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Contact and elastohydrodynamic analysis of
worm gears
Part 1: theoretical formulation

K J Sharif, S Kong, H P Evans and R W Snidle*

CardiV School of Engineering, CardiV University, Wales, UK

Abstract: The paper presents the theoretical basis for modelling the contact conditions and elas-

tohydrodynamic lubrication (EHL) of worm gears, the results of which are presented in Part 2. The

asymmetric elongated contact that typi®es worm gears is non-Hertzian and is treated using a novel
three-dimensional elastic contact simulation technique. The kinematic conditions at the EHL contact

are such that the surfaces have a slide±roll ratio equal to almost 2, and the sliding direction varies over

the contact area. These considerations require a non-Newtonian, thermal analysis, and the appro-

priate form of a novel Reynolds equation is developed that can incorporate any form of the non-
Newtonian relationship between shear stress and strain rate. A form that incorporates both limiting

shear stress and Eyring shear thinning is utilized in which the two eVects can be included both singly

or together.

Keywords: worm gears, elastohydrodynamic, thermal, non-Newtonian

NOTATION

a contact semi-dimension (m)

A area subject to lubricant pressure (m2)

c speci®c heat (J/kg K)
C; D ¯ow factors in the non-Newtonian Reynolds

equation (ms)

E 0 reduced elastic modulus (Pa)

h ®lm thickness (m)
hu undeformed ®lm shape (m)

h0 load-determining constant in the ®lm thickness

equation(m)

k thermal conductivity (W/m K)

p pressure (Pa)
pr @p=@r

ps @p=@s

q heat ¯ux at the solid boundary (W/m2)

r coordinate in the local non-sliding

direction (m)

s coordinate in the local sliding direction (m)

t time of heating (s)
u ¯uid velocity in the s direction (m/s)
u mean surface velocity in the s direction (m/s)

U ¯uid velocity in the x direction (m/s)
U mean surface velocity in the x direction (m/s)
v ¯uid velocity in the r direction (m/s)
·vv mean surface velocity in the r direction (m/s)
V ¯uid velocity in the y direction (m/s)
V mean surface velocity in the y direction (m/s)
W load (N)

x Cartesian coordinate in the contact
plane (m)

x 0; y 0 dummy variables in the de¯ection

integral (m)

y Cartesian coordinate in the contact

plane (m)

_®® shear strain rate (s¡1)

" oil thermal expansivity (K¡1)

² absolute viscosity (Pa s)

� temperature (K)

�ref bulk temperature of the component (K)

�0 reference temperature for the viscosity

relationship (K)

l dummy variable in the surface temperature

integral (s)

� density (kg/m3)

½ shear stress (Pa)

½L limiting shear stress (Pa)

½0 Eyring shear stress (limit of Newtonian

behaviour) (Pa)

¿ angle between the x and s directions
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revision for publication on 17 April 2001.
* Corresponding author: CardiV School of Engineering, Mechanical
Engineering and Energy Studies Division, CardiV University, Queen’s
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1 INTRODUCTION

Worm gears, as shown in Fig. 1, provide a simple
and cost eVective solution in power transmission

applications where a high reduction ratio is required in

relatively slow-speed drives. Comparable parallel axis

gearing would normally require two or three stages to

achieve the same reductions with a consequent increase

in complexity and number of parts. Worm drives are

widely used in industry for process machinery, con-
veyors, elevators, etc. The main disadvantages of worm

gearing are lubrication and wear problems due to the

relatively high degree of sliding at the tooth contacts. In

order to avoid scuYng (welding and tearing of the tooth
surfaces caused by lubrication breakdown) it has so far

been necessary to use metallurgically dissimilar materi-

als for the worm and wheel. Traditionally, a steel worm

and phosphor bronze wheel are used. Cast iron has also

been tried as a wheel material but is generally less
resistant to scuYng than bronze. However, the use of a

relatively soft material for one of the surfaces limits

allowable contact stresses and hence load capacity.

Existing worm drives therefore tend to have a low

power±weight ratio compared with conventional gearing

where hardened steel can be used for both contacting

surfaces.
The high degree of sliding coupled with unfavourable

hydrodynamic conditions leads to relatively low eY-

ciency and a poor thermal rating compared with con-

ventional gearing. The mechanical eYciency of typical
high-ratio designs can be as low as 70±80 per cent

compared with ®gures of 95 per cent or better for par-

allel axis units [1]. These well-known drawbacks of

worm drives have been tolerated in the past because of

their simplicity and low initial cost. In a more compe-

titive gearing world, however, the power±weight ratio

and thermal rating are becoming more important as
selling points, and there is a need to upgrade traditional

worm gearing technology with the aim of improving

load capacity and eYciency.

Part of the required improvement in worm gearing

technology can be made on the basis of a better

understanding of the contact geometry and contact
stresses and the way in which these are in¯uenced by

design, manufacturing accuracy, elastic distortion and

the wear that occurs during operation. This is the sub-

ject of tooth contact analysis (TCA), and advances in

the understanding of this aspect of worm design have
been made recently by Litvin and Kin [2], Seol and

Litvin [3], Fang and Tsay [4], Hu [5] and Su et al. [6].

The second important aspect of worm gearing is the

known, poor elastohydrodynamic lubrication (EHL)

performance of the contacts between worm and wheel
teeth. Bathgate and Yates [7] applied elementary line

contact EHL theory to a worm gear together with cal-

culations of ¯ash and total contact temperature. Dis-

charge voltage measurements of ®lm thickness gave

values in the range 0.03±0.3 mm with the particular oil

used. Fuan et al. [8] also applied line contact EHL
theory to a worm gear and predicted ®lm thickness

values of 0±2.5 mm, and concluded that lubrication in

the middle part of the contact area is weak because of

poor entrainment conditions in this region. Detailed

results for EHL modelling of worm contacts have not
appeared in the literature, although Simon [9, 10] has

presented performance curves in terms of non-dimen-

sional ¯ash temperature, EHL load-carrying capacity

and friction factor ratios derived from such analyses.

The high ratio of sliding to rolling velocity at the con-
tacts, combined with what appears to be a relatively

unfavourable entraining geometry of typical designs,

gives poor ®lm-forming characteristics and leads to the

main limitations of low load capacity and low eYciency.

Of particular interest is the hard steel worm/hard steel

wheel combination that is now being considered as a
serious alternative to the traditional steel/bronze design

as a means of dramatically improving load capacity

provided that the lubrication conditions at the tooth

contacts can be improved.

One of the aims of the project, of which the present

study forms a part, is to investigate the geometrical and

kinematic design factors that in¯uence hydrodynamic

®lm forming in worms, and to optimize, if possible,

these factors in combination with contact stressing and

ease of manufacture. Such an integrated approach to

improvement of worm gearing technology depends upon

a thorough understanding of contact mechanics and

hydrodynamic lubrication of the concentrated contacts.

The present paper reports on the study of a particular

worm gear design and the aim is to show the general

features of the tooth contact in terms of elastostatic and

elastohydrodynamic behaviour.Fig. 1 Worm and wheel pair
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The worm gears examined in this study are of the

standard `ZI’ type. In this system the worm is an invo-
lute helicoid. The geometry of the mating wheel is gen-

erated from a cutting hob of nominally the same

geometry as the worm. In the case where worm and hob

are exactly the same, the meshing action is conjugate

with contact occurring at a line. However, in order to

provide an inlet clearance at the contact to facilitate the
generation of an oil ®lm and prevent damaging edge

contacts, the hob is usually chosen to be `oversize’ which

means that under unloaded conditions the contact

occurs at a point rather than at a line. The process of

generation of this non-conjugate geometry of the wheel
surface is accomplished by a numerical simulation. A

technique for this purpose is described by Hu [5] and is

adopted in the present work.

2 CONTACT ANALYSIS

An elastic contact analysis based on semi-in®nite body

de¯ections was developed to determine the shape and
extent of the dry contact area between the wheel and

worm under load [11]. The shape of the gap between the

two components when touching under zero load is taken

as hu…x; y†, where the x and y axes lie in the contact

tangent plane. The shape of the gap between the bodies
under the action of pressure p…x; y† is then

h…x; y† ˆ hu…x; y†

‡ 2

pE 0

……

A

p…x 0; y 0†������������������������������������������
…x 0 ¡ x†2 ‡ …y 0 ¡ y†2

q dx 0 dy 0 …1†

The contact analysis method is an extension of the
simple line contact method presented by Snidle and

Evans [12]. In essence, a target de¯ection ht is assumed

and a pressure distribution obtained iteratively so that

at the mesh points in the tangent plane

h…x; y† ˆ ht 8…x; y† with p…x; y†50

h…x; y†5ht 8…x; y† with p…x; y† ˆ 0

This is obtained by modifying the current pressure dis-

tribution p…x; y† at each stage in the iteration using the
formula

pnew…x; y† ˆ 1 ¡ �… † ‡ � 2 ¡ h…x; y†
ht

µ ¶� ¼
pold…x; y†

…2†

The target de¯ection is chosen to correspond to the

distance of elastic approach for the elliptical contact

having the same radii of relative curvature loaded to the
required contact load. To start the process, the required

de¯ection at each point is used to form the ®rst trial

pressure distribution according to

p…x; y† ˆ k‰ht ¡ hu…x; y†Š where ht5hu…x; y†
ˆ 0 elsewhere

with constant k chosen so that p…x; y† supports the

required contact load.

The iterative process is found to be extremely robust

and its accuracy has been veri®ed by considering ellip-
tical Hertzian contacts so that comparison can be made

with the Hertzian solution. Progress of the iterative

method towards its solution can be optimized by sui-

table choice of the overrelaxation parameter �, and a

value of � ˆ 2:2 has been found to be eVective for the
current work. The load supported for a speci®ed value

of ht is established in relatively few cycles using a coarse

mesh. This information is used to adjust ht so that the

closely converged ®ne mesh solution obtained supports

the required load. The initial pressure distribution
always encloses the ®nal contact area. The iterative

scheme described above does not reduce the pressure at

points just outside the contact area to zero rapidly, as

equation (2) will scale them by a factor only moderately

less than unity in each iteration. The process is accel-

erated considerably by reducing such pressures by 15 per
cent in each iteration once the contact shape has become

established. A further advantage of this simple method

is that it is able to deal with rough surface contacts quite

easily, and diYculties associated with potential lack of

connectivity of the pressurized regions do not impact on
progress to the solution.

A problem encountered with the numerical data

representing the two surfaces was that of precision.

Although gap values to the precision produced by the

numerical simulation were suYcient for conventional
purposes such as transmission error analysis, etc., this

led to a `surface roughness’ of suYcient magnitude to

give sizeable corresponding ripples in the elastic and

EHL pressure distributions in subsequent elastic and

lubrication simulations. While it is recognized that all

real engineering surfaces have such features, the initial
aim of the work was to provide reference solutions to

the ideally smooth surface case. The numerically

obtained surfaces were therefore smoothed by ®tting

high-order polynomials to both worm and wheel sur-

faces. It was found that polynomials of up to order ten
were suYcient to give a very good ®t to the surfaces over

the whole active part of the teeth. The undeformed gap

between the surfaces was then obtained, for each of

about 20 meshing positions, by subtraction of the two

surface-®tting functions to give an analytical form for
the clearance.
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3 REYNOLDS EQUATION

Kinematic analysis is required to enable EHL simula-
tions for the worm gear contacts. The velocities of

interest are the components of velocity of the two sur-

faces in the common tangent plane relative to the

instantaneous point of contact. This gives the distribu-

tion of hydrodynamic entraining, or rolling, velocity in

the region of potential contact. The dominant eVect is

that of the sweeping velocity of the worm surface which
gives entrainment in the direction of the streamlines

shown in Fig. 2. This is a projection into the plane

perpendicular to the worm axis containing the wheel axis

and also shows the outer radius and throat radius of the
worm, and the sides of the wheel. Surface velocities of

the two components are obtained by conventional vector

methods based on steady rotation of the worm and the

wheel at angular velocities that are in the gear ratio. The

instantaneous velocity of the point of contact is obtained
by time diVerencing the contact positions established by

the TCA. The entrainment conditions are extreme in

that the wheel component makes relatively little con-

tribution and the slide roll ratio is close to the value of 2

obtained in simple sliding. Consequently, very high

shear rates, of order 107 s¡1, are imposed on the lubri-

cant and a non-Newtonian rheological model is utilized.
The situation is complicated by the systematic variation

in the direction of sliding owing to the rotational motion

of the worm, and this leads to new terms in the Reynolds

equation when a non-Newtonian ¯uid model is used.

Consider a small quantity of ¯uid as shown in Fig. 3,
where s is the local sliding direction in the tangent plane

and r is the local rolling direction; i.e. if us is the vector

of the diVerence in surface velocities at the point …x; y†,
then coordinate s is chosen as the direction of us. The
balance of pressure forces and shear stress forces on a

small element of ¯uid leads to the equations

@½s

@z
ˆ @p

@s
and

@½r

@z
ˆ @p

@r

and, integrating with respect to z, assuming that the
pressure does not vary with z, the shear stress is

½s…z† ˆ ½sm
‡ z

@p

@s
and ½r…z† ˆ ½rm

‡ z
@p

@r
…3†

where ½sm
and ½rm

are the mid-plane …z ˆ 0† shear stress

components.

The non-Newtonian formulation links shear strain

rate with shear stress according to

@u

@z
ˆ F …½† …4†

in a one-dimensional situation, and F …½† is the non-
Newtonian function taken as either

F …½† ˆ ¡ ½L

²
ln 1 ¡ ½

½L

� ´
…5†

or

F …½† ˆ ½0

²
sinh

½

½0

� ´
½2¸

L

½2¸
L ¡ ½2¸

� ¼
…6†

Fig. 2 Outline of the worm wheel tooth, showing the throat radius to accommodate the worm and the outer

radius of the worm. Also shown are the entrainment velocity streamlines

Fig. 3 Elemental volume of lubricating ¯uid between the

contacting surfaces, showing forces acting in the s

direction
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Equation (5) is the model proposed by Bair and Winer

[13], and equation (6) is an adaptation of the Eyring
model proposed by Johnson and Tevarwerk [14] where

the curly bracket has been added to allow limiting shear

stress behaviour to be added to the Eyring behaviour.

The parameter ¸ is taken as unity but can be varied in

numerical experiments to control the rate at which the

shear stress approaches its limiting value ½L as discussed
in Sharif et al. [15].

In two-dimensional ¯ow situations the shear stress±

strain rate relation of equation (4) becomes

@u

@z
ˆ ½s

½e

F …½e†; @v

@z
ˆ ½r

½e

F …½e† …7†

where ½e ˆ
���������������
½2

s ‡ ½2
r

p
.

These equations can be integrated across the thickness
of the ®lm to give the diVerence between the velocity

components at the two solid boundaries. Thus

0 ˆ ¡us ‡
…h=2

¡h=2

½s

½e

F …½e† dz …8†

0 ˆ
…h=2

¡h=2

½r

½e

F …½e† dz …9†

are the kinematic conditions to be satis®ed by the

lubricant at each point in the contact. The shear stress
components ½s and ½r are given by equations (3), and so

equations (8) and (9) determine the values of the mid-

plane shear stress components ½sm
and ½rm

, and thus the

shear stress developed at each point in the ¯uid. In the

numerical method, equations (8) and (9) are solved by a
simple Newton method. The integrals are obtained by

quadrature, as are those of the derivatives of the equa-

tions with respect to ½sm
and ½rm

that are required. When

one of the limiting shear stress forms is used, care is

required during the iterative solution of the equations at
any mesh point. The iteration is started from a point

…½sm
; ½rm

† in the plane illustrated in Fig. 4. Equations (3)

ensure that all points within the thickness of the ®lm at

the mesh point are represented by a straight line, or
vector, in this ®gure, with …½sm

; ½rm
† at its centre. The

most extreme value of ½e thus occurs at one or other of

the surfaces. The initial iterative point is located within

the limiting shear stress circle so that the most extreme

½e is less than 0.95½L. If, during subsequent iterations,

the most extreme ½e value would breach the ½e ˆ ½L

circle, the change is limited to 20 per cent of the change

that would correspond to the extreme value of ½e

becoming exactly ½L, so that the limiting shear condition

is approached in a series of diminishing steps. If the

extreme ½e value then reaches 0:995½L, the calculation is
halted with slip at that surface and no slip at the other

surface. This situation has only been found to occur in

solutions when the Bair and Winer [13] formulation of

equation (5) is adopted. Whether or not the liquid is

actually slipping at the surface or has an extremely high
shear rate near the surface is really a matter of the

precise form of F …½† as limiting shear conditions are

approached, and is not felt to be a signi®cant issue in the

context of the work reported here. A singular integral

treatment could easily be adopted for clari®cation

should this prove to be of engineering interest.
The mass ¯owrate in each of the axis directions is

given by

Qs ˆ
…h=2

¡h=2

�u…z† dz; Qr ˆ
…h=2

¡h=2

�v…z† dz

which, provided � is taken not to vary across the ®lm,

can be rewritten following Greenwood [16] as

Qs ˆ �uz‰ Šh=2
¡h=2¡

…h=2

¡h=2

�z
@u

@z
dz

and

Qr ˆ �vz‰ Šh=2
¡h=2¡

…h=2

¡h=2

�z
@v

@z
dz

so that

Qs ˆ � ·uuh ¡
…h=2

¡h=2

�z
½s

½e
F …½e† dz …10†

Qr ˆ �·vvh ¡
…h=2

¡h=2

�z
½r

½e
F …½e† dz …11†

It is found [17] that, provided the ¯ow expressions are
formulated in the direction of sliding and non-sliding,

the integral term in each of these expressions is broadly

proportional to the pressure gradient in that particular

direction so that it is possible to write

Qs ˆ � ·uuh ¡ D
@p

@s
and Qr ˆ �·vvh ¡ C

@p

@r
…12†

Fig. 4 Vector AB, showing the variation in the shear stress

over the thickness of the ®lm in the shear stress plane.

A and B are surface shear stress conditions
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where D…h; p; @p=@s; @p=@r† and C…h; p; @p=@s; @p=@r† are

given by

D ˆ @p

@s

� ´¡1 …h=2

¡h=2

�z
½s

½e
F …½e† dz …13†

and

C ˆ @p

@r

� ´¡1 …h=2

¡h=2

�z
½r

½e

F …½e† dz …14†

The ¯ow factors C and D in equations (13) and (14) are

then smoothly varying functions over the contact area
and correspond to the term …�h3†=…12²† seen in the

familiar Newtonian form of the Reynolds equation. In

non-Newtonian situations, factors C and D have dif-

ferent values, and recognition of this factor distinguishes
the current approach from the work of Kim and Sadeghi

[18]. Formulation in arbitrary directions not corre-

sponding to the sliding and non-sliding directions is

mathematically possible, but the resulting ¯ow factors

are not smoothly varying functions and do not lend
themselves to the linearization solution scheme descri-

bed below. It would seem that the eVective viscosity in

the sliding direction is intrinsically diVerent to that in

the non-sliding direction and that this needs to be

recognized in considering general kinematic conditions.

Greenwood [16] has also pointed out this feature based

on analytical considerations. Care is necessary in eval-
uating these ¯ow factors when the pressure gradients

tend to or become zero, where a limiting process is

required.

The situation is further complicated if the cross-®lm
temperature dependence is included in the viscosity

model, as the ¯ow corresponding to a zero pressure

gradient in the sliding direction cannot then be taken as

� ·uuh since a further contribution proportional to the

sliding velocity occurs. In these circumstances, when ½sm

and ½rm
are obtained by solving equations (8) and (9)

and the ¯ow terms are established numerically as

Qs…ps; pr; h; ²; ½sm
; ½rm

† and Qr…ps; pr; h; ²; ½sm
; ½rm

†
…15†

with ² ˆ ²…z†, corresponding expressions for Qs and Qr,

with ps and pr set to zero respectively, are also evaluated.

This gives the eVective entrainment velocities ûu and v̂v, so

that the Couette ¯ow components are

�ûuh ˆ Qs…0; pr; h; ²; ½sm
; ½rm

†

and

�v̂vh ˆ Qs…ps; 0; h; ²; ½sm
; ½rm

† …16†

The ¯ow factors are then established from

D ˆ ¡ @p

@s

� ´¡1

‰Qs…ps; pr; h; ²; ½sm
; ½rm

†

¡ Qs…0; pr; h; ²; ½sm
; ½rm

†Š …13a†

and

C ˆ ¡ @p

@r

� ´¡1

‰Qr…ps; pr; h; ²; ½sm
; ½rm

†

¡ Qr…ps; 0; h; ²; ½sm
; ½rm

†Š …14a†

Equations (12) may then be taken as the general ¯ow

expressions, with ·uu and ·vv replaced by ûu and v̂v respec-

tively.

To obtain the Reynolds equation, the local sliding

axis set Osr, inclined at an angle ¿ to the global axis set
Oxy, is considered as shown in Fig. 5. For a general

kinematic situation, ¿ will vary over the tangent plane

and ¿ constant will be a special case.

The angle ¿ is determined from the equation

0 ˆ ¡…U2 ¡ U1† sin ¿ ‡ …V2 ¡ V1†cos ¿

and the sliding speed is

us ˆ …U2 ¡ U1† cos ¿ ‡ …V2 ¡ V1† sin ¿

The pressure gradients are related by

@p

@s
ˆ cos ¿

@p

@x
‡ sin ¿

@p

@y

@p

@r
ˆ ¡ sin ¿

@p

@x
‡ cos ¿

@p

@y

which enables ¯ow factors C and D to be evaluated

numerically at any point in the tangent plane.

The ¯ow expressions of equation (12)

Qs ˆ �ûuh ¡ D
@p

@s
and Qr ˆ �v̂vh ¡ C

@p

@r

Fig. 5 Local sliding and non-sliding directions Osr, showing

global axes Oxy
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can then be written in terms of the global gradients as

Qs ˆ �ûuh ¡ D cos ¿
@p

@x
‡ sin ¿

@p

@y

� ´

and

Qr ˆ �v̂vh ¡ C ¡ sin ¿
@p

@x
‡ cos ¿

@p

@y

� ´

and used to form expressions for the ¯ow in the global

axis directions:

Qx ˆ �ûuh ¡ D cos ¿
@p

@x
‡ sin ¿

@p

@y

� ´µ ¶
cos ¿

¡ �v̂vh ¡ C ¡ sin ¿
@p

@x
‡ cos ¿

@p

@y

� ´µ ¶
sin ¿

Qy ˆ �ûuh ¡ D cos ¿
@p

@x
‡ sin ¿

@p

@y

� ´µ ¶
sin ¿

‡ �v̂vh ¡ C ¡ sin ¿
@p

@x
‡ cos ¿

@p

@y

� ´µ ¶
cos ¿

i.e.

Qx ˆ �ÛUh ¡ D cos2 ¿ ‡ C sin2 ¿
¡ ¢ @p

@x

¡ D ¡ C… † sin ¿ cos ¿
@p

@y

Qy ˆ �V̂Vh ¡ D ¡ C… † sin ¿ cos ¿
@p

@x

¡ D sin2 ¿ ‡ C cos2 ¿
¡ ¢ @p

@y

which since the ¯ow balance is given by

@Qx

@x
‡ @Qy

@y
ˆ 0

leads to a `Reynolds’ equation as follows:

@

@x
D cos2 ¿ ‡ C sin2 ¿

¡ ¢ @p

@x

µ ¶

‡ @

@y
D sin2 ¿ ‡ C cos2 ¿

¡ ¢ @p

@y

µ ¶

‡ @

@x
D ¡ C… † cos ¿ sin ¿

@p

@y

µ ¶

‡ @

@y
D ¡ C… †cos ¿ sin ¿

@p

@x

µ ¶

ˆ @

@x
�ÛUh

± ²
‡ @

@y
�V̂Vh

± ²
…17†

This reduces to the expected form

@

@x
D

@p

@x

� ´
‡ @

@y
C

@p

@y

� ´
ˆ @

@x
�ÛUh

± ²
‡ @

@y
�V̂Vh

± ²

for the special case ¿ ˆ 0, where the sliding direction is

in the x direction at all points, and also for Newtonian

situations where C ² D.

4 ELASTOHYDRODYNAMIC EQUATIONS

The equations that describe the hydrodynamic aspect of
the EHL solution are thus equation (17) with the ¯ow

factors D…h; p; @p=@s; @p=@r† and C…h; p; @p=@s; @p=@r†
obtained from equations (13) and (14), or (13a) and

(14a). The elastic de¯ection is given by the de¯ection of

contacting semi-in®nite bodies so that the ®lm thickness

is given by equation (1) in the form

h…x; y† ˆ h0 ‡ hu…x; y†

‡ 2

pE 0

……

A

p…x 0; y 0†������������������������������������������
…x 0 ¡ x†2 ‡ …y 0 ¡ y†2

q dx 0 dy 0

with the energy equation given by

�c U
@�

@x
‡ V

@�

@y

� ´
ˆ½X

@U

@z
‡ ½Y

@V

@z
‡ "� U

@p

@x
‡ V

@p

@y

� ´

‡ @

@x
k

@�

@x

� ´
‡ @

@y
k

@�

@y

� ´

‡ k
@2�

@z2

� ´
…18†

The boundary conditions for this equation are given by

the surface temperatures of the worm and wheel tooth
components. These are obtained using a simple one-

dimensional (linear heat ¯ow) conduction model so that

the surface temperatures are given by integrals of the

form

�S ˆ �ref ‡ 1����������
pk�c

p
…t

0

qd¶�����������
t ¡ ¶

p …19†

The lubricant viscosity is taken to be given by the for-

mula of Roelands [19]

² ˆ ²0 exp

(
‰ln…²0† ‡ 9:67Š

£ …1 ‡ 5:1 £ 10¡9p†Z �0 ¡ 138

� ¡ 138

� Ś0

¡1

" #)

…20†
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5 NUMERICAL SOLUTION

These equations are solved numerically using a ®nite
diVerence method. The combination of a non-New-

tonian formulation and load cases where the maximum

contact pressure is limited by the elastic limit of bronze

leads to a relatively soft EHL problem, and a simple

forward iterative method has been used to obtain solu-

tions. The model is not limited to such lightly loaded

cases and has also been applied in isothermal form to
extremely heavily loaded point contacts, as encountered

in traction drives, and outlined by Holmes [20] using a

new fully coupled point contact solution approach based

on the diVerential de¯ection method of Evans and
Hughes [21].

In the present work, thermal equation (18) is solved

by rearranging the terms to the form

@

@x
k

@�

@x

� ´
‡ @

@y
k

@�

@y

� ´
‡ k

@2�

@z2

¡ �c U
@�

@x
‡ V

@�

@y

� ´
‡ " U

@p

@x
‡ V

@p

@y

� ´
�

ˆ ¡½x
@U

@z
¡ ½y

@V

@z
…21†

In solving equation (21) numerically, the ®lm is parti-

tioned into nf cross-®lm node points. The right-hand

side and the velocity and pressure gradient dependent

coeYcients in the terms in � and its derivatives are
evaluated at each cross-®lm node point using the outer

loop values of these parameters. The conductive deri-

vative terms are expressed in central diVerence form,

and backward or forward diVerences are used for the

convective terms according to the sign of the ¯uid
velocity components at each mesh point and level. The

current values of the surface temperatures are regarded

as boundary conditions, and thus there are nf ¡ 2

equations at the nf ¡ 2 cross-®lm node point tempera-

tures at each …x; y† position. The temperature values at
other …x; y† positions are taken as their current

approximation (outer loop) values. Thus, at each …x; y†
position there are nf ¡ 2 equations in nf ¡ 2 unknowns.

These equations are solved with a tridiagonal solver to

produce a new cross-®lm temperature ®eld. Tempera-

ture value boundary conditions are imposed at the
boundary at all z values where oil is ¯owing into the

computing region. The equation is not solved on the

boundary but at points adjacent to the boundary. At the

boundary positions for z values where the oil is ¯owing

out of the computing region, the treatment of the con-
vective terms ensures that no boundary condition is

imposed through these terms. The second-order con-

ductive terms require a boundary condition to be

imposed, and for out¯owing lubricant this is achieved

by specifying that there is no conductive heat ¯ux out of
the computing region.

To complete the temperature calculation, the tem-

perature gradient, @�=@z, is evaluated at the solid liquid
interfaces and used to give the term q so that each of the

surface temperatures may be recalculated from equation

(19). For each point on the surface the integral of

equation (19) is evaluated taking account of the locus of

the surface point in reaching its current position so that

the time integral is converted into a spatial integral over
a curved path determined by the motion of the com-

ponent relative to the instantaneous contact point. The

reference surface temperature, �ref, of each body is spe-

ci®ed independently to be the bulk temperature value for

the component. In this way, each of the two solid bodies
is assumed to enter the computing region at the speci®ed

(possibly diVerent) bulk temperature for that compo-

nent, and thus the thermal model allows the appropriate

surface ¯ash temperatures to be calculated. In practice,

the bulk temperature of the steel worm may well be 15 K
higher than that of the bronze wheel.

This sequence of thermal calculations is carried out

once for each cycle of the EHL convergence process.

The interface temperature gradients and cross-®lm

temperature distribution are found to stabilize quickly

and converge reliably. The overall solution is obtained
when the pressure, ®lm thickness and temperature ®elds

converge, with the constant h0 in the ®lm thickness

equation adjusted to obtain the required load.

6 RESULTS OF A TYPICAL CALCULATION

The results of the analysis methods for one particular

worm gear combination are presented at a point mid-

way through the meshing cycle. The worm design under

consideration is a three-start 59:3 ratio set with the
design variables given in Table 1. The operating condi-

tions and elastic, rheological and thermal properties

used are given in Table 2. Where properties are taken to

be temperature or pressure dependent, the expressions

used are given in the Appendix. The lubricant modelled
is a 460 ISO viscosity-grade polyglycol synthetic gear oil

used for worm gears and in an associated experimental

project. Lubricant parameter Z in equation (20) was

determined by measuring ®lm thickness in an optical

interference rig in pure rolling conditions over a range of

temperatures and adjusting Z in the numerical model to
achieve the same ®lm/speed characteristic; S0 was

determined by measuring the viscosity as a function of

temperature. Guidance in specifying these and other

lubricant parameters and their possible dependence on

pressure or temperature was taken from Larsson et al.
[22]. The component velocities are such that the Peclet

number ‰U�ca=…2k†Š for the worm is approximately

1000, and that for the wheel is approximately 5, so that

the assumption of linear heat ¯ow leading to equation

(19) is justi®ed. A more detailed thermal analysis that
also includes conduction in the solids parallel to the ®lm
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con®rms that the use of equation (19) has no signi®cant

eVect on the results presented. Comparisons of results
such as those shown in this paper over entire meshing

sequences and between diVerent single and multistart ZI

designs are presented in references [23] and [24].

Figure 6 illustrates the undeformed contact contours

shown against the outline of the wheel tooth in the tan-

gent plane. The contours can be seen to be asymmetric
and have aspect ratios of approximately 6. (The stepped

nature of the contours at some of the boundaries is a

consequence of specifying large values of the gap outside

the region where both teeth are present. All contours that

reach tooth boundaries are open contours.) Figure 7
shows the dry contact solution for the same case at a load

of 14 kN which gives a maximum contact stress of

540MPa, corresponding to a typical limit of allowable

contact stress for the bronze component. The degree of

asymmetry apparent in the undeformed contours is
somewhat reduced in the deformed contours and the

aspect ratio of the contact area is approximately 10. The

radii of relative curvature at the contact point are 3.046 m

and 95.4 mm so that Hertzian contact theory would

predict an elliptic contact of 21.5mm by 2.3 mm. The

contact illustrated in Fig. 7 has major and minor
dimensions of 23.2 and 2.4 mm respectively, so that it is 8

per cent longer and 3 per cent wider than the Hertz

contact. The pressure distribution corresponding to the

dry contact of Fig. 7 is illustrated in Fig. 8.

The inclusion of lubricant in the contact and sub-
sequent EHL analysis gives rise to the results illustrated

in Figs 9 to 14. Figure 9 shows the EHL pressure dis-

tribution which can be seen to diVer from the dry con-

tact case, although it is clear that the contact is heavily

loaded in EHL terms with very little eVective pressure
distribution outside the dry contact area. This is con-

®rmed by the pressure contours shown in Fig. 10 toge-

ther with the dry contact area. It is seen that the

100MPa contour is just inside the dry contact area and

that little signi®cant lubricant pressure is developed

outside the contact area, con®rming the heavily loaded
nature of the elastohydrodynamic contact. An unex-

pected shoulder feature is seen in the pressure distribu-

tion to the top right of Fig. 9. There is no corresponding

Table 1 Worm/wheel design parameters

Number of worm threads 3
Worm tip radius (mm) 48.01
Worm root radius (mm) 29.03
Worm base radius (mm) 26.23
Worm axial pitch (mm) 28.73
Worm lead (mm) 86.18
Worm base lead angle (deg) 27.61
Number of wheel teeth 59
Wheel face width (mm) 60.33
Wheel tip radius (mm) 278.61
Wheel throat radius (mm) 274.03
Hob tip radius (mm) 51.63
Hob root radius (mm) 31.58
Hob base radius (mm) 26.48
Hob lead (mm) 85.97
Hob axial pitch (mm) 28.66
Hob base lead angle (deg) 27.33
Hob/wheel centre distance (mm) 305.62
Worm/wheel centre distance (mm) 304.8

Table 2 Worm/wheel operating conditions, material

properties and lubricant properties

Operating conditions
Worm input speed (r/min) 1500
Assumed tooth normal load (N) 14000
Maximum contact pressure (MPa) 540

Material properties
Worm Wheel

Modulus of elasticity (GPa) 207 120
Poisson’s ratio 0.3 0.35
Density (kg/m3) 7900 8800
Thermal conductivity (W/m K) 47 52
Speci®c heat (J/kg K) 477 420

Lubricant properties
Inlet temperature �0 (¯C) 60
Inlet viscosity ²0 (Pa s) 0.227
Inlet density �0 (kg/m3) 1025
Lubricant parameter Z 0.227
Lubricant parameter S0 0.782
Equivalent pressure viscosity

coeYcient at 60 ¯C (GPa¡1) 9.5
Eyring shear stress ½0 (MPa) 3
Limiting shear stress ½L (MPa) 100
Thermal expansivity "0 (K¡1) 7:1 £ 10¡4

Thermal conductivity k0 (W/m K) 0.148
Speci®c heat c0 (J/kg K) 1844

Fig. 6 Undeformed contact contours (mm) obtained by polynomial ®tting of TCA data
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feature in the dry contact pressure distribution of Fig. 8,

and the location of the intersection of this pressure
shoulder with the main pressure distribution is seen to

correspond to the upper of two thin ®lm side lobes seen

in the ®lm thickness contours illustrated in Fig. 11. Two

thin ®lm side lobes are to be expected in longitudinally

entrained elliptical contacts, but in this case there is
considerable asymmetry. The upper thin ®lm area is

larger and has thinner ®lm values than the lower area. It

is also seen eVectively to cross the contact area which is

quite unexpected. The upper thin ®lm area might be

expected to have thicker ®lms than the lower one owing

to the higher values of entraining velocity at the greater
worm radius. The explanation for this unexpected fea-

ture lies in the particular kinematic conditions that are

found in worm gears. Figure 2 showed the streamlines

for the entrainment velocity produced by the motion of

the two gear components relative to the contact point.

Figure 12 shows the dry contact area of Fig. 7 to which
two particular entrainment streamlines have been

added, those that pass through the two positions A and

B indicated in the ®gure. Points A and B are the posi-

tions where the entrainment streamline is tangential to

the dry contact area (with A at the greater distance from
the worm axis than B). Point C is the extreme position

on the dry contact boundary for entrainment into the

contact from the bottom left of the ®gure, and point D is

the extreme position for entrainment over the upper

edge of the dry contact area. It is seen from comparison

with Fig. 11 that the streamlines through A and C
enclose the elongated thin ®lm area which is partly

caused by a form of self-starvation of the contact. There

are two sections of the dry contact boundary over which

lubricant is eVectively entrained into the contact, peri-

Fig. 7 Contact area and surrounding contours (mm) obtained using dry elastic contact analysis

Fig. 8 Isometric view of the pressure distribution obtained from dry contact analysis
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meter sections BC and AD. The thin ®lm area can only

be supplied with oil from an area (between the stream-

lines through C and A) that contains oil that has exited
the EHL contact area upstream. This oil supply is lim-

ited, and the thin ®lms observed are the result. Indeed, it

would seem that this upper thin ®lm area is an inherent

®lm-forming weakness for relatively high-conformity

worm contacts. The existence or otherwise of these key
positions is a kinematic consequence of the shape of the

dry contact area and its orientation to the entrainment

Fig. 9 Isometric view of the pressure distribution obtained from EHL analysis

Fig. 10 Pressure contours (MPa). The heavy curve indicates the dry contact area

Fig. 11 Film thickness contours (mm) obtained from EHL analysis
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streamlines. These factors are discussed for a range of

worm designs in Part 2 [23].

Figure 13 shows the temperature contours calculated
for the two components and for the oil at the mid-plane

…z ˆ 0† position. The worm surface sweeps from left to

right relative to the contact, and Fig. 13a shows that

there is a build-up of temperature towards the exit, as

might be expected with a maximum calculated worm
surface temperature of 108 ¯C. The wheel surface moves

much more slowly relative to the instantaneous point of

contact and in a direction which is nominally perpendi-

cular to that of the worm. As viewed in Fig. 13b, it moves

downwards as it passes through the contact, receiving

heat input, and this results in a maximum temperature of

106 ¯C as the surface exits the corresponding dry contact
area at the bottom of the ®gure. The predominant heat

transfer mechanism within the oil in the contact area is

conduction perpendicular to the surfaces, as has been

exploited in the solution technique described in Section 6.

For the oil to transport heat by conduction, it generally
acquires a temperature that is higher than both surface

temperatures, but where the surface temperatures are

considerably diVerent the temperature of the oil may be

found not to exceed that of the hottest surface so that at

Fig. 12 Dry contact area of Fig. 7 with the key entrainment velocity superimposed

Fig. 13 Temperature contours (¯C) obtained from EHL analysis: (a) worm surface temperature; (b) wheel

tooth surface temperature; (c) oil mid-plane temperature
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those locations conduction is principally into the colder

of the two surfaces. The maximum mid-plane oil tem-
perature shown in Fig. 13c is seen to occur at a location

between the maximum temperature of the worm and that

of the wheel. The value is 117 ¯C which is a temperature

rise of 57 ¯C. The wheel surface temperature tends to

build up towards the lower part of the contact as shown,

and an important consequence of this behaviour is that
heat generated by sliding in the contact is eVectively

solid-convected back into the primary hydrodynamic

inlet of the contact by the motion of the wheel tooth,

where it contributes to ®lm thinning by reducing the

controlling inlet viscosity. This behaviour is not generally
seen in EHL contacts with linear entrainment, in which

the inlet is virtually unaVected by transient heating in the

main load-bearing region. Figure 14 shows an isometric

projection of the mid-plane oil temperature (whose

contours are shown in Fig. 13c) and clearly illustrates the
way in which oil leaves the dry contact area at the bottom

right with elevated temperatures. It is seen that no sig-

ni®cant inlet shear heating is predicted as there is no

temperature rise in the main inlet region where oil is fed

into inlet section AC.

7 CONCLUSIONS

Elastic contact simulation reveals the area of dry elastic

contact between worm gear teeth. Some signi®cant

departure from the Hertzian shape is seen.

A full elastic, non-Newtonian, thermal EHL model
has been formulated for analysis of worm gear tooth

contacts. The non-Newtonian model has been developed

to be applicable to general kinematic conditions, leading
to a new form of the Reynolds equation incorporating

cross-derivative pressure terms and ¯ow factors in the

local rolling and sliding directions. The spin component

of relative velocity between the teeth necessitates the use

of this form of the Reynolds equation, and the high

degree of sliding requires full consideration of shear
thinning, limiting shear stress and thermal eVects.

Application of the methods to a typical worm contact

indicates that the conditions are heavily loaded in the

elastohydrodynamic sense. Some subtle features of

lubrication under these conditions are revealed. The
EHL contact can eVectively become separated into two

parts, with the boundary between them a narrow region

of poor ®lm formation. Signi®cant heating of the sur-

faces on account of lubricant shear takes place, and

unfavourable solid convection of heat into the primary
inlet to the contact reduces the eVective viscosity of the

lubricant in this crucial zone.
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Fig. 14 Isometric view of the oil mid-plane temperature distribution from EHL analysis
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APPENDIX

Lubricant properties assumed in the analysis

Lubricant properties are pressure and/or temperature
dependent according to the following formulae (sub-

script 0 represents the value at zero pressure and refer-

ence temperature �0†:

�…p; �†
�0

ˆ 1 ‡ D1p

1 ‡ D2p

� ´
1 ¡ "…� ¡ �0†‰ Š

where

D1 ˆ 0:67 GPa¡1 and D2 ˆ 2:68 GPa¡1

" ˆ "0 e¡¶p where ¶ ˆ 1:5 GPa¡1

k ˆ k0 1 ‡ C1p

1 ‡ C2p

� ´

where

C1 ˆ 1:56 GPa¡1 and C2 ˆ 0:61 GPa¡1

c…p; T † ˆ �0

�
c0 1 ‡ b0 1 ‡ b1p ‡ b2p

2
¡ ¢

� ¡ �0… †£ ¤

£ 1 ‡ K1p

1 ‡ K2p

� ´

where

b0 ˆ 3:4 £10¡4; b1 ˆ3:3 GPa¡1; b2 ˆ¡2:3 GPa¡2

K1 ˆ 0:5 GPa¡1 and K2 ˆ 0:51 GPa¡1
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