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Abstract
Inspiral signals from binary black holes, in particular those with masses in
the range 10M� <∼ M <∼ 1000M�, may last for only a few cycles within a
detector’s most sensitive frequency band. The spectrum of a square-windowed
time-domain signal could contain unwanted power that can cause problems
in gravitational wave data analysis, particularly when the waveforms are of
short duration. There may be leakage of power into frequency bins where
no such power is expected, causing an excess of false alarms. We present
a method of tapering the time-domain waveforms that significantly reduces
unwanted leakage of power, leading to a spectrum that agrees very well with
that of a long duration signal. Our tapered window also decreases the false
alarms caused by instrumental and environmental transients that are picked up
by templates with spurious signal power. The suppression of background is an
important goal in noise-dominated searches and can lead to an improvement in
the detection efficiency of the search algorithms.

PACS numbers: 02.30.Nw, 04.30.−w, 04.80.Nn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interferometric gravitational wave detectors are now operating at sensitivity levels at which
one can expect to detect inspirals from compact binary coalescences at the rate of one per
5 years (optimistic rate) to one per 5000 years (pessimistic rate). When upgraded to advanced
detectors, these might be as large as 400 per year to one per 2.5 years [1]. Even so, most of the
inspiral signals are not likely to stand above the noise background. A variety of techniques
to enhance signal visibility and reject false alarms are currently being used in gravitational
wave searches. Examples include matched filtering for signals of known phase evolution [2],
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wavelet transforms for transient signals of unknown shape [3, 4], coherent search methods
for burst signals [5], etc. Moreover, vetoes based on the expected signal evolution [6] and
instrumental and environmental monitors [7] have been developed over the past decade to
improve detection probability and mitigate false alarms. Detecting a signal buried in non-
stationary noise is a challenging problem as some types of non-stationary noise artefacts can
partially mimic the signal.

Many of these techniques involve the computation of a correlation integral in which band-
passed data are multiplied by the FD model waveform or the DFT of the TD signal (see, for
example, [8]). Here we consider a matched filtering search for inspiral signals where the DFT
of a TD waveform is used to construct the correlation. A problem that has not been adequately
addressed (see, however, [9]) in this context is the effect of the window that is used in chopping
a TD signal before computing its DFT.

Inevitably, all signal analysis algorithms use, implicitly or explicitly, some form of window
function. An inspiral waveform sampled from a time when the signal’s instantaneous frequency
enters a detector’s sensitive band until the time when it reaches the FLSO implicitly makes
use of a square window. Signal analysis literature is full of examples of artefacts caused by
the use of such window functions. For instance: leakage of power from the main frequency
bin where the signal is expected to lie into neighbouring bins, loss of frequency resolution
and corruption of parameter estimation [10]. In this paper we explore the problems caused by
using a square window and suggest an alternative that cures some of the problems.

There is no unique, or favoured, windowing method. One is often guided by the
requirements of a particular analysis at hand. In our case, a square window is especially
bad since the leakage of power outside the frequency range of interest can lead to increased
false alarm rate and poorer estimation of parameters. One reason for increased false alarm
rate could be that the noise glitches in the detector look more like the untapered waveform and
less like a tapered one. We have explored the effect of a smoother window function, presented
in section 2, which has a far steeper fall-off of power outside the frequency range of interest.
Use of this window has cured several problems we had with a square window. In section 4
we will discuss how tapering helps in a more reliable signal spectral estimation and hence a
proper determination of the expected signal-to-noise ratio. Spectral contamination is worse
for larger mass black hole binaries as they are in the detector’s sensitive band for a shorter
time and the window function can only extend over a short time. It is for such signals that
our tapered window offers the most improvement. In section 5 we will discuss how the rate
of triggers from a matched filtered search can vary depending on the kind of window function
used. We shall briefly mention in section 6 what effect our window function has on parameter
estimation, giving the conclusions of our study in section 7.

2. Window functions and their temporal and spectral characteristics

Let h(t) denote a continuous differentiable function, for example a gravitational wave signal
emitted by a coalescing compact binary, and let H(f ) denote the FT of h(t) defined by

H(f ) ≡
∫ ∞

−∞
h(t) exp(2π if t) dt. (1)

In reality the signal really does not last for an infinite time. The FT of a signal of finite duration
lasting, say, from −T/2 to T/2, can be represented either by using the limits of the integral to
go from −T/2 to T/2 or by using a window function. The latter is preferred so as to preserve
the definition of the FT.

2



Class. Quantum Grav. 27 (2010) 084020 D J A McKechan et al

A window function is a function that has either a finite support or falls off sufficiently
rapidly as t → ±∞. Two simple windows that have finite support are the square window
sT (t) defined by

sT (t) =
⎧⎨
⎩

1, −T

2
� t � T

2
0, otherwise,

(2)

and the triangular window bT (t) defined by

bT (t) =
⎧⎨
⎩

(1 − 2|t |/T ), −T

2
� t � T

2
0, otherwise.

(3)

Neither the square nor the triangular window are differentiable everywhere. As a result, they
are not functions of finite bandwidth. In other words, their FTs, ST (f ) and BT (f ), do not
have finite support in the FD: |S(f )| > 0 for −∞ � f � ∞. In the case of a square window
the FT S(f ) is a sinc function, |ST (f )| = T sinc(πf T ), which is peaked at f = 0, with a
width π/T and falls off as f −1 as f → ±∞. The lack of finite support in the Fourier domain
could sometimes cause problems, especially when the width of the window in TD is too small.
For functions that have infinite bandwidth the sampling theorem does not hold but this is not
a serious drawback if the FT falls off sufficiently fast above the Nyquist frequency. However,
there could be other issues when the window leads to leakage of power outside a region of
interest as we shall see below.

2.1. The Planck-taper window function

A signal h(t) with the window wT (t) applied to it, in other words the windowed signal hw(t),

is defined by

hw(t) ≡ h(t)wT (t). (4)

The convolution theorem states that the FT of the product of two functions h(t) and wT (t) is
the convolution of individual FTs:

Hw(f ) =
∫ ∞

−∞
h(t)wT (t) exp(2π if t) dt (5)

= H(f ) ∗ WT (f ) =
∫ ∞

−∞
H(f ′)WT (f − f ′) df ′. (6)

We can now see why a window whose power in the FD does not fall off sufficiently rapidly
might be problematic. The convolution integral will have contributions from all frequencies.
Suppose we are interested in matched filtering the data with an inspiral signal from a compact
coalescing binary whose instantaneous frequency varies from fa at time ta to fb at time tb. One
would normally achieve this by using a square window sT (t) that is centered at (ta + tb)/2
with width T = tb − ta. However, we can see from (6) that the convolution integral will have
contributions from outside the frequency range of interest.

To circumvent this problem we propose to use a window function that falls off
rapidly outside the frequency range of interest. Inspired by the tapering function used in
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Figure 1. The Planck-taper window in the TD (left), for three different choices of the parameter
ε = 0.01, 0.033, 0.1, and their power spectra (right). For reference we have included the square
window with the same effective width as the Planck-taper window.

Damour et al [11] we define a new window function σ(t) by

σT (t; ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t � t1 t1 = −T

2
,

1

exp(z(t)) + 1
, z(t) = t2 − t1

t − t1
+

t2 − t1

t − t2
, t1 < t < t2, t2 = −T

2
(1 − 2ε)

1, t2 � t � t3, t3 = T

2
(1 − 2ε)

1

exp(z(t)) + 1
, z(t) = t3 − t4

t − t3
+

t3 − t4

t − t4
, t3 < t < t4, t4 = T

2
,

0, t4 � t.

(7)

Here T is the width of the window and ε is the fraction of the window width over which the
window function smoothly rises from 0 at t = t1 to 1 at t = t2 or falls from 1 at t = t3 to
0 at t = t4. We shall call σ(t) the Planck-taper window as the basic functional form is that
of the Planck distribution. The motivation for choosing this window function is to reduce the
leakage of power in the FD but at the same time not to lose too much of the length of the
signal in the TD. The choice of ε will affect both aspects significantly. In figure 1 we have
shown the window function for several choices of the parameter ε = 0.01, 0.033, 0.1. At
lower frequencies the spectrum of the Planck-taper window falls off at the same rate (i.e. 1/f )
as a square window. But beyond a certain frequency f0 ∼ (εT )−1, the spectrum falls off far
faster.

A key feature in our use of the Planck-taper window is the automated and waveform-
dependent adjustment of ε as discussed in section 2.2 below.

2.2. Implementation of the window

We discretize (7) by replacing t, t1, t2, t3, t4 with the array indices j, j1, j2, j3, j4. In this
notation the parameter epsilon is approximated by ε 	 (j2 − j1)/N, where N is the number

4



Class. Quantum Grav. 27 (2010) 084020 D J A McKechan et al

Array index
0 20 40 60 80 100 120 140 160 180

Figure 2. The window function has been applied to the start of a cosine wave (top curve) using
two methods. In the first case it is applied from j = 1 up to an arbitrary choice of j = 20 (middle),
whereas in the second case it is applied up to the second maximum at j = 100 (bottom). The
lighter coloured parts of the middle and bottom curves (to the left of the black vertical lines) show
where the taper has been applied.

of data points in the waveform. The start and end of the waveform are denoted by j 1 and j 4,
respectively. The values of j 2 and j 3 have to be chosen judiciously to avoid leakage of power.
We choose j 2 and j 3 to be the array index corresponding to the second stationary point after
j 1 and before j 4 (see figure 2). Applying the transition stage of σ from a crest/trough ensures
that the window does not have a sudden impact on the behaviour of the waveform. The first
stationary point would not be an appropriate choice as it may occur within only a few array
points of j 1 or j4, causing ε to be too small. One could choose the 3rd, 4th or 5th, but using
such later maxima would reduce the genuine power of the waveform more than what might
be acceptable.

2.3. Comparison with other windows

We do not compare the performance of Planck taper with other commonly used windows,
e.g., Bartlet, Hann or Welch. Such windows transition between 0 and 1 over j = 1, . . . , N/2,
where the window is of length N, producing significant differences between h(t) and hw(t) in
(4). The power is therefore suppressed at the beginning and end of h(t). This is acceptable
when computing the PSD of a data segment, but would cause a problem if applied to a template
waveform as the phase (frequency) and amplitude of h(t) are both instantaneous functions of
t, with the most power at the end of the waveform.

Windows with properties similar to Planck taper, such as having a central flat region, do
exist. For example, the Tukey window [12], which has been used in gravitational-wave data
analysis recently [13], may offer a good comparison. However, a key feature in our study
of the Planck-taper window is the waveform-dependent adjustment of j 2 and j 3. Whilst this
automation could be considered separately from the Planck-taper window and used on other
windows defined by the points j1,2,3,4, we have not done so here. Given the shared features of
the Tukey window with Planck taper one might expect similar results.

3. Effect of the window function on the signal spectrum

In this section we will examine the power spectrum of the waveform of a coalescing binary
emitted during the inspiral phase. The waveforms are modelled using the PN approximation.
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Figure 3. The plots show the SNR integrand, where the waveform is generated from a frequency
of 35 Hz to the FLSO of the source, computed using the initial LIGO sensitivity for sources of
total mass 20M� and 80M�. In the case of the Planck-taper window the SNR integrand falls off
far faster than in the case of the square window.

However, even within the PN approximation, there are several different ways in which one
might construct the waveform [14, 15]. Two such models widely used in the search for compact
binary coalescences are TT3 and the SPA. TT3 is a TD signal model in which the amplitude
and phase of the signal are both explicit functions of time. In the so-called restricted PN
approximation the signal consists of the dominant harmonic at twice the orbital frequency, but
not higher order PN corrections consisting of other harmonics, and the phase is a PN expansion
that is currently known to O(v7) in the expansion parameter v—the relative velocity of the
two stars. The SPA is the Fourier transform of the TT3 model obtained by using the stationary
phase approximation to the Fourier integral [16]. A template belonging to the TT3 model is
defined for times when the gravitational wave frequency is within the detector’s sensitivity
band until it reaches FLSO. This means one is in effect multiplying a square window with a
continuous function.

Figure 3 shows the SNR integrand of the SPA, computed using the initial LIGO design
PSD [14]. The inspiral waveform is defined from a lower cutoff frequency of 35 Hz up to its
FLSO, for 20M� and 80M� equal-mass binaries. The DFT of the TT3, generated between
the same frequencies, with a square window (or rather no window), labelled HS , and with the
Planck-taper window, labelled Hσ , are also plotted. Where the Planck-taper window is used
the excess power, that above FLSO, decreases rapidly and the spectrum is closer to that of the
SPA.

4. Effect of the window function on the estimation of the signal-to-noise ratio

Gravitational wave searches for known signals, such as those emitted from a CBC [17, 18],
rely upon signal models for two primary reasons. Firstly, they are used as templates to matched
filter the data. Secondly, they are injected into the data as simulated signals to estimate the
efficiency of the detector to detect such signals. If the signal/template models are generated
in the TD then they must undergo a DFT if the data are analysed in the FD as is the case for
the current LIGO matched filter code.
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Figure 4. The SNR versus the total mass of the source for signals corresponding to compact binary
systems directly overhead a detector of initial LIGO design PSD. We plot the SNR obtained using
the DFT of TD waveforms with a square window (dashed curve) and with the Planck-taper window
(solid curve). Here the systems are overhead the detector at an effective distance of 65 Mpc, using
a fixed mass ratio of 5:1 and a fixed inclination angle of 45◦.

The expectation value for the SNR of a signal in stationary Gaussian noise, when the
signal and template match exactly, is given by

〈ρ2〉 = 4
∫ fnyquist

flower

df
|H(f )|2
Sh(f )

	 4�f

N/2−1∑
k=1

|Hk|2
Shk

, (8)

where Sh(f ) is the detector noise PSD and f lower is the detector lower cutoff frequency chosen
so that the contribution to the SNR integral from frequencies f < flower is negligible. The
second of the expressions on the RHS is a discretized evaluation of the SNR which is often
used in numerical calculations. Here Hk, k = 0, . . . , N/2, is the DFT of the signal defined
for positive frequencies and Shk is the discretized PSD.

The amplitude of an inspiral signal increases with the total mass of the system; conversely,
the FLSO of the signal is inversely proportional to the total mass. Therefore, as the total mass
of a system increases, the amplitude of the signal and the FLSO will have opposing effects.
For lower mass systems, the increasing amplitude causes the SNR to increase as a function of
the total mass. However, for higher mass systems, the reduction in the FLSO causes the signal
to have less power in band. As a result, the SNR will decrease as a function of the total mass.
The relatively low FLSO of the higher mass templates, coupled with their short duration, lead
them to be particularly susceptible to artefacts of spectral leakage in the DFT.

Figure 4 shows the SNR for TT3 inspiral waveforms that are 2PN in amplitude and phase,
plotted as a function of the total mass for two choices of the window function: the dashed
curve corresponds to the square window and the solid curve to the Planck-taper window. All
other parameters are the same in both cases. When the Planck-taper window is used, the curve
exhibits the expected behaviour, whereas in the case of a square window , the SNR curve is
‘jagged’ which is unexpected given that stationary Gaussian noise was used in the estimation
of the SNR. This behaviour is most likely explained by the excess power from the DFT of the
waveform.

It should be noted that integrating to FLSO rather than Nyquist in equation (8) is
not considered appropriate here. Firstly, the higher harmonics in the amplitude corrected
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waveforms contain power above FLSO, (which becomes more significant for high mass
systems). Secondly, cutting off the integration at FLSO is essentially the application of a
square window to the template waveform in the frequency domain. This will lead to leakage
of power in the time domain which is not a desirable feature. The problem of using a square-
windowed TD template as our matched filter is not that there is power above FLSO; it is that
the excess power in this region, present due to windowing, but not present in a genuine signal
will lead to unnecessary false alarms in a search.

5. Effect of window functions on trigger rates

To assess the effect that tapering of templates has on trigger rates, we have applied the LSC
CBC pipeline [17–21] to data taken during the S4 of the LIGO, which took place from February
22–March 23, 2005. The basic topology of the pipeline is similar to that used in many previous
searches [17, 18, 20], and consists of the following main steps.

• The template bank is chosen such that the loss of SNR due to having a finite number of
templates is no more than 3% for any signal belonging to a given family of waveforms
[2, 22].

• Matched filter the data with the generated templates. A trigger is generated at times when
the SNR is larger than a given threshold. The output of this stage is a list of first-stage
single-detector triggers.

• Check for coincident events between different detectors. For an event to be deemed
coincident, the parameters seen in at least two detectors (for instance, the masses of the
system, the time of coalescence, etc) should agree to within a certain tolerance [23]. The
output of this stage is a list of first-stage coincident triggers.

• Re-filter the data using only templates associated with coincident triggers. This time, the
triggers are subjected to further signal-based vetoes, some of which are computationally
costly, such as the chi-squared veto [6]. This produces a list of second-stage single-
detector triggers.

• Check for coincident events between detectors using the second-stage single-detector
triggers. This produces a list of second-stage coincident triggers.

In this study the data were filtered using the EOB templates [14, 24, 25], tuned to recent
results in numerical relativity [26, 27], with a total mass in the range 25–100M�. This choice
agrees with the templates used to search for signals from high-mass CBCs in data from LIGO’s
S5. Because the EOB waveforms used as templates contain the inspiral, merger and ringdown
phases, there was no need to taper the end of the waveform. Therefore, in this case, the taper
specified in (7) was only applied to the start of the waveform. Although this may reduce the
effect the taper has in comparison to tapering both ends of an inspiral-only template, it is of
more interest to evaluate the performance in a realistic search case. It should be noted that
the tapering window is explicitly applied to the template waveform where the length of the
waveform is less than the length of the data segment that is matched filtered. We do not apply
any window to the data segment.

Figure 5 shows the number of triggers as a function of total mass with and without tapering.
It can be seen that the number of triggers is generally higher when the templates are not tapered.
The only exception seems to be the lowest mass bin in the second-stage coincident triggers,
where the opposite is true. However, the difference in the number of triggers in this bin is
not large, and is likely just a statistical anomaly. For first-stage single-detector triggers, the
number of triggers using tapered templates is 84% of that obtained using untapered templates.
The number of second-stage coincident triggers when using tapered templates is 71% of that
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Figure 5. Left. Number of triggers recovered by matched filtering the S4 data with and without
tapering applied to the templates. Right. Number of triggers at the second stage of the analysis
pipeline, after consistency checks and coincidence tests [23] in the time-of-arrival and masses of
the component stars have been applied.

obtained for untapered templates. The difference in trigger rates is more significant at higher
masses. This is because the template waveforms for these systems terminate at a frequency
within or below the most sensitive frequency band of the detector, making any leakage of
power to higher frequencies more significant (cf figure 3, left most panel). The reduced trigger
rate indicates that applying the taper function to the templates could aid in reducing the false
alarm rate in a search for high mass CBCs.

6. Effect of windowing on detection efficiency and parameter estimation

The same data used in section 5 were reanalysed, but with simulated gravitational wave signals
(injections) added. The injections were of the same family as the templates used in section 5.
This allowed us to compare the detection efficiencies and accuracy of parameter estimation
using tapered versus untapered templates. We looked at the error in recovered chirp mass and
arrival time at both single-detector first-stage triggers and coincident second-stage triggers,
but found negligible difference between the two cases1.

We did not explicitly measure the detection efficiency as a function of distance, but found
the number of injections recovered to be nearly identical in the two cases, with less than 1%
fewer injections found when using tapered templates. Given the vast reduction in the trigger
rates shown in section 5, this indicates that an improvement in detection efficiency can be
expected when using tapered templates.

The above studies were performed first with tapering applied to the injections and then
repeated without—the difference between the results was negligible.

7. Conclusion

We have developed a tapering method that leads to a spectrum for TD waveforms that
more closely matches their FD analogues, containing significantly less power at unexpected

1 We have seen some evidence of improvements in parameter estimation for the ambiguity function of high mass
inspiral-only waveforms, but this is outside the context of a gravitational wave search.
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frequencies when compared with the use of a square window. This is achieved by automating
the implementation of the window.

If tapering is applied to templates in a gravitational wave search the trigger rates are
reduced, especially for high mass templates, without any significant change in detection
efficiency. In a search, foreground triggers can be ranked by their probability of occurring as
a background trigger; thus if background triggers are reduced, a given foreground trigger may
appear more significant. Another benefit of reduced trigger rates is that the computational
cost of a search will decrease. We have demonstrated that the windowing method would be
beneficial when used in a high mass search.

The tapering method could also be useful in low latency data analysis techniques where TD
templates are divided into sub-templates of different frequency ranges, and matched filtered
individually [28]. The relative shortness of some templates in the higher frequency bands
potentially compounds the problem of using a square window, and tapering the templates may
go some way to alleviating this issue.
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