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Abstract
There has been remarkable progress in numerical relativity recently. This has
led to the generation of gravitational waveform signals covering what has been
traditionally termed the three phases of the coalescence of a compact binary—
the inspiral, merger and ringdown. In this paper, we examine the usefulness of
inspiral only templates for both detection and parameter estimation of the full
coalescence waveforms generated by numerical relativity simulations. To this
end, we deploy as search templates waveforms based on the effective one-body
waveforms terminated at the light-ring as well as standard post-Newtonian
waveforms. We find that both of these are good for detection of signals.
Parameter estimation is good at low masses, but degrades as the mass of the
binary system increases.

PACS numbers: 04.30.Tv, 04.80.Nn, 07.05.Kf, 04.25.dg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Several ground-based interferometric detectors are now in operation to detect gravitational
waves. These include the Laser Interferometric Gravitational-wave Observatory (LIGO) at
two sites in Livingston and Hanford, USA, and the Virgo detector in Cascina, Italy. They
have recently completed a first science run at or close to design sensitivity and are sensitive to
gravitational waves from coalescing binaries at distances of tens to hundreds of megaparsecs
depending on the total mass and the mass ratio of the system. The broadband sensitivity (40–
400 Hz) of these detectors makes it possible to search for binaries with a rather large range
of component masses from one to hundreds of solar masses. This range of masses includes
both the neutron star binaries (which are known to exist) as well as neutron star–black hole
and double black hole binaries (of which we have no observational evidence).
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In this paper, we test the efficiency of inspiral waveforms for the detection and parameter
estimation of the full coalescence signal. We restrict our attention to two waveform families.
The first of the families is the Fourier domain model, called TaylorF2 or SPA [1], which is an
analytical approximation to the Fourier transform of the standard post-Newtonian (PN) [2–5]
waveform (i.e., TaylorT3) computed using the stationary phase approximation. The waveform
is computed to leading order in amplitude, whereby the higher harmonics of the signal are
neglected. The highest PN order available in the LIGO Scientific Collaboration (LSC) code
base [6] for this family is (v/c)7 (i.e. 3.5 PN order) in phase. A number of searches by the
LSC for compact binaries of low masses (i.e. M < 25 M�) have used this model to second
post-Newtonian order as optimal templates [7–10].

The second family we consider is the effective one-body (EOB) [11] model at four PN4

(i.e., (v/c)8) order in phase but terminated at the light ring. As discussed below, the EOB
model provides the full waveform, i.e., the inspiral, plunge, merger and ringdown waveform.
In particular, the merger–ringdown waveform is obtained by stitching a superposition of quasi-
normal modes to the inspiral–plunge waveform at the EOB light ring [11–16]. In this study,
however, we use the EOB model without the ringdown modes5. Thus, it captures some part of
the coalescence signal, and is therefore better suited to search for higher mass signals. Here
we will focus on the efficiency of our template bank to capture coalescence signals with the
TaylorF2 and EOB models. In section 2, we discuss in greater detail the dynamics of binary
black hole mergers and the PN and EOB models.

We test the efficiency and parameter estimation accuracy of the searches in two different
ways. First, in section 3 we perform a Monte Carlo study of the efficiency of the TaylorF2
and EOB models to detect the full waveforms. Since the full waveform is not known over
the entire parameter space, we make use of the EOB waveform calibrated to the numerical
relativity results [14–18]. In this analysis, both the templates and simulated waveforms are
calculated using only the leading-order amplitude term; thus higher harmonics are neglected.
Then, in section 4, we perform a similar comparison making use of waveforms generated
numerically. This study was performed on the Numerical INJection Analysis (NINJA) [19]
data set which comprised simulated data for the LIGO and Virgo detectors with numerically
obtained binary coalescence signals added. Further details of the numerical waveforms are
available in [19], although it should be noted that the majority of these waveforms included
several higher harmonics in addition to the fundamental mode. The original numerical results
for the NINJA numerical waveform contributions are described in [13, 20–32] (where these
are published results); the codes are described in [25, 28, 32–43].

2. Binary black hole dynamics

The evolution of a black hole binary is driven by back-reaction due to the emission of
gravitational waves which causes the system to inspiral and merge. Confident detection of
the emitted signal is greatly facilitated by an accurate understanding of the dynamics of the
binary and the shape of the emitted waveform during inspiral and merger. The early evolution
of a binary can be well modelled by the PN approximation during which the system slowly
inspirals on an adiabatic sequence of quasi-circular orbits located at the (stable) minimum of
the changing effective potential. In fact, for most of its lifetime a binary black hole can be
accurately described by the balance of the rate of change of the binding energy with the energy

4 Post-Newtonian expansion is currently known only to 3.5 PN order [2–5]; the unknown 4 PN coefficient is
determined by matching the EOB to numerical relativity waveforms [11–16] (see below).
5 Throughout this paper, we will use EOB to refer to the EOB model truncated at light ring, and EOBNR to refer to
the EOB waveform including the ringdown modes, calibrated to numerical relativity results.
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carried away to infinity by the radiation as given by the quadrupole formula. In fact, many
of the ideas (effective potential, last stable orbit, etc) that are relevant when the component
masses are greatly separated are still very useful in analytically modelling the system close
to coalescence. However, they are perhaps not so useful or needed from the view point of
numerical evolution.

As the system evolves, the effective potential changes and reaches a point when the
potential transforms from one having a stable minimum and an unstable maximum to one
having just an unstable minimum. After this, the system no longer possesses any bound orbits.
The transition point, called the last stable orbit6 (LSO), occurs when the radius r of the orbit
(in Schwarzschild coordinates) approaches r ∼ 6GM/c2, where M is the total mass of the
system. In terms of the dominant component of the emitted radiation, this corresponds to a
gravitational-wave frequency of finsp � 440 Hz (M/10 M�)−1. Therefore, for masses less
than about 10 M�, only the inspiral stage of the coalescence lies in the detector’s sensitive
band of 40–400 Hz.

Once the system passes the LSO, the two black holes plunge towards each other and merge
in about one orbital time scale of the LSO to form one single distorted black hole. This is the
so-called merger phase which is amenable to analytic description by a clever re-summation
of the PN approximation but more recently numerical relativity simulations have provided a
better understanding of the merger phase and continue to provide new insights. The frequency
of the waves during this phase changes rapidly from fmerge � 440 Hz (M/10 M�)−1 to
1200 Hz (M/10 M�)−1. During the late stages of the coalescence, the highly distorted black
hole that results from the merger of the two parent black holes settles down to an axi-symmetric
quiescent state by emitting its deformation in the form of gravitational waves. The radiation
from this phase is well described by black hole perturbation theory and consists of a set
of quasi-normal modes (often referred to as ringdown signal) whose fundamental frequency
is fring ∼ 1800 (M/10 M�)−1 when two equal mass non-spinning black holes merge to
form a single black hole whose spin magnitude is estimated to be J/M2 � 0.7. The first
two overtones of this mode have frequencies of ∼1650 Hz and ∼1700 Hz, for the same
system.

2.1. Search templates

The foregoing discussion hints that binaries whose total mass is less than about 10 M� can be
detected by using templates that are described by the PN approximation. In fact, experience
suggests that we could make do with the PN waveform as templates even when the total mass
is as large as about 25 M� and they have been used in the search for low-mass systems (i.e.
systems with their total mass less than about 25 M�) in the data from LIGO and Virgo [10].
However, for higher mass black hole binaries (i.e. binaries with their total mass greater than
about 25 M�) the merger of the binary occurs in the detector’s sensitive band. At merger,
the dynamics is no longer adiabatic and is, therefore, not well modelled by PN expansion.
It has been a long standing aim of numerical relativity to generate the full waveforms for
gravitational wave detection from higher mass black holes.

There has been significant progress recently in numerical relativity with several groups
having successfully simulated the merger of two black holes (see, for example, [39, 42, 45] and
the NINJA-related numerical relativity results cited earlier). The longest of these simulations

6 The LSO discussed in this paragraph refers to the test-particle limit of a binary when the mass ratio is very small; PN
corrections and resummed models modify the location of the LSO [44]. However, these changes are unimportant to
the present discussion where we are concerned with approximate numbers to determine the rough boundary between
where a certain phase of the evolution is dominant.
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last for tens of orbits [30], and they cover different mass ratios and are beginning to explore
the space of component masses with spins.

Nearly a decade ago, analytical work by Buonanno and Damour [11] extended the PN
dynamics beyond the last stable orbit to calculate the merger dynamics. This analytical
method, called EOB, computes the dynamics up to the light ring of the effective potential and
the waveform can be computed for separations larger than about r � 2.2 M. In this work
we have used the EOB waveform terminated at the light ring as search templates. The EOB
formalism, however, provides the full waveform, including the merger–ringdown portion
which is attached at the EOB light ring. Moreover, the availability of numerical relativity
simulations has helped in fixing certain unknown higher-order (4 PN) terms in the EOB model
by fitting the analytical waveform to numerical relativity. The current implementation of the
full EOB model in LAL uses the 4 PN order parameter obtained in [17] by calibrating the
EOB model to the Goddard–NASA numerical simulations, and three ringdown modes (i.e.,
the fundamental mode and two overtones). We note that, more recently, the EOB model
has been further improved by calibrating it to more and more accurate numerical simulations
[14–16, 18] which will form the basis of future searches. In the current study, EOBNR is used
to calibrate the efficiency of the inspiral models. While the higher harmonics of both the EOB
and EOBNR models have been calculated, they have not yet been implemented in the code;
therefore, we use restricted waveforms for both EOB and EOBNR throughout the paper.

Ajith et al [46, 47] have used a phenomenological approach to match the inspiral phase
from the PN approximation to the merger and ringdown from numerical relativity. Here, a
hybrid waveform obtained by stitching together the PN inspiral waveform to the numerical-
relativity inspiral, merger and ringdown waveform is first built. Then, the phenomenological
waveform in the frequency domain is constructed by requiring closeness to the hybrid
waveform. In the long run, it is likely that these full waveforms will be used as templates to
search for inspiral signals in gravitational wave detectors.

In order to test the efficiency of EOB and TaylorF2 families, we will use the EOBNR
waveform as our ‘true’ waveform and see how well these partial waveforms perform in both
detection and parameter estimation.

2.2. An example waveform

Figure 1 shows the waveform expected from a pair of non-spinning 10 M� black holes during
the last 50 ms before merger. The left panel shows the time-domain waveform h(t) and the
right panel compares the time-domain waveform with the signal ‘perceived’ by the initial
LIGO detector whose noise has been whitened. In other words, the right panel plots whitened
template q(t) given by

q(t) =
∫ ∞

−∞

H(f )√
Sh(|f |) exp(−2π if t) df,

where H(f ) = ∫ ∞
−∞ h(t) exp(2π if t) dt is the Fourier transform of the time-domain signal

and Sh(f ) is the one-sided noise power spectral density of initial LIGO. In the left panel, the
inspiral part of the signal given by EOB dynamics is shown in the black solid line followed
by the plunge, merger and ringdown phases in the red dashed line. Note that although the
time-domain signal is dominated by the plunge, merger and the ringdown phases, the detector
noise spectral density (i.e., Sh(f )) suppresses them, making the inspiral phase more dominant.
For systems with greater masses, more of the merger phase appears in band. For systems with
total mass larger than about 80 M� the merger and ringdown signals begin to dominate over
the inspiral phase. For such systems it is important to deploy EOBNR templates. As a result,
we cannot expect our template families to do well in capturing high-mass binaries.
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Figure 1. An example of the EOBNR waveform for a binary consisting of two equal mass,
non-spinning black holes each 10 M�. The EOB dynamics allows the computation of the inspiral
(left panel, black solid line) and plunge (left panel, roughly the first two cycles of the red dashed
line) phases but the merger and ringdown waveform (left panel, latter part of the red dashed line)
is stitched to the end of the plunge phase by matching the amplitude of the waveform and its first
two derivatives by using a superposition of the fundamental quasi-normal mode and its first two
overtones. The right panel compares the time-domain signal (red dashed line) with the signal
whitened using the initial LIGO power spectrum (blue solid line).

3. Bank efficiency

Matched filtering, the data analysis technique used in most searches for binary black holes,
is pretty sensitive to the phasing of the signal, which in turn depends on (a subset of) the
source parameters. In the case of non-spinning black holes on a quasi-circular orbit, the
only parameters that we must consider are the two masses. When restricting to the dominant
harmonic of the signal, the location of the binary on the sky, the distance to the source, the
polarization of the wave, etc, are not important for a single detector as they simply affect the
amplitude of the waveform. Although we will not know the time at which the binary merges
nor the phase of the signal at that epoch; these parameters need not be explicitly searched for
[1], and are easily extracted in the process of maximizing the cross-correlation of the template
with the data.

3.1. Template bank

Our goal in this section is to study the efficiency of the two template families in detecting
binary black hole coalescences. To this end, we first set up a template bank—a set of points
in the parameter space of the component masses. A geometric algorithm described by Babak
et al [48] is used to generate the template bank, and it is the same algorithm irrespective of
which family of waveforms is used to filter the signals. The bank is designed to cover the
desired range of component masses of the binary. In addition to the range of the component
masses, our template bank algorithm requires us to specify a parameter called the minimal
match, MM. The minimal match is the smallest overlap guaranteed between a signal with
random source parameters and the template nearest (in the geometrical sense) to it in the
parameter space. The template placement algorithm chooses a hexagonal grid in the two-
dimensional parameter space of the component masses, and it is an optimal algorithm in the
sense that it gives the smallest number of templates possible for a given minimal match [49].
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Assumptions made in the construction of the template placement algorithm imply that
this will be strictly true only when (a) the templates and signals belong to the same family, and
(b) the ending frequency (i.e., the LSO or light ring depending on the waveform in question)
is greater than the upper end of the sensitivity band. The latter condition further implies that
we can hope to achieve overlaps of MM or greater only for waveforms whose total mass is
smaller than a certain value depending on the detector bandwidth; in the case of initial LIGO
this is 10 M�. We have chosen MM = 0.95. However, since our templates and signals belong
to different PN approximations we cannot expect to achieve this overlap even for total mass
less than 10 M�.

Having constructed a template bank for either the TaylorF2 or EOB waveforms, we then
test it using signals from the EOBNR family. In particular, we generate an EOBNR signal
with the values of its masses, the epoch and the phase at coalescence, all chosen randomly,
but in a given range. Since the EOBNR extends beyond the LSO, it is possible to generate
signals with the total mass in the range [10, 300] M� and minimum component mass of 5 M�.

We performed simulations for both the TaylorF2 and EOB templates over a restricted range of
the parameter space and an additional EOB analysis over a much larger range. Specifically,
in the case of TaylorF2 we set up a template bank with the total mass in the range [6, 80] M�,
with minimum component mass of 3 M�, and tested it with signals with total mass in the
range [10, 72] M�. Although the TaylorF2 model is not expected to be a good approximation
above about ∼25 M�, we are using it to much higher mass. For the EOB family truncated
at light ring, we performed two separate analyses. The first had templates covering the range
[6, 120] M�, minimum component mass 3 M� and injected signals with total mass in the range
[20, 80] M�. Since the EOB waveforms extend to a significantly higher frequency than the
standard post Newtonian ones, we also performed an analysis with templates of total mass in
the range [60, 400] M� and minimum component mass of 30 M�. In this case the template
bank consisted of only nine templates. The simulated signals had total mass between 70 and
300 M�.

Next, for each point in the template bank we generate waveforms from our template
families (EOB and TaylorF2) and measure their overlap with the random signal. The overlap
Ok of the kth template qk

(
t;mk

1,m
k
2

)
and the signal h(t) is defined by

Ok

(
mk

1,m
k
2

) = max
t

2
∫ fu

fl

[
H(f )Q∗

k

(
f ;mk

1,m
k
2

)
+ H ∗(f )Qk

(
f ;mk

1,m
k
2

)]
e−2π if t df

Sh(f )
,

where H(f ) and Q(f ) are the Fourier transforms of h(t) and q(t), respectively, and Q∗

is the complex conjugate of Q. This allows us to compute the maximum overlap between
our template waveforms and a random signal7. This process is repeated for 1000 different
realizations of the random mass parameters and the maximum of the overlap over the entire
template bank is recorded in each case. We will now discuss the results of these simulations.

3.2. Efficiency for detection

Figure 2 plots the results of our simulation. The left panel shows the (maximum) overlaps of
the TaylorF2 template bank with random signals, one dot for each trial. The right panel shows
the same but for the EOB template bank. The TaylorF2 model has overlaps larger than 90%
for only signals whose total mass is less than about 22 M�. The overlap falls off quickly for
masses larger than this, reaching slightly more than 0.5 when the total mass is about 50 M�.

7 For the sake of saving space we have not discussed the maximization over the phase of the signal. This can be
found, for instance, in [1].
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Figure 2. These plots depict the efficiency of the TaylorF2 (left panel) and EOB (right panel)
template banks in detecting the coalescence waveforms assumed to be well represented by EOBNR.
Each dot corresponds to the overlap of a random EOBNR signal maximized over the template bank
consisting of TaylorF2 or EOB waveforms.

Figure 3. This plots depict the efficiency of the EOB template bank generated for the mass range
[60, 400] M� in detecting the coalescence waveforms assumed to be well represented by EOBNR.
Each dot corresponds to the overlap of a random EOBNR signal maximized over the template bank
consisting EOB waveforms.

The fact that the overlap remains unchanged beyond 50 M� is probably due to the TaylorF2
template matching the later merger or ringdowm part of the EOBNR waveform. In contrast,
the EOB model achieves an overlap greater than 90% over the entire mass range. This is due
to the fact that the EOB waveform extends to the light ring.

Figure 3 shows the overlap obtained using the high-mass EOB template bank and an
extended range of EOBNR simulated waveforms. We obtain overlaps of better than 85% for
systems whose total mass is less than 150 M�, and the overlaps remain more than 65% even
for systems with total mass less than 200 M�. As discussed at the beginning of section 3.1,
this can be due to two effects: the difference between the signal and template waveforms,
and the fact that the bank is constructed assuming the waveform’s ending frequency is above
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the detector’s sensitive band. For high masses, the waveform will terminate in the detector’s
sensitive band, and therefore the template bank will not achieve the desired minimal match.
The oscillatory behaviour seen in this case is due to the small number of templates. In this
range of total mass, there are only a handful of templates in the entire bank; as a result, a
single template might be available for a large range of masses, causing the overlaps to swing
up and down as the total mass is increased.

The overlaps are surprisingly high, especially considering that there are only nine
templates in the bank. It is possible that the very high mass EOB signals are very short
in the detector band (perhaps a cycle or two) and the abrupt cutoff of the template as a result of
termination at the light ring could bleed power into a frequency region where there is no power
in reality8. This spurious template power may lead to large overlaps with the merger and
ringdown parts of the EOBNR waveforms. TaylorF2 does not suffer from this predicament.
This is because TaylorF2 is generated in the Fourier domain and the abrupt cutoff of the signal
does not cause any problem in the frequency domain, and we are unconcerned with spurious
effects in the time domain as they occur outside the region of our interest.

3.3. Efficiency for parameter estimation

The matched filtering statistic gives the likelihood for a signal to be present in the data as
opposed to the data being pure background noise. The parameters of the template which
maximize the likelihood are maximum likelihood estimates. Having determined the efficiency
of our template banks in capturing the coalescence signals, we next consider how good they
are in measuring the signal parameters in the maximum likelihood sense. If the template
waveforms and the signal they are intended to detect both belong to the same family then in
the limit of large signal-to-noise ratio the distribution of the maximum likelihood estimates
will be centred on the true signal parameters. We are in a situation wherein the template
waveforms and the signals they are intended to recover belong to different approximations.
Therefore, one can expect a systematic bias in the estimation of parameters.

To gauge the reliability of the two families in estimating the parameters of the true signal
we make use of the results of the simulation from the previous section. This simulation
computed the overlap of the templates with the signals in the absence of any noise. Therefore,
the parameters of templates that maximized the overlap when compared to the true parameters
of the EOBNR signal give a measure of the systematic bias in parameter estimation due to the
difference in the waveform families representing the templates and the signal. Figure 4 shows
the measured total mass of the template (y-axis) versus the true total mass of the EOBNR
signal (x-axis) and the colour is determined by the corresponding overlap.

Both the TaylorF2 and EOB models provide good parameter recovery as well as good
overlap for simulated signals with a total mass less than 30 M�. At masses higher than this,
the TaylorF2 waveforms achieve a significantly lower overlap, although parameter estimation
remains good up to a total mass of about 50 M�. Above this mass, all simulated signals are
recovered by a template of mass 35 M�. Interestingly, this template will terminate around
120 Hz which is close to the most sensitive frequency of the LIGO detector. Thus, it seems
likely that the inspiral template is picking up power from the merger and ringdown parts of the
EOBNR waveform. For the EOB templates, the overlap does drop off somewhat for higher
masses, but the parameter recovery remains reasonable throughout, with a slight tendency to
underestimate the total mass of the signal. For higher masses, figure 5 shows the parameter

8 The spurious power is in itself not a bad thing but large noise glitches in the region where there is spurious power
could cause false alarms. This is especially the case when the detector noise is contaminated by large amplitude
non-stationary noise glitches.
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Figure 4. Parameter estimation accuracies for the TaylorF2 (left panel) and the EOB (right panel)
models. The total mass of the injected EOBNR signal is plotted versus the total mass of the template
that obtained the best overlap. The colour of the plotted point is determined by the overlap between
signal and template. Clearly, there is a positive correlation between the injected and measured
masses in the case of TaylorF2 model, with the spread in the measured values becoming larger at
higher masses. Additionally, for higher masses the overlap decreases. Interestingly, all simulated
signals with the total mass greater than 50 M� are recovered with the same template of mass
35 M�. The EOB templates show a similar correlation between simulated and recovered masses.
However, since the EOB templates extend to higher frequency, the EOB templates are capable of
accurately recovering the higher mass simulations with accurate mass parameters and an overlap
greater than 90%.

Figure 5. Parameter estimation accuracies for high masses using the EOB templates. The total
mass of the injected EOBNR signal is plotted versus the total mass of the template that obtained
the best overlap. The colour of the plotted point is determined by the overlap between signal and
template. Even for high masses, there is a good correlation between the simulated and recovered
masses. The discreteness of the EOB template bank is clearly seen from the limited set of
recovered masses, and indeed this seems to account for the majority of poor overlaps.

estimation accuracy for the EOB waveforms. Despite the fact that there are only a handful of
templates in the bank, the parameter recovery is reasonable.
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Table 1. Results of inspiral search for NINJA waveforms. There were 126 injections performed
into the data. The table above shows the number of injections which were recovered using the two
waveform families. The EOB search shows a significantly higher sensitivity than the TaylorF2
waveforms evolved to LSO. Note that virtually all simulations which pass the initial coincidence
requirement also survived the signal consistency checks.

Template TaylorF2 EOB

Freq. cutoff LSO Light ring
PN order 2 pN 2 pN
Found inj, single detector (H1, H2, L1) 72, 43, 66 91, 64, 82
Found inj, coincidence 59 83
Found inj, coincidence + signal vetoes 59 80

4. NINJA results

The Numerical INJection Analysis project was a mock data challenge, where the data were
generated at the design sensitivity of the initial LIGO and Virgo detectors, and numerical
relativity waveforms provided by a number of groups were added to the data. A number
of data analysis methods were applied to the data, and the results of the NINJA project
are available elsewhere [19]. For the NINJA analysis, we performed several runs through
the data using the LSC’s compact binary coalescence (CBC) analysis pipeline. Here, we
restrict our attention to two runs through the data which are similar to the TaylorF2 and EOB
analyses described in the previous section. This allows us to investigate the issues of detection
and parameter estimation using these templates to search for full waveforms obtained from
numerical relativity. The results are similar to those obtained in the previous section, namely
that the EOB search has a greater efficiency than the TaylorF2 search, but that both can detect
high-mass signals, although the parameter estimation is poor.

The CBC pipeline was designed to analyse data from a network of detectors to search
specifically for gravitational wave signals from binary neutron stars and black holes [9]. It
proceeds as follows: first, a bank of templates covering the desired mass range is produced.
For the NINJA analysis, we used a template bank covering masses between 20 and 90 M� with
a minimal match of 0.97. The data from each of the detectors are separately match filtered
against the template waveforms [50]. For this analysis, we restricted our attention to the mock
data generated for the three LIGO detectors (the 4 km and 2 km detectors denoted H1 and
H2, respectively, at Hanford, WA and the 4 km L1 detector at Livingston, LA). A trigger is
produced whenever the signal-to-noise ratio exceeds the desired threshold of 5.5. A coincident
trigger is recorded whenever there are triggers from two or more detectors with comparable
masses and coalescence times [51]. Finally, these coincident triggers are subjected to a set of
signal based vetoes, in particular the χ2 [52] and r2 [53] tests, designed to separate signals
from non-stationary transients in the noise. The parameters used here were chosen, where
possible, to match those used in the analysis of the LIGO data performed in [10].

Our results are summarized in table 1 which shows the number of injections recovered
by the analysis pipeline at each stage of the analysis for the two searches described here.
The EOB search is capable of detecting a greater fraction of the simulated signals than the
TaylorF2 templates truncated at LSO. This is further highlighted in figure 6 where we show
those simulated signals which were recovered by the two different waveform families. The
EOB model clearly performs better, particularly at higher masses. This is consistent with the
findings of the previous section.

10
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Figure 6. Found and missed numerical injections for the TaylorF2 (left panel) and EOB (right
panel) searches of the NINJA data. The found and missed injections are plotted on the total mass,
Hanford effective distance plane. The effective distance for a detector provides a measure of the
amplitude of the signal at that site, taking into account the distance and orientation of the source.
For both searches, the majority of the close simulations are recovered. EOB templates are seen
to perform better, particularly at higher masses. In both searches, the simulation with total mass
105 M� and effective distance of 200 Mpc is missed. This has a peak amplitude at the start of the
waveform, rather than coalescence, and although a coincident trigger is recorded the time between
it and the waveform peak is too large for our algorithm to associate them.

Figure 7. Accuracy of recovering the total mass of simulated signals for the TaylorF2 (red +)
and EOB (blue ×) models. For both of the searches, the total mass is estimated poorly and
systematically lower than the simulated mass. This is due to the fact that the search has been
performed with inspiral only waveforms for which the search extends only up to 90 M�.

Next, we turn to parameter estimation. Figure 7 shows the accuracy with which the total
mass of the simulated signals is recovered using the inspiral only waveforms. For both the
TaylorF2 and EOB models, the parameter recovery is poor, particularly at higher masses. This
is to be expected, since we are searching with partial waveforms and, at the higher masses,
it is the merger and ringdown of the simulations which occupies the sensitive band of the
detectors. Furthermore, the template bank extends only to a total mass of 90 M� making
accurate parameter recovery of the high-mass simulations impossible.
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5. Discussion

In the coming years, the first detection of gravitational waves from coalescing binaries will
surely be achieved. Following the first detection, attention will focus on extracting as much
astrophysical information as possible from the observed signal. In the studies described here,
we have addressed the ability to perform both the detection and parameter estimation problems
using template waveforms which cover only part of the binary coalescence. We have made
use of two different waveforms—the TaylorF2 PN waveforms taken to LSO and the EOB
waveforms to light ring. In addition, we have used two different methods to evaluate the
detection and parameter estimation capabilities of these signals—a Monte Carlo study using
EOBNR waveforms as the ‘true’ signal, and an analysis of numerical relativity waveforms in
the NINJA data. In all cases, the conclusion is the same: the inspiral only templates are useful
for detection of the signal, but do not provide good parameter estimation, particularly for the
higher mass signals. This is to be expected as, for high-mass binaries, it is the merger and/or
ringdown which occurs at the most sensitive frequency of the detectors. We observe that the
EOB waveforms perform somewhat better than the TaylorF2 waveforms. This is expected
as the EOB waveforms extend to the light ring and therefore capture the plunge part of the
waveform which is not incorporated in the TaylorF2 PN model.

The results of this study show that post-Newtonian-based inspiral only waveforms will
not be sufficient for satisfactory detection and parameter estimation of higher mass black
hole binaries. Full waveforms derived from a synthesis of post-Newtonian waveforms and
numerical relativity results, such as the EOBNR model [14–18], or phenomenological models,
such as [46, 47], will be necessary.
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