subjected to a high hydrostatic pressure an 

upregulation of Opa1 is seen within 2 days of the initial hypertensive shock. Interestingly 

Opa1 was downregulated after 3 days of pressure treatment suggesting that Opa1 is initially 

upregulated in response to mitochondrial stress and that after 3 days the mitochondria are 

actively damaged by the high hydrostatic pressure. Opa1 may have protective effects on 

neurones lowering apoptotic stress by limited cytochrome c release. It would be interesting 

to induce high intraocular pressure in the Opa1+/- mouse to evaluate comparative levels of 

retinal ganglion cell damage.     

 

 

 

 



 
144 Chapter 8: Discussion 

8.5: Implications for Therapeutics Interventions 

 

These findings reveal a potentially useful window of opportunity for the exploration of 

therapeutic intervention in the mouse model of ADOA starting at a point in the disease 

pathway before significant visual and retinal ganglion cell loss. 

In the Opa1+/- mouse, dysfunctional mitochondria in retinal ganglion cells could lead to 

damage by increased reactive oxygen species, lipid peroxidation leading to energy depletion 

(through ATPase dysfunction), slower vesicle recycling leading to synaptic, and consequently 

dendritic, atrophy as well as lower rates of Ca2+ sequestering (shown to cause neuritic 

degeneration).  Preferential loss of ON-centre retinal ganglion cells has a number of 

implications including the disruption of a light-sensitive pathway (though a survival of a 

dark-sensitive pathway) leading to visual dysfunction and ultimately loss of vision. Analysis 

of mutations in OPA1 ADOA patients suggests two principle mechanisms by which OPA1 

mutation affects mitochondrial function: haploinsufficiency (nonsense mutations) and a 

potential dominant negative effect (missense mutations). Data from patient fibroblasts 

(Arnoult et al., 2005; Olichow et al., 2007; Amati-Bonneau et al., 2009) suggest a number of 

cellular effects such as mtDNA deletions, fusion defects, reduced ATP synthesis, increase in 

susceptibility to apoptosis or vulnerable to oxidative stress.  

Damage and cell death of retinal ganglion cells may be induced by high levels of reactive 

oxygen species / oxidative stress. Mitochondria are significant generators of reactive oxygen 

species and this makes modulation of mitochondrial function an ideal target for therapeutic 

intervention. Evidence from the Drosophila mutant (Yarosh, Monserrate and Tong, 2008), 

dOpa1, show an increase in reactive oxygen production due to mutations in Opa1 and that 
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antioxidants such as Vitamin E are able to reverse the disease phenotype. Since 

mitochondria are significant generators of reactive oxygen they are particularly vulnerable 

to oxidative stress. Mitochondrial function may be modulated in a number of ways, 

including agents that may increase ATP production (idebenone (Chinnery and Turnbull, 

2001; Kerr, 2010; Klopstock et al., 2011)), agents which can reduce reactive oxygen 

production; co-enzyme Q10 (Nakajima et al., 2008), antioxidants; vitamin E (Khanna et al., 

2006) and Brazilian green propolis (Inokuchi et al., 2006), as well as minocycline (Shimazawa 

et al., 2005), superoxide dismutase 1 (SOD1) (Yarosh et al., 2008) and resveratrol 

(Kaeberlein, 2010) and those agents which may modulate the mitochondrial permeability 

transition pore and inhibit loss of mitochondrial membrane potential (cyclosporine (Cook et 

al., 2009)).  

The selective loss of glutamatergic retinal ganglion cells provides a useful insight into the 

selective vulnerability of neurons in mitochondrial disease associated with chronic 

neurodegeneration, and may help elucidate similar mechanisms of neurodegeneration in 

other diseases where mitochondrial dynamics have shown to be altered (Wang et al., 2008; 

Cho et al., 2010).    
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Appendix: DiOlistic Method Development 
 

In general reagents and antibodies worked out of the box following the established product 

literature, however in order to effectively label retinal ganglion cells using DiOlistics 

significant method development was required.  

For DiOlistic method development the methods found in the literature were initially 

followed (Sun et al., 2002b) but gave sub-optimum results with retinal ganglion cells being 

poorly labelled and with a low yield (2-3 cells per retina). To increase the quality of the 

labelling of retinal ganglion cells the DiI / DiO concentration was increased by a factor of 2, 

3, 5 and 10 from those found in the literature (ratio of 3:100, DiI : methylene chloride) with 

the most optimum results being a ratio of 1:10 (DiI : methylene chloride)(~3.3 fold increase). 

In addition, changes were made to the ballistic pressure of the gene gun. Test retinas from 

C57/B6 mice were shot once or twice with differing pressures between 80 and 200psi. To 

avoid ‘overshooting’ (excessive labelling rendering the cell unsuitable for analysis) the 

optimum pressure (allowing clear, distinct cells) was found to be 100psi. Retinas were only 

required to be shot once for optimum labelling at this pressure. These changes allowed a 

lower gain and smaller aperture on the confocal microscope and this, in turn, allowed for 

clearer and higher quality images to be generated. Adjusting the pressure of the gene gun 

also generated a greater yield of cells per retina. Figure XXXIII demonstrates the effects of 

varying pressures and dye concentrations on retinal ganglion cells labelling and image 

quality.  



 
162 Appendix: DiOlistic Method Development 

 

Figure XXXIII: DiOlistic method development 

There is a delicate balance between the dye concentration and the shooting pressure of the 

gene gun that determines the quality and yield of viable retinal ganglion cells. Labelled cells 

need to have clear somas and distinct dendritic trees for quantitative analysis. If the dye 

concentration or shooting pressure is too low (A; low pressure [80psi]) or too high (B; high 

pressure [120psi]) it results in a too bright or too dull image that cannot be corrected 

through editing the microscope settings or through image processing. Likewise, shooting 

twice at a low pressure (C; shot twice [80psi]) does not correct this. Retinas shot once at 

100psi gave the best quality and yield of retinal ganglion cells (D). Error bar = 100µm.      
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