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Abstract 
The stability of a production and inventory system where negative orders are forbidden is investigated via an 
eigenvalue analysis of a piecewise linear model and a simulation study. The Automatic Pipeline, Variable 
Inventory and Order Based Production Control System is adopted. All classes of dynamic behaviour in 
nonlinear systems can be observed in this stylised model with only one constraint. Exact expressions for the 
asymptotic stability and Lyapunovian stability boundaries are derived when the replenishment lead-time is both 
one and two periods long. Asymptotically stable regions in the nonlinear system are identical to the stable 
regions in its linear counterpart. However, regions of bounded fluctuations that continue forever exist in the 
parameter plane. Simulation reveals an intriguing and delicate structure within these regions. Our results show 
that ordering policies have to be both designed properly and use accurate lead-time information to avoid such 
undesirable behaviour. 
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1 INTRODUCTION 

One of the main objectives to design an inventory control 
system is to maintain its stability and robustness when 
responding to external disturbances. Since the introduction 
of control theory and other system dynamic approaches 
into the field of inventory management, much research has 
been dedicated to this problem. However, the significance 
of many results is limited in their ability to cope with 
uncertainty and complexity in the system structure. For 
example, capacity and non-negativity constraints are 
typically omitted. 

In earlier works on supply chain stability [1, 2], linear 
inventory system models are usually adopted. To maintain 
linearity, order rates are allowed to take negative values.  
This means that participants are permitted to return 
product to their supplier without cost and in zero time. If not 
returned, the excess inventory instead may be considered 
to be owned by the supplier, until being used as part of a 
future replenishment [4].  

When the return of goods is forbidden (i.e. negative order 
are not allowed), the behaviour of the replenishment policy 
becomes much richer, sometimes even chaotic or super-
chaotic, see [5, 6, 7]. [8] has attempted to control such 
inventory systems with H∞ techniques. Border-collision 
behaviour has been studied in [9]. The mathematical 
properties of nonlinear systems, such as bifurcations, local 
and global stability conditions, are “very hard to investigate” 
and “notoriously challenging” [10]. 

In an ideal situation, supply chain participants would have 
perfect knowledge of a constant production lead-time. In 
practical situations however, this may not be true. Time 
varying and incorrect lead-times are commonly observed in 
industry, see Figure 1 derived from [11].  Varying lead-
times has been shown to increase supply chain cost [12], 
exacerbates the bullwhip effect [13] and significantly affects 
decision making [14]. Incorrect lead-time information also 
creates an undesirable phenomenon known as ‘inventory 
drift’ [15]. 

This paper investigates the effect of lead-time on 
constrained supply chain stability. Section 2 models the 
constrained one echelon supply chain system using 
piecewise-linear techniques and conducts an eigenvalue 
analysis; Section 3 investigates the stability of the inventory 
system with perfect lead-time knowledge when lead-time is 
both 1 and 2 periods long; Section 4 focuses on the effect 
of incorrect lead-time information on system stability and 
dynamic patterns; Section 5 concludes. 

 

Figure 1: Lead-time performance in an industrial setting 

2 MODEL OF CONSTRAINED INVENTORY SYSTEMS 

We study a replenishment policy known as the Automatic 
Pipeline, Variable Inventory and Order Based Production 
Control System (APVIOPBCS). This policy has been 
frequently adopted and researched as it is of a very 
general nature. The popular order-up-to (OUT) policy is a 
special case of the APVIOBPCS model.  We do not define 
our notation here due to space limitations, but refer 
interested readers to [15] if they require this information. 

The difference equations for the inventory system are 
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Here  , 2TRANS TRANS are assistant variables required to 

describe the transportation delay in matrix form. Forbidden 
returns (non-negative orders) are enforced with the 
maximum operator ((x)+ = max(0,x)) in (6). The above 
difference equations are easily converted into matrices that 
describe the system of equations. For example, when Tp = 
1 we have, 
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The piecewise affine model for this system is given by 
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Rewriting (7) we may eliminate the affine terms: 
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The bars in A and x will be dropped in the following text 
when no confusion occurs. 1 { | 0}S ORATE x and 

2 { | 0}S ORATE x  are both non-degenerate polyhedral 

partitions of the state space. That is, each region Si is a 
(convex) polyhedron with a non-empty interior. The (n–1) 
dimensional hyper-plane ORATE = 0 is the boundary of the 

partitions. 1 2
nS S   , 1 2 1 2S S S S     . S° is the 

interior of S and n is the dimension of x. It should be noted 
that the boundaries are continuous, i.e., 1 2t tA x A x  when 

1 2t S Sx  . Common concepts, such as region and 

boundary, will be used in either the phase space or the 
parametrical space. 

For Tp = 1, the eigenvalues for 1A , 2A , 1 2A A are: 
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The eigenvalues associated with the forecasting system 
can be ignored. However 1A  has 2 and 1 2A A  has 1 

eigenvalue(s) associated with the feedback loops which do 
need to be investigated.  The eigenvalues of these 
matrices, yield parametrical regions in which the inventory  

                                                           
1 When lead-time is 2 the size of these matrices increases by one 
to incorporate the extra assistant variable, TRANS2. This change is 
rather obvious and we omit it for space reasons. 

 

Figure 2: Categorization of dynamic behaviours of a 
nonlinear system 

system behaves differently and these will now be derived 
and investigated. 

3 STABILITY OF A CONSTRAINED APVIOBPCS  

In linear systems there are only two patterns of dynamic 
behaviours which are physically realizable: stable 
(convergence) and unstable (divergence). In nonlinear 
systems however, the range of dynamic behaviours the 
system could exhibit is much larger. First, the fixed point of 
the system could be a saddle-node. A saddle node is a 
point that attracts trajectories from some directions and 
repels trajectories from other directions. Second, there are 
other types of attractors such as limit cycles and strange 
attractors that may be present. Trajectories of nonlinear 
systems could be either convergent or divergent and can 
even oscillate in a bounded fashion. It could oscillate in a 
regular repeating pattern or in a seemingly random one.  
The system could also be highly sensitive to initial values. 
Dynamic behaviours in nonlinear systems are categorized 
in Figure 2.  We have also ranked the different dynamic 
behaviours for an intuitive supply chain cost viewpoint in 
Figure 2. Detailed investigations on the stability of the 
constrained supply chain will now be conducted. 

3.1 Lyapunovian stability and divergence 

If all solutions of the dynamical system that start out near 
an equilibrium point xe and stay near xe forever, then the 
system is Lyapunovian stable. Note that, even when the 
system fluctuates but never approaches the equilibrium, as 
long as the fluctuation is bounded, the system is 
Lyapunovian stable. Lyapunovian instability indicates an 
unbounded oscillation and a trajectory tends to infinity.  
That is, it diverges. 

The criteria for exponential monotonic divergence is 

1
Im( ) 0Aλ  and

1
Re( ) 1Aλ , where Im(z) and Re(z) are 

imaginary and real parts of complex number z respectively. 
These relations give the Lyapunovian stability regions. In 
linear systems, if the eigenvalues of system matrices are 
complex, systems oscillate with exponential divergence. 
However, in piecewise linear systems, such trajectories will 
eventually hit the boundary. In other words, the boundary 
constrains or limits such trajectories from divergence. The 
direction of exponential monotonic divergence is always 
away from the boundary. 

We can derive the parametrical boundaries that separate 
exponential divergence from bounded responses.  For Tp = 
1, when 1A  has two real eigenvalues greater than 1 

exponential divergence can be observed. Thus, the 
Lyapunovian stability boundary for Tp = 1 is 

S = (SL + 1)2 / 4.                                                                (9) 

For Tp = 2, the Lyapunovian stability boundary is given by 

2 327 4 15 12 4S SL SL SL       .                             (10) 

3.2 Asymptotic stability 

If xe is Lyapunovian stable and all solutions that start near 
xe converge to xe, then more strongly, xe is asymptotically 
stable. This means that the trajectory approaches an 
equilibrium point over time. This concept has similar 
meaning with stability in classical linear control theory. In 
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the asymptotically stable region, the system will eventually 
return to equilibrium. The criteria for asymptotic stability is 

1
1Aλ .  When Tp = 1 this amounts to 

S = 2SL – 2;                                                               (11) 

S = 0;                                                                         (12) 

S = SL + 1.                                                                (13) 

For Tp = 2, the following conditions hold for asymptotic 
stability: 
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3.3 Periodicity 

Periodicity of a function is a point which the system returns 
to after a certain number of function iterations or a certain 
amount of time. The boundaries of the periodic region of Tp 

= 1 system can be derived by solving 
1 2

1 A Aλ , where 

S1S2S1S2… is the periodical movement in this region.  Here 

1A  is unstable but 1 2A A  is stable. This makes the 

periodical movement S1S2S1S2… fall into a repeating pattern. 
Solving 1 1S   to investigate whether the only 

undetermined eigenvalue of 1 2A A  is inside the unit 

circle, we obtain the boundary of periodic region: 0 < S < 2. 

When Tp = 2, the boundary of period-3 is S = 2, which is 
identical to Tp = 1 case. This boundary can be derived by 

solving the asymptotic stability of 2
1 2A A . Generally, if 

period 1 2
m nS S  is discovered to be stable under certain 

parameter settings, where ,m n   and an exponential 
form is used to express the trajectory staying in one region, 

then the matrix 1 2
m nA A  is asymptotically stable. 

3.4 Quasi-periodicity and chaos 

Quasi-periodicity is the property of a system that displays 
irregular periodicity. Quasi-periodic behaviour is a pattern 
of recurrence with a component of unpredictability that 
does not lead itself to precise measurement. Quasi-
periodic motion is in rough terms the type of motion 
executed by a dynamical system containing a finite number 
(two or more) of incommensurable frequencies. Values of 
quasi-periodic points are dense everywhere.  

Mathematically, chaos refers to a very specific kind of 
unpredictability: deterministic behaviour that is very 
sensitive to its initial conditions. In other words, infinitesimal 
variations in initial conditions for a chaotic dynamic system 
lead to large variations in behaviour. 

Quasi-periodicity and chaotic motion are both 
characterized by the fact that, although bounded in phase 
space, the trajectory never precisely repeats itself. This 
research shows that, compared to the four-echelon beer-
game model adopted in [7], such complex behaviours can 
be found even in this simple model of a constrained 
inventory system. 

3.5 Division of the parametrical plane and bifurcation 
analysis 

Stability maps for Tp = 1 and 2 are shown as Figures 3 and 
4. Asymptotic stable regions are represented by black, 
periodic darker grey, quasi-periodic and chaos lighter grey, 
and divergent white. When Tp = 1, combining Equations 9 

and 11-13, boundaries S = 0, S = 2, S = SL + 1, S = 2SL 
– 2 and S = (SL + 1)2 / 4 divides the plane into several 
regions in which the inventory system behaves differently. 
A positive S is essential to maintain Lyapunovian stability. 
Furthermore, when the absolute values of SL are small, 
the system will be asymptotically stable. When SL is 
negative, exponential divergence can be observed. 
Regular periodicity can be discovered when S is small and 
SL is positive and large. Other areas are filled by quasi-
periodic and chaotic movements. Notice that there exist 
periodic areas shaped as branches. What we can infer 
from the experiments is that high values of S and SL lead 
to chaos. When Tp = 2, there is a similar stability layout in 
the parameter plane as Tp = 1. Figure 5 shows typical 
bounded dynamic patterns in the time domain.  

 

4 THE EFFECT OF LEAD-TIMES ON STABILITY  

4.1 Known lead-time changes 

If we draw boundaries of Tp = 1 and Tp = 2 together as 
shown in Figure 6, we are able to better visualise the 
different dynamic behaviours that exist when the lead-time 
increases from 1 to 2 and we know of this fact. Table 1 
summarizes the dynamic behaviour under each lead-time 

 

Figure 3: Stability map of Tp = 1 

 

Figure 4: Stability map of Tp = 2 
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Figure 5: Four typical dynamic patterns (step response) 
generated by the constrained inventory system. (a) 

asymptotic stable; (b) periodic; (c) quasi-periodic; (d) 
chaotic 

 

Figure 6: Stability comparison between Tp = 1 and Tp = 2 

Table 1: Change of dynamic behaviour in each region with 
known Tp changes observed in Figure 6 

 1pT  , 1pT   (1-1) 2pT  , 2pT   (2-2) 

I Asymptotically stable Periodic 

II Asymptotically stable Quasi-periodic 

III Periodic Asymptotically stable 

IV Asymptotically stable Divergent 

V Quasi-periodic Divergent 

VI Period-2 Period-3 

 

value, and highlights the regions where a structurally 
different behaviour can be observed. 

Although we have assumed the lead-time can be 
accurately measured and correctly updated the 
replenishment policy with this lead-time information, a 
sudden increase of lead-time could still jeopardize system 
stability.  That is, a system could be asymptotically stable 
with one lead-time but with a different lead-time it could be 
periodic (region I in Figure 6), quasi-periodic (II) or even 
divergent (IV). In region III, a lead-time increase will 
actually stabilize the system. 

4.2 Unknown lead-time changes 

In this section, the effect of lead-time on system stability in  
the Estimated Lead-time Variable Inventory and Order 
Based Production Control System (EPVIOBPCS) will be 
analyzed. This policy was introduced in [15] to eliminate a 
phenomenon known as inventory drift (when the system 
falls unit a steady state with a difference between the  
target and actual inventory levels), by calculating work-in-
process level using perceived lead-time as 

1 1 1pt t t t TWIP WIP ORATE ORATE      .                (16) 

When the perceived lead-time is incorrect, i.e., p pT T , 

this method generates false WIP values, but the WIP 
values are matched to the DWIP target levels and this 
allows the inventory to return to target levels. It is already 
known that when work-in-process is calculated in the 
conventional way (via Equation 5), the value of pT  does 

not affect the stability of the system, since it only appears 
in a feed-forward path (calculating desired work-in-
process). However, when work-in-process is calculated 
based on the perceived lead-time, pT , (with Equation 16), 

then pT  changes the dimension of the inventory system 

and thus it has a dramatic effect on stability and the 
dynamic behaviour. 

Let’s examine the following cases: Case (1-2), an 
overestimation of the actual lead-time; Case (2-1), an 
under estimation of the actual lead-time. Note that we are 
using two hyphenated numbers in brackets to represent 
lead-time misspecification scenarios, the first number 
representing the actual lead-time, Tp, and the second one 
perceived lead-time, pT . 

4.2.1. Case (1-2), an overestimation of lead-time 

Using the same techniques as before, parametrical 
boundaries for the above two cases can be derived. For 
the (1-2) case, the asymptotic stability region is: 

20 1 2S SL SL       for 0.5 1SL   .                     (17) 

The Lyapunovian stability boundary is: 
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The boundary of the periodic region, 2S  , can be 

derived by solving the eigenvalue equation 2
1 2

0 A A . The 

system follows a S1S2S1S2… periodic orbit in this region.  

4.2.2. Case (2-1), an underestimation of lead-time 

For case (2-1), the asymptotic stability region is: 

 
21 2 5

0
2

SL SL SL
S

  


   
  for 1 0.5SL   ;    (19) 

 0 2 2S SL      for 0.5 1SL  .                            (20) 

The Lyapunovian stability boundary is: 

3 4 3 2 2

2

12 3 6 18 3 18

81 12 0.

S SL SL SL S SL SL S SL

S S

        

 

     

 
     (21) 

The boundaries of the periodic region, 1S  , can be 

derived by solving the eigenvalue equation 
1 2

1 A A . 

Consequently, the system follows a S1S2S2S1S2S2… periodic 
orbit in this region.   

Similar to the analysis in the previous section, we obtain 
structurally different behaviours when lead-time mis-
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specification occurs. First, by overlapping the stability map 
of case (1-1) (Figure 3) with that of case (1-2) (Figure 7), 
the effect of incorrectly assuming the lead-time is 2 rather 
than correctly assuming that it is 1 can be analyzed. It can 
be seen that the lead-time misspecification leads to a 
major reduction in the size of asymptotically stable region, 
and an increase in the size of exponentially divergent 
region. Moreover, in most regions, the dynamic behaviour 
of the inventory system deteriorates (Table 2).  

Table 2 and Figure 7 highlights a rather worrying situation 
could exist for the classical OUT policy.  Using S = SL = 1 
when both the actual and the perceived lead-time is 1 
results in an asymptotically stable system.  However, if the 
perceived lead-time is 2, but the actual lead-time is 1, then 
a quasi-periodic / chaotic system is present.  This is a 
rather alarming result given the prevalence of the classical 
OUT in industrial setting and highlights the need for 
knowing and using correct lead-time information in 
replenishment policies. 

By overlapping the stability map of case (2-2) with that of 
case (2-1) (Figure 8), we can analyze the effect of 
incorrectly using a lead-time of 1 when we should be using 
2 in the replenishment system. Dynamic behaviour 
comparisons are shown in Table 3. This lead-time mis-
specification decreases the size of asymptotically stable 
region and increases the size of the Lyapunovian stable 
region.  
Again, alarmingly, the industrially prevalent setting of S = 
SL = 1 in the OUT policy exhibits periodic behaviour when 
lead-time mis-specification occurs, although it is 
asymptotically stable when the replenishment system is set 
up with correct lead-time information.  
Table 4 shows the effect of the actual lead-time and 
perceived lead-time on the size of asymptotically stable 
region. It can be seen that when lead-time is perceived 
correctly (the main diagonal of the matrix), the size of 
asymptotic stability is much larger than those when lead-
time information is incorrect. The importance of accurate 
lead-time information on asymptotic stable region is 

Figure 7: Stability Comparison between (1-1) and (1-2) 

Table 2: Change of dynamic behaviour in each region with 
1pT   and pT changes observed in Figure 7 

 1pT  , 1pT   (1-1) 1pT  , 2pT   (1-2) 

I Asymptotically stable Quasi periodic / Chaotic 

II Asymptotically stable Periodic 

III Asymptotically stable Divergent 

IV Quasi periodic / Chaotic Divergent 

 
Figure 8: Stability Comparison between (2-2) and (2-1)  

Table 3: Change of dynamic behaviour in each region with 
2pT  and pT changes observed in Figure 8 

 2pT  , 2pT   (2-2) 2pT  , 1pT   (2-1) 

I Asymptotically stable Quasi-periodic / Chaotic 

II Asymptotically stable Periodic 

III Periodic Quasi-periodic / Chaotic 

IV Periodic Quasi-periodic / Chaotic 

V Quasi-periodic / Chaotic Asymptotically stable 

VI Divergent Asymptotically stable 

VII Divergent Quasi-periodic / Chaotic 

Table 4: Size of stability area under different actual and 
perceived lead-times 

  pT  

  1 2 3 4 

1 4.000 1.125 0.741 0.675 

2 0.943 2.742 0.750 0.496 

3 1.062 0.693 2.398 0.656 
pT  

4 0.578 0.541 0.598 2.221 

 

obvious. Moreover, with correct lead-time information, 
increased lead-time reduces the size of the asymptotic 
stability region. Furthermore, the degree of lead-time mis-
specification seems to have a complex relationship to the 
size of the stability region. 

 

5 CONCLUSION AND DISCUSSION 

This paper highlights the range of dynamic behaviours that 
are present in a constrained inventory system with only one 
constraint. It is interesting that even a simple deterministic 
model with a short lead-time is sufficient to generate such 
complex phenomena.  We wonder what sort of impact 
stochastic models, longer lead-times and more constraints 
will have? Compared to the stable regions, the unstable 
regions are vast and relatively unknown. We have shown 
that complex and diversified behaviours and patterns exist 
in the unstable region. 

Managerially, in a supply chain or production setting, 
intuitively we may rank these classes of dynamic 
behaviours from good to bad as follows; asymptotic 
stability, periodicity, quasi-periodicity, chaos and 
divergence. The most surprising result we have revealed 
herein is the fact that using wrong lead-time information in 
the EPVIOPBCS can result in a periodic or a chaotic  
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Figure 9: Bifurcation diagrams when 1
S

   

system. As the EPVIOPBCS is a general case of the 
Order-Up-To (OUT) policy this is a worrying result as the 
OUT policy is probably one of the most popular 
replenishment algorithms in industry. Figure 9 takes 
another look at this issue by presenting four bifurcation 
diagrams, two with correct lead-times, two with mis-
specified lead-times. The effect of lead-time and lead-time 
estimation on stability of the constrained inventory system 
is complex. It is extremely important to obtain and use 
accurate lead-time information in a replenishment system. 
However, as far as Lyapunovian stability is concerned, 
increasing either lead-time (actual or estimated) will 
decrease the Lyapunovian stable area. This might suggest 
that maintaining a low estimation of lead-time seems to be 
a better choice, regardless of the actual lead-time. 
However, from a practical supply chain point of view, an 
asymptotically unstable, but Lyapunovian stable system is 
a very bad system. We also note that the estimated lead-
time will affect system stability only in the EPVIOBPCS 
version of the OUT policy, which is designed to eliminate 
inventory drift. Hence, there might be a trade-off between 
effective inventory control and system stability. This 
requires more detailed investigation in the future. 

In the field of dynamical systems, the problem of high 
dimensional piecewise linear systems are far from being 
solved. Hence, to explore the dynamical behaviours of the 
constrained inventory system, a simulation-based 
technique has to be incorporated with an eigenvalue 
analysis and knowledge of dynamical systems. Due to the 
unique nature of the forbidden returns system, a linear 
system stability analysis was sufficient to derive the 
asymptotic stability boundaries of this particular 
constrained inventory system. In general this may not 
always be the case. 
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