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Abstract 

 
 
Lignin degrading (white-rot) basidiomycete fungi are major agents of carbon cycling 

and play a key role in maintaining forest ecosystems. Trametes versicolor is a white- 

rot fungus of both industrial and ecological interest. The aims of this study were to 

investigate the effects of biotic and abiotic stress factors on growth, ligninolytic 

enzyme (laccase) production and gene expression in white-rot fungi, using T. 

versicolor as a model for most of the work. Mycelial interactions are important in 

defining community structure in wood-rotting fungi, and during these interactions 

volatile organic compounds (VOCs) are produced which can affect the growth of 

other fungi, at a distance. The effects of different combinations of interacting fungi on 

T. versicolor growth and ligninolytic enzyme production showed that effects were 

variable. Effects of VOCs from interaction on wood blocks were more significant 

than those on agar.  

 

Abiotic stress factors affect fungal metabolism and thereby regulate their biological 

activity. This study investigated the effect of abiotic stress factors on T.  versicolor 

using different temperatures (low and high), osmotic pressure (KCl) and nutrients (no 

and low nitrogen). Growth rate, laccase production and expression of three genes 

(FRA19, Nox, and Lacc) were mainly reduced when the abiotic stress was imposed, 

although there was some variability in gene expression. Laccase is encoded by a gene 

family and differential expression of gene family members under stress treatments 

was investigated. Some evidence for an over-representation of ? group sequences 

following stress treatments was found. Future directions are discussed to further 

investigate the roles of biotic and abiotic stress in regulating the growth and 

underlying biological processes of white rot fungi.  
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Chapter 1: Introduction 

 

1.1 Fungal communities in nature  

Without fungi, terrestrial ecosystems on Planet Earth would not function. Fungi play 

key roles as mycorrhizal symbionts, lichens, endophytes, pathogens and saprotrophs. 

Mycorrhizal symbiots play a major role in the uptake of nutrients by plants, and in 

protection against drought stress and against pathogens. Lichens - a mutualistic 

relationship between a fungus and a photobiont - are significant primary producers in 

extreme environments. Endophytes also often confer advantages to plants in stressful 

environments, against pathogens, and against invertebrate and vertebrate grazers. 

Pathogens, in contrast, harm plants and introduce plant materials to the decomposition 

process sooner than normal. Saprotrophs decompose dead organic matter and release 

nutrients for use by other organisms, including plants. This thesis concentrates on 

saprotrophs that are able to decompose wood (Chapela and Boddy, 1988; Boddy, 

1993; Boddy, 1999; Boddy, 2000; Bretherton et al., 2006; Rotheray et al., 2008). 

 

Both soil and woodland environments have high fungal diversity. The woodland 

ecosystem comprises a complex interaction between the abiotic and biotic 

environment resulting in dynamic communities. Fungi play a main role in woodland 

ecosystems, together with bacteria and invertebrates. Wood litter is the most abundant 

carbon source on the planet, and saprotrophic basidiomycetes are the major agents of 
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wood decomposition. Their mycelia are universal in forest soils where they perform a 

range of key ecological roles to colonize wood and interact with each other, and with 

animals forming decay communities (Boddy and Rayner, 1983; Boddy 1993, 1999; 

Boddy & Watkinson 1995, Cromack & Caldwell, 1992; Cairney, 2005). They are the 

main agents of nutrient recycling, though they are considered to be highly 

conservative of obtained nutrients, representing an extensive nutrient reservoir in 

woodland ecosystems (Wells & Boddy, 2002).  

 

Interactions between fungi can be affected by a number of mechanisms. Chemical 

signalling can play a major role in recognition systems between these fungi, and 

fungal interactions can be affected by the environmental conditions (Boddy, 2000).  

Environmental conditions and substrate or host specificity set the  fundamental role of 

all fungi, but, competition appears to play a key role in determining the final role for 

many fungal species (Peay et al., 2008), as in many other organisms. Microclimatic 

factors such as temperature, water potential, pH, moisture content and gaseous 

establishment can also influence fungal extension rate, production of enzymes, 

germination of spores, morphology, the decay rate and the outcome of fungal 

interactions (Rayner & Boddy, 1988).   

 

Climate change may alter community structures as varying temperatures and other 

abiotic factors have differential effects on different species and on outcomes of 

interactions between species. Fungi have adapted and evolved to a changeable 

environment, with various morphologies, physiologies and ecolo gical strategies. 
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These differences maintain and shape community structure, and structural 

heterogeneities and differences in spatiotemporal distribution of nutrients influence 

fungi at all levels, from hyphae to communities (Boswell et al., 2007).  

Besides, interactions occur between fungi and other organisms such as between 

invertebrates and bacteria as well as between themselves. Invertebrate feeding can 

alter the foraging strategies of some fungal species (Tordoff et al., 2006), and affect 

the outcome of their interactions with other fungi (Bretherton et al., 2006; Tordorff et 

al., 2007; Rotheray et al., 2010; Crowther et al., 2011) Bacteria may benefit from 

fungal company but fungi may themselves be repressed by their presence and vice 

versa  (Romaní et al., 2006; De Boer et al., 2007) which may influence their 

interactions with other species.  

 

1.2 The role of basidiomycetes and ascomycetes in wood decay 

Decomposition is a vital process that results in nutrient recycling by making resources 

in animal and plant material available for utilisation by a wide range of organisms. 

Most simple sugars are easily metabolised, but more complex compounds such as 

hemicellulose, cellulose, lignin and chitin are less easily decomposed and can only be 

utilised by specific species. Saprotrophic basidiomycetes are the main agents of wood 

decomposition in terrestrial ecosystems, though ascomycetes also take this role. They 

break down the more recalcitrant compounds into simple forms, which are then 

available to other organisms (Boddy, 2001). They are essential in carbon and nitrogen 

cycling within ecosystems, and have a role in humus formation (Jasalavich et al., 

2000).   
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Three major types of wood decay can be recognized - white, brown and soft rot. The 

first two types are caused by a large number of basidiomycetes and ascomycetes 

(Rayner & Boddy, 1988, Boddy, 1999, 2000). In white-rot the wood gains a bleached 

appearance as lignin as well as cellulose and hemicellulose components are broken 

down. The hyphae sit on the wood wall in the cell lumen and diffusion of enzymes 

from these leads to formation of erosion grooves or troughs. In brown-rot wood is 

stained brown, cracks cubically, becomes friable and eventually powdery. 

Hemicellulose and cellulose are removed, but the lignin is only modified slightly 

(Rayner & Boddy 1988). Soft rots are caused largely by certain ascomycetes which 

usually attack wood with high or fluctuating moisture content. They cause decay more 

slowly than do basidiomycetes, generally higher in hardwoods than in soft. Again 

lignin decomposition is either slow or absent and left as a residue or in modified form 

(Ohkuma et al., 2001).  

Saprotrophic basidiomycetes are abundant in forests degrading cellulose, lignin and 

lignocellulose (Sharma, 2007). These compounds can be degraded by the production 

of enzymes that can be produced by wood decay fungi which are able to break them 

down to be utilised by other organisms, these fungi are considered as the most 

important decomposers in terresterial ecosystems (Boddy, 2001). These enzymes can 

be produced also during mycelial interactions of fungi.  
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1.3 Fungal community development  

In nature, wood decomposition is rarely effected by a single species, but by 

communities of different species (Boddy, 1999). These communities are not static but 

change with time. All organisms in their natural environment encounter a range of 

other organisms. Some are involved in primary resource capture, which is the process 

where the pioneer species gain access for the first time to uncolonised resources, and 

others in secondary resource capture, which involves replacement of fungi already 

present in the wood, and hence alters the community structure (Rayner & Boddy, 

1988, Boddy, 2001; Boddy & Heilmann-Clausen, 2008). The development of 

communities can be influenced by four main factors: stress aggregation, stress 

alleviation, disturbance and combat - interspecific competition for space and nutrients 

(Rayner & Boddy, 1988; Boddy & Heilmann Clausen, 2008). 

Living trees are protected from fungal colonization by chemical and physical factors 

such as the host resistance of living cells, and the high content of water in sapwood. 

Fungi can penetrate living trees via wounds, insect vectors or after breakage of 

branches (Rayner & Boddy, 1988; Boddy, 2001; Niemela et al., 2002). Wood is 

usually already colonised and decay has begun by the time it reaches the forest floor. 

After falling to the forest floor the fungal communities face a swift change in 

microclimate conditions which will affect the community present, and other fungi will 

start to colonize (Boddy, 2008). The interacting fungi are able to retain and protect 

territory in resources through either aggressive combative mechanisms, or non-

selective replacement, which is a secondary capture that shows no clear association 

between preceding species and succeeding species (Cooke & Rayner, 1984). These 

interactions and replacements play a crucial role in changes in communities with time 
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(Rayner & Boddy, 1988; Dowson et al., 1988a; Holmer & Stenlid, 1993; Boddy, 

2000; Boddy, 2001; Donnelly & Boddy, 2001).   

Inter-specific interactions between saprotrophic basidiomycetes are a major factor in 

their ecology, affecting substratum colonisation and access to nutrients (Boddy 2000; 

Woodward & Boddy 2008), as well as wood decay rate and the succession of species 

(Boddy & Heilmann-Clausen 2008). Arrival at the resource is the initial stage of 

colonisation for a wood decay fungus, followed by establishment within it. Arrival 

can be as spores, or as mycelium, ga ining access to woody tissues by means of bark 

discontinuities such as branch stubs or wounds, or from the development of latent 

propagules (Rayner & Boddy, 1988; Boddy, 2001). After arrival, the fungi would start 

to colonise the wood with primary and secondary resource capture, which may lead to 

competition for domination of the territory (Grifith & Boddy, 1991).  

 

1.4 Types of interaction  

 

1.4.1 Gross interaction outcomes  

Antagonistic interactions can result in: (1) replacement, where one fungus obtains 

territory of the opposing fungus; (2) deadlock, where neither fungus progresses into 

the territory of the other; (3) partial replacement when one fungus initially advances 

into the territory of the opponent but deadlock follows; (4) mutual replacement, where 

both fungi obtain some access into the territory occupied by the other (Boddy, 2000). 

It is important not to confuse physical over growth with replacement. However, 
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overgrowth can be occasionally an essential feature of antagonism, where some cord 

forming fungi that form deadlock with the antagonist on soil, are able to grow over 

the opposing mycelium to reach the organic resource from which the opponent is 

growing, with subsequent replacement of the opponent within the resource (Snajdr et 

al., 2011). 

Most studies on interspecific interactions have been done by inoculating fungi onto 

agar, wood blocks, soil trays, logs, microscope slides, gradient plates or 3-

dimensional columns of growth media. Interaction outcomes can be most easily seen 

on agar (Holmer et al., 1997; Donnelly & Boddy, 2001; Tordoff et al., 2006), but 

outcomes in different substrata are not always the same (Dowson et al., 1988; Wald et 

al., 2004). Furthermore the outcomes of interspecific interactions may vary depending 

on the microclimatic environment, the place of interaction (soil or wood), the amount 

of resources, and the presence of other fungi in the same resource (Dowson, Rayner & 

Boddy, 1988; Holmer & Stenlid, 1997; Boddy & Abdalla, 1998; Boddy, 2000). 

Interactions are brought about in a variety of different ways either at a distance and 

/or following mycelial contact. 

 

1.4.2 Interaction at a distance  

Chemical signalling probably plays a key role in fungal recognition systems. 

Aggressive interaction can be effected at distance by volatile organic compounds 

(VOCs), diffusible organic compounds (DOCs) before the fungi make physical 

contact (Boddy, 2000; Wheatley, 2002). A diversity of chemicals has been suggested 

as potential antagonistic DOCs, for example, aromatic compounds (Wheatley, 2002; 
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Wald et al., 2004). VOCs comprise a range of chemicals, such as ketones, terpenes, 

aldehydes, aromatic compounds and alcohols, which alter qualitatively and/or 

quantitatively during interactions  (Hynes et al. 2007; Evans et al., 2008).  

With some fungi, interactive responses begin before mycelial contact occurs. When 

mycelia of different species meet, the recognition of ‘non-self’ elicits responses in the 

area where the mycelia are in physical contact at the interaction zone. Diffusible and 

volatile organic compounds (DOCs and VOCs), extra-cellular enzymes and secondary 

metabolites may be produced, and also changes in the morphology of the mycelium 

may take place (Boddy 2000; Woodward & Boddy 2008).  In addition, fungal 

metabolites play an aggressive role in the animal toxicity by producing toxins and in 

diseases of plants and insects, as well as in interspecific mycelial interactions (Gloer, 

1995). 

Though DOCs can have an inhibitory effect on some species, they can also stimulate 

the growth of other species (Heilmann-Clausen and Boddy, 2005). They have been 

revealed to affect foraging behaviour and spore germination in fungi, to dramatically 

change the mycelial morphology of Hypholoma fasciculare, and to increase 

ligninolytic enzyme production in Marasius pallescens (Rayner et al., 1994; 

Heilmann-Clausen and Boddy, 2005; Ferreira-Gregorio et al., 2006).  

 

1.4.3 Following contact  

Sometimes the growth of two mycelia toward each other does not show slowing or 

termination of extension, an obvious interaction only begins following contact 

(Boddy, 2000; Rothray et al., 2010). The replacement interaction may start with lysis 
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ahead of the proceeding mycelium, overgrowth of mycelium due to immediate death 

of the weaker competitor or overgrowth by the whole mycelium with later death of 

the weaker antagonist. The winner in the overgrowth of replacement can be confirmed 

by making isolations (Crockatt et al., 2008; Rotheray et al., 2010). The colour of 

aerial mycelium may change and crystals and amorphous precipitates may form as 

well as production of aromatic compounds (Griffith et al., 1994).  

Parasitism, in which the hyphae of one fungus coil around those of another species, 

and then penetrate, is another form of interaction following contact. Enzymes and 

toxins may be produced by the fungus causing lysis of the host cell wall, or allowing 

penetration of it, allowing nutrients to be absorbed by the parasitic fungi (Vasquez-

Gerciduenas et al., 1998; Howell, 1998). For example, Lenzites betulina  is a 

mycoparasite on Trametes species (Boddy, 2000; Boddy, 2001). Mycoparasitism is 

usually obvious macroscopically as growth of the parasite does not slow following 

contact with the host.  Parasitism might be a modification of a phenomenon called 

hyphal interference, in which contact of the hypha of one species by that of another 

may lead to the death of the vulnerable one (Woodward & Boddy, 2008). For 

example, Phlebia gigantea interferes with Heterobasidion annosum (Ikediugwu et al., 

1970). 

 

1.5 Production of VOCs 

Fungi are known to produce a number of diffusible and volatile (DOCs and VOCs) 

chemicals, many of which have antibiotic properties that have been developed in 

industry and medicine. Many species produce a unique reproducible profile of 
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chemicals which can be used as a type of fingerprint for their identification (Scotter et 

al., 2005). The production of particular chemicals can be used for the detection and 

identification of fungi present in buildings and stored food products and allows timely 

treatments if necessary. For example, toxigenic strains of Fusarium spp. produce 

tricodiene, which is a precursor to the mycotoxin tricothecene (Demyttenaere et al., 

2004).  

Many of the volatile chemicals produced by fungi, have a variety of potential 

ecological roles, and foraging insects (Steiner et al., 2007). They may can also induce 

defence responses in plants (Mendgen et al., 2006; Splivallo et al., 2007) and 

furthermore affect fungal development. During interactions between fungi different 

profiles of volatiles have been detected compared to those produced by individual 

species grown alone (Hynes et al. , 2007). VOC profiles are affected by the substrate, 

both in terms of overall composition and also by specific components in the medium 

(Wheatley et al., 1997; Bruce et al., 2000; Wheatley, 2002). For example, the VOC 

profile of Serpula lacrymans is more complex when grown on pine shavings 

compared to growth on agar (Ewen et al. , 2004). VOC production is also affected by 

temperature, pH and culture age (Tronsmo and Dennis, 1978; Chen et al., 1984; de 

Jong and Field, 1997; Jelen, 2002).  

The nature of the interactions of volatile compounds with fungi and their impact on 

fungal growth at the molecular level is mostly unknown. However, exposure to VOCs 

may change the profile of pr oteins produced, and thus the implication is that VOCs 

may have effects at the level of gene expression (Humphris et al., 2002; Myung et al., 

2007). 
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1.6 Ligninolytic enzymes 

Saprotrophic wood-inhabiting basidomycetes are the most important decomposers of 

cellulose and lignin in dead organisms and, as such, have attracted considerable 

attention such as Hypholoma fasciculare and Phanerochaete velutina (Vetrovsky et 

al., 2011). Wood decomposition involves lignin breakdown, and this is a 

multienzymatic process involving many phenoloxidising enzymes (Leonowicz et al., 

1999). More than 100 different enzymes have been isolated from fungi (Baldrian, 

2006), with different species possessing different sets of enzymes. The most common 

enzymes, however, are manganese -peroxidase, laccase and lignin peroxidase, which 

are the most studied and mostly produced for wood decomposition by white rot fungi 

(Vares et al., 1995).  

There are three groups of enzymes that wood-rotting basidiomycete fungi produce to 

help them enter wood and guide the mycelium to more easily metabolized, 

carbohydrate constituents : (1) comprises enzymes that attack the wood directly and 

they consist of carbohydrate (cellulose, hemicellulose) and lignin degrading enzymes, 

(2) superoxide dismutase and glycoxal oxidase, which cooperate with the first group, 

but can not attack the wood alone; and (3) the feedback enzymes which combine 

metabolic chains during decomposition of wood, such as glucose 1-oxidase, aryl 

alcohol oxidases, pyrnose 2-oxidase, cellulobiose quinone oxidoreductases and 

cellobiose dehydrogenase. All of these enzymes can function in cooperation with each 

other or individually (Leonowicz et al., 1999). Peroxidase and laccase may generate 

melanins as mediating oxidatives (Gianfreda et al., 1999; Baldrian, 2006). These 

enzymes may also be concerned in the formation of defensive barrages or invasive 

hyphal cords as a morphogenetic effect (Griffith et al., 1994). 
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1.6.1 Laccases 

Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are important 

multicopper oxidase enzymes which reduce molecular oxygen to water and 

simultaneously perform one electron oxidation of various aromatic substrates 

(diphenols, methoxy-substituted monophenols, aromatic amines) (Thurston, 1994). 

Higher plants and fungi, especially wood-rotting fungi, produce the highest amount of 

laccases, although bacteria can also produce laccases (Gianfreda et al., 1999). 

Laccases are involved in the decomposition of lignocellulose (Leonowicz et al., 

1999), and have been detected in a number of fungi and most ligninolytic fungal 

species produce at least one laccase isozyme (Baldrian, 2006).  

Because of the broad variety of their substrates, laccases are not easily described by 

their reducing substrates, which vary between laccases and overlap with the substrate 

range of another class of enzymes - monophenol mono-oxygenase tyrosinases, 

although laccases are not able to oxidise tyrosine (Baldrian, 2006).  

Production of laccases is affected by nutrient availability. For example, extracellular 

laccase formation can be stimulated by a glucose-based culture medium and 

significant laccase formation by Trametes pubescens only starts when glucose is 

totally consumed in the medium, while the nitrogen source employed had an 

important effect on laccase synthesis (Galhaup et al., 2002). Trametes versicolor 

growth on wheat straw and beech wood led to an increase as high as 3.5-fold in 

extracellular laccase activity, in comparison with growth on glucose (Schlosser et al., 

1997). Pleurotus ostreatus increased lignonlytic enzymes laccase and manganese 
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peroxidase, when lignocellulose was added to the soil growth medium (Snajdr & 

Baldrian, 2006).   

Laccases can be used in various applications such as: removing toxic compounds 

from terrestrial and aquatic syste ms; treating beverages; as biosensors to estimate the 

amount of phenols in natural juices as an analytical tool (Gianfreda et al., 1999). 

 

1.6.2 Peroxidases 

Peroxidases are oxidoreductases that utilise hydrogen peroxide (H2O2) to catalyse 

one-electron oxidation of a number of organic and inorganic substrates (Conesa et al., 

2002). The majority have a haeme as a prosthetic group and these can be divided into 

two groups: the plant/fungal and the mammalian peroxidase superfamilies. Plant and 

fungal peroxidases are divided further into three classes: Class I, intracellular 

peroxidases; Class II, extracellular fungal peroxidases, and Class III, extracellular 

plant peroxidases (Welinder, 1992). The most important peroxidases are manganese 

peroxidase (MnP) and lign in peroxidase (LiP) with other peroxidases playing less 

important roles in white-rot basidomycetes which are involved in lignin degradation 

(Conesa et al, 2002; Martinez et al., 2005). MnP and LiP are found in a wide variety 

of basidiomycetes including Trametes versicolor, Pleurotus spp. and Bjerkandera 

adusta (Conesa et al., 2002).   
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1.6.3 Localisation of lignolytic enzymes  

Peroxidases and laccases are mainly located extracellularly because of the location of 

their substrates and high oxidative ability, which may relate to their physiological 

function (Baldrian, 2006). Laccase is cell wall-associated in T. versicolor and P. 

ostreatus, while MnP may be wall-associated in liquid cultures of T. versicolor 

(Valášková & Baldrian, 2006). Peroxidases can cause fast mass loss in birch wood 

and wheat straw (Valášková & Baldrian, 2006).  

 

1.7 Effects of biotic and mycelial interactions on the activity of 

ligninolytic enzymes 

Enzyme production can be affected by biotic factors and abiotic environment (see 

Section 1.8). Biotic interactions generally tend to stimulate enzyme production, and 

during interaction there are increases in the production of reactive oxygen species, 

phenoloxidases, laccases and sometimes ß-glucosidase (White & Boddy, 1992; 

Iakovlev & Stenlid, 2000; Iakovlev et al., 2004; Baldrian, 2006). For example, the 

laccase activity of Pleurotus ostreatus and Trametes versicolor was increased after 

contact with soil fungi, yeast and bacteria and this increase reached 40-fold when 

interacting with a Trichoderma  species (Baldrian, 2004). Laccase and peroxidase 

production abundance was also modulated during interactions between mycelia of the 

basidiomycetes Marasmiellus troyanus and Marasmius pallescens. When the liquid 

culture was shaken to mix the two fungi, the laccase and manganese peroxidase 

activity increased while the activity of lignin peroxidase was not detected (Gregorio et 

al., 2006).  
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Enzyme activity was also compared during agar interactions between Trametes 

versicolor and other wood decay fungi where a huge increase in laccase and 

manganese peroxidase activities was seen at the interaction zone and enzyme activity 

declined as distance from the interaction zone increased (Hiscox et al., 2010). In these 

interactions, the outcome of the interaction affected enzyme production. Enzyme 

production was highest in interactions where Trametes versicolor was replaced by the 

competitor, compared to when it won or where it replaced or deadlocked with the 

opponent (Hiscox et al., 2010). Peroxidase activity was also higher during interactions 

when Stereum hirsutum was losing and replaced by other fungi (Peiris, 2009). It has 

also been observed that the production of enzymes during interactions varies 

depending on the species (Iakovlev & Stenlid, 2000). 

Other enzyme activities are also affected by biotic environmental factors. For 

example, chitinase activity increased during interactions of Hypholoma fasciculare, 

Resinicium bicolor and Coniophora arida . This change in enzyme activity may also 

result in morphological changes or allow toxic compounds to enter the cell as 

chitinase can modify the cell wall (Lindahl & Finlay, 2006). The chitinous cell wall 

can be an important nitrogen source for other fungi that may colonise later, as wood-

degrading fungi degrade their own cell walls and the hyphae of earlier colonisers 

(Patil et al., 2000; Lindahl & Finlay, 2006). 

 

1.8 Effects of abiotic stress on basidiomycete fungi 

Levitt (1980) defined stress as ‘any environmental factor with the property of 

inducing metabolic adjustment (a physical or chemical change) irrespective of 
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whether the change is harmful or beneficial to the organism’. There are two aspects of 

coping with stress: (1) avoidance; which is a mechanism where organisms can 

decrease stress impact, and (2) tolerance; which allows organisms to endure the 

changing environments (Levitt, 1980). An organism’s reaction to stress may be a 

combination of diverse tolerance and avoidance mechanisms. Abiotic stress factors 

that affect fungi include low or elevated water availability, elevated CO2/ reduced O2, 

extreme or variable temperature, lack of nutrients, exposure to heavy metal ions and 

excess light (Griffin, 1994; Boddy et al., 2008).  

Temperature and moisture (water potential) are two of the major factors affecting the 

rate of wood decomposition in temperate woodlands by bas idiomycete fungi, such as 

Trametes versicolor, Bjerkandra adusta , Stereum gausapatum, S. hirsutum, 

Vuilleminia comedens and others (Boddy, 1983). Temperature can affect enzyme-

catalysed reactions, and in turn affect the growth rate when fungi are exposed to 

higher or lower temperatures than optimium (Boddy et al., 2008). Most fungi are 

called mesophiles, which grow well between 10ºC – 30ºC favouring intermediate 

temperatures. However some fungi have adapted to high (thermophiles, 20-50°C) or 

to low (psychrophiles 0-17°C) temperatures (Carlile et al., 2000). Water potential is 

the relative ease and difficulty with which the fungus can obtain water from the 

medium (Boddy et al., 1984). For example, in isolates of Trichoderma viride hyphal 

growth rate and conidial germination declined with decreasing water potential 

(Jackson et al., 1991).  

Other abiotic environmental factors, such as availability of nitrogen (see Section 

1.7.3) and carbon source can also influence the fungus to produce lignolytic enzymes. 

Carbon sources, cellobiose and mannitol promoted the highest laccase activity of 
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Trametes versicolor, while glucose gave maximum manganese peroxidase and 

peroxidase activity (Mikiashvili et al., 2005). Toxic abiotic stress also affects enzyme 

production: activity of laccase but not peroxidase increased after heavy metal 

exposure (Baldrian et al., 2005) 

Although stresses are combined in nature, in the following sections they are dealt with 

separately. Examples of methods of coping with stress are discussed including 

enzyme production, which may act as a defence mechanism against abiotic and biotic 

stress. 

  

1.8.1 Heat stress 

A number of physiological and ecological strategies can be used by fungi to protect 

themselves from the effect of high temperatures. These include:  (1) effects on the 

growth rate and the physiology of the fungi such as affecting the fruiting (Boddy et 

al., 1984; Gange et al., 2007); and (2) Defense strategies such as production of heat 

shock proteins (HSPs) and changes in enzyme activity (Fink-Boots, 1999).  

High temperature can stimulate enzyme activity such as extracellular and cellular 

peroxidases, superoxide dismutase and laccase (Griffin, 1994). Also, when high 

temperature is experienced as a heat shock it can result in a significant effect on the 

expression of HSP, hence HSPs are highly conserved and present in all cells of all 

organisms (eukaryotes and prokaryotes from bacteria to humans), and their expression 

increases in response to extreme conditions such as temperature or water potent ial etc. 

(Griffin, 1994; Wu, 1995; De Maio, 1999; Li and Srivastava, 2004) helping the cell to 

adjust to stressful conditions. Selected HSPs, are also known as chaperones which are 
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a ubiquitous class of proteins that play an important role in folding and unfolding of 

proteins and are able to protect other proteins from stress-induced denaturation. 

(Hightower and Hendershot, 1997; Gropper and Ludger, 2002).  

High temperature can increase the production of enzymes in some wood decay 

species. For example, in Abortiporus biennis (55ºC) and Trametes versicolor (45ºC) 

laccase and peroxidase activity have been shown to increase in cultures following heat 

shock (Fink-Boots, 1999). Furthermore, in the fungus Trametes modesta, the highest 

laccase activity was shown at an incubation temperature of 50ºC (Nyanhongo et al., 

2002). 

 

1.8.2 Cold stress 

There are a range of physiological and ecological strategies eukaryotes use to protect 

themselves from the effect of low temperatures. These include:  (1) avoiding cold by 

inhabiting niches that are protected from extremes of temperature to avoid tissue 

cooling (animals, humans); (2) synthesis of protective substances such as anti-freeze 

compounds to prevent the tissue fluids from freezing (fish, spiders, insects, etc.); (3) 

plants can form a liquid crystal structure to prevent formation of ice nuclei; and (4) 

modifying the composition of the lipid bilayer in membranes to be able to transfer 

from the gel state to liquid crystal state (Nazawa & Kasai, 1978; Crowe et al., 1984; 

Karow, 1991; Feofilova, 2000).  

Fungi use both physiological and ecological mechanisms to avoid or tolerate low 

temperature, since their cellular osmotic balance can be affected by low temperature 

and can cause damage to the cell membrane (see Fig. 5.1 and chapter 5). For example, 
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low temperature decreased the mycelial extension rate in Hypholoma fasciculare, 

Phanerochaete velutina, Phallus impudicus and Resinicium bicolor and also resulted 

in changes in mycelial morphology, while a cold shock caused greater changes in 

morphology than constant cold (Allawi, 2011).  

 

1.8.3 Nutrient stress 

Nutrients are one of the most important factors that can affect the growth and 

metabolism of fungi. These nutrients consist of organic nutrients (simple energy 

sources such as simple sugars, e.g. glucose) to make the carbon skeleton for cellular 

synthesis, and inorganic sources (such as ammonium, nitrate ions, phosphate ions, 

calcium, potassium, magnesium or iron). Fungi can absorb simple nutrients from the 

surrounding environment through their cell membranes, but also can use enzymes to 

breakdown complex compounds (cellulose, lignin, hemicellulose) into simple 

nutrients that can be absorbed easily (Deacon, 2005). Nitrogen limitation was focused 

on in this thesis to see the effect on Trametes versicolor when using limited nitrogen 

and no nitrogen media. 

The concentration and nature of the nitrogen sources are potential keys to regulating 

ligninolytic enzyme production by wood-rotting basidiomycetes (Galhaup et al., 

2002; Mikiashvili et al., 2005), however there is no clear relationship between high or 

low nutrient availability and enzyme production across different species. For example, 

nitrogen-limited media conditions enhance the production of some enzymes such as 

laccase in some fungi, such as Trametes pubescens, Pycnoporus cinnabarinus, 

Phlebia radiata and Pycnoporus sanguineus., The latter fungus was found repeatedly 
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to increase the laccase activity when exposed to limited nitrogen conditions 

(Gianfreda et al., 1999; Pointing et al., 2000; Galhaup et al., 2002). On the other 

hand, some fungi such as the white rot fungus Bjerkandra  sp. strain BOS55, produced 

high amounts of MnP in the presence of excess nitrogen (Mester & Field, 1997).  

Carbon availability is another nutritient that can influence enzyme production, for 

example laccase and Mn-peroxidase activities increased in Pleurotus ostreatus when 

grown on medium with high carbon content (Snajdr & Baldrian, 2006).  

 

1.8.4 Osmotic pressure  

Fungi sense the surrounding osmotic environment through cellular signaling 

pathways, and they respond to osmotic pressure by the following adaptations: (1) the 

production of compounds for protection such as glycerol, (2) reorganization of the 

cell wall biogenesis and the cytoskeleton, and (3) the biosynthesis of natural products 

such as mycotoxins (Duran, 2010). They can also respond by changes in their 

morphology or development. Thus fungi increase chances of survival by conidiation, 

enabling dispersal by wind to other more suitable environments (Rothschild and 

Mancinelli, 2001). Some fungi respond by a reduction or cessation of mycelial 

growth. For example, fungi tested did not grow or very slowly at -4.4 MPa water 

potential (Boddy, 1983). However, there are differences between species in their 

ability to cope with osmotic stress. For example, Irpex sp. grew better at lower water 

potentials (-7.0 MPa) than other fungi (Boddy, L. 1983; Mswaka and Magan, 1999). 
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1.9 Gene expression changes in mycelial fungi in response to biotic and 

abiotic factors 

A combination of alterations in gene expression and enzyme activity in different 

conditions are likely to be responsible for changes in morphology and the production 

of volatile and diffusible compounds during fungal interactions and in response to 

abiotic stress.  

As yet, our depth of understanding of the regulation of gene expression in 

basidiomycetes is restricted to a relatively small number of model species and a small 

number of genes, although the advent of new genome sequencing programmes 

(Adomas et al., 2006; Kulikova et al., 2006) and high throughout transcriptomic 

analysis through new sequencing platforms (Parkinson et al., 2002; Benson et al., 

2007) is likely to make important advances in this area in the coming years.  

 

1.9.1 Alteration of ligninolytic enzyme transcript abundance in response 

to mycelial interactions and abiotic stress.  

 

Effects of both abiotic and biotic stresses on ligninolytic enzyme production have 

been studied. Abiotic effects include nutrient source, water stress and toxic metals 

while biotic effects of most relevance to this thesis are those that relate to interactions 

between competing mycelia.  

Differential expression of different laccase gene family members has been noted in 

several basidiomycete species. Two laccase genes (lac1 and lac2) from Lentinula 
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edodes were differentially expressed under different media conditions, where lac1 

expression was much higher than lac2 expression in a high nutrient glucose medium, 

but the expression of the two genes was similar in high nutrient media supplemented 

with cellulose, or sawdust (Zhao and Kwan, 1999). On the other hand, in Trametes 

pubescens  glucose repressed expression of the laccase gene lap2 (Galhaup et al., 

2002). In Pleurotus sajor-caju two laccase genes were differentially expressed in 

response to high nitrogen (Soden and Dobson, 2001). Nitrogen and carbon source also 

affected laccase gene expression in the basidiomycete I-62 (CECT 20197) (an 

environmental isolate from the Polyporaceae family) where non-limited nitrogen 

cultures could increase transcript levels of Lac1  and Lac2  to 100 times than under 

limited-nitrogen conditions (Mansur et al., 1997). On the other hand, MnP gene 

expression (mnp1  and mnp2 ) in Phanerochaete chrysosporium was increased in 

response to nitrogen levels (limited-nitrogen cultures) (Gettemy et al., 1998).  

Ecophysiological factors (low temperature and water stress) can reduce fungal growth 

and consequently affect gene expression. Stress had an effect on gene expression of 

the FUM1 gene (involved in fumonisin mycotoxin biosynthesis) in Fusarium 

verticillioides (Jurado et al., 2008). Water stress increased FUM1  transcript levels and 

had an opposite effect on fungal growth.  

Toxic compounds such as heavy metals also have an effect on the gene expressio n 

level of ligninolytic enzymes which can be considered as an important regulatory 

factor, with putative xenobiotic response elements occurring in the promoter regions 

of lignin peroxidase (LiP) and manganese peroxidase (MnP) genes of P. 

chrysosporium and Pleurotus eryngii (Kersten and Cullen, 2007). Laccase genes of 

Trametes versicolor can also be regulated by copper (Collins and Dobson, 1997).  
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Ligninolytic enzyme gene expression is also affected by biotic interactions. Trametes 

versicolor laccase expression was increased at the interaction zone between T. 

versicolor and competing mycelium of Hypholoma fasciculare compared to the 

interaction zone in a self pairing of Trametes versicolor  (Hiscox et al., 2010). 

Changes in gene expression however were not as marked as changes in enzyme 

activity, suggesting the possibility that the changes are rapid and transient. Interaction 

between isolates of the same species but of different vegetative compatibility, can also 

up-regulate ligninolytic enzyme gene expression. Thus laccase expression was 

induced in vegetatively incompatible interactions in the white rot basidiomycete 

Amylostereum areolatum but not in compatible interactions (van der Nest et al., 

2011). 

 

1.10 Global gene expression changes during interactions 

Very few studies have used global transcriptomic approaches to study mycelial 

interactions between two fungi; most examples are between host and fungus. One 

type of interaction studied relates to gene expression changes during mycorrhizal 

interactions between plant and fungus. For example, over 1500 expressed sequence 

tags (ESTs) were generated from the ectomycorrhizal basidiomycetes Laccaria 

bicolor and Pisolithus microcarpus cDNA libraries (Peter et al., 2003), where a 

relatively small proportion (11%) of the unique transcripts in L. bicolor were found in 

P. microcarpus. Fungal transcripts from a model of an ectomycorrhizal relationship 

between a plant and a fungus: the interaction between Castanea sativa roots and the 

fungus Pisolithus tinctorius were identified by using cDNA microarray analysis by 
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using an in vitro interaction system. This study identified over 30 unique sequence 

tags (ESTs) that were differentially expressed.  

In one study of gene expression changes in relation to interactions between two fungi 

transcripts were isolated by a rapid subtraction hybridisation approach and were used 

as markers for pre-identification of biocontrol strains during the interaction between 

Rhizoctonia solani and Trichoderma harzianum, offering the possibility to 

differentiate effective biocontrol isolates from intermediate or no biocontrol strains 

(Scherm et al., 2009).  

Gene expression changes associated with the interaction between the biocontrol agent 

Trichoderma haematum and the phytopathogen Sclerotinia sclerotiorum were studied 

by using subtractive hybridisation to identify nineteen genes (Carpenter et al., 2005), 

showing a change in gene expression compared with the control T. hamatum alone. 

Some cDNA fragments were similar to fungal or bacterial genes, while some were 

completely novel. Genes of known function included those encoding; others were 

related to growth and nutrition (Carpenter et al., 2005).  

During mycoparasitism of Heterbasidion annosum by Physisporinus sanguinolentus 

mRNA differential display was used to identify different gene expression patterns, 

that were confirmed by semi-quantitative RT-PCR and real time RT-PCR. Twenty 

one unique genes were cloned and sequenced and showed differential gene 

expression. One of the induced genes showed high similarity to Coprinus cinereus 

recA/RAD5/homolog (rah1) which is essential for homologous recombination, DNA 

repair and stress responses (Iakovlev et al., 2004).  
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One of the few detailed studies on global gene expression changes during inter-

mycelial interactions is that of Eyre et al. (2010). More details of this study are 

presented in the introduction to Chapter 4 where results are presented on RT-PCR 

confirmation of the microarray data. 

 

Project objectives 

Mycelial interactions are very important for driving and maintaining decomposition, 

nutrient recycling, community structure and diversity (Boddy, 2000). Our knowledge 

of these interactions may help also to develop strategies to manipulate the outcomes 

of interactions which could be exploited for biocontrol, help understand how 

communities will be affected by climate change (abiotic stress), as well as 

contributing to the general body of knowledge about these fungi.  

To understand some of these processes better, work has been focused on T. versicolor, 

to investigate changes in gene expression where it replaced, deadlocked with, or was 

replaced by a competitor (Eyre, 2007). T. versicolor is a useful model because it is a 

common species with intermediate combative ability (a late primary to early 

secondary coloniser), and thus displays a range of interaction outcomes with other 

species (Boddy, 1988; Boddy, 2000; Boddy, 2001).  It is also easy to manipulate in 

culture.  

There is little known about the chemical production during interspecific interactions 

between saprotrophic basidiomycetes and also the relationship between interaction 
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outcome and production of enzymes and metabolites, all of which needs to be 

explored further (Hynes et al., 2007; Evans et al., 2008). A better understanding of 

the chemicals, enzym es and genes involved in interactions, and how they are 

regulated, may help to improve our understanding of the fungi themselves (their 

ecological and biological characters).  

 

The project objectives were to fill some of these gaps in our understanding of 

basidiomycete fungi by: 

1 – A study of interspecific interactions on agar.  This included a study of the 

qualitative morphological changes and outcomes of interactions, and also aimed to 

identify a species to study further that produces different outcomes when interacting 

with different species, which can replace, be replaced or deadlock with other species 

mycelium. Another objective was to determine a range of combinations of species 

that produce volatiles and can affect other species following on from the work on 

VOCs by Hynes et al. (2007) and by Evans et al.(2008) in the Cardiff Laboratory. 

This included a study of the effect of volatile compounds produced during different 

combinations of interactions of fungi on a third fungus.  

2 –  A study of laccase enzyme activity in Trametes versicolor: by qualitatively 

(activity staining) and quantitatively (enzyme assays) measuring changes in the 

activity of laccase produced by T. versicolor when affected by VOCs produced by 

interaction of two basidiomycete fungi on agar and on woodblocks or when affected 

by abiotic stress factors.  
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3 –  An investigation of gene expression in T. versicolor. Genes identified in a 

microarray analysis of global T. versicolor gene expression during mycelial 

interactions (Eyre et al., 2010) were tested to choose the right genes based on their 

expression as determined by microarray analysis or because of their putative function 

for further work with T. versicolor under stress. Expression of selected genes was 

tested in response to VOCs produced during interactions between itself and other 

selected wood-rotting basidiomycetes (Stereum guasapatum, Hypholoma fasciculare 

and Bjerkandera adusta ) as well under abiotic stress. Another objective was to 

compare laccase enzyme activity and gene expression in T. versicolor mycelia alone 

under stress and/or under the effect of VOCs produced by interaction of two 

basidiomycete fungi, as well as comparing the resulting cloned sequences with lacc 

gene family tree to determine whether there was differential expression of gene family 

members.  
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Chapter 2: General Materials and Methods 

 

 

2.1 Fungal Isolates and culturing 

 

Different isolates of basidiomycetes and ascomycete species commonly found on 

Beech trees were used (Cardiff University Culture Collection). These fungi cover a 

range of different host species (Table 2.1). The species were maintained on 2% (w/v) 

malt agar (MA; 20 g l-¹ Munton & Fison spray malt, 15 g L-¹ Laboratory M agar 

No.2) incubated at 20° C in the dark. Cultures were routinely subcultured every 10 

days or just before the colony margin reached the edge of the plate. Stock cultures of 

the studied species were maintained at 4° C on slant tubes of 2% MA. All the 

culturing work was done in a sterile laminar-flow hood. 

 

Table 2.1. Details of the wood-inhabiting species used in the interactions on agar.   
  

 Isolated by  
 
 

Host Isolate 
Code 

Species 
 

Ecological 
role  

 S.J. Hendry Fagus sylvatica  Es 1 Eutypa spinosa  
 

Primary 
colonizer 

 L. Boddy Quercus robur  
 

Sg 1 Stereum gausapatum 
 

Primary 
colonizer 

 L. Boddy Quercus robur  
On dead branches of 
broad-leaf trees 

Vc 1 Vuilleminia 
comedens 
 

Primary 
colonizer 

 J. 
Heilmann- 
Clausen 

Fagus sylvatica  
Birch,Beech,Sycamore 

JHC 
P855 

Fomes fomentarius 
 

Heart rotters,  
primary 
decayer 

 L. Boddy On dead wood of 
broad-leaf trees 

Cv D2 Trametes versicolor 
 

Early 
secondary 
colonizer 

 L. Holmer Coniferous woodlands LH-Resinicium bicolor Secondary 
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(occasionally 
angiosperm 
woodlands) 

M6a  colonizer; 
cord-former 

 L. Thomas Ubiquitous  
 
 

Trichoderma viride  
 

Primary 
colonizer 

 L. Boddy 
 
 

Quercus robur  
(Oak) 

Sh 1 Stereum hirsutum 
 

Early 
secondary 
colonizer 

 D.P. 
Donnelly 

Angiosperm wood and 
leaf litter 

Hf 
DD4 

Hypholoma 
fasciculare 
 

Late 
secondary 
colonizer; 
Cord-former 

 L. Boddy Fagus sylvatica  
 and other broad-leaf 
trees 

Ba 1 Bjerkandera adusta 
 

Late 
secondary 
colonizer 

  
 
 

2.2 Extension rate measurements  

 

2.2.1 Species growing alone or growing in Petri dishes on top of 
interacted two fungi (two-plate interaction method)  

 

Fungi were cultured by inoculating 6 mm diameter agar plugs, cut from the  

growing margin of colonies with a Number 3 cork borer, centrally on 2% w/v  

MA and 0.5% w/v MA (Section 2.1).  The plates were incubated face down, after 

sealing with Nescofilm®, at 20° C in plastic bags in the dark. Three replicates were 

used. Colony extension was measured daily, at the same time, across two diameters 

using vernier calipers. Measurements were taken until the colony was 1 cm away 

from the edge of the plate (Fig. 2.1). 
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Fig. 2.1. The growth measurement positions diameters (D1 and D2). 

 

 

2.3 Analysis of gene expression 

 

2.3.1 Culturing the fungi for harvesting 

Colonies were grown at 20°C on 2% MA (20g L-¹ of agar) to facilitate harvesting 

mycelium from the surface of the agar. Paired interactions of T. versicolor with S. 

guasapatum, B.  adusta, H. fasciculare, self pairing or T. versicolor  alone were set up 

by inoculating 6  mm diam. plugs, cut from the actively growing mycelial margin, 30 

mm apart (Fig 2.2). For pairings of T. versicolor vs H. fasciculare, the H. fasciculare 

plugs were plated 2 days prior to adding the opposing T. versicolor plugs, ensuring 

that opposing mycelia met at the centre of the plate. The mycelium was harvested 

aseptically from plates using a small spatula to skim the mycelium from the surface of 

the agar, flash frozen in liquid N2 and transferred to -80 °C until required for 

extraction. 60 plates of each interaction were used for each extraction. Only an area 

D

D
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behind the interaction zone in interacting cultures, or just behind the culture margins 

for cultures grown alone, was harvested for extraction (Z in Fig. 2.2). 

 
T. versicolor grown alone                      T. versicolor                                competitor 
 

Fig. 2.2. The growth and harvesting of colonies when alone (A) and when interacted 
(B), harvesting zone (Z). 

 

 

2.3.2 RNA extraction 

 

Mycelium was ground to a powder in a cooled, autoclaved, pestle and mortar using 

liquid nitrogen. TRI-Reagent (2 ml) (Sigma-ALDRICH, Dorset, UK) was added to 

the mycelium with further grinding to obtain homogenous paste which included DNA, 

RNA and protein. 

 

The mixture was then divided into two equal portions and transferred into two 1.5 ml 

sterile Eppendorf tubes, and allowed to stand at room temperature for 5 minutes. Then 

the tubes were centrifuged at 10500 g at 4° C for 10 minutes using the F2402H rotor 

in a Beckman Coulter Allegra 2IR Centrifuge (Beckman Coulter Ltd., High 

A 

Z 

B 
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Wycombe, UK).  Clear supernatants were transferred to new 1.5 ml Eppendorf tubes 

where 200 µl of chloroform was added to each tube and then the tubes were vortexed 

for 15 seconds. Tubes were allowed to stand at room temperature for 5 minutes, and 

then centrifuged again at the same g and temperature for 15 minutes.  The top layer 

(aqueous), which includes the RNA, was transferred to new 1.5 ml Eppendorf tubes 

and 0.5 ml isopropanol was added to each tube, mixed, and then left to stand at room 

temperature for 10 mins to precipitate the RNA. Tubes were then centrifuged again 

for 10 minutes, and carefully marked to identify the location of the pellet. 

Supernatants were removed and 1 ml of 75% ethanol added to the pellet and then 

tubes were vortexed for 15 seconds. Tubes were re-centrifuged, then the supernatant 

was removed and pellets allowed to dry in air (in a laminar flow cabinet) for 10-30 

minutes.  The dried pellet was then dissolved in 50 µl of sterile distilled water in each 

tube, then the contents of the two tubes were combined together to form 100 µl in 

total. The end product (10 µl) was checked for the presence of RNA by gel 

electrophoresis, the rest was stored at -80°C. Dedicated autoclaved disposable 

plasticware was used throughout the extraction to avoid RNA degradation by 

contaminating RNases. 

 

2.3.3 Gel electrophoresis 

Gel electrophoresis was performed by adding agarose (1% for RNA, 1.5-2% for 

DNA) to 1X TAE Buffer (50X TAE: 242 g Tris base, 57.1 ml glacial acetic acid, 100 

ml 0.5 M EDTA pH 8.0), this was microwaved for 1 min and then cooled slightly 

before adding ethidium bromide (EtBr) (10 µg ml-1). For RNA analysis, before 

pouring the gel into the tank (Mini Sub DNA cell, Biorad, Hemel Hempstead, UK) 
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the comb and tray were soaked in 0.1 M NaOH for 10 min and rinsed in sterile dH2O 

to prevent degradation of RNA samples. Cooled agar was poured into the gel mould 

and allowed to set. Loading buffer (10x) (16.5 ml 150 mM Tris-HCl pH 7.6, 30 ml 

glycerol, 3.5 ml H2O, bromophenol blue to desired colour) of 1/10 volume was mixed 

with the samples to run on the gel. A 1kb DNA ladder (500 ng) (Invitrogen, Paisley, 

UK) in 1x loading buffer was loaded alongside samples.  Samples were run at roughly 

110 V for 20 min. The gels were then viewed under UV light via a GeneGenius 

Bioimaging System (SynGene, Cambridge, UK) and images were captured via 

Genesnap 4.00.00 software (SynGene, Cambridge, UK). 

 

2.3.4 DNase treatment of RNA samples 

RNA concentration was checked using a spectrophotometer and 1-5 µg of it were 

added to form 16 µl with sterile distilled water, and then 2 µl of RQ1 DNase 10X 

buffer and 2 µl of RQ1 DNase (Promega, UK) were then added to make 20 µl. The 

reaction was incubated at 37°C for 30 minutes then 2 µl of RQ1 DNase stop solution 

was added to stop the reaction. 

 

To inactivate the DNase the reaction was incubated at 65°C for 10 minutes. To test 

for full removal of genomic DNA, DNAase treated RNA was used as a control in the 

RT-PCR reaction (note that all the incubations were done in a PCR machine). 
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2.3.5 cDNA Synthesis  

 

After treating the RNA to remove residual DNA, the samples were ready for cDNA 

synthesis. The RNA (19 µl) was pipetted into a 0.5 µl Eppendorf tube. Oligo (dt) 15 

(Promega, UK) (500µl/ml) (Deoxy poly T primer which anneals to the poly A trail of 

RNA) 1 µl was added. Then the mixture was incubated at 70°C for 10 minutes and  

cooled at 4°C for another 10 minutes.  Then 6 µl of 5x1st strand buffer (Promega, 

UK) 2 µl of 0.1 M DDT (dithiothreitol-reducing agent to stabilize the enzyme) and 1 

µl of 10mM dNTPs were added before incubation at 42° C for 2 minutes. Then 1µl of 

reverse transcriptase enzyme (Promega, UK) was added and the mixture incubated at 

42° C for 50 minutes. To stop the reaction the mixture was then incubated at 70°C for 

15 minutes. cDNA was stored at - 80°C.  

 

 

2.3.6 Design of gene-specific primers 

 

Genes were selected based on their expression patterns from microarray analysis of 

mycelial interactions between T. versicolor and competing fungi (Table 2.2). Primer 

sequences were designed using an online program (Primer3; 

http://biotools.umassmed.edu/bioapps/primer3_www.cgi) using sequences previously 

obtained (Eyre, 2007).  
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Table 2.2 Specific primers of different genes from T. versicolor. Tv; Trametes 
versicolor, Sg; Stereum gausapatum, Hf; Hypholoma fasciculare, Bk; Bjerkandera 
adusta. 

 

High= up regulated gene, low= down regulated gene. 

 
 
 
 
 
 

 

Primer  Primer sequence (5’ to 3’) No. 
bases 

Specific for: Annealing 
temperature 
(°C) 

Product 
 size 

FRA2-F 
FRA2-R 
 

CGGTACTGTCTGCTGCGATA 
CGAACACACGAGTTCTTGGA 
 

20 
20 

Tv/Sg(high), 
Tv/Bk (high) 

 
60 

 
230 

 

F1D8-F 
F1D8-R 
 

CGGAAAAAGAGCGAGGAGA 
CTCCTCGAGAAGTGCAAAGC 
 

19 
20 

Tv/Bk (low), 
Tv/Hf  (low) 

 
60 

 
207 

 

F2A1-F 
F2A1-R 
 

GGAGAGTGCGGTGACAATGAA 
GTGTGACTGTCATTGTCGGG 
 

20 
20 

Tv/Hf (high)  
60 

 
160 

 

FRA19-F 
FRA19-R 
 

AGACTACCAGGACGGAACGA 
AATGGAAAGCATGGGAAGG 
 

20 
19 

Tv/Sg (low)  
60 

 
154 

 

Nox-F 
Nox-R 

TCGGTTGGTTCCAGACTCTC 
TAGATGGCCTTCCAGTCAGG 

20 
20 

Tv interacted with  
(Sg, Ba, Hf, Tv) 

 
60 

 
205 

 

Lacc-F 
Lacc-R 

CTTCAACGGCACCAACTTCTT 
GAAGTCGATGTGGCAGTGGAG 

21 
21 

Tv alone 55 376  

M13-F 
M13-R 
(Promega) 

TCACACAGGAAACAGCTATGAC 
GTTTTCCCAGTCACGAC 

22 
17 

Controls 50 variable  

18S(EF4) 
18S(fung5) 
18S rRNA 
(Smit et al., 
1999) 

GGAAGGGRTGTATTTATTAG 
GTAAAAGTCCTGGTTCCCC 

20 
19 

Controls 48 563  
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2.3.7 PCR of cDNA (Semi-quantitative RT-PCR) 

 

Reactions were set up as follows: 18.9 µl sterile distilled water was added to an 

Eppendorf tube, together with 2.5 µl buffer (X10) (Qiagen, Crawley, UK), 0.5 µl of 

10mM dNTPs (Promega, UK) 1µl of each primer (10:90 µl sterile distilled water), 

0.125 µl Hotstar enzyme (Qiagen) and 1 µl of the cDNA sample to a total of 25 µl. A 

master mixture was made up depending on the number of replicates to include 

common reagents. 

Reactions were cycled in a Perkin Elmer 2700 thermocycler and the following 

programme: 94 oC for 15 min, {94 oC for 1 min, Tm for 1 min, 72 oC for 1 min} x30-

35 cycles, 72 oC for 6 min then held at 20 oC. Tm for FRA2, F1D8, FRA19, Nox and 

F2A1 was 60° C, for 18S it was 48o C.  

 

2.3.8 Normalization of the data  

                

Normalisation was achieved by using 18S rRNA primers EF4 and fung5 (Smit et al., 

1999). Reactions were cycled as above. Three or more replicates for each primer set 

were all amplified using the same machine to avoid any variability due to the machine 

parameters. Products were analysed by agarose gel electrophoresis and PCR products 

quantified using the Gene Genius bioimaging system and GeneSnap software, 

(SynGene, Synoptics Ltd., Cambridge, UK). Product quantitation from the 18S target 

was used to normalise results for all the other primer sets. Cycle number was 

optimised and limited for each primer set and cDNA synthesis batch combination. 

This ensured that the reactions were in the exponential phase and therefore product 
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quantitation could be considered semi-quantitative with respect to message 

abundance. Although the cDNA was retro-transcribed using oligo (dT), sufficient 

amount of rRNA are also retro-transcribed due to the high A-T content of r RNA. 

This methodology has been used successfully to obtain semi-quantitative RT-PCR 

data for a range of experimental systems (Parfitt et al., 2004; Wagstaff et al., 2005; 

Orchard et al., 2005; Price et al., 2008). 

 

 

2.3.9 Cloning 

 2.3.9.1 Purification of PCR products 

 

A QIAquick Gel Extraction Kit (Qiagen) was used to extract PCR products. The 

bands were excised from the gel using a razor blade and the agarose slices transferred 

to 1.5 ml Eppendorf tubes, and weighed. Three volumes of buffer QG were added to 

one volume of gel (where 100 mg ~ 100 µl). Tubes were incubated for 10 min at 50 

°C, or until the gel piece had completely dissolved. One gel volume of isopropanol 

was added to the sample and mixed well, and the mixture applied to a QIAquick spin 

column. This was centrifuged at 11,000 g for 1 min in an Eppendorf Minispin 

microcentrifuge (Eppendorf, Cambridge, UK), and then the supernatant was 

discarded. 750 µl of the washing Buffer PE was added to the column, and centrifuged 

for 1 min twice. The supernatant was discarded and the column centrifuged again at 

11,000 g for 1 min to remove any traces of buffer PE. The column was then 

transferred to a fresh 1.5 ml Eppendorf tube, and 30 µl buffer EB (10mM Tris-CL, pH 

8.5) was added to the DNA at the centre of the column membrane, left to stand for 1 
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min, and then centrifuged for 1 min. The eluted DNA was checked by running 5 µl on 

an agarose gel and the rest was kept at -20 °C until used for ligation. 

 

2.3.9.2 Ligation into pGEMT-Easy vector 

 

Ligation for each PCR product was set up as follows: 1 µl of each of (10x ligation 

buffer, (10-100 ng), plasmid pGEM T-Easy (Promega), T4 DNA ligase (Promega) 

and 7 µl of the purified PCR product to form 10 µl in total. The samples were then 

incubated overnight at 4 °C. 

 

 2.3.9.3 Transformation of E.coli DH5α competent cells 

 

Escherichia coli DH5α cells in 100 µl (prepared house) were transferred from -80°C 

to be thawed on ice. DNA ligation (2 µl) was added, mixed, and then incubated for 20 

min on ice. Heat shock was applied by placing the tubes containing the cells in a 

water bath for exactly 45 s at 42°C, and then transferred back for 2 min to ice. SOC 

medium (900 µl) (2% (w/v) tryptone, 0.5% (w/v) yeast extract, 8.6 mM NaCl, 2.5 

mM KCl, 20 mM MgSO4, 20mM glucose) was added then the tubes were transferred 

to a 37°C shaking incubator (100 rpm) for 1 hr. The cells (200 µl) were streaked onto 

9 cm non-vented Petri dishes of LB solid medium containing ampicillin (100 µg/ml) 

(Luria-Bertani medium; 1.0 g tryptone, 0.5g yeast extract, 1.0 g NaCl, 1.5 g agar, 100 

ml distilled water), plates were incubated overnight (less than 18 hrs) at 37°C then 

transferred to 4°C.  
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2.3.9.4 Colony PCR for identification of positive colonies 

PCR of positive colonies for positive clones was performed with the use of M13-F/R 

primers (within for the pGEM-T vector) and 1 µl of the bacterial cultures as a sample. 

This was done by inoculating a single well-separated colony in to a 1.5 ml Eppendorf 

tube containing 200 µl pf LB liquid medium (as above but without agar). Ten colonies 

were chosen randomly for each transformation, and then incubated at 37°C for 4-5 hrs 

with gentle shaking (100 rpm). The bacterial growth was then checked by odour. PCR 

reactions were set up as described in Section 2.3.7 using a Tm of 50°C.  PCR products 

were analysed by gel electrophoresis to identify the positive cultures based on the size 

of bands. 10 µl of bacterial cultures were used to inoculate a 3 ml LB liquid medium  

and Ampicillin to be grown overnight at 37° C with shaking at 200 rpm for plasmid 

DNA purification.  

 

2.3.9.5 Plasmid DNA purification 

 

A QIAprep Spin Miniprep Kit (Qiagen) was used to purify and extract plasmid DNA. 

Cultures (3ml overnight cultures) were divided into 700 µl to be used as a stock (by 

adding 300 µl of glycerol) at -80°C, and the rest (2300 µl of the culture) were 

centrifuged in two Eppendorf tubes at 8.000 rpm for 3 min in an Eppendorf Minispin 

microcentrifuge (Eppendorf, Cambridge, UK).  The supernatant was discarded, then 

250 µl Buffer P1 containing RNase A was added and vortexed until the pellet was 

resuspended. Buffer P2 (Lysis Buffer) 250 µl was then added and mixed by inverting 

the tubes 4-6 times. N3 Buffer 350 µl was added immediately so as not to let the lysis 

reactions proceed for more than 5 mins and then mixed 4-6 times by inverting the 
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tubes. After being centrifuged at 11.000 g for 10 min, the supernatant was transferred 

into QIAprep Spin Columns, and centrifuged at 11.000 g for 45 s. The flow through 

was discarded then the column washed twice by adding 750 µl PE Buffer and 

centrifuged at 11.000 g for 45 s, each time discarding the flow through. The columns 

were centrifuged again for 1 min to remove any residual PE Buffer. The spin column 

then was transferred to a new 1.5 ml Eppendorf tube, and 50 µl pf EB Buffer (Tris-

CL, pH8.5) was added to the centre of the QIAprep Spin column membrane. Columns 

were left to stand for 1 min then centrifuged for 1 min. A 5 µl sample of the end 

product was checked by gel electrophoresis for the presence of plasmid DNA, while 

the rest of the product was stored at -20° C until used. 

 

2.3.9.6 Sequencing of plasmid DNA 

The purified plasmid DNA was checked on 1% agarose gels then the DNA 

concentration was checked using a Nanodrop spectrophotometer (Thermo Scientific, 

USA). Samples were sent for sequencing to the Cardiff University Sequencing 

Service using M13-F primers. 

 

2.4 Enzyme analysis (laccase) 

 

Measurement of laccase activity was carried out by adding 50 µl of the sample extract 

(samples of growing mycelium taken by Number 8 cork borer from the margin of the 

colony and kept in 1 ml deionized water over night in 4°C with smooth shaking) into 

the wells of a Bioscreen C plate (100 well plate; Oy Growth Curves Ab Ltd., Finland). 

Citrate- phosphate buffer (150 µl, 100 mM citrate, 200 mM phosphate, pH 5.0) and 
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50 µl 0.08% (w/v) ABTS were added to the wells using a multichannel pipette then 

the plate was placed in a Bioscreen spectrophotometer (Oy Growth Curves Ab Ltd., 

Finland) to detect laccase activity by the formation of a green colour at 420 nm 

(Bourbonnais & Paice, 1990). The laccase activity was determined by using the molar 

extinction coefficient of ABTS (36,000 M cm-3), where one unit of laccase activity 

was defined as the amount of enzyme releasing 1 µmol of product per min.  

 

2.5 Statistical analysis    

 

For each experiment (of each single gene expression in four interactions of T. 

versicolor (with S. guasapatum, H. fasciculare, B. adusta or T. versicolor self-pairing 

and Tv alone or during the test of Tv under stress) results were compared using one-

way ANOVA, using an Anderson-Darling test for normally distributed residuals and 

also Leven’s test for equal variances between groups. If significantly different 

(P≤0.05) then further tests were used (Tukey-Kramer) (a posterior test to explore  

differences between means), but if not then Kruskal-Wallis tests with post hoc 

Tukey’s test or Mann-Whitney U-tests (if the data were non normally distributed) can 

be used. The tests were carried out in Minitab (v.15) and SPSS (v.16). 
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Chapter 3: Effect of VOCs produced during mycelial 
interaction on growth and enzyme production  

by a third fungus 
 
 
 
 
 
3.1 Introduction 
 
 
Aggressive mycelial interactions can be affected at a distance by production of 

volatile organic compounds (VOCs), diffusible chemicals or antibiotics before the 

fungi make physical contact (Boddy, 2000; Wheatly, 2002). VOCs produced by fungi 

cause spoilage of stored food, and in buildings have been implicated in Sick Building 

Syndrome (Ramin et al., 2005; Wady et al., 2005). VOCs can inhibit the extension 

rate of a fungus and its opponent, and sometimes even result in self-inhibition. Their 

production is often correlated with synthesis of pigments, lysis and change in mycelial 

morphology (Griffith et al., 1994; Howell, 1998).   

 
Fungi secrete secondary metabolites when colonising wood which may affect other 

species that are trying to colonize the occupied area. Competitors may be completely 

inhibited or have their growth slowed, some may not be affected at all, while growth 

of others may be stimulated by these chemicals. Furthermore, the chemicals produced 

may change in the presence of a probable competitor (Boddy, Frankland & Van West, 

2008). There may be indirect effects of some chemicals, such as lowering the pH of 

the area and others may act as antibiotics (Boddy & Heilmann Clausen, 2008; Hynes 

et al., 2007; Woods, 1996; Griffith et al., 1994b, c). 

 
VOCs are produced by many fungi when growing alone (Ewen et al., 2004; 

Wheatley, 2002). When mycelia interact quantities may increase and additional VOCs 

are often produced. In interactions between Resinicium bicolor and Hypholoma 
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fasiculare, 24 VOCs, predominantly sesquiterpenes, were detected. Of these four 

were detected in all treatments; 14 in interspecific interactions; four in monocultures 

of R. bicolor, and two in monocultures of H. fasciculare (Hynes et al., 2007). The six 

VOCs identified in monocultures all increased during interspecific interactions. Five 

volatile organic compounds were produced by Trichoderma spp (Wheatley et al., 

1997), and four (Acetone, 2-methyl-1-butanol, heptanal and octanal) were tested at a 

variety of concentrations against four wood inhabiting fungi. Over 80% of the tested 

fungi were affected by heptanal, but acetone had no affect, while only the highest 

concentrations of 2-methyl-1-butanol showed an effect. 

 
GC and GC-MS analysis revealed that the major volatiles produced by fungi were 

linalool, citronella, geraniol and methoxyphenylacetate or drimenol depending on the 

culture nature (Kahlos et al., 1994). The constituents of the culture medium and the 

age of the fungal colony can affect the inhibition of wood decay fungi by the VOCs 

(Bruce et al., 1996). The composition of the profile of VOCs produced by a fungus in 

nature varies slightly from that produced in artificial cultures where, for example, 

methyl p-methoxyphenylacetate was the main compound produced by Gloeophyllum 

odoratum (Kahlos et al., 1994). 

 

There were differences in VOC profiles of interacting wood decay fungi when 

growing on agar, in wood or across soil (Elerabei, Muller & Boddy, unpub.). Also the 

production of inhibitory VOCs was highly dependent on the particular competitor, the 

growth substratum and species of fungi during interactions (Bruce et al., 2002). 

VOCs, like the diffusible chemicals (DOCs) released from partially decomposed 

wood, may have a role as infochemicals during community development in 

decomposing wood (Heilmann-Clausen & Boddy, 2004). The VOCs and DOCs 
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produced during inter-specific mycelial interactions may not only affect the fungi 

generating them, and the opponent that triggered their production, but also other fungi 

in the vicinity. Some chemicals are specific to certain fungi, and can be used to detect 

the presence of specific fungi within, for example, hosts. The presence of, for 

example, tricodiene in stored crops indicates the presence of certain species of 

Fusarium that produce aflatoxin (Demyttenaere et al., 2004; Scotter et al., 2005). 

 

The specific aims of the work described in this chapter were to determine: 
 
(1) the effect of VOCs produced by interacting fungi on the growth of a third fungus 
on agar; 
   
(2) spatial distribution of laccase and peroxidase production in interacting colonies of 
Trametes versicolor on agar; 
 
(3) the effect of VOCs produced during interactions between fungi in wood blocks on 
the growth of a third fungus on agar;  
 
(4) the effect of VOCs produced during interactions in wood blocks on laccase and 
ligninolytic activity of a test fungus on agar. 
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3.2 Materials and methods 
 
 
 
3.2.1 The effect of VOCs produced by interacting fungi on the growth of 
a third fungus on agar 
 
 

3.2.1.1 Effect of mycelial interaction between Hypholoma fasciculare and 
Resinicium bicolor on nine wood decay fungal species 

 

Hypholoma fasciculare and Resinicium bicolor were paired against each other or 

against themselves on 0.5% MA for 13-14 d until they began to interact and produce 

pigments. A plate inoculated centrally with a test fungus (Eutypa spinosa, Stereum 

gausapatum, Vuilleminia comedens, Fomes fomentarius, Trametes versicolor, 

Resinicium bicolor, Stereum hirsutum, Hypholoma fasciculare or Bjerkandera adusta) 

was then taped above (Fig.3.1). Colony extent of the test species was measured daily 

across diameters perpendicular to each other using vernier calipers. The 

measurements were taken for 5-7 d for all the species, except Fomes fomentarius, 

which was measured for 15 d every 2 d, and at least 5-6 measurements were taken. 

Five replicates were made. Controls employed a test species above uninoculated agar. 

Plates were incubated at 200C in the dark. 
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Test fungus 
 
 

 
 

Interacting mycelia 
 
Fig.3.1. Two plates experiment, with mycelial interactions on the lower plate, and the 
test fungus on the upper plate.  
 
 
 
 
 
3.2.1.2 The effect of mycelial interaction between Trametes versicolor and 
Resinicium bicolor on eight fungal species 
 
 
The above method (Section 3.2.1.1) was used in the same way with Trametes 

versicolor and Resinicium bicolour  interacting with each other, and the extension rate 

(mm d¹) measured for eight fungi (Eutypa spinosa , Stereum gausapatum, 

Vuilleminia comedens, T. versicolor, R. bicolor, Stereum hirsutum, Hypholoma 

fasciculare and Bjerkandera adusta).  

 
 
 
3.2.1.3 The effect of mycelial interaction between Stereum gausapatum 
and four species 
 
 
The two-plate method described above (Section 3.2.1.1) was used to determine the 

effect of interaction of Stereum gausapatum with Eutypa spinosa, Bjerkandera 
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adusta, Stereum hirsutum, Trametes versicolor and Vuilleminia comedens, on 

extension rate of E. spinosa, S. gausapatum, B. adusta, S. hirsutum, T. versicolor and 

V. comedens. Self-pairings and  uninoculated agar were used as controls.  

  

3.2.2 Effect of mycelial interaction between pairs of wood decay fungi on 
agar on extension rate of Trametes versicolor  

 

Eutypa spinosa, Stereum gausapatum, Vuilleminia comedens, Fomes fomentarius, 

Trametes versicolor, Resinicium bicolor, Stereum hirsutum, Hypholoma fasciculare 

and Bjerkandera adusta, were paired against each other or against themselves on 

0.5% MA for 13-14 d until they began to interact and produce pigments. A plate 

inoculated centrally with the test fungus Trametes versicolor was then taped above 

(Fig. 3.1).  Colony extent of the test species was measured daily, across diameters 

perpendicular to each other using vernier calipers, for 5-6 d. Five replicates were 

made. Controls employed the test species above uninoculated agar. Plates were 

incubated at 200C in the dark. 

 

 
3.2.3 The effect of VOCs produced during interaction between fungi in 
wood blocks on the extension rate of a third fungus on agar  
 
 
3.2.3.1 Wood bock preparation  
 
  
Wood, obtained freshly from beech (Fagus sylvatica; from Coed Cymru Hardwood 

Sawmill, Wentwood, UK) was cut into 2 x 2 x 1 cm blocks. Stained or knotted blocks 

were discarded, and the rest were stored at -18°C until needed. The wood blocks were 

soaked in de-ionized water overnight then sealed and autoclaved in double-wrapped 
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autoclave bags (in groups of 20 to 30 wood blocks) at 121°C for 30 mins and 

reautoclaved twice more then stored at -18°C until required. Blocks were autoclaved 

once more before use.    

 

 
3.2.3.2 Preparation of fungal inocula 
 

Eutypa spinosa, Stereum gausapatum, Vuilleminia comedens, Fomes fomentarius, 

Trametes versicolor, Resinicium bicolor, Stereum hirsutum, Hypholoma fasciculare, 

and Bjerkandera adusta were cultured on 2% malt extract agar (MEA: 20g L¹ malt, 

Munton and Fison, UK, 15 g L¹ lab M agar no.2) at 20°C in the dark in non-vented 9 

cm diam. Petri dishes until the mycelium covered the surface of the plates. Each of 

the species were transferred as inocula to 2% MEA in 14 cm diam. Petri dishes sealed 

with Nescofilm® and incubated in the dark at 20°C. When the mycelium covered the 

whole surface of the plate, sterile wood blocks were added (20 per dish) and the plates 

returned to the incubator at 20°C in darkness for 2 months before use.  

 
 
3.2.3.3 Experimental design  
 
 
The two-plate method described in (Section 3.2.1.1) was used to determine the effect 

of interaction of two fungi on the extension rate and the enzyme production of 

Trametes versicolor. Two colonised wood blocks were joined together with rubber 

bands and attached centrally to the base of a sterile 9 cm diam Petri dish with a drop 

of agar medium, and left for 4 weeks to interact and produce VOCs. Afterwards, T. 

versicolor was inoculated centrally onto 0.5% malt extract agar plates and taped 

above the Petri dish containing the paired wood blocks (Fig.3.2) for 5 to 6 d. Colony 
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extent of the test species was measured daily, across diameters perpendicular to each 

other using vernier calipers. 

 

 

 
Test fungus  

 
 

 
 
 
 

Interacting mycelial wood blocks 
Agar medium 
 
 
Fig.3.2. Two plates experiment, with mycelial interacting in wood blocks on the 
lower plate, while the upper plate contained the tested fungus.  
 
 
 
3.2.4 The effect of mycelial interaction in wood blocks on laccase and 
ligninolytic activity of a test fungus on agar 
 

 
3.2.4.1 Sample preparation for enzyme assays  
 
 
T. versicolor cultures were set up as described previously in Section 3.3.3 on 16 ml 

0.5% Malt Agar in 9 cm non-vented Petri dishes for 5 d then 12mm diam plugs were 

removed with a No.8 cork borer from the margin of the colonies. Plugs were 

transferred to 1.5 ml Eppendorf tubes, and 1 ml of deionised water was added. Tubes 



 Chapter 3: Effect of VOCs 
 

 50 

5 5

were shaken gently overnight at 4 °C, and then 0.8 ml of extract was transferred to a 

new 1.5  ml Eppendorf tube and centrifuged (8000g) for 10 min at 4 °C to precipitate 

debris. The assays were carried out instantly while the extracts were kept at 4 °C. Five 

replicate plates were made and the data were normalised to the wet weight of agar 

added to mycelium extracted for each sample. 

 

3.2.4.2 Laccase activity 

 

Laccase activity was measured by the use of ABTS (as described in Section 2.4) 

following Bourbonnais & Paice (1990). 

 

 

3.2.4.3 Manganese peroxidase activity 

 

Manganese peroxidase activity was analysed in a succinate-lactate buffer (100 mM, 

pH 4.5), where 3-methyl-2-benzothiazoline-hydrazone hydrochloride (MBTH) and 3-

(dimethyl amino)-benzoic acid (DMAB) were joined oxidatively by MnP action 

following Ngo & Lenhoff (1980). A purple colour was observed by using a 

spectrophotometer at 590 nm. Extracts (50 µl) and 200 µl substrate solution were 

added to wells of a Bioscreen II plate using a multichannel pipette. Plates were then 

directly transferred to a Bioscreen C II plate reader (Oy Growth Curves Ab Ltd., 

Finland). The substrate solution comprised 25 MnSO4 and 5 mM hydrogen peroxide.   

The tests were done: (a) without manganese, where EDTA (2 mM,) was used to 

chelate Mn2+ present in the extract to allow detection of Mn2+-independent 
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peroxidases; and (b) in the absence of hydrogen peroxide (H2O2) to detect activity of 

oxidases other than the peroxidases. 

  
 

3.2.4.4 1,4-β-glucosidase activity  

 

Microplates were used to assay using 1,4-β-glucosidase activity by using  p-

nitrophenyl-β-D-glucoside (pNPG, Glycosynth, UK) following Valášková et al. 

(2007). A reaction mixture comprised 40 µl sample and 160 µl 1.2 M pNPG in 

sodium acetate buffer (50 mM, pH 5.0) and the reaction mixtures were incubated at 

40°C for 120 min. Sodium carbonate (0.5 M) was added to stop the reaction, and 

absorbance was read at 400 nm in a Dynex Revelation microplate reader (Dynex 

Technologies Ltd., Sussex, UK). Data were calculated using the molar extinction 

coefficient of p-nitrophenol (11,600 M cm−1). The amount of enzyme discharging 

1 µmol of p-nitrophenol per minute was defined as one unit of enzyme activity (U).  

 

 

3.2.4.5 NAG and acid phosphatase activity 

 

p-nitrophenyl N-acetyl-β-D-glucosaminide (pNPN; Glycosynth, UK) and p-

nitrophenyl phosphate (pNPP; Glycosynth, UK) were used, respectively, in the 

method described in Section 3.2.4.4 to assay the activity of 1,4-N-

acetylglucosaminidase (NAG) and phosphomonoesterase (acid phosphatase). 

Spectrophotometric measurements were made as for 1,4-β-glucosidase activity 

(Section 3.2.4.4). 

 



 Chapter 3: Effect of VOCs 
 

 52 

5 5

 

3.2.5 Spatial distribution of laccase and peroxidase production in 
Trametes versicolor on agar 
 
 
 
Trametes versicolor (TvD4) (Cardiff University Fungal Ecology Group culture 

collections) inoculated onto an agar plates (details below) was placed above a plate 

containing two fungi interacting on agar as in Section 3.2.2 or in woodblocks as in 

Section 3.2.3. Localisation of laccase activity was determined in 9 cm Petri dishes of 

0.5% Malt Agar plus 250 mg l−1 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic 

acid) diammonium salt (ABTS) which is oxidised to a green/violet product in the 

presence of laccase (Steffen et al., 2000). Photographs were taken with a Nikon 

Coolpix Camera at 6 d and 16 d. 

 

Peroxidase activity was visualised on 2% Malt Agar in 9 cm Petri dishes flooded with 

2.5 mM diaminobenzidine (DAB) in phosphate buffer (0.1 M, pH 6.9), and incubated 

for 30 min with gentle rotation following Silar (2005). The stain was drained off and 

the location of a red precipitate was observed after 1 h, 2h and one day. Control plates 

contained buffer only.  
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3.3 Results 
 
 
3.3.1 The effect of VOCs produced by interacting fungi on the growth of 
a third fungus on agar 
 
 
3.3.1.1 Effect of VOCs produced during mycelial interaction between 
Hypholoma fasciculare and Resinicium bicolor on a third fungus 
 

Volatiles produced during the interaction between H. fasciculare and R. bicolor 

inhibited the extension rate of T. versicolor, B. adusta, R. bicolor and F. fomentarius, 

compared with controls. The self-pairing of H. fasciculare inhibited the extension rate 

of S. gausapatum but enhanced that of T. versicolor, while the self-pairing of R. 

bicolor inhibited the extension rate of R. bicolor and enhanced that of B. adusta 

(Table 3.1). 

Table 3.1. Mean radial extension rate (mm d-¹ ± SEM) of test fungi when grown 
above malt agar with interspecifically and self interacting mycelium of Hypholoma 
fasiculare and Resinicium bicolor. 

Significance of difference compared with growth above uncolonised agar  
(*, P≤0.05; **, P≤0.01;***, P≤0.001, ns, not significant). 
Abbreviations: Rb, Resinicium bicolor; Hf, Hypholoma fasciculare. 

Significant 
difference 

Hf/Hf Rb/Rb Rb/Hf Agar Tested Fungi 
 

F3,16 = 108.49, 
P<0.001 

4.39 ± 0.03 
ns 

4.14 ± 0.04 
*** 

3.63± 0.05 
*** 

4.45 ± 0.03 Resinicium  
bicolor 

F3,16 = 12.36, 
P>0.001 

9.53 ± 0.08 
ns 

9.73± 0.06 
*** 

8.80 ± 0.10  
*** 

9.41 ± 0.06 Bjerkandera  
adusta 

F3,16 = 8.22, 
P<0.01 

0.70± 0.01 
ns 

0.70 ± 0.01 
ns 

0.62 ± 0.01 
** 

0.68 ± 0.01 Fomes 
 fomentarius 

F3,16 = 76.29, 
P<0.001 

6.88 ± 0.05 
*** 

6.47± 0.03 
ns 

5.94 ± 0.03 
*** 

6.39 ± 0.05 Trametes  
 versicolor 

F3,16 = 9.88, 
P<0.01 

5.16 ±0.06 
*** 

5.59 ± 0.08 
ns 

5.53±0.029 
ns 

5.62 ±0.09 Stereum  
gausapatum 

F3,16 = 3.29, 
P<0.05 

7.37 ± 0.37 
ns 

8.22 ± 0.12 
ns 

7.10 ± 0.15 
ns 

8.15 ± 0.11 Eutypa  
spinosa 

F3,16 = 0.48, 
P>0.05 

3.30 ± 0.09 
ns 

3.17 ± 0.09 
ns 

3.19± 0.05 
ns 

3.28 ± 0.09 Vuilleminia  
comedens 

F3,16 = 3.68     
, P<0.05 

12.57±0.07 
ns 

12.49 ±0.06 
ns 

12.890±0.2 
ns 

12.94 ±0.08 Trichoderma 
 viride 

F3,16 = 4.38, 
P<0.05 

3.42 ± 0.15 
ns 

3.59 ± 0.09 
ns 

3.80 ± 0.10 
ns 

3.72 ± 0.08 Hypholoma 
 fasiculare 
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3.3.1.2 The effect of volatile compounds produced during mycelial 
interaction between Trametes versicolor and Resinicium bicolor on a third 
fungus 
 

 
The VOCs that were produced during mycelial interaction between Trametes 

versicolor and Resinicium bicolor enhanced the extension rate of B. adusta, V. 

comedens, R. bicolor and H. fasciculare but inhibited that S. hirsutum compared with 

the controls grown above agar (Table 3.2). The self-pairing of R. bicolor enhanced the 

extension rate of six species - S. gausapatum, B. adusta, V. comedens, R. bicolor H. 

fasciculare and S. hirsutum, but inhibited E. spinosa. On the other hand, the self 

pairing of T. versicolor enhanced the growth rate of three species - B. adusta, V. 

comedens and H. fasciculare, but inhibited S. hirsutum, compared with the controls 

(Table 3.2). 

 

 
Table 3.2. Mean radial extension rate (mm d-¹ ± SEM) of test fungi when grown 
above malt agar with interspecifically and self interacting mycelium of Resinicium 
bicolor and Trametes versicolor. 
 

Significance of difference compared with growth above colonised agar. (*, P≤0.05; **, P≤0.01;***, 
P≤0.001; ns, not significant). Abbreviations: Rb, Resinicium bicolor; Tv, Trametes versicolor. 
 

Significant 
difference 

Tv/Tv Rb/Tv Rb/Rb Agar Tested 
Fungi 
 

F3,16 = 0.96, 
P>0.05 

6.82± 0.12 
ns 

6.35± 0.51 
ns 

6.85 ± 0.09 
ns 

6.88 ± 0.05 Trametes  
 versicolor 

F3,16 = 4.32, 
P<0.05 

5.55 ±0.07 
ns 

5.44 ± 0.09 
ns 

5.96±0.16 
* 

5.62 ±0.09 Stereum  
gausapatum 

F3,16 = 15.15, 
P<0.001 

8.62 ± 0.49 
ns 

7.73 ± 0.22 
ns 

5.80 ± 0.32 
*** 

8.15 ± 0.11 Eutypa  
spinosa 

F3,16 = 47.76, 
P<0.001 

10.59 ± 0.10 
*** 

10.71± 0.19 
*** 

10.25±0.25 
*** 

8.27 ± 0.03 Bjerkandera  
adusta 

F3,16 = 30.28, 
P<0.001 

2.84 ± 0.10 
*** 

2.74 ± 0.05 
*** 

2.75± 0.11 
*** 

1.77 ± 0.09 Vuilleminia  
comedens 

F3,16 = 27.76, 
P<0.001 

3.74 ± 0.07 
*** 

3.50 ± 0.12 
*** 

3.55 ± 0.06 
*** 

2.68± 0.09 
 

Resinicium  
bicolor 

F3,16 = 7.18, 
P<0.01 

2.63 ± 0.04 
** 

2.64 ± 0.05 
** 

2.55 ± 0.05 
** 

2.37 ± 0.03 Hypholoma 
 fasiculare 

F3,16 = 17.42, 
P<0.001 

5.44± 0.10 
*** 

5.93 ± 0.22 
*** 

7.31 ± 0.21 
*** 

6.33 ± 0.20 Stereum 
hirsutum 
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3.3.1.3 The effect of VOCs produced during interaction between Stereum 
gausapatum and four other species 
  

The volatile compounds produced during all of the nine interspecific interactions or 

self-pairings tested inhibited the extension rate of S. hirsutum, while E. spinosa was 

inhibited by VOCs of four interactions (Es/Es, Sg/Es, Sg/Vc and Vc/Vc) (Table 3.3). 

S. gausapatum extension rate was enhanced by the VOCs effect of four interactions 

(Sg/Sg, Sg/Sh, Sh/Sh and Vc/Vc) while T. versicolor was enhance by three 

interactions (Es/Es, Sg/Sg and Sh/Sh). B. adusta was enhanced by four interactions 

(Sg/Sh, Sg/Vc, Sh/Sh and Vc/Vc) while it was inhibited by two interactions (Ba/Ba 

and Sg/Es), on the other hand V. comedens was inhibited by two interactions (Sg/Ba 

and Sg/Es) but it was enhanced by two interactions (Es/Es and Vc/Vc). 

 

The VOCs of self-pairings of the tested species inhibited the extension rate of the 

same tested species in the case of: B. adusta, E. spinosa and S. hirsutum, but enhanced 

the extension rate of V. comedens and S. gausapatum. On the other hand, T. versicolor 

was only enhanced by three self pairings (Es/Es, Sg/Sg and Sh/Sh) and was not 

affected by the rest of the interactions.   
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Table 3.3. Mean radial extension rate (mm d-¹ ± SEM) of test fungi when grown 
above agar interspecifically interacting mycelium and self pairings. 

Tested 
Fungi 

Agar 
controls 

Ba/ 
Ba 

Es/ 
Es 

Sg/ 
Ba 

Sg/ 
Es 

Sg/ 
Sg 

Sg/ 
Sh 

Sg/ 
Vc 

Sh/ 
Sh 

Vc/ 
Vc 

Significant 
difference 

Stereum 
hirsutum 

6.43± 
0.14  

5.10± 
0.04  
*** 

5.40± 
0.09 
 *** 

5.41± 
0.21 
*** 

4.91± 
0.12 
*** 

5.65± 
0.05 
*** 

5.15± 
0.10 
*** 

4.85± 
0.01 
*** 

5.91± 
0.08 
*** 

5.38± 
0.18 
*** 

F9,40 = 
17.52, 
P<0.001 

Eutypa 
spinosa 

9.14± 
0.45 
 

7.58± 
0.24 
ns 

5.90± 
0.52  
*** 

8.36± 
0.19 
ns 

6.87± 
0.37 
*** 

9.14± 
0.33 
ns 

9.48± 
0.12 
ns 

6.09± 
0.17 
*** 

10.1± 
0.48 
ns 

4.72± 
1.44 
*** 

F9,40 = 
10.25, 
P<0.001 

Stereum 
gausapatum 

4.89± 
0.06 
 

4.91± 
0.11 
ns 

5.07± 
0.14 
ns 

5.10± 
0.05 
ns 

5.13± 
0.08 
ns 

5.45± 
0.15 
*** 

5.36± 
0.06 
*** 

5.09± 
0.08 

5.42± 
0.07 
*** 

5.43± 
0.07 
*** 

F9,40 = 
5.12, 
P<0.001 

Trametes  
 versicolor 

6.59± 
0.04 

6.81± 
0.11 
ns 

6.87± 
0.07 
** 

6.73± 
0.09 
ns 

6.77± 
0.09 
ns 

7.06± 
0.11 
** 

6.81± 
0.06 
ns 

6.81± 
0.05 
ns 

6.91± 
0.10 
** 

6.58± 
0.06 
ns 

F11,48 = 
3.31, 
P<0.01 

Bjerkandera 
adusta 

9.02± 
0.07  
 

7.51± 
0.54 
 *** 

9.59± 
0.13 
ns 

8.75± 
0.10 
ns 

8.25± 
0.19 
*** 

9.62± 
0.04 
ns 

9.76± 
0.19 
*** 

9.76± 
0.05 
*** 

9.78± 
0.16 
*** 

9.69± 
0.04 
*** 

F9,40 = 
14.29, 
P<0.001 

Vuilleminia 
comedens 

2.31± 
0.01 
 

2.43± 
0.08 
ns 

2.99± 
0.11  
*** 

1.55± 
0.02 
*** 

2.06± 
0.11 
*** 

2.50± 
0.05 
ns 

2.38± 
0.02 
ns 

2.34± 
0.07 
ns 

2.40± 
0.08 
ns 

2.66± 
0.04 
*** 

F9,40 = 
32.55, 
P<0.001 

Significance of difference compared with growth above uncolonised agar (*, P≤0.05; **, P≤0.01;***, 
P≤0.001; ns, not significant). Abbreviations: Es,  Eutypa spinosa;, Ff, Fomes fomentarius; Vc, 
Vuilleminia comedens; Tv, Trametes versicolor; Ba, Bjerkandera adusta; Hf, Hypholoma fasciculare; 
Rb, Resinicium bicolor; Sg,  Stereum gausapatum. 
 
 
 

3.3.2 Effect of mycelial interaction between two fungi on agar on 
Trametes versicolor (its growth rate and laccase production) 

 

Although there were significant differences in T. versicolor extension rate compared 

with the controls which were collected from previous experiments from table 3.1, 3.2, 

3.3 and also form the work of Evans et al., 2008 to put together in Table 3.4 A and B. 

The laccase activity was not significantly different in any of the treatments used 

(Fig.3.3). 
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Table 3.4. (A, B) The double plate results of the effect of VOCs on the extension 
growth rate (mm d¹) of T. versicolor only (taken from tables 3.1, 3.2, 3.3 and Evans 
et al., 2008). 

(A) 

Tested fungi Agar Rb/Hf Rb/Rb Hf4/Hf4 
T. versicolor 

 

6.39 ± 0.05 6.39 ± 0.05 

***  

6.39 ± 0.05 

ns 

6.39 ± 0.05 

***  
Tested fungi Agar Rb/Rb Rb/Tv Tv/Tv 
T. versicolor 

 

6.88 ± 0.05 

 

6.85 ± 0.09 

ns 

6.35 ± 0. 51 

ns 

6.82 ± 0.12 

ns 

(B) 

Tested fungi Agar Ba/Ba Es/Es Sg/Ba Sg/Es Sg/Sg Sg/Sh Sh/Sh 
T. versicolor 

 

6.59± 
0.04 

6.81 ± 
0.11 

6.87± 
0.07 

**  

6.73 ± 
0.09 

6.77 ± 
0.09 

 

7.06 ± 
0.11 

**  

6.81 ± 
0.06 

6.91 ± 
0.10 

**  
Tested fungi Tv/Tv Tv/Hf Tv/Sg Tv/Ba Hf3/Hf3 Sg/Sg Ba/Ba  
T. versicolor 

 

 

ns 

 

ns 

 

ns 

 

sd 

 

sd 

 

sd 

 

ns 
Significance of difference compared with growth above uncolonised agar (*, P≤0.05; **, P≤0.01;***, 
P≤0.001). Abbreviations: Es,  Eutypa spinosa;, Tv, Trametes versicolor ; Ba, Bjerkandera adusta; Hf, 
Hypholoma fasciculare; Rb, Resinicium bicolor; Sg,  Stereum gausapatum . ns = not significantly 
different, sd = significantly different, ( results in red colour taken from Evans et al., 2008). 
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Fig. 3.3 The laccase activity of T. versicolor on 0.5% MA exposed to VOCs produced by mycelial 
interaction of two fungi on agar. There were no significant (P> 0.05) differences between treatments) 
as analyzed by ANOVA, F11, 15 = 2.20. Abbreviations: Es, Eutypa spinosa; Tv, Trametes versicolor; 
Ba, Bjerkandera adusta; Hf, Hypholoma fasciculare; Sg, Stereum gausapatum. 
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3.3.3 The effect of VOCs produced during interaction in wood blocks on 
extension rate, enzyme  activity of a test fungus on agar 
 
 
There were significant differences in extension rates (mm d−1) of T. versicolor 

compared with the control (Fig. 3.4). The extension growth rate of T. versicolor was 

higher than the controls in all treatments and it was the highest with the combinations 

Tv/Tv and Rb/Rb.  

 

There were also some differences between the treatments in the laccase activity of T. 

versicolor but there were no significant differences (P< 0.01) from the control, it was 

the highest with the combination Ba/Ba and the lowest with Es/Es (Fig 3.5A).  

 

Manganese peroxidase activity of T. versicolor was not significantly different (P> 

0.05) between any treatments (Fig. 3.5B), there were however significant differences 

(P< 0.001) for the oxidase activity compared with the wood block controls (Fig. 

3.5C). There was a highly significant increase with combinations of Ba/Ba, Tv/Tv, 

Hf3/Hf3, Tv/Sg, Sg/Sg, Hf4/Hf4 and Rb/Hf4 activity. On the other hand, there were 

no significant differences (P> 0.05) in 1,4-β-glucosidase activity (Fig 3.5D). 

 

The -1, 4-β-poly-N-acetylglucose aminidase chitinase activity was the only enzyme 

activity that showed significant differences between all the treatments (P< 0.001) and 

the control apart from Sg/Sg.  With all the other interactions there was a significant 

decrease in the activity (Fig 3.5E). In addition, the effect of Es/Es and Rb/Tv was 

significantly different to the affect of Sg/Sg. There were some significant differences 

(P<0.001) between treatments for the acid phosphate activity but not between 

treatments and the control, thus Sg/Sg showed the highest the acid phosphatase 

activity (Fig 3.5F), which was significantly higher than Tv/Ba, Rb/Tv, Ba/Ba, Tv/Sg, 
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Sg/Es and Sg/Ba. In contrast, Es/Es induced a significant lower activity than three 

other interactions (Tv/Tv, Hf3/Hf3 and Sg/Sg). 
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Fig. 3.4 The extension rate of T. versicolor when exposed to paired fungi on wood 
blocks, mean ± SE (n = 5), as analyzed by ANOVA, F16, 66 = 10.147, (P< 0.001). 
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Fig. 3.5A Laccase activity of T. versicolor when exposed to paired fungi on wood 
blocks, mean ± SE (n = 3), as analyzed by ANOVA, F16, 66 = 3.094, (P< 0.01). 
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Fig. 3.5.B Manganese peroxidase activity of T. versicolor when exposed to paired 
fungi on wood blocks, mean ± SE (n = 3), as analyzed by ANOVA, F16, 66 = 0.806, (P> 
0.05). 
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Fig. 3.5.C Oxidase activity of T. versicolor when exposed to paired fungi on wood 
blocks, mean ± SE (n = 3), as analyzed by ANOVA, F16, 66 = 4.014, (P< 0.001). 
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Fig. 3.5.D 1,4-β-glucosidase activity of T. versicolor when exposed to paired fungi on 
wood blocks, mean ± SE (n = 3), as analyzed by ANOVA, F16, 66 = 1.790, (P> 0.05). 
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Fig. 3.5.E 1, 4-β-poly-N-acetylglucoseaminidase chitinase activity of T. versicolor 
when exposed to paired fungi on wood blocks, mean ± SE (n = 3), as analyzed by 
ANOVA , F16, 66 = 6.169, (P< 0.001). 
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Fig. 3.5.F Acid phosphatase activity of T. versicolor when exposed to paired fungi on 
wood blocks, mean ± SE (n = 3), as analyzed by ANOVA, F16, 66 = 3.396, (P< 0.001). 
 
 
Fig.3.5 The enzyme activities were measured from fungi grown on 0.5% MA exposed 
to the effect of VOCs produced from two fungi interacting on woodblocks. ). 
Abbreviations: Es,  Eutypa spinosa;, Ff, Fomes fomentarius; Vc, Vuilleminia 
comedens; Tv, Trametes versicolor; Ba, Bjerkandera adusta; Hf, Hypholoma 
fasciculare; Rb, Resinicium bicolor; Sg,  Stereum gausapatum. 
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3.3.4 Spatial distribution of laccase and peroxidase production in 
Trametes versicolor on agar 
 
 
 
There was some enzyme activity associated with early stages of T. versicolor growth 

at 6 d and this activity showed some clearing at the colony plug zone after 6 d which 

lead to complete clearing of the colour by 16 d. This clearing indicated that there was 

laccase production where the oxidation of ABTS turned the substratum colourless 

(Fig. 3.6). For all the treatments, ABTS gave a green colour with 0.5% MA and red 

colour 2% MA which may relate to the presence of more nutrients. With  the 

peroxidase staining, more intense more colour developed with time especially near the 

plug of the colony which may indicate the production was at the early stage of growth 

as well (Fig 3.7). 

 

     

Fig.3.6 ABTS staining indicating the location of laccase activity of T. versicolor 
under the effect of  VOCs  (a) after 6 d on 0.5% MA, (b) after 16 d on 0.5%MA and 
(c) after 6 d on 2% MA. 

 

 
 
 
 
Fig.3.7 Peroxidase staining of T. versicolor under the effect of  VOCs  after 6 d of 
cultivation on 0.5% MA (a) after 1 hour, (b) after 3 hours and (c) after 1 d. 

a b c

a b c
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3.4 Discussion 
 
 
 

3.4.1 Inhibition and stimulation of extension rate during paired 
interactions, and the outcomes 

 
 
Outcomes were not always the same between replicates perhaps resulting from slight 

differences in the age of inoculum (Bruce et al., 1996), the timing of interaction, the 

medium of growth, and slight differences in environmental conditions such as 

temperature, pH and water potential etc, though every effort was made to standardize 

these. Outcomes can also be affected by the species involved and size of the starting 

mycelium (Stenlid, 1997, Holmer & Stenlid, 1997). 

 

The fungal outcomes seem to vary depending on the resources and the nutrients they 

consume, and differences in outcomes are found depending on where the interaction 

is taking place (e.g. wood, soil and agar cultures) (Dowson, Rayner & Boddy, 1988; 

Wardle et al., 1993; Holmer & Stenlid, 1997; Woods et al., 2006). On the other hand 

other studies found that the fungal interaction outcomes of some species were similar 

when grown on wood and agar (Rayner & Boddy, 1988; Holmer et al., 1997). 

 

The tested species Stereum gausapatum, Hypholoma fasciculare and Resinicium 

bicolor showed diverse combative abilities, deadlocking, replacing or being replaced 

by other species. Bjerkandera adusta was the highest competitor that takes bigger 

space against the tested species, while Eutypa spinosa had the lowest combative 

ability. In this study, H. fasciculare showed dissimilar outcome to that reported by 

Boddy (1993) where it replaced S. gausapatum, while in this work they deadlocked. 
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Note, however, that different strains were used, and there can be considerable 

variation in combat ability of different strains (Rothery et al., 2009).  

 
 
 
 
3.4.2 The effect of volatile organic compounds of paired plates  
 
 

Wood-decay fungi produce volatile metabolites during mycelial interactions in agar 

and wood which act as infochemicals and antifungal volatile chemicals that could 

influence other fungi not in physical contact with these mycelia (Evans et al., 2008). 

 
When mycelia interact additional VOCs are often produced (Hynes et al., 2007), more 

than those produced when fungi grow alone (Ewen et al., 2004; Wheatly 2002), and 

these compounds certainly affect the growth rate of some fungi. 

 

Hynes et al. (2007) found that VOCs were produced following mycelial contact 

which agrees with the present study. Again, similar to the Hynes et al (2007) study, 

VOC production was correlated with pigment production. The results showed a 

distance signalling that may enhance or inhibit the extension rates in the top plate, 

which resulted as a response to the VOCs produced during the interaction of the fungi 

in the lower plate. For example, Stereum hirsutum was the species that was most 

affected by the VOCs by the decreasing in its extension growth rate, while the 

interacted S. gausapatum vs.  E. spinosa were the combination that most affected a 

third fungus. 

 
Extent of effects varied. For example, results also revealed that VOCs produced when 

H. fasciculare and R. bicolor interact clearly affected extension rate of other wood-
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decay fungi, and the VOCs produced when S. gausapatum interacted with E. spinosa, 

V. comedens, S. hirsutum, T. versicolor and B. adusta, and also the self pairings 

significantly affected the extension rate of the other species, some were inhibited (e.g. 

S. hirsutum, while S. gausapatum extension rate was stimulated). 

 

 In the context of this recent work, it is clear that the mechanism of the effect of 

VOCs as an effect on the extension rate has not yet been fully investigated. Therefore, 

VOCs may lower the pH of the medium by interacting with the film layer of the 

moisture found at the surface of the medium which may lead to a change in the 

chemical composition of the medium (Boddy & Heilmann-Clausen, 2008) or they 

may act directly on the mycelium as a toxic compound to some fungi, as it has been 

shown to be toxic to some invertebrates (Stadler & Sterner, 1998). In conclusion, in 

nature community development may, therefore, be influenced not only by direct 

mycelial interactions, but also indirectly via products of fungal interaction, such as 

volatile or diffusible metabolites.   

 

Future work will explore how widespread are the effects of interactions between  

T. versicolor and the species tested have. Further, gene expression during such 

interactions will be explored. The three pairings chosen for further work were: T. 

versicolor paired with S. gausapatum, which it replaces; H. fasciculare which it is 

replaced by; and B. adusta with which it deadlocks. This covers the spectrum of 

interaction outcomes, and will extend the work of Eyre (2008), who investigated these 

same combinations.  
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3.4.3 Effect of mycelial interaction between two fungi on agar on 
Trametes versicolor (its growth rate and laccase production) 

 

Unlike the results of the effect of VOCs of two interacting fungi on agar on the 

growth extension rate of T. versicolor where it was significantly different, the results 

on its laccase activity was not significantly different which suggests that there was no 

correlation between the growth rate and the enzyme activity when the mycelium 

interactions took place on agar. Elerabei et al. (unpublished) found groups of VOCs 

produced during mycelial interactions on wood blocks that affected the growth of T. 

versicolor, and that gave the motivation to try to study the effect of VOCs produced 

during mycelial interaction on wood blocks on extension rate and enzyme activities of 

T. versicolor. 

 
 
3.4.4 The effect of VOCs produced during interaction in wood blocks on 
extension rate, laccase and ligninolytic activity of a test fungus on agar 
 
 
Other reports on direct interactions between fungi (Iaklovlev & Stenlid, 2000; 

Baldrian, 2004; Baldrian, 2006; Chi et al., 2007) stated that there are different levels 

of enzymes produced during direct interaction of two fungi. Since, the current 

experiments with fungi not in direct contact, but exposed to VOCs from interactions 

had not been done before, the results obtained here were compared to the results from 

studies with directly interacting fungi. The extension rate was affected by VOCs 

produced by interacting fungi grown either on woodblocks or agar. In contrast, 

laccase activity was affected by the VOCs produced by fungi interacting on 

woodblocks but not on agar. Hence, further enzymes were analyzed in the woodblock 

experiment. 1,4-β-glucosidase activity and manganese peroxidase activity were both 

not significantly different to the controls which suggest that the exposure to VOCs did 
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not affect the production of those enzymes.  The results were significantly different to 

the controls in the rest of the enzyme activities which suggests that those VOCs 

produced during the interaction of those combinations enhanced or inhibited the 

production of those enzymes by T. versicolor.  

 
 
 
3.4.5 Spatial distribution of laccase and peroxidase production in 
Trametes versicolor on agar 
 
 
The staining of laccase and peroxidase were both generalized, and were more 

concentrated near the centre for the peroxidase (Silar, 2005), while more towards the 

margins of the mycelium of the T. versicolor colony for the laccase. The laccase 

colour started to clear with time in the centre of the colony indicating that the enzyme 

travels towards the growing mycelium, or no longer active in older mycelium. On the 

other hand, the laccase activity showed different staining colours when T. versicolor 

was cultivated on 0.5% MA (green colour) while it was purple colour on 2% MA 

which may indicate the effect of  the concentrations of the nutrients in the medium on 

the production of those enzymes (Steffen et al., 2000).  

 

 

3.4.6 Conclusions: 

 

- Results confirm previous studies showing that production of VOCs by interacting 

fungi can affect growth of a third fungus. 

- Subtle differences were revealed between different combinations of interacting fungi 

suggesting perhaps a different VOCs profile being produced. 
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- Enzyme production was not universally affected by the VOCs exposure: laccase was 

unaffected, whereas activity of other enzymes such as 1.4- β Glucosidase and oxidase 

were clearly affected by the VOCs and the effect differed depending on the 

interacting fungi and hence probably the VOCs composition. 
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Chapter 4: Gene expression during interspecific interactions 
of Trametes versicolor 

 
 
 
 
 
 
 
4.1. Introduction 

 
 
Biochemical and cellular changes occur during inter-mycelial interactions (Woodward 

et al., 1993; Griffith et al., 1994; Gloer, 1995; Bruce et al., 2000; Heilmann-Clausen 

and Boddy, 2005; Hynes et al., 2007; Woodward and Boddy, 2008). Although it 

would seem likely that they are accompanied by changes in gene expression few 

studies have used global transcriptomic approaches to study mycelial interactions. A 

few studies have investigated gene expression changes during mycorrhizal 

interactions (e.g. Peter et al., 2003; Deveau et al., 2008; Acioli-Santos et al., 2008) 

using microarray analysis. Other studies have used microarrays or related  

transcriptomic approaches to follow changes in gene expression during host-pathogen 

interactions between fungi and plant (Jakupovic et al., 2006) or mammalian (Steen et 

al., 2002) hosts. Yet other transcriptomic studies have focussed on fungal 

development such as the change between yeast and mycelial forms in 

Paracoccidioides brasiliensis and the development of fruit bodies in Sordaria 

(Nowrousian et al., 2005). 

 

In a recent analysis of gene expression during interspecific interactions, microarrays 

were used to analyze the interaction between T. versicolor and three competitors S. 

gausapatum (which is replaced by T. versicolor), B. adusta (which results in 

deadlock) and H. fasciculare (which replaces T. versicolor) (Eyre et al., 2010). 
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Trametes versicolor was selected as a model as it is a secondary coloniser and has an 

‘intermediate’ combative ability (Chapela et al., 1988; Boddy & Heilmann-Clausen 

2008).  Thus it was possible to select competitors that lose territory, gain territory or 

form a deadlock when challenged with this species. A key aim of the work was to 

compare transcriptomic profiles during interactions which ultimately result in 

different outcomes to discover whether the same gene expression patterns are 

common or divergent (Eyre et al., 2010).  

 

Subtractive cDNA libraries were made to enrich for genes that are up-regulated when 

T. versicolor interacts with another saprotrophic basidiomycete, Stereum gausapatum, 

an interaction that results in the replacement of S. gausapatum by T. versicolor. ESTs 

(1824) were used for microarray analysis, and their expression compared during 

interaction with three different fungi: Stereum gausapatum (replaced by T. 

versicolor), Bjerkandera adusta (deadlock) and Hypholoma fasciculare (replaced T. 

versicolor). Expression of significantly more targets changed in the interaction 

between T. versicolor and S. gausapatum or B. adusta compared to H. fasciculare 

suggesting a relationship between interaction outcome and changes in gene expression 

(Eyre et al., 2010). 

 

The aim of the work reported in this chapter was to analyse expression of selected 

genes from the T. versicolor EST collection using semi-quantitative RT-PCR and 

compare expression to the array data. The genes were selected based on their 

expression as determined by microarray analysis or because of their putative function. 
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The first prep was to design suitable primers for RT-PCR and confirm their specificity 

by cloning and sequencing the PCR product. The primers were designed for use with 

semi-quantitative RT-PCR (Table 4.1).  

 

The specific aims for the work described in this chapter were: 

 

1. Selection of genes for analysis by RT-PCR and cloning of PCR products for 

confirmation of primer specificity. 

2. Analysis of gene expression through RT-PCR in Trametes versicolor during 

interspecific mycelial interactions.  

 

 

 

4.2. Materials and Methods 

 

 

4.2.1 Primer design 

As described in Section 2.3.6. 

 

4.2.2 PCR amplification from cDNA  

As described in Sections 2.3.1 to 2.3.5. 

 

4.2.3 Cloning of PCR products for confirmation of primer specificity 

Cloning and sequence analysis was done as described in Sections 2.3.10.1 to 2.3.10.5. 
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4.2.4 Analysis of gene expression through semi-quantitative RT-PCR   

Semi-quantitative RT-PCR was carried out as described in Sections 2.3.1 to 2.3.9, and 

the PCR primers used are listed in Table 4.1. One biological replicate and three 

technical replicates were used. 

 

Table 4.1 Specific primers used to test extracted T. versicolor when interacted with 
opposing species. 
 

Primer  Primer sequence (5’ to 3’) No. 
bases 

Annealing 
temperature 
(°C) 

No. of  
cycles 

Product 
size 

FRA2-F 
 

CGGTACTGTCTGCTGCGATA 
 

20  

60 

 

32 

 

230bp 
FRA2-R 
 

CGAACACACGAGTTCTTGGA 
 

20 

F1D8-F 
 

CGGAAAAAGAGCGAGGAGA 
 

19  

60 

 

36 

 

207bp 
F1D8-R 
 

CTCCTCGAGAAGTGCAAAGC 

 

20 

F2A1-F 
 

GGAGAGTGCGGTGACAATGAA 
 

20  

60 

 

28 

 

160bp 
F2A1-R 
 

GTGTGACTGTCATTGTCGGG 
 

20 

FRA19-F 
 

AGACTACCAGGACGGAACGA 
 

20  

60 

 

23 

 

154bp 
FRA19-R AATGGAAAGCATGGGAAGG 

 
19 

Nox- F 
 

TCGGTTGGTTCCAGACTCTC 20  

60 

 

32 

 

205bp 
Nox- R 
 

TAGATGGCCTTCCAGTCAGG 20 
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4.3 Results    

 

4.3.1 Cloning of PCR products for confirmation of primer specify 

Five genes were selected for PCR analysis (Table 4.2). 

 

Table 4.2. Analysis of gene expression through semi-quantitative RT-PCR in T. 
versicolor during interspecific mycelial interactions. 

EST 

Code 
Clone ID 

The 

number of 

Clone IDs 

Cluster ID Putative function 

Expression on arrays 

(mean value) 

Tv/Sg Tv/Ba Tv/Hf 

FRA2 

 
F_10A03 6 TVC00203 unknown function 1.80 1.87 1.53 

FRA19 

 
R_10A01 6 TVC01061 

Glycine-rich RNA 

binding protein. 
0.49 0.77 0.7 

F2A1 

 
F_06A01 4 TVC00043 unknown function 0.78 0.996 1.73 

F1D8 

 
F_03D03 1 TVC00110 unknown function 0.37 0.33 0.49 

Nox 

 

R_08B09 

R_07A07 

R_03A07 

1 

1 

1 

TVC01049 

TVC00960 

TVC00679 

NADPH oxidase  

(enzyme involved in ROS 

production) 

1.01 

0.72 

0.86 

1.37 

1.18 

0.97 

1.65 

0.95 

1.10 

Tv = Trametes versicolor, Sg = Stereum gausapatum, Ba = Bjerkandera adusta and Hf = 
Hypholoma fasciculare. Down-regulated and up-regulated genes from Eyre et al. (2010). 
 

To verify that the products amplified by PCR using specific primers were in fact the 

genes analysed on the microarray, PCR products were cloned and sequenced. PCR 

products of T. versicolor were amplified with the specific primers for FRA19, FRA2, 
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F1D8, F1A2, Nox; as in Table 4.1; product sizes were as expected from the primer 

design (Fig. 4.1). PCR products were purified from the gel, then cloned into E.coli in 

the vector pGEM-T Easy and sequenced. One clone was sequenced for each PCR 

product cloned and sequences compared to the original EST clones. The results 

showed that all the products were identical to the sequences. Alignments of the 

sequences generated with original EST sequences from Eyre et al (2010) are shown in 

Appendix D.           

(A) 

 

 
(B) 
 

   
 
Figure 4.1 Ethidium bromide stained agarose gel of PCR products from: A, Nox, 
FRA2, F1D8 and F2A1; B, FRA19 primer pairs. Product sizes were as expected from 
the primer design in Table 4.1 

F1D8 F2A1 FRA2 Nox 

FRA19 

500bp 

500bp 

154bp 

201-220bp 

134-154bp 
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4.3.2 Analysis of gene expression through semi-quantitative RT-PCR in 
T. versicolor during interspecific mycelial interactions 

 

 

4.3.2.1 Nox gene expression 

 

Three clusters identified from the ESTs (TVC01049, TVC00960 and TVC00679) 

(Table 4.2) each only comprising one target sequence, were homologous to a gene 

related to ROS production: NADPH oxidase. On the arrays, all three spots were stable 

in expression in all three interactions except TVC01049 in the T. versicolor vs. H. 

fasciculare (up-regulated by 1.65 fold) (Table 4.2). RT-PCR using primers designed 

to TVC00960 confirmed the array result that expression of this gene was unaffected 

by any of the three interactions with competitors tested (Fig 4.2). 
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Fig. 4.2 Gene expression of Nox gene (TVC01049, TVC00960 and TVC00679). 

Different letters above the histogram bars indicate significant difference (P>0.05) as analyzed 
by ANOVA, F3,16 = 10.815, relative gene expression expressed as mean % of maximum value 
(Appendix E), error bars are SEM (n=3), Tv = Trametes versicolor, Sg = Stereum 
gausapatum, Ba = Bjerkandera adusta and Hf = Hypholoma fasciculare. 
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4.3.2.2 FRA2 gene expression 

 

TVC00203 (FRA2) is of unknown function and is represented by just one target on 

the microarray (Table 4.2) and its mean expression ratio was close to one in all three 

interaction experiments (T. versicolor vs. S. gausapatum: 1.16±0.13, T. versicolor vs. 

B. adusta: 1.14±0.14, T. versicolor vs. H fasciculare:1.19±0.10). Semi-quantitative 

RT-PCR indicated a similar pattern (T. versicolor vs. S. gausapatum: 1.17± 0.29, T. 

versicolor vs. B. adusta: 1.10± 0.09, T. versicolor vs. H fasciculare: 1.43± 0.28). 

Thus, only in the interaction with H. fasciculare did expression rise above the 1.4 fold 

threshold used in the microarray analysis to define up or down regulations. The gene 

expression results showed no significant differences (P>0.05) between all the 

treatments (Fig. 4.3). 
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Fig. 4.3 Gene expression of FRA2 gene (TVC00203). 

Different letters above the histogram bars indicate significant difference (P>0.05) as analyzed 
by ANOVA,  F4,10 = 2.127, mean relative gene expression expressed as mean % of maximum 
value (Appendix E), error bars are SEM (n=3). Tv = Trametes versicolor, Sg = Stereum 
gausapatum, Ba = Bjerkandera adusta and Hf = Hypholoma fasciculare. 
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4.3.2.3 F1D8 gene expression 

 

TVC00110 (F1D8) also represented just one target on the array (Table 4.2). Its 

sequence did not match any database sequences and is hence of unknown function. Its 

expression was down regulated in all three interaction experiments (T. versicolor vs. 

S. gausapatum: 0.37±0.07, T. versicolor vs. B. adusta: 0.35±0.02, T. versicolor vs. H 

fasciculare: 0.50±0.09) on the microarrays as the mean of the replicates of the 

regulated gene. Semi-quantitative RT-PCR confirmed this expression pattern for two 

of the interactions: with S. gausapatum and B. adusta (T. versicolor vs. S. 

gausapatum: 0.74± 0.01, T. versicolor vs. B. adusta: 0.72± 0.16) (Fig. 4.4). 

Unexpectedly, however, RT-PCR indicated an up-regulation of this gene in the 

interaction with H. fasciculare (T. versicolor vs. H fasciculare: 1.84± 0.44) (Fig.4.4). 

Although the up-regulation was only statistically significant (P<0.01) in relation to Tv 

grown alone, but not self-paired T. versicolor.  
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Fig. 4.4 Gene expression of F1D8 gene (TVC00110). 

Different letters above the histogram bars indicate significant difference (P<0.01) as analyzed 
by ANOVA, F4,10 = 6.621, mean relative gene expression expressed as mean % of maximum 
value (Appendix E), error bars are SEM (n=3). Tv = Trametes versicolor, Sg = Stereum 
gausapatum, Ba = Bjerkandera adusta and Hf = Hypholoma fasciculare. 
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4.3.2.4 FRA19 gene expression 

 

TVC01061 (FRA19) is homologous to glycine-rich RNA binding proteins and  

represents six targets on the array (Table 4.2). These targets were both up- and down-  

regulated on the array indicating that they may comprise a gene family and that their 

role is complex. They were highly represented amongst the up-regulated genes in all 

three experiments, however, the mean expression of this cluster on the microarrays 

indicated little change in response to interactions (T. versicolor vs. S. gausapatum: 

1.26±0.22, T. versicolor vs. B. adusta: 0.90±0.10, T. versicolor vs. H 

fasciculare:1.00±0.10). This is not supported by the RT-PCR data where the specific 

sequence charted was significantly (P<0.001) down-regulated both in relation to T. 

versicolor grown alone and self-paired T. versicolor (Fig. 4.5, Table 4.2).  
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Fig. 4.5 Gene expression of FRA19 gene (TVC01061). 

Different letters above the histogram bars indicate significant difference (P<0.001) as 
analyzed by ANOVA, F4,10 = 260.429, mean relative gene expression expressed as mean % of 
maximum value (Appendix E), error bars are SEM (n=3). Tv = Trametes versicolor, Sg = 
Stereum gausapatum, Ba = Bjerkandera adusta and Hf = Hypholoma fasciculare. 
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4.3.2.5 F2A1 gene expression 

 

The final cluster for which RT-PCR data were obtained was TVC00043 (F2A1). This 

cluster comprised four targets on the array (Table 4.2) and is of unknown function. Its 

microarray expression remained below the 1.4 fold threshold in all three interaction 

experiments (T. versicolor vs. S. gausapatum: 0.79±0.08, T. versicolor vs. B. adusta: 

0.83±0.05, T. versicolor vs. H fasciculare: 1.29±0.21). This expression pattern was in 

agreement with the RT-PCR in one of the interaction experiments: T. versicolor vs. S. 

gausapatum (ratio: 0.77± 0.17). However, for T. versicolor vs. H. fasciculare (ratio: 

1.16± 0.20) RT-PCR revealed a strong up-regulation both in relation to T. versicolor 

grown alone and self-paired T. versicolor. In contrast, RT-PCR revealed a down-

regulation of the expression of this gene in the interaction with B. adusta, again in 

relation to both T. versicolor grown alone, and self-paired T. versicolor (ratio: 

0.28±0.10) (Fig. 4.6, Table 4.2).  
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Fig. 4.6 Gene expression of F2A1 gene (TVC00043). 

Different letters above the histogram bars indicate significant difference (P<0.001) as 
analyzed by ANOVA, F4,10 = 29.282, mean relative gene expression expressed as mean % of 
maximum value, error bars are SEM (n=3). Tv = Trametes versicolor, Sg = Stereum 
gausapatum, Ba = Bjerkandera adusta and Hf = Hypholoma fasciculare. 
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4.4 Discussion 

 

 

All the clones obtained using the PCR primers designed to the ESTs from Eyre et al. 

(2010) were identical to the EST sequences. This shows that the primers were 

sufficiently specific for use in expression analysis by semi-quantitative RT-PCR. 

Although only one biological replicate was used, the material was different to that 

used for the array analysis but essentially the two support each other. Thus, results 

that agree between the array and the RT-PCR constitute two biological replicates. The 

gene expression of the Nox gene was flat in all the treatments which suggests that 

other genes or enzymes affect superoxide generation shown at the interaction zone by 

staining (Eyre et al., 2010).  

 

Further genes were selected on the basis of their array expression as up-regulated or 

down-regulated genes. One of the difficulties in comparing microarray and RT-PCR 

data is that there may be differences in specificity. The microarray in this case used 

cDNA targets which are likely to hybridise to several members of a gene family, in 

contrast PCR primers were designed to specific gene sequences. It is therefore 

possible, in cases where there is a discrepancy between the RT-PCR and the array 

results, that different members of the gene family predominate in the array expression. 

One discrepancy was noted in the expression of F1D8 in the Trametes versicolor vs. 

Hypholoma fasciculare interaction; this difference may relate to the more global 

changes in gene expression noted as a result of interaction with H. fasciculare which 

differed from those elicited by the other two interactions. The up-regulation of F1D8 

in the Trametes versicolor vs. Hypholoma fasciculare interaction was however only 

significant in relation to Trametes versicolor growing alone, suggesting that further 
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experiments may be required (Eyre et al., 2010) to provide conclusive evidence of 

this gene expression pattern (Rayner, 1991; Glass and Dementhon, 2006; Peiris et al., 

2008). The differences in expression between Trametes versicolor growing alone and 

self-paired Trametes versicolor are interesting and need further confirmation. Both 

FRA19 and F2A1 are members of a complex gene family in T. versicolor several 

members of which were represented on the array. The complexity of these genes may 

not be correctly reflected in the clustering of the sequences. Thus the gene family 

structure may explain the discrepancies noted between the array and RT-PCR results.  

 

The relatively low levels of change detected on the array and verified by RT-PCR, 

indicate that further gene expression studies on mycelium closer to the interaction 

zone will be of interest, where big changes in enzyme activity are seen with staining 

(Steffen et al., 2000; Pointing et al., 2005; Silar, 2005; Eyre et al, 2010). 

 

The major findings are:-  

- The gene expression results by using RT-PCR confirmed the microarray’s 

results. 

- The RT-PCR with the use of designed primers confirmed that the gene 

expression of Nox gene was unaffected by any of the three interactions 

- There were differences between the gene expression of T. versicolor when 

interacting with other fungi and when it was alone. 

 

Future work could investigate more genes of functional significance or that represent 

interesting array patterns. Given that ROS are clearly involved in inter-mycelial 

interactions, this suggests a possible relationship to stress, where ROS levels are also 
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elevated (Henson et al., 1999; Silar, 2005; Jazek et al., 2006; Zhao et al., 2009). 

Therefore, it would be interesting to investigate the expression of genes when Tv 

mycelium is subjected to other forms of stress. Some results to address this question 

are presented in Chapter 5. 
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Chapter 5: The effect of abiotic stresses on growth , gene 
expression and laccase activity on Trametes versicolor 

 
 
 
 
5.1 Introduction 
 
 
Fungi respond to a variety of stresses including extreme and/or variable temperature, 

low water availability, elevated water, elevated CO2 / reduced O2, excess light, lack of 

nutrients and exposure to heavy metal ions (Griffin, 1994; Boddy et al., 2008). 

Temperature is one of the most important stress factors and it influences fungi mainly 

through its effects on enzyme-catalysed reactions (Rayner & Boddy, 1988). Some 

wood decay fungi grow successfully over a variety of temperatures, matric and 

osmotic potentials allowing them decompose in conditions ranging from polar to 

tropical adding to their rapid wood decay ability in tropical environments (Mswaka & 

Magan, 1999), wood-rotting basidiomycetes are however mainly mesothermic with 

minimum, optimum and maximum temperatures of 5, 25 and 40°C (Rayner & Boddy, 

1988). 

 

Low temperatures cooling down to freezing will affect the cellular osmotic balance 

and can also lead to membrane damage (Feofilova et al., 2000). Activity and growth 

of fungi at low temperatures may switch on ecological and or physiological 

mechanisms for survival (Fig 5.1). Ecological mechanisms include avoiding cold 

enviroments and spore germination.  Physiological mechanisms resulting in cold 

tolerance include protection against osmotic effects through accumulation of polyols 

such as trehalose, found in both xerophilic and nonxerophilic fungi (Hallsworth & 

Magan, 1995, 1999). There are also increases in unsaturated membrane lipids and  
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  Fig. 5.1 Scheme of fungal responses to cold stress 

 

secretion of antifreeze proteins and enzymes. For example, a psychrotrophic isolate of  

Geomyces pannorum grown at 5°C exhibited altered lipid composition compared with 

the same isolate grown at 15°C (Weinstein, 2000) and antifreeze proteins with 

epitopic homology to those of the Atlantic winter flounder were found in hyphae of 

Sclerotinia borealis, Coprinus psychromorbidus and Typhula incarnata (Newsterd et 

al., 1994). Extracellular enzymes - proteases and acid phosphomonoesterase - were 

produced by Hebeloma strains in the arctic only at as low temperature as 6°C (Tibbett 

et al., 1998; 1999). 

 

Some proteins and transcripts induced in response to cold temperature (8°C) detected 

in Metarhizium anisopliae include those with sequence similarities to actin, NADPH 

quinone oxidoreductase, a thiamine biosynthesis protein and a yeast-like membrane 

protein (De Croos & Bidochka, 2001).  Smith et al. (2010) presented an overview of 

diverse strategies used in the model yeasts Saccharomyces cerevisiae, 

Schizosaccharomyces pombe and Candida albicans, to sense and transduce stress 
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signals to their respective stress-activated protein kinases. These signaling 

mechanisms appear to be highly conserved across fungal species, although the sensing 

mechanisms are more divergent. Smith et al. (2010) conclude that some of the 

differences in these signalling mechanisms may reflect adaptation to environmental 

conditions in different fungi. 

 

Temperature changes, especially elevated temperatures, are also linked to the 

production of particular sets of proteins, such as the heat-shock proteins (Hightower 

& Hendershot, 1997; Higgins & Lilly, 1993; Gropper & Rensing, 1993). Melanin in 

dark septate hyphae may also protect these structures from extreme temperatures 

(Robinson, 2001).  

  

Low nitrogen availability is also an important stress for fungi. Fungi can use a range 

of N sources. Nitrocellulose (N content above 12%) alongside amino acids or sole N 

was used as a nitrogen source for Trametes versicolor, Pleurotus ostreatus and 

Trichoderma reesei, and the nitrocellulose in the media decreased by 10%-22%. (Auer 

et al., 2005). Chitin can also be used as a nitrogen source by some fungi such as 

Hypholoma capnoides, Resinicium bicolor and Coniophora arida (Lindahl & Finlay, 

2006). The ability of the fungi to use inorganic (nitrate, ammonium) and organic 

(amide, peptide, protein) nitrogen sources was determined in Russula spp., Lactarius 

sp., and Amanita sp. These fungi utilized ammonium and glutamine but had little 

ability to use other N sources (Sangtiean & Schmidt, 2002). Responses to nutrient 

stress can again be ecological or physiological. For example, Phanerochaete velutina 

shows an ecological response: it was insensitive to small organic resources but it 

rearranged its mycelial biomass just after it came across a new resource that was 



   Chapter 5: The effect of abiotic stresses 

86 
 

8

significantly bigger than the food-base from which it extended (Dowson et al., 1986; 

Bolton, 1993; Bolton & Boddy, 1993).  

 

Stress factors have an effect on fungal metabolism and the fungi are able to regulate 

their biological activity to resist stresses (Fink-Boots et al., 1997). In particular, 

laccase activity increased in response to temperature stress in several basidiomycete 

species (Fink-Boots et al., 1999). The focus of the current study is on the white-rot 

basidiomycete Trametes versicolor, which is a high laccase producer. Laccase also 

shows a large increase in activity during interactions, in T. versicolor (White & 

Boddy, 1992; Baldrian, 2004; Baldrian, 2006; Hiscox et al., 2010), and hence it was 

chosen for the experiments in this chapter. Hiscox et al. (2010) tested laccase activity 

and gene expression as a result of mycelial interactions and found that laccase 

transcript abundance was affected. Laccase is encoded by a gene family and a small 

scale study was also performed to determine whether members of the laccase gene 

family were differentially expressed during interactions, although results were not 

conclusive (Hiscox, 2010). 

 

Given the parallel increases in laccase activity during interactions between competing 

fungi and also under stress, further questions were asked whether stress would affect 

gene expression more generally in the same way as was found during fungal 

interactions (Eyre et al., 2010 and Chapter 4).  

 

The main aims of this study was to test the effects of single stress treatments on 

Trametes versicolor grown on solid medium and to determine the stresses applied 

could affect the tested fungus at the level of growth rate, and enzyme activity, as well 
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as the gene expression. Stresses imposed were high and low temperature, osmotic 

stress and low nitrogen source. Temperature stress was imposed both as a continuous 

treatment and as a short treatment. The latter was tested to compare results to a 

previous study performed in liquid culture (Fink-Boots et al., 1999). The hypotheses 

tested were that: 

(1) stress treatments affect extension rates; 

(2) stress treatments induce an increase in laccase production; 

(3) increase in laccase enzyme production is preceded by increases in transcripts; 

(4) changes in laccase transcript levels are not the same for all gene family members; 

(5) stress affects expression of other genes in the same way as interactions. 

 

To test these hypotheses, the following parameters were investigated:  

(1) extension rate under continuous stress; 

(2) spatial distribution of laccase activity under continuous stress; 

(3) Lacc, FRA19 and Nox gene expression continuous under stress; 

(4) laccase activity under continuous stress;  

(5) effect of heat and cold (continuous and shock) on the laccase enzyme activity;  

(6) expression of the laccase gene family under continuous stress. 

 

 

5.2 Materials and Methods 
 
 
Experiments were conducted on the effect of abiotic stresses (temperatures, osmotic 

pressure and deficiency of nutrients) on T. versicolor to observe the effect of those 

stresses on extension rate, laccase activity and also gene expression. The gene 

expression was for three genes; laccase (Lacc) which degrade lignin, the gene 
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(FRA19) which gave the best results in testing the microarrays in chapter 4 which was 

down-regulating in all replicates and also it had a putative function and the Nox gene 

(NADPH oxidase) which is important in sharing the capacity to transport electrons 

across the plasma membrane and to generate superoxide and down-stream reactive 

oxygen species. 

    

5.2.1 Culture media and conditions for T. versicolor under continuous 
stress  
 

For longer-term temperature stress experiments, T. versicolor was cultured in separate 

experiments on 2% malt agar at 20oC (control), 5oC (low temperature stress) and 35oC 

(high temperature stress). In a separate experiment osmotic stress was imposed by 

adding, 0.3M KCl (22.367 g L-¹) to the 2% malt agar medium. In a further experiment 

nitrogen stress was applied by culturing the fungus on 20 g L-¹ agar only; a cellophane 

layer was added, after sterilization (Appendix B) on top of the medium to ease 

harvesting the mycelium for RNA extraction for the gene expression experiments, 

while cellophane was not applied for the enzyme analysis experiments. Limited-

nitrogen medium was used as described in Appendix B.  

In all these experiments the fungus was cultured until the colony reached a diameter 

of approximately 62 mm. Thus times of incubation varied depending on the growth 

rate of the fungus under the different stress treatments (Table 5.1). 

Table 5.1 incubation times under different stress treatments required to obtain 
cultures of the same diameter. 

Treatment Days of growth 
20°C (control) 5 
5°C,  12  
35°C 6 
KCl 11 
agar only  10  
Limited-Nitrogen (L.N) 5 
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The short term heat and cold shock experiments were done by growing the fungus on 

Fahraeus medium (Fahreus & Rainhammar, 1967, Appendix B). Note that when 

culturing for RNA extraction, the agar was 20 g instead of 15 g per litre. In this case 

mycelium was harvested after defined time points rather than relative to colony 

diameter, as described above. 

 
 
 
5.2.2 Extension rate of T. versicolor under continuous stress  

 

T.  versicolor was grown alone, as described in Section 2.2.1 at 20°C for controls, 

KCl, agar only and limited nitrogen, 5°C as a low temperature and 35°C as a high 

temperature. Radial extension rate was determined by measuring across 2 diameters 

perpendicular to each other every day (at least six readings) until the colony reached 

the size of the control colonies as shown in Table 5.1. 

 

 

5.2.3 Spatial distribution of laccase activity unde r continuous stress 

 

Five T. versicolor replicates were cultured (Section 2.4), testing for the laccase 

presence by inclusion of ABTS in the medium and following the methods of Steffen 

et al. (2000) and Pointing (1999). Stresses were applied as described in Section 5.2.1. 

Photographs were taken with Nikon Coolpix Camera at different times depending on 

the size of the colony when it reached the size of the controls (20°C for 5d) (Fig. 5.3). 
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5.2.4 Gene expression under continuous stress 

 

As described in Section 2.3. The mycelium was taken, by using a small spatula to 

skim the mycelium from the surface of the agar, only from the margin of the colony 

(Fig. 5.2). 

 

 

 

 

Fig. 5.2 T. versicolor grown alone for harvesting for molecular work (blue colour is 

the fungus colony; red colour is the harvesting zone). 

 

RNA was extracted and cDNA synthesised as described in Section 2.3.2 - Section 

2.3.5. Semi-quantitative RT-PCR was performed as described in Section 2.3.7 using 

primers listed in Section 2.3.6. Two biological replicates (each with three technical 

replicates) were used to measure expression of the T. versicolor genes. 

 

 

 

The harvesting zone 
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5.2.5 Laccase activity of Trametes versicolor under continuous stress  

 

Laccase activity was measured by using ABTS (as described in Section 2.4) following 

Bourbonnais & Paice (1990). 

 

 

5.2.6 Expression of the laccase genes family under continuous stress 

 

PCR products were amplified using laccase primers (as detailed in Section 2.3.6). 

Cloning and sequence analysis were done as described in Sections 2.3.10.1 - 2.3.10.5, 

then sequences were aligned using ClustalX 2.0.9.  

 

 

5.2.7 Statistical Analysis 

   

For the gene expression experiments, means of the percentage maximum, and for the 

of the laccase activity means, were compared using SPSS (v.16), where significant 

differences between the means were tested using one-way ANOVA (Post Hoc 

Multicomparisons, using Tukey’s test where the significance level was at 0.05) and 

the resulting data were arranged into groups to show the significance of differences 

compared with the control, where each group was assigned a different alphabetical 

letter, where graph bars with the same letters are not significantly different. 

 

 



   Chapter 5: The effect of abiotic stresses 

92 
 

9

 
5.2.9 Analysis of expression of the laccase gene fa mily under stress 
 
 
PCR products of T. versicolor under stress treatments (20, 5 and 35°C, KCl, Limited-

N, agar only) were cloned (as described in Section 2.3.9.1 - 2.3.9.4). Plasmid DNA 

was extracted as described in Section 2.3.9.5 - Section 2.3.9.6, and sequences from 

five clones of each treatment were obtained (four for KCl treatment), this yielded a 

total of 29 sequences. Sequences were aligned using BioEdit (also BlastX 2.9.1) 

programs to make a dendrogram of them and to compare them with accessioned 

laccase sequences groups (γ, β and δ). 
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5.3 Results 
 
 
5.3.1 Extension rate of Trametes versicolor under continuous stress  

The extension rate of T. versicolor when exposed to the four stress treatments (5°C, 

35°C, no nitrogen and KCl) was significantly (P ≤ 0.05) decreased compared with the 

control (Fig. 5.3). Low nitrogen stress was the only treatment that did not significantly 

(P > 0.05) affect extension rate compared to the control (20°C). 
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Fig. 5.3 Radial extension growth rate of T. versicolor under stress, mean ± SE (n = 5). 
Different letters indicate significant differences between means. Anova, F5,24 = 326.79, 
(P ≤ 0.05). 
 

 

5.3.2 Spatial distribution of laccase activity unde r continuous stress 

 

The enzyme activity was detected by adding ABTS to the medium and was revealed 

by the appearance of purple colour with KCl, at 5°C, 35°C and also the controls 
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(20°C), while it appeared as a green colour for the limited-nitrogen and the agar only 

plates, which may be related to deficiency of nutrients in the media (Fig.5.4).  

 

 

 

           

 

Fig. 5.4 Spatial distribution of laccase activity under stress (a) 20°C (5 d),(b) 0.3M 
KCl (11 d), (c) Limited-N (5 d), (d) agar only (10 d), (e) 5°C (12 d), (f) 35°C (6 d). 
ABTS medium. 
 
 
 
 

5.3.3 Gene expression under continuous stress 

 

5.3.3.1 Laccase gene expression 

 

All the treatments resulted in significantly (P ≤ 0.05) lower expression than the 

controls in the first replicate (Fig. 5.5), in the second replicate however the results 

were less clear: although expression was reduced when grown on low or no nitrogen 

media, and at elevated temperature, expression was not significantly (P > 0.05) 
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reduced at low temperature, and osmotic stress appeared to increase expression 

significantly (P ≤ 0.05). 

 

 

(A) 

-20

0

20

40

60

80

100

120

20°C (1) 20°C (2) 5°C (1) 5°C (2) 35°C (1) 35°C (2) KCL ( 1) KCL (2)

Treatments

m
ea

n 
%

 o
f m

ax

 

 

 

                  (B) 

0

20

40

60

80

100

120

20°C (1) 20°C (2) agar (1) agar (2) L.N (1) L.N (2)

Treatments

m
ea

n 
%

 o
f m

ax

 

Fig. 5.5 T. versicolor Lacc gene expression under stress. (A) 5°C, 35°C, KCl, Anova,  
F3,8 = 6242.658, (P ≤ 0.05); (B) low nitrogen (L.N), agar only (no nitrogen), Anova, F2,6 
= 108.823, (P ≤ 0.05); (1), (2) = two biological replicates. Mean ± SEM (n = 3). 
Different letters indicate significant differences between means.  
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5.3.3.2 FRA19 and Nox gene expression 

 

The gene expression of T. versicolor FRA19 gene under stress was significantly (P ≤ 

0.05) lower than the control for the treatments of 5°C, 35°C and KCl (Fig.5.6.A) in 

both biological replicates, however, expression was only significantly (P ≤ 0.05) 

lower under low nitrogen in one replicate and expression when grown without 

nitrogen source was unaffected in both biological replicates (Fig 5.6B).  

 

Expression of the T. versicolor Nox gene was again reduced when the fungus was 

grown at 5°C, 35°C or with KCl in one replicate, but no significant differences to the 

control were detected in the second replicate for these treatments (Fig 5.7A). A lack 

of nitrogen source appeared to slightly stimulate Nox gene expression in one 

replicate, and low nitrogen reduced expression, however, again no significant (P > 

0.05) changes in expression were detected in the second replicate (Fig 5.7B).  
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Fig. 5.6 FRA19 gene expression of T. versicolor under stress. (A) 5°C, 35°C, KCl, 
Anova, F3,8 = 2101.221, (P ≤ 0.05);  ; (B) low nitrogen (L.N), agar only, Anova, F2,6 = 
6.534, (P ≤ 0.05); (1), (2) = two biological replicates. Mean ± SEM (n = 3). Different 
letters indicate significant differences between means. 
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Fig. 5.7 Nox gene expression of T. versicolor under stress. (A) 5°C, 35°C, KCl, 
Anova, F3,8 = 0.673, (P > 0.05);; (B) low nitrogen (L.N), agar only, Anova, F2,6 = 84.249, 
(P ≤ 0.05); (1), (2) = two biological replicates. Mean ± SEM (n = 3). Different letters 
indicate significant differences between means. 
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5.3.4 Laccase activity of Trametes versicolor under continuous stress  

 

All the treatments except 5oC and growth with osmotic stress (KCl) resulted in a 

significant (P ≤ 0.05) decrease in the laccase activity compared with the control 

(Fig.5.8). The limited nitrogen and no nitrogen (agar only) treatments resulted in 

significant (P ≤ 0.05) difference decrease in laccase activity compared to the control. 
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Fig.5.8 Laccase activity of T. versicolor under stress (5°C, 35°C, KCl, agar only, no 
nitrogen (L-N)), mean ± SEM (n = 3), Anova, F5,12 = 27.187, (P ≤ 0.05);. Different 
letters indicate significant differences between means. 
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5.3.5 Expression of the laccase gene family under s tress 

Limited-N -3
35 °°°°C -2
5 °°°°C – 5
Agar -5

Agar-2
Limited-N-5

5 °°°°C -3
KCl -4
KCl -1
35 °°°°C -5
35 °°°°C -1
Limited-N -4
Agar -4
KCl -2
Limited-N -1
35 °°°°C -3
20 °°°°C -2
KCl -3

AM422367 delta

20 °°°°C -3
5 °°°°C -2

5 °°°°C -4
20 °°°°C -5
20 °°°°C -4

AB212732 alpha
U44430 alpha

Limited-N -2
AF414109 beta

20 °°°°C -1

Agar -1
Agar -3

35 °°°°C -4

AB212734 gamma

5 °°°°C -1

 

Fig.5.9 T. versicolor laccase gene family under stress in comparison with laccase 
groups (γ, β and δ). 
 

The majority of the clones derived from the agar, 35°C and KCl treatments 

represented sequences belonging to the gamma laccase group (Fig. 5.9 and Table 5.2). 

Three sequences of 20°C and 5°C were most similar to the delta group, while three 

sequences of limited-N were homologous to the gamma group. One sequence of each 

of agar, Limited-N, 5°C and 35°C appeared to form a separate group.               
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Table 5.2 Matching sequences of T. versicolor under stress treatments with the 
laccase groups (γ, β and δ)   
Treatments 
 

Replicates Laccase group 

 
Agar 

1 
2 
3 
4 
5 

γ 
γ 
γ 
γ 
separate group 

 
KCl 

1 
2 
3 
4 

γ 
γ 
γ 
γ 

 
Limited-N 

1 
2 
3 
4 
5 

γ 
β 
separate group 
γ 
γ 

 
20°C 

1 
2 
3 
4 
5 

β 
γ  
δ  
δ 
δ 

 
5°C 

1 
2 
3 
4 
5 

δ  
δ  
γ  
δ 
separate group 

 
35°C 

1 
2 
3 
4 
5 

γ  
separate group 
γ  
γ  
γ 
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5.4 Discussion 
 
 

The extension rate of T. versicolor under continuous stress showed that the treatments 

of 5°C and the KCl stress decreased the growth rate of T. versicolor mycelium but did 

not decrease the production of laccase enzyme. On the other hand, the increase in the 

extension rate (Fig. 5.2) of T. versicolor under stress was not a sign of increased 

laccase activity: the growth rate increased at 35°C, with agar only and under Limited-

N while laccase enzyme activity was decreased compared with the control (Fig. 5.8). 

 

The spatial distribution of laccase activity under stress showed that the decrease in 

laccase activity was reflected in a green colour in the medium as in the case of limited 

nitrogen and agar only (no nitrogen) plates, as the ABTS was oxidised to form a green 

colour product (Pointing et al. 2005), and the green staining colour was detected also 

when the nutrients in the malt agar were low (0.5% MA). The green colour was 

always associated with low nutrients and lower enzyme activity. These results have 

been validated in the Cardiff laboratory by other colleagues and they obtained similar 

results (Hunt, et al., unpublished). In contrast, the purple colour represents higher 

enzyme activity, and when the colour starts to clear near the centre of the colony this 

indicates an even higher laccase activity. 

 

Gene expression of Lacc, FRA19 and Nox genes all fell under temperature stress or 

osmotic stress (KCl) although for the laccase and Nox expression; responses were not 

always consistent between replicates. Under nitrogen stress laccase expression was 

consistently reduced, however, for FRA19 and NOX the results were less consistent 

between replicates or between the two low nitrogen treatments. The reduction in 
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laccase gene expression was surprising given the decrease seen in enzyme activity, 

which was the opposite with the work of Peiris (2009) where it showed increase in the 

enzyme activity. Velazquez-Cedeno et al. (2007) suggested that the lag between gene 

expression and enzyme activity is normal and they found small alterations in laccase 

transcript levels in interacting cultures of P. ostreatus in comparison to big changes in 

enzyme activity. Likewise a discrepancy between changes in gene expression and the 

accumulation of enzymes with time was also found in T. versicolor during mycelial 

interactions (Hiscox et al, 2010).  

 

Sequences from PCR products of laccase transcripts were homologous to sequences 

from either γ, β or δ groups (Necochea et al., 2005), with exception of one sequence 

of each of agar, limited-N, 5°C and 35°C which were not strongly related to any of 

the allocated groups, and they may correspond to a new laccase gene. The sequences 

derived from the control 20°C treatments represented all three accessioned laccase 

sequence groups (γ, β and δ) which may suggest that T. versicolor produces all types 

of laccase during normal conditions. The over-representation of the γ group sequences 

in the temperature stress and osmotic stress treatments may however suggest that this 

group is differentially up-regulated under these stress conditions. To verify this in 

further investigations, the use of more replicates (about 20 for each treatment) will be 

required. 
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Chapter 6: Synthesis and future directions 
 
 
 
 
This thesis started by investigating interspecific interactions between basidiomycetes 

(and some ascomycetes), given the important role of these interactions in the woodland 

ecosystem in modulating decay rate when these fungi colonise wood and also in affecting 

their role in nutrient recycling and mineralization (Boddy, 1993, 1999, 2000, 2001; 

Holmer & Stenlid, 1997; Wells, 2002). The lack of understanding about these 

interactions led to focus a part of my work on a model basidiomycete fungus Trametes 

versicolor which showed three different outcomes when interacting with other wood-rot 

basidiomycetes: it replaced (won) Stereum gausapatum, deadlocked (equal) with 

Bjerkandra adusta and it was replaced by Hypholoma fasciculare (lost). 

 

The first aims were to relate the effect of VOCs released during interaction between two 

basidiomycetes on a third fungus (focusing especially on T. versicolor), monitoring 

effects on growth and enzyme production of the third fungus. This was addressed in 

Chapter 3. Other aims were to analyse expression of selected genes from the T. versicolor 

EST collection using semi-quantitative RT-PCR and compare expression to the array data 

(Chapter 4). Further aims were to analyse effects on enzyme production and gene 

expression when T. versicolor was exposed to abiotic stress conditions (in Chapter 5).   
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6.1 Effect on growth rate 

 

Q1. Do VOCs from fungal interactions affect growth rate in the same way as 
stress factors? Mechanisms? 
 

Growth of T. versicolor, as with other fungi can be affected by abiotic factors, including 

temperature, pH, osmotic pressure, nutrients etc. Biotic factors such as interactions with 

other fungi and grazing of invertebrates on fungi (Tordoff et al., 2006; Rotheray et al., 

2008; Crowther et al., 2011) will also affect growth. Of particular interest in this study 

was the effect on growth elicited by VOCs produced by other interacting fungi. 

Furthermore, abiotic factors will also affect the interaction outcomes (Boddy, 1983; 

Boswell et al., 2007), thus forming a complex network of effects on the growth of the 

fungus.  

 

The effect of VOCs produced by two interacting fungi on a third fungus (T. versicolor) 

was variable. Some interactions increased the T. versicolor growth rate such as Rb/Hf, 

Hf/Hf, Sg/Sg, Es/Es, Sh/Sh and Tv/Ba on agar (where Rb, Resinicium bicolor; Hf, 

Hypholoma fasciculare; Sg, Stereum gausapatum; Ba, Bjerkandera adusta; Es, Eutypa 

spinosa; Sh, Stereum hirsutum) which was in agreement with the results of Evans et al. 

(2008). There was however no significant effect on laccase activity. Interactions on wood 

blocks all increased growth rate compared with the controls, while there was an increase 

in laccase activity for only some interactions: the Tv/Tv and Ba/Ba increased growth rate 

whereas there was decrease in response to Es/Es and Sg/Es interactions. 
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On the other hand, for T. versicolor under abiotic stress it was interesting to see that 

extension rate at 35oC, and limited-nitrogen was not significantly different from 0.3M 

KCl (-1.344 MPa) nor 5oC treatments. The effects on enzyme activity correlated with 

growth rate for the treatments of 35oC, agar only and limited-nitrogen (Table 6.1). 

 

Table 6.1 A comparison of growth rate and laccase activity of T. versicolor under stress 
(abiotic stress of high/low temperature, osmotic pressure of KCL, no nitrogen, limited-
nitrogen) 

Treatments Growth rate  Laccase activity 

20oC Control  Control  

5oC ↓ 0 

35oC ↓0 ↓ 

KCl ↓ 0 

Agar only ↓ ↓ 

Limited-nitrogen ↓0 ↓ 

   ↓ = decrease, 0 = no significant difference, ↓0 = there was a                                         
decrease but it was not significant  
 

The results of this study were as expected: other studies also showed that stress has an 

important affect on fungi. For example high temperature (45oC) could arrest the growth 

of some fungi such as Schizophyllum commune (Higgins and Lilly, 1993). Other fungi 

could however grow at temperatures as low as 5oC  although this is a stressful 

temperature which made Trichoderma viride a good candidate to be used for biological 

control at low temperatures (Jackson et al., 1991). Gahlaup et al. (2002) suggested that 

high N levels are important for laccase formation which agree with the current study, 

while Eggert et al. (1992) found that limited N conditions resulted in high laccase 

activity. Fungi can make osmotic adjustments but high concentrations of KCl can be 

toxic resulting in death of the fungus (Hallsworth and Magan, 1999). In the current study 
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trial experiments exposing the fungus to different concentrations of KCl were carried out 

to select a concentration for T. versicolor that imposed stress, but was not lethal. In the 

environment, of course, fungi are exposed to multiple stresses simultaneously and the 

combination of several stresses may elicit more effects on fungi than the single stresses 

alone. An example of this approach is a study of the effect of different temperatures and 

water availability on the growth rate of three entomogenous fungi on a medium modified 

with KCl (Hallsworth & Magan, 1999) which helped to establish their environmental 

limits. 

 

 

Q2. What is the effect of ecology and environmental conditions on growth 

rate, morphology and enzyme production of fungi?  

 

There are two main categories for fungal competition: (1) Primary resource capture; and 

(2) Secondary resource capture (Boddy, 2000). Primary resource capture occurs with 

pioneer species that can colonise an uncolonised resource being latently present within 

functional sapwood, or colonising freshly fallen wood via spores (Boddy, 2001). These 

colonisers are able to defend their territory for a limited time until secondary colonisers 

grow and replace them using antagonistic mechanisms, or following major changes in the 

abiotic environment (Griffith & Boddy, 1991). Saprotrophic fungi from mid- to late- 

successional stages are thought to have higher enzyme activity (laccase) than earlier stage 

fungi (Iakovlev & Stenlid, 2000). For example, some of the fungi that been used in this 

study such as S. gausapatum is a primary colonizer, but it had similar levels of laccase 
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production during growth alone compared to the late-stage cord-forming species such as 

H. fasciculare. In contrast, T. versicolor which is a late primary to early secondary 

coloniser had much higher levels of laccase production than H. fasciculare (Boddy, 2001; 

Hiscox et al., 2011), despite the fact that H. fasciculare had the ability to replace and win 

T. versicolor's territory with its lower laccase activity. This may suggest that laccase 

production is not closely linked to defense, although it is also possible that the laboratory 

conditions under which laccase activity was being measured were different to those 

operating in the environment. When fungal mycelium of different species meet they 

interact and then changes occur in the mycelial morphology, extracellular enzyme 

production and also the production of secondary metabolites (Boddy, 2000, Woodward & 

Boddy, 2008). The self-pairing of T. versicolor enhanced the extension rate of R. bicolor 

mediated by VOCs (Table 3.2), while the self-pairing of R. bicolor did not affect the 

extension rate of T. versicolor (Table 3.1).  On the other hand, T. versicolor (early 

secondary colonizer) could replace R. bicolor (secondary colonizer cord-former) by 

direct contact when they interacted with each other on agar plates (Table A.7), indicating 

that interactions vary depending on proximity, this is presumably due to different 

mechanisms: production of enzymes probably allowed T. versicolor to win the 

confrontation when in close proximity,  while the VOCs of T. versicolor enhanced the 

growth of R. bicolor in the absence of direct contact. 

 

The present study also showed that the changes in the abiotic environment could affect 

fungal morphology. When T. versicolor was exposed to abiotic stressful conditions the 

mycelium changed markedly in morphology: it showed light growth at 5oC or no 
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nitrogen, and dense fluffy growth at 35oC or on KCl medium, while it was only slightly  

affected when the fungus was grown on a limited nitrogen medium  (photos in Appendix 

H). When the fungi are exposed to certain forms of stress in nature such as high or low 

temperatures, they produce high amounts of ROS (reactive oxygen species) which could 

damage the proteins. To avoid such damage fungi would change the activity of the 

antioxidant enzymes, such as superoxide dismutase. For example, fluctuations in 

environmental temperature can result increased activity of laccase and also the formation 

of the fungal fruit-bodies (Dighton, 2003, Cairney, 2005). Since 1978 the climate change 

has affected fruiting phenology in Europe (studied in the UK and Norway) (Gange et al., 

2007; Kauserud et al., 2010). In the UK the average first fruiting date has become 

significantly earlier which correlated with elevated August temperatures and later fruiting 

with both elevated August temperature and October rainfall, while average last fruiting 

date has become significantly later. These climate changes are not only important in 

extending the duration of fungal fruit body production, but also affects decomposition. 

Many fungi also now fruit in spring indicating that they are now active for longer periods 

including winter (Gange et al., 2007). 

Increased temperatures may lead to increased decomposition by fungi, and consequent 

release of more carbon dioxide from the soil. On the other hand, also as temperatures 

increase the nitrogen levels in the soil may increase, and the high nitrogen tends to 

suppress decomposition rates of wood, that would lead to less carbon dioxide evolution. 

Global warming can increase the litter decomposition rates only if there is sufficient soil 

moisture. Such environmental changes can repress the transcription of genes coding for 

enzymes (degrading lignin, cellulose, hemicellulose, and chitin) (Kellner &Vandenbol, 
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2010). Environmental change can also affect the outcome of mycelial interactions, which 

in turn may affect decay rate, depending on whether favored species decay litter more or 

less rapidly. Microorganisms are very sensitive to climate changes but their responses in 

field situations are still not well studied.  

 

Future Directions 

 

1. Clearly it is more meaningful to use a medium that yields results close to those that 

would happen in the natural environment. The use of agar cultures in the laboratory is 

ecologically unrealistic although it has several advantages such as ease of use, and gives 

results in a short time. It is more realistic to use woody tissues such as wood blocks to 

study fungal interactions and VOC production, although it is relatively more complicated 

to set up interactions and interpret outcomes on wood blocks (Wheatly et al., 1997, Bruce 

et al., 2000; Mikiashvili et al., 2005). For example although there were a wide range of 

VOCs produced and identified during interactions of the studied fungi on agar (Hynes et 

al., 2007; Evans et al., 2008), VOC profiles were more complex when the interactions 

took place on wood blocks, which suggests the presence of specific inducers. Thus future 

work needs address this issue with more experiments using more realistic media such as 

wood blocks. 

 

2. Work on the abiotic stress also needs to move towards more realistic experiments such 

as those reported by Hallsworth & Magan, (1999), where interactions between stresses 
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are examined and limits on growth and cumulative effects on interactions are defined. 

Again work needs to move away from the use of agar to more realistic substrates where 

possible. Combinations of VOCs and stress experiments could give interesting results. 

This could be done by setting up double plate cultures with the interaction of two fungi 

on the lower plate to produce VOCs, while stress conditions could be applied to the 

studied fungus in the top plate, such as changing the osmotic pressure or nutrient status. 

As discussed above, this is of relevance to the natural environment where fungi are 

subject to multiple stresses simultaneously, for example combining temperature with 

osmotic pressure to see the effect of both factors on fungi, has been applied to rock-

inhabiting meristematic fungi (Sterflinger, 1998). 

 

By defining the limits and interactions between different stresses on fungal growth these 

more realistic approaches may begin to probe the underlying ecological mechanisms and 

constraints that define community development in these fungi. 

 

6.2. Enzyme Activity 

 

Q1. Is the effect on T. versicolor laccase activity of interactions and abiotic 
stress the same or different? 
 

Data presented in Table 6.2 show that the laccase activity was variable; while it was not 

affected by the VOCs in any of the interactions tested when interaction was on agar, it 

was affected by VOCs produced by some interactions on wood blocks. Laccase activity 

was positively affected by VOCs when these resulted from Ba/Ba, Tv/Tv self pairing 
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interactions on wood blocks. The effect on laccase activity of VOCs produced by the 

interaction of Es/Sg, or with the self-pairing of Es on wood blocks, was however 

decreased, which suggests the presence of specific inducers related to the wood blocks. 

 

Laccase activity also decreased when the T. versicolor was under limited nitrogen stress.  

This is in contrast with the work of Pointing et al. (2000) who found that the production 

of laccase of Pycnoporus sanguineus was 50-old increased in the presence of high carbon 

and low nitrogen medium. Laccase activity was also decreased at low temperature which 

disagrees with the results of Fink-Boots (1999). On the other hand, it was also negatively 

affected by the high temperature stress of 35oC which agrees with the results of Fink-

Boots (1999).  

 

Table 6.2. The laccase activity in both experiments of T versicolor under stress and under 
VOCs (interactions). 

Treatments Stress Interactions 

(agar) 

Interactions 

(wood blocks) 

20oC 1 Controls   

5oC 1 0   

35oC 1 
↓↓   

KCl 1 0   

Agar only 1 
↓↓   

Limited-N 1 
↓↓   

Rb/Hf 2  0 0 
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Hf3/Hf3 2  0 0 

Hf4/Hf4 2  0 0 

Es/Es 2  0 ↓0 

Sg/Sg 2  0 0 

Sh/Sh2   0 0 

Tv/Ba 2  0 0 

Ba/Ba 2   0 ↑0 

Tv/Tv 2  0 ↑0 

Tv/Hf4 2  0 0 

Rb/Tv 2  0 0 

Sg/Sh 2  0 0 

Tv/Sg 2  0 0 

Sg/Es 2  0 ↓0 

Sg/Ba 2  0 0 

Rb/Rb 2  0 0 

Controls 2  Controls Controls 

(↓↓) decrease, (0) not significantly difference, (↑0) there was a increase but it was not 
significant, (↓0) there was a decrease but it was not significant  
1 = T. versicolor under stress. 
2 = T. versicolor exposed to VOCs from interacting fungi.  

 

 
Staining for enzyme activity showed localisation of the activity, which was localised 

mainly at the interaction zone of T. versicolor with other fungi and it showed lower 

activity in other areas of mycelium (Hiscox et al., 2010). Similar results were found 
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between H. fasciculare and Peniophora lycii (Rayner et al., 1994). In the current study,  

T. versicolor under stress (limited nitrogen and agar only (no nitrogen)) showed a 

decrease in laccase activity reflected by production of a green colour in the medium  

plates, as the ABTS was oxidised to form a green colour product (Pointing et al. 2005). 

The green colour was always associated with low nutrients and lower enzyme activity; 

these results have been validated by Hunt et al. (unpublished results Cardiff laboratory) 

who obtained similar results with different experiments.  

 

From the work presented here a difference does emerge between abiotic stress and VOC 

signaling in that in all cases where abiotic stress was imposed, laccase activity decreased, 

whereas some VOC signaling was stimulatory.  

 

Future Directions 

 

1- To define better the role of laccase activity in response to abiotic stress and VOCs, it 

will be helpful to explore further the expression patterns of the different members of the 

laccase gene family in Trametes versicolor. To do this much larger experiments will be 

required designing gene specific primers. This will be facilitated by the recent publication 

of the T. versicolor genome sequence (http://genome.jgi-

psf.org/Trave1/Trave1.info.html). Using combinations of stresses and VOCs derived 

from other interacting fungi may begin to define the role of different laccase genes and 

provide insights into their function during mycelial interactions and in response to abiotic 

stress. 
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2- In the experiment of T. versicolor under stress only one enzyme (laccase) was 

analysed, analysis of other enzymes would expand the knowledge about the enzymes 

produced, and activity when the fungus is exposed to such stresses.  

 

 

6.3. Gene expression 

 

Q1. Are the effects on the gene expression of FRA19, Nox and Lacc during 
interactions and stress the same or different? 
 

Comparing gene expression between the two experiments (Table 6.3), Nox gene 

expression was mainly negatively or not affected by either stress treatments or VOCs  

derived from interactions. Nox expression was positively affected in one stress treatment 

when there was no nitrogen in the medium, although only in one replicate.  FRA19 gene 

expression was negatively affected by almost all the stress treatments (temperature, 

osmotic pressure, limited nitrogen) and also by VOCs from two of the interactions: 

Tv/Sg, and Tv/Ba.. The effect on Lacc gene expression was variable. Most abiotic stress 

treatments had a negative or inconsistent effect, however, laccase expression was 

consistently down-regulated by high temperature and the lack of nutrients. Hiscox et al. 

(2010) showed that the interaction Tv/Hf was the only one tested that had a positive 

effect on laccase gene expression. 
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So no clear pattern emerged for any of the three genes analysed relating to their 

expression under abiotic stress or VOCs derived from other interacting fungi. This 

suggests a complex response to these stimuli, worthy of further investigation. 

 
 
Table 6.3. The gene expression (up/down) of two biological replicates of the genes 
FRA19, Nox and Lacc of the fungus T. versicolor under the VOCs and stress effects.   
 

Treatments FRA19 Lacc Nox 

stress 

20 oC  Control Control Control 

5 oC -, - -,+ -,= 

35 oC -, - -,- -,= 

KCl -, - -,+ -,= 

Agar only =, = -,- +,= 

Limited-N -,= -,- -,= 

Interactions  

Tv/Hf + + = 

Tv/Sg - = = 

Tv/Ba - = = 

Tv/Tv 0 0 0 

(+) increase, (-) decrease, (=) not significantly difference, (0) control. Red colour results 
from Hiscox et al. (2010). 
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Q2. Why were there differences between replicates? 

The culture conditions were kept as consistent as possible during the whole experiment, 

using the same medium and the same incubation temperature, and at the end of the 

treatment period all mycelia were extracted and PCR amplified at the same time, so any 

differences in the biological replicates must be due to uncontrollable factors during 

culturing or after the mycelium was harvested. Another possibility suggested by Eyre et 

al (2010), is that changes in expression may be dynamic and rapid such that it may be 

difficult to ensure that mycelia are harvested at exactly the same point in their growth. 

 

 

Q3. What is the relationship between gene expression and enzyme activity 
in the study? 
 

There was a fairly clear relationship between the abiotic stresses (high/low temperature, 

KCl, limited nitrogen, no nitrogen) on T. versicolor laccase activity and gene expression 

(Table 6.4). In all cases where enzyme activity was down regulated this was consistent 

with a down-regulation in gene expression. In the two treatments where there was no 

apparent effect on laccase activity, the results from the gene expression study were 

inconsistent between replicates. Galhaup et al. (2002) found that Trametes pubescens can 

up-regulate expression of genes encoding laccase and manganese peroxidase when it was 

exposed to high carbon and nitrogen, which are consistent with the present study. The 

agreement here between activity and expression contrasts with the studies on the effects 

elicited when T. versicolor interacted with other white-rot fungi. In this case there was a 



Chapter 6: Synthesis and future directions 

118 
 

large increase in laccase activity, while the gene expression change was not dramatic 

(Hiscox et al., 2010). 

 

 

 

Table 6.4. The relationship between enzyme activity and lacc gene expression (two 
biological replicates) of T. versicolor under stress. 

Treatments Laccase activity Lacc gene expression 

20 oC  Control Control 

5 oC = -,+ 

35 oC - -,- 

KCl = -,+ 

Agar only - -,- 

Limited-N - -,- 

         (+) increase, (-) decrease, (=) not significantly difference, (0) control.  
 
 
 
 
 
 
Q4. What are the effects of stress and VOCs, produced during interactions, on 
laccase gene family expression? 
 
 
Laccase genes can be classed into groups called γ, β or δ, and differential expression of 

different laccase gene family members has been noted in several basidiomycete species 

(Necochea et al., 2005). Most sequences from RT-PCR products of laccase transcripts 

from T. versicolor exposed to different abiotic stress treatments were homologous to 
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sequences from either γ, β or δ groups. It was found that the sequences derived from the 

control 20oC treatments represented all three laccase sequence groups (γ, β and δ) which 

may suggest that T. versicolor produces all types of laccase during normal conditions. 

The over-representation of the γ group sequences in the temperature stress and osmotic 

stress treatments may however suggest that this group is differentially up-regulated under 

these stress conditions. The one sequence of each of agar, limited-N, 5oC and 35oC which 

was not closely related to any of the published groups, may suggest that they correspond 

to a new laccase gene. Further sequence data are however required to confirm this. In 

addition, the study conducted here was small and greater numbers of sequences need to 

be analysed to confirm whether there really is a differential expression of the laccase 

gene family under abiotic stress.  

A similar study of the laccase gene family in T. versicolor during mycelial interactions on 

agar was performed to determine whether members of the laccase gene family were 

differentially expressed during interactions, although results were not conclusive (Hiscox 

et al., 2010). The use of more replicates will be required to verify further investigations. 

It would be interesting to know whether there is a specific association of particular 

laccase genes with specific conditions. Differential expression of laccase genes has been 

reported in other species. For example, Zhao & Kwan (1999) recognised two laccase 

genes (lac1 and lac2) from Lentinula edodes that were expressed under different media 

conditions, where lac1 expression was much higher than lac2 expression in a high 

nutrient glucose medium. Also, it was found that three laccase genes from a Trametes 

spp. environmental isolate were differentially expressed (Mansur et al., 1998). 
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Future directions 

 

1- Nox encodes NADPH oxidase, an enzyme that is associated with ROS production 

(Gessler et al., 2007), and is associated with cell death. It would be interesting to know 

the extent of cell death occurring during interactions or when the fungus was under stress. 

This could be detected by the use of stains such as the combination of Sytox green, which 

can differentiate the dead and living cells, and Calcofluor white which stains all tissues 

(Green et al., 2000). 

 

2- The use of more microarrays or new sequencing techniques such as deep sequencing 

(Hoen et al., 2008; Battk and Niesett, 2011; Ahmadian et al., 2006), will be important in 

revealing more clearly global changes in gene expression of fungi under both biotic and 

abiotic stress and under combined stresses which is clearly needed to unravel the 

complex expression patterns seen here. 
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Appendix (A) 
 

Preliminary experiments 
 
 
 
 
A.1.Material and Methods 
 

A.1.1 The effect of aeration and VOCs produced duri ng interspecific my-
celial interaction on a third fungus 

 

Two sets of two-plate interaction method as described in section (3.2.1.1) were used 

to test the extension rate of the fungi Stereum gausapatum and Fomes fomentarius, 

cultured on 0.5% MA in 5 replicates, one set were opened and measured every day to 

examine the effect of aeration on the VOCs presence or absence and whether it can be 

affected by opening, the other set were opened and measured on day 2 and day 5 only. 

The cultures were incubated at 200C. 

 

 
A.1.2. Species growing alone at two different malt concentrations 
 

Nine Fungi (Eutypa spinosa , Stereum gausapatum, Vuilleminia comedens, Fomes 

fomentarius, Trametes versicolor, Resinicium bicolor, Trichoderma viride, Stereum 

hirsutum, Hypholoma fasciculare, Bjerkandera adusta) were cultured by inoculating 

6 mm diam agar plugs, cut from the growing margin of colonies with a number 3 cork 

borer, centrally on 2% w/v MA as described in section (2.2.1)  and 0.5% w/v MA 

(MA; 5 g l-¹ Munton & Fison spray malt, 15 g l-¹ lab M agar No.2).  The plates were 

incubated face downwards, after sealing with Nescofilm, at 200C in plastic bags in the 

dark. Three replicates were used. Colony extension rate was measured daily, at the 
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same time, across two diameters using Vernier Callipers. Measurements were taken 

until the colony was 1 cm away from the edge of the plate. 

  
 
A.1.3. Effect of nutrient concentration on the exte nsion rate of fungi  
   
  
The method described in section (3.2.1.1) was used as a preliminary method for esti-

mating the effect of different concentrations of medium on the production of different 

volatiles, which may affect the growth of the tested fungus Stereum gausapatum and 

Stereum hirsutum. Five replicates of the two-plate interaction were set up on two dif-

ferent nutrient treatments at 0.5% and 2% MA cultures. Cultures were incubated in 

dark at 200C.  

 
 
A.1.4. Extension rate measurements  
 
 Inhibition and stimulation of extension rate during  interactions of five 
basidiomycetes with Hf, Rb and Sg, and their outcom es 
 
 
This experiment was used to see the fungi that can produce pigments as a sign of pro-

ducing VOCs, and the species Hypholoma fasciculare and Resinicium bicolor were 

chosen from the work of Julie Hynes 2007, while the fungus Sg was one of the best 

ones that can produce pigments. H. fasciculare, R.  bicolour and Stereum gausapatum 

were paired against five different species of wood decay fungi (Eutypa spinosa, Fo-

mes fomentarius, Vuilleminia comedens, Trametes versicolor and Bjerkandera adu-

sta) and also the self pairing of Hypholoma fasciculare, Resinicium bicolor and 

Stereum gausapatum by inoculating 6 mm diameter agar plugs on 2% MA, cut from 

the actively growing margins of the colonies, 3 cm apart. 3-4 replicate plates of each 

pairing were made, sealed with Nescofilm, and then incubated in the dark at 200C. 

Controls were the self pairings. The extension rate was measured as diameter divided 
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by two, towards and away from each other, and the measurements were determined 

daily. Colonies grown alone were used as the controls and its two diameters meas-

urements divided by four to have one radial measurement (Fig. A.1). Progress of in-

teraction was recorded using digital cameras (Nikon Coolpix 5700 8x zoom ED 5.0 

mega pixels and Sony Cyber-short DSC-P71, 3.2 mega pixels) after 7, 11, 17, 23, 28, 

36, 43 and 50 days.  

 

Fig.A.1. The growth measurement positions .Towards opponent (T1 and T2), away 
from opponent (A1 and A2) and diameters (D1 and D2) divided by 2. 

 
 
A.2. Results 

A.2.1. the effect of aeration and VOCs produced dur ing interspecific my-
celial interaction on a third fungus 

 When the plates were opened every day (1, 2, 3, 4, 5 d) there was no significant dif-

ference (P>0.05) between the extension rates of S. gausapatum and F. fomentarius 

growing above interactions of R. bicolor vs H. fasiculare, or the self pairings of R. 

A1 T1 T2 A2 

D1 D2 



Appendices 
 

 142 

bicolor and H. fasiculare compared with the controls. By contrast, when plates were 

aerated by opening only after 2d and 5d, the extension rate of both S. gausapatum and 

F. fomentarius increased above self-pairings of R. bicolor, and that of Sg also in-

creased above the self pairings of H. fasiculare (Table A.1). 

Table A.1. Mean radial extension rate (mm d-¹ ± SEM) when grown above interspe-
cifically interacting mycelium on malt agar. 

Hf/Hf 
 
 

Rb/Rb Rb/Hf Agar Fungi 

5.38± 0.05 
ns 
 

5.33± 0.03 
ns  

5.34 ±0.02 
ns 

5.41± 0.07 Stereum  
gausapatum 
(d 1,2,3,4,5) 
 

5.54± 0.11 
*** 
 
 

5.41±0.04 
*** 

5.16 ±0.08  
ns 

4.90± 0.03  Stereum  
gausapatum 
(d 2,5) 

1.0 ± 0.031 
ns 
 

1.0 ± 0.02 
ns 

0.95 ±0.02  
ns  

1.05± 0.02 Fomes fomenta-
rius 
(d 1,2,3,4,5) 

0.89± 0.08 
ns 
  
 

1.23± 0.07  
** 

0.89 ±0.04 
ns 

0.89± 0.03 Fomes fomenta-
rius 
(d 2,5) 

Significance of difference compared with growth above agar. (*, P ≤ 0.05;**, P ≤ 0.01;***, P ≤ 0.001; 
ns, not significant) 

 
 
 
A.2.2. Species grown alone at two different malt co ncentrations     
 

Five species grew significantly faster on 2% MA than on 0.05% MA (Trametes versi-

color, Stereum gausapatum, Eutypa spinosa, Vuilleminia comedens and Trichoderma 

viride), three were unaffected (Bjerkandera adusta, Resinicium bicolor, and Fomes 

fomentarius, while Hypholoma fasciculare grew more rapidly on 0.5% MA (Table 

A.2).  

  



Appendices 
 

 143 

 
 
Table A.2. Mean extension rate (mm d-¹ ± SEM) when grown on 0.5%MA and 
2%MA (Two-sample t Test in Minitab) 
 

Significant dif-
ference 

2%MA 0.5%MA Tested fungi 
 

** 
T43 = -7.24, P<0.01 

12.858 ± 0.084  11.965 ± 0.090  
 

Trametes  versicolor 
 

* 
T43 = -4.04, P<0.05 

13.555 ± 0.11 12.983 ± 0.094 Stereum gausapatum 
 

* 
T43 = -3.44, P<0.05 

17.07 ± 0.62 12.24 ± 1.3 Eutypa spinosa 
 

ns 
T43 = 0.61, P>0.05 

17.8633 ± 0.024  17.8917 ± 0.040 Bjerkandera adusta 
 

* 
T43 = -3.89, P<0.05 

4.482 ± 0.24 3.5150 ± 0.055 Vuilleminia comedens 
 

ns 
T43 = -2.29, P>0.05 

6.2867 ± 0.055 6.098 ± 0.061 Resinicium bicolor 
 

** 
T43 = 4.74, P<0.01 

4.653 ± 0.15 5.503 ± 0.11 Hypholoma fasiculare 
 

ns 
T43 = -0.25, P>0.05 

2.053 ± 0.064 2.0 ± 0.085 Fomes fomentarius 
 

* 
T43 = -3.44, P<0.05 

27.375 ± 0.44 25.817 ± 0.22 Trichoderma viride 
 

Significance of difference (*, P≤0.05; **, P≤0.01;***, P≤0.001; ns, not significant) 

 
 
 
A.2.3. Effect of nutrients concentration on the ext ension rate of fungi  
 
 
Extension rate of S. gausapatum and S. hirsutum was inhibited when grown above 

self pairings of H. fasiculare in both nutrient concentrations 2% and 0.5% MA, 

while S. hirsutum was inhibited when grown above the mycelial interaction of R. 

bicolor and H. fasciculare on 2%MA, and above the self pairings R. bicolor on 

0.5%MA. (Table A.3) 
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Table A.3. Mean radial extension rate (mm d-¹ ± SEM) of Stereum gausapatum and 
Stereum hirsutum on 0.5%and 2% malt agar when grown above interacting mycelium.  

Significant  
difference 

Hf/Hf 
 
 

Rb/Rb Rb/Hf Agar Fungi 

F3,16 = 4.87, 
P<0.05 

6.004 ± 
0.14 *** 
 

6.70 ± 
0.26 ns 
 

6.70 ±  
0.16 ns 
 

7.04  ± 
0.21 

Stereum  
gausapatum 
(2%MA) 

F3,16 = 0.83, 
P>0.05 

5.01 ± 
0.12 *** 
 

5.48 ± 
0.10 ns 
 

5.76  ± 
0.06 ns 
 

5.65  ± 
0.16 

Stereum  
gausapatum 
(0.5%MA) 

F3,16 = 6.97, 
P<0.01 

7.05±  
0.19 
** 
 

7.98 ± 
0.09 
ns 

7.68 ± 
0.14 
** 
 

8.38± 
0.34 
 

Stereum  
hirsutum  
(2%MA) 

F3,16 = 13.94, 
P<0.001 

5.17 ± 
0.12 
*** 

5.48 ± 
0.01 
*** 

5.76 ± 
0.06 
ns 

5.65± 
0.16 

Stereum  
hirsutum 
(0.5%MA) 

Significance of difference compared with growth above agar. (*, P ≤ 0.05;**, P ≤ 0.01;***, P ≤ 0.001; 
ns, not significant). Abbreviations: Rb, Resinicium bicolor ; Hf, Hypholoma fasciculare. 
 

 

A.2.4. Extension rate measurements 

Inhibition and stimulation of extension during inte ractions of five 
basidiomycetes with H. fasciculare, R. bicolor or S. gausapatum 

 

Extension rates toward H. fasciculare  decreased dramatically compared to growth 

alone in the case of E. spinosa, and B. adusta, and was reduced significantly but less 

dramatically for a further three species (T. versicolor, H. fasciculare and F. fomen-

tarius (Table A.4). In the case of two species (S. gausapatum and R. bicolor) there 

was no significant difference, whereas the extension rate of Vuilleminia comedens ac-

tually increased. The diameter of the colonies followed the same trend as the growth 

towards H. fasciculare in four species (E. spinosa, F. fomentarius, S. gausapatum and 

R. bicolor).In four species (V. comedens, H. fasciculare, B. adusta and T. versicolor) 

there was an increase in the diameter compared to growth alone whereas the growth 

towards the paired species was reduced. Growth away from the paired fungus de-
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creased for three species (E. spinosa, F. fomentarius and B. adusta), was not signifi-

cantly different for three species (S. gausapatum, R. bicolor and T. versicolor), and 

increased for the remaining two species (V. comedens and H. fasciculare). 

Table A.4. The mean radial extension rate (mm d-¹ ± SEM) of fungi when paired 
against Hypholoma fasciculare. 
FUNGI 
 

Alone Away Diameter Toward 

Eutypa 
spinosa 

8.54 ± 0.31 
 

6.63 ± 0.47  
*** 

6.35 ± 0.63  
*** 

0.97 ± 0.104 
*** 

Fomes fo-
mentarius 

1.01 ± 0.02  0.78 ± 0.021 
***  

0.76 ± 0.007 
*** 

0.77 ±  0.040 
*** 

Stereum 
gausapatum 

6.78 ± 0.05 5.08 ± 0.46 
ns 

6.21 ± 0.34 
ns 

5.57 ± 0.47 
ns 

Resinicium 
bicolor 

3.14 ± 0.03 3.12 ± 0.12 
ns 

3.50 ± 0.07 
ns 

3.20 ± 0.13 
ns 

Vuilleminia 
comedens 

2.24 ± 0.12 3.03 ± 0.10 
***  

3.63 ± 0.03  
*** 

2.94 ± 0.07 
*** 

Hypholoma 
fasciculare 

2.32 ± 0.073 2.58 ± 0.05 
*** 

2.56 ± 0.02 
*** 

2.11 ± 0.09 
*** 

Bjerkandera 
adusta 

8.93 ± 0.01 7.80 ± 0.70 
*** 

9.31 ± 0.19 
*** 

4.30 ± 0.16 
*** 

Trametes  
versicolor 

6.23 ± 0.042 6.39 ± 0.07 
ns 

7.17 ± 0.10 
*** 

5.23 ± 0.33 
*** 

Significance of difference compared with growing alone. (*, P ≤ 0.05;**, P ≤ 0.01;***, P ≤ 0.001; ns, 
not significant) 

 

The extension rates away from opponent for three species (E. spinosa, B. adusta and 

F. fomentarius) were decreased when interacted with R. bicolor, was not significantly 

different for three species (T. versicolor, S. gausapatum and V. comedens), whereas R. 

bicolor extension rate increased towards self compared with growing alone (Table 

A.5). The diameter of the colonies showed increase in three fungi (T. versicolor, R. 

bicolor and V. comedens), and decrease in (F. fomentarius and E. spinosa), while B. 

adusta and S. gausapatum was not significantly different. The extension rate toward 

the paired fungus decreased in five species (E. spinosa, V. comedens, S. gausapatum, 
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B. adusta and F. fomentarius), increased in T. versicolor but was not significant for R. 

bicolor against itself. 

 
Table A.5. The mean radial extension rate (mm d -¹± SEM) of fungi when paired 
against Resinicium bicolor.  
FUNGI 
 

Alone Away Diameter Toward 

Eutypa 
spinosa 

8.54 ± 0.31 
 

5.48 ± 0.27 
*** 

6.11 ± 0.28 
*** 

3.17 ± 0.09 
*** 

Vuilleminia 
comedens 

2.24 ± 0.12 
 

2.11 ± 0.07 
ns 

2.85 ± 0.23 
** 

1.55 ± 0.15 
** 

Resinicium 
bicolor 

3.14 ± 0.03 
 

3.49 ± 0.01 
* 

3.48 ± 0.05 
* 

3.05 ± 0.20 
ns 

Stereum 
gausapatum 

6.78 ± 0.05 
 

6.46 ± 0.16 
ns 

6.76 ± 0.13 
ns 

4.20 ± 0.51 
*** 

Trametes  
versicolor 

6.43 ± 0.04 
 

6.23 ± 0.21 
ns 

7.29 ± 0.03 
** 

6.78 ± 0.17 
** 

Bjerkandera 
adusta 

8.93 ± 0.01 
 

7.43 ± 0.41 
*** 

8.95 ± 0.08 
ns 

4.95 ± 0.63 
*** 

Fomes  
fomentarius 

1.01 ± 0.02 
 

0.74 ± 0.03 
*** 

0.67 ± 0.01 
*** 

0.70 ± 0.04 
*** 

Significance of difference compared with growing alone. (*, P ≤ 0.05;**, P ≤ 0.01;***, P ≤ 0.001; ns, 
not significant) 

 

The extension rate of H. fasciculare, R. bicolor and S. hirsutum did not alter signifi-

cantly in any direction, when paired with S. gausapatum compared with growth alone 

(Table A.6), E. spinosa and H. fasciculare extended significantly more slowly in all 

directions when paired with S. gausapatum, while B. adusta and T. versicolor exten-

sion increased significantly more rapidly along the tested fungus.  

Table A.6. The Mean radial extension rate (mm d-¹ ± SEM) of fungi when paired 
against Stereum gausapatum. 
FUNGI 
 

Alone Away Diameter Toward 

Hypholoma 
 fasciculare 

2.33  ±  0.07 2.40 ± 0.18 
ns 

2.43 ± 0.06 
ns 

2.13 ± 0.27 
ns 

Resinicium 
 bicolor 

3.14 ± 0.03 3.39 ± 0.06 
ns 

3.46 ± 0.08 
ns 

3.47 ± 0.15 
ns 

Eutypa 
 spinosa 

8.54 ±  0.31 5.98 ± 0.40 
*** 

7.24 ± 0.35 
***  

2.63 ± 0.28 
*** 
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Fomes 
 fomentarius 

1.01± 0.02   0.36 ± 0.05 
*** 

0.54  ± 0.01 
*** 

0.62 ± 0.09 
*** 

Trametes  
 versicolor 

6.43 ±  0.42 6.30 ± 0.17 
ns 

6.86 ± 0.03 
*** 

2.10 ± 0.17 
*** 

Stereum 
 gausapatum 

6.78 ± 0.05 5.53 ± 0.57 
*** 

5.95 ± 0.24 
*** 

2.17 ± 0.18 
*** 

Vuilleminia  
comedens 

2.24 ± 0.12 2.74 ± 0.05 
ns 

2.52 ± 0.03 
ns 

2.20 ± 0.36 
ns 

Bjerkandera 
 adusta 

8.93 ± 0.01 6.87 ± 0.54 
***  

8.81 ± 0.13 
*** 

5.13 ± 0.84 
*** 

Stereum 
 hirsutum 

6.79 ± 0.11 6.43 ± 0.39 
ns 

6.63 ± 0.12 
ns 

6.94 ± 0.29 
ns 

Significance of difference compared with growing alone. (*, P ≤ 0.05;**, P ≤ 0.01;***, P ≤ 0.001; ns, 
not significant) 

 

Overall, the extension rate of only two species: E. spinosa and F. fomentarius was 

decreased in all three directions (growth of one radial of diameter, growth away and 

growth towards) when paired against the three test species (H. fasciculare, R. bicolor 

and S. gausapatum). In general also, growth toward the paired species was more like-

ly to be reduced than increased. Only one pairing resulted in increased growth rate for 

the paired species in all three growth directions, (V. comedens versus H. fasciculare). 

 
 
A.2.5. Interaction outcomes 
 
 
H. fasciculare and R. bicolor deadlocked with F. fomentarius, V. comedens, S. gausa-

patum and with each other, while S. gausapatum deadlocked with H. fasiculare and R. 

bicolor and with F. fomentarius (Table A.7). On the other hand B. adusta totally re-

placed H. fasiculare and partially replaced R. bicolor and S. gausapatum. E. spinosa 

was totally replaced by H. fasiculare and S. gausapatum, and partially replaced by R. 

bicolor. T. versicolor was totally replaced by H. fasiculare, but it replaced R. bicolor 

and S. gausapatum. 

 As the interaction zone became denser, pigments at the line between the two  
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colonies were produced (Figs. A.2, A.3). In self pairings the two colonies could not be 

distinguished from each other (Fig. A.4). 

 
 
Table A.7. Outcomes of interactions between species of Hypholoma fasciculare, Res-
inicium bicolour and Stereum gausapatum and five other wood decay fungi. 
Opponent 
---------------- 
Fungi 

 
Es 

 
Ff 

 
Vc 

 
Tv 

 
Ba 

 
Hf 

 
Rb 

 
Sg 

Hypholoma 
fasciculare 
(Hf) 

 
R 

 
D 

 
D 

 
R 

 
r 

 
- 

 
D 

 
D 

Resinicium 
bicolor 

(R) 

 
PR 

 
D 

 
D 

 
r 

 
pr 

 
D 

 
- 

 
D 

Stereum 
gausapatum 
(S) 

 
R 

 
D 

 
R 

 
r 

 
pr 

 
D 

 
D 

 
- 

Abbreviation: D, deadlock; R, replacement of Hf, Rb and Sg by the opponent; PR, partial replacement 
of Hf, Rb and Sg by the opponent; r, replacement of opponent; pr, partial replacement of opponent. 
Abbreviations: Es,  Eutypa spinosa; Ff;, Fomes fomentarius; Vc, Vuilleminia comedens; Tv, Trametes 
versicolor; Ba, Bjerkandera adusta; Hf; Hypholoma fasciculare; Rb; Resinicium bicolour; Sg,  Stereum 
gausapatum . 
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Fig. A.2. Deadlock. Pairing interactions of the speceies that showed deadlock result. 
a) Rb vs Hf , b) Rb vs Sg* , c) Sg* vs Hf , d) Vc vs Hf, e) Vc vs Rb , f) Rb vs Ff , g) 
Sg* vs Ff , h) Hf vs Ff . * = some deadluck were compined by the presence of 
pigments for Sg. 
 
 
 
 
 
 
 
 
 
 

g h 

d e f 

a b c 

a b c 
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Fig. A.3. Replacement . Pairing interaction of different species that showed total 
replacement with the other species a) Hf* vs Es , b) Tv vs Hf* , c) Vc vs Sg* , d) Sg 
vs Tv* , e) Sg* vs Es , f) Ba* vs Hf , g) Rb vs Tv* , partial replacement h) Rb* vs Es , 
i)Ba* vs Sg , j) Rb vs ba*. 
* = the winner fungus. 
 
 

i 

j 

d e f 

g h 

a b c 
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Fig. A.4. Self-pairings. Pairing interactions of the same species. 
a) Bjerkandera adusta , b) Eutypa spinosa , c) Fomes fomentarius , d) Hypholoma             
fasiculare , e) Resinicium bicolor , f) Stereum gausapatum , g) Trametes versicolor , 
h) Vuilleminia comedens. 

 
 
 
 
 
 
 
 
 
 
 

a b c 

d e f 

g h 
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A.3.Discussions 

 
  

The preliminary experiments revealed that fungi extended more rapidly on 2% 

Malt Agar than on 0.5%  Malt Agar, but the latter medium was chosen for fur-

ther experiments as 2% MA is much richer in nutrients than wood. Though 

there were slight differences in extension rate depending on whether plates were 

aerated daily or less frequently, measurements were made while the plates were 

closed during the whole experiment to keep the VOCs inside the plates resulting 

in more obvious effect on the fungi. 

 

There were also differences in the extension rates between experiments, which 

may have been caused by slight differences in temperatures between incubators, 

and unknown aspects of fungus physiological state. Variations in microbial 

growth conditions can be affected by change in both the nature and quantity of 

VOCs (Wheatley, 2002). Production of VOCs can itself vary depending on the 

nutrient content of the medium on which the fungi are growing (Demyttenaere 

et al., 2004; Wheatley et al., 1997). The distance between the two inocula may 

yield different VOCs as mycelia that are older may produce different VOCs dur-

ing interactions. 

 
Outcomes were not always the same between replicates perhaps resulting from slight 

differences in the age of inoculum (Bruce et al., 1996), the timing of interaction, the 

medium of growth, and the slight different in environmental conditions such as tem-

perature, pH and water potential etc. While every effort was made to standardize 

these, differences may still have contributed to differences in outcome of interactions. 
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Outcomes can also be affected by the species involved and size of the starting myce-

lium (Stenlid, 1997, Holmer & Stenlid, 1997). 

 

The fungal outcomes seems to vary depending on the resources and the nutrients they 

consume, and differences in outcomes are found depending on where the interaction 

is taking place, e.g. wood, soil and agar cultures (Dowson, Rayner & Boddy, 1988; 

Wardle et al., 1993; Holmer & Stenlid, 1997; Woods et al., 2006). On the other hand 

other studies found that the fungal interaction outcomes of some species were similar 

when grown on wood and agar (Rayner & Boddy, 1988; Holmer et al., 1997). 

 

The tested species Stereum gausapatum, Hypholoma fasciculare and Resinicium bi-

color showed diverse combative abilities, deadlocking, replacing or being replaced by 

other species, while Bjerkandera adusta was the highest competitor against the tested 

species, Eutypa spinosa had the lowest combative ability. H. fasciculare produced 

cords when grown against opponents but does not produce them when grown alone on 

agar medium. In this study H. fasciculare showed dissimilar outcome to that reported 

by Boddy (1993) where it replaced S. gausapatum, while in this work they dead-

locked. Note, however, that different strains were used, and there can be considerable 

variation in combat ability of different strain (Rothery et al., 2009) 

 

Deadlock was the final outcome of these interspecific competitors, therefore, a clear 

distinction can be seen between interacted species, such inhibition at a distance fre-

quently follows mycelial contact involves diffusible compounds that may be evi-

denced by pigment production (Griffith & Rayner 1994), whereas S. gausapatum pro-

duced orange pigmentation during interactions and was either replaced by or dead-
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locked with other species. In another study (Rayner and Boddy 1988) it was also able 

to replace E. spinosa and Vuilleminia comedens, while the interaction between H. 

fasiculare and R. bicolor showed production of yellow pigment (Hynes et al., 2007). 

This secretion of pigments may occur as a result of a change in metabolism or as a 

result of chemical stress (Griffith et al., 1994). 
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Appendix (B) 
 

Media used 
 
 
 

 
B.1. Fahraeus medium 
 
Glucose, puriss. (Kebo)   ……………………   20   g 
L-Asaragine, purum (Merch)  ………………  2.5   g 
D,L-Phenylalanine, puriss. (Fluka)  .…….....  0.15   g 
Adenine (Nutr. Bio.-Corp.)  ……………....  0.0275 g 
Thiamine-HCL  ……………………………...  50  µg 
KH2PO4  …………………………………....   1.0   g 
Na2HPO4.2H2O  …………………………....   0.1   g 
MgSO4.7H2O   ...............................................    0.5  g 
CaCl2  .............................................................   0.01 g 
FeSO4.7H2O  .................................................   0.01 g 
MnSO4.4H2O  ..............................................    0.001g 
ZnSO4.7H2O   ..............................................   0.001 g 
CuSO4.5H2O   ..............................................   0.002 g 
Distilled water   ............................................   1000 ml 
pH about 5.0 after sterilisation. 
 
 
 
B.2. Kirk medium (N- limited, tartrate medium, Tien  Kirk 1988) 
 
Mineral elixer  
 
MgSO4 . 7H2O   ………………..   3,00 g/L 
MnSO4 . H2O    …………………  0,05 g/L 
NaCl    ………………………….   1,00 g/L 
FeSO4 . 7H2O  …………………   0,10 g/L 
CoCl2 . 6H2O  …………………    0,10 g/L 
CaCl2 . 2H2O  …………………    0,10 g/L 
ZnSO4 . 7H2O   ………………     0,10 g/L 
CuSO4 . 5H2O  ……………….     0,01 g/L 
 
 
Basal III 
 
Ammonium tartrate …………..    2 g/L 
KH2PO4   …………………….   20 g/L 
MgSO4 . 7H2O ………………    5 g/L  
CaCl2 . 2H2O   ……………….   1 g/L 
Mineral elixer    ………………    100 ml/L 
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Complete medium 
 
D – glucose   …………………   10 g/L 
Sodium tartrate  ……………...   2,3 g/L   adjust pH to 4,2 after addition 
Basal III   …………………….   100 ml/L 
pH     …………………………   4,5         adjust  using 5M HCl 
Agar    ………………………..    20-30 g/L 
 
 
B.3. Agar Only 
 
Agar    ………….   20 g/L 
H2O    ………….   1 L 
 
Autoclave cellophane strips to loosen plasticizer. When cool enough to handle remove 
plasticizer by rubbing between finger and thumb. Put in a beaker of water to prevent 
drying at this stage, autoclave again to use sterilized. Cellophane put on top of the 
agar plate by sterilized handle.   
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Appendix (C) 
 

Statistical figures and analysis 
 
 
a b 

Treatment

Ff

Ff (Rb/Rb)Ff (Rb/Hf)Ff (Hf/Hf)Ff (agar)

1.45

1.40

1.35

1.30

1.25

1.20

Boxplot of Ff by Treatment

    
Treatment

T
v

Tv(Rb/Rb)Tv(Rb/Hf)Tv(Hf/Hf)Tv(agar)

14.0

13.5

13.0

12.5

12.0

Boxplot of Tv by Treatment

 
 
c d 

Treatment

S
g

Sg(Rb/Rb)Sg(Rb/Hf)Sg(Hf/Hf)Sg(agar)

11.8

11.6

11.4

11.2

11.0

10.8

10.6

10.4

10.2

10.0

Boxplot of Sg by Treatment

    
Treatment

E
s

Es(Rb/Rb)Es(Rb/Hf)Es(Hf/Hf)Es(agar)
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13
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Boxplot of Es by Treatment

 
 
e f 

Treatment

B
a

Ba(Rb/Rb)Ba(Rb/Hf)Ba(Hf/Hf)Ba(agar)

18.5

18.0

17.5

17.0

16.5

Boxplot of Ba by Treatment

    
Treatment

V
c
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4.9
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4.7
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g h 

Treatment

R
b

Rb(Rb/Rb)Rb(Rb/Hf)Rb(Hf/Hf)Rb(agar)
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6.0
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    Treatment
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i 

Treatment

T
 v
i

Tvi (Rb/Rb)Tvi (Rb/Hf)Tvi (Hf/Hf)Tvi (agar)

13.6
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Boxplot of T vi by Treatment

 
 
 
Fig.C.1. The effect of VOCs produced by interactions of Hypholoma fasciculare and 
Resinisium bicolor compared with controls: a, Fomes fomentarius; b, Trametes versi-
color; c, Stereum gausapatum; d, Eutypa spinosa; e, Bjerkandera adusta; f, Vuil-
leminia comedens; g, Resinicium bicolor; h, Hypholoma fasciculare and i, Tricho-
derma viride.   
 

 
 
 
a  b 
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f

Hf(Tv/Tv)Hf(Rb/Tv)Hf(Rb/Rb)Hf(agar)
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Boxplot of Ba by Treatment
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c d 

Treatment

S
g

Sg(Tv/TV)Sg(Rb/Tv)Sg(Rb/Rb)Sg(agar)

6.4

6.2

6.0
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Fig.C.2. The effect of VOCs produced by interactions of Trametes versicolor and 
Resinisium bicolor compared with controls: a, , Hypholoma fasciculare; b, 
Bjerkandera adusta; c, Stereum gausapatum; d, Trametes versicolor; e, Vuilleminia 
comedens; f, Resinicium bicolor; g, Eutypa spinosa and h, Stereum hirsutum.   
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Fig.C.3. The effect of VOCs produced by Stereum gausapatum when interacted with 
Bjerkandera adusta, Eutypa spinosa, Stereum hirsutum and Vuilleminia comedens 
compared with controls on: a, T. versicolor; b, S.  hirsutum; c, B.  adusta; d, E.  
spinosa; e, V.  comedens and f, Stereum gausapatum. 
 
 

 



Appendices 
 

 161 

 
Table C.1. ANOVA analysis (Tukey 95%) for laccase activity of T. versicolor under 
stress (agar only, limited-N, 35°C, 5°C, KCl and 20°C) 
 

Tukey HSD          

Treatments N 

 

A b c d 
agar 3 4.4233       
LN 3 12.6900 12.6900     
35°C 3   24.8267 24.8267   
5°C 3     43.3400 43.3400 
KCl 3       47.6567 
20°C 3       62.4533 
Sig.   .745 .392 .082 .069 

                      One-way ANOVA, F5,12 = 27.187, P<0.001 
 
 
Table C.2. ANOVA analysis (Tukey 95%) for radial extension rate of T. versicolor 
under stress (agar only, limited-N, 35°C, 5°C, KCl and 20°C) 
 

Tukey HSD        

treatments N 

 

a b c 
5°C 5 2.6120     
KCl 5 2.9493     
agar 5   5.1077   
35°C 5   5.2670   
20°C 5     5.8590 
LN 5     5.8720 
Sig.   .066 .727 1.000 

                                   One-way ANOVA, F5,24 = 326.79, P<0.001 
 
 
Table C.3. ANOVA analysis (Tukey 95%) for laccase activity of T. versicolor under 
stress of VOCs produced by mycelial interaction of two fungi on agar 
          

Tukey HSD    

Treatments N 

 

a 
Sh/Sh 3 35.1800 
Es/Es 3 38.4200 
Hf3/Hf3 3 40.7600 
Rb/Hf 3 42.9333 
Hf4/Hf4 3 43.3567 
Controls 3 47.0533 
Tv/Ba 3 48.9867 
Sg/Sg 3 49.3300 
Ba/Ba 3 52.0600 
Sig.   .100 

                                      One-way ANOVA, F8,18 = 2.144, P>0.05 
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Table C.4. ANOVA analysis (Tukey 95%) for Manganese peroxidase activity of T. 
versicolor on 0.5% MA under the effect of VOCs produced during interacting two 
fungi on woodblocks. 
                                                  Wood VOCs 

Tukey HSD    

Treatments N 

 

a 

Sg/Es 4 2.1350 

Es/Es 4 2.1500 

Rb/Rb 5 2.2100 

Tv/Ba 5 2.2460 

Tv/Hf4 5 2.2560 

Sg/Ba 5 2.2740 

Sh/Sh 5 2.2960 

Sg/Sh 5 2.3880 

Controls 5 2.4320 

Rb/Hf4 5 2.4540 

Hf4/Hf4 5 2.4620 

Sg/Sg 5 2.4700 

Hf3/Hf3 5 2.4800 

Tv/Tv 5 2.4820 

Tv/Sg 5 2.5680 

Ba/Ba 5 2.5840 

Woodblock 

Controls 
7 3.1343 

Rb/Tv 5 3.1500 

Sig.  .309 
                                                                   One-way ANOVA, F16,66 = 6.204, P<0.001 
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Table C.5. ANOVA analysis (Tukey 95%) for laccase activity of T. versicolor under 
the stress of VOCs produced by the interaction of two fungi on wood blocks 
  

Tukey HSD        

Treatments N 

 

A b c d e 

Woodblock 

controls 
7 1.7314 

    

Sg/Es 4 1.8700 1.8700    

Es/Es 4 1.9250 1.9250 1.9250   

Tv/Ba 5 1.9740 1.9740 1.9740 1.9740  

Sg/Ba 5 1.9820 1.9820 1.9820 1.9820  

Rb/Rb 5 2.0000 2.0000 2.0000 2.0000  

Rb/Tv 5 2.0300 2.0300 2.0300 2.0300  

Sh/Sh 5 2.0300 2.0300 2.0300 2.0300  

Tv/Hf3 5 2.0480 2.0480 2.0480 2.0480 2.0480 

Sg/Sh 5 2.0780 2.0780 2.0780 2.0780 2.0780 

Hf3/Hf3 5  2.1440 2.1440 2.1440 2.1440 

Controls 5  2.1600 2.1600 2.1600 2.1600 

Sg/Sg 5  2.1720 2.1720 2.1720 2.1720 

Hf4/Hf4 5  2.2100 2.2100 2.2100 2.2100 

Rb/Hf4 5  2.2280 2.2280 2.2280 2.2280 

Tv/Sg 5   2.3020 2.3020 2.3020 

Ba/Ba 5    2.3280 2.3280 

Tv/Tv 5     2.4340 

Sig.  .155 .121 .078 .132 .062 
                       One-way ANOVA, F16,66 = 3.094, P<0.001 
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Table C.6. ANOVA analysis (Tukey 95%) for FRA2 gene expression of T. versicolor 
interactions with Sg, Ba, Hf and Tv 
 

Stat for FRA2   

Tukey HSD  

Treatments N 

 

a 
Tv/Tv 3 67.0133 
Tv/Ba 3 72.9885 
Tv/Sg 3 75.1311 
Tv alone 3 85.9037 
Tv/Hf 3 93.1240 
Sig.   .152 

                                                         One-way ANOVA, F4,10 = 2.127, P>0.05 
 
 
Table C.7. ANOVA analysis (Tukey 95%) for F2A1 gene expression of T. versicolor 
interactions with Sg, Ba, Hf and Tv 
 

Tukey HSD  

Treatments N 

 

a b c 
Tv/Ba 3 17.0695     
Tv/Sg 3   48.4165   
Tv/Tv 3   66.3083   
TV/Hf 3   73.2451   
Tv alone 3     100.0000 
Sig.   1.000 .069 1.000 

                                   One-way ANOVA, F4,10 = 29.282, P<0.001 
 
 
Table C.8. ANOVA analysis (Tukey 95%) for Nox gene expression of T. versicolor 
interactions with Sg, Ba, Hf and Tv 
 

Tukey HSD    

Treatments N 

 

a 
Tv/Ba 6 54.1966 
Tv/Tv 6 57.7479 
Tv/Sg 6 70.1435 
Tv/Hf 6 79.3239 
Sig.   .291 

                                    One-way ANOVA, F3,8 = 10.815, P<0.01 
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Table C.9. ANOVA analysis (Tukey 95%) for FRA19 gene expression of T. versi-
color interactions with Sg, Ba, Hf and Tv 
 

Tukey HSD   

Treatment N 

 

a b c d 
Tv/Ba    

 3 18.6980 
   

Tv/Sg    

 3 24.1009 
   

 Tv/HF    

 3 
 

39.0858 
  

Tv/Tv    

 3 
  

67.2339 
 

Tv alone 

 3 
   

100.0000 

Sig.  .412 1.000 1.000 1.000 
                                      One-way ANOVA, F4,10 = 260.429, P<0.001 

 
Table C.10. ANOVA analysis (Tukey 95%) for F1D8 gene expression of T. versi-
color interactions with Sg, Ba, Hf and Tv 
 
 

Tukey HSD     

Treatment N 

 

a b 

Tv alone 

 
3 36.6338 

 

Tv/Ba    

 3 42.0146 
 

Tv/Sg    

 3 44.5772 
 

Tv/Tv    

 3 59.9804 59.9804 

Tv/HF    

 3 
 

100.0000 

Sig.  .502 .102 
                                                      One-way ANOVA, F4,10 = 6.621, P<0.01 
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Appendix (D) 

Sequences 

 

Fig. D1. PCR products compared with the sequencing results for ((FRA19, FRA2, 
F1D8, F1A2, Nox) for Tv/Tv interactions. 

 
                    10        20        30        4 0        50        60        70              
              ....|....|....|....|....|....|....|.. ..|....|....|....|....|....|....| 
F1D8          ACGGAAAAAGAGCGAGGAGAAGCCCTCCTCATGATAATGGTTTTATCGTATACTGCCCTAATATCACTCC  
F1D8 reverse  ACTAGTGATTAGCGAGGAGAAGCCCCCCTCATGATAATGGTTTTATCGTATACTGCCCTAATATCACTCC  
 
                       80        90       100       110       120       130       140         
              ....|....|....|....|....|....|....|.. ..|....|....|....|....|....|....| 
F1D8          ACTCTCGGTTCTGCTCTCCTGCATTCCCAAGCGGCAATAATGGTGTGCACACCTCGAAGACTTGCTGTGT  
F1D8 reverse  ACTCTCGGTTCTGCTCTCCTGCATTCCCAAGCGGCAATAATGGTGTGCACACCTCGAAGACTTGCTGTGT  
 
                      150       160       170       180       190       200            
              ....|....|....|....|....|....|....|.. ..|....|....|....|....|....|... 
F1D8          GGCTGCTACAGTAAGTCGCTCCAGGTGGGTGGTTCGCACATGAGCGTTGCTTTGCACTTCTCGAGGAG  
F1D8 reverse  GGCTGCTACAGTAAGTCGCTCCAGGTGGGTGGTTCGCACATGAACGTTGCTTTGCACTTCTCGAGGAG  
 
 
 
                10        20        30        40        50        60        70              
       ....|....|....|....|....|....|....|....|.... |....|....|....|....|....| 
F2A1   GGAGAGTGCGGTGACAATGAAGGAGGCGCGAAGAACTCATGAGTTTGTAGTGAAGCACAACCAGAAGGTT  
F2A1+  GGAGAGTGCGGTGACAATGAAGGAGGCTATGGTCGACCGCGAAGAACTCATGAAGGAGCGGGCGCAGTTT  
 
                80        90       100       110       120       130       140         
       ....|....|....|....|....|....|....|....|.... |....|....|....|....|....| 
F2A1   TTCGAGGCTGAATTCGCTATGTGCGAGCATTGATCGAGTATATACCTACCTCTGTGTTATACGTAGTGGT  
F2A1+  GTAGTGAAGCACAACCAGAAGGTTTTCGAGGCTGAATTCGCTATGTGCGAGCATTGATCGAGTATATACC  
 
               150       160       170       180          
       ....|....|....|....|....|....|....|....|.... | 
F2A1   CGTGTGACTGTCATTGTCGGG                          
F2A1+  TACCTCTGTGTTATACGTAGTGGTCGTGTGACTGTCATTGTCGGG  
 

 
                       10        20        30        40        50        60        70              
              ....|....|....|....|....|....|....|.. ..|....|....|....|....|....|....| 
FRA2          CGGTACTGTCTGCTGCGATATTGGCAAAGAATGCGCCGAGAGGCTAATCGCGGAAGGATAGGGGTATACT  
FRA2 reverse  CGGTACTGTCTGCTGCGATATTGGCAAAGAATGCGCCGAGAGGCTAATCGCGGAAGGATAGGGGTATACT  
 
                       80        90       100       110       120       130       140         
              ....|....|....|....|....|....|....|.. ..|....|....|....|....|....|....| 
FRA2          TACCACAAATCTAGAGCTTTCCGTTTTCTAGGGACGGTCGTTCGACATAGTGTATCAGCGATTCAAGATT  
FRA2 reverse  TACCACAAATCTAGAGCTTTCCGTTTTCTAGGGACGGTCGTTCGACATAGTGTATCAGCGATTCAAGATT  
  
 
                      150       160       170       180       190       200       210       
              ....|....|....|....|....|....|....|.. ..|....|....|....|....|....|....| 
FRA2          GTGTCCCTTGAGCTTCTTTTCTACGATAACATTTGCCTGACATGCTGTAATTAAACCAGGATGTGCTTAA  
FRA2 reverse  GTGTCCCTTGAGCTTCTTTTCTACGATAACATTTGCCTGACATGCTGTAATTAAACCAGGATGTGCTTAA  
 
                      220       230  
              ....|....|....|....| 
FRA2          TCCAAGAACTCGTGTGTTCG  
FRA2 reverse  TCCAAGAACTCGTGTGTTCG  
 

 
                  10        20        30        40        50        60        70              
         ....|....|....|....|....|....|....|....|.. ..|....|....|....|....|....| 
FRA19    CGAACACACGAGTTCTTGGATTAAGCACATCCTGGTTTAATTACAGCATGTCAGGCAAATGTTATCGTAG  
FRA19    AGACTACCAGGACGGAACGACATGTGCTACCAGTAAGGAATGGCAGTGGGGGAAGGAGTGTTGCGGATGG  
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                  80        90       100       110       120       130       140         
         ....|....|....|....|....|....|....|....|.. ..|....|....|....|....|....| 
FRA19    AAAAGAAGCTCAAGGGACACAATCTTGAATCGCTGATACACTATGTCGAACGACCGTCCCTAGAAAACGG  
FRA19    GGGGTCGAGCAAGAAATACGATCAGATGACAGGAGAAACGGAAATGGCGCTGTGGATAGGGCCGGAATGG  
 
                 150       160       170       180       190       200       210       
         ....|....|....|....|....|....|....|....|.. ..|....|....|....|....|....| 
FRA19    AAAGCTCTAGATTTGTGGTAAGTATACCCCTCTCGGCGCATTCTTTGCCAATATCGCAGCAGACAGTACC  
FRA19    AAAGCATGGGAAGG                                                          
 
          
         . 
FRA19    G  
FRA19       
 

 
               10        20        30        40        50        60        70              
      ....|....|....|....|....|....|....|....|....| ....|....|....|....|....| 
Nox   TCGGTTGGTTCCAGACTCTCCTCCAGGAGGTCGAGGCTGCACAGGCCGACCCCAACTTCTTGCGTATCAA  
Nox+  TCGGTTGGTTCCAGACTCTCCTCCAGGAGGTCGAGGCTGCACAGGCCGACCCCAACTTCCTGCGCATCAA  
 
               80        90       100       110       120       130       140         
      ....|....|....|....|....|....|....|....|....| ....|....|....|....|....| 
Nox   CATCTACCTCACGCAGAAGATCAGCGAGGACATGCTCTGGAACATCGCCGTCAACGACGCGGGCGCGGAG  
Nox+  CATCTACCTTACGCAGAAGATCAGCGAGGACATGCTCTGGAACATCGCCGTCAACGACGCGGGCGCGGAG  
 
              150       160       170       180       190       200            
      ....|....|....|....|....|....|....|....|....| ....|....|....|....| 
Nox   TACGACCCGCTTACGCTCCTCCGCACTCGTACCATGTTCGGTCGCCCTGACTGGAAGGCCATCTA  
Nox+  TACGACCCGCTTACGCTCCTCCGCACTCGTACCATGTTCGGTCGCCCTGACTGGAAGGCCACTAA  
 
 
 

 

Sequences details of T. versicolor under stress 
 
The sequences of the laccase gene groups (alpha, beta, delta and gamma), and all the 

full 5 replicates of the sequences of laccase gene under stress that been used in the 

sequences alignments.  

 
 
>AB212732(alpha) 
cttcaacg gcaccaactt ctttatcaac aacgcgtctt tcacaccacc gacagtcccc gtgctcctcc agatcctgag 
cggtgcgcag 
     1141 accgcacagg aactcctccc tgcaggctcc gtctacccgc tcccggccca ctccaccatc 
     1201 gagatcacgc tgcccgcgac cgcactagcc ccaggcgcgc cgcacccctt ccacctgcac 
     1261 ggtcacgcct tcgcggtcgt ccgcagcgca ggcagcacta cgtataatta caacgacccg 
     1321 atcttccgcg acgtcgtgag caccggcacg cccgccgcgg gcgacaacgt cacgatccgc 
     1381 ttccagacgg acaaccccgg gccgtggttc ctccactgcc acatcgactt  
 
>U44430(alpha) 
cttca acggcaccaa cttcttcatc aacaacgcga ctttcacgcc gccgaccgtc ccggtactcc tccagattct 
gagcggtgcg 
     1321 cagaccgcac aagacctgct ccctgcaggc tctgtctacc cgctcccggc ccactccacc 
     1381 atcgagatca cgctgcccgc gaccgccttg gccccgggtg caccgcaccc cttccacctg 
     1441 cacggtcacg ccttcgcggt cgttcgcagc gcggggagca ccacgtataa ctacaacgac 
     1501 ccgatcttcc gcgacgtcgt gagcacgggc acgcccgccg cgggcgacaa cgtcacgatc 
     1561 cgcttccaga cggacaaccc cgggccgtgg ttcctccact gccacatcga  
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>AF414109(beta) 
cttca acggcaccaa cttcttcatc aacggcgcgt ctttcacgcc cccgaccgtg cctgtcctnc ttcagatcat 
cagcggcgcg 
     1141 cagaacgcgc aggacctcct gccctccggc agcgtctact cgcttccctc gaacgccgac 
     1201 atcgagatct ccttcccggc gaccgccgcc gcccccggtg cgccccaccc nttccacttg 
     1261 cacgggcacg cgttcgcggt cgtccgcagc gccggcagca cggtntacaa ctacgacaac 
     1321 cccatcttcc gcgacgtcgt cagcacgggg acgcctgcgg ccggtgacaa tgtcaccatc 
     1381 cgcttccgca ccgacaaccc cggcccgtgg ttcctccact gccacatcga  
 
>AM422387(delta) 
c ttgacagccc cgctgctccc ggtgacctca acattggcgg tgtcgactac gctctgaacc tggacttcaa 
cttcgatggc accaacttct tcatcaacga 
     1141 cgtctccttc gtgtccccca ctgtccctgt cctcctccag atccttagcg gtaccacctc 
     1201 cgcggccgac ctcctcccca gcggcagtct cttcgcgctc ccgtccaact cgacgatcga 
     1261 gatctcgttc cccatcaccg cgacgaacgc gcccggcgcg ccgcatccct tccacttgca 
     1321 cggtcacacc ttctccatcg ttcgtaccgc cggcagcacg gatacgaact tcgtcaaccc 
     1381 cgtccgccgc gacgtcgtga acaccggtac cgccggcgac aacgtcacca tccgcttcac 
     1441 gactgacaac cccggcccct ggttcctcca ctgccacatc gacttccact  
 
>AB212734(gamma) 
acttctcctt caacggctcc aacttcttca tcaacaacga gaccttcgtc ccgcctacag tgcctgtgct cctgcagatt 
     1141 ttgagcggtg cgcaggatgc ggcgagcctg ctccccaacg gcagtgtcta cacactccct 
     1201 tccaactcga ctattgagat ctcgttcccc atcatcacca ccgacggtgc tctgaacgcg 
     1261 cccggtgctc cgcacccgtt ccatctccac ggtcacactt tctcggtggt gcgcagcgcc 
     1321 gggagctcga ccttcaacta cgccaaccca gtgcgccggg acaccgtcag tactggtaac 
     1381 tctggcgaca acgtcactat ccgcttcacg accgacaacc cgggcccatg gttcctccac 
     1441 tgccacatcg acttccacct ggacgcgggc ttcgccatcg tttttgcgga ggacactgcg 
     1501 gacaccgcgt ccgcgaatcc tgttcctacg acgtggagcg atttgtgccc cacttacggt 
     1561 gctttggact cgtccgacct ctga 
 
 
 
>agar1 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCGACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>agar2 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
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GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTAA 
 
>agar3 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCGACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>agar4  
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCNCATNGANTTC 
 
 
>agar5  
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTACCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>KCL1 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>KCL2 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
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CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>KCL3 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>KCL4 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>LN1 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>LN2 
CTTCAACGGCACCAACTTCTTCATCAACGGCGCGTCTTTCACGCCCCCGAC
CGTGCCTGTCCTCCTCCAGATCATCAGCGGCGCGCAGAACGCGCAGGACC
TCCTGCCCTCCGGCAGCGTATACTCGCTCCCCTCGAACGCCGACATCGAG
ATCTCCTTCCCCGCCACCGCCGCTGCCCCCGGTGCGCCCCACCCCTTCCAC
TTGCACGGGCACGCGTTCGCGGTCGTCCGCAGCGCCGGCAGCACGGTCTA
CAACTACGACAACCCCATCTTCCGCGACGTCGTCAGCACGGGGACGCCTG
CGGCCGGTGACAACGTCACCATCCGCTTCCGCACCGACAACCCCGGCCCG
TGGTTCCTCCACTGCCACATCGACTTC 
 
>LN3 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
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CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCC
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>LN4 
CTTCNACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>LN5 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACAAT 
 
>20C1 
CTTCAACGGCACCAACTTCTTCATCAACGGCGCGTCTTTCACGCCCCCGAC
CGTGCCTGTCCTCCTCCAGATCATCAGCGGCGCGCAGAACGCGCAGGACC
TCCTGCCCCCGGTGCGCCCCACCCCTTCCACTTGCACGGGCACGCGTTCGC
GGTCGTCCGCAGCGCCGGCAGCACGGTCTACAACTACGACAACCCCATCT
TCCGCGACGTCGTCAGCACGGGGACGCCTGCGGCCGGTGACAACGTCACC
ATCCGCTTCCGCACCGACAACCCCGGCCCGTGGTTCCTCCACTGCCA-
CATCGACTTC 
 
>20C2 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>20C3 
CTTCAACGGCACCAACTTCTTCATCAACGACGTCTCCTTCGTGTCCCCCAC
CGTCCCTGTCCTCCTCCAGATCCTTAGCGGCACCACATCCGCGGCCGACCT
CCTCCCCAGCGGCAGTCTCTTCGCTCTCCCCTCCAACTCGACGATCGAGAT
CTCGTTCCCCATCACCGCGACGAACGCGCCCGGCGCGCCGCATCCCTTCC
ACTTGCACGGTCACACCTTCTCCATCGTTCGTACCGCCGGCAGCACGGATA
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CGAACTTCGTCAACCCCGTCCGCCGCGACGTCGTGAACACCGGTACCGCC
GGCGACAACGTCACCATCCGCTTCACGACTGACAACCCCGGCCCCTGGTT
CCTCCACTGCCACATCGACTTC 
 
>20C4 
CTTCAACGGCACCAACTTCTTCATCAACGACGTCTCCTTCGTGTCCCCCAC
CGTCCCTGTCCTCCTCCAGATCCTTAGCGGCACCACATCCGCGGCCGACCT
CCTCCCCAGCGGCAGTCTCTTCGCTCTCCCCTCCAACTCGACGATCGAGAT
CTCGTTCCCCATCACCGCGACGAACGCGCCCGGCGCGCCGCATCCCTTCC
ACTTGCACGGTCACACCTTCTCTATCGTTCGTACCGCCGGCAGCACGGATA
CGAACTTCGTCAACCCCGTCCGCCGCGACGTCGTGAACACCGGTACCGCC
GGCGACAACGTCACCATCCGCTTCACAACTGACAACCCCGGCCCCTGGTT
CCTCCACTGCCACATCGACTTC 
 
>20C5 
CTTCAACGGCACCAACTTCTTCATCAACGACGTCTCCTTCGTGTCCCCCAC
CGTCCCTGTCCTCCTCCAGATCCTTAGCGGCACCACATCCGCGGCCGACCT
CCTCCCCAGCGGCAGTCTCTTCGCTCTCCCCTCCAACTCGACGATCGAGAT
CTCGTTCCCCATCACCGCGACGAACGCGCCCGGCGCGCCGCATCCCTTCC
ACTTGCACGGTCACACCTTCTCTATCGTTCGTACCGCCGGCAGCACGGATA
CGAACTTCGTCAACCCCGTCCGCCGCGACGTCGTGAACACCGGTACCGCC
GGCGACAACGTCACCATCCGCTTCACGACTGACAACCCCGGCCCCTGGTT
CCTCCACTGCCACATCGACTTC 
 
 
>35C1 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>35C2 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>35C3 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
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CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>35C4 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCGGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>35C5 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>5C1 
CTTCAACGGCACCAACTTCTTCATCAACGACGTCTCCTTCGCGTCCCCCAC
CGTCCCTGTCCTCCTCCAGATCCTTAGCGGCACCACATCCGCGGCCGACCT
CCTCCCCAGCGGCAGTCTCTTCGCTCTCCCCTCCAACTCGACGATCGAGAT
CTCGTTCCCCATCACCGCGACGAACGCGCCCGGCGCGCCGCATCCCTTCC
ACTTGCACGGTCACACCTTCTCTATCGTTCGTACCGCCGGCAGCACGGATA
CGAGCTTCGTCAACCCCGTCCGCCGCGACGTCGTGAACACCGGTACCGCC
GGCGACAACGTCACCATCCGCTTCACGACTGACAACCCCGGCCCCTGGTT
CCTCCACTGCCACATCGACTAA 
 
>5C2 
CTTCAACGGCACCAACTTCTTCATCAACGACGTCTCCTTCGTGTCCCCCAC
CGTCCCTGTCCTCCTCCAGATCCTTAGCGGCACCACATCCGCGGCCGACCT
CCTCCCCAGCGGCAGTCTCTTCGCTCTCCCCTCCAACTCGACGATCGAGAT
CTCGTTCCCCATCACCGCGACGAACGCGCCCGGCGCGCCGCATCCCTTCC
ACTTGCACGGTCACACCTTCTCTATCGTTCGTACCGCCGGCAGCACGGATA
CGAACTTCGTCAACCCCGTCCGCCGCGACGTCGTGAACACCGGTACCGCC
GGCGACAACGTCACCATCCGCTTCACGACTGACAACCCCGGCCCCTGGTT
CCTCCACTGCCACATCGACTTC 
 
>5C3 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTTCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
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CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 
>5C4 
CTTCAACGGCACCAACTTCTTCATCAACGACGTCTCCTTCGTGTCCCCCAC
CGTCCCTGTCCTCCTCCAGATCCTTAGCGGCACCACATCCGCGGCCGACCT
CCTCCCCAGCGGCAGTCTCTTCGCTCTCCCCTCCAACTCGACGATCGAGAT
CTCGTTCCCCATCACCGCGACGAACGCGCCCGGCGCGCCGCATCCCTTCC
ACTTGCACGGTCACACCTTCTCTATCGTTCGTACCGCCGGCAGCACGGATA
CGAACTTCGTCAACCCCGTCCGCCGCGACGTCGTGAACACCGGTACCGCC
GGCGACAACGTCACCATCCGCTTCACGACTGACAACCCCGGCCCCTGGTT
CCTCCACTGCCACATCGACTTC 
 
>5C5 
CTTCAACGGCACCAACTTCTTCATCAACAACGAGACCTTCGTCCCGCCTAC
AGTGCCTGTGCTCCTGCAGATTTTGAGCGGTGCGCAGGATGCGGCGAGCC
TGCTCCCCAACGGCAGTGTCTACACACTCCCTTCCAACTCGACTATTGAGA
TCTCGTCCCCCATCATCACCACCGACGGTGCTCTGAACGCGCCCGGTGCTC
CGCACCCGTTCCATCTCCACGGTCACACTTTCTCGGTGGTGCGCAGCGCCG
GGAGCTCGACCTTCAACTACGCCAACCCAGTGCGCCGGGACACCGTCAGT
ACTGGTAACTCTGGCGACAACGTCACTATCCGCTTCACGACCGACAACCC
GGGCCCATGGTTCCTCCACTGCCACATCGACTTC 
 

 

Design of gene-specific primers (See 2.3.6) 

i.e.: F1D8 gene 
 
Forward Oligo: CGGAAAAAGAGCGAGGAGA 
Reverse Oligo:  CTCCTCGAGAAGTGCAAAGC 
 

>Tv_sshF_03D03 TVC00110_1 

TACGACATCGCCCCTAGGGCGGAGGACCGGAAAAAGAGCGAGGAGAAGCCCTCCTCA

TGATAATGGTTTTATCGTATACTGCCCTAATATCACTCCACTCTCGGTTCTGCTCTC

CTGCATTCCCAAGCGGCAATAATGGTGTGCACACCTCGAAGACTTGCTGTGTGGCTG

CTACAGTAAGTCGCTCCAGGTGGGTGGTTCGCACATGAGCGTTGCTTTGCACTTCTC

GAGGAGATGAGGGAAAGAGTGAAATGGTTTATAAACGGAGCTGGT 

 
 
Note: GCTTTGCACTTCTCGAGGAG= the reverse complement of CTCCTCGAGAAGTGCAAAGC 
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(primer3_results.cgi 0.4.0 modified for WI) 

 
No mispriming library specified 
Using 1-based sequence positions 
OLIGO            start   len       tm      gc%    any     3'  seq   
LEFT PRIMER         48   21   60.17   47.62  6.00  2.00 GCCCTCCTCAT-
GATAATGGTT 
RIGHT PRIMER       234   20   60.28   55.00  8.00  2.00 CTCCTCGA-
GAAGTGCAAAGC 
SEQUENCE SIZE: 273 
INCLUDED REGION SIZE: 273 
 
PRODUCT SIZE: 187, PAIR ANY COMPL: 5.00, PAIR 3' CO MPL: 2.00 
 
    1 TACGACATCGCCCCTAGGGCGGAGGACCGGAAAAAGAGCGAGGAGAAGCCCTCCTCATGA 
                                                     >>>>>>>>>>>>> 
 
   61 TAATGGTTTTATCGTATACTGCCCTAATATCACTCCACTCTCGGTTCTGCTCTCCTGCAT 
      >>>>>>>>                                                     
 
  121 TCCCAAGCGGCAATAATGGTGTGCACACCTCGAAGACTTGCTGTGTGGCTGCTACAGTAA 
                                                                   
                                                             
  181 GTCGCTCCAGGTGGGTGGTTCGCACATGAGCGTTGCTTTGCACTTCTCGAGGAGATGAGG 
                                        <<<<<<<<<<< <<<<<<<<<       
 
  241 GAAAGAGTGAAATGGTTTATAAACGGAGCTGGT 
                                        
 
KEYS (in order of precedence): 
>>>>>> left primer 
<<<<<< right primer 
 
ADDITIONAL OLIGOS 
                    start   len       tm      gc%    any     3'  seq   
 
3 LEFT PRIMER         28   19   60.60   52.63  2.00   0.00 CGGAAAAA-
GAGCGAGGAGA 
   RIGHT PRIMER       234   20   60.28   55.00  8.0 0  2.00 CTCCTCGA-
GAAGTGCAAAGC 
   PRODUCT SIZE: 207, PAIR ANY COMPL: 7.00, PAIR 3'  COMPL: 0.00 
 
 
 

(primer3_results.cgi 0.4.0 modified for WI) 
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Appendix (E) 
 

Optimisation of semi-quantitative RT-PCR 
 
 
The optimization of the Nox gene under stress at 60C for 30 cycles.  
 
 
 

 
 
(A) Image of gel electrophoresis of dilutions of the Nox gene, dilutions of a mixture 
of cDNA samples (100, 50, 25%) were amplified by RT-PCR using NOX primers and 
quantified (see methods section 2.3.8) 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B) the molecular weight of the bands in A 
 
 
 
 
 

Intensity of gel fragments was 
quantified 
30 cycles 
Spot blot results 

Dilutions Raw vol. Raw vol. - (-ve) 

100% 119160 56170 

50% 104241 41251 

25% 90286 27296 

-ve 62990 0 

 

Dilutions Raw value 

 

0 0 

0.25 27296 

0.5 41251 

1 56170 

  

100% 25% 50% -ve 

205 bp 
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(C)  The excel result of the spot blot results, band intensity (product amount) was 
plotted against the dilution to check that a linear relationship was obtained at this cy-
cle number  
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Appendix (F) 
 

Gel images of RNA and cDNA extractions 
 

 
 

 
Fig.E.1. RNA extracted from the mycelium of T. versicolor when interacted with;  H. 
fasciculare (Tv/Hf), lane 2  S. gausapatum (Tv/Sg),, lane 3 Bjerkandera adu-
sta(Tv/Ba),, and lane 4 self pairing with T. versicolor(Tv/Tv),  . M = 1 Kb ladder 
(Section 2.3.2 RNA extraction). 
 
 
 

Fig.E.2. RNA extracted from the mycelium of T. versicolor under stress at different 
temperatures: 5, 20, 35 oC) low m=nitrogen (LN), and KCl.. M = 10 µl 1 Kb ladder 
(10 ng µl-1). (Section 2.3.2 RNA extraction). 
 
 
 

rRNA: 26S 
and 18 S 

Tv/Ba Tv/Sg Tv/Hf  Tv/Tv  

20°C  20°C  35°C  5°C  5°C  35°C  L.N KCl  KCl  L.N 

1kb 

26S and 
18S rRNA 

1kb 

M 

M 
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Fig.E.3. RT-PCR amplification with 18S primers of cDNA extracted from T. versi-
color for the stress experiment for 20°C, agar only and Limited-N (LN). M=1Kb 
ladder (Invitrogen).  (Section 2.3.4 DNase treatment of RNA, 2.3.5 cDNA Synthesis). 
 
 
 
 
 
Example for Normalization of the gene expression data (See methods in section 
2.3.8)                 
 
Three replicates needed 

Stress 18 S   
 Replicate.1 

Treatments 
Raw 
vol. 

raw vol -  
(-ve) % of max 

20°°°°C (1) 65132 15997 100 
20°C (2) 56008 6873 42.96431 
5°C (1) 53407 4272 26.70501 
5°C (2) 52739 3604 22.52922 
35°C (1) 51020 1885 11.78346 
35°C (2) 50447 1312 8.201538 
KCL (1) 50952 1817 11.35838 
KCL (2) 54522 5387 33.67506 
A (100%) 60359 11224 70.16316 
B (50%) 54906 5771 36.07551 
C (25%) 51842 2707 16.92192 
(H2O) -ve 49135 0 0 

 
Results collected in excel file 

Stress 18 S   

Treatments 

Rep.1 Rep.2 Rep.3 mean  SD SE 

% of max % of max % of max  
18S fac-
tor   

20°°°°C (1) 100 100 100 100 1 0 0 
20°C (2) 42.96431 41.30129 42.26831 42.17797 0.42178 0.835181 0.482192 
5°C (1) 26.70501 24.94858 30.01472 27.22277 0.272228 2.572453 1.485206 
5°C (2) 22.52922 38.11302 45.06208 35.23478 0.352348 11.53888 6.661973 
35°C (1) 11.78346 20.88882 20.18049 17.61759 0.176176 5.064902 2.924223 
35°C (2) 8.201538 21.23525 23.25269 17.56316 0.175632 8.169913 4.716901 

20°C  agar L.N agar 20°C  L.N -ve DNA 
(known)  
 

Treated  
(RNA) 
 

-ve 

563 bp 
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KCL (1) 11.35838 33.89629 27.52176 24.25881 0.242588 11.61785 6.707569 
KCL (2) 33.67506 61.86532 56.48682 50.67573 0.506757 14.9666 8.640972 
A (100%) 70.16316 97.66428 85.9511 84.59285 0.845928 13.80079 7.967887 
B (50%) 36.07551 83.8205 70.59012 63.49538 0.634954 24.65051 14.23198 
C (25%) 16.92192 55.75133 49.88479 40.85268 0.408527 20.9312 12.08463 
(H2O) -ve 0 0 0 0 0 0 0 

 
 
 
 
 
 
 
 
 
 
 
 
 

Stress FRA19   
 Rep.1 

Treatments 
Raw 
vol. 

raw vol - 
(-ve) 18S factor normalizing % of max 

20°°°°C (1) 41371 18319 1 18319 100 
20°C (2) 44562 21510 0.42178 9072.481 49.52498 
5°C (1) 35849 12797 0.272228 3483.698 19.01685 
5°C (2) 36178 13126 0.352348 4624.917 25.24656 
35°C (1) 32559 9507 0.176176 1674.904 9.142989 
35°C (2) 34434 11382 0.175632 1999.039 10.91238 
KCL (1) 36294 13242 0.242588 3212.352 17.53563 
KCL (2) 36239 13187 0.506757 6682.609 36.47912 
A (100%) 38288     
B (50%) 34187     
C (25%) 31005     
(H2O) -ve 23052     

 

Stress FRA19   
 Rep.1 Rep.2 Rep.3 mean SD SE 
Treatments % of max % of max % of max    
20°°°°C (1) 100 100 100 100 0 0 
20°C (2) 49.52498 41.79612 41.79612 44.3724 4.46226 2.576287 
5°C (1) 19.01685 14.52072 14.52072 16.01943 2.595844 1.498711 
5°C (2) 25.24656 20.95442 20.95442 22.38513 2.478066 1.430712 
35°C (1) 9.142989 6.270586 6.270586 7.228054 1.658383 0.957468 
35°C (2) 10.91238 9.677351 9.677351 10.08903 0.713044 0.411676 
KCL (1) 17.53563 19.43753 19.43753 18.80356 1.098064 0.633967 
KCL (2) 36.47912 34.12989 34.12989 34.91296 1.356327 0.783076 
A (100%)       
B (50%)       
C (25%)       
(H2O) -ve       
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Statistics: 
 
% 0f max of 18S = (present raw vol – (-ve) / biggest value of raw vol – (-ve)) * 100 
 
Mean = ∑ % of max of Rep. / no. of Rep. 
 
18S factor = present mean / biggest mean 
 
SD = STDEV (∑ % of max of Rep.) 
 
SE = SD/ SQRT (n); n = number of Rep. 
 
Normalizing = raw vol- (-ve) * 18S Factor 
 
% of max of the gene = (present normalizing / biggest normalizing) * 100 
 
Making slops for the extension rate (= SLOPE (B!: B!, $A!: $A!) ) 
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Fig .5.5 FRA19 gene expression of T. versicolor under stress. (A) 5 °C, 35 °C, KCl; 
mean ± SEM (n = 3). Different letters indicate significant differences between means 
(P ≤ 0.05). 
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The treatments and the mean % of max were taken to SPSS statistical program to test 
the significant of differences between these treatments means with Anova and Tukey 
tests. 
Stress FRA19 
mean of % of max 
20°°°°C (1) 100 
20°°°°C (1) 100 
20°°°°C (1) 100 
5°C (1) 19.01685 
5°C (1) 14.52072 

5°C (1) 14.52072 
35°C (1) 9.142989 
35°C (1) 6.270586 
35°C (1) 6.270586 
KCL (1) 17.53563 
KCL (1) 19.43753 
KCL (1) 19.43753 

 
20°C (2) 49.52498 
20°C (2) 41.79612 
20°C (2) 41.79612 
5°C (2) 25.24656 
5°C (2) 20.95442 

5°C (2) 20.95442 
35°C (2) 10.91238 
35°C (2) 9.677351 
35°C (2) 9.677351 
KCL (2) 36.47912 
KCL (2) 34.12989 
KCL (2) 34.12989 

SPSS results 
Tukey HSD       

Treatments N 
Subset for alpha = 0.05 

a b c 
35°C 3 7.2281     
5°C 3   16.0194   
KCl  3   18.8036   
20°C 3     100.0000 
Sig.   1.000 .236 1.000 

 
Tukey HSD         

Treatments N 
Subset for alpha = 0.05 

a b c d 
35°C 3 10.0890       
5°C 3   22.3851     
KCl  3     34.9130   
20°C 3       44.3724 
Sig.   1.000 1.000 1.000 1.000 

 
 

 



Appendices 
 

 183 

Appendix (G) 
 

Cloning of PCR products 
 
 

Fig.G.1. PCR products of FRA19 gene amplified from cDNA, (32 cycles) for purifi-
cation and cloning, (Section 2.3.10.1 Purification of cDNA). 
 
    
 
 
 
 

 
Fig.G.2. Purified PCR product of FRA19 gene fragment (Section 2.3.10.2 Ligation 
into pGEMT-Easy vector). 
 
 
 
 
 
 
 
 

154 bpp 

154 bp 
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Fig.G.3. Colony PCR for the gene FRA19 amplified with M13F and R primers, +ve: 
plasmid control, -ve control: H2O, All the FRA19 colonies amplified a fragment of 
the expected size of approx. 500bp whereas one (Fail) amplified a smaller fragment 
indicating an empty vector (Section 2.3.10.3 Transformation of E.coli DH5α compe-
tent cells). 

 
  
 

 
 Fig.G.4. Miniprep DNA preparation of plasmid containing FRA19 gene,fragment  
lanes 1 and 2 FRA19, 3 4 and 5 are from Lacc gene for LN (limited-N), (Section 
2.3.10.4 Plasmid DNA purification). 
 
 
 
 
 
 
 
 
 
 
 
 

-ve 

Fail 

Tv/Tv            Tv/TV LN                LN                    LN 

+ve 

500 bpp 

FRA19 

FRA19 Lacc 
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Appendix (H) 

 
 
Morphology of T. versicolor under stress 
 
 
 

       
20°C (5 d)  35°C (6 d) 5°C (12 d) 
'normal growth'  'fluffy growth'  'light growth' 
 

       
Agar only (7 d)               Limited-N (5 d)              0.3M KCL (11 d)  
'very light growth'    'nearly normal growth'    'affected, very fluffy growth' 
 

    
0.5M KCL (11 d)        0.1M KCL (11 d) 
'super stressed'  'not really affected but fluffy growth' 
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Trametes versicolor is an important white rot fungus of both industrial and ecological inter-

est. Saprotrophic basidiomycetes are the major decomposition agents in woodland ecosys-

tems, and rarely form monospecific populations, therefore interspecific mycelial

interactions continually occur. Interactions have different outcomes including replace-

ment of one species by the other or deadlock. We have made subtractive cDNA libraries

to enrich for genes that are expressed when T. versicolor interacts with another saprotro-

phic basidiomycete, Stereum gausapatum, an interaction that results in the replacement

of the latter. Expressed sequence tags (ESTs) (1920) were used for microarray analysis,

and their expression compared during interaction with three different fungi: S. gausapatum

(replaced by T. versicolor), Bjerkandera adusta (deadlock) and Hypholoma fasciculare (replaced

T. versicolor). Expression of significantly more probes changed in the interaction between

T. versicolor and S. gausapatum or B. adusta compared to H. fasciculare, suggesting a relation-

ship between interaction outcome and changes in gene expression.

ª 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Introduction comprise a diverse range of chemical classes, including alco-
Interspecific interactions between saprotrophic basidiomy-

cetes are a key feature of their ecology, affecting substratum

colonisation and access to nutrients (Boddy 2000; Woodward

& Boddy 2008). This in turn affects the succession of species

and substratum decay rate (Boddy & Heilmann-Clausen

2008). Whenmycelia of different speciesmeet, the recognition

of ‘non-self’ induces responses both in the areawhere themy-

celia are in physical contact, known as the interaction zone,

and elsewhere in the mycelium. This response includes

changes in morphology of the mycelium, and the production

of extra-cellular enzymes and secondary metabolites

(Griffith et al. 1994; Rayner et al. 1994; Boddy 2000; Woodward

& Boddy 2008). For example, volatile organic compounds
52; fax: þ44 02920874305.

ritish Mycological Societ
hols, aldehydes, ketones, terpenes, and aromatic compounds,

which alter qualitatively and/or quantitatively during interac-

tions (Hynes et al. 2007; Evans et al. 2008). Production of reac-

tive oxygen species (ROS), phenoloxidases, laccases and

sometimes b-glucosidase increases during interactions

(Freitag & Morrell 1992; White & Boddy 1992; Lang et al. 1997;

Iakovlev & Stenlid 2000; Baldrian 2006). Spatio-temporal pat-

terns of production of enzymes during interactions vary

depending on species (Iakovlev & Stenlid 2000).

Although it would seem likely that such biochemical and

cellular changes are accompanied by changes in gene expres-

sion, few studies have used global transcriptomic approaches

to study mycelial interactions. Differential display was used

to identify 21 genes whose expression changed in the
y. Published by Elsevier Ltd. All rights reserved.
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Fig 1 e Areas used for construction of the subtracted

libraries (cross-hatched) from (A) T. versicolor growing

alone, (B) T. versicolor interacting with S. gausapatum.
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interaction between the wood decomposing basidiomycete

Physisporinus sanguinolentus and the conifer pathogenHeteroba-

sidion annosum, one of which was related to DNA repair and

stress responses (Iakovlev et al. 2004). A fewstudieshave inves-

tigated gene expression changes duringmycorrhizal fungal in-

teractions with plants (e.g. Peter et al. 2003; Acioli-Santos et al.

2008; Deveau et al. 2008) using microarray analysis. Other

studies have used microarrays or related transcriptomic

approaches to follow changes in gene expression during

hostepathogen interactions between fungi and plant

(Jakupovi�c et al. 2006) or mammalian (Steen et al. 2002) hosts.

Yet other transcriptomic studies have focussed on fungal de-

velopment such as the change between yeast and mycelial

forms in Paracoccidioides brasiliensis (Felipe et al. 2005) and the

development of fruit bodies in Sordaria (Nowrousian et al. 2005).

The aim of thisworkwas to investigate changes in gene ex-

pression elicited as a result of interspecific mycelial interac-

tions between saprophytic basidiomycetes. Trametes versicolor

was selected as ourmodel for thiswork as it is a secondary col-

oniser and has an ‘intermediate’ combative ability (Chapela

et al. 1988; Boddy & Heilmann-Clausen 2008). This allowed us

to select competitors that lose territory, gain territory or form

a deadlockwhen challengedwith this species.Wewere partic-

ularly interested in comparing transcriptomic profiles during

interactions which ultimately result in different outcomes to

discover whether the same gene expression patterns are com-

mon or divergent. Since the genome of T. versicolor is not yet

available, it was necessary first to construct cDNA libraries

and sequence sufficient ESTs to interpret the array results.

Here we report on 1155 sequenced ESTs from T. versicolor

expressed just behind the interaction zone. We also show

that interactions with competitors resulting in deadlock or in-

vasion of the competitor’s territory elicit a different set of tran-

scripts to an interaction where T. versicolor loses territory.
Materials and methods

Strains and culture conditions

Strains of Trametes versicolor (TvD2), Stereum gausapatum (Sg1),

Hypholoma fasciculare (HfGTWV2) and Bjerkandera adusta

(MA313), from Cardiff University culture collection, were

maintained on 2 % (w/v)malt agar (MA; 20 gMunton and Fison

spray malt, 15 g Lab M agar no. 2 per litre distilled water) in

9 cm plastic non-vented Petri dishes, incubated upside down

at 20 �C in the dark. Cultures were routinely subcultured every

10 d or just before the colony margin reached the edge of the

plate. Stock cultures were maintained on 2 % MA slopes at

4 �C. Paired interactions were set up by inoculating 6 mm

diam. plugs, cut from the actively growing mycelial margin,

30 mm apart (Fig 1). For pairings of T. versicolor vs. Hypholoma

fasciculare, the H. fasciculare plugs were plated 2 d prior to add-

ing the opposing T. versicolor plugs, ensuring that opposing

mycelia met at the centre of the plate.
RNA extraction

Colonieswere grown for 5 d andmyceliumwasharvested asep-

tically from plates using a small spatula to skim the mycelium
from the surface of the agar. Myceliumwas ground to a powder

in liquid nitrogen using a mortar and pestle, RNA extractions

wereperformedusing2 mlTRIReagent (SigmaeAldrich,Dorset,

UK) according to the manufacturer’s instructions. Residual ge-

nomic DNA was removed using RQ1 DNase (Promega, South-

ampton, UK). Absence of DNA contamination was checked by

inclusion of a no enzyme control reaction in the subsequent

cDNA synthesis and checked by reverse transcribed-PCR

(RT-PCR) using species-specific primers (data not shown).
Subtracted library construction and EST analysis

Two subtracted libraries were made, one forward and one

reverse to enrich respectively for mRNAs that are up- or

down-regulated in mycelia collected from Trametes

versicolor interacting with Stereum gausapatum compared to T.

versicolor growing alone. For those plates inoculatedwith T. ver-

sicoloralone,myceliumwasharvested fromacircular zone1 cm

wide around the growingmargin of a 5 d old colonies of approx.

60mmdiameter (Fig 1A). For interactionplates ofT. versicolor vs.

S. gausapatum, inoculated plates were grown for 5 d and har-

vested at a stage at which the mycelia of the two colonies had

just met. Myceliumwas taken from just behind the T. versicolor

margin at the interaction zone, to ensure that no S. gausapatum

myceliumwas collected (Fig 1B). In this interaction, T. versicolor

replaced S. gausapatum and hence it is possible to obtain mate-

rial close to the interaction zonewithout risk of accidentally in-

cluding mycelium from the competitor species. To verify that

RNA was not contaminated with S. gausapatum RNA, cDNA

was synthesised from a small aliquot of the RNA and RT-PCR

performed with S. gausapatum specific primers (see below for

details; Supplementary Fig 1). Approximately 0.5 mg total RNA

was used for cDNA synthesis using a Clontech SMART cDNA

synthesis (Palo Alto, USA) kit. PCR cycle number for second

strand synthesis was optimised to ensure amplification in the

exponential phase and required 20e29 cycles depending on

the template. Ligation efficiency was tested using primers

designed to T. versicolor b-tubulin. Subtraction of the ds cDNA

was performed using PCR-Select cDNA subtraction (Clontech,

St-Germain-en Laye, France) according to the manufacturer’s

protocols. The final amplification step was carried out over 12

cycles. PCR products were cleaned using a Qiaquick PCR purifi-

cation kit (Qiagen, Crawley, UK), and cloned into pGEM-T Easy

(Promega, Southampton, UK). Ligations were transformed into

mailto:
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highefficiencyXL10-Goldultracompetentcells (StratageneLtd.,

Cambridge, UK). Individual colonies were picked manually,

grown as liquid cultures in 96-well plates and stored as glycerol

stocks at �80 �C.
For sequencing, inserts were PCR amplified using M13 for-

wardandreverseprimers fromtheglycerol stocks, andpurified

usingaMilliporeMontageMultiscreenm96plate (Millipore, Bill-

erica, MA, USA, LSKM PCR10). Purified colony PCR products

were single pass sequenced using an ABI3730 sequencer and

M13F primer (GTTTTCCCAGTCACGACGTTG) at the Edinburgh

Sequencing Facility. Sequences were stripped of contaminat-

ing vector sequence, then the Partigene software pipeline

(Parkinson et al. 2004) was used to process EST sequences to

create a databaseofnon-redundant sequenceobjects (putative

genes). Functionswere assignedusingBLASTX (NCBI) basedon

homology to sequences in the GCG database or the Concordia

Fungal Genomic sequence database (https://fungalgenomics.

concordia.ca/home/) and only ascribed where the e-value

was below 5� 10�3 or (in a few cases) where visual inspection

of the sequence alignments indicated a clear match.

Design of species-specific primers

DNA was extracted from mycelium of Stereum gausapatum,

Hypholoma fasciculare and Bjerkandera adusta as described in

Parfitt et al. (2005), and amplified using conserved primers

ITS1F (Gardes & Bruns 1993) and ITS4 (White et al. 1990) that

amplify an approximately 800 bp fragment of the ITS region.

PCR products were gel purified and sequenced, and sequences

aligned using BioEdit. Species-specific primers amplifying an

approximately 500 bp fragment were selected from divergent

regions of the alignment and tested on cDNA fromall four spe-

cies to check for specificity (data not shown). Primer sequences

were: S. gausapatum (SgauF), GCGGGGGTCTCTTCGTTA (used

with ITS4), H. fasciculare (HfF), CACCTTTTGTAGACCTGGATT

and (HfR), AGTGCTATAAACGGCAAATAG, and B. adusta (BkF),

GTTCGCGCACTTGTAGGT and (BkR), ACACTAGAATACCC

TCCACA.

Printing microarrays

PCR products (1920) were purified as above and checked by gel

electrophoresis. 50e100 ng of each PCR reaction in 5 ml was

added to 5 ml of dimethyl sulfoxide (DMSO) in 384-well plates

using a Multiprobe�II HT EX (PerkinElmer LAS (UK) Ltd.) robot,

thenspottedasa 12� 4metagridof 12� 12 subgridsontoUltra-

GAPS II (Gamma Amino Propyl Silane, Corning, NY, USA)

coated slides using 120 mm solid pins on a robotic Flexys array

printer (Genomic Solutions, Ltd., Cambridgeshire, UK). Two

Lucida Microarray ScoreCard (Amersham Plc., Buckingham-

shire,UK) control spotswereprinted in the top left handcorner

of each subgrid. The scorecard consisted of different types of

control: calibration, ratio, and negative control. In addition

a b-tubulin clone shown to be invariant during the suppression

subtractive hybridization (SSH) protocol was used as a gene

control spot. Each control was spotted a total of four times on

each microarray slide: in two separate subgrids and twice

within each subgrid. Slides were air-dried for 12 h, baked at

80 �C for 2 h and then UV cross-linked with an autocrosslink

cross-linker (Stratagene, Amsterdam, The Netherlands).
Labelling of RNA for hybridisation to the arrays

RNAwas extracted as described above from the region just be-

hind the interaction zone of Trametes versicolor paired against

Stereum gausapatum, Hypholoma fasciculare, Bjerkandera adusta

or T. versicolor growing alone. Each RNA extraction replicate

used material derived from 30e50 plates. Three to five biolog-

ical replicates were used for each of the three interaction ex-

periments. RNA was DNase treated using RQ1 DNase

(Promega, Southampton, UK) and checked for the presence

of contaminating RNA from the paired species. A sample of

the RNA was reverse transcribed using M-MLV RNase H� Re-

verse Transcriptase (Promega) and PCR amplified using spe-

cies-specific primers for the three interacting species (as

described above), using ITS1/ITS4 as a positive control (data

not shown). Once checked, RNA was purified using a Qiagen

RNeasy kit (Qiagen, Crawley, UK). A Universal ScoreCard

mRNA spike (1 ml of either test or reference; Amersham Biosci-

ences, Buckinghamshire, UK) was added to the total RNA

(10 mg) which was then reverse transcribed using Superscript

II (Invitrogen, Paisley, UK) incorporating aa-dUTP. The cDNA

was post-labelled using Cy3 and Cy5 dyes (Amersham Biosci-

ences, Buckinghamshire, UK). Unincorporated Cy dyes were

removed using CyScribe GFX purification columns (Amer-

sham Biosciences, Buckinghamshire, UK). Each pair of la-

belled cDNA populations was concentrated using an

Eppendorf Concentrator 5301 (Jencons PLS, Leighton Buzzard,

UK) speedvac at 60 �C in the dark. cDNAswere resuspended in

HPLC grade water (Chromasolv, SigmaeAldrich, Dorset, UK)

containing poly A (5 mM, SigmaeAldrich, Dorset, UK).

Hybridisation of microarray slides

Slides were blocked in 5� saline sodium citrate (SSC), 0.1 %

sodium dodecyl sulphate (SDS), 1 % w/v bovine serum albu-

min (BSA) for 45 min at 42 �C followed by fourwashes in sterile

filtered water and dried with compressed air. For hybridisa-

tion the labelled cDNA was denatured in a heat block at

95 �C for 3 min and then immediately placed on ice. An equal

volume of hybridisation buffer (50 % formamide, 10� SSC,

0.2 % SDS) was added to the labelled cDNA and mixed by

pipetting. The probe (40 ml) was pipetted onto a new untreated

microscope slide and the blocked microarray was placed face

down on to this slide resulting in a sandwich. The array sand-

wich was hybridised in a humidity chamber at 42 �C over-

night. Following hybridisation, slides were separated whilst

immersed in 1� SSC, 0.2 % SDS at room temperature followed

by a 10 min wash at 55 �C and five rapid washes in the same

solution. They were then transferred to 0.1� SSC, 0.1 % SDS

at 55 �C for three 10 min washes. Slides were then transferred

to 0.1� SSC for 1 min at room temperature, dipped five times

and then transferred to a further wash with 0.1� SSC for

1 min. Following this final wash the slide was removed and

dried using compressed air.

Analysis of microarray slides

Microarrays derived from the subtracted libraries enriched for

Trametes versicolor genes up- or down-regulated during inter-

action with Stereum gausapatum were used in three different

https://fungalgenomics.concordia.ca/home/
https://fungalgenomics.concordia.ca/home/
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experiments. In each case transcripts expressed by T. versi-

color growing alone were compared to those derived from

just behind an interaction zone. Interactions with three differ-

ent saprotrophic basidiomycetes were tested: S. gausapatum,

Bjerkandera adusta and Hypholoma fasciculare.

Microarray slides were scanned using a ScanArray�Ex-

press HT microarray scanner (Perkin Elmer Precisely, MA,

USA) and the accompanying ScanArray� Express software

at 543 nm (Cy3) and 633 nm (Cy5) with a resolution of 5 mm.

Imagene version 5 software (BioDiscovery, El Segundo, CA,

USA) was used to quantify scanned images. Spot quality la-

belling (flags) were defined for empty spots with a signal

strength threshold of 1.0. The median signal intensity across

each spot and the median background intensity were calcu-

lated in both channels, and these data were exported into

GeneSpring (Version GX 7.3: Agilent Technologies UK Ltd.,

Cheshire, UK). Signal intensity was calculated for each spot

by subtracting the local background signal from the spot sig-

nal for both channels, giving the background-corrected spot

intensity. Three replicates of the array were printed on each

slide and three slides were used for each experiment each

with an independent biological replicate probe. Thus, there

were three biological replicates each with three technical rep-

licates making nine data points per spot on the array. Box

plots were produced for the raw data within each array and

compared between slides; poor slides were removed from

the dataset prior to normalisation.

Normalisations were performed manually, using Gene-

Spring and LimmaGUI. LimmaGUI is a graphical user interface

for linear modelling of 2-colour spotted microarray experi-

ments (Wettenhall & Smyth 2004). Global normalisation was

performedmanually. GeneSpringwas used formedian polish-

ing and inspecting invariant genes. The Lucidea internal

scorecard calibration controls (CC1eCC10) were used to con-

struct calibration curves for each slide, and ratio controls

were used to assess the raw values of the experimental ratios

and to verify normalisations. LimmaGUI was used for Lowess

and print-tip Lowess analyses. The effects of each normalisa-

tion were assessed by inspection of box plots, MA plots and

principal component analysis (PCA) plots of the array data

(not shown).

Following hybridisation, analysis of the variation between

individual print tips with LimmaGUI showed some variability

between subgrids printed by different print tips. Data normal-

ised using print-tip Lowess resulted in box plots of slides with

very narrow interquartile ranges for M values (average ratio)

and much of the variation of the raw data was removed.

Thus, data were not subjected to normalisation using print-

tip Lowess. Data were instead normalised in two steps: (i)

Per gene e divide by control channel, i.e. the test signal for

each spot divided by the corresponding control signal; (ii) Per

chipe normalised to the 50th percentile, i.e. the data distribu-

tions for each array slide were aligned by their medians. Box

plots of the data normalised with this method

(Supplementary Fig 2A) showed similar distributions between

samples within and between experiments, and the medians

were aligned. The expression profiles of the b-tubulin invari-

ant gene control spots (Supplementary Fig 2B) after normalisa-

tion confirmed that the normalisation had not altered the data

distribution adversely.
Gene lists were generated by filtering on expression level

for 1.4 fold changes up and down in at least two out of three

arrays for each experiment. Data were also filtered on

confidence using statistical differences between groups using

a parametric test (t test), at 90 % ( p¼ 0.1) confidence levels

using the Benjamini and Hochberg false discovery rate.

Significant differences between experiments were tested by

1-way ANOVA ( p< 0.05).

Semi-quantitative RT-PCR

Primers were designed and checked using Oligoanalyzer 3.1

(http://www.idtdna.com/ANALYZER/Applications/OligoAnaly-

zer/Default.aspx) to five of the EST sequences: FRA2 from clus-

ter TVC00203 (FRA2-F: CGGTACTGTCTGCTGCGATA, FRA2-R:

CGAACACACGAGTTCTTGGA); F1D8 from cluster TVC00110

(F1D8-F: CGGAAAAAGAGCGAGGAGA, F1D8-R: CTCCTCGAG

AAGTGCAAAGC); F2A1 from cluster TVC00043 (F2A1-F: GGAG

AGTGCGGTGACAATGAA, F2A1-R: GTGTGACTGTCATTGTC

GGG); FRA19 from cluster TVC01061 (FRA19-F: AGACTACCAGG

ACGGAACGA, FRA19-R: AATGGAAAGCATGGGAAGG); Tvcat

from cluster TVC00832: (Tvcat-F: AAC ATC CTC GAC CTG ACG

AA, Tvcat-R: GAG AAG AGA CGC GAC TGG AG) and Nox from

cluster TVC00679 (Nox-F: TCGGTTGGTTCCAGACTCTC and

Nox-R: TAGATGGCCTTCCAGTCAGG). Reactions were cycled

inaPerkinElmer2700 thermocyclerusingHotstarTaqpolymer-

ase (QIAGEN, Crawley, UK) and the following programme: 94 �C
for 15 min, {94 �C for 1 min, Tm for 1 min, 72 �C for 1 min}�
30e35 cycles, 72 �C for 6 min. Tm for FRA2, F1D8, FRA19, Nox

and F2A1 was 60 �C, and for Tvcat 55 �C.
Normalisation was performed to 18S rRNA using primers

EF4: GGA AGG GRT GTA TTT ATT AG and fung5: GTA AAA

GTC CTG GTT CCC C (Smit et al. 1999). Reactions were cycled

as above. Three or more replicates for each primer set were

amplified using the same machine to avoid any variability

due to the machine parameters. Products were analysed by

agarose gel electrophoresis, and PCR products quantified us-

ing the Gene Genius bioimaging system and GeneSnap soft-

ware (SynGene, Synoptics Ltd., Cambridge, UK). Product

quantitation from the 18S targetwas used to normalise results

for all the other primer sets. Cycle number was optimised and

limited for each primer set and cDNA synthesis batch combi-

nation. This ensured that the reactions were in the exponen-

tial phase and therefore product quantitation could be

considered semi-quantitative with respect to message abun-

dance. Specific cycle number is not reported here as it was

optimised independently for each batch of cDNA. Dilution se-

ries of the cDNA were included in every PCR run and results

only accepted where a linear response was obtained. This

methodology has been used successfully to obtain semi-quan-

titative RT-PCR data for a range of experimental systems

(Parfitt et al. 2004; Orchard et al. 2005; Wagstaff et al. 2005;

Price et al. 2008).

Staining cultures with NBT to reveal superoxide production
patterns

Interactions between Trametes versicolor and Stereum gausapa-

tum, Bjerkandera adusta or Hypholoma fasciculare, and self-pair-

ings of these species, were set up in triplicate as previously

http://www.idtdna.com/ANALYZER/Applications/OligoAnalyzer/Default.aspx
http://www.idtdna.com/ANALYZER/Applications/OligoAnalyzer/Default.aspx
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described on 2 %MA in 9 cm Petri dishes. Plates were destruc-

tively stained for superoxide production at 5, 8 and 11 d fol-

lowing the method of Silar (2005). Plates bearing mycelium

were flooded with 10 ml of 2.5 mM nitro blue tetrazolium

(NBT) in 5 mM n-morpholino propane sulfonate-NaOH

(MOPS) at pH 7.6, and incubated for 30 min at room tempera-

ture with gentle rotation to ensure equal coverage of the plate

by the stain solution. The liquid was removed and plates incu-

bated at room temperature for a further 30 min to 24 h. Con-

trol plates were flooded with 5 mM MOPS only. Photographs

were takenwith aNikon Coolpix camera to show colour devel-

opment 1 h, 4 h, and 24 h after application of the stain. No fur-

ther development of purple colouration was observed after

4 h.
Results and discussion

Involvement of ROS in interactions between Trametes
versicolor and three competitors

Three possible outcomes were elicited from T. versicolor

when paired against competitors (Fig 2). Stereum gausapatum

was replaced by T. versicolor (Fig 2A), there was deadlock

with Bjerkandera adusta (Fig 2B), and T. versicolor was

replaced by Hypholoma fasciculare (Fig 2C). Staining for super-

oxide revealed significant presence of ROS at the interaction

zone (Fig 3), suggesting that ROS may play a role in all three

of these interactions. Although the ways in which the two

species sense each other and the signalling events that oc-

cur during interactions are unclear, H2O2 has previously

been implicated as a signalling molecule together with at

least one MAPK cascade (Silar 2005). EST and microarray

analysis were used to further investigate processes occur-

ring at interaction zones.
Construction of Trametes versicolor subtracted libraries
and analysis of ESTs

Atotalof 8499cloneswere recovered fromtwosubtractive librar-

ies enriching for genes that are up- or down-regulated between

T. versicolor growing alone and a region close to the interaction

zone between T. versicolor and Stereum gausapatum (Fig 1B). Ap-

proximately equal numbers of clones were recovered from the
Fig 2 e Interactions on malt agar between T. versicolor (Tv, left

(A) Stereum gausapatum (Sg), (B) Bjerkandera adusta (Ba), and (C)

S. gausapatum in (A), deadlocking in (B) and being replaced in (C
subtractions: 3939 from the forward subtraction, and 4560

from the reverse subtraction.

Sequencing of equal numbers of clones (960) from each T.

versicolor SSH library yielded 1155 sequences, once poor and

short sequences had been removed (Genebank Accession

numbers are listed in Supplementary Table 1). Cluster analy-

sis of the sequences produced 190 clusters and 483 singletons

resulting in a total of 673 unique cluster IDs. Redundancy of

the EST library was calculated to be 28 % (number of ESTs in

clusters/total number of ESTs; Sterky et al. 1998). Therefore,

any new sequence would have a 28 % chance of already being

represented in the collection. However, there may be further

redundancy due to non-overlapping fragments of the same

gene. Out of 183 sequences where functions could be assigned

(Supplementary Table 1), the largest cluster represents a puta-

tive septin (26 sequences) followed by a 40S ribosomal protein,

and a glycoside hydrolase protein and four clusters putatively

assigned to a glycine-rich binding protein (Table 1). Cyto-

chrome c oxidase was also represented several times (15 se-

quences in four different clusters). Two transporters were

also in this highly represented class of genes: an ABC trans-

porter and a sugar transporter. Other sequences represented

by clusters of three or more members included genes related

to nitrogen metabolism, cell wall biosynthesis, ubiquitin-

dependent proteolysis and redox reactions.

Based on GO annotations and broad functional classes,

ESTs were assigned to 27 functional classes (Table 2). Overall

biosynthetic processes accounted for 19 % of the ESTs. Lipid

biosynthesis (7 %) and protein synthesis (7 %) were the two

largest classes within this category and a further 2 % related

to glycolipid biosynthesis. Another 9 % of ESTswere ribosomal

proteins, presumed to be involved in protein synthesis. In con-

trast, 24 % were assigned to functions related to metabolism

and proteolysis including proteins related to electron trans-

port, carbohydrate metabolism, nucleic acid breakdown and

several genes linked with ubiquitin-dependent proteolysis.

Expression of genes related to biosynthesis and metabolism

is consistent with the production of mounds of aerial mycelia

and active growth found at mycelial interactions. Carbohy-

drate and nitrogen metabolism-associated genes may be re-

lated to nutrition since radio-isotope studies have shown

that an interacting fungus can take up carbon from the oppo-

nent mycelium in the interaction zone (Wells & Boddy 2002).

These genes may also be involved in the remobilisation of

nutrients from dying cells as cell death often occurs at the
of Petri dish) and three other saprotrophic basidiomycetes:

Hypholoma fasciculare (Hf). Trametes versicolor is replacing

).

mailto:


Fig 3 e Interactions on malt agar between T. versicolor vs. three competitors, stained with NBT to reveal production of ROS:

(A) Stereum gausapatum, (B) Bjerkandera adusta, and (C) Hypholoma fasciculare 11 d after inoculation, T. versicolor is on the left

in each case. (D) T. versicolor growing alone, (E) T. versicolor paired with itself.

Microarray analysis of differential gene expression elicited in T. versicolor 651
interaction front (Silar 2005). Fungalmycelia grow at their tips,

which involves rapid synthesis of lipid membranes and an

extensive vesicle transport system, tightly controlled by

cytoskeletal elements. Membrane associated functions
Table 1e EST clusters containing three ormore sequences forw
the databases.

Cluster ID No. of sequences Puta

TVC00017 27 Cytokinesis-related pr

TVC00039 9 40S ribosomal protein

TVC00574 9 Glycoside hydrolase f

TVC00079 8 Glycine-rich RNA bind

TVC00748 8 Glycine-rich RNA bind

TVC01061 6 Glycine-rich RNA bind

TVC00032 5 Oxidoreductase

TVC00108 4 Glycine-rich RNA bind

TVC00689 5 Cytochrome c oxidase

TVC00710 5 60S ribosomal protein

TVC00016 4 DNA binding protein S

TVC00018 4 ABC transporter

TVC00101 4 Cytochrome c oxidase

TVC00675 4 Pre-mRNA-splicing fa

TVC00004 3 Cytokinesis-related pr

TVC00038 3 Glycine-rich RNA bind

TVC00047 3 Cytochrome c oxidase

TVC00068 3 Cytochrome P450

TVC00100 3 Sugar transporter

TVC00144 3 Cytochrome c oxidase

TVC00166 3 Cytokinesis-related pr

TVC00300 3 Ubiquitin activating e

TVC00582 3 60S ribosomal protein

TVC00603 3 Alpha-ketoglutarate d

TVC00655 3 1,3-beta-glucan synth
(transporters, vesicle transport, and membrane proteins)

accounted for 10 % of the ESTs, and another 2 %were cytoskel-

eton associated genes. Nuclear division is also tightly con-

trolled so that the ratio of nuclei to cytoplasm is maintained.
hich putative functions could be assigned by comparison to

tive function Functional class

otein Cell division

S17-B Ribosomal

amily 13 protein Carbohydrate metabolism

ing protein RNA binding

ing protein RNA binding

ing protein RNA binding

Redox

ing protein RNA binding

subunit 1 Electron transport

L20A Ribosomal

ART-1 DNA binding

Transporter

subunit 1 Electron transport

ctor 38B RNA binding

otein Cell division

ing protein RNA binding

subunit 1 Electron transport

Cytochrome P450

Transporter

subunit 1 Electron transport

otein Cell division

nzyme Proteolysis

L38 Ribosomal

ependent xanthine dioxygenase Nitrogen metabolism

ase Cell wall biosynthesis
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Table 3e Summary of the numbers of genes identified for
each pairing combination when filtered on expression
level.

Pairing 1.4 up 2 up 1.4 down 2 down

TvSg F 348 116 42 18 328 228 77 50

R 232 24 100 27

TvHf F 107 46 3 3 131 75 14 13

R 61 0 56 1

TvBa F 322 110 25 7 283 143 22 20

R 212 18 140 2

F, forward subtracted library clones; R, reverse subtracted library

clones; TvSg, T. versicolor vs. S. gausapatum; TvHf, T. versicolor vs.

H. fasciculare; TvBa, T. versicolor vs. B. adusta.

Table 2e Functional analysis of ESTs from the subtractive
libraries.

Functional class No./class % in class

Ribosomal 17 9

Electron transport 15 8

RNA binding 13 7

Protein synthesis 12 7

Cell division 11 6

Lipid biosynthesis 11 6

Signalling 10 5

Transporter 9 5

Metabolism 8 4

Metal ion homeostasis 8 4

Vesicle transport 8 4

Carbohydrate metabolism 7 4

Protein folding 7 4

Proteolysis 7 4

Endonuclease 5 3

ROS 5 3

Biosynthesis 4 2

Redox 4 2

Transcription 4 2

Cytoskeleton 3 2

Glycolipid biosynthesis 3 2

Amino acid biosynthesis 2 1

Cytochrome P450 2 1

DNA binding 2 1

Membrane protein 2 1

Nitrogen metabolism 2 1

Apoptosis 1 1
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Cell division was clearly active in the zone behind the interac-

tion front represented by 6 % of the ESTs. Nucleic acid binding

and transcription-related ESTs comprised 10 % of the se-

quences including nine ESTs homologous to glycine-rich

RNA binding proteins, although none of the ESTs were poten-

tial transcription factors. This is not unusual in this size of EST

collection due to their low level of expression (Holland 2002).

Stress/protective responses were also active in this zone

with 8 % of ESTs encoding genes related to ROS, protein fold-

ing or cytochrome P450. This class included two ESTs encod-

ing nicotinamide adenine dinucleotide phosphate (NADPH)

oxidases, important in many systems for the generation of

ROS (Bokoch & Knaus 2003; Lara-Ortı́z et al. 2003). Only one

EST was related to apoptosis: this encodes a homologue of

CLPTM1 which belongs to a gene family including members

involved in DNA-crosslinking-induced apoptosis (Yamamoto

et al. 2001). 5 % of our ESTswere related to signalling processes

including two receptor-like proteins and, interestingly, a het-

erokaryon incompatibility associated (HET-domain) protein.

HET-domain proteins are important in mediating vegetative

incompatibility reactions in many if not all fungal species

(Glass & Dementhon 2006). Furthermore, autophagic-type

cell death was induced when the HET-domain from a Podo-

spora anserina gene was over-expressed (Paoletti & Clavé

2007) implicating the HET-domain as a mediator of autopha-

gic-type cell death by vegetative incompatibility. Thus, the

EST collection indicates a mycelium active in both biosyn-

thetic andmetabolic processes where signalling andmolecule

transport are also important but where a few cell-death re-

lated genes are represented. It is likely that the majority of
the ESTs may not be specific for the events of the fungal inter-

action but reflect the high levels of growth and coordinated ac-

tivity which take place in this zone. It is important to note that

the region chosen for the EST isolation is well behind the in-

teraction zone: it seems likely that the pattern of gene expres-

sion would change considerably closer to the interaction

front.
Analysis of microarray data

Overall unexpectedly few probes were up- or down-regulated

by more than two-fold in any of the interacting mycelia

(Table 3), perhaps indicating that in this region of the myce-

lium transcriptional changes are either relatively minor com-

pared to the fungus growing alone, or that a dynamic situation

exists in which changes are transient.
Gene expression in the interaction between Trametes
versicolor vs. Stereum gausapatum

Expression of 30 % of the probes on the microarray was up- or

down-regulated as a result of the T. versicolor vs. S. gausapatum

interaction (Table 3). Of these, 348 were up-regulated by 1.4-

fold in at least two of three T. versicolor vs. S. gausapatum ar-

rays, but fewer (42) were up-regulated by two-fold. However,

within these up-regulated probe lists, two thirds (232) of the

1.4 up-regulated spots were clones from the reverse sub-

tracted library (Table 3) indicating that the subtraction had

not been very effective. The same pattern was observed for

the down-regulated probes, with 328 down-regulated by at

least 1.4 fold, but of these only one third (100) derived from

the reverse subtracted library.

The highest proportions of the up-regulated genes for

which it was possible to assign putative functions were

ribosomal genes, and glycine-rich RNA binding proteins

(Table 4). Glycine-rich RNA binding proteins are involved in

post-transcriptional regulation including processing of mRNA

and rRNA, RNA export, and RNA stability (Lunde et al. 2007).

They have not been studied extensively in fungi, but in plants

their expression is associated with several environmental

stresses such as wounding, dehydration, and fungal infection

(Sachetto-Martins et al. 2000), and it is possible that they are as-

sociated with the stress created by interspecific interactions.



Table 4 e Microarray probes for which putative functions can be assigned, that are up- or down-regulated by at least 1.4
fold in the interactions between T. versicolor vs. S. gausapatum, B. adusta or H. fasciculare.

Clone ID Cluster ID Putative function Fold change Up or down in
all 3 interactions

Tv/Sg Tv/Ba Tv/Hf

Tv_sshF_07B01 TVC00300 Ubiquitin activating enzyme 1.89 1.61

Tv_sshR_01B04 TVC00573 LAGLIDADG endonuclease 1.83 1.53

Tv_sshR_01B09 TVC00577 Aminomethyltransferase, mitochondrial precursor 0.7

Tv_sshR_03F04 TVC00079 Glycine-rich RNA binding protein 1.87 1.57

Tv_sshR_03H01 TVC00675 Pre-mRNA-splicing factor 38B 0.61

Tv_sshR_03H07 TVC00675 Pre-mRNA-splicing factor 38B 0.69 0.66

Tv_sshR_04E09 TVC00786 Bud site selection-related protein 1.99

Tv_sshR_04G06 TVC00802 Putative cytochrome oxidase assembly protein 1.55

Tv_sshR_06D09 TVC00917 Mitochondrial intermediate peptidase 0.61

Tv_sshR_06F01 TVC00748 Glycine-rich RNA binding protein 1.58

Tv_sshR_06F08 TVC00936 GrpE domain chaperone protein 1.44 1.83

Tv_sshR_08B07 TVC01047 GIY endonuclease 1.55 1.65

Tv_sshR_08D02 TVC01061 Glycine-rich RNA binding protein 0.59 0.55

Tv_sshR_09A02 TVC00778 Hypothetical iron permease 1.69

Tv_sshR_09E02 TVC00573 LAGLIDADG endonuclease 1.97

Tv_sshR_10D01 TVC01211 40S ribosomal protein mrp4 0.67 0.55

Tv_sshR_02F09 TVC00574 Glycoside hydrolase family 13 protein 2.02

Tv_sshR_03B07 TVC00689 Cytochrome c oxidase subunit 1 2.01

Tv_sshF_10E11 TVC00144 Cytochrome c oxidase subunit 1 2

Tv_sshF_10B02 TVC00428 Iron ion homeostasis-related protein 1.99

Tv_sshF_03G06 TVC00137 Cytokinesis-related protein 1.87

Tv_sshR_10E05 TVC00695 60S ribosomal protein L38 1.81

Tv_sshR_08E06 TVC01073 ZIP-like iron-zinc transporter 1.77

Tv_sshR_06E07 TVC00923 Retinal short-chain dehydrogenase/

reductase-like protein

1.77

Tv_sshR_01A05 TVC00567 Phosphoglucomutase 1.68

Tv_sshR_02A04 TVC00079 Glycine-rich RNA binding protein 1.68

Tv_sshF_05C03 TVC00025 Cytosineepurine permease 1.68

Tv_sshF_06F12 TVC00100 Sugar transporter 1.66

Tv_sshR_09B10 TVC01123 60S ribosomal protein L39 (L46) 1.66

Tv_sshF_07F06 TVC00337 Polyadenylate-binding protein 2 1.63

Tv_sshR_10A04 TVC01187 Cytochrome c oxidase subunit 1 1.61

Tv_sshR_06A02 TVC00884 Catalase 1.6

Tv_sshR_02B07 TVC00624 Elongation factor 1-alpha 1.59

Tv_sshR_08B07 TVC01047 GIY endonuclease 1.55 1.65

Tv_sshF_07B09 TVC00306 Heterokaryon incompatibility protein (HET); 1.51

Tv_sshR_09A07 TVC01110 Membrane protein of unknown function 1.5

Tv_sshR_06E02 TVC00920 LAGLIDADG endonuclease 1.42

Tv_sshR_01D02 TVC00574 Glycoside hydrolase family 13 protein 0.41

Tv_sshR_10H11 TVC00144 Cytochrome c oxidase subunit 1 0.49

Tv_sshR_08D08 TVC01061 Glycine-rich RNA binding protein 0.5

Tv_sshR_06H08 TVC00832 Candidate catalase 0.6

Tv_sshR_05D04 TVC00841 Ornithine-oxo-acid aminotransferase 0.61

Tv_sshR_03H09 TVC00689 Cytochrome c oxidase subunit 1 0.62

Tv_sshF_05H01 TVC00032 Oxidoreductase 0.63

Tv_sshR_09D09 TVC01061 Glycine-rich RNA binding protein 0.64

Tv_sshR_06D06 TVC00079 Glycine-rich RNA binding protein 0.64

Tv_sshF_08H07 TVC00137 Cytokinesis-related protein 0.64

Tv_sshR_06H06 TVC00951 Cell division control/GTP binding protein 0.64

Tv_sshF_06H09 TVC00282 U3 snoRNP-associated protein Rrp9 (predicted) 0.64

Tv_sshF_05H06 TVC00224 Translationally-controlled tumour protein 0.65

Tv_sshF_05D05 TVC00017 Cytokinesis-related protein 0.65

Tv_sshF_07D04 TVC00318 Mitogen-activated protein kinase 1 0.66

Tv_sshF_10D05 TVC00039 40S ribosomal protein S17-B 0.66

Tv_sshF_04D01 TVC00170 Iron ion homeostasis-related protein 0.68

Tv_sshR_01D07 TVC00574 Glycoside hydrolase family 13 protein 4.34

Tv_sshF_03D07 TVC00017 Cytokinesis-related protein 3.75 0.42

Tv_sshR_03H02 TVC00710 60S ribosomal protein L20A 2.69

Tv_sshF_08D12 TVC00345 Iron ion homeostasis-related protein 2.64

Tv_sshR_02G03 TVC00663 Cleft lip and palate associated transmembrane protein 2.55 2.21

Tv_sshR_09D02 TVC00640 Aldehyde reductase I (ARI), putative 2.53 0.49

(continued on next page)
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Table 4 e (continued)

Clone ID Cluster ID Putative function Fold change Up or down in
all 3 interactions

Tv/Sg Tv/Ba Tv/Hf

Tv_sshR_10B08 TVC01200 AP-2 adaptor complex subunit mu, putative 2.43 1.94

Tv_sshF_02C10 TVC00032 Oxidoreductase 2.41 1.65

Tv_sshR_06D05 TVC00914 40S ribosomal protein S4 2.35

Tv_sshR_10C12 TVC01210 Coatomer protein 2.31

Tv_sshF_10H08 TVC00016 DNA binding protein SART-1, putative 2.16 0.59

Tv_sshR_09D11 TVC01145 Eukaryotic translation elongation factor 2 2.11 0.55

Tv_sshF_08G09 TVC00408 Glycine-rich RNA binding protein 2.07 1.67 1.78 *

Tv_sshF_10B08 TVC00432 Glutamate-cysteine ligase 2.04 1.97

Tv_sshR_07F02 TVC01001 Phosphopyruvate hydratase 2.01 2.04 1.79 *

Tv_sshF_11F07 TVC00300 Ubiquitin activating enzyme 1.97 1.67 1.7 *

Tv_sshR_06C04 TVC00902 Alpha-1,2-mannosyltransferase 1.97 1.83

Tv_sshF_11G02 TVC00016 DNA binding protein SART-1, putative 1.96 1.83

Tv_sshR_02F03 TVC00655 1,3-beta-glucan synthase 1.95 2.43

Tv_sshF_11G10 TVC00551 Syntaxin-like protein 1.94

Tv_sshR_10B06 TVC01061 Glycine-rich RNA binding protein 1.92 1.63

Tv_sshF_04G12 TVC00079 Glycine-rich RNA binding protein 1.91 1.77 2.03 *

Tv_sshR_06B07 TVC00895 Cyclophilin 1 1.89 1.8

Tv_sshR_07F08 TVC00748 Glycine-rich RNA binding protein 1.88

Tv_sshF_06C06 TVC00247 60S ribosomal protein L6 1.84

Tv_sshF_10D11 TVC00017 Cytokinesis-related protein 1.84 0.62

Tv_sshR_04G05 TVC00801 Delta 9-fatty acid desaturase protein 1.84 1.77

Tv_sshF_04H08 TVC00204 Integral membrane protein 1.82

Tv_sshR_06G08 TVC00944 40S ribosomal protein S21 1.82 1.75

Tv_sshF_10H01 TVC00485 Mitogen-activated protein kinase 1 1.8 0.54

Tv_sshR_03G05 TVC00710 60S ribosomal protein L20A 1.78 1.76

Tv_sshR_07D05 TVC00748 Glycine-rich RNA binding protein 1.77

Tv_sshR_01B07 TVC00575 GTP-binding protein Ypt1 1.76

Tv_sshR_01H01 TVC00603 Alpha-ketoglutarate dependent xanthine dioxygenase 1.74

Tv_sshR_04D09 TVC00775 Serine/threonine kinase receptor associated protein 1.74

Tv_sshR_04C06 TVC00710 60S ribosomal protein L20A 1.73 1.73

Tv_sshF_04F09 TVC00017 Cytokinesis-related protein 1.72 1.87

Tv_sshR_04G02 TVC00799 60S ribosomal protein L17/L23 1.71 1.65

Tv_sshR_07F06 TVC00655 1,3-beta-glucan synthase 1.7 1.61

Tv_sshF_10H10 TVC00202 Peroxiredoxin 1.68 0.56

Tv_sshR_10F08 TVC00748 Glycine-rich RNA binding protein 1.68 1.74 1.8 *

Tv_sshR_04B05 TVC00748 Glycine-rich RNA binding protein 1.67 2.2 1.59 *

Tv_sshR_02D02 TVC00638 GrpE domain chaperone protein 1.64

Tv_sshR_02D05 TVC00640 Aldehyde reductase I (ARI), putative 1.63

Tv_sshR_04D02 TVC00769 Steroid 5-alpha-reductase 1.63 0.63

Tv_sshR_09B07 TVC01120 Stearoyl-CoA 9-desaturase 1.6

Tv_sshR_01F03 TVC00574 Glycoside hydrolase family 13 protein 1.59 1.72

Tv_sshR_05C04 TVC00832 Candidate catalase 1.58

Tv_sshR_03C02 TVC00695 60S ribosomal protein L38 1.56

Tv_sshF_02H10 TVC00079 Glycine-rich RNA binding protein 1.55

Tv_sshF_05B04 TVC00016 DNA binding protein SART-1, putative 1.54 1.48

Tv_sshF_11G05 TVC00017 Cytokinesis-related protein 1.54

Tv_sshR_08C07 TVC01008 ZIP-like iron-zinc transporter 1.54 1.64

Tv_sshR_03H08 TVC00740 Threonyl-tRNA synthetase 1.52 0.61

Tv_sshR_07G09 TVC01018 Family S53 protease-like protein 1.52

Tv_sshR_05C07 TVC00834 Pre-mRNA-splicing factor 1.47

Tv_sshR_02D04 TVC00639 Acyltransferase 1.44

Tv_sshR_08D07 TVC01065 Glycine-rich RNA binding protein 1.43 0.67

Tv_sshF_03G10 TVC00017 Cytokinesis-related protein 0.7

Tv_sshR_06H01 TVC00948 Ubiquinol-cytochrome c reductase complex 14 kDa protein 0.7 0.6

Tv_sshF_05E06 TVC00018 ABC transporter 0.69

Tv_sshR_01E02 TVC00590 Cytochrome c oxidase subunit 1 0.68

Tv_sshF_08A06 TVC00100 Sugar transporter 0.67

Tv_sshR_03A09 TVC00101 Cytochrome c oxidase subunit 1 0.66

Tv_sshF_04A10 TVC00039 40S ribosomal protein S17-B 0.65

Tv_sshF_04E03 TVC00017 Cytokinesis-related protein 0.64

Tv_sshF_02B06 TVC00017 Cytokinesis-related protein 0.63

Tv_sshF_02E08 TVC00047 Cytochrome c oxidase subunit 1 0.63

Tv_sshR_05D01 TVC00838 Aldo/keto reductase family oxidoreductase 0.63 0.49

Tv_sshF_03F05 TVC00017 Cytokinesis-related protein 0.61
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Table 4 e (continued)

Clone ID Cluster ID Putative function Fold change Up or down in
all 3 interactions

Tv/Sg Tv/Ba Tv/Hf

Tv_sshF_06E06 TVC00262 Caprolactone hydrolase 0.61

Tv_sshF_08A07 TVC00364 rRNA (adenine-N6,N6-)-dimethyltransferase 0.61

Tv_sshF_02B04 TVC00016 DNA binding protein SART-1, putative 0.6

Tv_sshF_03H07 TVC00144 Cytochrome c oxidase subunit 1 0.6 0.6

Tv_sshF_04F05 TVC00017 Cytokinesis-related protein 0.59

Tv_sshF_05B08 TVC00018 ABC transporter 0.59

Tv_sshF_02A04 TVC00004 Cytokinesis-related protein 0.58

Tv_sshF_08E11 TVC00068 Cytochrome P450 0.57

Tv_sshF_11D01 TVC00518 Phosphomannomutase 0.57 0.48 0.53 *

Tv_sshF_05A04 TVC00004 Cytokinesis-related protein 0.56

Tv_sshF_05H10 TVC00079 Glycine-rich RNA binding protein 0.56

Tv_sshR_03A03 TVC00032 Oxidoreductase 0.56

Tv_sshR_09A08 TVC00748 Glycine-rich RNA binding protein 0.56

Tv_sshF_04G02 TVC00017 Cytokinesis-related protein 0.55 0.63

Tv_sshF_10B04 TVC00017 Cytokinesis-related protein 0.55 0.61

Tv_sshR_05E07 TVC00655 1,3-beta-glucan synthase 0.55 0.68

Tv_sshF_03C10 TVC00017 Cytokinesis-related protein 0.54

Tv_sshF_05G07 TVC00068 Cytochrome P450 0.54

Tv_sshF_08E07 TVC00395 Vacuole fusion, non-autophagic-related protein 0.54 0.6

Tv_sshR_02E09 TVC00650 Lanosterol 14-alpha-demethylase 0.54

Tv_sshF_02B08 TVC00018 ABC transporter 0.53

Tv_sshF_02F04 TVC00017 Cytokinesis-related protein 0.51

Tv_sshF_02H01 TVC00032 Oxidoreductase 0.51 0.56

Tv_sshF_06C07 TVC00101 Cytochrome c oxidase subunit 1 0.51 0.62

Tv_sshR_10A01 TVC01061 Glycine-rich RNA binding protein 0.5 0.56

Tv_sshR_10H12 TVC01230 Delta 9-fatty acid desaturase protein 0.5 0.62

Tv_sshF_03C03 TVC00100 Sugar transporter 0.47 0.62 0.62 *

Tv_sshR_04E01 TVC00779 Co-chaperone 0.47 0.6 1.56

Tv_sshF_10E12 TVC00333 Similar to eukaryotic peptide chain release factor

GTP-binding subunit

0.46 0.62

Tv_sshR_08E05 TVC00079 Glycine-rich RNA binding protein 0.46 0.65

Tv_sshF_02D05 TVC00017 Cytokinesis-related protein 0.45 0.52 0.56 *

Tv_sshR_04A01 TVC00743 GIY endonuclease 0.45 0.6

Tv_sshR_08E01 TVC01069 60S ribosomal protein L27 0.45 0.6

Tv_sshF_02C03 TVC00025 Cytosineepurine permease 0.44 0.54 0.54 *

Tv_sshF_02D03 TVC00025 Cytosineepurine permease 0.44 0.49 0.54 *

Tv_sshF_03D01 TVC00108 Glycine-rich RNA binding protein 0.44 0.46 0.43 *

Tv_sshR_01E03 TVC00574 Glycoside hydrolase family 13 protein 0.44

Tv_sshR_03E01 TVC00712 60S ribosomal protein L19 0.44 0.62

Tv_sshR_07E01 TVC00990 Delta 9-fatty acid desaturase protein 0.44 1.84

Tv_sshF_02D07 TVC00039 40S ribosomal protein S17-B 0.42 0.35 0.49 *

Tv_sshF_11E11 TVC00079 Glycine-rich RNA binding protein 0.42 0.59

Tv_sshF_07E12 TVC00333 Similar to eukaryotic peptide chain release

factor GTP-binding subunit

0.41 0.38

Tv_sshF_11E12 TVC00534 Actin-related protein Arp4p 0.38 0.55

Tv_sshR_04E02 TVC00743 GIY endonuclease 0.38 0.61

Tv_sshF_03A01 TVC00047 Cytochrome c oxidase subunit 1 0.37 0.49 0.46 *
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Three probes encoded enzymes involved in carbohydrate me-

tabolism including an a-amylase family (glycoside hydrolase

family 13) gene and a 1,3-beta-glucan synthase. Glycoside

hydrolase family 13 is a family of starch modifying enzymes

comprising around 30different specificities, including isoamy-

lases, glucan synthases, and pullunases (Machovic & Janecek

2008). Recent studieshave indicated that someGH13 familyen-

zymes in fungi may be involved in the synthesis or modifica-

tion of alpha glucan in the fungal cell wall rather than starch

degradation (Yuan et al. 2008). In filamentous fungi such as As-

pergillus, for instance, glycosylhydrolases may be important

for plasticising the cell wall during conidial swelling, hyphal
branching or hyphal anastomosis (Latgé 2007). Three other

genes were also represented by multiple probes, amongst

these up-regulated genes were: a putative septin, a DNA-bind-

ing protein and an aldehyde reductase. In Saccharomyces cerevi-

siae septins anchor cell cycle regulatory proteins at the bud

neck during cell division. However, in filamentous fungi, they

play awider role in hyphal growth: determininghyphal branch

points (Helfer & Gladfelter 2006), andmaintaining cell polarity

andhyphalmorphogenesis (Warenda&Konopka2002). During

hyphal interactions they may therefore be contributing to the

interaction zone hyphal proliferation. The DNA-binding pro-

tein is related to SART-1, known as a tumour antigen, involved
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in cell cycle arrest (Wilkinson et al. 2004) and thought to be in-

volved in RNA-splicing in yeast (Makarov et al. 2002). Also of

notewas the up-regulation of an apoptosis related gene: a cleft

lip and palate associated transmembrane protein (CLPT pro-

tein). Two probes related to signalling were also up-regulated:

a serine/threonine kinase receptor associated protein and

a MAP kinase. MAPK signalling cascades are associated with

stress responses in many fungi (Zhao et al. 2007) and have

also been implicated in interspecific interactions between

plant and animal pathogens and their hosts (Bahn et al. 2007;

Eaton et al. 2008).

The largest group of 12 down-regulated probes in the T. ver-

sicolor vs. S. gausapatum interaction all belonged to one cluster

encoding a putative septin (Table 4), six probes belonging to

four different clusters encoded subunit 1 of cytochrome c ox-

idase. Glycine-rich RNA binding proteinswere alsowell-repre-

sented in this class, as were transporters: an ABC transporter,

a sugar transporter, and a cytosineepurine permease. Ribo-

somal proteins were also well-represented amongst the

down-regulated genes.

It is difficult to derive a clear picture from this pattern of ex-

pression, however, it would seem that both the putative septin

and the glycine-rich RNA binding proteins were both up- and

down-regulated. In the case of the septins this may reflect the

participation of different members of a gene family which in

yeast comprises seven members with varying functions

(Douglas et al. 2005). Changes in transcription of the glycine-

rich proteins are perhaps important in regulating other genes

and possibly, as already mentioned, in responding to stressful

conditions. Cell wall biosynthesis and starch breakdown-re-

lated probes were generally up-regulated, whereas cell division

was largely down-regulated. There also appeared to be more

signalling and regulatory genes (receptors, MAP kinases, DNA

binding proteins) represented amongst the up-regulated genes.
Gene expression in the interaction between Trametes
versicolor vs. Bjerkandera adusta

About the same number of the probes (605) changed in expres-

sion by more than 1.4 fold when T. versicolor was challenged

with B. adusta compared to the interactionwith Stereum gausa-

patum discussed above: of these 322 were up-regulated and
A      
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Fig 4 e Venn diagrams showing (A) up-regulated and (B) down-

change. TvSg[ T. versicolor vs. S. gausapatum; TvHf[ T. versico
283 were down-regulated (Table 3). Of the up-regulated

probes, just under half (48 %) were shared with those up-reg-

ulated when T. versicolor was challenged with S. gausapatum,

and a similar proportion (41 %) of down-regulated probes

were shared between these two interactions (Fig 4). Broadly

similar genes were up-regulated during this interaction com-

pared to the interaction with S. gausapatum (Table 4). Ribo-

somal genes and glycine-rich RNA binding proteins were

again well-represented amongst the up-regulated probes.

Genes related to carbohydrate metabolism also formed

a prominent group including those related to glycolysis, starch

breakdown, and cell wall biosynthesis. The CLPT protein was

also up-regulated in this interaction by over two-fold. Two

genes related to signalling were up-regulated, including the

heterokaryon incompatibility protein discussed above. Of

the down-regulated genes, RNA binding proteins were again

highly represented, including the glycine-rich RNA binding

proteins. In addition, as for the interactionwith S. gausapatum,

cell division-related genes were down-regulated including

probes homologous to a putative septin gene but also a cell di-

vision control/GTP-binding protein. Subunit 1 of cytochrome c

oxidase was also down-regulated. As for the interaction with

S. gausapatum, it would seem that cell division processes are

down-regulated whereas carbohydrate metabolism is up-reg-

ulated, although a completely clear picture does not emerge

due to some overlap in functional classes between the up-

and down-regulated genes. This is probably, at least in part,

due to difficulties in assigning sequences to specific members

of gene families as discussed above.
Gene expression in the interaction between Trametes
versicolor vs. Hypholoma fasciculare

A much smaller number of probes changed in expression in

response to H. fasciculare: 107 were up-regulated by more

than 1.4 fold and 131 were down-regulated (Table 3). Of the

up-regulated probes, a smaller proportion (30 %) was common

to the interaction with Stereum gausapatum compared to the

41 % shared by interactions with Bjerkandera adusta. However,

proportionately more down-regulated probes were shared be-

tween interactionswith S. gausapatum (50 %) andH. fasciculare,

a similar proportion to those shared between interactions
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regulated genes for all three interactions, filtered on 1.4 fold
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Fig 5 e Expression of six ESTs: TvNox (TVC00679), Tvcat

(TVC00884), TVC01192, TVC00110, TVC1061 and TVC00043.

(A) Microarray means of spots in cluster (±SEM, where

clusters contained more than one spot), (B) semi-quantita-

tive RT-PCR (mean ± SEM, n ‡ 3). Tv/Sg[ T. versicolor vs.

S. gausapatum; Tv/Ba[ T. versicolor vs. B. adusta; Tv/Hf[

T. versicolor vs. H. fasciculare; Tv/Tv[ T. versicolor

self-pairing.
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with B. adusta (58 %) (Fig 4). Putative functions could be

assigned to 20 up-regulated and 22 down-regulated genes

in the interactions between T. versicolor and H. fasciculare

(Table 4). Although these genes belong to similar functional

classes to those foundwith the other interaction experiments,

the representation of the classes differed. Thus, although the

major class of up-regulated genes was still RNA binding pro-

teins, three probes homologous to two different endonucle-

ases were up-regulated in the interaction with H. fasciculare.

In addition, carbohydrate metabolism-related genes did not

form a major functional class of up-regulated genes. The ma-

jor functional classes of down-regulated genes were more

similar to the other two interaction experiments with RNA

binding proteins highly represented, as well as cell division-

related genes, and transporters although carbohydratemetab-

olism-related genes were a larger proportion of down-regu-

lated genes than in the other two interactions. The

microarray results indicate that the gene expression changes

behind the interaction front with H. fasciculare differed from

those behind interaction fronts with the other two competi-

tors in that fewer genes changed in expression, and the pat-

tern of genes changing in expression was subtly different.

Comparison of gene expression elicited by the interaction
between Trametes versicolor and all three competitors

The expression of a small number of probes was up-regulated

(25) or down-regulated (49) consistently in all three interactions

(Fig 4). Four of the up-regulated probes and one of the down-

regulated probeswere homologous to glycine-rich RNA binding

proteins (Table 4). One of the remaining two up-regulated

probes, forwhicha functioncouldbeassigned,washomologous

to an ubiquitin activating enzyme. Ubiquitin-mediated proteol-

ysis is an important regulator in all eukaryotes for removingun-

wanted proteins (Aguilar & Wendland 2003) and has been

implicated in the responseofT. versicolor tonitrogendeprivation

(Staszczak 2008). In other basidiomycetes this process is in-

volved in a wide range of developmental functions including

fruit body formation (Miyazaki et al. 2005) and meiosis

(Koshiyama et al. 2006) as well as stress responses to heat

(Higgins & Lilly 1993) and UV (Taupp et al. 2008).

Analysis of gene expression of selected ESTs by semi-quantitative
RT-PCR

Two genes were selected on the basis of functional interest

from the EST collection for semi-quantitative RT-PCR analysis

(Fig 5) in that they are related to ROS processes. Three clusters

identified from the ESTs (TVC01049, TVC00960 and TVC00679)

each only comprising one probe sequence, were homologous

to a gene related to ROS production: NADPH oxidase. On the

arrays all three probes were stable in expression in all three

interactions except TVC01049 in the Trametes versicolor vs.

Hypholoma fasciculare (up-regulated by 1.65 fold). RT-PCR using

primers designed to TVC00960 confirmed the array result that

expression of this gene was essentially unaffected by any of

the three interactions with competitors tested (Fig 5).

A further two clusters (TVC00832 and TVC00884) represent-

ing three spots on the microarray showed homology to cata-

lases, enzymes that remove ROS by the breakdown of
hydrogen peroxide. On the arrays, catalase expression was

slightly up-regulated in all three interactions (Fig 5A) but

only in the T. versicolor vs. Stereum gausapatum interaction

zone was expression above the 1.4 fold cut off (1.44

fold� 0.12SE). This slight increase was also seen in the RT-

PCR (using primers designed to TVC00884), for T. versicolor

vs. S. gausapatum and T. versicolor vs. Bjerkandera adusta but

not for T. versicolor vs. H. fasciculare, where expression was be-

low that found in the T. versicolor self-paired control (Fig 5B).

Thus, gene expression of catalase was confirmed to be rela-

tively unchanged by interactions with a competitor in this re-

gion of the mycelium. These results suggest that either other

genes related to ROS play a more significant role at the inter-

action zone, or regulation of ROS production is post-

transcriptional.

Four further array probes were chosen on the basis of their

expression patterns on the array. TVC00203 is a gene of un-

known function represented by six probes on the microarray

and itsmeanexpression ratiowasclose toone inall three inter-

action experiments (T. versicolor vs. S. gausapatum: 1.16� 0.18,

T. versicolor vs. B. adusta: 1.14� 0.18,T. versicolor vs.H. fasciculare:

1.19� 0.14). Semi-quantitative RT-PCR indicated a similar pat-

tern (T. versicolor vs. S. gausapatum: 1.17� 0.29,T. versicolor vs. B.

adusta: 1.10� 0.09, T. versicolor vs. H. fasciculare: 1.43� 0.28).

Thus, only in the interaction with H. fasciculare did expression

rise marginally above the 1.4 fold threshold. TVC00110, repre-

sented by just one probe on the array, is also of unknown

mailto:
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function. Its expression was down-regulated in all three inter-

action experiments (T. versicolor vs. S. gausapatum: 0.37� 0.07,

T. versicolor vs. B. adusta: 0.35� 0.02,T. versicolor vs. H fasciculare:

0.50� 0.09) on themicroarrays. Semi-quantitativeRT-PCRcon-

firmed this expression pattern for two of the interactions: with

S. gausapatum and B. adusta (T. versicolor vs. S. gausapatum:

0.74� 0.01, T. versicolor vs. B. adusta: 0.72� 0.16). Unexpectedly,

however, RT-PCR indicated anup-regulation of this gene in the

interaction with H. fasciculare (T. versicolor vs. H. fasciculare:

1.84� 0.44).

TVC01061 is homologous to glycine-rich RNA binding pro-

teins and represented six probes on the array. These probes

were both up- and down-regulated on the array, indicating

that they may comprise a gene family and that their role is

complex. They were highly represented amongst the up-regu-

lated genes in all three experiments, however, the mean ex-

pression of this cluster on the microarrays indicated little

change in response to interactions (T. versicolor vs. S. gausapa-

tum: 1.26� 0.22, T. versicolor vs. B. adusta: 0.90� 0.10, T. versi-

color vs. H fasciculare: 1.00� 0.10). This was not supported by

the RT-PCR data where the specific sequence charted was

down-regulated in all three experiments.

The final cluster for which RT-PCR data were obtained was

TVC00043. This cluster comprised four probes on the array, is

of unknown function, and its microarray expression remained

below the 1.4 fold threshold in all three interaction experiments

(T. versicolor vs. S. gausapatum: 0.79� 0.08, T. versicolor vs. B.

adusta: 0.83� 0.05, T. versicolor vs. H. fasciculare: 1.29� 0.21).

This expression pattern was in agreement with the RT-PCR in

twoof the interactionexperiments:T.versicolor vs. S. gausapatum

(ratio: 0.77� 0.17) and T. versicolor vs. H. fasciculare (ratio:

1.16� 0.20), but the RT-PCR revealed a strong down-regulation

in the interaction with B. adusta (ratio: 0.28� 0.10).

Most of the RT-PCR results (12 out of 18) confirmed the ar-

ray data. However a few differences in expression were noted

above. This is likely to be due to two main factors. Firstly the

microarray used cDNA probes which were likely to hybridise

to several members of a gene family, in contrast PCR primers

were designed to specific gene sequences. It is therefore pos-

sible that in specific interactions different members of

a gene family predominated. This subtlety of expression

may have important functions in fine-tuning mycelial re-

sponses and is currently being investigated.

Another aspect of this work is the dynamic nature ofmyce-

lial responses. The robustness of our experimental approach

was tested by using biological replicates for the arrays and

RT-PCR. However small changes in spatial or temporal expres-

sionwill affect the results, andmay be important in regulating

progression of the interaction outcome. Again this is an area

under investigation.
Concluding remarks

This work has highlighted the use of microarrays to investi-

gate changes in gene expression during interactions between

competing fungi. The relatively low levels of change detected

on the array and verified by RT-PCR, coupled with the large

changes in enzyme activity andmorphology, indicate that fur-

ther gene expression studies on mycelium closer to the
interaction zone will be of interest. Fungal interactions repre-

sent a very dynamic system in which changes may occur rap-

idly and transiently. An analysis of the temporal and spatial

gene expression in regions close to the interaction zone will

be much easier now that specific probes can be studied. The

results also give a strong indication that gene expression

changes in response to competitors may depend on the com-

petitor species, and/or final outcome of the interaction though

clearly this requires further investigation. In particular, the

pattern of gene expression elicited by an interaction in which

Trametes versicolorwas overgrown differed substantially to ex-

pression patterns seen in interactions where T. versicolor

reached a deadlock or overgrew the competitor.

The picture presented by the EST analysis of gene activity

behind the interaction zone suggests substantial biosynthetic

activity presumably associated with formation of the barrage

structures, but also metabolism which may represent activi-

ties such as remobilisation of nutrients from damaged cells

or changes in cellular structure. Of particular interest was

the high proportion of geneswith putative functions in cytoki-

nesis and as glycine-rich proteins, and the identification of

signalling and regulatory genes which merit further study.
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