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ABSTRACT 

There is a profound difference in low-level vision between the retinal centre and the 

periphery (cpd). That contrast sensitivity declines from centre to the periphery is well 

established in humans. However, recently TMS on FEF was found to remotely affect visual 

cortex such that the cpd was reduced. No direct connections between FEF and occipital visual 

areas are known, but connections between FEF, the pulvinar and the occipital visual areas 

exist. I examined the cpd pattern in contrast sensitivity after real lesions in FEF and pulvinar 

areas by estimating visual thresholds. The results showed that real lesions of FEF do not have 

the same effect as TMS and are consistent with TMS causing subthreshold activation 

mimicking covert visuospatial attention. The cpd pattern in contrast sensitivity was different 

between FEF and pulvinar patients. Differences were prominent for foveal processing, while 

peripheral processing revealed parallel deficits, although these did not reach significance. In 

the second part of this work I focused on manual visuo-motor processes that have been found 

to differ between centrally and peripherally presented subliminal primes. For the periphery, 

when invisible primes are compatible with targets in their motor associations, RT‟s to targets 

speed up. However, for foveal primes, priming costs (negative compatibility effects (NCE)) 

can occur with compatible primes and targets. I examined the impact of perceptual sensitivity 

decline for the absence of NCE in the periphery by equating primes‟ strength via contrast 

threshold measurements. The results showed that perceptual equation does not equate 

priming effects. The critical factor, to trigger visuo-motor processes in periphery was found 

to be the prolonged time of the mask-target interval (SOA). This indicates that the 

functionally distinct retinal areas can both trigger visuo-motor processes, which are 

independent from visibility equation. 
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CHAPTER 1  

SCIENTIFIC BACKGROUND 

1.1 Summary and Rationale  

1.1.1 Summary of Chapter 1  

The introduction begins with a brief overview of the rationale motivating this thesis, and then 

provides an overview of the main background topics needed to underpin the experimental 

chapters. The visual processing system, theories and models of top-down control and 

visuospatial attention are described, followed by a detailed description of brain areas 

involved. Chapters 2-5 of the thesis focus on the FEF and the pulvinar, and these are 

introduced in detail here. Following this, some relevant methodological issues are introduced 

between patient and TMS studies. The second part of the introduction focuses on centre-

periphery difference in sensorimotor priming (cpdp), providing the essential background to 

Chapters 6 and 7.  

1.1.2 Summary of Experimental Chapters  

The experimental work presented here investigates how the decrease in perceptual sensitivity 

which is shown with increasing retinotopic eccentricity in humans links with top-down 

control of visuospatial processes and what its impact is on visuo-motor control processes. In 

the first part of the thesis the impact of top-down control of covert visuospatial attention on 

cpd in vision is examined. In the second part the impact of cpd in vision on automatic control 

mechanisms in sensorimotor processes is of interest. Previously it has been reported that 

transcranial magnetic stimulation (TMS) of the FEF modulates the retinal perceptual 

sensitivity drop from foveal to peripheral regions. Chapters 2-5 focus on two brain areas, the 

frontal eye fields (FEF) and the pulvinar, and assess the impact of damage to these areas on 

the centre-periphery differences in contrast sensitivity. Chapter 2 validates the experimental 

paradigm chosen to test centre-periphery difference in perceptual sensitivity to contrast (cpd). 

Chapter 3 shows that the cpd in contrast perception after real chronic right FEF lesions was 

not equivalent to the cpd pattern reported after transient right FEF TMS but mirrors 

oculomotor findings in FEF patients in previous studies. Chapter 4 investigates patients with 

pulvinar lesions as this thalamic nucleus is a hub for cortico-cortical connections and it is 
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known to be retinotopically organised in monkeys and involved in visuospatial processing 

and control in humans and therefore it is considered likely to pass the FEF signals which 

modulate visual processing in the occipital cortex. The results indicate involvement of the 

pulvinar in visuospatial processing, which might act as an amplifier of visuospatial signals 

from FEF. The data supports previously found fixation changes with pulvinar damage, 

however no clear contralesional effects for periphery were found in the second group 

analysis. Finally, Chapter 5 examines the proposal that FEF TMS changes cpd in contrast 

sensitivity due to top-down control of attentional shifts. The data suggest that both brain areas 

are specifically involved in visuospatial top-down attention, with possibly complementary 

mechanisms in fovea but parallel in periphery. Chapters 6-7 examine a previously reported 

asymmetry between fovea and periphery in visuo-motor (sensorimotor) priming effects and 

whether equating for the perceptual sensitivity drop could account for the lack of motor 

inhibition with peripheral primes. Chapter 6 shows that perceptual sensitivity loss alone 

cannot account for the lack of motor inhibitory processes in periphery and that attentional 

manipulation does not have any impact on that. Experiments in Chapter 7 suggest that the 

“time window” for eliciting motor inhibition processes in the periphery differs from that for 

foveal stimuli. This suggests dissociation between the perceptual strength and sensorimotor 

strength of a stimulus and indicates that the separation between visual and motor processing 

can be fused into a module or concept of visuo-motor representation, which is partially 

independent and equally accessible from fovea and periphery when certain sensorimotor 

criteria are met.  

1.1.3 Rationale  

The first part of the thesis is motivated by previous findings in humans that non-invasive 

transcranial magnetic stimulation (TMS) of the Frontal Eye Fields (FEF) directly modulates 

visual processing in occipital brain areas and increases peripheral contrast sensitivity 

relatively to that of the fovea (Ruff et al., 2006). Such modulation appears to be in line with 

psychophysical and behavioural studies in humans which have shown that processing of 

visual information can be enhanced by covertly directed attention to a location in the visual 

field (Posner et al., 1980; Hawkins et al., 1990; Muller and Humphreys, 1991; Handy at al., 

1996; Carassco et al., 2000; Humphreys et al., 2004). However, there is more than one way in 

which TMS may have influenced the FEF, and therefore, converging evidence is provided in 
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this work by examination of cpd in contrast processing after lesions of FEF in brain injured 

patients.  

Secondly, the FEF TMS results are surprising because no long-range connections between 

FEF and the occipital areas are known. However, a grey matter nucleus of the subcortical 

thalamus, the pulvinar, is well known to facilitate cortico-cortical processing having strong 

connections to both the FEF in the frontal lobe and visual areas in the occipital lobe. Both, the 

FEF in humans (Hagler and Sereno et al., 2006; Saygin and Sereno, 2008, Kastner et al., 

2007) and the pulvinar in monkeys (Shipp, 2003) have been found to be retinotopically 

organised and both are known to be involved in visuospatial attention. This implies their 

involvement in visual functions and suggests likely functional links to cpd in vision. 

Therefore pulvinar patients are tested here in the same tasks as patients with FEF lesions. 

Thirdly, to investigate if the top-down visuospatial attention is the neural mechanism 

underlying the FEF TMS effect on cpd in vision, patients with FEF and pulvinar lesions were 

tested in top-down and bottom-up controlled visuospatial attention.  

The second part of the thesis is concerned with previously reported cpd in sensorimotor 

processes found using manual motor responses following subliminally (below a conscious 

visibility threshold) presented visual stimuli or primes. Either facilitation or inhibition can be 

evoked (DeJong et al., 1990; 1995), and this was found to differ when initiated by primes in 

the center or in the periphery (Schlaghecken and Eimer, 1999). The main hypothesis for this 

difference is the cpd in visual sensitivity (Lingnau and Vorberg, 2005), and that hypothesis is 

tested here.  

Figure 1 illustrates a framework for the topics to be studied in this thesis. It is proposed that 

visuo-motor systems have evolved for different kinds of behavior as relatively independent 

functional modules (Goodale, 1996; Milner and Goodale, 2006). However, in humans, visuo-

motor processes need to be processed in flexible circuits. Thus, control circuits developed, to 

meet the demands of complex human-environment interactions (Goodale and Milner, 1992; 

Goodale 1993; Goodale and Humphrey, 1998; Goodale, 2001; Goodale et al., 2004; Goodale 

et al., 2005; Goodale, 2008; Sumner et al., 2008). Control is achieved in a variety of ways, 

including top-down processes of attention, but also automatic and unconscious mechanisms 

such as saliency maps, which provide a basis for stimulus-driven attentional and oculomotor 

shifts, and subliminal inhibition, as studied with sensorimotor priming. These topics will be 

introduced in the sections below. The perceptual sensitivity drop in the retina is well 
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established and precisely measured in humans. The psychophysical methods to measure cpd 

are one of the most reliable, accurate and objective among non-invasive methods in human 

experimental neuroscience. Therefore same measurement methods are applied to investigate 

both the cpd in patients with FEF and pulvinar lesions and sensorimotor processes in healthy 

participants.  

 

 

 

 

    Neural  

          Inhibition/Facilitation 

 

 

Figure.1. Illustration of the relationships to be studied in this thesis. Separate but interconnected 

visuo-motor circuits (cognitive top-down and automatic sensorimotor systems) which influence and 

are influenced by the fundamental differences in visual processing between center and periphery. 

SMA: Supplementary Motor Area. 

1.4 Vision from Bottom-up Perspective 

     1.4.1 Two Cortical Visual Systems  

Our perceptual experience and behavior seems unified in time and space. However, a wealth 

of research indicates that neural processing of visual input does not happen cohesively. 

Visual input can be processed independently and in parallel as early as its entrance through 

the retina of the eye. The first evidence for separated pathways of visual processing emerged 

with observations of brain injured patients at the beginning of the 20
th
 century and converged 

to establish models of visual processing (Ungerleider and Mishkin, 1989; Milner and 

Goodale, 1992, 2006, 2008) which influenced the understanding of brain processes 

profoundly. In the following decades, supportive evidence has been gathered for two main 
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concepts which dominate the view at present: functional specialization and anatomical 

segregation of brain processing,  

      1.4.1.2 Dorsal and Ventral Pathway  

In 1969 Schneider postulated an anatomical separation in visual coding of the location of a 

stimulus and the identification of a stimulus. This distinction between object identification 

and spatial localization, i.e. between the what pathway and the where pathway of visual input, 

has been adapted by later models of visual processing. The model of visual processing by 

Ungerleider and Mishkin, 1982 postulates, that the visual input as arriving in the striate 

cortex can be divided into two major streams: the ventral stream projecting up to the 

inferotemporal cortex and the dorsal stream projecting to the posterior parietal cortex (Fig.2). 

This model was based on studies in monkeys (Milner et al., 1977). In humans, the emphasis 

shifted from „what and where‟ to „what and how‟; in other words, vision for perception and 

vision for action (Milner andoodale, 1992). This model will be discussed in more detail in 

later sections.  

 

 

 

 

 

 

Figure 2. The major routes of visual input into the dorsal and ventral streams in the monkey 

brain. The diagram of the macaque brain on the right of the figure shows the approximate routes of the 

cortico-cortical projections from the primary visual cortex to the posterior parietal and the 

inferotemporal cortex, respectively. LGNd: laterale geniculate nucleus, pars dorsalis; Pulv: pulvinar; 

SC: superior colliculus. (Ungerleider and Mishkin (1982)). As the visual input enters the retina it can 

be passed via superior colliculus and via lateral geniculate nucleus (LGN). The SC projects on to the 

pulvinar which then projects to the parietal cortex. The LGN projects to the primary visual cortex 

which then can project to the posterior parietal cortex (dorsal stream) and to the infero-temporal cortex 

(ventral stream).   
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1.4.1.3 Functional Organization  

The modular organization of the visual system in functionally separate areas is a fundamental 

principle established in monkey since the 1970‟s (Zeki, 1973, 1976; 1978; Wiesel and Hubel, 

1974). Later it was shown that the human visual cortex in the occipital lobe has also a 

modular organization, i.e. the visual cortex is divided anatomically into several different 

functional areas (or functional modules), which specialize in processing different features of 

visual input (colour, motion, contrast, orientation) (Zeki et al., 1991) (Fig.3). 

 

 

 

 

 

 

 

Figure 3. Medial (a) and lateral (b) view on human brain showing modular and functional 

organization in human visual cortex (occipital lobe). Functionally different areas are indicated by 

different colours. (Vision of the Brain, Zeki, 1999).  

 

1.4.1.4 Hierarchical Organization  

Hierarchical processing from simple visual features (contrast or orientation) to more complex 

visual percepts (motion, faces) has been revealed as another important principle in visual 

processing and it also defines the functional specialization of the visual areas (Fig.4). The V1 

striate area of the occipital lobe has been found to process simple visual features such as 

orientation, colour and contrast (Wiesel and Hubel, 1974; Zeki, 1978, 1983, 1993). Area V2, 

which is a part of the extrastriate cortex, receives input from V1. The other visual areas 

include areas V3 and V3A, known for processing dynamic form (Hubel and Wiesel, 1965); 

Area V4, the colour processing area (Zeki, 1978); and Area V5, located in the middle 
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temporal sulcus, also referred to as MT, is involved in processing information about motion 

(Allman et al., 1973). 

                                                                                            

 

 

 

 

 

 

 

Figure 4. Visual processing in the human brain. Visual Pathways (Birbaumer N., Schmidt R. (1997) 

modified), areas in red: frontal areas involved in visuospatial and visual memory processing, blue: 

parietal areas and higher order visual areas, dark yellow: V2, orange: V1.  

 

The functional specialization of visual areas in the occipital lobe has been continuously 

extended into areas like V6, V8, KO (kineto-occipital) and LO (lateral occipital) (Zeki et al., 

2003). Further, areas in the frontal lobe, such as the Frontal Eye Fields (FEF) were identified 

which were linked with visual, visuospatial attention and oculomotor processes. The FEF 

have been suggested to be linked to the dorsal pathway of visual processing.  

1.4.1. Centre-Periphery Difference in Visual Processing  

Spatial Organization of Visual Input  

The functional specialization of the two pathways for visual processing constitutes a 

fundamental entity of the visual system and starts immediately at the beginning of the visual 

processing in the retina. After the emergence of the two-pathway model by Ungerleider and 
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Mishkin in 1982 the division in two pathways has been found to begin at the very retinal level 

with two main cytological subdivisions of the retinal ganglion cells, which terminate different 

layers of the lateral geniculate nucleus (LGN) (Hubel and Livingstone, 1988). As a first 

approximation, most cells in the foveal area have been found to terminate in the parvocellular 

layers, and these go on to form the key innervations to the ventral stream. Cells from the 

periphery of the retina mainly terminate in the magnocellular layers in LGN, and produce the 

major input to the dorsal stream. In sum both ganglion cells, and receptor types and their 

respective numbers, all differ substantially between the fovea and the periphery of the retina. 

Accordingly, the organization of visual areas and the amount of neurons dedicated to 

different kinds of processing of visual input differ substantially for fovea and the periphery. 

This has fundamental implications on how stimuli displayed in the fovea or in the periphery 

are processed and responded to.  

      Retinotopic Organization of Visual Input  

Numerous studies suggest that the most coherent image information within the visual system 

is its spatial organization in the form of visual field maps. “Without this element any realistic 

chance of reconstructing the original visual image would be lost” (Wandell et al., 2007). In 

monkeys and in humans, the neurons in lower visual areas (e.g., V1 through V5) were shown 

to be organized in the form of retinotopic maps (Sereno et al., 1995). Neurons in those areas 

form a 2D representation of the visual image displayed on the retina in such a way that 

neighboring regions in the visual cortex correspondingly represented neighboring regions in 

the retina. Thus, the regions of visual cortex, despite their functional specialization, preserve 

the visual field map so that the spatial relations of the visual inputs on the retina do not 

change during visual processing.  

     Cortical Magnification of Visual Input  

However, it has been found that the passing of spatial organization can be nonetheless 

distorted in visual areas in many ways. Most importantly, there are profound differences 

between the cortical spaces that retinotopically map fovea and peripheral parts of the visual 

field (Wiesel and Hubel, 1974; VanEssen et al., 1984). As Fig.5 illustrates, it has been shown, 

both in monkeys and in post-mortem studies in humans, that the visual system allocates 

proportionally more grey matter to the fovea than to the periphery (Oesterberg, 1935; Curcio 

et al., 1989, 1989).  
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Figure 5. Illustration of Cortical Magnification of Central vs. Peripheral Parts of the Retina in 

V1 Cortex. (a) visual hemifield (half of retinal image) (b) space in the primary visual cortex dedicated 

to foveal and peripheral processing (c) lateral view of human brain with visual cortex in the occipital 

lobe. Eccentricity is shown in visual angle in degrees from 0 (fovea) to 90 degree visual field 

(periphery) labeled in colours from red to blue (adapted from the website of Prof. Gegenfuhrter 

Laboratory, Goetingen, Germany).  

 

The “cortical magnification” was quantified in the monkey showing a linear decrease with 

retinal eccentricity. Retinal cells close to the fovea were found to project to 2-3 times more 

cortical space in V1 than a retinal cell from a peripheral locus (Talbot and Marshall, 1941; 

Daniel and Whitterige, 1961). Added to the fact that there are many more cells per unit area 

in the fovea than periphery to start with, such a difference has a profound effect on how the 

visual input is processed in the fovea in comparison to the periphery. For example, in both 

primates and in humans, visual sensitivity has been shown to drop with increasing 

eccentricity – from the very centre of the retina (fovea) to the retinal periphery (De Valois 

and Jacobs, 1968; Merigan, 1989). This has been shown in numerous psychophysical studies 

investigating contrast perception in humans (Robson and Graham 1981; Rovamo 1978; 

Rovamo and Virsu, 1979; Snowden and Hess 1990; Thibos et al., 1996; Rijsdijk et al., 1980, 

Cambell, 1980; Lie et al., 1980, Sereno et al., 1995).  

 



                                                                                                                                  Chapter 1. Scientific Background                                                                                                                                   

 21 

    1.4.1 Contrast Perception  

     1.4.1.1 Processing of Visual Contrast  

The visual system is able to compute contrasts between different colours and their hue, 

between luminance‟s of an image and can discern different objects of different texture (Zeki, 

1973). Contrast has been defined as a low-level visual feature and it is known to be processed 

mainly in the primary visual cortex (V1) and is believed to be computed through feed-

forward, feed-back and horizontal connections (Wiesel and Hubel, 1966). Without the 

property of the visual cortex to measure and compute visual contrasts no meaningful image 

would be visible to the eye.  

1.4.1.2 Measurement of Contrast Sensitivity  

Contrast sensitivity measures the ability of the visual system to discern between luminance of 

different levels in an image. Often contrast is defined as the difference between the highest 

luminance level (white) and the lowest luminance level (black). Contrast is calculated as a 

difference in luminance levels relative to mean luminance (Michelson, 1927) and can be 

estimated via visibility thresholds in visual detection or orientation discrimination tasks 

(Sharpe and Tolhurst et al., 1973; Robson and Graham, 1981; Cambel and Robson, 1968; 

Virsu and Rovamo, 1979). 

1.4.1.3 Centre-Periphery Difference in Contrast Sensitivity can be modulated 

The findings of Virsu and Rovamo, 1979 and many other studies in the late 1970s and 1980s 

found robust centre-periphery differences in visual perception and in contrast processing. 

However, more recently Ruff et al. (2006) showed in their study that visual processing of 

contrast in the periphery can be modulated remotely by Transcranial Magnetic Stimulation 

(TMS) over the Frontal Eye Fields (FEF). Ruff and colleagues (2006) reported improved 

contrast sensitivity in the periphery relative to the fovea. As a result, there was a relative 

equalization of cpd in contrast perception. This behavioural effect was consistent with an 

increase in the blood oxygen level dependent signal (BOLD response) for early visual cortex 

(V1-V4) in its peripheral parts (Ruff et al., 2006). The authors proposed that the causal 

effects of TMS on BOLD in visual brain areas and their behavioural manifestation in contrast 
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perception could reflect top-down control mechanisms in the form of covert visuospatial 

attention. These results, and the related hypothesis, formed the inspiration for the first part of 

this thesis (Chapters 2-5), and Ruff et al.s‟ study will be explained in more detail in Chapters 

2 and 3. First, the background needed is provided in sections below, including introductions 

to the concepts of top-down processes and attention, the FEF and other essential brain areas, 

and methodology of TMS. 

 

1.5 TOP-DOWN PROCESSES 
 

Early brain imaging studies have shown that “perception arises through an interaction 

between sensory [visual] input and prior knowledge” (Frith and Dolan, 1997) and “attentional 

guidance represents prior knowledge on visual input” (Driver and Frackowiak 2001). 

Anticipation and expectancy of a visual feature or of its spatial position in the visual field 

have been reported to lead to faster and more accurate detection of visual targets (Posner, 

1980, Posner et al., 1980a,b, 1982). Fig.6a. also demonstrates this and the dilemma to 

understand the stage at which top-down processes control the visual input towards 

meaningful visual precepts. 

The early view on visual perception is based on early cognitive models and theories of visual 

processing in the brain, which assume that visual perception can be controlled in two ways 

via a) bottom up visual input and via b) top-down higher cognitive processes such as 

anticipation, expectation and knowledge of a visual image to emerge. Bottom-up driven 

visual input has been outlined in previous paragraphs (Ungerleider and Mishkin, 1982), while 

the top-down processes originally were believed to influence vision in the late stages of 

visual processing. However several studies (including Ruff et al., 2006) now suggest that top-

down processes can influence vision at stages as early as contrast processing in V1-V4.  

The definition of top-down processes is an umbrella term for a variety of higher cognitive 

functions. Intention, memory, prior experience or knowledge and attention have been 

suggested to play an important role in top-down anticipatory control and have been linked 

with conscious voluntary commands which selectively direct perception of and action to 

relevant aspects of the environment (Norman and Shallice, 1986; Milner, 2004).  
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Figure 6. Examples for top-down and attentional influence in visual processing. Higher order 

cognitive processes such as prior knowledge and expectation (or anticipation) can guide attention and 

eye movements towards the relevant aspect of the image. (a) Dalmatiner in landscape; the figure of the 

dog emerges only if the observer expects a dog, without the modulation of expectation (via verbal 

instruction or a cue) the picture remains a homogenous abstract pattern. (b) Ambivalent triangle or 

impossible figure: overt attention and eye movements to the right lower or left upper corner of the 

triangle changes the perspective of the figure in 3-D space (vertical or horizontal) (Zimbardo and 

Gerrig, 1997).  

 

     1.5.1 Attention  

 

1.5.1.1 What is Attention? 

 

Three fundamental aspects of attention have been proposed: selection, awareness and control 

(Baddley and Weisskrantz, 1993). All theories and models are based on these concepts (Lavie 

and Tsal, 1994; Driver, 2001; Chuan and Wolfe 2001; Ruff et al., 2006). Attention is also 

often understood in the form of neural processing capacity, which can be controlled via top-

down voluntary conscious mechanisms. However attention can also be engaged 

subconsciously and involuntarily, as explained further below. 

 

1.5.1.2 Forms of Attentional Selection 

 

The selective nature of attention is based on the idea that there is a limited capacity of 

processing resources in the brain (Broadbent, 1957; Desimone and Duncan, 1995). The 

bottleneck or filter model of attention is the earliest one (Broadbent, 1957) and it is based on 

this assumption. Although selective allocation of attention is one of the key mechanisms in 
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top-down control of visual processing there are ongoing debates on how these processes are 

integrated. 

 

One form of attentional selection is voluntary, which usually is defined as a top-down or 

endogenous process. Endogenous control of attention is for instance a result of external or 

internal instruction on a conscious perceptual level (Hophinger et al., 2000). The other form 

of attentional selection has been suggested to be of automatic origins and is often referred to 

as exogenous, bottom-up or stimulus-driven attention, or „attentional capture‟. In exogenous 

selection, attention is “caught” automatically from the periphery without conscious 

interference (Chastian and Cheal, 2001). Posner (1980) stressed that attention is a selective 

process, having a limited capacity, and that it is related to both reactive/ reflexive (stimulus-

driven) and voluntary (top-down directed) processes, and it is associated with both inhibitory 

and facilitating effects. 

 

1.5.1.3 How does Selective Attention in Vision work? 

 
 Attention seems a flexible cortical mechanism, which can act, independently from retinal 

sensitivity loss in the form of a supermodal control mechanism (Goodale and Milner, 

2010a,b). Attention seems to enhance both foveal and peripheral processing. With attention 

less contrast seems necessary to attain the same response level in visual cortex, in the 

periphery and in the fovea (Kastner et al., 1999; Avidan et al., 2002, Hopfinger et al., 2000, 

Brefczynski and DeYoe, 1999; Tootell et al., 1998; Carrasco et al., 2001, 2006).  

 

Kundsen, 2007 developed a model, which incorporates top-down processes into functions 

involved in selective attention. Although Kundsen speaks generally about a model of 

attention, it also applies to visuospatial attention. The model illustrates top-down sensitivity 

control in the form of higher cognitive processes, which regulate signal intensity in the 

information channels that compete for access to working memory (Egeth and Yantis, 1997). 

Top-down signals from working memory, decision making processes, competitive selection 

mechanisms and bottom-up saliency filters control visual sensitivity and regulate the location 

in the visual field to which attentional resources can be directed. 
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Figure 7. Model of functional components in visuospatial attention. Voluntary attention involves 

working memory, top-down sensitivity control, and competitive selection operating as a recurrent loop 

(dark arrows). In red are highlighted the processes that contribute to attention. Note that neural 

representations can exist in the form of sensory, motor, internal state and stored memory inputs. Neural 

representation in the form of visuo-motor links will play an important role in understanding 

sensorimotor processes in the second part of this work (Kundsen, 2007). 

 

Importantly, Kundsen suggests a close interplay between top-down signals and the bottom-up 

saliency of infrequent stimuli and stimuli of instinctive and learned biological relevance 

(Koch and Ullman, 1985) which automatically evoke strong neural responses and which 

compete in the selective process (Itti and Koch, 2001). In fact it is known that stimulus-driven 

attention can override any top-down action programs in working memory (Miller and 

D‟Esposito, 2005). Accordingly, the function of selective visual attention has been proposed 

to rely on perceptual salience (physical strength + perceptual strength) of a stimulus and its 

behavioural salience (behavioural relevance) within the goals of behaviour in progress 

(Desimone and Duncan, 1995). 
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1.5.1.4 The “Spotlight” Theories of Visuospatial Attention  

 

William James (1890) described attention as having a focus, a margin and a fringe, which 

inspired David LaBerge (1983) to use the term “spotlight” when referring to attention. The 

focus of the spotlight has been proposed to be surrounded by fringe of attention which 

extracts information at low-resolution, which has its cut-off at a specific area called margin 

(Fig.7). Information inside the spotlight is thought to be processed quicker and with greater 

efficiency than information outside the spotlight (Luck et al., 1997). Thus, a detailed analysis 

of a whole visual scene requires a mechanism for selecting and shifting the focus of attention 

from one relevant location to another. However, what moves the spotlight to align with 

behavioural goals remains unresolved to date.  

 

In the same tradition stands the zoom lens model (Eriksen and James, 1983). It proposes that 

any change in size of the attentional focus can be described by a trade-off between size of 

focus and the efficiency of processing. This model is based on limited processing resources 

(Broadbent, 1957; Desimone and Duncan, 1995) and assumes that the larger the visual area in 

focus of attention the slower processing will be of that region. Although it has been suggested 

that the focus of attention can subtend a minimum of 1 degree of visual angle (Eriksen and 

Hoffman, 1973), its maximum extent is unknown to date and certainly will be subjected to 

situational and individual variances.  

 

Psychophysical studies have shown that an attentional gradient across the visual field exists 

based on the distance from the locus of a cue (Shulman et al., 1985; Downing and Pinker, 

1985). Response latency to luminance-onset targets have been shown to increase 

monotonically with increasing target distance from the cued visual field location as tested in 

both endogenous and exogenous attentional manipulations (Shulman et al., 1985; Downing 

and Pinker, 1985; Handy at al., 1996, 2005). 

 

1.5.1.5 Overt Attention versus Covert Attention  

 

In 1980 Posner established that “attention can be allocated covertly, without eye 

movements”. The increase of attentional focus and visual processing through the retinal fovea 

is usually referred to as overt attention and is interconnected and confounded with eye 

movements and ocular fixation. On the contrary, covert attention is considered to be 
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employed to monitor the environment without direct gaze and to prioritize the processing of 

some locations of the visual scene at the expense of others (Desimone and Duncan, 1995). 

Thus, peripheral visual processing can be covertly enhanced although the retinal fovea 

(highest point of visual acuity) has not been shifted towards it. 

 

Thus the “spotlight” has been linked with increased perceptual sensitivity to the area of 

attention in the visual field (Treisman and Glade, 1980; Brefczynski and DeYoe, 1999). Fig.7 

illustrates the spotlight metaphor and how this could overlap with cpd in perceptual 

sensitivity. Wherever the attentional focus is shifted, there is a relative enhancement of acuity 

and sensitivity In other words, processing becomes more fovea-like, and the fringe and 

margin of the attentional spotlight seems to match peripheral blurred vision. Until Posner 

(1980) established that attention could be shifted without eye movements, the two concepts of 

attention and perceptual sensitivity were not well distinguished. “Although there are a 

number of empirical approaches to the study of detection, most have not clearly separated 

between attentional factors and sensory factors and are thus incapable of providing an 

analysis of the relationship between the two''.  

 

 

 

 

 

 

 

 

 

 

Figure 8. Spotlight model of visual attention. The attentional spotlight and visual sensitivity is 

highest centrally and horizontally at null of y-axis as the picture indicates. The spotlight is of highest 

sensitivity in the centre usually where the fovea focuses on (retinal center), the blurry part of the 

attentional spot is the fringe, and it collides spatially with peripheral decrease of perceptual sensitivity 

when attention remains on the retinal center.  

 

The ability to shift attention across visual space covertly can be understood as a cortical 

mechanism, which enhances neural processing directly in the cortex, and should be 

distinguished from the somewhat rigid bottom-up processing after the highest processing lens 
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(fovea) has been shifted towards a visual stimulus, which has been originally displayed in the 

periphery. This proposal seems to be supported by studies in monkeys and in humans, which 

reported activity in visual cortex when attention was covertly directed to a corresponding part 

of the visual field, even in the absence of visual stimulation (Hopfinger et al., 2000; Moore 

and Armstrong, 2003; Kastner et al., 1999, 2000, 2004; Kastner and Pinsk, 2004).  

 

However, even though attention can be shifted covertly, eye movements and attention are 

thought to be strongly related. In monkey, Rizzolatti et al., 1987 have shown that action 

(oculomotor shifts) and attention are not necessarily different control mechanisms. Low 

current microstimulation in monkeys increased sensitivity to locations corresponding to the 

stimulated movement fields of FEF without evoking eye movements. This has been 

interpreted as the correlate of covert attention (Cavanaugh et al., 2006; Mueller and Rabbitt, 

1989; Ekstrom et al., 2008). Investigations of attentional, eye movements and manual 

responses interactions to visual peripheral targets in humans strongly suggest that there is a 

supramodal representation of attentional space for all visuomotor functions (Hodgson et al., 

1999).  

1.5.2 Neuroanatomy of Top-Down Processes  

Early studies in monkeys suggest that prefrontal cortex (PFC) could be a source of top-down 

signals necessary for maintaining sensory representations in the absence of bottom-up 

sensory input (Fuster et al., 1985; Luck et al., 1997). In humans, the first break through for 

evidence of brain areas involved in top-down control of visual processing emerged from early 

brain imaging studies. Frontal brain areas were shown to be activated for visual input 

(meaningless abstract pattern) when contrasted with visual recognition (a perceptual meaning 

was brought into the picture) (Ramachandran, 1994; Fink et al., 1996; Dolan et al., 1997). 

Depending on the visual feature attended (not only the locus in visual field), activation 

increased in specialized visual brain areas (Corbetta and Shulman, 1998; Corbetta et al., 

1998, 2000). Friston et al., 1997 elucidated one of the types of top-down mechanisms in a 

brain imaging study showing that a set of areas was more active when attention was 

compared with passive viewing. Activation in that study included right prefrontal cortex, 

premotor cortex – and within it the frontal eye fields (FEF). Also several subcortical areas, 

among them the thalamus have been activated. Additionally, brain areas involved in selective 

attention have been found to be active even before the target has been achieved or presented 
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(Driver and Frith, 2000) while their sensory activity has been confirmed to be modulated by 

attention, memory and the intention to act (Egeth and Yantis, 1997). More studies followed 

which confirmed that anticipatory visuospatial attention involves stimulus-independent 

changes in BOLD signals from frontal, parietal, and visual cortical regions (Corbetta and 

Shulman, 1998; Freedmann et al., 2003; Bestmann et al., 2007; Berman and Colby, 2009).   

 

     1.5.2.1. The “Source” and the “Site” of Top-down influence 

 

While the site of top-down modulation of vision is envisaged to be within the visual cortex, it 

has been long proposed that a priming, cueing or top-down signal arrives from some other 

brain regions (“source”) (Zeki et al., 1991). Classically, brain areas known to be involved in 

top-down processes such as working memory, monitoring, execution and planning have been 

localized in the prefrontal cortex (PFC) (Fig.9). The PFC is highly interconnected with all 

sensory, neo-cortical and motor systems and with a wide range of subcortical structures and 

has been divided into three subparts: anterior, dorsolateral and ventrolateral as illustrated in 

Figure 9. 

 

 

 

 

  

 

 

 

Figure 9. Illustration of human brain with its frontal cortex functional divisions in lateral view. 
The prefrontal cortex (PFC) can be divided into anterior (APFC, Brodmann area (BA) 10), dorsolateral 

(DLPFC, BA 46 and 9), ventrolateral (VLPFC, BA 44, 45 and 47) and medial (MPFC, BA 25 and 32) 

regions. BAs 11, 12 and 14 are commonly referred to as orbitofrontal cortex. (Adapted from Simons 

and Spiers, 2003, Nature Neuroscience). 
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These parts of the PFC are believed to be specific control instances monitoring and 

updating of task rules for all sensory and motor processes including attentional and 

occulomotor processes (Walker et al., 1998; Hodgson et al., 2007). Deactivation of the whole 

PFC has been reported to attenuate the activity of extrastriate neurons (beyond area V1) to a 

behaviourally relevant cue (Chafee and Goldman-Rakic, 2000), indicating involvement of 

PFC (or its sub-regions) in selective attention and in working memory. 

During attention PFC enhanced the activity of brain neocortex and subcortical areas such as 

the pulvinar, superior colliculus and the occipital areas. Lesions to the PFC in humans and in 

monkeys confirm this role (Miller and Cohen, 2001) and PFC lesions have been reported not 

to show deficits in sensory discrimination or direct motor performance (Duncan et al., 1996). 

The Dorsolateral Prefrontal Cortex (DLPFC) has been especially focussed upon. Human 

brain areas which belong to the DLPFC are the cytoarchitectally distinctive areas BA 9, BA 

46 (Brodman, 1909) (Fig.9). The DLPFC has been found to have wide back-projections on 

many brain areas and to influence their processes in a top-down manner via higher cognitive 

functions (Fuster, 1985). In brain imaging studies the DLPFC has been linked with working 

memory and attention in many visuospatial tasks (Smith et al., 1996).  

More recently, however, the search for the neural basis of top-down control has broadened. 

Other brain areas in the frontal lobe such as the Frontal Eye Fields (FEF) or subcortical areas 

such as the pulvinar have been found to be potential sources of top-down control in visual 

processing and are the key areas investigated here. 

      1.5.2.2 A Model of Brain Areas involved in Top-Down Sensitivity Control  

Kundsen, 2007, proposes a network of brain areas involved in executive control and attention 

as Fig. 10 illustrates. At the top of the hierarchy of neural processing Kundsen proposes 

prefrontal brain areas such as FEF and DLPFC. At the lower level Kundsen suggests the 

parietal cortex, in particular the lateral intraparietal area (LIP) which contains saliency maps 

and which is connected with FEF and other sensory areas. At the next lower level the model 

emphasizes a subcortical area – the superior colliculus (SC) which mediates automatic 

responses which influence attention. 
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Figure 10. Model for top-down sensitivity control (Kundesen, 2007). Blue arrows: Bias signal that 

regulate neural responsiveness. Green arrows: bottom-up information filtered for salience in the 

superior colliculus and in visual cortical areas. Top-down can bias signals from working memory 

which modulates the representations of nonspatial aspects of information. Top-down bias signals from 

working memory which also modulates the representation of information on the basis of object 

location, and which are transmitted to the posterior parietal cortex (PPC). There they are represented in 

various reference frames. Retinocentric biased signals are transmitted from working memory also to 

the FEF. Bottom-up signals arevcombined with top-down bias signals in all listed brain structures.  

 

Neural processes such as lateral inhibition, which mediate the process of competitive 

selection through contrast enhancement, are proposed in accordance with earlier literature 

(Posner, 1980). Kundsen differentiated between brain areas involved in spatial (retinotopic) 

and nonspatial processes and suggests that parietal areas are not retinotopically represented. 

However the contrary has been found just recently (Sereno et al., 2008). In the model the FEF 

has been suggested to interact directly with the posterior parietal lobe, lower visual areas in 

the occipital lobe and the superior colliculus – which in turn interact with the pulvinar 

(Logothetis et al., 2010; Berman and Wurtz, 2008, 2010, 2011). 
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However, functional and anatomical links between the pulvinar and the FEF or the pulvinar 

and the occipital areas is missing in this model entirely. This illustrates a gap in the 

understanding of how these areas interact exactly in the human brain during such processes. 

Although white-matter connections between the FEF and the pulvinar were found previously, 

and the pulvinar does show connections to the occipital areas in monkeys (Shipp et al., 2003) 

and in humans (Leh et al., 2007) no direct white-matter connections between the FEF and the 

occipital areas have been found (Felleman and Van Essen, 1991).  

 

1.6 THE FRONTAL EYE FIELDS (FEF) 

One of the key focuses of this thesis is the role of the FEF in modulating low-level visual 

processing. Ruff et al., 2006 suggested that from the FEF “..pathways exist for top-down 

modulation of visual cortex, and stimulation of these pathways can produce attention-like 

behavioral effects” (Bressler et al., 2008). Subsequent studies have shown direct links 

between top-down modulation, visual attention and FEF using brain imaging and theoretical 

causality models (Sylvester et al., 2007; Bressler et al., 2008). Today, this brain area is 

considered as a multifunctional visual area which has been found to be involved in functions 

for guiding and enhancing visual perception such as oculomotor and attentional processes. 

      

      1.6.1 Localization and Connectivity 

 

The FEF area was first determined in primates, when neural populations in the lateral frontal 

cortex were found to be active during oculomotor shifts. Connections with parietal and 

temporal brain areas and with the motion processing complex (MT+) were reported. 

However, no direct connections between FEF and visual areas in the occipital lobe are known 

to date (Shall et al, 1995; VanEssen et al., 2005) (Fig.11). The precentral sulcus (PrCeS) has 

been proposed to be the human homologue of the FEF (Paus, 1996). The relatively small 

region has been localized fronto-laterally at the junction of the superior frontal sulcus and 

precentral sulcus (BA8, BA 9) (Paus, 1996). The human FEF was found to be spatiotopically 

organized (Sereno et al., 1995; 2005) and white matter connections between FEF and other 

cortical and subcortical areas such as the pulvinar have been reported in humans recently 

(Leh et al., 2007). 
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a)                                                                      b)                                

                                                                       

 

 

 

 

 

Figure 11. FEF position and connectivity in (a) monkey (b) humans; (note that the human and 

monkey brain images are mirrored here– the occipital lobes in both are to the inner side of the figure) 

(a) FEF position and connectivity in monkey; areas involved in low-level visual processing are placed 

remotely from FEF, but the temporal (TE and TEO) and parietal areas (LIP: Lateral Inferior Parietal) 

are connected with FEF, while no FEF connections to occipital areas were found, with the exception of 

MT and MST areas (involved in motion processing) (Van Essen, 2005). (b) Areas V1-V5, KO: kinetic 

occipital, LO: lateral occipital, MT: Middle temporal motion processing area are all areas involved in 

low-level visual processing and are placed remotely from FEF, which is localized fronto-laterally in 

humans. (Ramachandran VS., Vilayanur S. (2002). Encyclopedia of the Human Brain, Vol.4). 

       

 

1.6.2 Functions 

  

The FEF in monkeys was reported to contain properties for visual and motor processing and 

to be involved in the transformation of visual processing to saccade motor commands. The 

FEF were found to contain maps of visual space in which the amplitude and direction of 

saccades were organized in retinotopic coordinates (Goldberg and Bruce, 1990). More recent 

microstimulation studies have shown subpopulations of neurons, which seem to be 

specifically related to stimulus relevance, even without impending saccades and to be 

engaged in visuospatial processing indicating an attentional role of the FEF (Schall, 1995, 

Schall et al., 2007; Thompson et al., 1997; Moore and Fallah, 2001; Thompson and Bichot, 

2005; Thompson et al., 2005). Similarly, transcranial magnetic stimulation (TMS) studies in 

humans (Schall et al., 2001; Ruff et al., 2006; Taylor et al., 2007) suggest that this originally 

believed oculomotor area is also involved in spatial attention processing and provides a basis 

for enhanced perceptual processing.  
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      1.6.2.1 Eye Movements versus Attentional Shifts  

In 1950, Penfield and Rasmussen found that stimulation of FEF did not produce visual 

precepts or phosphates but evoked saccades. However, later studies found more subtle 

perceptual effects. Schall et al., 1995 found that FEF neurons could specify a location in 

space without specifying stimulus attributes or a particular visual stimulus. Other studies 

reported a change of luminance discrimination performance during FEF stimulation (Moore 

and Fallah, 2001, 2004; Moore and Amstrong, 2003a,b; Moore et al., 2003). A brain imaging 

study of Corbetta and Shulman (1998) seems to support the view that there is no decoupling 

of attention and eye movements (Fig. 12). The same fronto-parietal network including the 

FEF has been activated during both functions. However, it has been proposed that anatomical 

integration between attention and eye movements could hold only for voluntary visual shifts 

of attention and eye movements (Corbetta, 1998; Corbetta et al., 1998; Corbetta et al., 2000; 

Shulman et al., 2010); i.e. accordingly with top-down functions of selective spatial attention. 

On the other hand, it was speculated that this could be generalized for reflexive visual 

orienting and stimulus driven attention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. Common neurophysiological basis for shifting attention and eye movements to 

peripheral targets as shown in a fMRI study (Corbetta and Shulman, 1998). FEF is activated in both 

as indicated by precentral sulcus activation (precs). During attentional shifts parietal activation in the 

right hemisphere is dominant in the intra-parietal sulcus (ips) and in the postcentral sculcus (ips_pocs).  

 

FEF activation was obtained in the same study of Corbetta and Shulman, 1998 when 

attentional shifts were performed to the periphery and contrasted with central detection. Also 
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a series of other brain imaging studies found activation of FEF when attention was directed 

covertly to peripheral stimuli (Nobre et al., 1997; Vandenberghe et al., 1997). This indicates 

that the FEF is indeed engaged in covert attentional shifts in humans during top-down 

control.  

1.6.2.2 Top-down Signals  

 

Most evidence from involvement of FEF in the distribution of top-down signals in different 

sensory modalities has been gathered by single recording studies in monkeys (Reynolds at al., 

2000; Moore et al., 2003; Thompson and Bichot, 2005; Thompson et al., 2005; Awh et al., 

2006). In humans, Corbetta et al., 2000 reported that FEF maintained the most sustained level 

of activation during a 7-sec delay, when subjects maintained attention at the peripheral cued 

location. Also a prestimulus top-down signal during expectation of a stimulus to a certain 

location was found to activate a distributed fronto-parietal network of areas including the FEF 

(Kastner and Ungerleider, 2000). Importantly, only in the FEF (and parietal area), BOLD was 

found to be modulated by the direction of attention (Corbetta et al., 2000), which suggests 

that these areas control the endogenous (top-down) allocation and maintenance of 

visuospatial attention. Based on these findings Corbetta and colleagues proposed a model of a 

regulatory system for visuospatial attention describing its neural circuits in which the FEF 

plays a crucial role (Fig.13).   

 

The model integrates two largely dissociated neural networks mediating top–down and 

bottom–up control of visuospatial processing. Importantly it suggests that the right FEF plays 

the key role in both types of attentional control (Fig.14). This also indicates that top-down 

and bottom-up attentional processes are difficult to distinguish or only partly disintegrate 

within the right FEF. The right FEF might be a crucial neural hub for any visuospatial 

processing and therefore accessible by top-down and bottom-up guided visuospatial attention.  

 

While Corbetta et al., 2000 suggest that FEF and parietal areas contribute together to 

visuospatial attention circuits in the brain; other studies provided evidence that FEF and 

parietal areas can process distinct aspects of attentional control. For instance, it has recently 

been argued that frontal areas (in particular, FEF and LPFC) may be more involved in top-

down or endogenous aspects of visual attention, whereas parietal areas may be involved in 

more bottom-up or exogenous aspects.  
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Figure 13. FEF involvement in top-down and stimulus-driven attention within the 

neuroantomical model of attentional control (Corbetta et al., 2000). The model is based on 

research results from patient studies and fMRI studies. a) Areas in blue indicate the dorsal 

frontoparietal network (FEF, IPs/SPL, interparietal sulcus/superior parietal lobule). The areas in orange 

indicate the stimulus driven ventral frontoparietal network. TPJ, temporoparietal junction (IPL/STG, 

inferior parietal lobule/superior temporal gyrus): VFC, ventral frontal cortex (IFg/MFg, inferior frontal 

gyrus/middle frontal gyrus). The areas damaged in neglect (right) better match the ventral network. b) 

Anatomical model of top-down control. The IPs-FEF network is involved in top-down control of 

visual processing (blue arrows). The TPJ-VFC network is involved in stimulus driven control (orange 

arrows). The IPs and FEF are also modulated by stimus-driven control. Connections between the TPJ 

and IPs interrupt ongoing top-down control when unattended stimuli are detected. The VFC might be 

involved in novelty detection. L: left; R: right.  

In monkeys, it was found that FEF neurons registered top-down shifts of attention with a 

shorter latency than the parietal cortex (Buschman and Miller, 2007) while, automatic shifts 

of attention to a salient stimulus showed the opposite latencies. Human TMS-fMRI studies 

(Ruff et al., 2006; 2008; 2009) seem to support that the frontal and parietal cortex may exert 

qualitatively different influences on visual cortex. Accordingly, the direction of flow of 

information has been postulated to be reversed for top-down in these areas. 

b) 
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1.6.2.3 Is Right FEF special? 

 
The classical understanding of visuospatial attention and attentional orienting came from 

clinical work in neglect and extinction patients after right parietal lesions (Heilman et al., 

1983). Accordingly, spatial selective attention is widely considered to be right hemisphere 

dominant. However, in healthy subjects early fMRI studies have reported bilateral BOLD 

responses in dorsal frontoparietal regions during anticipatory shifts of attention to a location 

(Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000). Right-lateralized activity 

has mainly been reported in ventral frontoparietal regions for shifts of attention to an 

unattended target stimulus (Arrington et al., 2000; Corbetta et al., 2000). Accordingly, 

Corbetta et al., 2000 reported that stimulus-driven shifts of spatial attention and target 

detection showed asymmetries with a preference towards right hemispheric specialization, 

which differs from the rather bilateral network of top-down control of selective attention. 

Thus, top-down control of selective attention seemed to involve a less lateralized network of 

brain areas than stimulus-driven attention. However, bilateral BOLD responses have ben 

found to increase with the target‟s increased unpredictability, indicating engagement by 

stimulus-driven orienting (Hahn et al., 2006).  

 

Ruff et al., 2006 claimed that TMS over the right FEF mimicked top-down control on 

visuospatial attention and later Ruff et al., 2009 found for both frontal and parietal 

stimulation clear differences between effects of right- versus left-hemisphere TMS on activity 

in the visual cortex. Frontal TMS over either hemisphere elicited similar BOLD decreases for 

central visual field representations in V1-V4, but only right frontal TMS led to BOLD 

increases for peripheral field representations in these regions. Thus, the right FEF seems to 

play a very specific role in peripheral enhancement of visual processing indicating its 

engagement in covert shifts of attention. 

 

      1.6.2.4 Insights from Real FEF Lesions  

 

Previous sections described FEF functions through microstimulation and recording studies in 

monkeys and in behavioural, stimulation and brain imaging studies in humans. Studies of 

lesions in a brain area of interest also provide a good source of evidence for FEF functions. 

Both, lesion analysis of FEF in monkeys and in humans reported attentional and oculomotor 

deficits (Posner et al., 1984; Pierrot-Deseilligny et al., 1993; De Renzi, 1982). However, in 
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monkeys surgical ablations of the FEF had little effect on oculomotor behavior when the 

other hemisphere is preserved.  

 

In humans, a range of saccade, antisaccade and cueing tasks with variations in fixation offsets 

has been applied to investigate the immediate and the long-lasting effects of FEF lesions. 

Pierrot-Deseilligny et al., 1993, 1995 found that FEF disengages fixation, and triggers 

intentional saccades to visible targets and to remembered target locations, or to the location 

where that target will reappear. The following functions were further reported as impaired: 

eye movement control, triggering saccades, control of smooth pursuit, and intentional visual 

exploration (intentional saccades). However, the oculomotor impairments were often 

transitory and patients recovered fast while chronic functional impairments after FEF lesions 

were more difficult to trace and required sensitive and accurate measurement methods.  

 

      Acute Impairments after FEF Lesions  

 

Acute frontal lesions in humans (probably including FEF) resulted in an ipsilateral eye 

deviation, which lasted no more than a few hours or days (Tijssen, 1991; Tijssen et al., 1994). 

During this time, contralateral eye movements (saccades, smooth pursuit, visual orientation 

reflex (VOR)) were reported to be present but being performed with difficulty. Further, acute 

lesions of FEF in humans influenced saccade triggering by increasing contralesional saccade 

latency for left and right FEF (Rivaud et al., 1994; Gaymard et al., 1995, 1998, 1999; Milea et 

al., 2002). This was the case for the overlap task during which the fixation point is still 

displayed when the lateral target appears.  

       

      Chronic Impairments after FEF Lesions 

 

All saccades (intentional and reflexive) were reported to be hypometric to the contralateral 

side of the lesion in chronic FEF patients. Machado and Rafal (2004a,b,c) found that some 

patients showed errors in the form of reflexive glances towards contralesional targets and the 

presence of a fixation point inhibited the initiation of ipsilesionally directed saccades. Rafal 

(2006) concluded that FEF lesions result in disinhibition of reflexive saccades towards the 

contralesional field and an impairment of reflexive saccades towards the ipsilesional field. 

Also patients with chronic unilateral FEF lesions showed a reduced effect of a fixation point 

on saccade latency to contralesional targets; and strategic modulation of this effect was 
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compromised for saccades to ipsilesional targets (Rafal et al., 2002). In an anti-saccade 

paradigm Machado and Rafal (2004c) found that a fixation point inhibited the initiation of 

contralesionally directed saccades less than those directed ipsilesionally, thus the inhibition 

effect of a fixation point was deficient for the contralesional side in FEF patients. Saccade 

preparation in response to a cue (top-down or reflexive) did not reduce the inhibitory effect of 

a fixation point on initializing anti-saccades to either of the hemifields.  

 

Top-down and stimulus-driven modulation on spatial orientation has been tested in patients 

with chronic FEF lesions mainly in oculomotor behaviour. Saccadic initiation deficits were 

reported in FEF patients to the contralateral hemifield for goal-directed orienting while 

benefits with reflexively summoned saccades were found to the ipsilesional hemifield (Henik 

et al., 1994). However, as investigated via reaction times (RT‟s) and saccadic latencies no 

effects with covert attention to targets placed in further periphery were reported (Henik et al., 

1994). However, in those studies attentional effects were tested in conjunction with 

oculomotor behaviour measuring RT‟s or saccadic latencies but not perceptual thresholds of 

visual targets appearing in the periphery. Thus overall, voluntary control of fixation and 

saccades has been found to be compromised in FEF patients, but the perceptual, attentional 

and oculomotor impacts have not been entirely disentangled.  

 

1.7 THE PULVINAR 

1.7.1 Localization 

 

The pulvinar is a grey matter nucleus belonging to the thalamic nuclei complex which is 

placed subcortically and therefore is well positioned to regulate cortico-cortical transmission 

as a hub (Fig.14a/b). The pulvinar is placed just above the LGN but it is perhaps up to 5 times 

bigger than the LGN. It shows fine grain structure and none of magno and parvocellular 

layers as the LGN does. In humans, the pulvinar has been found to consist of a large mass of 

nuclei forming the most caudal portion of the thalamus (the dorsal thalamus), overhanging 

the geniculate bodies and the dorsolateral surface of the midbrain (Fig.14a/b). The pulvianr 

itself is a complex structure found to be divided in at least four subareas. In humans it has 
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been subdivided into medial, lateral, inferior, and anterior nuclei which have also been 

divided in terms of their functions. 

 

 

a)                                                                    b)                                                      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Pulvinar’s central position (a) Midsagittal view of the human thalamus where pulvinar is 

placed (b) Optic chiasma and nerves with location of pulvinar nucleus. The pulvinar nuclei are part of 

the subcortical structure called thalamus and lie posterior, medial and dorsal to the laterale geniculate 

nucleus, and cover the underlying superior colliculus (SC). They form a big and diffuse mass around 

the axonal tract that arises from SC, the brachium of the SC.  

 

 

1.7.2 Subdivisions and Connectivity  

 

The very first anatomical studies of the pulvinar have been conducted in the macaque 

monkey of which the pulvinar has been divided on the basis of cytoarchitectonic criteria into 

four parts: the lateral, medial, inferior, and oral pulvinar nuclei. The lateral and inferior nuclei 

have been found to be retinotopically organized (Bender, 1981a,b, 1982). Also anatomical 

studies in mammals revealed that the pulvinar receives inputs from subdivisions of visual 

cortex and back projects to these (Chalupa et al., 1972; Romanski et al., 1997; Casanova et 

al., 2001; Guillery and Sherman, 2002a/b; Sherman and Guillery, 2002; Shipp et al., 1998; 

Shipp, 2001, 2003, 2004; Sherman, 2005; Kaas and Lyon, 2007) via long-range interneurons, 

while visuo-somatomotor connections via the pulvinar have been suggested a long time ago 

(Shipp et al., 1995; Shipp and Zeki, 1998).  
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Recent anatomical studies in monkeys indicate that the pulvinar anatomy reflects the 

topography of the cortices and is subdivided according to its connections, dividing the 

pulvinar into several distinct maps (Shipp et al., 2003). Each pulvinar subdivision has been 

found to have a distinctive pattern of reciprocal projections with multiple cortical areas. For 

the inferior and lateral pulvinar restricted anatomical connections have been found, in 

contrast to the wider connections of the medial pulvinar (Weller et al., 2002). Additionally, 

the pulvinar has been found to be connected with many non-visual areas (Chalupa et al., 

1972; Romanski et al., 1997; Casanova et al., 2001; Guillery and Sherman, 2002a/b; Shipp, 

2003, 2004).  

 

Similarly, the human pulvinar has been found to be interconnected with various subcortical 

structures and with a wide range of brain regions involved in visual and attentional 

processing such as V1, V2, visual inferotemporal areas (area 20), posterior parietal 

association areas (area 7), frontal eye fields (FEF) and prefrontal brain areas (Leh et al., 

2007). In accordance with suggested connectivity-based anatomy in monkey pulvinar (Shipp, 

2003), damage to different parts of the human pulvinar has been found to produce deficits 

similar to the areas to which they are connected (Ward et al., 2002; Ward and Arend, 2007).  

 

      1.7.3 Functions  

 

Non-human studies have provided convincing evidence for major contributions of the 

pulvinar to visual processing, spatial visual attention, and oculomotor behavior (Petersen and 

Robinson, 1986; Robinson et al., 1990; 1992, 1993, Shipp, 2004; Grieve et al., 2000).  

 

1.7.3.1 Visual Processing  

 

Pulvinar neurons in monkeys have been found to respond selectively to a number of visual 

stimulus features, including colour, orientation, or motion (Petersen and Robinson, 1985). 

Anatomical tracer and electrophysiological animal studies on cortico-pulvinar circuits suggest 

an important role in visual spatial attention, visual integration (Shipp, 2004) and higher-order 

visual processing (Villeneuve, 2005).  There is growing evidence supporting the view that 

inferior and lateral pulvinar nuclei are retinotopically organized in monkeys (Stepniewska 

and Kaas, 1997; Adams et al., 2000; Lyon and Kaas, 2007). Accordingly, the inferior and 

lateral nuclei have been found to be involved in visual salience processing (Robinson and 
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Peterson, 1992; Grieve et al., 2000). Further divisions have been reported in the inferior 

pulvinar in squirrel monkeys, macaque monkeys, and in marmosets (Stepniewska et al., 

2000). Studies have shown divisions in the inferior pulvinar to be separated functionally into 

subsets creating subcortical components of the dorsal stream (Ungerleider and Mishkin, 

1982) and subsets which were more devoted to the ventral stream processing (Adams et al., 

2000; Gutierrez et al., 2000; Kaas and Lyon, 2007; Saalmann and Kastner, 2009).  

  

1.7.3.2 Oculomotor Functions  

 

Some pulvinar cells were found to show enhanced responses to visual stimuli which are 

targets of eye movements and when the eyes are moved towards or away from the stimulus 

(Wurtz et al., 1980; Wurtz and Albano, 1980). This kind of response pattern is called eye-

movement dependent but spatially non-selective and is associated with “the role of signalling 

changes in state when stimuli take on relevance as targets for particular movements” 

(Robinson and Petersen, 1992). Other pulvinar cells were found to respond following the eye 

movements, and about 30% of cells were seen with eye movements in total darkness 

(Robinson et al., 1986; Petersen and Robinson, 1987; Robinson et al., 1990, Robinson et al., 

1993). It was proposed that this might be interpreted as the cells are “signalling the act of 

shifting the image of an object to the fovea or the beginning of a new visual scene” (Robinson 

and Petersen, 1992).  

 

     1.7.3.3 Visuospatial Attention  

 

The enhancement of response of the pulvinar cells to a stimulus has been seen shortly before 

saccadic eye movements towards a visual target or during attention to a peripheral stimulus 

(covert attention) (Petersen et al., 1987). Furthermore, most cells in the pulvinar were found 

to be responsive to a wide range of stimulus movement during periods of fixation and also 

during total darkness. However, when the eye movement was made, those cells did not 

respond during exploration of the stimulus to which the receptive field was shifted. It has 

been suggested, that the pulvinar cells‟ properties enable suppression and therefore increase 

salience of visual signals. Davidson and Bender, 1991 have shown that at certain eye 

positions visual excitability of cells are blocked while allowing for higher excitability to 

stimuli in the surrounding visual field. These pulvinar cells have been proposed to be 

activated by a non-visual input, an extraretinal signal (coming from the superior colliculus 
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(Benevento and Fallon, 1975) that were assumed to prevent these pulvinar cells from 

responding to visual input during eye movements. 

 

     1.7.3.4 Top-Down versus Bottom-up Attentional Control  

It has been shown that the visual characteristics of the pulvinar cells might depend more on 

the input from the striate cortex. More recently, Wilke et al., 2011 found that monkeys with 

pulvinar damage were severely disrupted in their visually guided behaviour contralaterally in 

functions such as spontaneous visual exploration and saccades into the ipsilesional field, 

which had abnormally short latencies and tended to overshoot their mark.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. A modified model of interacting saliency and top-down control on visuospatial 

processing (Iitti et al., 1998). The pink square encompasses saliency and task relevance maps which 

converge in the pulvinar in the form of attentional guidance maps. Top-down signals creating task 

relevance maps are assumed to originate from DLPFC and FEF, while saliency maps are assumed to 

be created from signals in the visual cortex.  

     

Based on these findings the role of the pulvinar in visual attention has been suggested in the 

form of “saliency map” formed from top-down and bottom-up processes (Koch and Ullman, 

1985; Iitti and Koch, 2000, 2001; Iitti et al., 2000) (Fig.15), which determine the location and 

 

 

FEF & 
DLPFC 

Pulvinar 



                                                                                                                                  Chapter 1. Scientific Background                                                                                                                                   

 44 

spatial scale for the next attentional shift, followed by activation of parietal and 

inferotemporal areas, in dorsal and ventral streams respectively. The pulvinar has been found 

to be anatomically separated for dorsal and ventral visual processing paths (Kaas et al., 2007) 

and it has been suggested that the ventral pulvinar would mediate involuntary attentional 

shifts only while the dorsal mediates voluntary attentional shifts (Van Essen, 2005). 

 

1.7.3.5 Evidence from Patients with Pulvinar Damage and Neuroimaging Data  

      

Functions  

 

Data from patients with subcortical lesions suggest pulvinar involvement in attentional 

orientation to visual stimuli (Danziger et al., 2001; Ward et al., 2002; Ward and Arend, 2007; 

Arend et al., 2008), in visual attention processing like attentional engagement (Rafal and 

Posner, 1987), visual filtering (Danziger et al., 2001; LaBerge and Buchsbaum, 1990; Snow 

et al., 2009), feature binding (Ward et al., 2002) and the analysis of target surround (Michael 

and Desmedt, 2004). Patient data also suggest that the pulvinar might be contralaterally 

organized, as contralesional deficits were reported in visual and attentional processing (Rafal 

and Posner, 1987; Snow et al., 2009; Arend et al., 2008) and more recently this has been 

supported by neuroimaging studies (Cotton and Smith, 2007; Smith et al., 2009; Kastner et 

al., 2004). Further lines of evidence indicate that the pulvinar is part
 
of a distributed network 

subserving visuospatial attention (Desimone et al., 1990; Kastner
 
and Ungerleider, 2000).

 

Second, patients with lesions in the pulvinar
 
exhibit visuospatial hemineglect, impairment in 

directing
 
attention to the contralateral hemifield (Karnath et al., 2002;

 
Rafal and Posner, 

1987). The lesion sites of neglect
 
patients have been located in the dorsomedial pulvinar 

(Kastner, 2004). 

      Functional Subdivisions  

Studies in patients with pulvinar lesions reported functional dissociations between anterior 

and posterior areas of the pulvinar (Arend and Ward, 2008). The medial and posterior maps 

were suggested to be involved in both the temporal and the spatial aspects of perceptual tasks. 

Lesions of the anterior parts of the pulvinar in humans have revealed spatial deficits only 

(Rafal and Posner, 1987; Arend et al., 2008; Snow et al., 2009). The anterior maps were 

suggested to be connected to visual areas, and to be organized spatially and retinotopically. 
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The anterior parts of the human pulvinar therefore seem to correspond functionally to the 

inferior and lateral pulvinar in monkeys while the posterior parts seem to show features of the 

medial and posterior medial parts of the monkey pulvinar (Fig.16). However, the 

correspondence of the functional areas has not been fully confirmed yet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. A modified schema of divisions and connections in monkey pulvinar (Grieve et al., 

2000). Pink circles: retinotopic maps found in monkey‟s lateral and inferior pulvinar. Blue circle: 

visuospatial maps found in medial pulvinar (Pmed) in monkey. The light pink square and the yellow 

square are superimposed on the schema of monkey pulvinar and indicate human pulvinar divisions of 

similar functions.  

 

 

Conclusion about Pulvinar Functions  

 

In sum, due to its central position the pulvinar has been suggested to facilitate cortico-cortical 

communication in the form of a sensory gating system, providing a nexus where activity of 

one area can modulate activity of another one (Arend et al. 2008; Guillery and Sherman, 

2002; Sherman and Guillery, 2002; Shipp, 2003, 2004). It is believed to mediate and/or drive 

the integration of visual information flexibly and reciprocally (Logothetis et al., 2010; 
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Berman and Wurtz, 2008, 2010, 2011). But currently, the data about the pulvinar in monkeys 

is very rich compared with the knowledge of functions and divisions of the pulvinar in 

humans.  

 

1.8  METHODOLOGICAL ISSUES CONCERNING TMS AND   

       PATIENT STUDIES. 

 

     1.8.1 Human Lesion Studies 

This thesis will investigate patients with brain damage as a convergent technique to TMS for 

providing insights on the roles of FEF and pulvinar for cpd in low-level visual processing. A 

brief introduction to the relative merits and problems with each technique is given below. 

      1.8.1.1 Why are Real Lesion Studies in Humans still relevant today? 

Patient studies have played a critical role in understanding the neural mechanisms regulating 

human behavior. Before the onset of non-invasive and in-vivo brain imaging methods the 

only way to access functions in the human brain was through examination of patients with 

brain injuries, combined with postmortem studies of their brain tissue (Harlow, 1848; 

Wernicke, 1874; Broca, 1861; Scoville and Milner, 1957; Sperry et al., 1961; Zeki et al., 

1993).  

Today, there is still a high demand for precise assessment and prediction of functions in 

patients after brain damage. The numbers of brain-injured patients is high due to 

demographic (stroke, dementia) and technical (accidents) developments. Lesion–function or 

lesion-behavior mapping studies can help in both directions (a) making predictions for 

patients with acute and chronic lesions after brain injuries and (b) to infer from their 

functional impairments about localization of functions and neural networks. The critical 

impact of patient studies can be seen in many established theories of brain processing such as 

the two-visual-pathways model (Ungerleider and Mishkin, 1982) (and its redefinition into 

what and how pathways model by Milner and Goodale, 1992, which will be explained in later 

paragraphs).  
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      1.8.1.2 Disadvantages of Brain Lesion Studies in Humans 

Nonetheless, patient studies are vulnerable to misinterpretation and require precise methods 

and statistical validation for reliable brain-function mapping. For instance, there is a 

considerable amount of flexibility and plasticity in the brain, so that different areas can 

change their functions in response to damage in another area. It is also known that many brain 

functions are carried out in a distributed manner, with large portions of the brain working 

together rather than each region having a fixed function (Corbetta et al., 2000). Furthermore, 

focal lesions in the human brain are rare. Extensive and multifocal lesions are the case after 

stroke or accidents at present. It is then difficult to localize the necessary node for functional 

impairments shown by patients. Further, it is often difficult to know whether impairment is 

due to grey matter lesions, or damage to white matter tracts passing through the damaged 

area. In addition, it is crucial to make the distinction between chronic and acute lesions, as 

there is considerable plasticity and reorganization in the brain, which can change the 

functional impairments over time – usually, but not always to a better behavioral/ functional 

outcome. 

1.8.1.3 Novel Approaches to Lesion Studies in Humans 

Recently, techniques of lesion analysis have become statistically more accurate and are 

improving constantly (Rorden et al., 2000, 2007, 2009; Rorden and Karnath, 2004). There are 

techniques to group all patients with the same functional impairment and analyze their lesion 

overlaps (Kartesz et al., 1979). Another novel approach provides comparison with a control 

group of healthy people or of other brain-damaged people (Roden and Brett, 2000; Price and 

Friston, 2002; Bates et al., 2003; Mort et al., 2003). Such statistical methods are promising 

but require a high number of patients and therefore their application is out of scope of the 

work presented here. Instead, with the very few patients available the most sensitive and 

precise method, a psychophysical thresholds measurement, has been successfully applied to 

capture otherwise elusive functional impairments.  

     1.8.2 Transcranial Magnetic Stimulation (TMS)  

Another approach to test brain functions non-invasively and with relative precision in humans 

is the so-called “virtual lesion” method of transcranial magnetic stimulation (TMS).  
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1.8.2.1 What is Transcranial Magnetic Stimulation?  

 

Transcranial magnetic stimulation (TMS) is a non-invasive brain mapping method applied in 

humans to investigate brain functions in vivo through induction of weak electric currents 

induced by rapidly changing magnetic fields from a coil placed above the scalp region of 

interest (Barker, 1991). The TMS stimulation is believed to modulate the neural activity 

transiently in superficial brain tissue and to reveal the necessity of that brain region for a 

particular behaviour or cognitive function, suggesting a causal link between them. Therefore, 

TMS can be understood to test causal links between behavior and the site of 

activation/stimulation. However, the neurophysiological effects of TMS are not fully 

understood yet, which leads to difficulties in interpreting TMS results (Pascual-Leone et al., 

1999a/b; Walsh and Conwey, 2000; Sack and Linden, 2003). 

 

      1.8.2.2 Limitations of TMS  

 

The TMS method deals with several theoretical and methodological issues, which makes the 

causal interference not less ambiguous from real lesions in patients. Recently, the traditional 

approach to TMS as “virtual lesion” has been updated (Silvanto and Muggleton, 2007, 

2008a,b) and now it is believed that TMS can modulate behaviour in a more subtle and 

complex way than just simply disrupting it. If TMS stimulation causes signal suppression/ 

disruption i.e. so-called “virtual lesion” or if TMS stimulation is a facilitator of neural 

processes as „subthreshold activation” (Harris et al., 2008) depends on several factors which 

are described below. 

 

      1.8.2.3 “Subthreshold Activation” or “Virtual Lesion”? 

       

      Technical Constrains 

 

TMS can be administrated as a single (single-pulse TMS) or as a train of rhythmic pulses at a 

specified frequency (repetitive TMS (rTMS)). rTMS has been reported to produce effects that 

last longer than the period of stimulation. Depending on the intensity of stimulation, coil 

orientation and frequency of stimulation, rTMS can increase or decrease the excitability of 

corticocortical pathways. Low frequency rTMS was found to produce a transient reduction in 
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cortical excitability and to produce no substantial effect on cortical inhibition (Fitzgerald et 

al., 2006). High frequency rTMS above 5Hz was reported to lead to a reduction in cortical 

inhibition (Fitzgerald et al., 2006). Furthermore, the pattern of facilitation vs. inhibition has 

been reported to depend on stimulation intensity (Moliadze et al., 2003). Strong stimuli above 

50% of maximal stimulator output could also lead to an early suppression of activity during 

the first 100-200 ms, followed by stronger facilitation.  

 

The Time Point of Stimulation and the Initial Activation State of Neuronal Population 

 

The behavioural effects of TMS have been suggested to depend on the initial activation state 

of the stimulated brain region and on the time point of TMS application during particular 

perceptual or cognitive task. While behavioural facilitation was found when single-pulse 

TMS was applied shortly before the onset of a task (Grosbras and Paus; 2002, 2003), the 

“virtual lesion” effect was found when TMS was applied during the perceptual and cognitive 

processes (Fernandez et al., 2002; O‟Shea et al., 2004; Cowey, 2005; Muggleton et al., 2010). 

This has been explained as follows: when TMS is applied before the onset of a process it is 

suggested that all activity in differently tuned neural populations is at a baseline and so there 

is no difference in the activation states between them. Thus, the increase in cortical 

excitability would lead to a heightened sensitivity to subsequent sensory stimulation.  

 

On the other hand, when TMS is applied during perceptual or cognitive processes it is 

believed that an activity imbalance already exists; certain neural populations being activated 

while others are inactive or even being inhibited. There are indications from studies that TMS 

might activate the less active (or inhibited) neurons when applied during a perceptual process 

(Silvanto et al., 2007) resulting in activation of neurons that are not involved in the currently 

ongoing cognitive or perceptual process (preferential facilitation) (Hotson et al., 1994). This 

would reduce the signal-to-noise ratio and consequently produce behavioural interference or 

disruption of the process.  

 

Alternatively, it could be argued that TMS inhibits the activated neurons. However, it was 

shown that in most neurons TMS induces an initial short period of excitation, which is very 

likely to cover the duration of a brief perceptual process. It has been found that visual stimuli 

can be detected within 500ms after presentation (Amano et al., 2006). Thus, TMS has been 

more often referred to in terms of facilitation than inhibition (Kammer et al., 2005a,b) and 
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has been found to be followed by a longer lasting (up to a few seconds) period of suppression 

(Moliadze et al., 2003; Aydin-Abidin et al., 2006). Additionally, inhibition cannot explain a 

facilitation effect prior to onset of a stimulus (Silvanto and Muggleton, 2007). 

 

On the other hand, the noise increase approach mentioned above has not been supported by a 

study (Harris et al., 2008), which compared the effects on detection thresholds of Gabor 

patches after noise induction into the image (image noise) (added noise paradigm, Pelli and 

Farell, 1999) or noise induction with the TMS stimulation (phosphenes induction) on 

occipital regions. Both procedures were found to increase perceptual thresholds for 

orientation discrimination (impair the perceptual process). TMS interacted in a multiplicative 

manner with the image noise induction and was interpreted not to occur independently, 

resulting in interruption of the neural process as shown by loss of signal strength. Thus, TMS 

was found not to add noise but to interrupt the neural process. In the study reporting such 

results the TMS pulse was applied on each trial after the presentation of the stimulus.  

 

       Conclusions  

 

In summary, the initially promoted concept of TMS as a tool for inducing reversible “virtual 

lesions” seems to be out of date while more complex patterns of TMS effects have been 

shown to depend on several factors. Therefore, it is useful to validate the TMS method with 

real lesions in patients, which is the approach taken with in the experiments described in 

chapters 2-5.  

 

1.9  SENSORIMOTOR PROCESSES  

1.9.1 Introduction  

The second part of the thesis is concerned with centre-periphery difference in sensorimotor 

processes. It investigates the proposal that “vision did not begin as a system for perceiving 

the world, but as a system for the distal control of movement” (Goodale, 1983).  
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      1.9.1.1 What are Sensorimotor Processes? 

Sensorimotor processes are understood as “pertaining to, or having both sensory and motor 

functions or refer to motor activity caused by sensory stimuli” (http://www.definitions). The 

term sensory refers here to visual processing and sensorimotor processes are synonymous to 

visuo-motor processes. 

       1.9.1.2 Role of Vision in Motor Processing  

Goodale, 1988 and later Sparks and May, 1990 proposed that the modularity and functional 

specialization of the visual system in the brain, which has initially been described from the 

point of visual input i.e. from the view of “vision-for-perception”, should be based on output 

requirements in the form of motor responses to visual objects – that is: “vision-for-action”. In 

particular that view has been accepted for automatic saccadic eye movements (Sparks and 

May, 1990), but this idea goes beyond oculomotor functions. Accordingly, in a recent review 

Goodale, 2008 stated that in the
 
1970‟s and 1980‟s vision was identified with visual 

perception only – and its direct role in the control of movement was essentially ignored”. 

Today the broader perspective is that “the functional organization of the visual system (“like 

the rest of the brain”) has been shaped by its functional role for control of movement” 

(Goodale, 2008) seems more justified. 

      1.9.1.3 The “vision-for-action” Model 

In the “vision-for-action” model of visual processing the ventral stream (Ungerleider and 

Mishkin, 1982) remained as the “what” pathway for object perception. However, the dorsal 

pathway has been redefined by Goodale and Milner in 1992, from the “where” pathway to the 

“how” pathway i.e. how to act (or react) to an object. Interestingly, although this model is 

mainly based on monkey studies (Goodale and Milner, 1992), the first indications for 

functional separation of the visual streams for object recognition versus motor response to 

objects emerged from patient studies. Damage to the temporal cortex has been found to result 

in visual agnosia (Goodale et al., 1993) the inability to consciously recognize or name the 

object. Damage to the parietal cortex (belongs to the dorsal stream) has been reported to 

result in apraxia, inability to know the function or how to use an object. More recently, 

however it is assumed that both systems are often simultaneously and in parallel activated 

http://www.definitions/


                                                                                                                                  Chapter 1. Scientific Background                                                                                                                                   

 52 

providing visual experience during skilled actions (Goodale and Milner, 1992) and studies 

indicate that there is reasonable crosstalk between both pathways (Wolfensteller et al

      1.9.1.4 Visual Consciousness in Visuo-Motor Processing  

Conscious Visual Processing Route 

The visual system has traditionally been divided into the conscious and subconscious 

pathways of processing. Data from patient studies suggest that the two cortical pathways for 

vision (ventral and dorsal) might differ in respect to access to consciousness. Information in 

the dorsal system (especially signals originating in the retinal periphery) can be processed 

without reaching consciousness while perceptual operations performed via the ventral system 

(especially originating in fovea) result in awareness. Goodale and Milner, 1992 suggested 

that for conscious visual experience the ventral system is necessary to be activated and 

claimed that processing of subliminal stimuli (stimuli presented below threshold of conscious 

perception) is evoked through partial or diffused activation of neural assemblies in the ventral 

system or activity in the dorsal stream.  

      Conscious Visuo-Motor Processing Route 

Traditional models of visuo-motor interactions suggested that visual perception and motor 

response are discrete stages, activated successively (Sanders et al., 1980). More recent 

models assume a continuous flow of information from sensory to motor systems, thus making 

it possible that a motor response is conducted before perceptual analysis is finished, and 

therefore not necessarily requiring full conscious visual analysis (Coles et al. 1985; Schmid et 

al., 2007). Studies in monkeys suggest that the visual system mediating conscious visual 

experience developed much later than the system which controls visuo-motor actions 

(Goodale, 1993), and therefore it does not need to be a precondition for visuo-motor 

processing. Also patient data suggest that visuo-motor performance and visuo-motor 

associations can be build up without conscious visuo-motor processing or conscious 

procedural memory. 
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      Subconscious Visuo-Motor Control Mechanisms 

 

In addition to conscious cortical motor control systems, Goodale, 2008 proposed that 

“representational systems have emerged...[ ].. from which internal models of the external 

world can be constructed”. Such representations can exist for visuo-motor associations and 

can be manipulated via a number of control mechanisms in the conscious and subconscious 

level. One such cortical control mechanism is automatic motor inhibition (DeJong et al., 

1990). 

 

 

 

1.9.1.5 Visuo-Motor Links as revealed by Subliminal Visual Primes 

Neumann (1993) suggested that subliminal motor response activation can indicate the 

existence of direct perceptuo-motor links, which allow the perceptual system to affect the 

motor system without conscious experience of that process. Accordingly, it has been shown 

that stimuli presented near or below the threshold of conscious awareness (subliminal stimuli) 

can trigger activation of motor responses and are referred to as subliminal primes (Neumann 

et al., 1993; Neuman and Klotz, 1994; Dehaene et al., 1998; Klotz and Neumann, 1999; Klotz 

and Wolf, 1995). 

What are Subliminal Primes? 

Subliminal primes are stimuli and cues (visual or auditory) below a threshold of conscious 

perception, which are associated with a certain behavioral outcome or motor response, which 

they can trigger.  

 

      Masked Prime Paradigm 

 
The common method to obtain an invisible or visually subliminal prime is the “masked prime 

paradigm”. A briefly presented prime stimulus (prime) is immediately followed by another 

visual stimulus (mask) before the target follows. This method renders the first stimulus 

invisible to the observer, thus below the threshold of conscious visual perception (Daheane et 

al., 1999, Neumann and Klotz, 1994). 
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Priming Effects  

Subconscious primes can reveal performance benefits in the form of faster reaction times 

(RT‟s) and lower error rates (ER‟s) when the associated responses in the prime and in the 

target are identical or compatible. This pattern of benefits to compatible prime and target are 

usually referred to as a “Positive Compatibility Effect” (PCE). When the prime is associated 

with a contrary response than the target stimulus, e.g. prime and target were incompatible, 

performance costs in the form of slower RT‟s and higher ER‟s have been observed. This 

pattern of compatibility effects described is usually reported at short mask-target stimulus 

onset asynchrony, SOA, (0-100ms) when presented foveally (Schlaghecken et al., 1998). 

Negative Compatibility Effects  

A reversed pattern of priming effects has been observed more recently when delaying the 

time point of target display i.e. at longer mask-target stimulus onset asynchrony (SOA) 

(Eimer and Schlaghecken et al., 1998; Eimer, 1990). For SOA of around 150 ms the priming 

effect reverses polarity, producing a negative compatibility effect (NCE) for compatible 

prime-target associations when presented in the fovea. Fig.17a/b/c illustrates the paradigms 

tested in previous studies on NCE and Fig. 18 demonstrates PCE at short SOA‟s and NCE at 

long SOA‟s. 

 

 

      a)                                      b)                                                           c) 

 

 

Figure 17a/b/c. Masked priming paradigms showing stimuli and timing parameter used to test 

NCE. a) Schlaghecken and Eimer, 1998; b) Sumner et al., 2008; c) Lingnau and Vorberg, 2005.  
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Figure 18. The reversal of priming effects as shown with long or short prime-target SOA’s for 

compatible prime-target and incompatible prime-target trials (modified from Boy et al., 2008). 

Positive Compatibility Effects (PCE) indicated in green. Negative Compatibility Effects (NCE) 

indicated in red. 

 

Negative Compability Effects indicate Inhibitory Motor Control Mechanism 

While the PCE has been explained by subliminal sensorimotor facilitation i.e. motor 

activation triggered by primes, the NCE has been explained by motor inhibition in the form 

of active suppression of primes‟ firstly triggered activation. This results in faster response on 

incompatible trials as compared to compatible trials (the NCE). The activation of the 

alternative response is simply allowed as a longer SOA allows for neural processes for 

activation and inhibition of the irrelevant prime to take place. Thus, the pattern of activation 

followed by inhibition suggests an automatic, self-generated inhibitory motor control process 

involved in sensorimotor processes (De Jong et al., 1990, 1995; Eimer, 1994, 1995). 

Localization of the Motor Processes indicated by Negative Compatibility Effects 

NCE was tracked down in a distinctive form of lateralized readiness potential (LRP) in the 

motor cortex in humans by Eimer and Schlaghecken (1998, 1999, 2003) (Fig.19). Sumner et 

al., 2008 found that a patient with a focal lesion in the supplementary motor area (SMA) did 

not show NCE as tested at fixation. Therefore, it is very likely that the SMA is highly 

involved in programming and control of visuo-motor links and perhaps in the generation of 

inhibitory motor control (Fig.20). 
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Figure 19. Lateralized readiness potentials measured in an experiment (Eimer and Schlaghecken, 

1998). LRP waveforms obtained in compatible, neutral, and incompatible trials in the time interval 

between prime onset and 600ms after prime onset. Downward going (positive) deflections indicate 

activation of the incorrect response. The black arrow indicates the time interval where the initial 

response activation was observed; the white arrow indicates the subsequent reversal of this effect.  

 

Two further studies have also implicated the SMA: Boy et al., 2010a found that the BOLD 

signal in SMA was modulated during the masked prime paradigm, while Boy et al., 2010b 

found that the NCE correlated across individuals with the concentration of GABA in the 

SMA, as measured by magnetic resonance spectroscopy. 

 

 

 

 

 

Figure 20. Functional Localization of the Lesion in the pre-SMA in a patient who did not show 

NCE (Brain imaging data from Sumner et al., 2008).  
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1.9.1.6 Centre-periphery Difference in Sensorimotor Processing  

 

       Sensorimotor Processing in Fovea and Periphery  

The functional separation of streams in perception and action has been proposed to start at the 

very early level of visual processing starting with the retina. The fovea is known to process 

detailed visual input facilitating conscious inspection and perception, while the same visual 

stimuli presented peripherally can easily evoke saccades and attentional shifts to facilitate 

further foveal processing. However, visual processing in the periphery requires stronger 

visual stimuli to be recognized or to evoke active motor responses such as adequate manual 

action towards an object (Schlaghecken and Eimer, 2000, 2006). Consequently, links between 

perception and motor action might differ for fovea and periphery fundamentally. 

Accordingly, qualitative functional division for peripheral versus foveal processing of visuo-

motor associations has been proposed as mentioned earlier (Ungerleider and Mishkin, 1982; 

Goodale and Milner, 1992). 

 

      NCE shows Centre-Periphery Difference 

 

 

NCEs at fixation have been replicated in many studies (Eimer, 2000, 2001, 2002, Vorberg, 

2000; Klapp and Hinkley, 2002; Klapp, 2005). 

 

 

Figure 21. Mean reaction times (RTs) observed in compatible and incompatible trials for 

different mask- target SOAs. Left panel: Results obtained for central masked primes. Right panel: 

Results obtained for peripheral masked primes. (Data from Schlagecken and Eimer (2000), Exp.1).  
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However, when the same primes were presented to the near periphery (peripheral primes) at 

2.8  above or below fixation – initially no NCE‟s were reported (Schlaghecken and Eimer, 

1997; 2000; 2003) for any type of response, including manual, saccadic eye movements or 

vocal responses (Eimer and Schlaghecken, 2001) (Fig.21). With masked primes at increasing 

retinal eccentricity, the NCE gradually turned into a PCE. This effect has been called the 

“centre-periphery asymmetry” referred to as “centre-periphery difference in priming” (cpdp) 

(Schlaghecken and Eimer, 2000) (Fig.21). Electrophysiological recordings in motor cortex 

revealed distinctive modulation of LRP waveforms for periphery and fovea. With longer 

SOA‟s the activation-inhibition pattern occurred with foveal primes but only activation with 

peripheral primes (Eimer and Schlaghecken, 2003). 

 

Retinal Sensitivity Threshold Account for Sensorimotor Centre-Periphery Difference  

 

Schlaghecken and Eimer (2000) observed that when foveal primes were reduced in their 

perceptual strength by random dot noise, no NCE‟s occurred (Fig.22).  

 

 

 

 

Figure 22. Mean reaction times (RT’s) observed in compatible and incompatible trials. Right 

panel: Results obtained for peripheral masked primes when prime-mask interval was either 100 or 

0ms. Note that the shorter interval produces weaker primes. Left panel: Results obtained for 

undegraded and degraded central masked primes. Data from Schlaghecken and Eimer (2000).  
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For peripheral retinal locations when perceptual strength of primes was increased by 

extending the interval between prime and mask, the NCE became evident. This has been 

interpreted as cpdp being closely linked to the retinal sensitivity decrease with retinal 

eccentricity and Schlaghecken and Eimer (2000) proposed that NCE occurrence depends on 

the strength of sensory traces elicited by masked primes.  

 

A second experimental support came from the study of Lingnau and Vorberg (2005) in which 

they adjusted stimulus size in an attempt to compensate for the cortical magnification factor 

in visual areas (DeValois and DeValois, 1988; Serano et al., 1995). With larger peripheral 

stimuli, NCEs were detected (Lingnau and Vorberg, 2005). The paradigm used by Lingnau 

and Vorberg (2005) has been shown in Fig.17c (see paragraphs above). 

 

Thus, it became accepted that no fundamental cpdp remains when cortical magnification (or 

perceptual sensitivity) is controlled for (Lingnau and Vorberg, 2005). However, none of these 

studies provided evidence for NCE at extended retinal eccentricities. More importantly, it has 

not been tested whether the central and peripheral stimuli were objectively equated in 

perceptual salience. 

 

Subconscious Visuo-Motor Representations Proposal  

 

Having a subconsciously accessible “module” for visuo-motor association in the form of a 

neural representation should not require distinctive visuo-motor pathways for fovea and 

periphery but on the contrary should allow flexible motor responses on an automatic level at 

any retinal eccentricity. However, the requirement to access a neural representation for a 

certain visuo-motor link might still differ for fovea and periphery – in the form of 

sensorimotor strength of the stimulus.  

 

       What is Sensorimotor Strength of a Prime? 

 

Sensorimotor strength of a visual stimulus can be defined as its probability to trigger a visuo-

motor association and therefore its probability to access visuo-motor representations. 

Sensorimotor strength can depend on the automatic and unconscious processing power of a 

visual stimulus. The sensorimotor processing power needs to be high enough to account for 

visual and motor activation thresholds. Sensorimotor strength is not necessarily the same as 
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„perceptual strength‟, as measured by perceptual discrimination or detection tasks, and this 

distinction will become important when the results to the second part of the thesis are 

discussed.   

 

“Sensorimotor Time Window” Approach  

 

Adjusted size of primes and increased interstimulus interval (ISI) between prime and mask 

were important factors for NCE in the periphery (Schlagheacken and Eimer, 2000; Lingnau 

and Vorberg, 2005). Simultaneously, the time interval between the mask and the target 

(SOA) has been prolonged which resulted in NCE in para-foveal retinal loci up to 4.4 visual 

angles. The prime-mask interval was suggested by Lingnau and Vorberg (2005) to present the 

amount of motor activation until the mask arrives whereas the mask-target SOA would 

determine the time available for motor inhibition process to develop. However, these two 

conditions have not been separated in the studies cited above. NCE with prolonged SOA in 

the periphery suggests that there is a certain “time window” for triggering inhibitory 

processes, which could differ for periphery and fovea.   

 

Model of Early Motor Control to Explain Sensorimotor Centre-Periphery Difference 

 

Schlaghecken and Eimer (2000, 2002, 2006), Schlaghecken et al., 2003, 2004, 2006, 2007 

developed a functional model of early motor control, which is based on two thresholds, which 

when reached by sensory stimuli should allow the triggering of automatic motor inhibition. 

Weaker activations from perceptually weak primes remain below hypothetical inhibition 

threshold. Only a strong sensory trace can result in increased activation that crosses the 

inhibition threshold (Fig.23). This model explains why NCE do not occur in the periphery. 

Motor tendencies triggered by foveal primes are stronger than motor tendencies elicited by 

peripheral primes (Eimer and Schlaghecken, 2000).  
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Figure 23 demonstrates the model, which consists of an early sensory processing subsystem, a 

motor control subsystem and a response execution stage. In the motor control system activation 

(M+) and inhibition (M-) modules are assumed to receive a common input specific for their acting 

direction (- or +) from the early perceptual processing stage. The modules are interconnected in an 

asymmetric activation/inhibition loop; i.e. M+ is assumed to activate M- continuously, while M- was 

proposed to inhibit M+ only if the activation level (from M+) exceeded a criterion value (the 

inhibition threshold). Execution of an overt motor response would be initiated only if M+ activation 

exceeded a motor output threshold. An above-threshold activation of M- should be possible only if a 

strong perceptual input is subsequently masked.  

 

 

1.9.1.6 Alternative Explanations and Factors for NCE and Cpd in NCE  

 

Shared Visual Features in Prime and Mask  

 

Numerous studies have found that when the mask and prime are sharing the same visual 

features the priming effects occur more easily (Lleras and Enns, 2004; Verleger et al., 

2004; Jaskowski and Przekoracka-Krawczyk, 2005; Jaskowski et al., 2007, 2008; Sumner 
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et al., 2007). Therfore,  perceptual theories have been proposed which might also explain 

the NCE (Fig. 24). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 Shared feature hypothesis as tested by Jaskowski and Przekoracka-Krwaczyk 

(2005), Experiment 1. Upper plot: Stimuli and results: d‟ for the masks showed. Lower plot: 

reaction times (lines), and percentages of incorrect responses (bars) for congruent (filled 

symbols/bars) and incongruent (open symbols/bars) trials for all masks used  The masks which did 

contained recognizable features of the prime did produce NCE (mask 1 and 3) while the masks with 

no features (mask 4) or less recognizable prime features (mask 2) showed no NCE.  

 

Object Updating Theory 

The “object updating”  or “mask-induced priming” theory holds that a mask could prime 

the contrary response to  one of the masked stimulus, in particular when there are shared 

features in the mask and masked stimulus (Verleger and Jaskowski, 2004; Klapp, 2005; 

Lleras and Enns, 2004, 2006). It is believed that novelty or feature differences are 

exagerated by the visual system, the features in the mask that are also in the prime may be 

relatively reduced in salience. Such imbalance in mask feature saliance could trigger 

response priming in the opposite direction from that expected from the prime, and hence 
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create NCE. Accordingly, it has been shown that when masks did not share perceptual 

features of the primes and targets the NCE‟s disappeared (Lleras and Enns, 2004; Verleger 

et al., 2004; Jaskowski and Przekoracka-Krawczyk, 2005; Sumner et al., 2007). Thus, the 

althernative model to inhibition hypothesis has been proposed based on “active mask” 

which account for NCE‟s, to which Sumner (2007) refers  to as mask-induced priming.  

Sumner (2008) investigated the "mask-induced priming" hypothesis by using masks 

composed of random lines, which were arranged in certain orientations, and primes 

composed of two lines of certain orientation. It was found that whether the masks included 

features (orientation) of the primes and targets or not, similar NCE effects were produced. 

Furthermore, when the masks obtained features (orientation) of one target but not the other, 

representing the extreme possible case for mask-induced priming, the priming effect 

produced was small and insufficient to account for the prime-related NCE. Thus mask-

induced priming is not an adequate explanation for the NCE, at least for the stimuli 

employed in that study. 

Stimulus-triggered Inhibition Hypothesis 

 

Stimulus-triggered inhibition hypothesis suggests that the inhibition of the prime is 

triggered by the sudden onset of the mask. In such a case an unconscious “whoops 

response” occurs to inhibit the present motor activation which does not seem relevant 

anymore (Jaskowski, 2007; Jaskowski et al., 2008). Thus the role of the mask is not to 

cause priming, but to trigger the inhibition of previously caused priming.  However, the 

role of stimulus similarity between prime and mask then remains an open question. It has 

been suggested that inhibition is triggered in particular when the mask contains features 

that are task relevant. 

 

Boy et al., 2008, had provided evidence for the importance of mask onset recently. A mask 

is applied, which appears before prime presentation and moved towards the location of the 

prime to eventually mask it. In this way, no new stimulus appears after the prime and only 

PCE were found, whereas when the mask was not displayed before prime presentation 

NCE were found. However, it is important to mention that while mask onset plays a critical 

role eliciting the NCE (Boy et al., 2008) the direction of motor priming causing the NCE 

does come from the prime, not the mask. 
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For the purposes of investigating the cpd in priming, it is not important whether inhibition 

is triggered by the mask stimulus, or is self-triggered as in the original theory by Eimer and 

Schaghecken, 1998.  

Neural Habituation Model 

Note that it is important to distinguish these mask-induced priming theories from theories 

which suggest purely perceptual or attentional accounts for NCE i.e. perceptual processing 

of targets might be delayed when they share features with the primes (Bavelier et al., 2000; 

Huber, 2008; Sohrabi and West, 2009). Huber et al, 2001, 2002; Huber, 2008 suggested a 

“neural habituation model”, which postulates processes similar to adaptation and 

habituation (“repetition blindness” (Johnston et al. 2002)), whereby the visual system 

becomes less sensitive to features it just processed which serves the purpose of resolving 

source confusion (Huber, 2008). Sohrabi and West (2008) proposed in their model that 

NCE emerges due to an attentional refractory period, which would act to slow the 

perceptual processing of the target in compatible trials. Repetition blindness has been ruled 

out by early studies of Schlaghecken and Eimer (2000), but the more sophisticated 

habituation and source confusion model of Huber deserves attention.   

 

Mask Onset Account 

 

Boy et al., 2008, had provided evidence for the importance of mask onset recently. A mask 

has been applied, which appeared before prime presentation and moved towards the 

location of the prime to eventually mask it. In that way, no new stimulus appeared after the 

prime and here PCE only were found, whereas when the mask was not displayed before 

prime presentation NCE was found. However, it is important to mention that while mask 

onset plays a critical role eliciting the NCE (Boy et al., 2008) the direction of motor 

priming causing the NCE does come from the prime, not the mask.  

  

Training Effects  

 

Previous studies indicated that practice is necessary to obtain robust positive and negative 

priming effects (Klapp and Hinkley, 2002; Schlaghecken et al., 2007; Sumner, 2008), 

which implies that it is not a purely sensory phenomenon, but rather one that relies on 

building sensorimotor associations. However, training effects in priming were not 
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mentioned in studies in which well established stimulus-response associations such as 

right-pointing arrows for right button response etc. were applied (Jaskowski and Slosarek, 

2007). The development of NCE over the time course of training in subliminal reaction 

task was described in detail by Boy et al., 2008. Positive priming has been found to be 

influenced by training when new and arbitrary links between stimulus and responses are 

learned (Boy and Sumner, 2009). Mirroring the training effect of PCE and NCE has been 

found to increase over the time course of training (Boy and Sumner, 2009). Most 

importantly, a switch in the stimulus-response mapping switched the PCE and NCE around, 

until the new mapping was learnt. This is strong evidence that the effect is sensorimotor, 

not due to perceptual or attentional habituation. This has not been tested for peripheral 

primes which might require longer training times with novel S-R associations.  

 

 

Figure 25 demonstrates the development of PCE and NCE over time with practice. The higher 

number of trials the higher both priming effects, which in their size mirror each other exactly (Boy 

and Sumner, 2009). 

 

 

Attentional Processing  

 

Studies on masked priming showed that focusing attention in time or space can modulate 

the effectiveness of invisible stimuli (Schlaghecken and Eimer, 2000; Handy et al., 2003; 

Handy et al., 2005). Focused attention in fovea might facilitate faster and stronger visuo-

motor processing, which reaches the activation-inhibition thresholds earlier, while in 

periphery covert visuospatial attention processing does not. However, Sumner et al., 2006 
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demonstrated that attention can directly enhance sensorimotor processes and this in a 

different manner to enhancing perceptual representation or visual salience of stimuli 

(perceptual strength). In their study, the attentional manipulation did not mimic physical 

stimulus enhancement. Attentional accounts for NCE were also considered in several other 

studies (Bavelier et al., 2000; Huber, 2008; Sohrabi and West, 2008). Sohrabi and West 

(2008) proposed in their model that NCE emerges due to an attentional refractory period, 

which would act to slow the perceptual processing of the target in compatible trials. 

However, there was no study, which tested the impact of attentional processing differences 

for cpdp between fovea and periphery directly. In fact, previous experiments on the cpdp 

have not always taken attentional effects into account, and these may have contributed to 

the differences measured. This methodological issue will be discussed in more detail in 

chapters 6 and 7 which are concerned with cpdp.  
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CHAPTER 2  
 

EXPERIMENTS 1 and 2 
 

COMPARISON OF PSYCHOMETRIC METHODS FOR 

CENTRE-PERIPHEY-DIFFERENCE in CONTRAST 

SENSITIVITY 

 
 

1. INTRODUCTION 

 

The first experiment introduced in this chapter is the validation experiment conducted to 

compare two psychophysical methods measuring centre-periphery difference for contrast 

perception. The second experiment examines the impact of target duration for cpd for 

contrast perception.  The experiments are based on the behavioural study of Ruff et al., 2006, 

which found that FEF TMS changes the centre – periphery difference in low-level vision at 

the physiological and behavioural level. The study is described in detail below.  

 

1.1 FEF TMS Study, Ruff et al., 2006 – Description  

 
1.1.1 Methods  

 

Ruff et al., 2006 combined fMRI and TMS of the FEF to test the causal influence of FEF 

upon remote retinotopic visual cortex as compared with TMS stimulation upon a control area 

(vertex
1
). Vertex sites are routinely used in the behavioral TMS literature as a control of non-

specific, general effects of TMS application (Walsh and Convey, 2000; Walsh and Pascual-

Leone, 2005). Frontal TMS was applied over the right posterior middle frontal gyrus, just 

ventral to the junction of superior frontal sulcus and ascending limb of precentral sulcus in 

each participant tested. This site has been shown by previous studies to correspond to human 

                                                 
1
 the vertex site was selected to control for non-specific effects of TMS, such as the ‘clicking’ sound 

and tactile sensation associated with TMS application. Vertex was not expected to affect the visual 

cortex unless in a non-specific way 
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FEF (Ro et al., 1999; Grosbras et al., 2002; Grosbras et al., 2003). Figure 26 shows both sites 

of TMS stimulation and the stimuli sequence applied.  

 

In both fMRI studies (FEF and vertex), TMS was applied in short temporal “gaps” between 

the acquisition of subsequent MR image volumes. Five TMS pulses of 9 Hz in a repetitive 

manner (rTMS) were applied in a gap of stimulus presentation. In separate sessions, TMS 

was administrated to FEF or vertex at four different intensities. Participants viewed a blank 

display or were presented with stimuli with a coloured or black-and-white checker board 

pattern which changed their form and colour every 500 ms over the whole visual field. This 

stimulus was designed to activate many regions of the visual cortex in which the BOLD 

signal was measured, providing an index of neural population activity (Logothetis, 2002).  

 

 

 

 

 

Figure 26. TMS stimulation sites and stimulus presentation sequence in study of Ruff et al., 2006 

(modified). a) Red star: right human FEF, blue star: vertex control on a normalized brain template. b) 

and c) Schematic time course of TMS relative to MR volume acquisition during combined TMS-fMRI: 

b) Trials with visual stimuli on the screen during TMS. c) Trials without visual stimuli. For each trial, 

three TMS trains were delivered in the 570 ms gaps between acquisition of subsequent image volumes, 

and seven rest scans were included between successive trials. Visual stimuli (when present, as in b) 

remained visible during all three TMS trains and during the acquisition of the three image volumes 

following the TMS trains.  

 

 

 

a b 

c 
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1.1.2 Results 

Retinotopic Activation in Visual Brain Areas  

Ruff et al., 2006 found that with increasing TMS intensity the activity change arose in 

occipital areas in a top-down manner regardless of visual input. TMS to vertex did not 

produce such increasing activity effects. Fig.27a/b/c/d shows activity maps for different 

eccentricities of visual areas as modulated by TMS.  

 

 

 

 

 

 

 

 

 

 

 

Figure 27a/b/c/d Mean effects of FEF-TMS intensity for different eccentricity sectors in the 

retinotopic visual areas. (a-d) The correlation of TMS-intensity with BOLD (quantified as T-value) 

was extracted from each individual retinotopic flatmap, separately for four different eccentricity 

sectors in each region. a) Shows the mean effect of frontal TMS-intensity for each area and eccentricity 

sector, averaged across flatmaps and voxels within each sector. The effects are colour-coded according 

to the scale below. c) indicates that increased intensity of frontal TMS produced activity increases for  

peripheral visual field representations in V1-V4, but activity decreases in the most central eccentricity 

sector. (b) and (d) plot the corresponding mean. TMS-induced effect with its standard error b) for 

frontal TMS; d) for frontal-minus-vertex difference for the most central and the most peripheral 

eccentricity sectors, when averaged across visual areas (leftmost two bars) or separately for area V1 

through to V4 (pooling across dorsal and ventral subdivisions). In all these retinotopic visual areas, 

increased frontal TMS-intensity produced activity increases for the peripheral sector but activity 

decreases for the central sector (stars indicate p < .05 in paired t-tests).  

 

Parallel with increasing intensity of FEF TMS, activity in the peripheral visual field 

representations for each retinotopic visual area bilaterally were found to increase, while in 

representations of the central visual field (around the foveal confluence) decreases in activity 

were found. Note that eye movement data was also analyzed and there were no differences 

a 

 
c 

b 

 
d 
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for eye position found with the increase of TMS intensity. Thus, the activity increase in 

peripheral areas could not have been due to eye movements. Additionally, no phosphenes 

were reported in participants, which are in line with findings that phosphenes occurred during 

TMS stimulation on occipital areas only (Walsh, 2005). 

 

Contrast Sensitivity during FEF TMS 

In a subsequent psychophysical study, Ruff et al., 2006 tested the behavioural relevance of 

the above described FEF TMS centre-periphery modulation of retinotopic activity in visual 

cortex. It was predicted that TMS to the right FEF would enhance peripheral vision relative to 

central, for both hemispheres. This was found to be the case: the perception of contrast 

appeared enhanced in both left and right periphery relative to fovea, consistent with previous 

studies reporting that BOLD increases in early visual areas were associated with increases of 

contrast perception (Ress and Heeger, 2003; Olman et al., 2003, 2004) (Fig.28a/b/c).  

 

 

 

 

 

 
 

 
 
 
 
 

 

 
 

Figure 28a/b/c. Psychophysical results on cpd in contrast perception during FEF TMS. Frontal 

but not vertex TMS enhances perceived contrast for peripheral relative to central visual stimuli, 

for both hemifields. a) frontal (red star) and vertex-control (blue star) TMS sites, selected according 

to the same criteria as in the neuroimaging experiments. b) psychometric curves fitted to the 

psychophysical data of an illustrative participant for one hemifield, when judging which of two 

concurrent Gabor patches appeared higher in contrast. Separate psychometric functions were obtained 

with frontal TMS (red curve) or vertex TMS (blue curve) co-occurring with the visual displays. The 

intersection of the dashed horizontal line with either curve indicates the Point of Subjective Equality 

(PSE) value for the peripheral patch  in the corresponding TMS condition. c) displays inter-participant 

mean contrast-value differences between central and peripheral stimuli at the derived PSE. For both 

TMS conditions and both hemifields. Due to the subtraction of contrast values at the PSE higher values 

represent more enhancement of peripheral relative to central perceived contrast.  

 

a b c 
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1.2 Rationale for Experiments 1 and 2 
 

Ruff et al., 2006 conducted a perceptual comparison task, estimating the point of subjective 

equality (PSE) in contrast perception between retinal centre and periphery of which results 

have been introduced in the paragraph above. Participants had to report which of two 

simultaneously appearing Gabor patches, one in the centre and one on the right or left in the 

periphery was of higher contrast (Fig.29).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Stimulus Sequence applied in the psychophysical measurement of contrast 

perception during TMS (PSE method) according to original (Ruff et al., 2006, thesis). Two 

vertically oriented Gabor patches were displayed simultaneously centrally and peripherally left or 

right for 500ms, during the display TMS was applied. Participants maintained fixation and rated 

which of the displayed stimuli was of higher contrast. The contrast of the peripheral stimuli was 

adapted while the contrast of the central stimulus was at fixed value. The point of subjective equality 

has been estimated between the central and peripheral stimuli according to the response. In general, 

this is a highly subjective method, vulnerable to attentional momentum and capacity of the observer.  

 

This PSE method is however well known for its subjectivity and decision biases and 

therefore cannot be considered to measure pure contrast sensitivity. Additionally, the PSE 

method requires a good ability to maintain concentration and dedication during the task. 

The total duration of the PSE experiments is relatively long and requires many repetitions 

which need to be averaged to ensure reliable results particularly in patients with brain 

injuries who are not trained on these kinds of tasks. For this reason, the PSE method was 

considered inadequate for brain injured patients, who are known for poor concentration 

abilities and their overall vulnerability to enduring cognitive tasks.  
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A further consideration is that Ruff et al., 2006 employed stimuli of a relatively long 

duration, which would be inadequate for FEF lesioned patients who tend to lose fixation. A 

longer display of a stimulus in the periphery would very possibly increase the probability of 

eye movements which would lead to misleading results. Eye movements would increase 

the detection and accurate identification of a target which would increase artificially 

peripheral sensitivity. The increase of sensitivity could not be led back to covert attention 

abilities in these patients but to their eye movements. This would create a serious confound 

in the study. Also, shortening stimulus duration in the PSE method would increase the 

difficulty of the task decreasing the reliability of the task or requiring longer training 

sessions. In addition, some of the FEF patients available for experiments showed more 

extensive lesions involving DLPFC, which has been found to affect functions such as 

decision making, attention and working memory. A task which is biased by judgment 

abilities and the attentional momentum of an observer may therefore prove incapable of 

testing visual sensitivity objectively in patients with frontal brain damage.  

 

Therefore it was necessary to change the task from the one Ruff et al., 2006 employed, to 

an alternative task to measure cpd in contrast perception which could meet all the 

requirements to provide a reliable, valid and precise test of contrast sensitivity in brain 

injured patients. In this chapter I introduce an orientation discrimination (OD) task, in a 

format suitable for patients, and test whether its measure of cpd is correlated to the contrast 

judgement task used by Ruff et al., 2006.  

 

The Orientation Discrimination Task  

 

In the orientation discrimination task (OD) participants are asked to indicate the orientation 

of the stimulus (2 alternative choices), while contrast is systematically decreased until 

errors are made in a staircase procedure. Thresholds at certain performance level (here 79% 

accuracy) can be estimated for fovea and periphery individually and a ratio periphery 

divided by fovea (P/F) can be calculated. There are two potential advantages of the OD 

task: 1) it is an objective measurement of perceptual ability, rather than a subjective 

measurement of perceptual decision; 2) It may reveal greater cpd than the judgement task, 

and thus allow greater sensitivity to changes in cpd in patients. Two experiments were 

conducted in healthy participants (Ruff et al., 2006 also used a young healthy population), 

in order to validate and optimise the OD paradigm. 
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1. In the first experiment both methods were tested in a within-subject design. If 

the new contrast estimation task via orientation discrimination was equivalent to PSE a 

high correlation of the cpd ratios was expected.  

 

2. In the second experiment the impact of target duration for cpd in the orientation 

discrimination paradigm was examined to optimise the cpd estimation for patients who 

might move their eyes to look at a stimulus if stimulus duration is too long (i.e. more than 

the typical saccade latency of around 200 ms).  

 

2    EXPERIMENT 1 

 

2.1  Methods  

 

2.1.1 Orientation Discrimination Procedure 

(a)                                                                 (b)                                                         

                                          

Figure 30. Orientation discrimination paradigm used for all experiments with patients 

described in chapter 3-5 (a modified version of this is applied to test visuo-motor processes in 

chapter 6-7). Trial sequence for (a) central and (b) peripheral retinal loci left and right at 13 visual 

degrees. The stimulus sequence started with a fixation point display for 100ms, followed by the 

display of the target – either a horizontally or vertically oriented Gabor patch of 40 ms duration. A 

blank screen appeared, and when the participant identified the orientation of the stimulus via a 

button-press, next trail sequence started with fixation point. The contrast of the Gabor patches was 

adapted to accuracy of the responses. Two correct answers were required to lower the next stimulus 

contrast, and with one failure the stimulus contrast was increased again (two-alternative forced-

choice task (2AFC)).   
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In experiment 1 the PSE method used by Ruff et al., 2006 was replicated as far as possible, 

employing similar stimulus size and duration. This technique was compared to the 

orientation discrimination (OD) paradigm which was considered more appropriate for 

patients. Stimulus size and target duration was reduced to ensure precise retinotopic 

position of the stimulus. Equivalently to Ruff et al., 2006 spatial frequency was constant for 

foveal and peripheral presentation in both paradigms (Fig.30) and the stimuli were centred 

on the same retinal loci in both paradigms. Each of the peripheral loci was stimulated at 13 

degrees from fixation horizontally. The paradigms were counterbalanced for each 

participant in the order ABBA or BAAB. 

 

          Stimuli  

 

For the orientation discrimination paradigm Gabor patches, phase-randomized sinusoidal 

gratings were presented within a sinusoidal envelope with a SD of 0.5 visual angle and 

were of either vertical (90 degrees) or horizontal (180 degrees) orientation. All Gabor 

patches were of constant spatial frequency, 2 cycles per degree for all three retinal locations 

tested. Gabors were displayed with initial luminance amplitude (peak to trough) of 12.5 

candelas per square meter (cd/m
2
) in foveal and 20 cd/m

2
 peripheral retinal positions. All 

stimuli had a mean luminance of 55 cd/m
2
 and were displayed against a grey background 

of a luminance of 55 cd/m
2
. 

            

         Estimation Procedure  

 

In a two-alternative forced-choice task (2AFC) participants indicated the orientation 

(horizontal or vertical) of the displayed Gabor patches. Gabors were randomly displayed 

left, right or center after fixation offset. Each trial of a fixation – target sequence was self-

initiated by a button-press, triggering a brief display of a fixation cross for 100 ms, 

followed by a brief Gabor patch display of 40 ms proceeded by an interval display until the 

button-press response. Participants pressed one of two keys with the index- and middle 

finger of their right hand to indicate the orientation of a displayed Gabor patch. Index 

finger (left key on the response box) was assigned to vertical orientation whereas the 

middle finger (right key on the response box) was assigned to indicate the horizontal 
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orientation, equivalently for all three retinal loci tested. Auditory feedback was provided 

after each response, indicating hits and errors.  

 

A three-down, one-up staircase with a value adjustment step at 1.2 ratio of the Gabor‟s 

contrast was applied. 1 block of 90 trials in the center and 2 blocks each of 70 trials in the 

periphery were performed. 2 retests were performed for each participant (3 tests in total). 

With each retest the initial contrast of Gabors was adjusted according to the results from 

the previous test. In the adaptive staircase procedure, the decrease in threshold (Gabor 

contrast) required three sequential positive responses to the orientation displayed but only 

one negative response to increase. This adaptive procedure is known to reduce systematic 

biases (which occur with the method of limits and the method of adjustment), as well as 

increase measurement accuracy and efficiency as the number of target values and a range 

of values to test can be reduced fast. Reversals were counted and a mean of the last 5 

reversals produced the threshold value.  

         2.1.2 Point of Subjective Equality Paradigm 

 
The task was designed to be similar in all respects to the paradigm applied in the TMS 

study of Ruff et al. 2006. Gabor patches were displayed in pairs i.e. one constantly in fovea 

and one randomly alternated in the left or in the right peripheral visual field. In a two-

alternative forced-choice task (2AFC) participants indicated which Gabor patch of the pair 

displayed was of higher contrast.  

 

         Stimuli  

 

Gabor patches were presented within a sinusoidal envelope with a SD of 2 degrees and 

were of vertical (90 degrees) orientation only. All Gabor patches were of constant spatial 

frequency 2 cycles per degree for all three retinal locations tested. Gabors were displayed 

with mean luminance of 55 cd/m
2
 and an initial luminance amplitude value of 12.5 cd/m

2
 

in both foveal and peripheral retinal positions. This created an initial Michelson contrast 

of 23%. However, the foveal stimuli remained constant whereas peripheral stimuli were 

adjusted depending on participants‟ response to the preceding trial. All stimuli were 

displayed against a grey background of a luminance of 55 cd/m
2
. 

 



                                                                                                        Chapter 2. Comparison of Psychometric Methods 

 76 

         Estimation Paradigm  

 

At each trial, a fixation – two-targets sequence was self-initiated by a button-press, 

triggering a brief display of a fixation cross of 500 ms, followed by a simultaneous display 

of two Gabor patches (foveal and peripheral) for 500 ms proceeded by an interval display 

until the button-press response triggered the next trial. Participants pressed one of three 

keys with fingers of their right hand to indicate on which side the Gabor patch was of 

higher contrast. 

 

As in the OD method auditory feedback was provided after each response, indicating only 

the errors when the wrong button was pressed. In such cases, the response was discharged 

and the stimulus was displayed again.  One testing sequence was of 90 trials. This 

procedure was repeated twice. 

 

          Apparatus  

 

Stimuli were displayed in a dark room, on a Sony Triniton 19 inch GDM-F400T9 monitor, 

driven by a Cambridge Research System (CRS) ViSaGe graphics board at 100 Hz, which 

was calibrated with a CRS ColorCal and associated software. Viewing distance was 72 cm. 

Manual responses were made using a CRS CB6 button box. The subject‟s head was 

stabilized by a chin rest and a head rest. Stimulus control was provided by Matlab.7.3. Eye 

tracking analysis was performed online. Trials on which saccades or blinks occurred e.g., 

where the eyes deviated outside a 1.5 degree window from fixation were discarded and the 

subsequent trial of the staircase was drawn randomly.  

           

          Participants 

 

Seven paid naive volunteers, 3 female and 4 male with normal or corrected to normal 

vision were tested. All participants were right-handed and of academic background, aged 

between 20 and 26 years (mean: 23 years). None had a history of neurological or 

psychiatric disorders or any sign of colour blindness or visual field defects. All gave 

informed consent in accordance with the local ethics committee before the study. 
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         Analysis 

 

In the OD method visibility thresholds obtained from reversals of adaptive staircase 

procedures were calculated as centre-periphery ratio for each participant. In the PSE 

method ratios were obtained from direct performance of the participant – the ratio was 

calculated from the peripheral stimuli that were judged equally often to be of higher or 

lower contrast than the foveal stimulus. For both methods, a mean of the values for left and 

right was used. A Pearson‟s Correlation was estimated with ratios for OD and PSE using 

SPSS.16. Additionally, two-tailed, paired sample t-test in SPSS.16 was performed to test 

ratio differences obtained from OD vs. PSE.  

 

          Results  

 

Fig.31a demonstrates a high positive correlation for ratios obtained with the OD and PSE 

method, r
2
 = .80, p (two-tailed) < .01.The mean centre-periphery ratio for OD method was 

1.7 (SEM = 0.15) while for PSE the mean centre-periphery ratio was 1.2 (SEM = 0.09). 

Importantly, centre-periphery ratios were significantly higher in the OD method than in the 

PSE method (t = -6.61, df = 6, p = .001). Fig.31b illustrates the correlation of the threshold 

values obtained with the OD and PSE method for each participant (for individual values see 

Table 1 in appendix). 

 

a) Correlation of cpd with lesion size                     b) Cpd measured with both methods 

 

 

 

 

 

 

 

 

 

 

 

Figure 31a/b. Contrast perception ratios for center versus periphery obtained with OD and 

PSE. (a) Correlation between methods for each of the participants. (b) Individual participant‟s data 

for each of the paradigms applied.  
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        Discussion  

 
        Results obtained in experiment 1 will be discussed below in the context of the second   

        Experiment.  

 

 

        3 EXPERIMENT 2  

 

 

        3.1 Introduction  
 

Having found that in young participants who have no problem complying with both tasks, 

the cpd measured by the OD method is highly correlated with the cpd assessed by the PSE 

method, and given that patients are more likely to be able to comply with, and provide 

stable results with, the OD method, I accepted the OD method as a suitable one for the 

patient studies in Chapters 3 and 4. It then remained to optimise the parameter of stimulus 

duration. In order to investigate the impact of visual stimulus duration for the cpd, 

participants were presented with short and long stimulus times in the fovea and in the 

periphery. As mentioned in the introduction above short stimuli were considered as more 

appropriate for FEF patients to prevent eye movements. Additionally, the cpd size might 

benefit from shorter stimulus displays, and a larger cpd would make it easier to detect any 

differences between patients and controls.   

 

        3.2 Experimental Procedure and Analysis  

 

All methodological and analysis procedures were identical to the OD paradigm described 

above. Participants were presented with separate blocks of Gabor patches of 40 ms or 120 

ms in ABBA or BAAB order and reported targets‟ orientation via button-presses.  

 

Participants 

 

Eight undergraduate psychology students (age range 21-31, mean: 24) were tested. None 

had reported neurological or visual impairments.    
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          Results  

 

As shown in Fig.32a/b and in Table 2 (appendix) for threshold values obtained in the fovea 

and the peripheral loci, with brief target presentation times (40 ms) centre-periphery ratios, 

(M = 2.1, SEM = 0.29) were significantly higher than with long presentation times (120 ms) 

(M = 1.3, SEM = 0.07) (two-paired t-test, (t=2.4, df = 9, p = .042)).  

 

a) Cpd at two target durations           b) Visual thresholds at three retinal loci 

 

 

 

 

 

 

              

 

Figure 32a/b. Thresholds obtained at two different target durations (40ms and 120ms) for ten 

healthy young participants (N=10). (a) Centre-periphery ratio for fovea (blue) and periphery (left 

and right combined) (yellow) which was significant (two-paired t-test, (t=2.4, df = 9, p = .042)). (b) 

Thresholds obtained for fovea and periphery (left and right). Legend: blue: 40ms target duration, 

yellow: 120ms target duration).  

 

        

 4 DISCUSSION   

 

Experiment 1 revealed that the cpd measures obtained with the two methods are strongly 

related. However, the OD method was found to measure significantly higher cpd, 

indicating that OD is a more sensitive method for detection of cpd for contrast perception 

than the PSE method.  

 

In the OD method observers were asked to determine orientation of Gabors presented either 

in the center or periphery left or right, without employment of eye movements. Here the 

observers were not aware of the purpose of the task, while in PSE a) observers were asked 

to rate, which of the stimuli displayed were of higher contrast and b) judged the contrast 

directly but subjectively which exposed the performance on this task to observers‟ 
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preferences. Therefore, the OD method ought to be the more objective (judgment 

independent), in which also attentional effects were minimised.  

 

In the OD method, the stimulus presentation was extremely brief, resembling flashed 

stimulus and the size of the stimuli was almost ¼ of those used in the original method. The 

small size of Gabor patches ensured that each stimulus activated only a limited set of early 

cortical neurons that filter orientation information and respond to small sectors of the visual 

field. Additionally, stimuli that are more compact in visual space (distributed over a small 

fraction of visual space) might reduce attentional and spatial uncertainty. In other words, 

with large stimuli, it is not clear whether the participants judge the center or the edge of the 

patch, which might give different results if contrast sensitivity varies over the extent of the 

stimulus.  

 

In sum, the orientation discrimination paradigm seemed the most preferable to test cpd in 

patients and age matched controls. The advantage may come from all or any of the 

methodological differences stated above.  

 

Experiment 2 indicates that increased ratios can be expected with shorter target 

presentation times. Thus, the target duration might be the critical parameter that leads to an 

advantage of OD over PSE method.  However, it was out of the scope and main interest of 

this thesis to investigate if other differences between these two methods contribute to OD 

advantage. The crucial conclusion was that displaying targets of short duration of 40 ms in 

combination with the OD procedure is a robust and even more sensitive measurement tool 

for detection of cpd than the PSE method employed by Ruff et al., 2006. 

 

5 CONCLUSIONS 

 
Experiment 1 showed that the OD method measures cpd successfully and has close 

correspondence to the PSE measure. Additionally the OD measurement produces larger 

ratios than the PSE method, making it a potentially more sensitive measure for any 

differences in cpd between patients and controls. Thus, the OD method is the core 

estimation method applied for further experiments as described in Chapters 3-5. 
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CHAPTER 3 

EXPERIMENT 3 

CPD IN CONTRAST SENSITIVITY AFTER FEF LESIONS  

 

       1 Rationale 

Ruff et al., 2006 proposed that the modulatory effects of TMS on cpd in visual processing 

could reflect top-down signals increasing processing sensitivity in a selective manner 

which result in a relative increase of visual processing and contrast sensitivity in visual 

periphery. The TMS stimulation was applied during the visual stimulation (100 ms after 

visual stimulus onset) which could both disrupt or activate perceptual processing. Thus it is 

not entirely certain if the TMS disrupted or enhanced the FEF effects on visual brain areas. 

To test if TMS acted as a “virtual lesion” or as “subthreshold activation” of FEF, cpd was 

tested in patients with real FEF lesions. Fig.33 illustrates the predictions which are 

described below. 

 

2 Hypothesis  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Predicted centre-periphery difference in FEF patients and healthy controls based 

on the FEF TMS results (Ruff. et al., 2006) calculated as ratio for visibility thresholds in 

periphery (left and right combined) divided by visibility thresholds in the fovea (P/F). 
Hypothesis A: Centre-periphery difference (Ratio P/F) decreases in patients if TMS acted as “virtual 

lesion”. Hypothesis B: Centre-periphery difference (Ratio P/F) increases in patients if TMS acted as 

“subthreshold activation”. Arrows and the red bars indicate Hypothesis A or Hypothesis B.  
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Two-rival predictions for the FEF TMS effect can be postulated when tested in patients 

with real lesions of FEF. TMS stimulation could act as a “virtual lesion” in FEF (Pascual-

Leone et al., 1998a/b, Walsh and Pascual-Leone, 2005; Conwey, 2005; Silvanto and 

Muggleton, 2008). In that case, patients with FEF lesions would show similar effects to 

those produced by TMS – relatively enhanced peripheral contrast perception compared to 

fovea (or, in other words, reduced foveal contrast perception relative to periphery), 

resulting in a decrease of centre-periphery ratio in FEF patients (Fig.33).   

 

However, if the TMS effect is due to remote effects on visual cortex resulting from non-

specific sub-threshold activation of FEF (as suggested by Ruff et al., 2006) patients should 

show the opposite effect – relatively impaired peripheral contrast perception, resulting in 

increased centre-periphery ratios (Fig.33). The main idea would be that activation of FEF 

(naturally or using TMS) leads to a relative improvement of visual processing in the 

periphery (Grosbras and Paus, 2002, 2003). Patients with FEF lesions would not be able to 

achieve this improvement.  

 

          3 Methods 

 

The orientation discrimination paradigm for estimation of contrast thresholds was described 

in chapter 2 in detail and therefore is not repeated here.  

 

          3.1 Sessions  

 

Three right FEF lesioned patients and one bilateral FEF patient were tested. Three patients 

were tested in two sessions (T1, T2). Session T1 was an initial pre-testing stage. The testing 

sessions were conducted within a period of 4 months at the Wolfson Center for Cognitive 

Neuroscience, Bangor, UK.  

          

          3.2 Participants  

 

Multislice images are shown in figure 1a in the appendix (p. 204) for each of the patients 

tested. Three stroke patients, 1 male (M.J. (age: 75) and 2 female G.H. (age: 71), L.B. (age: 

56)) with lesions including right FEF took part in the first two experiments (T1, T2). In 

patient L.B. the bilateral lesions were the result of haemorrage caused by sagittal sinus 
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thrombosis while the lesions of the three other patients were due to strokes. A full overview 

of the brain lesions are provided in the appendix figure 1a (p. 204). The scans demonstrated 

in Fig.34 show best the extent of cortical lesions including FEF. The scans are according to 

neuro-anatomical convention (left lesion is left and right is right). All patients were tested 

with normal or corrected to normal vision and all patients had motor impairments of their 

contralesional arm.  

 

Eight healthy age matched controls (mean age: 66) were recruited from the Community 

Panel of the School of Psychology, Bangor University. Healthy participants aged over 70 

were usually not motivated to participate in experiments and showed a high rate of drop-

out. None of the participants in the healthy control group reported a history of neurological 

or psychiatric disorders or any sign of colour blindness or visual field defects. All 

participants (including patients) were right-handed and of varying professional background.  

 

All participants – healthy elderly and patients gave informed consent in accordance with 

the local ethics committee before participating in the study. All participants were tested 

with the Hamilton-Veale Contrast Sensitivity Test based on the Pelli-Robson contrast 

sensitivity test (1988), and Acuity Test on a chart was performed prior to psychometric 

testing on a computer monitor. The testing served not only as a cross-validation of tests but 

also in the experimental setting it was a useful “ice breaker” between the experimenter and 

the particularly vulnerable participant group, the patients and elderly participants.  

 

 

 

 

 

 

 

 

                                     M.J                                 G.H                             L.B                            

Figure 34. MR scans for three FEF patients. From right to left in axial view: M.J., C.W., G.H., 

L.B. All patients showed frontal right hemispherical lesion of different size, patient L.B. showed 

FEF lesions bilaterally, the more extensive in the RH.  
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Case Descriptions   

 

          Patient M.J  

 

The 76-year-old (at the time of testing) male stroke patient M.J. showed on an MRI scan, 

lesions subcortically (basal ganglia) and in the lateral prefrontal cortex including the right 

FEF. Lesions were reported to be scattered including the right parietal lobe. The brain 

damage was reported to indicate an infarct. Time from infarct was 3 years at the time of 

testing. The following remaining impairments were reported: sensory loss in the left side of 

his face and slight astereoagnosis. M.J. was reported to be severely colour blind, which did 

not affect the discrimination performance of a black and white pattern.  

 

         Patient G.H 

 

The 72-year-old (at the time of testing) female stroke patient G.H. showed on an MRI scan 

discrete right FEF damage, also affecting the motor cortex. Time from infarct was 4 years 

at the time of testing. Patient showed contralesional motor remaining impairments.  

          

         Patient L.B  

 

The 56-year-old (at the time of testing) female patient L.B. showed on an MRI scan large, 

multi-loculated lesion in the right frontal lobe, with a surrounding area of gliosis extending 

into white matter and up to the ventricles. The chronic lesion has been reported in medical 

protocols (Bangor Clinical Center) to involve hand area of the motor cortex, the frontal eye 

fields, the pre-motor cortex and parts of Brodman‟s area 9, 10, 45 and 46. In the left 

hemisphere focal damage lateral to the frontal eye fields was reported. In 1998 L.B. was 

diagnosed with sagittal sinus thrombosis with bilateral superior frontal haemorrhage. Thus, 

the lesion developed nine years prior to testing. The patients‟ age was 47 at the time of the 

stroke. The remaining impairments were in the left arm, which was spastic and useless also 

at the time of testing. Examination five years after the acute phase reported that the 

extraocular movements were full in all directions and convergence was intact although L.B. 

was found to have some difficulty in executing anti-saccades and she was unable to wink. 

There were no visual fields cut or visual extinction found. 
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         3.3 Set up and Testing Sequence  

 

In T1 and T2 patients M.J, G.H and L.B were tested. In testing session T1 and T2, to obtain 

reliable results combined with as few lapses and biases due to attentional and tiredness 

effects, as well as for convenience of patients, all participants were presented with only one 

block of 90 trials in the center and two blocks of 70 trials in the left and right peripheral 

condition (140 trials in total for periphery). Such a procedure also allowed also for fast 

acquisition of threshold values. Reversal values obtained from those blocks served to 

estimate the mean threshold value for each peripheral location tested. 

 

         4 Analysis 

 

All data analysis was performed in Matlab.7.3, Excel, WindowsXP 2006, SPSS 19. For 

testing sessions 1-2 mean luminance thresholds for Gabors‟ orientation discrimination were 

obtained from the last 30 values occurring in a staircase for each location tested. The 

centre-periphery ratios were calculated. For comparisons with Ruff et al., 2006 mean 

threshold values were transformed into Michelson‟s contrast in percent, calculated as mean 

luminance threshold value multiplied by backgrounds‟ mean luminance and converted into 

a percentage. For statistical comparison between few neurological patients and controls, 

non-parametric tests were used. Results for session T1 and T2 were averaged and are 

shown in Fig.35 below and in Table 3a (in appendix). 

 

         5 Results  

          

         5.1 Contrast Sensitivity  

 

The mean perceptual thresholds for fovea in FEF patients and controls are shown in Fig.35 

and Table 3a/b in appendix. The mean perceptual thresholds for fovea in FEF patients were 

22.3% Michelsons Contrast (SEM=8.4) for periphery left 59.8% (SEM=23.3) and right 

50.9 % (SEM=20.2) with combined left and right 55.5 % (SEM=21.4). Contrast sensitivity 

thresholds for individual patients and controls are shown in Table 3a/b in appendix. In 

controls, in fovea mean, perceptual thresholds for fovea were 7.9 % (SEM=1.1) for 

periphery, left 16.7 % (SEM=2.4) and right 17.1 % (SEM=3.2) while combined left and 
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right 16.9 % (SEM=2.7). Although contrast thresholds for all retinal loci tested seem to be 

elevated in the three tested FEF patients when compared with controls, the non-parametric 

Mann-Whitney U test revealed that this was not significant for fovea (p > .05) or periphery 

(left and right combined) (p > .05). However, this could have been due to a small number 

of FEF patients tested. This will be tested again in similar conditions in Chapter 5 with one 

more FEF patient who was available only later.  

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Perceptual sensitivity thresholds calculated as Michelson Contrast in % obtained 

for fovea and periphery left and right (13 degrees eccentricity) for 3 FEF patients and 8 

healthy controls (p > .05) (Table 3a/b in appendix).  

 

5.2 Centre-Periphery Difference and Lateralization Effects    

     

Fig. 36a/b and Table 3a/b in appendix shows the cpd and lateralization effects obtained 

from this data set. Cpd in perceptual sensitivity was highly significant (t-test (two-tailed), 

t=5.451, df=7, p=.001) in the healthy participants group, while cpd was not significant in 

the FEF patient group tested (Wilcoxon Sign Test, p >.05). This will be reassessed with a 

higher number of FEF patients in an experiment with similar conditions described in 

chapter 5. Cpd when compared between FEF and healthy controls was not significant for 

the left visual field (FEF: M=2.6, SEM=0.3; Controls: M=2.1, SEM=0.2) or for the right 

visual field (FEF: M=2.2, SEM=0.1; Controls: M=2.1, SEM=0.1) or for periphery 

combined (FEF: M=2.4, SEM=0.2; Controls: M=2.1, SEM=0.1), (independent Mann-

Whitney U test, p > .05).  

 

0

10

20

30

40

50

60

70

80

90

Fovea Left Right

 S
e

n
s
it
iv

it
y
 T

h
re

s
h

o
ld

s
 

(M
ic

h
e

ls
o

n
 C

o
n

tr
a

s
t 

in
 %

)

FEF

Controls 



Chapter 3. FEF Lesions 

 

 87 

a)   Cpd                                                          b) Lateralisation of cpd 

 

  

 

 

 

 

 

 

Figure 36a/b. Centre-periphery difference as calculated for contrast threshold in periphery 

divided by contrast threshold in fovea (Ratio P/F) and averaged for three FEF patients and 

eight healthy age matched controls. L/F: ratio left periphery/fovea; R/F: ratio right periphery/fovea 

(a) Cpd combined (p > .05). (b) Lateralization effects left visual field (L/F) (contralesionally for FEF 

patients) and right visual field (R/F) (ipsilesionally for FEF patients) (p > .05).  

 

5.3 Correlations between Lesion Size and Performance in FEF Patients  

Lesion volume has been ranked in all three patients after careful viewing of whole brain 

scans by an expert (Prof. Robert Rafal) and a novice (the author of this work) individually 

and a consensus was reached for  the following ranking of lesions extents:  L.B. > M.J. > 

G.H.  The perceptual sensitivity impairments have been ranked for each patient resulting in 

a following rank: M.J. > G.H. > L.B. 

 

 

 

 

 

            

 

 

 

 

 

 

Figure 37 demonstrates small negative Spearman’s correlation for cpd calculated as ratio for 

periphery divided by fovea (P/F)) and the extent of lesion rated by an expert and a novice in 

three FEF patients tested (p (two-tailed) > .05).   
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A nonparametric correlation test calculating Spearman‟s correlational coefficient for one-

tailed test was performed. The results are shown in Fig.37. There was a negative correlation 

of perceptual sensitivity with the extent of lesion in FEF patients (r = -.80), which however 

was not significant (Spearman‟s correlation, p (two-tailed) > .05.). This shows that the 

impairment does not increase with more extensive lesion, on the contrary if anything, the 

trend is the other way round – the more focal the lesion, the greater the relative impairment 

of peripheral vision. This tendency could be interpreted as an indication of functional 

involvement of FEF in peripheral perceptual sensitivity; however this correlation was not 

significant with only three FEF patients.  

 

       6 Discussion  

 

The experiments described above showed no differences in cpd in FEF patients when 

compared with healthy age matched controls and therefore did not show significant effects 

in either direction hypothezised. Therefore, at this stage no conclusions for TMS effects in 

Ruff et al. study can be made based on these results.  

 

The results seem rather to suggest that FEF chronic lesions do not have the same effects as 

transient TMS FEF. This might be due to the chronic nature of lesions associated with brain 

plasticity and reorganization. Previous studies have shown that oculomotor impairments 

after FEF damage are reversible in patients after short periods of 2-3 days (Rivaud et al., 

1994; Gaymard et al., 1998, 1999; Milea et al., 2002; Pierrot-Deseilligny et al., 2002). 

However, the tests have shown highly impaired contrast sensitivity in FEF patients at all 

locations tested which were retinotopy unspecific. Although this was not significant due to 

the low number of FEF patients, statistical comparisons are uncertain. Therefore, the tested 

FEF patients sample should be increased to reach clear conclusions. In chapter 5 results for 

cpd in contrast sensitivity from 4 FEF patients are described. Additionally, in healthy 

participants there was a clear cpd difference, perfectly in accordance with previous research 

in contrast perception in healthy populations.  

 

Important to mention in this context is that previous studies of patients with chronic 

unilateral FEF lesions showed a reduced effect of a fixation point on saccade latency to 

contralesional targets; and strategic modulation of this effect was compromised for 

saccades to ipsilesional targets (Machado and Rafal, 2002). According to this the foveal 
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decrease in perceptual sensitivity could be associated with fixation neurons deficits in 

patients with chronic FEF lesions. Nonetheless, it is crucial to mention that influences of 

FEF on contrast sensitivity might be related to its contributions to covert visuospatial 

attention, which has been examined in a series of experiments described in chapter 5.  
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CHAPTER 4 
 

EXPERIMENT 4 

CPD IN CONTRAST PERCEPTION AFTER PULVINAR 

DAMAGE 

 

1 Rationale  

Experiments described in chapter 3 showed that chronic right FEF lesions result in 

lateralization effects in visuospatial processing. This result supports partly the FEF 

TMS study of Ruff et al., 2006, and might indicate that according to the lesion in FEF 

contralesional peripheral areas in the occipital lobe are less activated. However, nothing 

is known about direct white matter connections between the FEF and visual areas in the 

occipital lobe which could transmit visual signals. It is known that all sensory signals in 

the brain pass the thalamus. Within the thalamus there is a grey matter nucleus, called 

pulvinar which has been shown to be visuotopically organized in monkeys and to be 

involved in visuospatial processing in humans (Allman et al., 1972; Shipp et al., 2003, 

2004; Kastner et al., 2004; Smith et al., 2007). Therefore, the human pulvinar is a likely 

candidate for computation and transmission of low-level visual signals between remote 

visual centres. Visuospatial impairments have been shown in patients with pulvinar 

damage (Rafal et al., 1987; Snow et al., 2009; Arend and Ward, 2008). Fig.38 shows a 

hypothetical model of pulvinar contribution to the networks of visual processing 

(Ungerleider and Mishkin, 1982). Occipital visual areas, the pulvinar and the FEF form 

an important functional network for visuospatial and low-level visual processing. The 

function of the pulvinar within this network shall be investigated here in patients with 

chronic pulvinar lesions. Firstly, the contribution of the pulvinar to centre-periphery 

differences in contrast perception will be examined and considered in relation to the 

cpd changes in patients with FEF lesions.  

 

2 Hypothesis  

The hypothesis that the pulvinar is involved in the FEF-occipital transmission of low-

level visual input can be tested in patients with pulvinar damage. If the pulvinar nucleus 

is involved in visuospatial processing, specific impairments in cpd in contrast 

perception should be expected after its damage. In line with previous research, 

contralesional deficits in visual processing in the periphery can be hypothesized (Rafal 

et al., 1987; Arend et al., 2008; Snow et al., 2009). Some differences in foveal 
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sensitivity between pulvinar patients and healthy participants can be expected due to 

deficits in release of fixation neurons for saccades reported in pulvinar patients in 

earlier studies (Watson et al., 1979; Ogren et al., 1984; Rafal et al., 2004). Due to 

“sticky” fixation at the visual centre in pulvinar patients, longer fixation and therefore 

enhanced perceptual processing in fovea can be expected, simultaneously resulting in 

perceptual impairments in periphery. 

  

 

 

 

 

 

 

 

 

Figure 38. The occipital visual areas, the pulvinar and the FEF form an important 

functional network for visuospatial processing. This is a model of cortico-cortical projections 

for low-level visual and visuospatial processing including the pulvinar, which is superimposed 

on the two-pathways model of vision (Ungerleider and Mishkin, 1982). The FEF has not been 

previously included in the two-pathways model of vision by Ungerleider and Mishkin in 1982. 

Originally FEF was considered as an oculomotor and higher-order visual processing area, which 

does not contribute to low-level visual processing directly. However, novel study of Ruff et al., 

2006 and Taylor et al., 2007 strongly suggest that FEF contributes to low-level visual and 

visuospatial processing. There are indications for retinotopic organization of FEF in humans 

similar to that in occipital visual areas (Sereno et al., 2005). The pulvinar was shown to be 

retinotopically organized in monkeys (Shipp et al., 2005). Legend: Pink circles: areas of interest 

in the work presented here, which compose the higher order neural network for processing and 

integration of visual signals. Green dashed arrows indicate connections known from previous 

research, not directly tested here. Solid red arrows indicate known connections of white matter 

between visual areas. The red dashed arrow indicates the influences between areas suggested by 

monkey and by TMS and brain imaging studies in humans for which no anatomical support in 

the form of white matter connections is known.  

3 Methods 

3.1 Set up and testing Sequence  

All experimental set ups and paradigms were identical to those described in Chapters 2 

and 3. One session for testing one participant was of 1.5 - 2 hours duration, as adjusted 

FEF 
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for patients and elderly controls. The same session in young healthy participants was of 

20 minutes duration. 

3.2 Participants  

The elderly control group was exactly the same as for the FEF patients tested. Eight 

healthy age matched controls (mean age: 66) were recruited from the Community Panel 

of the School of Psychology, Bangor University. One of the pulvinar patients (C.R) was 

aged 20 at the time of testing, therefore a much younger cohort of healthy controls 

(N=10, mean age 24) was recruited from the Community Panel of the School of 

Psychology, Cardiff University. Multi-slice images for pulvinar patients were not 

available for viewing; however multi-slice views do not add further information here as 

the lesions are very focal.  

Patients Case Description  

Lesion sites in the four pulvinar patients tested are illustrated in Fig.39. Three were 

elderly stroke patients, T.N., D.G., J.L. (60, 70, 65 – year-old). One patient was young 

and had a closed head injury (C.R., age 20). To compare results obtained from the 

young patient C.R., 10 young healthy undergraduate Cardiff University students (mean 

age: 24) were tested. Patient C.R. was tested with uncorrected vision, as he showed 

normal vision. All other patients and controls were tested with uncorrected vision 

C.R 

Damage History  

C.R. is a 20-year-old man who suffered closed head injury in a fall, resulting in a focal 

haemorrhagic contusion and avulsion of the posterior pole of the pulvinar and no other 

contusions to the brain. The time of the brain injury was 3 years prior to testing. The 

chronic lesion is very focal in the posterior left pulvinar. No motoric impairments were 

diagnosed. No behavioural or cognitive impairments were revealed and also the visual 

field was intact. For about six months after the injury the patient had reported some 

difficulties with vision; e.g. difficulties seeing words on the right end of the page during 

reading, and it appeared to the patient that he would miss some words in sentences 

while reading because the sentences did not make sense and he had to reread it to 

understand. These visual symptoms had resolved some years before testing. A few 
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months after participation, patient C.R. entered university for engineering studies. 

However he dropped out during the first year, for reasons unknown to the experimenter. 

 

 

 

 

 

 

 

 

Figure 39. Axial view in neurological brain scans for each of the four pulvinar patients 

tested. The green line in the sagital view above patient scans indicates the scan level at 

which the pulvinar is located in the human brain. Red arrow indicates the approximate 

location of the pulvinar within the thalamus. In the axial views red circle indicate individual‟s 

lesion in pulvinar. Above: Initials, age and age of lesion when tested. Abbreviations: mL: 

middle left, aR: anterior right, bi: bilateral, pL: posterior lateral. Note the multi-slice views do 

not add further information here as the lesions are very focal.  

 

Functional Deficits 

In previous examinations, C.R. showed small deficits in selecting low-saliency targets 

at four visual angles in the periphery and higher deficits with vertical distracters (Snow 

et al., 2009). Other studies reported temporal attention deficits (Arend et al., 2008), 

spatial shifts costs for reallocating (slowing of attentional reallocation) into his impaired 

field (contralesionally) and increased dwell time (Arend et al., 2008) in a dwell task 

(Duncan, 1996). Thus, while clear temporal binding deficits were found, signs for 

potential spatial binding deficits in C.R. were shown with feature binding errors 

(feature not presented reported in target) more than illusory conjunction errors (feature 

belonging to distracter reported in target) defined as a function of search array location 

(Arend et al., 2008). In summary, after a discrete lesion in the left posterior pulvinar, 

C.R. showed mainly temporal perception impairments (Arend et al. 2008), no 

asymmetry with anti-saccades, but contralesional deficits with perceptual decisions. 
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T.N 

Damage History  

T.N. is a 60-year-old, right handed, hypertensive woman who suffered a 3cm 

intercerebral haematoma cantered in the right thalamus 8 years prior to testing. The 

lesion is focal, including the lateral thalamic nucleus and anterior-lateral pulvinar 2mm 

dorsal to the AC-PC line (anterior-posterior commissure). Impairments were found in 

the lower left visual fields. She has motoric impairments in the left arm and leg, but the 

patient is mobile with a cane.  

Functional Deficits  

T.N. showed lesions in anterior and lateral pulvinar and was found to have mostly 

spatial deficits (Warden et al. 2002). In the presence of nearby distracter features in her 

impaired quadrant, which is the lower left, stimuli were more likely to be misallocated 

and so more likely to be incorrectly bound to features at nearby locations. T.N. also 

showed a deficit in target localization in the contralesional field. 

D.G 

Damage History  

D.G. is a 70-year old, right handed man who suffered a hypertensive haemorrhage in 

the left thalamus with a remaining lesion in the middle part of the pulvinar 3 years prior 

to testing. Slight motoric impairments (weakness) remain in the right arm and leg but 

the patient is mobile with a cane. 

Functional Deficits  

D.G. has left pulvinar lesion anterior (partly like T.N), which extends into posterior 

(combines the lesions of T.N. and C.R). Contralesional impairments were apparent in 

perceptual tasks (Arend et al., 2008). 

J.L 

Damage History 

J.L. is a 65-year-old woman who suffered an intercerebral haemorrhage bilateral 

posterior thalamic bleed 3 years prior to testing. On the right side the haematoma was 
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small and limited to the pulvinar nucleus, while on the left the bleeding was slightly 

more extended.  

Functional Deficits  

This patient has not been tested in any other studies before. 

4 Analysis  

Data analysis was identical to procedures described in Chapters 2 and 3. The same 

elderly control group as for FEF patients were applied for statistical comparisons (Table 

3b in appendix). The non-parametric Mann-Whitney U test has been preformed for 

statistical comparison of cpd and lateralization effects between the few pulvinar 

patients tested and eight healthy controls.  

 

5 Results  

 

5.1 Perceptual Sensitivity 

Contrast sensitivity thresholds for individual patients and controls are shown in Table 4 

in the appendix. The mean perceptual thresholds as calculated in Michelson contrast in 

% in pulvinar patients for fovea were 9.9 % (SEM=2.1) for periphery left 20.4 % 

(SEM=4.4) and right 34.4 % (SEM=4.1) while combined left and right was of 27.4 % 

(SEM=3.1). In controls mean perceptual thresholds for fovea were 7.9 % (SEM=1.1) 

for periphery left 16.7 % (SEM=2.4) and right 17.1 % (SEM=3.2) while combined left 

and right 16.9 % (SEM=2.7).  

 

5.2 Lateralization Effects  

The data described above indicate differences in perceptual sensitivity in left and in 

right visual fields in pulvinar patients. Cpd has been calculated for each of the 

peripheral loci separately. As Fig.40a/b illustrates in pulvinar patients cpd for left visual 

field (calculated as a ratio of perceptual thresholds in left visual field divided by 

perceptual thresholds in fovea) was M=2.1, SEM=0.2 while for right visual field it was 

of elevated ratio M=3.9, SEM=0.9 (Table 4 in appendix). Non-parametric independent 

Mann-Whitney U test revealed that the left visual field ratio (M=2.1, SEM=0.2) was 

not significantly higher than in healthy controls (M=2.1, SEM=0.2) (p > .05). However, 

the right visual field ratio (M=3.9, SEM=0.9) was significantly elevated in pulvinar 

patients when compared with healthy controls (M=2.1, SEM=0.1) (p=.017). Although 
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there is high variability of cpd for right visual field within the pulvinar patients group, 

there were no systematic perceptual sensitivity impairments, for example depending on 

the lesion side. For instance the right pulvinar damage did not always result in left 

visual field deficit, and left pulvinar damage did not always result in right visual field 

deficit. Therefore, results from all pulvinar patients have been averaged to see the 

general trend. 

 

5.3 Centre-Periphery-Difference 

Centre-periphery differences were combined for the left and right visual field for the 

pulvinar patients and using non-parametric independent Mann-Whitney U test revealed 

significantly elevated cpd in pulvinar patients (M=3.0, SEM=0.4) when compared with 

age-matched controls (M=2.1, SEM=0.1) (p=.016).  

 

a) Lateralization of cpd                                     b) Cpd 
 

 
 
  
 
 

 
 
 
 
 
 

 
 
  
 
 
 

Figure 40a/b. Cpd in perceptual sensitivity for pulvinar patients and healthy age-matched 

controls calculated as a ratio periphery (at 13 degrees eccentricity) divided by fovea (ratio 

P/F). a) Lateralization effects. Left visual field cpd in pulvinar patients is significantly elevated 

when compared with healthy controls (p=.017). b) Cpd averaged over both visual fields is 

significantly elevated in pulvinar patients when compared with healthy controls (p=.016). 

 

6 Discussion  

Due to ocular anchoring by foveal stimuli reported in earlier studies (Rafal et al., 2004), 

increased cpd was hypothesized in pulvinar patients. Accordingly, elevated cpd has 

been found in four pulvinar patients tested. Additionally, lateralization effects for cpd 

increase were found in this study. Pulvinar patients seemed to show slightly elevated 

perceptual sensitivity in all three retinal loci tested, however perceptual sensitivity in 

the right visual field was highly impaired resulting in higher cpd ratios.  
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However, high interindividual differences were prominent for the pulvinar patient 

group tested. Some of the patients showed improved foveal processing and less 

impaired peripheral processing, other patients showed the opposite. However, the 

patients were of 2 age cohorts and showed differently lateralized lesions (2 were of left 

pulvinar damage, one of right pulvinar damage and one of bilateral pulvinar damage), 

which might have contributed to differences in lateralization of perceptual sensitivity. 

For instance, the young patient C.R. showed high cpd which was strikingly lateralised 

towards contralesional visual hemifield impairment. Other patients did not show clear 

contralesional effects. Previous studies with patient C.R. reported foveally tested 

temporal binding deficit (Arend et al. 2008) and when tested parafoveally (4 visual 

angles eccentricity) minor contralesional deficit in contrast processing. High deficits in 

contrast processing were reported only in the presence of visual distracters at 4 visual 

degrees in periphery and suggest visual filtering deficits (Snow et al., 2009). However, 

stimulus parameter employed in Snow et al., 2009 were different to those applied here. 

Stimulus duration of vertical Gabor patches was of 500 ms, while Gabor patches in this 

work were of 40ms presentation duration. Additionally, patients were tested at higher 

visual eccentricity (13 visual angle) than in Snow et al., (4 visual angle).  

 

For future, it would be of interest to examine the entire visual field of pulvinar patients 

to examine exactly their patterns of perceptual sensitivity which might differ between 

different eccentricities. Additionally, an increased number of testing trials and increased 

number of pulvinar patients with homogenous pulvinar lesions should be tested to 

avoid or to examine interindividual differences.  
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         CHAPTER 5 
 

EXPERIMENTS 5 and 6  

 

CPD AND COVERT ATTENTION AFTER FEF AND 

PULVINAR DAMAGE 

 

 

1 Rationale  

“Although there are a number of empirical approaches to the study of detection, most have not 

clearly separated between attentional factors and sensory factors and are thus incapable of 

providing an analysis of the relationship between the two. “ (Posner, 1980) 

 

Ruff et al., (2006) considered top-down control of covert attention as a possible 

explanation for outcomes of his FEF TMS stimulation on centre-periphery difference in 

contrast sensitivity. More studies have provided theoretical and empirical support for 

this assumption (Corbetta and Shulman, 1998, 2000: Kayser and Logothetis, 2006; 

Bender et al., 2008). There is strongly empirical evidence in humans suggesting that 

covert spatial attention can modulate neural sensitivity to peripheral stimuli 

behaviorally and at the neurophysiological level directly (Nobre et al., 1997). 

Additionally, studies in monkeys provided consistent evidence that FEF electrical 

stimulation changes performance in luminance discrimination tasks (Moore and Fallah, 

2001, 2003, 2004). Complementary, psychophysical studies in humans indicate 

attentional influence on contrast perception (Hawkins et al., 1990; Handy at al., 1996; 

Muller and Humphreys, 1991; Sumner et al., 2006). This was often shown with 

visuospatial cues combining the features top-down and bottom-up manipulation of 

covert and overt attention (Posner, 1980; Müller and Rabbitt, 1989a; Smith et al., 2005, 

2009; Carrasco et al., 2000; Carrasco et al., 2004; 2008, Pestilli and Carassco, 2005; 

Pestilli et al., 2007; Carrasco and Yeshurun, 1998; Yeshurun and Carrasco, 1998).  

Although, Ruff et al., interpreted their results in the form of covert top-down attention, 

many studies suggest FEF involvement in bottom-up visuospatial processing (Corbetta 

and Shulman, 1998, 2000) and there is no direct evidence from the FEF TMS study of 

Ruff et al. that excludes bottom-up attentional processes on visual areas and on contrast 

perception. Therefore experiments in this chapter aimed to examine both: top-down and 

bottom-up covert attention manipulations and their influence on centre-periphery 

difference in contrast sensitivity. This has been investigated in patients with FEF and 
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contrasted with studies in patients with pulvinar lesions. The reason for this was that 

similar to FEF, the pulvinar were reported to be involved in both types of attentional 

control in monkeys (Robinson, 1993; Peterson et al. 1987; LaBerge and Buchsbaum, 

1990; Grieve et al., 2000; Shipp, 2000; Weller et al. 2002; Chalupa et al., 1976; Bender, 

1981; Beneveto and Miller, 1981) and in humans (Ward et al., 2002; Danziger et al., 

2004; Rafal et al., 2004; Snow et al., 2009).  

 

2 Scientific Background 

 

Brain imaging, TMS and behavioural studies suggested strong links of the FEF area and 

effects of covert attention on oculomotor and low-level visual processing. However, 

patient studies seem to diverge as not reporting strong cueing effects on saccadic 

latencies, RT‟s or FOE (fixation-off-set effect) with chronic FEF damage. Attentional 

effects were tested in conjunction with oculomotor behaviour, measuring RT‟s or 

saccadic latencies and not visual perception in the form of perceptual thresholds. 

Therefore perceptual, attentional and oculomotor effects in FEF patients have not been 

differentiated (not disentangled). In pulvinar patients, contrast perception has been 

investigated recently (Snow et al., 2009). However, the experimental paradigm applied 

referred to perceptual filtering functions of the pulvinar. There is no study, which solely 

investigates visual properties in pulvinar patients or compared visual sensitivity 

between fovea and far periphery in pulvinar patients. The experiments presented here 

tested covert attention on contrast sensitivity without eye movements and examined 

sensitivity thresholds for the first time in FEF and pulvinar patients in fovea and in the 

periphery at 13 visual angles.  

 

The paradigms applied were well established cueing paradigms (Posner, 1980; Carassco 

et al., 1998; Pestelli et al., 2007). In the top-down attentional paradigm, valid and 

neutral central arrows were applied, to consciously direct attention towards central or 

peripheral loci where Gabor patches occurred with 100% validity. In the bottom-up 

attention paradigm, valid and neutral peripheral cues (grey filled boxes) were displayed 

centrally and peripherally to summon attention also with 100% validity. This was done 

to simplify the task for patients and elderly controls. Contrast sensitivity thresholds 

were assessed by an orientation identification task (horizontal vs. vertical) using an 

adaptive staircase method as described in Chapters 2-4. Cueing effects were obtained as 

the ratio of contrast sensitivity of neutral (loci indifferent) versus cued trials.  
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3 Hypothesis  

 

First, it was hypothesized that, if the attentional systems are well functioning in patients 

with FEF and pulvinar lesions, perceptual processing should be improved in both fovea 

and periphery. Second, if that is the case the deficits in contrast sensitivity measured in 

the previous chapters should also be made up for. Third, if the areas which are damaged 

play the same role in visuospatial attention control and perceptual processing, the 

perceptual deficits might not be made up for.  Fourth, attentional effects could differ 

with damage of different brain areas. If the FEF area and the pulvinar belong to the 

same visuospatial covert attention functional network, damage of these areas might - 

when tested for perceptual processing - reveal how this area could co-work in this 

functional system.  

 

      a) Hypothesis Patients                           b) Hypothesis Controls 

 

 

 

 

 

 

 

 

Figure 41a/b illustrates predictions of attentional effects on perceptual sensitivity 

thresholds. (a) in patients for intact and impaired retinal loci. Grey bars indicated assumed 

perceptual thresholds calculated as ratio (neutral/cued trials). Black dashed lines indicate 

thresholds obtained with neutral cues. The amount of attentional gain is indicated by the pink bar 

and pink dashed lines (which lower the visibility thresholds). (b) in healthy controls for fovea 

and periphery intact perceptual and attentional processing is expected in fovea and in periphery 

resulting in positive cueing effects at both retinal eccentricities.          

 

Patient data indicates that contrary results might be expected in FEF patients when 

compared with pulvinar patients for foveal visual processing. While the FEF patients 

have shown deficient fixation abilities (which might be entirely oculomotor 

impairment) in previous studies, attentional cues could stabilize their vision resulting in 

increased perceptual sensitivity. On the contrary pulvinar patients have been reported to 

show “sticky” fixation (Watson et al., 1979; Ogren et al., 1984) which could already 

enhance perceptual sensitivity in the fovea, so that attentional cues would have a higher 

impact on perceptual sensitivity in the periphery than in the fovea. Both contrary results 

might have effects on peripheral processing, too.  
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Fig.41a/b illustrates possible impacts of attentional cueing in patients and in healthy 

controls, which might help to disentangle sensory from attentional impairments in 

theses patients. Perceptual sensitivity should increase in patients at the intact retinal loci 

(visual thresholds will decrease) when the attentional processing is applied. However, if 

the attentional processing is impaired as much as visual processing then no cueing 

benefits will occur at perceptually intact or perceptually impaired retinal loci. Note, it 

still remains unclear if attentional or perceptual processing is impaired if no attentional 

effects occur at perceptually impaired loci. This will be clarified however, when 

simultaneously perceptually intact retinal loci show cueing benefits.  

4   Methods: Experiments 5 and 6 

4.1 Set Up for Top-down and Bottom-up Deployment of Attention  

The central cueing paradigm (i.e. deploying top-down attention) used central arrows to 

guide voluntary covert attentional shifts. Cues were 100% valid, and compared to a 

neutral condition in which all possible target locations were indicated. Targets could 

occur foveally or peripherally. Thus, a difference from the standard cueing paradigm 

was that the procedure included central targets as well as peripheral targets (both of 

which were cued centrally). In the second paradigm bottom-up cueing was applied. 

Stimuli near the location of a possible target flashed briefly just before target onset, to 

summon covert attention on the automatic level. In this paradigm there were also 

central and peripheral targets but the cues were central to central targets and peripheral 

cues were for peripheral targets. Two groups, patients with FEF and pulvinar lesions 

were tested and compared with age matched controls in exactly the same tasks. 

4.2 Participants 

The healthy control group consisted of two age cohorts to match the age of elderly and 

the young patient C.R. (age 20 years). The elderly age matched healthy control group 

was of mean age: 65, n=11 and the young age matched healthy control group was of 

mean age: 24, n=11, in top-down attentional paradigm. Additionally, exploratory 6 

elderly (mean age: 66 years) and 4 young healthy controls (mean age: 21 years) have 

been tested in the bottom-up attentional paradigm. All participants gave informed 

consent in accordance with the local ethics committee before the study. Additionally, a 

fourth FEF patient, patient C.W, was available for attentional cueing experiments. 

Multiple slices of C.W are included in the appendix figure 1a (p. 204).   
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Patient C.W: The 60-year-old (at the time of testing) male stroke patient C.W. showed 

on an MRI scan a large infarction involving much of the right frontal and parietal lobes, 

indicating an infarct. Time from infarct was 11 years at the time of testing. Patient 

showed contralesional motor impairments with no functional use of the left hand.   

 

                             

 

 

 

 

Figure 42. Patient C.W. MR scans which shows frontal right hemispherical lesion 

extending into parietal areas. For multiple slices see appendix figure 1a (p. 204).  

 

4.3 Stimuli 

Gabor patches of vertical and horizontal orientation as described in Chapter 2 were 

applied. A black dot was used as a fixation point in the following experiments and 

stimulus presentation was randomised. Prior to target presentation, cues were displayed.  

 

4.4 Procedures 

Cueing Paradigms 

Top-Down Control of Attention: Red arrows placed in the center of the screen were 

employed to manipulate top-down covert attention and indicated left, right or central 

location of a subsequent Gabor patch. For the neutral condition, three joined centrally 

placed red arrows were displayed, each indicating different locations (Fig.43a).  

Stimulus-Driven Control of Attention: In the bottom-up paradigm rectangular boxes 

of grey colour (mean luminance 25 cd/m
2
) and size of 2x1cm, were displayed for 

100ms. The bottom-up cues were placed just above the location where the subsequent 

Gabor patch was to be shown (Fig.43b).  

Trial Sequence 

 

The core presentation sequence in all attentional manipulation experiments consisted of 

a fixation point, which remained until stable fixation was achieved by a patient, 

followed by the display of a Gabor Patch for 40ms (Fig.43a/b). A trial sequence was 
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composed of a fixation point, a cue, and a target followed by a blank screen (Fig.43a/b). 

Each trial of fixation point-target sequence or of the cue-target sequence was initiated 

by a button-press by the experimenters, triggering a display of a fixation point till the 

participant fixated, followed by manual initialisation of a target/cue display, which was 

then proceeded by an interval of blank screen till participants verbal report. For 

peripheral trials, the clearly visible fixation point in the centre disappeared with the cue 

onset. The experimenter controlled the experimental flow in accordance with the 

patient‟s fixation abilities and readiness state. Such a procedure allowed for maximal 

adaptation to elderly participants‟ and to patients answers, behaviour and their resting 

needs. In order to counter balance for potential order confounds, adaptation or strategic 

eye movement shifts, cues and target locations as well as target orientation were 

presented randomly (as generated by the computer). 

 

 

         a) 

  

 

 

                

 

 

  

                      b) 

 

 

 

 

 

  

 

 

Figure 43a/b. Paradigms used to manipulate covert visuospatial attention: (a) top-down 

control of attentional shifts; (b) bottom-up control of attentional shifts. The stimulus sequence 

started with a fixation point and the stimulus sequence was triggered by the experimenter during 

stable fixation. This was monitored online using an eye tracker. In (a) red arrows placed 

vertically slightly off center were displayed and when fixation was stabilized in patients the 

target display triggered. The targets – horizontally or vertically oriented Gabor patches were 

displayed for 40 ms. In (b) the same parameters were applied but the cue was displayed for 40 

ms only. The time parameter differences were necessary in order to avoid reversed effects 

during (b) such as inhibition of return.   
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Cueing Effects Estimation  

 

Cueing effects were obtained by a forced-choice verbal response task within 120 trials 

per participant in one session. The experimental session duration was of ca. 40 minutes. 

A demonstration phase and a training sequence of 20 trials preceded the testing phase 

for each participant. The first block consisted of 60 trials; following blocks consisted of 

120 trials. The first block implemented a bigger step size (1.4) and served the 

estimation of approximate threshold as well as a training phase. Participants were 

instructed to maintain fixation on the central fixation point during the trial sequence and 

to report the orientation of targets seen - without moving their eyes towards the 

peripheral targets. Participants were instructed to focus on the cue, which indicated the 

location of a proceeding target, as well as to be attentive to the expected location. 

Participants were reminded not to move their eyes towards the side of the expected 

direction of the target display. Stimulus initialization was during stable fixation and 

verbal responses were coded by the experimenter with key-presses accordingly, while 

the fixation was monitored online.  

 

5 Analysis 

Reversal values were obtained from all blocks to estimate the mean threshold value for 

each location tested at neutral (uncued) and cued trials. Ratios were calculated from 

reversal values uncued/cued. For comparison between neurological patients and healthy 

participants t-tests or non-parametric tests have been applied using SPSS19.  

 

6 Results and Discussion  

This results section is composed of three sections of which each is followed by a 

separate discussion. Section 1 describes and discusses results obtained from neutrally 

cued trials in the top-down cueing paradigm. Section 2 describes and discusses top-

down cueing effects obtained in the same experiment. Section 3 describes and discusses 

bottom-up cueing effects and compares them with top-down cueing effects. Note that 

effects found for bottom-up attention and the comparisons made with results obtained 

in the top-down paradigm as well as the conclusions driven are preliminary due to small 

number of trials and controls tested in the bottom-up paradigm. Future studies should 

examine in more detail the patterns found here.  
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6.1. Perceptual Sensitivity obtained from Neutral Cues in Top-down 

Paradigm       

 

Experiment 5a 

 

6.1.1 Results: Centre-periphery Difference  

 

Controls 

 

Centre-periphery difference in perceptual sensitivity as revealed in top-down attentional 

paradigm has been calculated for healthy young controls (n=10) (M= 2.1, SME= 0.3) 

and healthy elderly controls (n=11) (M=1.8, SME=0.1). Two-sample t-test revealed non 

significant differences between the two age cohorts (two-tailed, p > .05). Therefore 

controls‟ data has been pooled together to be compared with patient groups. The 

combined healthy control group (n=21) showed significant differences for contrast 

sensitivity between fovea and periphery (left and right combined) (two-sample t-test 

(two-tailed), t=5.451, df=20, p=.001).  

 

Patients 

 

Centre-periphery difference was elevated in both patient groups but was however 

significantly elevated only for the pulvinar patient group (Md=21.75) when compared 

with healthy controls (Md=11.98) (non parametric Mann-Whitney U Test, Z = - 2. 605, 

two-tailed, p=.009). Centre-periphery difference in the FEF patient group (Md=18.33) 

did not reach significance level when compared with controls (Md=11.98) nor with the 

pulvinar patient group (non parametric Mann-Whitney U Test, two tailed, p>.05) 

(Fig.44a and Table 5a-c in appendix).  

 

6.1.2 Results: Perceptual Sensitivity  

 

As shown in Fig. 44b. and Table 5a-c (appendix) for each patient group contrast 

sensitivity thresholds when compared between fovea (FEF M=10; Pulvinar M=2.2) 

periphery left (FEF M=27.2; Pulvinar M=7.4) or periphery right (FEF M=21.9; 

Pulvinar M=7.9) did not reach significance levels (non parametric Wilcoxon Sign 

Rank, p>.05) although contrast sensitivity thresholds for both patient groups did show 

descriptively a prominent elevation and the p-value was approximately 0.07 in most of 
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the fovea-periphery comparisons. In healthy controls, as expected, contrast sensitivity 

thresholds were lower in fovea (M=3.3, SEM=0.2) than in periphery left (M=6.2, 

SEM=0.45) or right (M=6.3, SEM=0.57) (left periphery: paired sample t-test, (two-

tailed), t=-6.524, df=20, p=.00; right periphery (paired sample t-test, (two-tailed), t=-

5.263, df=20, p=.00), and no significant difference was shown between both peripheral 

loci (paired sample t-test, (two-tailed), p>.05).  

 

a) Cpd for FEF, pulvinar and controls 

 

 

 

 

 

 

 

 

b) Contrast thresholds at three retinal loci 

 

 

 

 

 

 

 

 

 

c) Cpd differences between FEF and Pulvinar 

 

 

 

 

 

 

 

 

 

 

As shown in Fig.44c and in Table 5a-c (appendix) when patient groups were tested for 

contrast sensitivity differences for each location divided by contrast sensitivity values 
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Figure 44a/b/c. Centre-periphery 

difference obtained in neutral trials 

for FEF and pulvinar patients, and 

controls (in top-down attentional 

trials). (a) Cpd in each group tested, 

calculated as a ratio from perceptual 

thresholds in periphery (left and right 

combined) and divided by perceptual 

thresholds in fovea (P/F). Cpd is highest 

in pulvinar patients and differs 

significantly from healthy controls as 

indicated by double asterix. Single 

asterix indicates the significant cpd 

within the control group (b) perceptual 

sensitivity thresholds calculated as 

Michelson Contrast in % for each retinal 

locus tested. FEF patients showed 

extremely increased perceptual 

thresholds in comparison to pulvinar 

patient group and healthy controls. This 

indicates high perceptual impairment in 

all retinal loci tested, with highest 

impairment in the contralesional visual 

field. However, there was extreme intra 

group variability in the FEF patient 

group resulting in high standard errors 

(indicated by error bars). Pulvinar 

patients have shown a decreased 

perceptual threshold in the visual centre 

while increased in the periphery left and 

right when compared with healthy 

controls, no consistent pattern of 

lateralization effects show up in the 

group analysis. (c) The cpd ratio has 

been calculated for perceptual thresholds 

in FEF and pulvinar group separately 

each divided by perceptual thresholds 

obtained from the control group 

(baseline) for each retinal locus tested. 

Cpd differed significantly between FEF 

and pulvinar patients for fovea.  
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obtained from controls (baseline), contrast sensitivity was significantly different in 

fovea for FEF patients (Md=6.25) as compared with the pulvinar patient group 

(Md=2.75) (non parametric Mann-Whitney U Test, Z = -2. 071, (two-tailed), p=0.38) 

but the differences for peripheral loci were not significant (non parametric Mann-

Whitney U Test, p >.05).  

6.1.2 Discussion: Contrast Sensitivity obtained from Neutral Cues in Top-Down 

Paradigm (Experiment 5a) 

In the next section contrast sensitivity results from the neutral cueing condition will be 

discussed, interpreted and compared with results obtained from contrast thresholds 

estimation procedures described in Chapters 3 and 4. Finally, a conclusion about a 

possible indication for the fronto-pulvinar-occipital network will be proposed.  

FEF Patients 

FEF patients did not show significantly elevated centre-periphery difference when 

compared with healthy controls. Nonetheless, the trend in the data indicates towards 

smaller cpd than the pulvinar patients, but higher than cpd in healthy controls. On the 

other hand within group contrast sensitivity between fovea and periphery did not differ 

significantly. This is expected when FEF TMS acted as a lesion. However, the 

thresholds were elevated in both fovea and periphery in FEF patients and differed again 

as in Chapter 3 within the patient group. The extremely high signal to noise ratio which 

is evident in FEF group lowers the effects which then do not reach a significant level. 

This could be reduced via three methods: (a) collapsing the results from Chapters 3 and 

5, if cpd in contrast thresholds do not differ significantly between the two experimental 

sessions, (b) the FEF patient group should be enlarged in future and (c) patients only 

with focal right FEF lesions should be tested. Interestingly, the FEF patients showed in 

both testing sessions (Chapter 3 and here) a tendency to contralesional deficits in 

contrast sensitivity, which indicates a small but robust pattern, which is consistent with 

other occulomotor and perceptual effects reported in FEF patients in earlier studies 

(Rafal et al., 2004). The contralesional elevation of perceptual thresholds in FEF 

patients would partly allow an explanation of FEF TMS results (Ruff et al., 2006) 

predicting that TMS acted on FEF in a subthreshold manner. However, if the results 

with a focused and enlarged group of right FEF lesioned patients remain with no 

difference in contrast sensitivity between fovea and periphery, this could be a clear 

indication for FEF TMS acting as a lesion. Thus, in conclusion the data presented here 

is too vague to draw final conclusions about the FEF TMS. However, a third 
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interpretation of the data is possible, which simply suggests that chronic FEF lesions 

are not comparable with transient FEF TMS effects. Therefore, both methods should be 

applied complementarily to deliver a better understanding of complex brain 

mechanisms and to illuminate functions of singular brain areas in the human brain.    

Pulvinar Patients  

Centre-periphery difference was significantly elevated for the pulvinar patient group 

when compared with healthy controls, which is consistent with results in Chapter 4.  In 

the experimental session described in this chapter the pulvinar patient group showed 

high intra-group variability as it did in the lateralization of lesions. No consistent effects 

were found between perceptual impairment and the lateralization of lesions within the 

pulvinar patient group and between the testing sessions of contrast sensitivity (Chapter 

4 and Chapter 5), which seems different from the very consistent results in the FEF 

patient group. Also previous studies (Snow et al., 2009; Ward et al., 2001, Arend et al., 

2008; Rafal et al., 2004) found rather systematic contralesional effects. However, the 

tasks applied in this work investigated contrast perception at different eccentricities and 

the paradigm used was measuring thresholds at simple perceptual level (no saccadic or 

attentional aspects like filtering functions) were involved – contrary to earlier studies of 

pulvinar and thalamic patients.  

Fronto-pulvinar-occipital Network  

More importantly, for the understanding of the fronto-pulvinar-occipital network for 

visuospatial processing in humans the comparison of the two patient groups is 

indicative. By taking the robust contrast sensitivity thresholds obtained from 21 healthy 

participants as a baseline value the contrast sensitivity thresholds in pulvinar and FEF 

patients have been compared. The results of this comparison help to differentiate the 

roles of FEF and pulvinar in visuospatial processing network. The FEF patients were 

found to show impaired perceptual sensitivity in fovea while pulvinar patients have 

shown enhanced perceptual sensitivity in fovea. Both results are consistent with the 

hypothesis derived from previous occulomotor and attentional studies of these patients 

that longer fixation times can lead to better perceptual performance in pulvinar patients 

in the fovea while the opposite should happen with jiggling fixation in FEF patients. 

This suggests possible complementary functions of fixation/ fixation release neurons in 

the FEF area and the thalamic pulvinar, which further suggests that these areas indeed 

work within one functional network crucial for visuo-spatial processing.  
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For peripheral processing these two brain areas seem to show parallel than 

complementary effects. Impairment of both, FEF or pulvinar, resulted in the tendency 

towards impaired peripheral visual processing in the form of elevated contrast 

thresholds in the periphery. However, the cpd in pulvinar patients seems to be produced 

by improved foveal contrast processing with impaired peripheral processing. FEF 

patients showed in average extremely impaired contrast processing in both fovea and 

periphery – resulting in overall cpd increase which however did not reach significance 

level. FEF patients show small but consistent contralesional peripheral impairments in 

perceptual sensitivity which was not evident in pulvinar patients.  

The presented behavioral results allow distinguishing the two brain areas in their impact 

for visuospatial processing within possibly one or two neural circuits. For future it still 

remains to answer if neural populations within and between both areas act separately or 

in synchrony to form two visuospatial processing streams, one involved in foveal and 

the other involved more in peripheral visual processing. The data presented here 

requires further support from increased number of patients tested. 

6.2 Perceptual Sensitivity Gain with Top-Down Attentional Cueing 

(Experiment 5b) 

 

6.2.1 Results  

Fig.45a/b illustrates systematic differences in top-down cueing between and within 

patient groups and controls tested.  

a) Cueing effects FEF, pulvinar, controls          b) Cueing effects ratio FEF/Pulvinar 

 

 

 

 

 

 

 

 

Figure 45a/b. Top-down cueing effects in FEF and pulvinar patients and age matched 

controls. (a) Calculated as ratio between visual thresholds obtained in neutral divided by 

threshold values obtained in cued trials. (b) Cueing effects ratio obtained from cueing values in 

the FEF patient group divided by cueing values obtained in the pulvinar patient group for each 

retinal locus. Values above ratio 1 indicate that cueing effects were bigger in FEF patients, while 

values below ratio 1 indicate that the cueing effects were bigger in pulvinar patients. Note that 

the axis in b) is stretched (ratio values 0.6-1.4) in order to provide a clear image of extremely 

small differences. None of the differences illustrated here were significant (p>.05). 
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As Fig. 45a shows healthy age matched controls show in average very small but 

positive cueing effects for all loci tested (fovea (M=1.2, SEM=0.1), periphery left 

(M=1.1, SEM=0.1), periphery right (M=1.1, SEM=0.1). FEF patients benefited from 

cueing effects in fovea (M=1.19, SEM=0.09) while pulvinar patients seem not to 

benefit much from foveal cueing (M=1.04, SEM=0.03) (Table 6 in appendix). 

Lateralization effects occurred in top-down cueing in both patient groups. Both the FEF 

and the pulvinar patient groups showed perceptual benefits with attentional top-down 

cuing effects in the left visual field (FEF periphery left (M=1.19, SEM=0.2); Pulvinar 

periphery left: (M=1.44, SEM=0.21) while cueing costs appeared in the right visual 

field in both (FEF periphery right (M=0.86, SEM=0.11); Pulvinar periphery right 

(M=0.81, SEM=0.07). This pattern is also illustrated in Fig.45b which shows cueing 

effects ratio obtained from cueing values in the FEF patient group divided by cueing 

values obtained in the pulvinar patient group for each retinal locus. Ratio values above 

1 show that FEF patients benefited more from top-down cuing in fovea than the 

pulvinar patients  (FEF/Pulvinar ratio in fovea (M=1.21, SEM=0.2)). Ratio values 

below 1 show that pulvinar patients benefited more from top-down cuing in the left 

visual field than the FEF patients as  group (FEF/Pulvinar ratio periphery left (M=0.91, 

SEM=0.3)). Cueing costs in the right visual field did not differ much between both 

patient groups (FEF/Pulvinar ratio periphery right (M=0.99, SEM=0.2)).  

 

Controls 

 

Top-down cueing effects for young and elderly controls were not found to differ 

significantly (young controls: (fovea (M=1.15, SEM=0.9), periphery left (M=1.2, 

SEM=0.07), periphery right (M=1.15, SEM=0.1)), elderly controls: (fovea (M=1.41, 

SEM=0.13), periphery left (M=1.05, SEM=0.06), periphery right (M=1.07, 

SEM=0.06)) (two-sample t-test (two-tailed), p >.05) and were collapsed for further 

comparisons with patients (Table 6 in appendix). 

 

Patients  

 

Although there are interesting patterns in top-down cueing effects, they did not differ 

significantly between the loci tested in any of the patient groups when compared with 

healthy controls or between the FEF and pulvinar patient groups (non parametric Mann-

Whitney U Test, two-tailed, p>.05). However, it might be useful to mention for 

purposes of future studies that the trends described above and illustrated by Fig.45a/b 

show a trend towards significance. These were the top-down cueing difference between 
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left and right visual fields in the FEF patients (non parametric Wilcoxon Sign Rank, 

p>.05) and between the FEF and the pulvinar patients for fovea (non parametric Mann-

Whitney U Test, Z = -1. 845, (two-tailed), p=0.65) as well as top-down cueing effects 

in the right visual field when pulvinar patients were compared with the healthy control 

group (non parametric Mann-Whitney U Test, Z = -1. 071, (two-tailed), p=0.62).  

         6.2.2 Discussion  

Top-down cueing effects show a distinct pattern in FEF and pulvinar patients, which 

however did not reach significance levels. The pattern of top-down cueing effects 

however seem to be consistent overall with results obtained in contrast perception 

without attentional cueing. Firstly, FEF patients show higher attentional cueing benefits 

in the fovea than the pulvinar patients. Perceptual sensitivity was extremely lowered in 

the FEF patient group according to Experiment 3 in Chapter 3 and thresholds obtained 

in the neutral cueing condition in Experiment 5 described in this chapter. However, on 

average the FEF patients seemed to be able to compensate for this when directional 

attention cues were applied in a top-down manner. FEF patients seem also to be able to 

compensate for contralesional deficits in the periphery and surprisingly show cueing 

deficits in the less impaired visual field (ipsilesional). Thus, FEF patients are able to 

benefit from top-down processing over most loci of their visual filed no matter how 

much impaired and independent from lateralization of the FEF damage.  

 

Pulvinar patients have shown deficits in top-down cueing benefits in the right visual 

field similar to that of FEF patients and contrary to FEF patients also deficits in fovea. 

Pulvinar patients have shown less perceptual impairment in the periphery and improved 

perceptual sensitivity in the fovea when compared with FEF patients in previous 

experiments (Experiment 3 in Chapter 3 and in neutral cueing trials in Experiment 5). It 

seems that with maximum perceptual processing in the fovea, pulvinar patients do not 

benefit from top-down processing, which leads back to prolonged fixation in pulvinar 

patients (Rafal et al., 2004). It seems however, that pulvinar patients benefit from top-

down cueing only in one peripheral visual field, the left visual field. Experiment 4 in 

Chapter 4 showed higher perceptual impairments in the right visual field. Pulvinar 

patients seem not to be able to compensate for perceptual deficits via top-down directed 

attention, which is contrary to FEF patients. However, pulvinar patients seem to be able 

to apply top-down directed attention in the less perceptually impaired visual field. It is 

however important to mention that none of the described effects reach significance 

level. Additionally, it is surprising that the right visual field did not benefit in either of 
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the patient groups. A replication of the experiment could cast light on how robust these 

results are.  

 

It remains therefore to speculate if attentional and perceptual functions are to be 

disentangled in both of these patient groups. The rather inconsistent attentional benefits 

however could indicate a possible disentanglement of visual and attentional effects in 

visual hemifields in FEF patients which should be investigated in more detail in future. 

Interestingly, cueing effects in FEF patients for fovea and left visual field 

(contralesional) were the same. This could indicate equalization of attentional benefits 

for fovea and periphery left in FEF patients. This however does not lead to an 

equalization of perceptual sensitivity (foveal perceptual sensitivity in FEF patients was 

better than the periphery originally, thus top-down attention did not equalize the cpd 

difference in FEF patients). Overall it seems that top-down attention can be 

disentangled from perceptual sensitivity in FEF patients and in pulvinar patients too.  

 

6.3 Perceptual Sensitivity Gain with Bottom-up Attentional Cueing 

(Experiment 6) 

 

6.3.1 Results  

 

Fig.46a/b and Table 7a-b in appendix illustrate bottom-up cueing effects (a) between 

and (b) within tested patient groups.  

a) Cueing effects, FEF, pulvinar, controls         b) Cueing effects ratio FFF/Pulvinar 

 

 

 

 

 

 

 

 

 

Figure 46a/b. Bottom-up attentional effects as a ratio between top-down cueing effects 

divided by bottom-up cueing effects. (a) Small but positive bottom-up cueing effects were 

evident in both patient groups and in healthy age-matched controls. (b) Top-down and bottom-

up cueing effects were contrasted in FEF and pulvinar damage for three retinal loci tested. Note 

that the axis in b) is stretched (ratio values 0.7-1.3) in order to provide a clear image of the 

extremely small differences. None of the differences however were significant (p>.05) and 

illustrate only effects which can be seen only as hints for future studies.  
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Controls 

 

Top-down cueing effects for young and elderly controls were found not to differ 

significantly (young controls: (fovea (M=0.99, SEM=0.5), periphery left (M=1.13, 

SEM=0.12), periphery right (M=1.28, SEM=0.04)), elderly controls: ((fovea (M=1.17, 

SEM=0.05), periphery left (M=0.98, SEM=0.05), periphery right (M=1.05, 

SEM=0.04)) (two-sample t-test (two-tailed), p >.05) and were collapsed for further 

comparisons with patients. 

 

Patients  

 

Bottom-up cueing effects on perceptual sensitivity did not differ significantly between 

the loci tested in any of the patient groups when compared with healthy controls or 

when compared between the FEF and pulvinar patient groups only (non parametric 

Mann-Whitney U Test, two-tailed, p>.05). In general, all groups benefited more from 

central cues than the peripheral; in particular sensitivity thresholds were improved in 

the right visual field in healthy controls and in patients. 

6.3.2 Discussion  

Bottom-up Cueing Effects 

Bottom-up attentional effects seem not to be affected by any of the lesions examined. In 

fact both, FEF and pulvinar patients show slightly more foveal than peripheral cueing 

gain, of which the right visual field shows best cueing benefits. This is somehow 

surprising as it was expected that bottom-up attentional control would be impaired at 

least in pulvinar patients and perhaps in FEF patients, too. Previous brain imaging and 

monkey studies indicated involvement of these brain areas in visual saliency and 

bottom-up visual processing. Interestingly, some advantage in the right visual field has 

been shown in all groups which is in accordance with studies reporting RVF advantage 

for attentional effects. However, the bottom-up cuing effects were extremely small. 

Firstly, the task was extremely difficult for patients and would require more trials to 

learn it and to show consistent effects. Cueing effects to visibility thresholds have been 

reported rarely and are usually very small possibly due to the nature of the task in 

general. Signal-to-noise ratio could be increased by increasing a) amount of trials and 

training b) the sample size of patients.  
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Comparison of Bottom-up and Top-Down Cueing Effects 

 

The comparison of top-down cueing effects with bottom-up cuing effects have shown 

differences in foveal processing but not peripheral processing between both patient 

groups. Cueing effects differed for fovea, small but positive perceptual sensitivity gain 

with top-down cueing was observed in FEF patients, while small perceptual costs were 

observed in pulvinar patients with top-down cueing (and perceptual sensitivity benefits 

with bottom-up cueing). However, there are some lateralization differences in cueing 

benefits when compared for left and right visual fields. Both, damage to FEF and 

pulvinar resulted in positive perceptual gain in the left visual field when the top-down 

cueing paradigm was used; while for right visual field bottom-up cueing resulted in 

perceptual sensitivity benefits. Thus, it can be assumed that FEF and pulvinar provide 

opposite mechanisms for fixation in the fovea, but seem not be distinguishable for 

cuing effects and mechanisms in the periphery left or right. It is however, somehow 

surprising that bottom-up and top-down attentional gain was different between the 

peripheral loci and not between the sites of the damage. The results could be explained 

by lateralization effects for healthy participants that indicate right visual field advantage 

for attentional effects, and left visual field advantage for visual perception (bottom-up 

saliency). Therefore, top down attentional control would be more impaired in the right 

visual field while bottom-up attentional control would be more impaired in the left 

visual field. Both brain areas, FEF and pulvinar could be passively passing such signals 

for left or right visual field without modifications (for example inhibitory effects) so 

that damage to both areas results in exactly the same effects for each visual field. 

However, these are only speculations as none of the results presented here reached 

significance levels. Only a replication study with increased number of patients and trials 

could reveal if these patterns are meaningful. 
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CHAPTER 6  
 

EXPERIMENTS 7-9 

CPD IN SENSORIMOTOR PROCESSES I  

 

 

1   General Introduction to Chapter 6 and Chapter 7 

 

1.1 Qualitative or Quantitative Differences between Foveal and Peripheral 

Visuomotor Processing 

In line with experiments described in Chapters 2-5 it becomes evident that the 

fundamentals of human visual perception such as cpd in visual sensitivity shape 

complex brain mechanisms to ensure successful human-environment interactions. 

Chapters 2-5 were concerned with one of these processes – the top-down control of 

visuospatial processing and attention which examined, to what extent two brain areas 

are involved in these processes. The top-down control of covert visuospatial attention 

shifts can be considered as a visuo-motor control mechanism which increases visual 

sensitivity in the periphery but is not based on eye movements. Another control 

mechanism for visuo-motor processing in the brain has been reported to be influenced 

by cpd in visual sensitivity (Schlaghecken and Eimer, 2000). The cpd in visual 

sensitivity has been considered to have an impact on subconscious control mechanisms. 

This resulted in a proposal for a qualitative difference in foveal and peripheral 

sensorimotor processes.  

 

Accordingly and initially, it was proposed that cpd in masked priming is closely linked 

to retinal sensitivity (Schlaghecken and Eimer; 2000); in other words, that NCE 

occurrence would depend on the strength of sensory traces elicited by mask primes and 

that perceptually strong primes were able to trigger activation and inhibition 

mechanisms in the motor system (Schlaghecken and Eimer; 2002). And so with larger 

peripheral stimuli, NCEs have been detected in the periphery. Thus it became accepted 

that no fundamental cpd for NCE remain when cortical magnification is controlled for 

(Lingnau and Vorberg, 2005).  However, none of these studies provided evidence for 

NCE at extended retinal eccentricities. More importantly, it has not been tested 

whether the central and peripheral stimuli were equated in perceptual salience. 

Therefore the key prediction of the perceptual sensitivity hypothesis for the cpd in 
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priming has never been correctly tested. Consequently the following hypothesis will be 

tested in experiments described below. If foveal and peripheral primes are equated 

objectively (using threshold measurements), then the NCE/PCE should be identical for 

centre and periphery. The set of experiments introduced in Chapters 6 and 7 tested this 

prediction directly and also employed further eccentricities than Schlagecken and Eimer 

(2000) and Lingnau and Vorberg (2005). Additionally, the proposal is examined using a 

precise psychophysical method – which is a modified version of the visual thresholds 

estimation paradigm originally applied in Chapters 2-5.   

 

1.2 Overview of Chapter 6 and Chapter 7 

 

Chapter 6 describes 4 experiments concerned with the question of whether cpd in visual 

sensitivity is sufficient to account for visuo-motor priming differences between centre 

and periphery. Chapter 7 describes 3 experiments which examined aspects beyond 

cpd‟s visual sensitivity equation and succeeded in determination of the crucial aspect to 

obtain visuo-motor links originating in fovea and in the periphery.  

 

2 General Methods  

 

For all experiments described in Chapters 6 and 7, the procedure of prime equalization 

(Fig.47a) and priming effects (Fig.47b) were identical unless otherwise stated. The 

method is described in detail below and departures from this protocol are explained for 

subsequent experiments. All stimuli were displayed in three retinal positions: retinal 

centre, periphery left and right (6 degrees of visual angle) horizontally.  

 

2.1 Apparatus 

The stimuli were displayed in a dark room, on a Sony Triniton 19 inch GDM-F400T9 

monitor, driven by a Cambridge Research Systems (CRS) ViSaGe graphics board at 

100 Hz, which was calibrated with a CRS ColorCal and associated software. Viewing 

distance was 72 cm. Manual responses were made using a CRS CB6 button box. The 

subject‟s head was stabilised by a chin rest and a head rest. Stimulus control was 

provided by Matlab7.3. Eye tracking analysis was performed online; fixation was 

monitored by CRS high-speed video eye tracker. Trials on which saccades or blinks 

occurred and the eyes deviated outside a 1.5 degree window from fixation were 

discarded 
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         2.2 Stimuli  

Primes and targets were Gabor patches: phase-randomized sinusoidal gratings of 2 

cycles per degree either vertical (90 degrees) or horizontal (180 degrees) orientation, 

presented within a sinusoidal envelope with a SD of 0.5 degrees for all three retinal 

locations tested. All stimuli were presented against a grey background of a luminance 

of 55 cd/m
2
. Target presentation time for subliminal prime threshold estimation 

procedure was 40 ms and the starting contrast was set by the threshold procedure for 

each participant individually as described below. Masks were squared stimuli used to 

render Gabor patches invisible, e.g. to create subliminal primes. Masks consisted of an 

array of small squares and were of the same size as the Gabors. A constant total mask 

contrast (luminance amplitude) of 5 cd/m
2
 was displayed and mask presentation time 

was 100 ms for all experiments, mask mean luminance was 55 cd/m
2
. A mask was 

presented according to the retinal locus of the preceding Gabor.  

 

2.3 Procedures 

                                                                 

 

 

 

 

 

 

 

 

 

 

 

Figure 47a/b. Trial sequences applied to test (a) cpd in contrast sensitivity to subconscious 

primes and (b) cpd in visuo-motor priming. a) threshold measurement b) priming effects 

estimation procedure. Note that blank displays (fixation-prime interval, prime-mask interval and 

in (b) also mask onset-target-onset interval (SOA) are not shown in this schema in form of grey 

display as presented to participants – this is for simplification of the illustration). The sequence 

started with presentation of fixation cross for 100ms followed by prime display of 40ms, of 

which orientation – vertical or horizontal were randomly varied to match or not match the 

orientation of the target (compatible or incompatible trials). A square composed of small squares 

of varying luminance from trial to trial (maintaining constant mean luminance) rendered the 

prime invisible and was displayed for 100 ms. (Prime mask interval was 3 ms at which the 

observer saw a briefly displayed grey background). The mask target interval was displayed as 

grey background for 50 ms, while the target was displayed for 100 ms. This composed a SOA 

(stimulus onset asynchrony) or mask offset-target onset interval of 150 ms which is usually ideal 

to obtain NCE in fovea (Schlaghecken and Eimer, 1998). 
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In the experiments each participant took part in three identical sessions, each of which 

contained threshold measurements followed by priming estimation. Each session was  

ca. 20-30 minutes.  

 

2.3.1 Threshold Measurement 

 

Participants were required to identify the orientation (horizontal or vertical) of the 

masked Gabor patches in a two-alternative forced-choice task (2AFC) (Fig.47a). Each 

trial was self-initiated by a button-press, triggering a brief display of a fixation cross of 

500 ms, an interval display of 300 ms, followed by a Gabor patch display of 40 ms 

followed by an interval display of 50 ms, after which the mask was displayed for 100 

ms duration. Participants pressed one of two keys with the index- and middle finger of 

their right hand to indicate the orientation of a displayed masked Gabor patch. Index 

finger (left key on the response box) was for vertical orientation whereas the middle 

finger (right key on the response box) indicated the horizontally oriented Gabor patch, 

equivalently for all three retinal loci tested.  

 

Threshold search started above threshold. The initial luminance amplitude of the Gabor 

was 5 cd/m
2
 (9% contrast) for the foveal position or 10 cd/m

2 
(18.2 % contrast) for the 

peripheral positions, and this value was decreased by a ratio of 1.2 if participants gave 3 

correct responses in a row, while it was increased by the same ratio for a single 

incorrect response (a three-down, one-up staircase procedure). A reversal on the track 

occurred after one negative response. This procedure converges on a performance level 

of 79% correct (Levitt et al. 1971). The prime-mask sequence was presented in three 

retinal loci either in a randomised order (i.e. the staircases for each were interleaved) or 

blocked, depending on whether the masked prime procedure was to be randomised or 

blocked (see below). Generally, participants performed more than one block of the 

threshold measuring procedure and the starting contrast in the second or third block was 

set by an estimate of the threshold from the previous block. Trials on which blinks or 

saccades occurred (where the eyes deviated outside a 1.5 degree window from fixation) 

were discarded and the trial was repeated the next time that location was randomly 

selected.  
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2.3.2 Estimation of Priming Effects  

 

Fig.47b shows the stimulus sequence for the estimation of priming effects. For central 

and the peripheral retinal locations, each trial sequence consisted of a fixation cross, a 

prime, a mask and a target with blank intervals in-between. Except for the target, the 

stimuli were identical to those used in the threshold measurement procedure. After the 

mask there was a blank interval of 50 ms, and then the target was presented for 100 ms 

in the same location as the prime and mask. For peripheral presentations, the fixation 

cross appeared again with prime onset and remained until target offset. Participants 

performed force-choice reaction task orientation identification. Participants were 

instructed to respond as quickly and accurately as possible to targets and to ignore 

stimuli preceding the target. Incompatible trials were obtained from trials when the 

prime and the target differed in orientation. Compatible trials were obtained from trials 

when the prime and the target were of identical orientation.  

 

3 General Analysis    

 

3.1 Thresholds  

 

All data analysis was performed in Matlab7.3, Excel, WindowsXP 2006 and SPSS 16. 

The mean value of a visibility threshold (in cd/m
2
) was obtained by averaging reversal 

values (direction reversals) for each of the retinal loci. Differences between the right vs. 

left visual field and fovea vs. periphery were tested using stats toolbox, Matlab07 or 

SPSS16. The levels at the last 5 direction reversals in the adaptive track (i.e. the 

turnaraound points) were averaged for each participant. This threshold value was 

lowerd by 10% in order to provide a contrast value for the primes in the priming task 

that would be likely to produce NCEs (e.g. Boy and Sumner, 2010). 

 

3.2 Priming Effects  

 

Reaction times (RT‟s) below 200ms and above 800ms were considered anticipations of 

errors, respectivly, and automaticlly deleted. Error Responses were removed from RT 

analysis. For each participant, mean RT‟s were obtained and combined respectivly into 

compatible and incompatible conditions for each retinal location. Since there was no 
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significant difference in performance between the left and right hemifield, the mean RT 

and compatibility effects for left and right for each participant were combined.  

 

4 Experiments 7-9 

 

Three experiments are described in this chapter. Experiments 7-8 are exploratory 

experiments (P1, P2) which examined the novel paradigm to establish parameters for 

robust NCE in the fovea first. In particular it was important to ensure that an abstract 

link between the direction of the orientation of a Gabor patch and the reaction to it 

could produce priming effects and see if such priming effects depend on the mask 

employed (P1 and P2). In all previous studies of the NCE, arrows or other simple 

stimuli have been used, normally with masks constructed with overlapping lines. We 

chose to use Gabors in order to have precise control over visibility thresholds. This 

meant that we had to design new masks to render the primes invisible since overlapping 

line masks were insufficient to do so. Therefore, it was important to first check that the 

basic NCE effect was present with these stimuli. Experiment 9a/b is the main 

experiment testing the cpd in NCE with perceptually equated primes in fovea and 

periphery. It incorporated the insights for best paradigm parameters shown in piloting 

experiments and also tested the potential attentional impact on the cpdp. 

         5 Experiment 7 (P1): The most efficient Mask for NCE in Fovea 

           

5.1 Rationale  

 

The first exploratory experiment examined the influence of shared visual features in 

primes and masks on NCE‟s in fovea only. The aim was to optimise the paradigm to 

obtain NCE in fovea before carrying on with testing in the periphery. As numerous 

studies indicated that when the mask and prime are sharing the same visual features the 

priming effects occur more easily (Jaskowski and Przekoracka-Krawczyk, 2005; 

Verleger et al., 2004, Sumner et al., 2008). However, providing proof for one of the 

hypothesis which explain how NCE emerges was out of scope and aim of this 

experiment. Nonetheless, the theories are introduced here to understand the deeper 

dilemmas of the topic and to reason on the paradigm applied here. Once the NCE in the 

fovea has been established the main question of the experiments was to explore NCE 

differences between periphery and fovea and to find more clues of how those are 
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interlinked with the assumed motor inhibition processes (Boy et al., 2008; Sumner, 

2008).  

 

5.2 Introduction  

  

For the stimuli used in the series of experiments here, the orientation of the Gabors was 

the task relevant feature. Therefore it was of interest also to examine the influence on 

NCE of orientation features of the mask. In particular, the influence of iso-orientation 

(Saarela et al., 2008) for mask and prime/target was of interest. The features of the 

mask may have two roles. First, for feature relevance theory in triggering inhibition and 

second, in the ability of the mask to modulate the visibility of the prime (Sumner, 

2008). There are indications from earlier literature that lateral inhibition in visual cortex 

acts for successively displayed stimuli with isofeatures. For instance, in primates 

Knierim and Van Essen (1992) showed that when a bar in the contextual field had the 

same orientation as the central bar, the cells‟ response was more strongly suppressed 

than when they had a contrasting orientation. Authors interpreted this as a neural 

correlate of the perceptual salience of feature singletons. Perceptual salience, in 

particular “subliminal perceptual salience” was of particular interest in this work, and 

this will be described later. In the following experiment, the emphasis was on 

examining the iso-orientation influence for prime/target and mask and their 

implications for manifestation of NCE.   

 

5.3 Methods and Analysis 

 

Participants 

 

5 paid naive volunteers, 3 female and 2 male with normal or corrected to normal vision 

were tested. All participants were right-handed and of academic background, aged 

between 20 and 26 years (mean: 23 years). None had a history of neurological or 

psychiatric disorders or any sign of colour blindness or visual field defects. All gave 

informed consent in accordance with local ethics commiteee before the study.  

 

Procedures and Analysis 

 

The procedures followed are described in the general methods except as mentioned 

below. Two different types of masks were applied; i) masks were build from luminance 
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squares arranged in horizontal-vertical orientation or ii) in diagonal orientation. Primes 

and targets consisted of horizontally or vertically orientated Gabors. The mask 

orientations were applied in different blocks, thus two conditions were compared in a 

within-subject design. For each condition 4 blocks of 40 trials were performed. The 

results reported for the fourth block in each condition, to allow for practice effects (Boy 

and Sumner 2010). Prior to priming estimation, visibility thresholds were obtained for 

each type of mask.  

 

5.4 Results 

Thresholds  

The results are shown in Table 8a in appendix. Thresholds obtained with diagonal 

oriented masks (M = 4 cd/m
2
, SEM = 1.8) vs. horizontal oriented masks (M = 3.5 cd/m

2
, 

SEM = 1.1) did not differ significantly (one-tailed, t = .29, df = 4, p = .79). 

Priming Effects  

 

 

 

 

 

 

Figure 48. Experiment 7 (P1). Impact of shared visual features in prime and mask for 

priming effects in fovea. Mean priming effects with iso-oriented (horizontal) and an-iso-

oriented (diagonal) mask-prime conditions calculated as RT‟s in ms for incompatible minus 

compatible trials. NCE were obtained in the iso-oriented prime-mask condition, i.e. when the 

orientation was horizontal in both the mask and the prime. Note that the effect here was not 

significant possibly due to a small number of participants and due to a high standard error 

(p>.05). However, there is a trend in the illustrated data which is in accordance with previous 

studies suggesting mask features effects facilitating NCE. Based on the conform results from 

previous studies following experiments will be conducted using iso-oriented prime-mask 

conditions.  
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As shown in Fig.48 and in Table 8ab in appendix for diagonal oriented masks (un-iso-

oriented prime-mask combination) participants showed a mean positive compatibility 

effect (PCE) of 10.5 ms (M=10.5, SEM = 11.5). For horizontal oriented masks 

(isoriented prime mask combinations) participants showed small mean NCE of -6.8 ms 

(M=-6.8, SEM = 8.3). Although neither of these effects was significantly different from 

zero, there is a suggestion in the trend of the data that the horizontal masks are more 

likely to produce NCEs than diagonal masks which is in line with prior studies.  

5.5 Discussion  

There is a trend in the data that provides support for both theories, the  “object 

updating” theory and the “mask triggered inhibition” (MTI) (Jaskowski and Verleger, 

2007). The features in the mask which contained the same orientatation as the primes 

called for activation of the opposite orientation and inhibition of the repeated 

orientation. There is strong evidence from prior studies using arrows as primes and 

masks which share arrow features (Jaskowski and Przekoracka-Krawczyk, 2005; Lleras 

and Enns, 2004, 2006; Verleger et al., 2004). Jaskowski and Przekoracka-Krawczyk 

(2005) reported for masks with non shared prime features PCE of 53ms while for masks 

with features shared with primes NCE of -44ms.  

However, this study used abstract stimuli to generate direction specific manual 

responses (left or right) and the small NCE found in this experiment is entirely in line 

with prior studies which found small NCE with abstract stimuli (prime and mask) 

sharing similar visual features (Lingnau and Vorberg, 2005; Jaskowski and 

Przekoracka-Krawczyk, 2005; Jaskowski and Verleger, 2007; Jaskowski and Sosarek, 

2007; Sumner et al., 2008). For instance Sumner (2008) found NCE with shared 

features however “with insufficient effect size to account for the entire NCE”. Thus, 

abstract stimuli seem to produce less NCE.  Additionally, more recently reported NCEs 

sizes are about -10ms (Schlaghecken and Eimer, 2006), so that the NCE found here is 

not really surprisingly small for abstract stimuli.  

There are reasons for this, which also has been discussed by Jaskowsik and Verleger, 

2007, such as learning of visuo-motor associations (default activation of motor 

responses by arrows but not by abstract stimuli) and experimental procedures 

(randomised vs. blocked presentation of compatible vs. incompatible priming 

sequences) and which will be examined in subsequent experiments here. In addition, 

the trend in the data reported here as statistically insignificant could be due to the 
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number of participants, which was kept small due to the exploratory nature of this 

experiment. In conclusion, the trend of the data in this experiment is strongly supported 

by results of prior studies, which provides a strong basis for application of masks with 

shared prime features in all subsequent experiments. 

6 Experiment 8 (P2): Equation of Prime Strength for Fovea & 

Periphery 

 
This second exploratory experiment (P2) examined if the new abstract stimuli applied 

in the paradigm, the Gabor patches of two orientations (and not arrows as it was applied 

in previous studies) can produce visuo-motor associations which result in NCE‟s not 

only in fovea but also in the periphery. In line with the hypothesis of Schlaghecken and 

Eimer (2000, 2002) and experimental results of Lingnau and Vorberg (2005), NCE‟s in 

the fovea but also in the periphery after perceptual strength adjustment were expected.   

 

6.1 Methods and Analysis 

 

6.1.1 Procedures 

 

This experiment was conducted without eye fixation monitoring. All other procedures 

were the same as described above. All trial types were randomly intermixed (3 

locations, 2 orientations, compatible or incompatible). Participants performed 6 blocks 

of masked priming in total, over 3 sessions, and each session began with two blocks of 

the thresholding procedure for prime contrast (120 and 90 trials). The total number of 

priming trials obtained per locus was 240, 40 trials per retinal locus in one block. Each 

block consisted of 120 trails. Thus each participant performed 720 trials in total.  

 

Thresholds were obtained from the 5 last reversals of the second block and lowered by 

10% of their value to produce the prime strength applied in the priming procedure. 

Priming effects were calculated for the performance in the last block which was from 

600th to 720th trials. The first blocks were for training purposes during which the 

visuo-motor association was established, thus allowing the assumed inhibition process 

gradually to build up and give the optimal chance of detecting an NCE in both 

periphery and fovea (Boy and Sumner, 2009). Incompatible trials were averaged over 

horizontal and vertical orientation conditions and so were the compatible trials. Priming 

effects were calculated for incompatible minus compatible trails for each locus. All 

effects for the peripheral condition were averaged over left and right location if the 
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difference between left and right was not significant. Significance levels and values 

were calculated with two-paired t-test or repeated measures ANOVA in SPSS16. 

Where appropriate, Greenhouse-Geisser adjustments to the degrees of freedom were 

performed (indicated in the Results section by ε).  

 

Participants 

 

7 paid naive volunteers, 3 female and 4 male with normal or corrected to normal vision 

were tested. All participants were right-handed and of academic background, aged 

between 22 and 38 years (mean: 27 years). None had a history of neurological or 

psychiatric disorders or any sign of colour blindness or visual field defects. All gave 

informed consent in accordance with the local ethics commiteee before the study. 

 

6.2 Results   

 

a) Prime Visbility Thresholds                             b) Priming Effects  

 

 

 

 

 

 

 

 

 

 

Figure 49a/b. Experimetnt 8 (P2). Cpd in visual sensitivity and in priming. Randomised 

trials procedure (no eye tracking). Means and standard mean errors for (a) Prime visibility 

thresholds, (b) Priming effects, both effects for fovea (blue) and periphery (magenta) (left and 

right combined (6 visual angles)). (a) calculated as luminance values in candela per square meter 

(cd/m
2
) and (b) calculated as RT‟s in ms for incompatible minus compatible trials. Cpd in prime 

visibility thresholds was significant (t = -2.46, df = 6, p = .049) and the cpd for priming effects 

too (t = - 4.47, df = 6, p = .004). The obtained prime visibility thresholds were applied in the 

priming estimation. The prime strenght was equalised between fovea and periphery for each 

participant tested. In fovea NCE were found but in periphery only PCE were obtained. 

Therefore, the equation of prime strenght between fovea and periphery does not account for the 

lack of NCE in periphery.  
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Thresholds  

 

As shown in  Fig.49a and in Table 9a (appendix) thresholds obtained for fovea (M = 6 

cd/m
2
, SEM = 1.03) were, as expected, significantly lower than those obtained for 

peripheral locations (left and right combined) (M = 10.1 cd/m
2
, SEM = 1.30, t = -2.46, 

df = 6, p = .049).  

 

Priming Effects  

 

As shown in Fig.49b and in Table 9b (appendix) for fovea, the mean negative 

compatibility effect (NCE) was -13.5 ms (SEM = 4.29) whereas for periphery there was 

a positive compatibility effect (PCE) of 20.6 ms (SEM = 7.12). The cpd for priming 

effects between the two locations was highly significant (t = - 4.47, df = 6, p = .004). 

The mean cpd  for priming effects was ~ 34 ms.  

 

6.3 Discussion  

 

This experiment showed that with peripheral primes equated for perceptual strength 

with foveal primes, no NCE effects were found, even though a normal NCE appeared 

for the fovea. This is contrary to the hypothesis that the NCE in the center and 

periphery would be the same once perceptual sensitivity differences are taken into 

account.  

 

However, in this experiment, there was an anomaly in the visibility threshold 

differences in primes measured for fovea and periphery. Two participants showed the 

reversed pattern, with better sensitivity in the periphery than in fovea. One of those 

participants reported astigmatism. It remains unclear if these two participants (or in 

fact, any other participants) did not follow the instruction not to move their eyes 

towards peripheral stimuli i.e. to maintain constant fixation on the center. Therefore, in 

all following experiments eye fixation was monitored with an eye-tracker and trials in 

which saccades towards the peripheral stimuli appeared were discharged from analysis.  
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7 Experiments 9a/b: Attentional Influence on CPDP  

In the next section Experiments 9a and 9b are described, which are based on the 

parameter examination from the above described Experiments 1-2.  Investigated are i) 

the cpd after the subliminal prime strength was adjusted and ii) attentional influences on 

cpd when the presentation of retinal loci was varied. Additionally, eye-movement 

monitoring was applied to ensure participants maintain fixation. In Experiment 9a, cpd 

was examined with a randomised presentation of retinal loci per block. In Experiment 

9b retinal loci (center, periphery left, and periphery right) were presented in separated 

blocks.  

7.1 Experiment 9a 

 

7.1.1 Scientific Background  

 

Studies on masked priming showed that focussing attention in time or space can 

modulate the effectiveness of invisible stimuli (Lachter et al., 2004; Schlaghecken and 

Eimer, 2000). Sumner et al., 2006 demonstrated that attention can directly enhance 

sensorimotor processes in a different manner to enhancing perceptual representation of 

stimuli (perceptual strength). In their study, the attentional manipulation did not mimic 

physical stimulus enhancement. Thus, attention can enhance unconscious sensorimotor 

processes directly and not via enhancement of perceptual strength. Attentional accounts 

for NCE were also considered in several other studies (Bavelier et al., 2000; Huber, 

2008; Sohrabi and West, 2008). Sohrabi and West (2008) proposed in their model that 

NCE emerges due to an attentional refractory period which would act to slow the 

perceptual processing of the target in compatible trials.  

 

Schlaghecken and Eimer (2000) tested if the cpd for NCE could be related to visual-

spatial attention. Peripheral non-informative cues were used to summon attention to 

peripheral primes and targets. The results indicated that the cpd is independent of 

attentional factors but rather strongly related to the physiological inhomogenity of the 

retina. However it remains the case that previous experiments on the cpd may not have 

kept attentional factors the same for foveal and peripheral stimuli. Experiments 3a and 

9b were designed to look at this in more detail. In particular, previous studies have 

presented fovea and periphery in different blocks, for the fovea there was only one 
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possible location, but for periphery there were two possible locations, right and left 

(Schlaghecken and Eimer, 2000) 

 

In Experiment 9a attentional influences were modulated by randomised presentation of 

retinal loci for each of the experimental blocks. Participants fixated in the center, while 

stimuli were displayed in the fovea, right or left periphery in randomised order so that 

participants could not predict the location. In that way, participants had to attend to the 

entire visual field simultaneously and distribute their attentional resources over the 

entire visual filed. The randomisation procedure resembled the procedure Schlaghecken 

and Eimer (2000) applied for periphery.  

 

In Experiment 9b participants were presented with each retinal locus in a separate 

block. Participants had to maintain fixation on the center again but were informed prior 

to the task where the stimuli would appear in the presented block. In that way, spatial 

uncertainty was reduced, which might have influenced the amount of NCE obtained. 

With attention covertly but focally focused on one retinal location, increased NCE are 

expected and therefore smaller periphery-fovea ratio for NCE (smaller cpd) were 

expected. The blocked procedure resembled the procedure Schlaghecken and Eimer 

(2000) applied for the fovea. Note that in the results section firstly priming effects will 

be introduced and illustrated for each of the experiments. Comparison between 

Experiment 9a and 9b i.e. for blocked vs. randomised paradigm will be illustrated in a 

later section of this chapter.  

 

7.1.2 Methods  

 

Participants  

 

Eight paid naive volunteers, 1 female and 7 males with normal or corrected to normal 

vision were tested. All participants were right-handed and of academic background, 

aged between 20 and 35 years (mean: 26 years). None had a history of neurological or 

psychiatric disorders or any sign of colour blindness or visual field defects. All gave 

informed consent in accordance with the local ethics committee before the study.  

 

 

 

 



 

Chapter 6. Sensorimotor Processes I  

 

 

 129 

Threshold Estimation  

 

Participants performed 2 blocks of threshold measuring procedure, first of 120 trails 

and second of 90 trials duration. The prime-mask sequence was presented in three 

retinal loci in a randomised order.  

 

Priming Estimation  

 

Participants performed 6 blocks of priming measuring procedure, each 120 trails, 40 

trials per retinal locus (3 x 40). Total number of trails per locus was 240 and total trials 

number was 720.  

 

7.1.3 Analysis 

 

Thresholds  

 

Thresholds were obtained from 5 last reversals of the second block and lowered by 10% 

of their value to produce the prime strength applied in the priming estimation 

procedure. Significance levels and values for cpd were calculated using two-tailed, 

paired sample t-test in SPSS16.  

 

Priming Effects 

 

Reaction times (RT‟s) were calculated. The first blocks were for training purposes 

during which the visuo-motor association was established, thus allowing the assumed 

inhibition process to gradually build up (Boy and Sumner, 2009). Incompatible trials 

were averaged over horizontal and vertical orientation conditions and so were, the 

compatible trails. Priming effects were calculated for incompatible minus compatible 

trails for each condition. All effects for the peripheral condition were averaged over the 

left and right location if the difference between left and right was not significant. 

Significance levels and values were calculated with two-paired t-test or repeated 

measures ANOVA in SPSS16. Where appropriate, Greenhouse-Geisser adjustments to 

the degrees of freedom were performed (indicated in the Results section by ε).  
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7.1.4 Results 

 

         Thresholds  

 

As shown in Table 10a in appendix visibility thresholds for foveally (M = 6.5 cd/m
2
, 

SEM = 0.7) displayed masked Gabors were significantly lower than for peripherally (M 

= 13.0 cd/m
2
, SEM = 1.6) displayed (left and right combined) (t = -4.554, df = 7, p = 

.003). Visibility thresholds for left (M = 13.2 cd/m
2
, SEM = 2.2) and right (M = 12.8 

cd/m
2
, SEM = 1.9) peripheral location did not differ significantly (t =.188, df = 7, p = 

.85). The mean center-periphery ratio (ratio calculated as periphery/center) was 1.7 

(SEM = 0.2).  

 

Priming Effects  

 

As shown in Fig. 50a and Table 10b (in appendix) for fovea on incompatible trials (M = 

426.7 ms, SEM = 11.7) participants were faster than on compatible trials (M = 439.2 

ms, SEM = 5.6) resulting in small negative compatibility effect (NCE) of -12.5 ms 

(SEM = 8.8). For peripheral condition (left and right combined) on incompatible trials 

(M = 459.4 ms, SEM = 14.8) participants were slower than on compatible trials (M = 

428.5 ms, SEM = 9.7) resulting in positive compatibility effect (PCE) (M = 30.9 ms, 

SEM = 8.3). There was no main effect of locus or compatibility on reaction time, but a 

significant interaction locus x compatibility (F (1,7) = 1.9, p = .00, ηp
2
= .96). Thus, 

priming effects for fovea were different from priming effects in periphery, with a very 

high effect size. This cpd for compatibility effects was in total ~43.5 ms.   

 

7.1.5 Discussion   

  

The above described experiment did not show NCE in the periphery but small NCE in 

fovea. The cpd was statistically significant, thus neither the attentional manipulation 

(randomised presentation of loci) nor the perceptual sensitivity adjustment for primes‟ 

visibility managed to evoke NCE‟s over the entire visual field.  

 

Schlaghecken and Eimer (2002) obtained NCE in fovea but not in periphery when 

peripheral positions were randomly presented, while foveal condition was tested in 

separate blocks. Thus, all three locations were not randomised equally unlike in this 

experiment. It is possible that the small size of the NCE was due to randomised 
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presentation of loci in this experiment, which might have caused bigger decision and 

expectation uncertainty and therefore no reliability which might be necessary to 

establish a stable neural visuo-motor link resulting in the NCE.  

 

Additionally, in particular the peripheral locations might have been affected by spatial 

uncertainty because spatial attentional resources needed to be spread over a greater 

visual field. Given the difficulty of the task, it remains possible that participants chose 

to attend more to the fovea region than the periphery. For this reason, we reduced 

attentional load in the next experiment by presenting each retinal locus in a separate 

condition.  

 

7.2. Experiment 9b 

 

A single locus presentation in one block should ensure that participants were able to 

focus covertly without eye movements comparably well in both the peripheral condition 

and the foveal condition.  

 

7.2.1 Methods  

 

In the blocked presentation of stimuli to counterbalance for order confounds stimuli 

were presented in the right or left periphery randomly according to the schema ABBA – 

BAAB and were preceded and followed by 2 blocks of central condition.  

 

Participants  

 

Eight paid naive volunteers, 2 females and 6 males with normal or corrected to normal 

vision were tested. All participants were right-handed and of academic background, 

aged between 19 and 25 years (mean: 22 years). None had a history of neurological or 

psychiatric disorders or any sign of colour blindness or visual field defects. All gave 

informed consent in accordance with local ethics committee before the study.  

 

Thresholds Estimation  

 

Masked Gabors‟ thresholds for each location were obtained in a blocked manner. 

Participants performed 2 blocks of threshold measuring procedure, first of 90 trails and 

second of 60 trials duration. The prime-mask sequence was presented in three retinal 
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loci in a blocked order. The trials number for threshold estimation was reduced to 60 

and 40 trials per block as most of the participants participated in the prior experiment.   

  

Priming Effect Estimation 

 

In the priming estimation task participants performed 6 blocks, each of 40 trials, in 3 

sessions. Total number of trails per locus was 240 and total trials number was 720.  

 

7.2.2 Analysis   

 

Thresholds  

Thresholds were obtained from 5 last reversals of the second block and lowered by 10% 

of the obtained average value to construct the prime strength applied in the priming 

estimation procedure. Significance levels and values for cpd were calculated with two-

paired t-test using SPSS16.  

 

Priming Effects  

 

Mean of last session was calculated. The first 2 sessions were considered as training 

sessions to establish the visuo-motor association and to allow for the inhibition process 

to gradually build up (Boy and Sumner, 2009). Compatibility effects and significance 

levels were calculated using repeated measurement ANOVA in SPSS16. 

 

7.2.3 Results  

 

Thresholds  

 

As Table 11a in appendix shows, visibility thresholds for foveally (M = 5.5 cd/m
2
, SEM 

= 0.7) displayed masked Gabors were significantly lower than for peripherally (M=9.2 

cd/m
2
, SEM=1.6) displayed (left and right combined) (t = -3.325, df = 7, p = .01). 

Visibility thresholds for left (M = 11.6 cd/m
2
, SEM = 2.3) and right (M = 10.5 cd/m

2
, 

SEM = 2.7) peripheral location did not differ significantly (t =.441, df = 7, p = .63). The 

mean center-periphery ratio (periphery/center) was 1.67 (SEM = 0.2).  
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Priming Effects  

 

Fig.50b and Table 11b in appendix show for fovea on incompatible trials (M = 440.4 

ms, SEM = 16.1) that participants were significantly faster than on compatible trials (M 

= 460.4 ms, SEM = 16.9) resulting in a mean NCE of 20 ms. For peripheral condition 

(left and right combined) on incompatible trials (M = 475.2 ms, SEM = 18.1) 

participants were slower than on compatible trials (M = 448.1 ms, SEM = 24.0) 

resulting in a mean PCE of 27 ms. There was no main effect of locus on reaction time 

and no main effect of compatibility. However, there was a highly significant interaction 

for locus x compatibility (F(1,7) = 19.28, p=.003, ηp
2
= .73). Thus, priming effects in 

fovea were highly significantly different from the priming effects in the periphery, with 

a high effect size. This cpd for compatibility effects was in total of ~47.5 ms.  

 

 

a) Experiment 9a, randomised presentation     b) Experiment 9b, blocked presentation 

 

 

 

 

 

 

 

 

 

 

Figure 50a/b. Eperiment 9a/b. Attentional modulation of the cpd in NCE patterns. Mean of 

priming effects and standard mean errors calculated as RT‟s in ms for incompatible minus 

compatible trials in Experimetnt 3a and Expetriment 9b for fovea (blue) and periphery 

(magenta). a) Experiment 9a: randomised presentation of trials to the retinal loci (fovea, 

periphery left and periphery right). b) Experiment 3b: blocked presentation of trials to the retinal 

loci (fovea, periphery left and periphery right). Fig. a and b illustrate that the cpd for priming 

effects did not change significantly when prime-mask-target trials were presented in randomised 

or blocked manner. Negative numbers indicate NCE, positive numbers indicate PCE. In 

randomised presentation cpd for compatibility effects was in total of ~43.5 ms (F(1,7) = 19.28, 

p=.003, ηp
2
= .73). In blocked presentation cpd for compatibility effects was in total of ~47.5 ms 

(F (1,7) = 1.9, p = .00, ηp
2
= .96).  
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Thresholds and Training Effects  

 

Thresholds  

 

It was of interest to compare thresholds obtained with randomised vs. blocked 

paradigms. Fig.51 shows that in the blocked paradigm, thresholds in the peripheral 

condition were decreased (M=9.2 cd/m
2
, SEM=1.6) when compared with the 

randomised paradigm (M = 13 cd/m
2
, SEM = 1.6), resulting in a benefit on perceptual 

thresholds when spatial uncertainty is reduced. However this difference for periphery 

was n.s. (t =.-1.509, df = 7, p > 5). For foveal condition randomised (M = 6.5 cd/m
2
, 

SEM = 0.7) vs. blocked (M = 5.5 cd/m
2
, SEM = 0.7) presentation did not have much 

impact on the thresholds as expected. In total the periphery-center ratio was very 

similar, blocked (ratio=1.67, SEM = 0.2).vs. randomised (ratio=1.7, SEM = 0.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Experiment 9a/b. Attentional modulation of prime visibilty thresholds. Mean 

primes visibility thresholds and standard mean errors measured as luminance in candela per 

square meter (cd/m
2
) for fovea (blue) and periphery (magenta) in randomised (Experiment 9a) or 

blocked (Experiment 9b) trial presentation. There was a minor threshold differnce between 

blocked and randomised trial presentation for peripheral loci and very minor difference for 

fovea, of which both were not significant, while the ratio between periphery and fovea remained 

unchanged in both paradigms.  
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Growing of Priming Effects with Training  

 

Participants priming effects were measured in a high number of trials. This was 

necessary to establish a new visuo-motor association in participants. During the course 

of experiments it emerged that priming effects to a non-intuitive visuo-motor link such 

as right button-press to horizontal while left button press to vertical, require longer 

training to evoke the activation-inhibition process resulting in NCE. Thus, NCE (and 

PCE) increased with training as shown in Figure 52 and in Table 11c in appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52. Experiment 9b. Grow of priming effects over 3 testing sessions (s1-s3) for 

periphery and fovea. Legend: Periphery: magenta, Fovea: blue. Priming effects measured as 

RT‟s in ms calculated for incompatible minus compatible trials. Both positive and negative 

priming effects seem to increase almost mirror-like with increasing practice. Priming effects in 

fovea grew increasingly negative while priming effects in periphery grew increasingly positive. 

Priming effects for fovea and periphery were significantly different in session 3 only (t = - 4.47, 

df = 7, p = .004) and the cpd was significantly different only between session one and session 

three (t = - 4.47, df = 7, p = .004). 

 

 

As shown in Fig.52 and in Table 11c in appendix, the cpd for priming effects changed 

with the number of practice sessions. However, while in session 2-3 NCE was 

established for fovea, no NCE occured in periphery, on the contrary PCE grew with 

each session for periphery as the NCE grew with each training session for fovea. For 

fovea in session 1 PCE of 1.61 ms (SEM = 7.32) occurred, in session 2 NCE of -15.34 

ms (SEM = 2.69) and in session 3 again NCE of -19.89 ms (SEM = 4.96). For periphery 

on the contrary only PCE occurred in session 1-3: in session 1 mean PCE of 25.08 ms 

(SEM = 10.59) occurred, in session 2 mean PCE of 15.56 ms (SEM = 11.45) occurred 

and in session 3 again mean PCE of -27.14 ms (SEM = 11.15) occurred. Accordingly, 
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the difference in priming effects for fovea and periphery calculated as RT‟s in periphery 

minus RT‟s in fovea were not significant for session 1 (t =.-2.051, df = 7, p > 5) but for 

session 2 (t =.-2.865, df = 7, p = .024) and highly significant for session 3 (t = - 4.394, 

df = 7, p = .003). The difference in priming effects between fovea and periphery in 

session there was of mean 47.03ms (SEM =10.72). Cpd in session one which was of 

mean 23.47 ms (SEM =11.44) when compared with cpd in session three, 47.03ms (SEM 

=10.72) was of a significant difference (t = - 2.476, df = 7, p = .042), while the cpd in 

session 1 when compared with cpd in session 2  (t = - .716, df = 7, p > 5), or compared 

with session 2 with session 3 were not significantly different (t =.-1.564, df = 7, p > 5). 

 

7.2.4 Discussion   

 

Experiment 9b showed that perceptual sensitivity adjustment did not produce NCE in 

the periphery. The cpd was statistically significant. The increase in the NCE for the 

fovea compared with Experiment 9a is consistent with results of Sumner et al., 2006 

that attentional focus can indeed enhance directly the sensory-motor processes. 

However, interestingly a corresponding increase in the PCE did not occur for the 

peripheral results, potentially contradicting Sumner et al., 2006. This data might 

indicate that sensory-motor processes in the periphery are differently influenced or not 

influenced at all by attentional processes. For exact description of the attentional 

influence on priming effects in the periphery a replication of experiments analogous to 

Sumner et al., 2006 would be interesting for future experiments. The essential result 

here, however, is that neither the blocking nor randomisation procedure is responsible 

for the centre-periphery difference in priming effects. This difference remained robust 

whether locations were blocked or randomised. 

 

The development of NCE over the time course of training in subliminal reaction task 

was described by Boy et al., 2008. Positive priming has been found to be influenced by 

training when new and arbitrary links between stimulus and responses are learned (Boy 

and Sumner, 2009). A stimulus-response (S-R) association is required to be strong 

enough to be activated by very weak subliminal primes. Mirroring the training effect of 

PCE, the NCE has been found to increase over the time course of training (Boy and 

Sumner, 2009). This dependency was not evident in previous studies in which well 

established stimulus-response associations such as right-pointing arrows for right 

button response etc. were applied (Jaskowski and Slosarek, 2007). Such established S-R 

associations would if at all show a very steep learning curve and have little impact on 
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the time point of NCE occurrence. However, there are previous studies indicating that 

practice is necessary to obtain robust priming effects (Klapp and Hinkley, 2002; 

Schlaghecken et al., 2007; Sumner, 2008). The “building up” of the visuo-motor link 

was monitored over several sessions, and the PCE and NCE development was traced in 

more detail for fovea and periphery in this experiment. The most important point is that 

the cpd cannot be explained by insufficient training for foveal or peripheral stimuli (e.g. 

different rates of learning for periphery compared to fovea) since the cpd appears to 

grow, not decrease, with training. 

 

3.5 General Discussion (Experiments 7-9)  

 
In all experiments described in this chapter, cpdp were investigated under conditions 

when primes were equalized in their perceptual strength for the centre and periphery. It 

was assumed, that with sufficiently strong primes NCE should occur and according to 

the motor-inhibition hypothesis (Schlaghecken and Eimer, 2000) the theoretical 

inhibitory threshold should be overcome by peripheral primes with strong 

representations. However, no NCE‟s were found with strong subliminal primes in 

periphery in all three experiments, while robust NCE‟s were traced at equivalent 

perceptual levels in the fovea. Therefore, it is concluded that the equalization of 

perceptual strength of primes for periphery and fovea is insufficient to equalize the 

priming effects measured for these locations.  

 

This then raises the question of whether perceptual strength – as measured by threshold 

tasks, is of direct causal importance for priming tasks. Strong representations might be 

interpreted not only at the stage of perceptual activation but in terms of strong visuo-

motor links; which is in accordance with the assumption of continuous flow of 

information from sensory to motor systems (Coles et al., 1985). It is possible that 

primes in the periphery require longer time intervals to initiate or establish visuo-motor 

links and equivalently longer time intervals to initiate motor inhibition. NCE‟s were 

reported when each of those timing parameters (inter-stimulus interval (ITS) prime-

mask and mask-target interval (SOA)) were prolonged (Schlagheacken and Eimer, 

2002; Lingnau and Vorberg, 2005). Thus, in the next series of experiments introduced 

in chapter 7 timing parameters were manipulated to investigate NCE in the periphery.  
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CHAPTER 7  
 

EXPERIMENTS 10-12 

 

CPD IN SENSORIMOTOR PROCESSES II  

 

1. Introduction and Rationale  

 
In Chapter 6, Experiments 7-9 investigated whether the perceptual sensitivity decrease 

in periphery can account for lack of negative compatibility effects for sensorimotor 

processing. It was found that objectively equating prime visibility did not succeed in 

generating NCE for periphery. However, very few previous studies indicate that visual 

stimuli presented in retinal periphery might take longer and follow time courses that are 

shifted (onsets delayed) or stretched (longer SOA‟s). Therefore, this chapter describes 

three experiments in which the SOA between prime and target was extended in an 

attempt to find an NCE in periphery.  

 

As mentioned above, NCEs in fovea have been reported for longer between the prime-

mask intervals (ISI) and longer mask-target interval (SOA) than the ones employed in 

Chapter 6. In combination with changes to prime size when ISI and SOA were 

prolonged, NCE were reported in para-foveal retinal loci up to 4.4 visual angles 

(Schlaghecken and Eimer, 1999; Schlaghecken and Eimer, 2000). This is based on the 

idea that prime-mask interval presents the amount of motor activation until the mask 

arrives whereas the mask-target SOA would determine the time available for motor 

inhibition process to develop (Lingnau and Vorberg, 2005). Since within the brain, 

there is cascaded processing and the mask does not simply shut off prime related 

activity, the prime-mask interval may have a similar effect to increasing the contrast of 

the prime – both make the prime more powerful. Given that the paradigm used here 

already manipulates prime contrast to equate visibility between fovea and periphery, the 

more critical interval for investigation is the mask-target interval, in which the 

inhibition causing the NCE is supposed to occur. 

 

In Experiment 10a/b priming effects were systematically tested at different durations of 

mask-target SOA. Again abstract contrast stimuli were applied for primes and tested at 

further eccentricity left and right (6). Visibility thresholds for peripheral primes were 

estimated, to ensure there was sufficient prime strength to elicit the motor activation 

phase. In Experiment 10b thresholds were tested prior and post priming task in three 
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sessions to trace the course of threshold change. Having found some evidence for an 

NCE in periphery in Experiment 10, Experiment 12 then examined different levels of 

prime visibility, to test whether prime visibility levels producing optimal NCEs were 

similar for periphery and fovea. This was an extension of an Experiment 11 which was 

an exploratory experiment and reported as P3, which showed that at very weak prime 

stimuli no NCE in fovea were found.  

2. Experiments 10a/b: Influence of SOA on CPDP 

         
In order to investigate whether NCEs appear in the periphery at longer time delays, the 

duration of the time interval between mask and target (SOA) were varied. Experiment 

10a/b tested NCE in periphery only. In Experiment 10a priming effects were 

investigated at two different SOA durations. There were four separate sessions of 

testing, and thresholds were measured prior- and post- priming procedure in each of the 

first three sessions to examine if thresholds changed over the time of testing (training 

effects). In Experiment 10b five of the same participants took part and priming effects 

were investigated again at two different SOA durations.  

 

2.1 Experiment 10a 

 

2.1.1 Participants  

 

Eight paid naive volunteers, 3 female and 5 male with normal or corrected to normal 

vision were tested. All participants were right-handed and of academic background, 

aged between 19 and 31 years (mean: 25 years). None had a history of neurological or 

psychiatric disorders or any sign of colour blindness or visual field defects. All gave 

informed consent in accordance with the local ethics committee before the study.  

 

2.1.2 Methods 

 

    Threshold estimation  

 

In each of the 3 sessions all eight participants performed 1 block of threshold measuring 

procedure prior and post priming task, each of 60 trials duration. The prime-mask 

sequence was presented in two peripheral loci at 6 visual angle left and right.
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         Priming estimation  

 

In the priming estimation task participants performed 8 blocks of SOA 350 and 8 blocks of 

SOA 450, thus 4 blocks for each of the two peripheral loci tested for each of the SOA. Each 

block was of 40 trials. Blocks have been varied in the ABBA-AB or BAAB-BA manner. In 

sessions 1 and 2 participants performed 6 blocks each while in the final session 4 blocks, as 

calculated together for each SOA and peripheral locus. Total number of trails per SOA and 

per locus was 160 and total number of trials performed was 640.  

 

2.1.3 Analysis     

 

Thresholds  

 

Thresholds were obtained from 5 last reversals in each block prior and post priming task in 

each of three sessions. Significance levels and values were calculated with two-paired t-test 

using SPSS16.  

 

         Priming Estimation 

 

The experiments were carried for equal number for each peripheral loci. Priming effects 

were estimated for each SOA and collapsed over left and right peripheral location. Priming 

effects were calculated from RT‟s in incompatible minus compatible trails for each 

condition. Compatibility effects and significance levels were calculated using repeated 

measures ANOVA in SPSS16. The within subjects, repeated measures ANOVA was 

calculated from effects obtained in all 4 blocks. At the fourth block with a trial number of 

640 no NCE occurred and the testing had to stop after block 4 due to increasing drop-outs 

of participants with increasing number of testing sessions. This is also evident in participant 

number in the next experiments where only 5 remaining participants (n=5) carried on to 

participate in the experiments. 
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2.1.4 Results 

 

Thresholds 

 

Fig.53 and Table 12 in appendix show mean threshold values for masked Gabors as 

obtained in pre- and post- measurement to priming task (all 8 participants are included). 

Thresholds were compared over 3 sessions. Since prime contrast values were set by the 

pre-test in each session, the important result is that the post test shows no reduction in 

threshold over the course of any session (Pre-Post main effect was not significant, F(1,7) = 

1.7, p =.23, ηp
2
= .19). Therefore we can assume that primes did not become more visible 

during each session.  The apparent slight reduction over the sessions is also not significant. 

For  Session and the interaction Pre-Post x Session, Mauchly‟s test indicated that 

assumption of sphericity was violated; Session (χ
2
(2) = 7.7, p > .05, ε = 58), Pre-Post x 

Session (χ
2
(2) = 7.9, p > .05, ε = 58), therefore degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity for Session (F(1.2,8.2) = 3.8, p =.23, ηp
2
= .35) 

and for Pre-Post x Session (F(1.2,14) = 1.5, p =.45, ηp
2
= .02) 

 

 

 

 

 

 

 

 

 

 

 

Figure 53. Mean primes visibility thresholds and standard mean errors obtained in three pre- 

& post testing sessions (s1-s3) measured as luminance in candela per square meter (cd/m
2
) 

Before priming effects were tested visibility thresholds of primes were acquired and applied in the 

subsequent priming sequence. After that again visibility thresholds were measured to examine if the 

priming procedure itself would affect the visual sensitivity for invisible primes. This procedure has 

been repeated for each participant tested in three separate sessions (on separate days). Although the 

figure shows that there was a general decrease of thresholds over 3 testing sessions the effects were 

not significant in any of the combinations tested – within session or between sessions for pre or post 

tests.  
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For comparison reasons with results obtained in Experiment 10b in which 3 participants 

dropped out, priming results for Experiment 10a will be shown for the 5 participants who 

completed Experiment 10b. Table 13a (in appendix) shows results of all 8 participants in 

Experiment 10a while Table 13b (in appendix) for 5 participants, as shown in Fig.54a/b. 

Fig.54b shows that for SOA 450 in the periphery (left and right combined) participants 

were faster on compatible (M = 455.26 ms, SEM = 18.77) than on incompatible trials (M = 

465.05 ms, SEM = 21.35), resulting in PCE of 9.78 ms as shown in Table 13d (in 

appendix). For SOA 350 in the periphery (left and right combined) on compatible (M = 

420.6 ms, SEM = 15.59) were faster than on incompatible trails (M = 423.05 ms, SEM = 

13.38), resulting in PCE of ~ 2.5 ms. ANOVA on RT‟s showed non significant effects for 

SOA (F(1,7) = 1.8, p > .05, ηp
2 
= .21), significant effects for compability (F(1,7) = 9.9, p = 

.02, ηp
2 

= .59) and no significant interaction for SOA x compability (F(1,7) = .06, p > .05, 

ηp
2 

= .01). Additionally, as the figures show, there was no clear sign of any developing 

NCE over the four blocks.  

 

Priming Effects  

 

a) Mask-Target SOA 350                                        b) Mask-Target SOA 450                                                                                                                                    

  

 

 

 

 

 

 

Figure 54a/b. Development of priming effects over the time course of testing (block 1-4) as 

calculated from RT’s in incompatible minus compatible trials for periphery only (at 6 visual 

angle). (a) Mean reaction times: Mean reaction times at stimulus onset synchrony between mask and 

target of 350 ms (b) Mean reaction times and standard mean errors at stimulus onset asynchrony 

between mask and target of 450 ms. Even after the fourth practice block no NCE occurred at any of 

the SOA‟s. 

 

2.1.5 Discussion  

 

Previous research showed that there can be threshold decline which means 

perceptual performance improvement during psychometric measurements (Carasco et al., 
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2002; Saarela et al., 2008). However, in this study after initial and extensive training 

thresholds stabilised or improved only slightly. Thus, thresholds were measured precisely 

enough to equate for perceptual sensitivity decrease from fovea to periphery. Peripherally 

displayed prime-mask-target sequences at two prolonged SOA‟s did not produce NCE‟s. 

However, since the eccentricity was only 6 visual angles into retinal periphery, a shorter 

SOA duration could be required (Lingnau and Vorberg, 2005; Schlagheacken and Eimer, 

2002).  

 

         2.2 Experiment 10b 

 

In fovea mask-target onset interval (SOA) around 60-100 ms were found to produce 

NCE‟s, however not shorter or longer SOA‟s (Schlaghecken and Eimer, 2000; Sumner and 

Brandwood, 2007). Thus, a “SOA - time window” might be appropriate for certain 

eccentricities to allow for visuo-motor inhibitory processes to emerge. Shorter SOA‟s than 

350 ms and 450 ms could be sufficient for 6 visual angles in periphery to obtain NCE‟s. In 

this experiment priming effects were examined in periphery at SOA of 250ms duration and 

contrasted with retest at SOA of 450 ms duration; thus exploring the “time window” 

appropriate to initialise motor inhibition at 6 visual angles eccentricity.  

 

2.2.1 Methods and Analysis  

 

Participants  

 

5 paid volunteers, 1 female and 4 male with normal or corrected to normal vision were 

tested. All participants were right-handed and of academic background, aged between 25 

and 31 years (mean: 29 years). None had a history of neurological or psychiatric disorders 

or any sign of colour blindness or visual field defects. All gave informed consent in 

accordance with local ethics committee before the study. The aim was to test all the same 

participants as in experiment 1a for direct comparison, but 3 dropped out during the course 

of studies (each experiment had 4 blocks of up to an hour each). However, the results of 5 

participants are traced continually. 
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Thresholds Estimation  

 

All participants performed 1 block of threshold measuring procedure prior to the priming 

task, each of 60 trials duration. The prime-mask sequence was presented in two peripheral 

locations 6 visual angles left and right, in a blocked manner. A reduced number of trials 

were sufficient to estimate thresholds as most of the participants participated in previous 

experiments.   

 

Priming Effects  

 

Identical procedures were applied for priming effects estimation as described in 

Experiment 10a. 

 

2.2.2 Results   

 

Priming Effects  

 

As shown in Fig.55a/b and in Table 13c (in appendix) for SOA 250 in the final block, on 

compatible trials (M = 429.34 ms, SEM = 15.08), RT‟s were found to be longer than on 

incompatible trails (M = 419.1 ms, SEM = 15.82), resulting in NCE of -9.64 ms. Individual 

data are shown in Fig.55b and in Table 13c in appendix. As appendix figure 3 (p. 218) 

illustrates that three participants showed a steady development towards NCE in block 4 

whereas two participants showed a varied pattern of PCE-NCE which established with an 

NCE in block 4. Results for SOA 450r were similar to those in Experiment 10a, resulting in 

a small PCE even after 8 blocks of training (when calculated for Experiment 10a and this 

Experiment) and can be found in Table 13d in appendix. ANOVA was calculated for block 

4 only as the preceding 3 blocks were training sessions in accordance with earlier 

experiments (Experiment 10b in this thesis) and studies by Boy et al., 2008. Boy and 

Sumner, 2009 have shown that training in high number of trials is required to obtain NCE. 

In this experiment ANOVA on RT‟s showed non significant effects for SOA (F(2,8) = 3.4, 

p > .05, ηp
2 

= .08), and non significant effects for compability (F(1,4) = 9.9, p > .05, ηp
2 

= 

.16) but significant interaction for SOA x compability (F(2,8) = 6.7, p = .02, ηp
2 

= .62). 

Thus, at SOA 250 NCE started to appear after ca. 500 trials (block 3 and block 4) while at 

SOA 350 trials in Experiment 10a even after 560 trials (block 3 and block 4) no NCE 
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occurred, and no NCE occurred at SOA of 450 after the double amount of trials (over 1000 

trials). However, to prove the stability of NCE at SOA 250 in periphery and to prove if the 

results are replicable another experiment was designed as described in the last section of 

this chapter.   

 

a)  Mask-Target SOA 250                               b) Mask-Target SOA 450                                 

 

 

 

 

 

 

 

 

Figure 55a/b. Development of priming effects over the time course of testing (block 1-4) calculated as 

RT’s in incompatible – compatible trials for periphery only (at 6 visual angle). (a) Mean reaction times: 

Mean reaction times at stimulus onset synchrony between mask and target of 250 ms (b) Mean reaction times 

and standard mean errors at stimulus onset asynchrony between mask and target of 450 ms repeated (450ms 

SOA has been tested against 350ms SOA firstly). In the fourth practice block NCE occurred at 250 ms 

SOA but no NCE occurred at repeated 450 SOA‟s (so after a double number of trials as for 250). 

 

 

2.2.3 Discussion   

 

An NCE was found in the peripheral locations at 6 with SOA of 250 ms. This supports the 

theory that allocating more time to the processing of subconscious peripheral primes can 

facilitate motor inhibition. Additionally, our results indicate that there might exist a 

preferable “time window” for inhibitory processes which increases with ascending 

eccentricity in retina. Another question emerges if in previous experiments the adjustment 

of thresholds for peripheral primes‟ strength was performed with enough precision. 90% of 

the obtained threshold value was applied in prime test to ensure the perceptual threshold is 

not visible to participants. However, although this value for prime contrast was known 

from previous experiments to be adequate to produce NCEs, the results from Chapter 7 

clearly show it was not adequate to produce NCEs in periphery. Now that it has been found 

that the optimal timing parameters differ between fovea and periphery, the next question to 

ask in the final study is what the optimal visibility level is for primes presented at SOA 250 

ms in the periphery for producing NCEs. The SOA of 250 ms will be applied also in the 
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next experiment – therefore it will be proved again if NCE can be obtained under this 

condition in the periphery as compared with fovea. 

 

2.2.4 Conclusion  

 

In Experiment 1b compability effects in periphery at SOA of 250 ms duration was 

contrasted with SOA of 450 ms which at last was tested with prolonged training (after it 

had been tested in this experiment first) and showed that not the training but the SOA 

duration is the critical factor for NCE in the periphery.  

 

2.3 Experiment 11 (P3): Piloting Perceptually Weak Stimuli  

 
2.3.1 Scientific Background and Rationale  

 

Schlaghecken and Eimer (2002) found that when stimuli, reduced in their perceptual 

strength by random dot noise were applied in fovea, no NCE‟s occurred. For peripheral 

retinal locations when perceptual strength was increased (longer inter-stimulus interval 

between prime and mask), NCE were evident. Deducting from these results, Schlaghecken 

and Eimer (2002) suggested a threshold mechanism for triggering motor inhibition in a 

low-level motor control model (explained below). This model has been recently updated 

and supported by additional studies (Bowman et al., 2006). Thus it was of interest to 

examine cpd in NCE for very weak subliminal primes. In the previous experiments of 

Chapters 7 and 8, priming effects were estimated using subliminal luminance values which 

were 90% of the luminance value obtained from the threshold procedure. In this 

experiment, perceptually very weak subliminal primes of 50% of the threshold value 

obtained were applied. Before presenting this experiment the original model (Schlaghecken 

and Eimer, 2002) will be explained in the next section. 

  

Functional Model of Early Motor Control 

 

Schlaghecken and Eimer (2000, 2002) developed a simple functional model of early motor 

control (i.e. model of automatic inhibition), in which thresholds would trigger prime 

processes. This model (shown in Chapter 1) consists of an early sensory processing 
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subsystem, a motor control subsystem and a response execution stage. In the motor control 

system, activation (M+) and inhibition (M-) modules are assumed to receive a common 

input specific for their acting direction (- or +) from the early perceptual processing stage. 

The modules are interconnected in an asymmetric activation/inhibition loop; i.e. M+ is 

assumed to activate M- continuously, while M- was proposed to inhibit M+ only if the 

activation level (from M+) exceeded a criterion value (the inhibition threshold). Execution 

of an overt motor response would be initiated only if M+ activation exceeded a motor 

output threshold. An above-threshold activation of M- should be possible only if a strong 

perceptual input is subsequently masked. Therefore just as there is a time window (SOA 

window) for measuring the NCE, there should be a “prime-strength window” for measuring 

the NCE. Primes that are either too strong or too weak could cause some positive priming, 

but no NCE. 

 

2.3.2 Methods, Procedures and Analysis  

 

Participants  

 

Eight paid naive volunteers, 3 female and 4 male with normal or corrected to normal vision 

were tested. All participants were right-handed and of academic background, aged between 

20 and 32 years (mean: 26 years). None had a history of neurological or psychiatric 

disorders or any sign of colour blindness or visual field defects. All gave informed consent 

in accordance with the local ethics committee before the study.  

 

Procedures 

 

All procedures described in Experiment 7 (Chapter 6) were applied in this experiment. 

Primes and targets were horizontally or vertically orientated Gabor patches, masks were 

iso-oriented. Thresholds were measured prior to priming task. In both, the priming and the 

thresholds estimation procedure, retinal loci were displayed randomly within one block. In 

total there were four blocks of 120 trails displayed to a participant. After obtaining 

thresholds from applied staircase method the thresholds were lowered by half of their 

values, theoretically creating thresholds below chance level. Thus, they were never visible 

to participants.  
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2.3.3 Results  

 

Thresholds  

As shown in Fig.56a and in Table 14a in appendix visibility thresholds for foveally 

displayed masked Gabors were significantly lower (M = 7.2 cd/m
2
, SEM = 0.65) than for 

peripherally displayed (left and right combined) (M = 12.9 cd/m
2
, SEM = 1.1) (t = -4.6, df = 

7, p = .002). Visibility thresholds for left (M = 11.8 cd/m
2
, SEM = 1.1) and right (M = 12.9 

cd/m
2
, SEM = 1.8) peripheral location did not differ significantly (t = -.41, df = 7, p = .69). 

The mean center-periphery ratio (periphery/center) was 1.8 (SEM = 0.2). 

 

Priming Effects  

 

 

a) Prime Visibility Thresholds                  b) Priming Effects  

 

 

 

 

 

 

 

 

 

Figure 56a/b. Cpd and priming effects in experiment 12 (P3). a) Mean prime visibility 

theresholds and standard mean errors for fovea and periphery calculated as luminance in candela per 

square meter (cd/m2) b) Mean priming effects and standard mean errors for fovea and periphery 

calculated as reaction times for compatible and incompatible trials.   

  

As shown in Fig.56b and in Table 14b in appendix, for fovea on compatible trials (M = 

448.7 ms, SEM = 11.1) participants were numerically slightly faster than on incompatible 

trials (M = 451 ms, SEM = 5.5) resulting in minor PCE of 2.3 ms. For peripheral condition 

(left and right combined) on incompatible trials (M = 474.5 ms, SEM = 1.8) participants 

were numerically slower than on compatible trials (M = 463.3 ms, SEM = 2.1) resulting in 

PCE of  11.2 ms. However, the difference for compatibility effects was not significant 

(F(1,7) = 14.1, p > .05, ηp
2
= .67). The difference for the locus condition (periphery vs. 

fovea) was not significant (F(1,7) = 9.3, p > .05, η p
2
= .57). The Cpd for priming effects 
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was numerically ~8.9 ms, with higher PCE in periphery than in fovea, however this 

difference was not significant (ANOVA on RT‟s, interaction locus x compability (F(1,7) = 

4.2, p > .05, η p
2
= .38).    

2.3.4 Discussion   

The exploratory experiment showed that extremely weak subliminal primes do not produce 

NCE in the fovea or in the periphery. Thus it was of interest to determine the exact 

threshold levels of prime‟s strength can produce NCE in fovea and in the periphery. This 

could describe also the perceptual threshold for the activation-inhibition pattern in the 

motor system. 

2.4 Experiment 12.  The Optimal Perceptual Threshold for 250ms 

SOA to obtain NCE in Periphery  

 
2.4.1 Rationale  

 

In Experiments 7-9 introduced in Chapter 6 and in Experiments 10a/b described in this 

chapter, visibility thresholds were estimated and this value was lowered by 10% for 

periphery and fovea respectively before being applied as primes in the priming task. 

However, it remains open if such procedure produces subliminal primes of enough and of 

absolutely equivalent strength for fovea and for periphery. The exploratory experiment 

showed that primes at very low visibility (low prime strength) do not elicit NCE in fovea 

and in periphery. Therefore it is crucial to apply primes of optimal strength even 

subliminally to obtain NCE.  Such optimal visibility for subliminal primes might be 

different for center than for periphery. To test this, thresholds were re-measured using a 

psychometric procedure, the constant stimuli method, and full psychometric functions were 

fitted, which allowed accessing the exact contrast values for chosen performance levels. 

Luminance values for masked Gabors at 55%, 65% and 75%, correct discrimination 

performance levels were obtained individually and applied in the priming task. Priming 

effects were tested at the SOA of 250 ms duration for both the central and for left 

peripheral condition to replicate the findings from Experiment 1b; the occurrence of NCE 

at this particular SOA in the periphery.  
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2.4.2 Methods and Analysis   

 

Participants  

 

A psychometric approach was applied with 4 paid participants, 1 female and 3 male with 

normal or corrected to normal vision were tested. All participants were right-handed and of 

academic background, aged between 25 and 32 years (mean: 29 years). None had a history 

of neurological or psychiatric disorders or any sign of colour blindness or visual field 

defects. All gave informed consent in accordance with the local ethics committee before the 

study.  

 

Threshold Estimation  

 

Method of constant stimuli was applied in this experiment to measure performance on 

masked Gabors‟ orientation discrimination. Based on threshold values for masked Gabors 

obtained with adaptive staircase procedure in previous experiments, four luminance values 

distributed equally around the original value (two above and two below) were defined. In 

that way, the big disadvantage of constant stimuli method was reduced; i.e. the uncertainty 

was reduced to which mean threshold value to choose. All five values were randomly 

displayed at foveal or at the peripheral location at 6 visual angle. To reduce experimental 

impact on participants‟ drop out, periphery was tested only in the left hemifield. It was 

possible to do so as previous experiments showed no differences between thresholds 

obtained for left and right.  Periphery and fovea were tested in separate blocks. Participants 

reported via key presses if the stimulus was of vertical or horizontal orientation. Prime‟s 

perceptual thresholds were estimated based on five luminance values displayed. 

Psychometric functions were fitted for foveal and peripheral condition for each of the four 

participants tested which precisely described the subliminal prime‟s strength obtained at 

55%, 65% and 75% performance accuracy, which then were employed in priming task.  
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Priming Estimation 

 

Priming effects were obtained in 4 blocks each of 60 trials, for the three performance levels 

estimated for periphery and fovea. Per condition there were 240 trials and in total 720 trials 

per retinal locus. Priming effects were calculated from RT‟s in incompatible minus 

compatible trails for each subliminal prime‟s strength level and for each retinal locus. 

 

2.4.3 Results  

 

Thresholds  

 

Fig.57 shows psychometric functions for prime discrimination performance presented to 

fovea or to periphery as averaged over four participants tested (Tab.12a and figure 2 

(p.218) in appendix). Mean priming values were obtained at 55%, 65% and 75% 

performance accuracy. Individual data for each of the participants is shown in Tables 12a 

and Fig.3a/b/c/d in appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57. Psychometric functions for orientation discrimination accuracy in % with 

increasing contrast of Gabors as averaged over four participants and fitted for fovea and 

periphery. Luminace is described on a logarithmic scale on the x-axis. The probability to accurately 

discriminate the orientation at given luminance level of the Gabor is described in % (y-axis).  
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Priming Effects  

 

 

 

 

 

 

 

  

 

 

 

 

       

Figure 58. Priming effects calculated as RT’s for compatible minus incompatible trials (y-axis) 

obtained at three different prime strength’s (x-axis) for fovea and periphery and averaged 

over four participants tested. 

 

 

Well-trained participants (Pb.T and Pb.J) showed almost disappearing differences in 

psychometric functions between periphery and fovea, resulting in small center-periphery 

ratios. These two participants show some threshold change, but the slope change 

dominated. The less experienced participants (Pb.K and Pb.U) showed bigger cpd in 

psychometric functions than the trained participants (right lateral shift on the x-axis), 

indicating a threshold change. In average there was a clear visual threshold difference 

between fovea and periphery.   

 

Fig.58 demonstrates a clear trend for the NCE to be maximal for 65% prime discrimination 

performance as averaged over four participants. Three out of four participants showed for 

both fovea and periphery, peak effect of NCE at 65% threshold (Fovea: M = -5.5 ms, SEM 

= 3.3, Periphery: M = -7.4 ms, SEM = 4.1) (Table 15b in appendix). Not all participants 

would be expected to show exactly the same results, but there is a clear trend for the NCE 

to be maximal for 65% discrimination performance of the prime. Fig.58 demonstrates that 

NCE for periphery was similar to fovea when averaged for all participants.  
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2.4.4 Discussion  

 

Firstly, for both the peripherally and the centrally tested primes, the highest NCEs tended to 

be found at 65% performance accuracy. The NCE‟s for fovea were, if anything, found to be 

slightly smaller than in periphery under these conditions. This suggests that 250ms SOA 

would not be an optimal timing for motor inhibition to central primes. This is consistent 

with previous research that has found 150 ms or 200 ms to be the optimal SOA for foveal 

primes (e.g. Brandwood and Sumner, 2008; Sumner et al., 2007).  

 

At this experimental stage, we can conclude that the center-periphery dichotomy for visuo-

motor processing is rather of quantitative than qualitative nature. Future experiments 

should focus on examination of further eccentricities to examine the link between 

eccentricity and the amount of time necessary to obtain motor inhibition from peripheral 

subconscious visual primes.   

 

4 Conclusions 

 
The main interest in Chapter 6 and Chapter 7 was to examine if and to what extent visuo-

motor processes are dependent on the difference between foveal and peripheral visual 

processing – in particular the perceptual sensitivity drop off with increasing retinal 

eccentricity. In a set of experiments the lack of NCE from peripherally displayed 

subliminal primes was investigated. Various aspects of the priming paradigm were 

manipulated while perceptual visibility of primes was equalized between fovea and 

periphery. Contrary to previous theories the NCE in the periphery remained absent even 

when prime visibility was equated. It also remained absent when attentional aspects were 

manipulated. The crucial condition for NCE occurrence was the time interval between 

mask onset and target onset – a time window which is believed to be crucial for motor 

inhibitory processes to kick in. A “SOA time window” for foveal and para-foveal stimuli 

was found in previous literature; however it was not described for further eccentricities, nor 

were perceptual and timing properties investigated in separation or in such precision as it 

has been done here (Schlaghecken and Eimer, 1998, 2000, 2002; Lingnau and Vorberg, 

2005).  
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5 General Discussion (Chapter 6-7) 

 
There is converging evidence that visual information processing is already divided at early 

stage of visual processing as in the retina with a dominance of certain size of cell types in 

fovea vs. periphery (Wiesel and Hubel, 1966; De Monastario & Gouras, 1975; Heeger et 

al., 1996). The differences in cell size were suggested to imply differences in conduction 

velocities (Enroth-Cugell and Robson, 1966), which again might result in different onset 

latencies of brain areas involved (Nowak et al., 1997; Nowak et al., 1995; Mitzdorf and 

Singer; 1978, 1979). This indicates that at the perceptual level there will be differences 

between fovea and peripheral processing of stimuli – sub- or supra-consciously. However, 

for subliminal or unconscious visual processing as obtained in back-ward masking 

paradigms different neural routes and rules might apply. According to Lamme and 

Roelfsema (2000), Roelfsema et al., 2000; Ekstrom et al., 2008 response inhibition should 

critically depend on both prime-mask and mask-target SOA‟s.  

 

Thus, results of this study are consistent with previous theoretical models on sensorimotor 

processes and suggest that inhibitory processes evolved firstly through conscious-visuo 

motor routes and can be revealed by subliminal primes in backward masking paradigms 

when sufficient processing time is provided. On the other hand, Vorberg et al., 1998, 2000 

and Klapp and Hinkley (2002) found that response inhibition can also be traced with fully 

visible primes i.e. when pseudo-masks (masks which do not obliterate the prime stimulus) 

or blank interval replaced the mask. However, the onset delay was found to be longer for 

conscious primes than with invisible primes to reveal response inhibition, suggesting 

different processes for conscious and subliminally triggered motor processes. Thus, 

subliminal stimuli when applied as primes can elicit motor responses and activation in 

motor system perhaps even on a direct route which disengages from conscious processes of 

visual input.  

 

When looking into cpd on visuo-motor processing from subliminal primes, one needs to 

consider the influence of mask on visual processing before understanding the motor 

activation processes. Traditional models of perceptuo-motor interactions suggested that 

visual perception and a motor response process construct discrete stages, activated 

successively (Sander, 1980). However, models that are more recent assume a continuous 

flow of information from sensory to motor systems, thus making it possible that a motor 



Chapter 7. Sensorimotor Processes II   

 

 

 155 

response is conducted before perceptual analysis is finished (Coles et al., 1985). Research 

into backward masking showed that the masked stimulus evokes initial transients at low-

level and at high-level visual areas (Rolls et al. 1999). A mask cannot catch up with very 

fast feedforward activation of visual areas but it can still influence the response, which is in 

a transient state at that time. Another suggestion is that the mask would disrupt recurrent 

interactions and the feed-back information would clash with mismatching feed-forward 

information from the mask in the low-level areas (Corthout et al., 2001).  

 

However, such processes cannot explain prolonged SOA‟s for center and in particular for 

periphery required to elicit motor inhibition. Prolonged SOA might not be an indication of 

fast or slow cellular processing on visual feed-back level but rather on the level of visuo-

motor connections after V1 (V1-motor cortex route, not retina-visual cortex route) and so 

the motor inhibitory process might be independent from visual entities. Thus, the initially 

believed quantitative difference for visuo-motor processing between fovea and periphery 

turns into a qualitative one with adjusted perceptual and neural timing parameters. Origin 

of the cpd might come from the fact that periphery usually is used to notice some visual 

input which then activated eye movement processing rather than manual processing, the 

first route might be fast and efficient as it ensures evolutionary advantage, the second route 

is usually less used and needs to be categorized into procedural motor learning, which takes 

longer to be established in terms of neural links (Wolfe et al., 1998).  

 

In sum, the data suggest that there are no discrete stages for visuo-motor processing once a 

link has been established and that there are subconscious visuo-motor routes and 

mechanisms linking visual input from periphery to motor areas independent from conscious 

processing. On the perceptual level data showed that threshold differences disappear as the 

motor system takes over the task and stable visuo-motor links have been established. 

Therefore, the visual threshold does not “matter” anymore, the response above chance 

happens on a level, which is subconscious to visual perception (Sanders et al., 1974; Huxlin 

et al., 2009; Leh et al., 2010; Cowey, 2010; Kentridge 1999ab, 2004). This is in line with 

the theory of continuous visuo-motor processing. However, it remains a good question for 

future studies to answer to which extent the perceptual threshold on the one hand and the 

motor threshold on the other contribute to the NCE‟s phenomenon (Schlaghecken and 

Eimer, 2000).  
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        5 General Summary  

 
The synthesis of results obtained from 8 experiments as described in Chapters 6 and 7 

suggests that perceptual sensitivity is not a sufficient explanation for the cpd in masked 

priming. Dissociation between prime discrimination performance and the magnitude of the 

NCE for foveally presented stimuli reported in previous studies was reported in earlier 

studies (Schlaghecken et al., 2002; Hermens et al., 2010). The equation for perceptual 

differences between fovea and periphery is not equivalent to equation of sensorimotor 

impact originating at the center or in the periphery of the retina. A distinction between 

perceptual sensitivity and sensorimotor sensitivity can be suggested to explain the NCE 

occurrence in periphery with prolongation of time which is needed for motor inhibitory 

processes to emerge. Data presented here imply that the sensorimotor link might be slightly 

slower for peripheral stimuli, so it takes 100 ms longer for the NCE to become established.  

 

In sum, the accepted explanation for cpd in masked priming as accounted for by differences 

in perceptual sensitivity seems a rather premature suggestion.  It is important to draw a 

distinction between perceptual and sensorimotor sensitivity, which can differ for center and 

periphery for various anatomical, neural and behavioural reasons– suggesting a higher 

motor inhibition threshold in periphery than in fovea.  

 

Response inhibition was initially investigated with supraliminal primes in tasks like 

go/nogo where a conscious voluntary stop action is required. Recent studies provide 

evidence for subconscious inhibitory processes from subliminal primes. This subliminal 

inhibitory response was concluded from a reversed pattern of compability effects with 

subliminal primes presented in the center of visual field when delaying the time point of 

target display i.e. at longer mask-target stimulus onset asynchrony (SOA) (Schlaghecken et 

al., 1998). These results suggested that at a certain critical time after prime onset, the 

response to the target stimulus is selected during an inhibitory phase and therefore the 

response mapped to the prime is under inhibition, which is reflected in faster response on 

incompatible trials as compared to compatible trials (the NCE). 

 

However, when the same primes were presented to the near periphery (peripheral primes) 

at 2.8  above or below fixation – initially no NCEs were reported (Schlaghecken and 

Eimer, 1997, 2000) for any type of response, including manual, saccadic eye movements 
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and vocal responses (Eimer and Schlaghecken, 2001). With masked primes at increasing 

retinal eccentricity, the NCE gradually turned into a PCE, and this effect was called the 

“center-periphery asymmetry” (Schlaghecken and Eimer, 2000), referred to here as 

“Center-periphery Difference” (cpd). Electrophysiological recordings in motor cortex 

revealed distinctive modulation of LRP waveforms for periphery and fovea. With longer 

SOA‟s activation-inhibition pattern occurred with foveal primes but activation only with 

peripheral primes (Eimer and Schlaghecken, 2003). 

 

 

 

 

 

 

 

 

 

 



Chapter 8. General Discussion   

 

 

 158 

CHAPTER 8 

 
GENERAL DISCUSSION  

 
 

The discussion chapter is divided into several separate modules, a short theoretical 

introduction and integration followed by a summary and discussion of results and future 

directions for a) FEF patient studies (Chapters 3 and 5), followed by b) pulvinar patient 

studies (Chapters 4 and 5) and c) visuo-motor priming studies (Chapters 6 and 7). Visuo-

motor priming studies have been discussed in detail in Chapter 7. Here an overview of all 

results is given with the emphasis to integrate data from all experiments (patients and 

priming) into a comprehensive model of foveal and peripheral routes belonging to the visuo-

motor control circuits. A circuits model of integrated visuo-motor systems is proposed; i) the 

visuospatial attentional/ oculomotor, peripheral system composed of a network of occipital 

areas, the FEF and the pulvinar (mostly operating on the unconscious level, but influenced by 

conscious top-down processes) and ii) the foveal processing route which activate supra- and 

subliminally the manual visuo-motor control system composed of a network of brain areas 

such as the preSMA (and other motor, frontal and parietal areas). Finally, discussion of 

methods and theoretical integration of results of this work into current models of visual 

processing such as that of Milner and Goodale, 1992 and that of Ungerleider and Mishkin, 

1982 will follow.   

 

8.1 Theoretical Introduction and Integration  

The present work contributes towards understanding of neural pathways and networks 

subservient to the integrated functions of vision and action (Sumner et al., 2004, Chambers et 

al. 2004, Anderson et al., 2007) and supramodal mechanisms (Hodgson et al., 1999) and 

extends beyond current theories of vision and action (Millner and Goodale, 1992; Ungerleider 

and Mishkin, 1989).  

First, it has been proposed that several visuo-motor systems have evolved for different kinds 

of behavior as relatively independent functional modules (Goodale, 1996; Milner and 

Goodale, 2006). For instance in vertebrates the visuo-motor circuits for grasping vs. 

identification of visual targets are transmitted in separate pathways (Goodale, 1996). In 

humans, Hodgson et al., 1999, found “dissociations between saccadic and simple manual 
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responses”, which however seem to operate within one supramodal attentional system for 

visual space.  

Second, in humans, visuo-motor processes need to be processed in flexible circuits. Thus, in 

addition to the rather rigid subcortically regulated and separated visuo-motor systems, 

cortically controlled circuits in the human brain developed, to meet the demands of complex 

human-environment interactions (Milner and Goodale 1993, Goodale and Milner, 1992; 

Sumner et al., 2008). To such control mechanisms belong not only conscious top-down 

processes controlling all sorts of visuo-motor processes but also automatic and unconscious 

control mechanisms (e.g. in sensorimotor areas (Schlagecken and Eimer, 2002)). Such 

cortical conscious and unconscious control mechanisms involve processes which are 

inhibitory and excitatory to integrate visual, motor and visuo-motor (sensorimotor) systems 

and regulate them. However, there is still a gap in our understanding of how these complex 

control mechanisms interact with specific entities of the visual system, such as the central and 

peripheral processing in the retina. This work aimed to examine visuo-motor systems from 

this perspective.  

Interestingly, although fovea processes conscious perception it can also trigger visuo-motor 

control mechanisms at the subliminal subconscious level, while the periphery which is 

considered to trigger eye movements unconsciously cannot get easy access to subconscious 

visuo-motor processing of manual actions. This way, these functionally distinct retinal areas 

seem to provide starting points of two separated visuo-motor control systems, one manual, 

the other oculomotor, which however, as shown in Chapter 7 can be linked and integrated via 

independent visuo-motor representations. There is a possibility that the attentional system 

does influence subconsciously manual visuo-motor control mechanisms. This has been shown 

by Sumner at al., 2008, which however could not be replicated with a simple and possibly too 

weak attentional manipulation in the experiment described in Chapter 6.  

 

In Chapter 2, a paradigm to test centre-periphery difference in vision contrast sensitivity 

thresholds have been measured and then applied in all experiments. The aim was to measure 

cpd in contrast sensitivity in FEF (Chapter 3) and in pulvinar patients (Chapter 4) to access 

the roles and a possible co-work of these two brain areas for viusospatial processing. The cpd 

in contrast sensitivity should indicate their specific mechanisms for top-down control of 

covert visuospatial attention (Chapter 5), which successfully links vision and motor functions 
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in the brain (Millner and Goodale, 1992). Oculomotor functions and covert attentional shifts 

are usually understood as an automatic (subconscious) component of visuospatial processing , 

which has been tested too in the form of bottom-up control of covert visuospatial attention 

after FEF and pulvinar damage (Chapter 5).  

 

Investigation of automatic links between visual and motor processes continues in Chapter 6 

and Chapter 7, leaving aside patient studies and the investigation of brain damage and turning 

toward precise experiments in healthy participants. Chapter 6 and 7 deals with the visuo-

motor system in the brain related to manual responses which is important for grasping and 

motor action in visual space (Millner and Goodale, 1992). Also for this kind of visuo-motor 

links cpd has been reported (Schlaghecken and Eimer, 1998). Chapters 6 and 7 contain a 

series of experiments designed to pin down the differences between fovea and periphery on 

the visual level (Ungerleider and Mishkin, 1982) and then on the visuo-motor control level 

(Milner and Goodale, 1992; Schlagheacken and Eimer, 1998; Lingnau and Vorberg, 2005).  

 

8.2 Summary of Results, Interpretation and Future Directions 

8.2.1 Cpd in Contrast Sensitivity in FEF Patients  

Centre-periphery difference in visual sensitivity was measured in two brain areas, the FEF 

and the subcortical pulvinar to examine their involvement in visuospatial processing in 

humans. The approach was to test patients with damage to these areas and to examine their 

visual sensitivity and their ability to shift covert attention across the visual field. Based on 

previous TMS and imaging studies the difference in contrast perception between fovea and 

periphery was of particular interest. It has been shown in Chapters 3 and 5 that right FEF 

damage show impaired visual sensitivity in both fovea and periphery, in particular showing 

higher impairments to the contralesional side peripherally. This pattern indicates that 

transient TMS FEF effects in healthy participants (Ruff et al., 2006) are different to the 

effects of chronic lesions in FEF. TMS FEF has been assumed by Ruff et al., to act as a 

subthreshold activation not as a virtual lesion (Ruff et al., 2006). Cpd in contrast sensitivity 

after real lesions in FEF seem to support this assumption. This indicates that FEF is important 

for contrast sensitivity as suggested by Ruff et al., 2006 and Taylor et al., 2007. 
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However, tested FEF patients show a wide range of contrast sensitivity impairments, with the 

bilaterally damaged patients not showing any contrast sensitivity impairments but some 

variations in attentional modulation, while a patient with included right parietal damage 

(C.W) showed big lateralization effects. Thus a possible confound from lesions overlap, in 

patient C.W and in patient L.B (includes the DLPFC) might have had influences on their 

results.  

 

8.2.2 Lesion Overlap – DLPFC and Parietal Areas  

DLPFC has been found to be visuotopically organized (Sereno et al., 2005) and is known to 

be involved in visuospatial working memory, attentional and executive control (Miller and 

Cohen, 2001) (for more detail see Chapter 1). Vanni and Uutela (2000) found that the right 

precentral cortex (PrCeS) close to the FEF is sensitive to stimuli in all parts of the visual 

field. Other research suggests a complex integration of DLPC into visuospatial processing 

(Smith et al., 1996). However, PFC lesions have showed no apparent deficits in sensory 

discrimination or motor performance (Duncan et al., 1996). On the other hand, Corbetta et al. 

(1998 a,b,c) found activations during eye movements and covert attentional shifts in the 

whole PrCeS. It has been suggested that this increase of spatial tuning is equivalent to that 

found with higher visual areas during spatial attention tasks (Luck et al., 1997). Thus, DLPFC 

is a serious confound in the work presented here, however this is most evident only in the 

patient with bilateral FEF lesions.  

It was reported that during suppression of eye movements FEF neurons, which are placed 

closely to the PrCeS encoding targets increased activity while activity declined in the 

movement-related cells in FEF. Thus, a damage of FEF might have consequences for fixation 

abilities. Another lesion overlap confound in the cpd examination in the FEF patient group 

might take origin in parietal areas, which are well known from neglect studies to be crucial 

for visuospatial attention and result in contralesional attentional deficits. Therefore, in future 

it is strongly suggested to test such patient groups separately, FEF, DLPFC, PrCeS and 

parietal lesions to examine functions and links of each of these brain areas  in Visuospatial 

processing.  

Interestingly, the size of lesions and deficits in contrast perception did not correlate (Chapter 

3). Thus, the general processing capacity which is deficient after extensive brain damage 

found in stroke patients seems not to have affected visuospatial processing in patients tested. 
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Another important aspect which should be accounted for in studies with chronic lesions is 

that there is a considerable amount of plasticity and reorganisation in the human brain. This 

could explain why transient TMS FEF effects are different to visual impairments found after 

chronic FEF damage. This will be discussed in the methods section below. 

 

8.2.3 Top-down Control of Covert Attention 

Ruff et al., suggested that equalization of cpd in contrast sensitivity was a result of top-down 

covert attention. Therefore in Chapter 5, top-down control on attentional shifts was examined 

in FEF patients. Attentional shifts in FEF patients as averaged resulted in benefits in fovea 

and in the contralesional visual field (left periphery) while ipsilesional visual field seemed to 

be top-down control deficient (right periphery). FEF patients seem to benefit from attentional 

shifts in their previously reported perceptually deficient visual field. These results show that 

specific perceptual deficiencies after FEF lesions can be compensated and therefore it can be 

assumed that visual processing or top-down attentional control is not restricted to the FEF 

area only. This is consistent with brain system models of visuospatial attention (Corbetta and 

Shulman, 1998; Corbetta, et al., 2000; Kastner and Ungerleider, 2000; Kundsen, 2007). 

However, bilateral lesions of FEF extending to prefrontal areas seem to show impaired 

attentional abilities. 

 

8.2.4 Bottom-up Control of Covert Attention 

The results of bottom-up summoned attentional shifts differed from top-down cueing effects 

in the FEF patient group. In average patients with FEF damage have shown small attentional 

benefits to automatically summoned targets in fovea and in periphery. It therefore seems that 

automatic covert attention shifts are intact in FEF patients, while top-down control was 

unilaterally deficient. For the ipsilesional visual field top-down deficits were shown while 

bottom-up seems intact. Although again no significant meaning can be claimed one might 

speculate why this difference showed up. One explanation is the right visual field (RVF) 

advantage for attentional effects while left visual field (LVF) advantage exists for visual 

processing. If top-down attention is particularly affected in the right visual field, this will be 

consistent with observations in healthy participants, while visual processing and bottom-up 

summoned covert attention shows deficits in the left visual field. Left visual field has also 
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been more impaired in contrast sensitivity. This has been interpreted as contralesional deficit; 

however it could have been independent from the side of the lesion. Although some detailed 

explanations of the attentional results are provided, this is mainly to inspire future research, 

as the attentional results described in Chapter 5 did not reach any significance level.  

 

     8.2.5 Summary FEF Patient Studies 

In summary, results from patients with chronic FEF lesions are in accordance with brain 

imaging studies which reported that FEF is a brain area which is engaged in visuosptial 

processing and in both types of attentional control (Corbetta and Shulman, 1998; Corbetta, et 

al., 2000; Kastner and Ungerleider, 2000; Kundsen, 2007). This however needs to be proved 

in bigger patient samples in the future.   

 

8.3 Cpd in Contrast Sensitivity in Pulvinar Patients - Indications for 

a Fixation Network between FEF and Pulvinar? 

 

Cpd in visual processing was increased in pulvinar patients when compared with FEF and 

healthy controls. Pulvinar patients have shown impairments in peripheral visual fields and 

improvement in fovea, which means the cpd was extended in both directions (Chapter 4 and 

Chapter 5). Pulvinar patients‟ improvement in visual processing in the fovea is consistent 

with “sticky” fixation found during saccades in humans after pulvinar damage (Watson et al., 

1979; Ogren et al., 1984; Rafal et al., 2004). This is opposite to the mechanism which was 

shown in the fovea after FEF damage. Therefore, that author proposes that, FEF and pulvinar 

contribute to visuospatial processing and cooperate within a fixation network integrating 

mechanisms of fixation and release. This is consistent with previous research in monkeys and 

in humans. It strongly suggests that the pulvinar is an important part of visuospatial 

processing and is tightly integrated in corticothalamic transmission of visual signals in 

visuotopic manner (Stepniewska and Kaas, 1997; Shipp et al., 2003; Adams et al., 2000; 

Lyon and Kaas, 2007; Logothetis et al., 2010; Berman and Wurtz, 2008; 2010; 2011; Rafal 

and Posner, 1987; Snow et al., 2009; Arend et al., 2008; Leh et al., 2007) 
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8.3.1 Top-down Control of Covert Attention in Pulvinar Patients  

When tested for top-down attention pulvinar patients have shown a pattern of attentional 

benefits in the left visual field and attentional costs in the right visual field similar to FEF 

patients. This can again be explained with sticky fixation directed to the central arrow (placed 

slightly above the target) while the release of fixation towards the target was impaired in 

pulvinar patients particularly in one direction. However, it is difficult to explain why pulvinar 

patients have shown peripheral impairment independent of their contralesional side.  

 

8.3.2  Bottom-up Control of Covert Attention in Pulvinar Patients  

Bottom-up attentional benefits in pulvinar patients were small but positive and did not differ 

much from those found in FEF patients. This seems surprising in respect to previous studies 

which assumed that pulvinar is a structure coordinating bottom-up visual processing. 

However, due to the limited number of testing trials bottom-up attentional effects need to be 

interpreted with caution. 

 

8.3.3 Summary Pulvinar Patient Studies 

At the current stage of results, it can be assumed that the FEF and the pulvinar have 

complementary neural functions for fixation properties, which might work together when 

passing visual and attentional signals in the periphery. Due to increased cpd after pulvinar 

lesions it might be interesting to consider if the pulvinar could work not only as a driver but 

even as amplifier of visuospatial signal transmission .However, such speculation might be far 

fetched given the current results, and would need a back up from literature. 

 

8.3.4 Future Outlook for Fronto-pulvinar-occipital Network  

Secondly, we still do not know enough about the foveal FEF-pulvinar-occipital route itself. 

While there is convincing evidence form monkey studies about visuospatial processing in the 

pulvinar, there is a huge gap in the understanding of how the pulvinar coordinates visual 

signals in the human brain. Pulvinar patient studies in this work provid the first hint on the 

importance of this structure for visual processing in humans. In future, signal processing in 
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the pulvinar between FEF and occipital areas could be investigated in humans via application 

of theta burst TMS over the FEF and occipital areas while pulvinar activity in fMRI post 

TMS could be measured. Secondly, with the application of fMRI at high resolution and 

higher magnetic fields (7 Tesla magnetic strength) (Windischberger et al., 2010) retinotopic 

maps in the human pulvinar should be detectable by established retinotopic mapping tools 

(Sereno et al., 1998). Secondly, this work would benefit from further examination of 

visuospatial attention in FEF and pulvinar patients and as mentioned above in a carful 

separation in lesion studies of other brain areas such as DLPFC, PrCeS and the parietal lobe 

which all belong to the functional networks for visuospatial processing and attentional control 

(Corbetta and Shulman, 1998; Corbetta, et al., 2000; Kastner and Ungerleider, 2000; 

Kundsen, 2007). 

 

      8.4  Cpd  in Visuo-Motor Associations (Sensorimotor Processes) 

While visual attention can be summoned by stimuli revealing an automatic control 

mechanism, manual actions to visual stimuli can be triggered without conscious decisions 

too. Subliminal visual primes have been found to evoke visuo-motor processes which are 

different when presented in fovea or in the periphery of the visual field (Schlaghecken and 

Eimer, 1998; Eimer and Schlaghecken 2000, 2002; Vorberg, 2000; Klapp and Hinkley, 2002; 

Lingnau and Vorberg, 2005; Sumner et al., 2008; Boy et al., 2010a/b). During compatible 

prime-target trials presented to fovea there is a speed up of reaction times to targets. This is 

however only evident at short delays between the mask onset and target onset (stimulus onset 

asynchrony or SOA). With prolonged SOA‟s RT´s in compatible trials were found to reverse 

from positive compatibility effects (PCE) to negative compatibility effects (NCE). However, 

when presented in the periphery, only PCE at longer SOA‟s were found. This has been 

explained by a model of partial activation and inhibition in a visuo-motor system with 

peripheral stimuli having higher activation thresholds (Eimer and Schlaghecken 2000, 2002).  

 

However, the visual strength of the primes has not been equated for fovea and periphery in 

previous studies in the form of precisely measured prime visibility thresholds (Schlaghecken 

and Eimer, 2000, 2001; Eimer and Schlaghecken 2000, 2002; Lignau and Vorberg, 2005; 

Schlaghecken and Eimer, 2006). Visibility thresholds were therefore measured carefully 

using orientation discrimination and masked primes for three retinal loci. As expected 
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visibility thresholds were significantly higher in periphery than in fovea. Once the visual cpd 

has been measured, a series of experiments investigated successively several factors which 

could have determined cpd in visuo-motor priming. Experiments in Chapter 6 have shown a 

trend which is in accordance with object update theories (Lleras and Enns, 2004; Verleger et 

al., 2004; Sumner et al., 2007; Jaskowski and Przekoracka-Krawczyk, 2005; Jaskowski et al., 

2007; Jaskowski, 2008) suggesting that a mask of similar visual features as the prime will 

facilitate NCE. The mask which showed that trend in the first experiment has been adapted 

for all following experiments.  

Then, influences of attention on NCE were investigated (Macaluso et al., 2003; Eimer et al., 

2010). In that context it is interesting to consider if and to what extent visuo-motor 

associations belong to a bigger control system including visuo-spatial attention directed by 

voluntary control mechanisms and if visuo-motor representations can be influenced by 

attention (Kundsen, 2007). Although some studies have shown attentional influences on 

priming effects directly (Sumner et al., 2006; Bavelier et al., 2000; Huber, 2008; Sohrabi and 

West, 2008) the randomization versus blocked presentation paradigm did not change the cpd 

pattern. The next crucial factor was the amount of training participants received to establish 

the novel and abstract visuo-motor association. With increased practice NCE occurred in 

fovea, but not in the periphery. This ruled out that cpd in visuo-motor priming is dependent 

on visual strength of the primes, as these have been equalised and tested over a series of 

experiments, without producing NCE in the periphery.  

In Chapter 7, different SOA‟s have been applied to test thresholds in the periphery. Only 

SOA at 250 ms produced reliable NCE in the periphery after 3 testing sessions. SOA at 250 

ms has been in fovea and again periphery. Peripheral NCE were slightly higher than NCE 

obtained in the fovea under the same conditions. It can therefore be concluded that at 10 

visual degrees peripheral eccentricity, at least one time window exists, that of 250 ms which 

allows sensorimotor processes to be controled via periphery. This on the other hand, suggests 

that there is no cpd in visuo-motor processing once the correct determinants have been 

applied.  Experiments in Chapter 7 are in line with Lingnau and Vorberg, 2005 and show that 

visuo-motor plans on a manual level can be accessed through the periphery when the 

requirements of neural peripheral processing: prime strength in combination with prolonged 

SOA is met. Visuo-motor representation could be triggered across retinotopic space (further 

periphery) only if the signal has been strong (meaningful) and frequent (relevant) enough.  
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8.5 Theoretical Integration of Top-down and Sensorimotor Processes 

8.5.1 Model of Integrated Visuo-Motor Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59. A model for neural circuits for visuo-motor processing in the human brain (separate 

but integrated visuo-motor systems) as accessed through the fovea (F) or the periphery (P) of the 

visual field. The model draws from previous literature indicating brain areas involved in specific 

functions and integrates the results of this work. Legend: Solid lines indicate the strength of links: 

dashed lines: weaker processing route, not prioritised link in the processing system, e.g. the peripheral 

route to visuo-motor representations processing brain areas; the thicker the line the stronger the link: 

e.g the link for subconscious visuo-motor processing between fovea and motor brain areas, which 

facilitates visuo-motor activation and inhibition processes. a) motor brain areas (motor cortex 

(preSMA), subcortical areas and parietal lobe) as regulated via the fovea preferably when conscious 

percepts initiate motor actions b) attentional and oculomotor control areas (FEF, puvinar and parietal 

lobe) accessible through the periphery preferably initiating eye movements and attentional shifts 

(preferably on unconscious level), which in turn facilitate conscious visuospatial processing in fovea. 

At this point both distinct visuo-motor systems meet and both can have an effect on motor manual 

execution as found in chapter 7. Both the subconscious and the conscious loop shown in the model are 

proposed to be involved in motor execution based on subconscious activation and inhibition of visuo-

motor neural representations (visuo motor associations). The strength of visuo-motor processing is 

high between fovea and motor areas but weak between periphery and some motor areas. This however 

might be different for the conscious visuo-motor route between fovea and fronto-pulvinar-parietal 

network where perceptual strength and control processes play an important role, this is indicated by a 

straight line from fovea to the frontoparietal motor network at the conscious level. There is another 

link between periphery (occipital cortex) and oculomotor fronto-subcortical-parietal network (Corbetta 

and Shulman, 1998; Corbetta, et al., 2000; Kastner and Ungerleider, 2000; Kundsen, 2007) which is 

thought of as a subconscious rout and involves some connections to the subconscious visuo-motor 

processing areas, which is not indicated in this graph. On the conscious level perceptual strength 

matters as well as conscious top-down processes are involved. 
 

a) 

b) 
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Separate but integrated visuo-motor systems has been proposed by Goodale, 2010 and 

Sumner et al., 2008. The author suggest the following three semi-independent visuo-motor 

systems a) the subconscious visuo-motor control system concerned with manual responses 

and b) the conscious top-down motor control system and c) the subconscious oculomotor - 

attentional system. Fig. 59 shows a thought model integrating these functional systems. 

Firstly, this model emphasizes the role and the differences between inputs conveyed through 

periphery versus fovea. Secondly, this model tries to integrate conscious and subconscious 

visuo-motor processing. The model is explained in detail in the text below Figure 59. 

8.5.2 Is Vision-Action Model of Millner and Goodale (1992) - accurate? 

The experiments and results of this work allow discussion of how much the proposal of 

Milner and Goodale (1992) to divide vision and action in separate functional systems is still 

relevant and if it does need updating at all (Kundsen, 2007). Accordingly previous studies 

indicate that there is reasonable crosstalk between both pathways (Wolfensteller et al., 2004) 

and it is possible that a motor response is conducted before perceptual analysis is finished, 

and therefore not necessarily requiring full conscious visual analysis (Coles et al. 1985, 

Schmidt et al., 2007).  

There is also a wide body of research generated within the research groups of Millner and 

Goodale themselves providing evidence that the vision-action pathways model is too 

simplistic and requires refinement if not complete rejection (Schlaghecken et al, 2003, 2007; 

Broogard, 2011; Rice et al., 2007; Milner and Goodale, 2008; Goodale et al., 2005; Schenk et 

al., 2005, 2006; Goodale and Westwood, 2004; Goodale et al., 2004).  On the other hand this 

model is a backbone for understanding of brain networks and provides the first systematic 

approach to visuo-motor processes. Finally, it is important to mention that Goodale and 

Millner do not deny integration of visuo-motor control systems at different stages of visual 

and motor processing.  

In conclusion, at the stage of current evidence the author of this work proposes, that while 

fovea is preferably used for conscious processing with two purposes: conscious recognition 

and manual action to visual objects in the center of vision, the periphery is an important 

signalling center triggering eye movements and attention and is less suited to trigger manual 

actions (to blurred objects).  
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In that way, however both parts of the retina are engaged in visuo-motor processing (or action 

pathway according to Milner and Goodale, 1992) – but within partly separated visuo-motor 

systems. Periphery would control attention and eye movements via a functional network of 

FEF – subcortical-occipital – parietal areas, while fovea would trigger the manual route via 

temporal-occipital-parietal–premotor–motor – orbito-frontal areas as illustrated in Fig.59, of 

which the orbitofrontal areas for planning and anticipation have not been investigated in this 

work and should be considered for future studies on cpd in manual visuo-motor control 

mechanisms.  

8.5.3 Integrative Visuo-motor Ventral and Dorsal Pathways? 

Finally, the understanding of both foveal and peripheral pathways in the form of visuo-motor 

systems has consequences for another important model of visual perception proposed by 

Ungerleider and Miskin (1982) – the where and what pathways. Fovea was supposed to 

process identity of visual targets while periphery has to localise them. It is a definition of 

visuospatial processing and only implicitly suggests the integration of manual or oculomotor 

actions of the system. Therefore, the author proposes that both foveal and peripheral 

processing are tightly connected to visuo-motor functions. However, it is important to have 

the separation in ventral and dorsal systems to emphasise the differently specialised visuo-

motor control systems in the human brain – the ventral for manual visuomotor functions and 

the dorsal for attentional/oculomotor functions.  

      8.5.4 Integration and Differentiation of Top-down Processes 

Initially response inhibition has been investigated with supraliminal primes in tasks like 

go/nogo where a conscious voluntary stop action is required. The NCE experiments have 

shown that response inhibition also exists at the automatic level, suggesting that top-down is 

not equivalent with conscious processing. Accordingly, top-down processes are suggested to 

exist at the micro-level (for instance within one multisensory brain area) and at the macro-

level (between brain areas) and can be facilitatory or inhibitory. Working memory has been 

suggested to be distributed in the network of areas and might be effector/ function specific. 

Thus, top-down processes might not be localized in the PFC only, which is unlikely to store 

the automatic “visuo-motor representation”. This is in line with studies which found PFC to 

be less engaged in a task with performance becoming automatic (Fuster et al., 2000). Thus, 

top-down mechanisms can develop and be independent from PFC and be “localized” as 
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independent effector specific micro-circuits, for example in FEF. Another candidate area for 

such visuo-motor micro-circuit might be the preSMA (Sumner et al., 2008) or at the macro-

level the fronto-pulvinar-occipital network.   

     8.7 Discussion of Methods 

This work has been using two contrary methods. Usually complex behavioural and brain 

imaging studies dominate the investigation of impact of lesions on behaviour in patients, 

from which most evidence for the perception-action model of Millner and Goodale, 1992 has 

been generated. Tests of optic ataxia, visual agnosia, apraxia and neglect provided exciting 

insights (and some misguidance) to the concepts and underatanding of brain networks. 

Psychophysical methods on the other hand, are routinely used in healthy participants while in 

patients, with rare exceptions (Snow et al., 2009). Very often data from psychophysical 

studies in healthy humans does not support experimental findings in patients. While there is 

high reliability but poor external validity in psychophysical experiments, patient studies can 

be unreliable and or the opposite extremely devoted. Due to the low number of focal lesions 

available, plasticity and reorganisation processes, or due to the loss of concentration 

capacities, motor or verbalisation skills, it becomes a challenge to obtain meaningfull data 

from patients. Finally mood disorders in patients and (depression or lack of emotional 

control) can negatively influence performance in experiments.  

With the knowledge of the down-sides of lesion studies in humans (as discussed in detail in 

Chapter 1), it was of particular interest to validate these against TMS studies in healthy 

participants. The aim of this work was to precisely describe visuospatial processing without 

confounds from decision, verbal or motor functions. Nonetheless, some kind of decision 

processes will be involved in an orientation discrimination paradigm; however it is a 

relatively simple task when compared with other cognitive paradigms used in experiments 

with patients (Ward et al., 2001).  As in all patient studies, this work suffers from insufficient 

access to a bigger patient group with focal lesions. New statistical methods for a reliable 

lesion-symptom mapping also require bigger groups of patients and allow for more extended 

lesions to be tolerated.  
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8.8 Conclusions  

In conclusion results of this work allow new insights to visuo-motor functions and neural 

networks in the human brain.  First, results obtained from brain damaged patients have shown 

that the FEF area and the subcortical pulvinar contribute to visuospatial processing and are 

very likely to cooperate in a functional fixation network coordinating neural mechanisms of 

fixation and release. Secondly, the comparison of real lesions in FEF patients, with transient 

TMS FEF in healthy participants showed that both methods produce distinct results for 

centre-periphery differences in visual processing and that there is some indication of 

contralesional perceptual deficit in FEF patients. Thirdly, top-down control of attention is 

impaired after FEF and pulvinar damage in the right visual field in both patient groups and 

this pattern seems distinct in comparison to small but positive gain in perception after 

bottom-up attentional control. This suggests that both the FEF area and the pulvinar are 

involved in top-down control of visuospatial attention; however, this effect did not reach 

significance level and requires replication. This was out of scope of this project and patients 

were not available for further testing. However, the proposal of fronto-pulvinar-occipital 

network could prove a valuable proposal for future investigations.  
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APPENDIX  
 

Chapter 2 

 
Table 1. Experiment 1. Cpd calculated as 

periphery/centre ratio for visibility thresholds 

in two different psychometric methods  

 Ratio Periphery/Fovea 

Pb # 

Orientation 

Discrimination 

Point of 

Subjective 

Equality 

   

Pb1 1.9 1.5 

Pb2 1.7 1.2 

Pb3 2.2 1.4 

P4 1.6 1.2 

Pb5 1.1 0.9 

Pb6 1.6 1.1 

Pb7 2.2 1.5 

   

M 1.7 1.2 

SEM 0.15 0.08 
 
   
 

Table 2. Experiment 2b. Perceptual sensitivity thresholds in luminance 

(candela/m2) at short and long target durations in N=10. 

       

 

40ms target duration  

 

120ms target duration 

 

 Centre Periphery Centre Periphery 

Pb # Fovea Left  Right  Fovea Left  Right 

       

Pb1 3.86 7.75 7.66 0.78 0.73 1.09 

Pb2 2.61 7.15 7.91 1.05 1.46 1.51 

Pb3 3.97 7.57 5.93 1.13 1.84 0.70 

Pb4 3.10 6.69 5.80 0.86 0.77 0.89 

Pb5 3.37 13.34 16.41 1.07 0.88 1.19 

Pb6 4.64 6.55 5.28 1.00 0.78 1.07 

Pb7 3.19 7.32 4.62 1.41 0.74 1.00 

Pb8 3.63 4.50 4.71 0.79 1.11 1.01 

Pb9 3.06 6.12 6.33 0.95 0.96 0.78 

Pb10 3.83 6.21 7.74 1.18 0.85 1.22 

       

M 3.53 7.32 7.24 1.02 1.01 1.05 

SEM  0.18 0.73 1.09 0.06 0.12 0.07 
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Chapter 3 

 
Appendix Figure 1a shows a multi-slice view on lesion extent in each FEF patient tested 

(Experiment 3, Eperiments 5 and 6). All slices have been acquired under supervision of Prof. 

Robert Rafal at the Wolfson Institute for Cognitive Neuroscience, UK.  
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Table 3a. Experiment 3. Contrast perception thresholds as calculated in Michelson contrast shown in 

% for FEF patients (N=3) and age-matched controls (N=8) and centre-periphery ratios calculated for 

left periphery divided by fovea (L/F),  right periphery divided by fovea (L/F), right and left periphery 

averaged (L&R) divided by fovea (P/F). M=Arithmetic Mean, SEM=Standard Error Mean.  

  

 

Contrast Sensitivity Thresholds   

in Michelson Contrast % 

 

 

Centre-Periphery Differences  

as Periphery/Centre Ratios 

 

FEF 

Patients 

Centre Periphery    

Fovea Left Right Left&Right L/F R/F P/F 

 

MJ (R) 27.3 88.6 61.4 75 3.3 2.3 2.8 

GH (L) 33.6 77.3 79.5 78.9 2.3 2.4 2.3 

LB  (Bi) 5.9 13.6 11.8 12.7 2.3 2 2.2 

 

22.3 59.8 50.9 55.5 2.6 2.2 2.4 M 

SEM 8.4 23.3 20.2 21.4 0.3 0.1 0.2 

 

Table 3b 

Experiment 3 

 

 

Contrast Sensitivity Thresholds   

in Michelson Contrast % 

 

Centre-Periphery Differences  

as Periphery/Centre Ratios 

 

Controls Center Periphery    

Pb # Fovea Left Right Left &Right L/F R/F P/F 

        

Pb 1 10.8 20.6 28.4 24.5 1.9 2.6 2.3 

Pb 2 4.2 12.1 6.1 9.1 2.9 1.5 2.2 

Pb 3 12.1 24.6 31.7 28.1 2 2.6 2.3 

Pb 4 5 10.6 10 10.3 2.1 2 2.1 

Pb 5 9.6 27.3 18.8 23 2.9 2 2.4 

Pb 6 6.5 13.5 15.1 14.3 2.1 2.3 2.2 

Pb 7 4.9 8.3 9.5 8.9 1.7 1.9 1.8 

Pb 8 10.3 16.5 17.6 17.1 1.6 1.7 1.7 

        

M 7.9 16.7 17.1 16.9 2.1 2.1 2.1 

SEM 1.1 2.4 3.2 2.7 0.2 0.1 0.1 
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Chapter 4 

 
Appendix Figure 1b shows a multi-slice view on lesion extent in each pulvinar patient tested 

(Experiment 3, Eperiments 5 and 6). The multi slice image of patient CR included only 4 slices as the 

lesions was very focal while the lesion of patient JL required more slices to be shown accordingly. All 

slices have been adapted from the data bank of the Wolfson Institute for Cognitive Neuroscience in 

Bangor, UK. 
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Table 4. Experiment 4. Contrast perception thresholds as calculated in Michelson contrast shown in % for 

pulvinar patients (N=4) and age-matched controls (N=8) and centre-periphery ratios calculated for left 

periphery divided by fovea (L/F),  right periphery divided by fovea (L/F), right and left periphery averaged 

(L&R) divided by fovea (P/F). M=Arithmetic Mean, SEM=Standard Error Mean. R= lesion in the right 

hemisphere. L= lesion in the left hemisphere. Bi=bilateral, lesion in both hemispheres. 

 

 

Contrast Sensitivity Thresholds   

in Michelson Contrast % 

 

Centre-Periphery Differences  

as Periphery/Centre Ratios 

 

Pulvinar  Centre Periphery    

Patients  Fovea Left Right Left &Right L/F R/F P/F 

        

DG (L) 9.4 23.4 24.0 23.7 2.5 2.5 2.5 

TN (R) 8.0 17.0 32.1 24.6 2.1 4.0 3.1 

CR (L) 6.1 10.3 38.6 24.5 1.7 6.3 4.0 

JL (Bi) 16.0 30.7 42.9 36.8 1.9 2.7 2.3 

        

M 9.9 20.4 34.4 27.4 2.1 3.9 3.0 

SEM 2.1 4.4 4.1 3.1 0.2 0.9 0.4 

        

Controls 

(N=8) 7.9 16.7 17.1 16.9 2.1 2.1 2.1 
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Table 5a-c. Experiment 5a. Neutral cues results from top-down paradigm. Contrast perception thresholds as 

calculated in Michelson contrast shown in % for FEF patients (N=4), pulvinar patients (N=4) and all controls 

(N=21) and centre-periphery ratios calculated for left periphery divided by fovea (L/F),  right periphery divided 

by fovea (L/F), right and left periphery averaged (L&R) divided by fovea (P/F). M=Arithmetic Mean, 

SEM=Standard Error Mean, L=left lesion, R= right lesion, Bi=bilateral lesion. 

Table 5a 

Experiment 5a 

 

 

Contrast Sensitivity Thresholds   

in Michelson Contrast % 

 

Centre-Periphery Differences  

as Periphery/Centre Ratios 

 

Patients FEF  

Center Periphery    

Fovea  Left  Right L&R  L/F R/F P/F 

        

MJ (R) 33.6 77.3 70 73.6 2.3 2.1 2.2 

GH (R) 3.5 7.3 6.4 6.8 2.1 1.8 2 

CW (R)     4.5 14.2 4.7 9.5 3.2 1 2.1 

LB  (Bi) 2.1 10 6.4 8.2 4.8 3 3.9 

 

10.9 27.2 21.9 24.5 3.1 2 2.5 M 

SEM 7.6 16.8 16.1 16.4 0.6 0.4 0.5 

        

All Controls        

M 3.3 6.2 6.4 6.3 1.9 1.4 1.4 

MSE 0.2 1.1 0.9 1.0 0.1 0.5 0.4 

 

 

 

 

 

 

Appendix 



 

 208 

Table 5b 

Experiment 5a 

 

Contrast Sensitivity Thresholds   

in Michelson Contrast % 

 

Centre-Periphery Differences  

as Periphery/Centre Ratios 

 

Patients 

Pulvinar 

 

Fovea 

  

Left 

  

Right 

 

Left & Right 

 

L/F 

 

R/F 

 

P/F 

 

DG (L) 3.7 13.8 9.0 11.4 3.7 2.4 3.1 

TN (R) 2.2 7.5 4.7 6.1 3.3 2.1 2.7 

CR (L)  0.9 2.1 13.3 7.7 2.4 15.4 8.9 

JL (Bi) 2.0 6.1 4.5 5.3 3.1 2.3 2.7 

        

M 2.2 7.3 7.9 7.6 3.1 5.6 4.3 

MSE 0.6 2.4 2.1 1.3 0.3 3.3 1.5 

 

Table 5c 

Experiment 5a 

 

Control (Y) Fovea  Left  Right Left &Right  L/F R/F P/F 

        

1 3.9 7.8 7.7 7.7 2.0 2.0 2.0 

2 2.6 7.1 7.9 7.5 2.7 3.0 2.9 

3 4.0 7.6 5.9 6.8 1.9 1.5 1.7 

4 3.1 6.7 5.8 6.2 2.2 1.9 2.0 

5 3.4 13.3 16.4 14.9 4.0 4.9 4.4 

6 4.6 6.5 5.3 5.9 1.4 1.1 1.3 

7 3.2 7.3 4.6 6.0 2.3 1.5 1.9 

8 3.6 4.5 4.7 4.6 1.2 1.3 1.3 

9 3.1 6.1 6.3 6.2 2.0 2.1 2.0 

10 

 

3.8 

 

6.2 

 

7.7 

 

7.0 

 

1.6 

 

2.0 

 

1.8 

 

M 3.5 7.3 7.2 7.3 2.1 2.1 2.1 

SEM 0.2 0.7 1.0 0.8 0.2 0.3 0.3 

        

Controls (E)        

 Fovea  Left  Right Left &Right  L/F R/F P/F 

1 3.4 5.5 5 5.3 1.6 1.5 1.5 

2 2.4 5.5 5 5.3 2.3 2 2.2 

3 4.1 4.6 6.3 5.5 1.1 1.5 1.3 

4 4.1 5.4 7 6.2 1.3 1.7 1.5 

5 4.7 5.3 4.4 4.9 1.1 0.9 1 

6 3.2 4.6 6.6 5.6 1.4 2 1.7 

7 2.8 6.6 4.4 5.5 2.4 1.6 2 

8 1.9 5 6.1 5.5 2.5 3.1 2.8 

9 2.4 3.4 3.9 3.6 1.4 1.6 1.5 

10 2.1 4.5 5.5 5 2.1 2.6 2.3 

11 

 

2.7 

 

6 

 

6.3 

 

6.1 

 

2.2 

 

2.3 

 

2.3 

 

M 3.1 5.1 5.5 5.3 1.8 1.9 1.8 

SEM 0.2 0.2 0.3 0.2 0.1 0.2 0.1 
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Table 6. Experiment 5b. Top-down cueing effects calculated as ratio in 

neutral/cued trials for FEF patients (N=4), pulvinar patients (N=4) and 

all controls (N=21). M=Arithmetic Mean, SEM=Standard Error Mean.  

L=left lesion, R= right lesion, Bi=bilateral lesion,Y=young controls, 

E=elderly controls 

Pb # 

 

 

Cueing Effects (Uncued/Cued Ratios) 

 

 Centre 

 

Periphery 

FEF Fovea  Left Right Left&Right  

MJ (R) 1.19 0.98 0.86 0.92 

GH (R) 1.36 1.01 1.05 1.03 

CW (R)     0.92 0.81 0.81 0.81 

LB  (Bi) 1.01 1.47 1.67 1.57 

     

M 1.12 1.07 1.1 1.08 

SEM 0.1 0.14 0.2 0.17 

     

Pulvinar Fovea  Left Right Left&Right  

     

DG (L) 1.08 0.83 1.16 0.86 

TN (R) 1.29 1.27 1.1 1.06 

CR (L) 0.98 1 0.89 0.95 

JL (Bi) 1 1.11 1.3 1.36 

     

M 1.12 1.07 1.19 1.09 

SEM 0.09 0.13 0.06 0.15 

     

Controls (Y) Fovea  Left Right Left&Right  

Pb1 1.04 1.42 1.36 1.39 

Pb2 1.09 0.89 1.34 1.12 

Pb3 0.84 1.2 1.25 1.22 

Pb4 0.96 1.01 1.18 1.09 

     

M 0.99 1.13 1.28 1.21 

SEM 0.05 0.12 0.04 0.07 

     

Controls (E) Fovea  Left Right Left&Right  

Pb1 1.12 0.86 1.03 0.95 

Pb2 1.05 0.9 0.94 0.92 

Pb3 1.37 0.96 1 0.98 

Pb4 1.26 1.18 1.2 1.19 

Pb5 1.13 0.95 0.94 0.95 

Pb6 1.09 1.02 1.16 1.09 

     

M 1.17 0.98 1.05 1.01 

SEM 0.05 0.05 0.05 0.04 

     

All Controls Fovea  Left Right Left&Right  

M 1.1 1.1 1.2 1.1 

SEM 0.1 0.1 0.0 0.1 
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Table 7a. Experiment 6. Bottom-up cueing effects calculated as ratio 

in neutral/cued trials for FEF patients (N=4), pulvinar patients (N=4) 

and all controls (N=21). M=Arithmetic Mean, SEM=Standard Error 

Mean, L=left lesion, R= right lesion, Bi=bilateral lesion. 

Pb # 

 

 

Cueing Effects (Uncued/Cued Ratios) 

 

 Centre Periphery 

FEF Fovea  Left Right L&R  

     

MJ (R) 1.05 0.85 0.82 0.83 

GH (R) 1.16 0.87 0.85 0.86 

CW (R)     1.46 1.49 0.62 1.06 

LB  (Bi) 1.1 1.58 1.14 1.36 

     

M 1.19 1.19 0.86 1.03 

SEM 0.09 0.2 0.11 0.12 

     

Pulvinar     

     

DG (L) 1.08 1.57 0.88 1.23 

TN (R) 0.98 1.73 0.88 1.31 

CR (L) 0.83 0.94 1.02 0.98 

JL (Bi) 1.05 1.03 0.67 0.85 

     

M 1.04 1.44 0.81 1.09 

SEM 0.03 0.21 0.07 0.15 

     

All Controls     

M 1.2 1.1 1.1 1.1 

MSE 0.1 0.1 0.1 0.1 

 
Table 7b. Experiment 6. Bottom-up cueing effects calculated as ratio 

in neutral/cued trials for young controls (N=10). M=Arithmetic Mean, 

SEM=Standard Error Mean. Y=young controls. 

Pb # Cueing Effects (Uncued/Cued Ratios) 

 Centre Periphery 

Controls (Y) Fovea  Left Right L&R  

Pb1 0.94 0.99 1.23 1.11 

Pb2 1.22 1.6 1.02 1.31 

Pb3 1.32 1.1 0.89 0.99 

Pb4 1.03 1.3 1.03 1.17 

Pb5 0.6 1.1 1.79 1.45 

Pb6 1.56 1.04 0.99 1.01 

Pb7 1.1 0.92 0.64 0.78 

Pb8 1.38 1.24 1.2 1.22 

Pb9 0.98 1.3 1.17 1.23 

Pb10 1.42 1.42 1.53 1.47 

     

M 1.15 1.2 1.15 1.17 

SEM 0.09 0.07 0.1 0.07 
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Table 7c. Experiment 6. Bottom-up cueing effects calculated as ratio 

in neutral/cued trials for elderly controls (N=10). M=Arithmetic Mean, 

SEM=Standard Error Mean. E=elderly controls. 

Pb # Cueing Effects (Uncued/Cued Ratios) 

 Centre Periphery 

Controls (E) Fovea  Left Right L&R  

     

Pb1 1.45 1.37 1.1 1.23 

Pb2 1.76 0.92 1.31 1.11 

Pb3 1.3 0.89 0.92 0.91 

Pb4 1.44 1.04 0.98 1.01 

Pb5 1.63 1.05 0.97 1.01 

Pb6 0.89 0.83 1.44 1.13 

Pb7 2.39 1.03 1.09 1.06 

Pb8 1 1.07 1.25 1.16 

Pb9 1.28 0.89 0.94 0.91 

Pb10 0.94 1.4 0.72 1.06 

Pb11 1.09 1.17 1.32 1.24 

     

M 1.41 1.05 1.07 1.06 

SEM 0.13 0.06 0.06 0.03 
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Table 8a. Experiment 7 (P1). Masked prime visibility 

thresholds obtained for five participants (Pb) with iso-

oriented primes and masks (both horizontal/vertical) and an-

iso-oriented primes (horizontal/vertical) and masks 

(diagonal), M: Arithmetic Mean. 

   

Pb # 

An-iso-oriented  

Prime-Mask  

Iso-oriented  

Prime-Mask 

 

Pb1 11.0 5 

Pb2 2.5 3 

Pb3 1.2 1.4 

Pb4 3.0 7 

Pb5 

 

2.5 

 

1.4 

 

M 4.0 3.6 

SEM 1.8 1.1 
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Table 8b. Experiment 7 (P1). Priming effects obtained with 

masked primes with iso-oriented primes and masks (both 

horizontal/vertical) and an-iso-oriented primes (horizontal/ 

vertical) and masks (diagonal). 

   

Pb # 

An-iso-oriented  

Prime-Mask  

Iso-oriented  

Prime-Mask  

 

Pb1 61.3 9.7 

Pb2 -3.4 -32.5 

Pb3 -13.7 3.5 

Pb4 -6.3 15.5 

Pb5 

 

14.5 

 

-30 

 

M 10.48 -6.76 

SEM 11.0 8.3 

 

     

Table 9a. Experiment 8 (P2). Primes visibility thresholds and ratios for periphery and 

fovea,(bocked?) trials procedure between foveal and peripheral loci. No eye tracking. 

 Fovea Periphery 

 

Ratio 

Pb # Fovea  Left Right 

Right &Left 

Combined  Periphery/Fovea 

      

P1 5.5 16.5 14.0 15.3 2.8 

P2 3.5 10.2 10.9 10.6 3.0 

P3 8.2  7.6 6.2 6.2 0.8 

P4    10.2  7.8 9.7 8.7 0.9 

P5 7.6 14.6 14.1 14.3 1.9 

P6 2.7  6.5 9.0 7.8 2.9 

P7 

 

4.4 

 

 9.6 

 

6.5 

 

8.0 

 

1.8 

 

M 6.0 10.9 10.0 10.45 2.0 

SEM 1.03 1.59 1.21 1.30 0.35 
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Table 10a. Experiment 9a.  Primes visibility thresholds and ratios for periphery 

and fovea, randomized trials procedure between foveal and peripheral loci. P/F: 

ratio periphery divided by fovea. Ratio: P/F: ratio of periphery divided by fovea. 

L: trials presentation on the left in the periphery, R: trials presentation on the right 

in periphery, Fovea: trials presentation in the center, L&R combined: averaged 

over left and right peripheral trials.  

Prime Visibility Thresholds  Ratio 

 

Pb # Fovea Left  Right  

Left & Right 

combined  

 

(P/F) 

 

 

Pb1 6.0 10.5 24.0 17.3 2.3 

Pb2 4.0 9.0 10.5 9.8 2.0 

Pb3 7.0 14.0 11.0 12.5 1.5 

Pb4 7.5 10.0 11.0 10.5 1.3 

Pb5 5.6 7.3 8.0 7.7 1.2 

Pb6 4.7 11.0 7.7 9.4 1.7 

Pb7 10.0 18.0 14.0 16.0 1.4 

Pb8 7.0 26.0 16.0 21.0 2.3 

      

M 6.5 13.2 12.8 13.0 1.7 

SEM 0.7 2.2 1.9 1.6 0.2 

 
                

 

 

 

 

 

 

 

 

 

Table 9b. Experiment 8a (P2). Priming effects obtained for 

fovea and periphery (left and right combined) with randomized 

trials presentation between fovea and periphery. No eye 

tracking. 

 

 

Priming Effects 

  

Pb # Fovea Periphery 

 

P1  -16.4  38.0 

P2  -13.7  28.8 

P3  -10.0    6.9 

P4     3.9   19.7 

P5   -4.6   35.9 

P6  -29.8   30.0 

P7 

 

 -23.7 

 

-14.8 

 

M 

SEM 

 -13.5 

     4.29 

  20.6 

     7.12 
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Table 10b. Experiment 9b.  Compatability effects calculated as reaction times (RT‟s) 

and priming effects calculated as incompatible minus compatible trials in milliseconds 

obtained at randomized trials presentation for fovea and periphery (left and right 

combined). Comp: compatible prime target trials, Incomp: incompatible prime-target 

trials.  

 

 

Fovea Periphery Priming Effects 

 

Pb # Comp Incomp Comp Incomp Fovea Periphery 

 

Pb1 458.3 475.0 450.4 498.4 16.6 48.0 

Pb2 438.6 444.7 440.2 480.8 6.1 40.6 

Pb3 443.0 406.1 429.6 429.6 -36.9 0.0 

Pb4 447.4 429.2 430.8 467.0 -18.2 36.3 

Pb5 406.0 372.7 374.3 382.5 -33.4 8.2 

Pb6 428.8 424.1 406.0 450.4 -4.6 44.5 

Pb7 450.3 459.9 461.9 515.9 9.7 54.0 

Pb8 

 

441.4 

 

402.2 

 

434.6 

 

450.5 

 

-39.2 

 

15.9 

 

M 439.2 426.7 428.5 459.4 -12.5 30.9 

SEM 5.6 11.7 9.7 14.8 8.8 8.3 

 

 

 

Table 11a  Experiment 9b. Primes visibility thresholds and ratios for periphery 

and fovea, blocked trials procedure between foveal and peripheral loci. P/F: ratio 

periphery divided by fovea. Ratio: P/F: ratio of periphery divided by fovea. Left: 

trials presentation on the left in the periphery, Right: trials presentation on the 

right in periphery, Fovea: trials presentation in the center, Left & Right combined: 

averaged over left and right peripheral trials.  

 

 

Prime Visibility Thresholds 

 

Ratio  

  

Pb # 

 

Fovea 

 

Left 

Periphery 

 

Right 

Periphery 

 

L&R 

Combined 

Periphery  

(P/F) 

 

 

Pb1 8.0 13.0 13.0 11.3 1.4 

Pb2 3.6 6.5 4.2 4.8 1.3 

Pb3 4.5 4.6 6.2 5.1 1.1 

Pb4 4.0 8.0 5.0 5.7 1.4 

Pb5 8.0 13.0 26.0 15.7 2.0 

Pb6 4.0 18.0 16.0 12.7 3.2 

Pb7 8.0 23.0 9.0 13.3 1.7 

Pb8 4.0 7.0 4.5 5.2 1.3 

      

M 5.5 11.6 10.5 11.1 1.7 

SEM 0.7 2.3 2.7 1.6 0.2 
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Table 11b. Experiment 9b. Compatibility effects calculated as reaction times (RT‟s) 

and priming effects calculated as incompatible minus compatible trials in milliseconds 

obtained at blocked trials presentation for fovea and periphery (left and right 

combined). P/F: ratio of periphery divided by fovea. 

 

 

RT‟s Fovea RT‟s Periphery Priming Effects 

Pb# 

 

Comp Incomp Comp Incomp Fovea Periphery 

 

Pb1 538.8 519.7 532.7 524.1 -19.1 -8.6 

Pb2 431.8 409.2 373.6 417.4 -22.6 43.8 

Pb3 409.5 384.5 405.4 403.5 -24.9 -1.9 

Pb4 485.6 467.0 514.1 517.3 -18.6 3.1 

Pb5 492.8 469.0 470.1 483.7 -23.8 13.7 

Pb6 438.4 401.9 389.8 456.7 -36.5 66.9 

Pb7 485.6 459.6 518.6 544.6 -26.0 26.0 

Pb8 

 

400.6 

 

412.5 

 

380.5 

 

454.7 

 

11.9 

 

74.2 

 

M 460.4 440.4 448.1 475.2 -20.0 27.1 

SEM 16.9 16.1 24.0 18.1 5.0 11.1 

 

 

 

Table 11c. Experiment 9b. Summary of the growth of priming effects 

over three testing sessions. Negative numbers indicate NCE (negative 

compatibility effect) while positive numbers indicate PCE (positive 

compability effect). Cpd: center-periphery difference for priming 

effects. 

 

N=8  Session 1 Session 2 Session 3 

 

Fovea Mean 1.61 -15.34 -19.89 

 SEM 7.32    2.69    4.96 

 

Periphery Mean 25.08  15.56  27.14 

 SEM 10.59  11.45  11.15 

 

Cpd Mean 23.47  30.90  47.03** 

 SEM 11.44  10.79  10.72 
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Table 12. Experiment 10a. Prime visibility thresholds obtained in three testing sessions, 

each twice. Pre-priming: before prime effects measurements, Post-priming: after prime 

effects measurements.  

 

 

Pre – priming  Post-priming  

Pb# Session 1 Session 2 Session 3 Session 1 Session 2 Session 3 

 

Pb1 9.5 6.9 5.5 7.5 10.0 7.4 

Pb2 10.5 7.0 4.9 8.5 6.5 8.0 

Pb3 9.0 4.9 4.7 6.5 4.4 5.0 

Pb4 27.0 24.0 26.0 36.0 26.0 20.0 

Pb5 7.4 6.0 5.9 5.4 7.0 9.2 

Pb6 13.4 10.9 10.5 11.8 11.0 8.6 

Pb7 6.8 6.1 4.6 8.0 7.1 9.8 

Pb8 

 

5.7 

 

6.4 

 

6.4 

 

5.7 

 

7.0 

 

7.0 

 

M 11.2 11.2 8.5 11.2 9.9 9.4 

SEM 3.0 2.9 3.4 4.8 3.2 2.1 

 

 

 

Table 13a. Experiment 10a. Priming Effects obtained at Stimulus Onset Asynchrony 

SOA 350 and SOA 450 at six visual degrees in periphery (left and right combined). 

Comp: compatible prime target trials, Incomp: incompatible prime-target trials.  

 

 

Compatibility Effects 

 

Priming Effects 

 

 Reaction Times Difference for 

 SOA 350 SOA 450 Incompat - Compat 

 

Pb# Compat Incompat Compat Incompat SOA 350 SOA 450 

       

Pb1 469.04 467.67 519.60 540.07 -1.37 20.47 

Pb2 378.22 387.77 408.85 413.27 9.55 4.42 

Pb3 397.71 407.28 469.88 476.56 9.57 6.68 

Pb4 434.15 432.48 436.69 453.54 -1.67 16.85 

Pb5 423.81 420.06 441.29 441.83 -3.75 0.54 

Pb6 469.00 467.70 492.60 507.00 -1.30 14.40 

Pb7 427.70 443.10 465.20 466.50 15.40 1.30 

Pb8 397.70 407.30 402.80 400.10 9.60 -2.70 

       

M 424.67 429.17 454.61 462.36 4.50 7.75 

SEM 11.68 10.29 14.20 16.39 2.57 3.00 
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Table 13b. Experiment 10a. Reaction times obtained at 

SOA 350 and SOA 450 at six visual degrees in periphery 

(left and right combined) for five participants tested.  

 

 

Reaction Times 

 

 

SOA 350 SOA 450 

Pb# comp incomp comp incomp 

     

Pb1 397.71 407.28 469.88 476.56 

Pb2 434.15 432.48 436.69 453.54 

Pb3 378.22 387.77 408.85 413.27 

Pb4 423.81 420.06 441.29 441.83 

Pb5 469.04 467.67 519.60 540.07 

     

M 420.59 423.05 455.26 465.05 

SEM 15.59 13.38 18.77 21.35 

 

 

 

Table 13c. Experiment 10b. Reaction times obtained at 

SOA 250 and SOA 450 repeated at six visual degrees in 

periphery (left and right combined) for five participants 

tested.  

 

 

Reaction Times 

 

 

SOA 250 SOA 450r 

Pb# comp incomp comp incomp 

     

Pb1 385.09 375.48 400.57 395.40 

Pb2 401.05 388.77 425.47 432.68 

Pb3 456.61 447.48 400.77 409.08 

Pb4 418.61 413.43 446.30 448.47 

Pb5 485.37 473.39 474.13 478.85 

     

M 429.34 419.71 429.45 432.90 

SEM 15.08 15.82 14.06 14.71 
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Table 13d. Experiment 10a/b. Priming effects obtained 

at SOA 250, 350, 450 and 450repetition at six visual 

degrees in periphery (left and right combined) for five 

participants tested.  

 Priming Effects 

 Stimulus Onset Asynchrony   

Pb# 250 350 450 450r 

     

Pb1 -9.61 9.57 6.68 -5.17 

Pb2 -9.12 -1.67 16.84 7.22 

Pb3 -12.28 9.55 4.42 8.31 

Pb4 -5.19 -3.75 0.53 2.17 

Pb5 -11.98 -1.37 20.48 4.72 

     

M -9.64 2.47 9.78 3.45 

SEM 1.46 2.92 3.80 2.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 2. (Experiment 10b). Development of priming effects over the time course of 

testing (block 1-4) as calculated from RT’s in incompatible – compatible trials. (a) SOA 250  

 

 

Table 14a. Experiment 11a (P3). Prime 

visibility thresholds. 

 

Pb # Fovea Periphery P/F 

 

Pb1 9 11.0 1.2 

Pb2 10 16.0 1.6 

Pb3 7 12.5 1.8 

Pb4 7.5 10.5 1.4 

Pb5 6 17.3 2.9 

Pb6 4 9.8 2.4 

Pb7 7.5 10.5 1.4 

Pb8 

 

6.6 

 

9.3 

 

1.4 

 

M 7.2 12.1 1.8 

SEM 0.65 1.1 0.2 
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Table 14b. Experiment 11b. Compatibility effects calculated as reaction times (RT‟s) 

and priming effects calculated as incompatible minus compatible trials in ms for fovea 

and periphery (left and right combined). P/F: ratio periphery divided by fovea. 

 

 Fovea Periphery Priming Effects 

Pb # Compat Incompat Compat Incompat Fovea Periphery  

       

Pb1 467.4 461.2 463.0 472.9 -6.3 9.9 

Pb2 466.1 451.0 459.5 470.1 -15.0 10.6 

Pb3 449.7 446.4 457.2 470.0 -3.3 12.8 

Pb4 436.1 434.7 457.7 469.6 -1.4 11.9 

Pb5 430.6 457.0 462.3 473.6 26.4 11.2 

Pb6 427.1 431.1 467.5 477.6 4.0 10.1 

Pb7 472.6 480.2 475.2 484.5 7.6 9.3 

Pb8 440.3 446.5 464.1 477.6 6.2 13.5 

       

M 448.7 451.0 463.3 474.5 2.3 11.2 

SEM 6.3 5.5 2.1 1.8 4.3 0.5 

 

 

 

Table 15a.  Experiment 12a. Priming effects 

obtained in fovea at different masked prime 

strengths calculated in %. 

 

 Masked Prime Strength 

Pb# 0.55 0.65 0.75 

 

1 3.8 1.5 2.7 

2 -5.2 -11.8 -6.7 

3 -11.1 -10.0 -10.1 

4 12.4 -1.6 0.8 

 

M 0.0 -5.5 -3.3 

SEM 5.2 3.2 3.0 

 

 

Table 15b.  Experiment 12b. Priming effects 

obtained in periphery at different masked 

prime strengths calculated in %.  

 Masked Prime Strength  

Pb # 0.55 0.65 0.75 

 

1 5.6 -0.8 -10.4 

2 -1.2 -8.4 1.6 

3 -1.5 -18.5 -3.1 

4 

 

2.0 

 

-1.8 

 

8.9 

 

M 1.2 -7.4 -0.7 

SEM 1.7 4.1 4.0 
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Appendix Figure 3. (Experiment 12a). Individual Psychometric functions for orientation 

discrimination accuracy in % with  increasing contrast of Gabors (luminance difference 

between black and white stripes) in fovea and in periphery. Psychometric functions described 

observer‟s performance on a physical aspect of a stimulus; here it is orientation discrimination 

performance as a function of luminance (luminance difference between black and white stripes in the 

Gabor). The higher the contrast in the Gabor the better the performance in orientation discrimination.  
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