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TLR and complement activation ensures efficient clearance of infection. Previous studies

documented synergism between TLRs and the receptor for the pro-inflammatory comple-

ment peptide C5a (C5aR/CD88), and regulation of TLR-induced pro-inflammatory responses

by C5aR, suggesting crosstalk between TLRs and C5aR. However, it is unclear whether and

how TLRs modulate C5a-induced pro-inflammatory responses. We demonstrate a marked

positive modulatory effect of TLR activation on cell sensitivity to C5a in vitro and ex vivo and

identify an underlying mechanistic target. Pre-exposure of PBMCs and whole blood to

diverse TLR ligands or bacteria enhanced C5a-induced pro-inflammatory responses. This

effect was not observed in TLR4 signalling-deficient mice. TLR-induced hypersensitivity to

C5a did not result from C5aR upregulation or modulation of C5a-induced Ca21 mobilization.

Rather, TLRs targeted another C5a receptor, C5L2 (acting as a negative modulator of C5aR),

by reducing C5L2 activity. TLR-induced hypersensitivity to C5a was mimicked by blocking

C5L2 and was not observed in C5L2KO mice. Furthermore, TLR activation inhibited C5L2

expression upon C5a stimulation. These findings identify a novel pathway of crosstalk

within the innate immune system that amplifies innate host defense at the TLR-comple-

ment interface. Unravelling the mutually regulated activities of TLRs and complement may

reveal new therapeutic avenues to control inflammation.
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Introduction

The innate immune system plays a crucial role in the inflamma-

tory response to infection through the activity of receptors

capable of recognizing defined molecular patterns present in a

variety of microorganisms. In particular, the concerted activity of

two components of the innate immune system, TLRs and

complement, results in rapid inflammatory responses and also

orchestrates adaptive immune responses that lead to clearance of

infection [1–4].
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TLRs are critical to the triggering of the inflammatory

response. They recognize and respond to an array of

microorganisms and their components, many of which can also

activate complement, by mediating a prompt and efficient pro-

inflammatory response [1, 5]. This includes the production of a

variety of inflammatory mediators, e.g. IL-6, TNF-a, IL-8

(CXCL8), MCP-1 (CCL2), resulting in an immediate response to

the microbial challenge. However, the excessive release of pro-

inflammatory molecules as a consequence of TLR hyperactivation

can lead to serious pathological conditions such as acute

inflammation, tissue/organ damage, septic shock, chronic

inflammation and autoimmunity [6, 7].

Microorganisms and their components also activate the

complement system, which plays a significant role in acute

inflammation and the destruction of invading microorganisms.

Complement activation leads to the generation of biologically

active complement peptide fragments such as C5a and C3a that

elicit a number of pro-inflammatory effects [2, 8]. The comple-

ment anaphylatoxin C5a in particular is one of the most potent

pro-inflammatory peptides. It acts as a granulocyte, monocyte

and macrophage chemoattractant. It is a vasodilator, induces the

oxidative burst in neutrophils and enhances phagocytosis, gran-

ule enzyme release and adhesion molecule expression. It acti-

vates the coagulation cascade, induces the synthesis and release

of arachidonic acid metabolites as well as pro-inflammatory

cytokines and chemokines. Excessive generation of C5a, however,

contributes to serious inflammatory conditions such as sepsis

[9, 10]. C5a exerts most of its effects through the C5a receptor

(C5aR), a seven-transmembrane G protein-coupled receptor.

Recently, the involvement of a second seven-transmembrane, but

G protein-uncoupled, receptor for C5a, C5L2, in the biological

activities of C5a and as a negative modulator of C5aR activity has

been reported [11–13].

Given the serious acute and chronic inflammatory conditions

resulting from over-activation or dysregulation of TLR-mediated

responses and/or excessive C5a-induced pro-inflammatory

responses, TLR and C5a receptor signalling are attractive ther-

apeutic targets for the treatment and/or prevention of inflam-

matory conditions [7, 9, 14–16]. Therefore, understanding the

mechanisms modulating TLR activity and the C5a-C5a receptor

interaction is of major interest.

Notably, it has previously been shown that cell exposure to a

combination of LPS and C5a resulted in enhanced production of a

number of cytokines and chemokines, indicating synergism

between TLRs and C5aR [17–19]. Furthermore, C5a-triggered

signalling through C5aR substantially enhanced or modulated

microbial-induced pro-inflammatory cytokine production medi-

ated by TLRs [20, 21]. A negative effect of C5aR engagement on

the TLR4-mediated production of the IL-12 family of immuno-

modulatory cytokines has also been reported [22], and recently it

has been demonstrated that Porphyromonas gingivalis-generated

C5a enhancement of TLR2-mediated cyclic AMP production

results in macrophage immunosuppression [23]. Thus, through

the C5a–C5aR interaction, complement appears to influence

the extent of the pro-inflammatory and immunomodulatory

responses triggered via TLRs. Together, these findings provided

evidence for crosstalk between the complement system and TLRs,

strengthening the innate host defense during infection [3, 4].

However, most studies have focused on the immunoregulatory

effect of C5a on TLR-driven inflammation, neglecting potential

effects of TLR activation on complement-mediated inflammation.

In the present study, we have therefore evaluated the impact of

TLR activation on C5a-driven cytokine and chemokine produc-

tion in vitro and ex vivo. Our data demonstrate a marked positive

modulatory effect of TLR activation on cell sensitivity to C5a,

supporting the concept of a genuine crosstalk between TLRs and

C5aR, and indicate that TLRs may exert their modulatory effect

by reducing the negative regulatory capacity of C5L2 on C5aR.

Results

PBMCs pre-exposed to TLR ligands are hypersensitive
to C5a stimulation

To evaluate a potential modulatory effect of TLRs on C5a-mediated

pro-inflammatory responses, PBMCs were first stimulated with TLR

ligands. Following extensive washing, the cells were stimulated

with C5a before assessment of IL-8 levels in the cell culture

supernatants. Figure 1A shows that the levels of IL-8 released by

C5a-stimulated PBMCs pre-exposed to the TLR4 ligand, LPS, were

substantially higher than those released by cells not pre-exposed to

LPS. Similarly, a two- to ten-fold increase in the C5a-induced

release of IL-8 was observed when PBMCs were pre-exposed to

ligands for TLR2/TLR1, TLR2/TLR6 (the synthetic bacterial

lipopeptide, Pam3-Cys-Ser-Lys4 and yeast zymosan respectively),

TLR5 (bacterial flagellin) and TLR7/TLR8 (the antiviral compound,

imiquimod), the extent of the increase depending on the TLR

ligand and the C5a concentration tested (Fig. 1B). TLR-induced

hypersensitivity to C5a was observed following pre-exposure to a

wide range of TLR ligand concentrations, as is shown in Fig. 1C in

the case of LPS. Here, even pre-exposure to 10 pg/mL LPS, a

concentration well below those found in sepsis patients (�100 pg/

mL to �700 pg/mL, [24]), resulted in hypersensitivity to C5a.

Together, these findings indicated that TLR activation imparts

hypersensitivity to blood mononuclear cells to C5a.

TLR-induced hypersensitivity to C5a was not restricted to the

release of IL-8, as the release of the pro-inflammatory cytokine,

IL-6, was similarly enhanced (Fig. 1D). Furthermore, PBMC pre-

exposure to TLR ligands not only affected the C5a-induced

release but also the transcription of pro-inflammatory mediators,

since mRNA levels for both IL-6 and IL-8 markedly increased

(Fig. 1E). Consistent with this finding, the activation levels of the

transcription factor NF-kB – a key regulator of immunoregulatory

gene transcription – in nuclear extracts of C5a-stimulated PBMCs

that were pre-exposed to LPS were substantially higher than

those in cells not pre-exposed (Fig. 1F). This finding also indi-

cated that TLR modulation of cell sensitivity to C5a has a wide

spectrum of activities and, thus, a wide range of pro-inflamma-

tory and immunomodulatory mediators might be affected.
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Figure 1. Sensitivity to C5a of PBMCs pre-exposed to TLR ligands. (A–C) Levels of IL-8 in culture supernatants of PBMCs (1.5� 105/well)
(A) stimulated for 14 h with the indicated concentrations of C5a and (B) after washing and re-culture following pre-exposure (14 h) to LPS (100 pg/
mL or as indicated), Pam3Cys (100 ng/mL), Zymosan (1 mg/mL), Flagellin (5 mg/mL), Imiquimod (3 mg/mL) or mock-pre-exposure (no TLR ligand). IL-8
concentrations were estimated by subtracting the background levels of IL-8 present in cultures not activated with C5a and pre-exposed or not to
TLR ligands from the corresponding C5a-activated samples (IL-8 background levels (ng/mL): No ligand/No C5a, 1.670.7; 1LPS, 2.371.2; 1Pam3Cys,
1.570.6; 1Zymosan, 1.370.9; 1Flagellin, 6.972.5; 1Imiquimod, 5.371.1; nZ4). (C) IL-8 fold increases were determined by comparing IL-8 levels –
after background subtraction – between C5a-stimulated (10 nM) cell samples pre-exposed and not pre-exposed to LPS. (D) Levels of IL-6 in culture
supernatants of PBMCs stimulated for 14 h with the indicated concentrations of C5a, after washing and re-culture following pre-exposure to LPS.
(E and F) Determination of (E) IL-6 and IL-8 mRNA levels in RNA samples and (F) NF-kB concentrations in the nuclear extracts of PBMCs pre-
exposed or not to LPS and subsequently stimulated with C5a as described for A–D. (E) mRNA levels are relative to control (No LPS/No C5a). Results
are from one experiment (1SD) representative of at least four for each ligand (A, B) or three (C–F). �po0.05, ��po0.01, ���po0.005 (TLR-pre-exposed
versus TLR not pre-exposed, paired Student’s t-test).
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Whole blood pre-exposure to LPS or Escherichia coli
increases blood cell sensitivity to C5a

To better evaluate the in vivo relevance of the positive modulatory

effect of TLR activation on cell sensitivity to C5a, we used a

minimally perturbed experimental model in which human whole

blood was pre-exposed to LPS or whole E. coli. Following washing,

the blood cells were resuspended in autologous plasma and

stimulated with varying concentrations of C5a. Pre-exposure of

whole blood to LPS or whole bacteria resulted in a substantially

higher sensitivity of blood cells to C5a stimulation (Fig. 2A),

suggesting that TLR modulation of peripheral blood immunocom-

petent cell sensitivity to C5a might occur in vivo. Analysis of the

modulatory effect over a wide range of C5a concentrations in 15

blood donors showed that the extent of the increase in cell

sensitivity to C5a depended on both the donor and the concentra-

tion of C5a tested (Fig. 2B), with 13 out of the 15 donors showing

a decline in their response to TLR activation (lower hypersensi-

tivity to C5a) at relatively high C5a concentrations.

LPS-induced enhanced blood cell sensitivity to C5a is
not observed in TLR4 signalling-deficient mice

To demonstrate that microbial-induced cell hypersensitivity

to C5a strictly depended on TLR activation, we compared

blood cell sensitivity to C5a ex vivo between mice deficient

in TLR4 signalling (C3H/HeJ) and WT (C3H/HeN) mice

that had been challenged with LPS (Fig. 3). The C5a-induced

release of the prototypical polymorphonuclear and

mononuclear cell chemoattractants keratinocyte-derived

chemokine (KC, a murine functional counterpart of human

IL-8) and MCP-1 (CCL2), respectively, was extremely low

in both TLR4-deficient and WT mice that had not been

previously challenged with LPS. However, pre-exposure

to LPS resulted in a markedly higher blood cell sensitivity to

C5a in WT, but not in TLR4-deficient mice (Fig. 3), thus

confirming the crucial role that TLR activation plays in this

phenomenon and supporting the in vivo relevance of the

modulatory effect of TLRs.
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Figure 2. Sensitivity to C5a of human blood cells pre-exposed to LPS or E. coli. (A) C5a-induced levels of IL-8 and (B) fold increase in IL-8
concentration in blood cell culture supernatants following whole blood (100 mL/well) pre-exposure or not to LPS (500 pg/mL, A, left and B) or E. coli
(1� 108 CFU/mL). Pre-exposure to TLR ligands followed by C5a stimulation, and estimation of C5a-induced IL-8 concentrations and fold increases
were as described for Fig. 1. (A) Results are from one experiment (1SD) representative of three. �po0.05, ���po0.005 (LPS- or E. coli-treated versus
mock-treated, paired Student’s t-test). (B) Response profile of 15 healthy blood donors.
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Figure 3. Ex vivo blood cell sensitivity to C5a of TLR4 signalling-deficient and WT mice. KC and MCP-1 levels in blood cell culture supernatants
(100 mL whole blood/condition) of C3H/HeJ and C3H/HeN (WT) mice stimulated (14 h) ex vivo with C5a following a challenge (1 h) i.p. with LPS (50 mg/
mouse) or PBS (no LPS). The C5a-induced chemokine concentrations were estimated by background subtraction as described for Fig. 1. Values are
expressed as the mean1SEM (n 5 5/condition).�po0.05, ��po0.01, ���po0.005 (LPS-treated versus no LPS, paired Student’s t-test).
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Pre-exposure to LPS downregulates C5aR expression

The positive modulation exerted by TLRs posed the question of

the underlying mechanism. The TLR modulatory effect appears to

be relatively rapid, as a 30-min pre-exposure to LPS was sufficient

to achieve maximal hypersensitivity to C5a (Fig. 4A). We then

tested whether TLRs modulate cell sensitivity to C5a by

upregulating C5aR expression. Given that monocytes are the

main TLR-expressing cell type in leukocytes [25], the main target

for C5a in PBMCs, and that they orchestrate many of the TLR-

induced responses of peripheral blood leukocytes, including those

of neutrophils [25], we focused on monocyte C5aR and

monitored its expression in PBMCs after a 30-min pre-exposure

to LPS. Subsequently, we continued monitoring C5aR expression

following stimulation with C5a. Monocyte C5aR cell-surface

expression was markedly lower in PBMCs pre-exposed to LPS

(Fig. 4B, left, 1LPS/No C5a versus No LPS/No C5a). After

3 h of C5a stimulation, both LPS-treated and untreated mono-

cytes showed lower cell-surface levels of C5aR than those at time

0. By 12 h post-C5a stimulation, C5aR levels had partially

recovered. This modulation pattern of C5aR expression following

C5a stimulation most likely reflects C5a-induced receptor

internalization and its recycling back to the cell surface, as

previously described [26–28]. In parallel experiments, we

confirmed that PBMCs from the same donors showed hypersen-

sitivity to C5a (IL-8 (ng/mL): No LPS/No C5a, 0.970.3; No LPS/

1C5a, 3.271.1; 1LPS/No C5a, 1.970.4; 1LPS/1C5a,

16.973.5; n 5 3). The LPS-induced downmodulation of C5aR

cell-surface expression correlated with the determinations of

C5aR mRNA expression in PBMC aliquots collected from the

experiment described above at the end of the culture (12 h).

Indeed, pre-exposure to LPS – irrespective of C5a stimulation –

resulted in reduction in C5aR mRNA levels (Fig. 4C), thus

indicating that the LPS-induced C5aR downmodulation is exerted

at transcriptional level. Of note, TLR activation of whole blood

also resulted in negative modulation of neutrophil C5aR

expression (Fig. 4B, inset). Together, these findings indicated

that increased cell sensitivity to C5a following TLR activation is

not due to C5aR upregulation.

TLR activation induces cell hypersensitivity to C5a
without affecting C5a-induced Ca21 mobilization

Next, we tested whether the TLR modulatory effect extended to

C5a-mediated intracellular Ca21 mobilization, which depends on

G-protein coupling to C5aR [29]. PBMCs were pre-exposed to

LPS for 3 min, 30 min or 14 h, or left untreated, loaded with a

Ca21-chelating fluorescent dye, stimulated with C5a and moni-

tored over 3 min for changes in cell fluorescence as a measure of

intracellular Ca21 mobilization (Fig. 5). Following C5a stimula-

tion, cells pre-exposed or not to LPS for any of the indicated

periods of time showed similar Ca21 increases (kinetics and

intensity). Similar results (not shown) were obtained following

cell pre-exposure to a ligand for TLR2 (Pam3-Cys-Ser-Lys4), a TLR

documented to induce Ca21 mobilization, unlike TLR4 [30].

These findings suggested that TLRs exert positive modulation on

cell sensitivity to C5a by affecting a G protein-dependent event

separate from Ca21 mobilization or a G protein-independent

signalling pathway used by C5aR.

TLR activation reduces C5L2 receptor activity and
expression

Seven-transmembrane receptors, like those for C5a, also signal

through a G-protein-independent pathway that involves the
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Figure 4. Effect of a pre-exposure to LPS on cell sensitivity to C5a and
C5aR expression. (A) Fold increase in the levels of IL-8 – determined as
described for Fig. 1– in culture supernatants of PBMCs (1.5� 105/well)
pre-exposed or not to LPS (100 pg/mL) for the indicated times
(starting from 30 min), and subsequently activated (14 h) with C5a
(10 nM). (B) C5aR cell-surface expression levels on gated monocytes or
neutrophils (inset) at different times following 1�106 PBMC (mono-
cytes) or 100 mL whole blood (neutrophils) pre-exposure (30 min)
to 100 pg/mL (PBMCs) or 500 pg/mL (whole blood) LPS or a mock-
pre-exposure (no LPS), and subsequent activation or not with C5a
(10 nM) for the indicated times. (C) C5aR mRNA levels determined by
RT-qPCR in RNA samples extracted from PBMC aliquots taken
from the experiment described in (B) at the end of the culture (12 h).
Results are from one experiment (A and C, 7SD) representative of
three. �po0.05, ���po0.005 (LPS-pre-exposed versus not pre-exposed,
paired Student’s t-test).
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activity of b-arrestins – multifunctional adapter proteins that

mediate signalling and also control receptor desensitization and

trafficking [13, 31, 32]. Notably, C5aR signalling through the

b-arrestin pathway was reported to be negatively modulated by

the G protein-uncoupled C5a receptor, C5L2 [13]. Thus, to

evaluate the possibility that a C5a-triggered G-protein-indepen-

dent signalling event was the target of TLR modulation, we tested

the effect of TLR activation on the activity of C5L2. PBMCs were

pre-exposed to LPS and subsequently stimulated with C5a.

Following stimulation, the cell culture supernatants were tested

for IL-8 levels, and cytoplasmic cell extracts for levels of high-

mobility group box-1 protein (HMGB1). HMGB1 is a nuclear

factor that acts as a mediator of inflammation and sepsis whose

cytoplasmic mobilization and release upon C5a stimulation

depends on C5L2, but not C5aR [11, 33, 34] (Fig. 6A). Cell

pre-exposure to LPS resulted in relatively lower levels of C5a-

induced HMGB1 (Fig. 6A, 1LPS/1C5a versus No LPS/1C5a),

suggesting that TLR activation negatively affects C5L2 activity.

This was in contrast to the positive modulatory effect exerted by

TLRs on the C5aR-mediated pro-inflammatory responses

described above and confirmed in this experiment, as the culture

supernatants of PBMCs pre-exposed to LPS showed substantially

higher levels of IL-8 upon C5a stimulation (Fig. 6A, inset).

Further support for the role of TLRs as negative modulators of

C5L2 activity was obtained from the comparative analysis of

HMGB1 levels in blood cell culture supernatants between TLR4

signalling deficient and WT mice stimulated with C5a after LPS

challenge in vivo. Indeed, the level of C5a-induced HMGB1

released by blood cells of WT mice exposed to LPS was lower than

that of WT animals that were not exposed to LPS (Fig. 6B, C3H/

WT, 1LPS/1C5a versus No LPS/1C5a), whereas TLR4 signal-

ling-deficient mice did not show these differences.

The results of C5L2 receptor blocking experiments were also

consistent with the concept that the second C5a receptor is a

target of TLR modulation. C5a stimulation of PBMCs in the

presence of an anti-C5L2 blocking mAb showed a marked

reduction in HMGB1 levels (Fig. 7A, left). By contrast, the culture

supernatants of the C5L2 mAb-treated PBMCs showed higher

levels of IL-8 (Fig. 7A, right). These findings confirmed previous

observations on the effect of C5L2 receptor blockade on HMGB1

and cytokine production [11]. Notably, the effects of C5L2

blockade were similar to those resulting from cell pre-exposure to

LPS shown above (Fig. 6A), suggesting that the positive effect of

TLRs on C5a-induced responses may involve inhibition of C5L2

activity. To test this possibility further, we compared blood cell

sensitivity to C5a ex vivo between C5L2-deficient (C5L2KO) and

WT mice that had been challenged with LPS (Fig. 7B). The C5a-

induced release of KC was extremely low in both WT and C5L2KO

mice not challenged with LPS. Pre-exposure to LPS resulted in a

marked increase in cell sensitivity to C5a in WT but not in

C5L2KO mice, indicating that C5L2 is involved in the TLR

modulatory effect.

To explore the mechanism by which TLRs modulate C5L2

receptor activity, the C5L2 expression levels in cell lysates of

human PBMCs pre-exposed or not to LPS and stimulated with

C5a were compared (Fig. 7C). Following C5a stimulation, C5L2

levels were slightly increased. However, cell pre-exposure to LPS

before C5a stimulation resulted in a marked reduction in C5L2

expression in a LPS dose-dependent manner, indicating that TLR

activation negatively modulates C5L2 activity, at least in part, by

reducing C5L2 expression. It is noteworthy, however, that this

inhibitory effect of LPS occurs only upon subsequent C5a

stimulation.

Discussion

TLRs and the complement system play major roles in the innate

immune response against microbial pathogens. Their activation

triggers potent pro-inflammatory responses and microbial killing

mechanisms that ensure a prompt and efficient clearance of

infection. A mutually regulated and concerted activity of these

two innate immune components would strengthen the efficiency

of innate host defense. In support of this possibility, synergistic

effects between TLRs and C5aR, and a strong regulation of TLR-

mediated pro-inflammatory and immunoregulatory responses by
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complement receptors have been reported [17–23]. These

findings suggested crosstalk between TLRs and complement

receptors [3, 4, 11, 20–23]. However, the putative modulatory

effect exerted by TLRs on complement receptor-mediated pro-

inflammatory responses and the underlying mechanism have not

been directly investigated. In this study, we focused on the

interaction of the complement anaphylatoxin C5a with its

receptors, C5aR and C5L2, and demonstrated that TLR activation

exerts substantial positive modulation on C5a-induced pro-

inflammatory cell responses to microbial components and whole

bacteria in vitro and ex vivo. Furthermore, we presented evidence

indicating that TLR modulates C5a-induced responses by

negatively modulating the activity of the second C5a receptor,

C5L2, which itself can act as a negative modulator of C5aR-

mediated responses [11, 13, 26–29]. This negative effect on C5L2

involves reduction of C5L2 receptor expression. These findings

indicate the existence of genuine crosstalk between TLRs and

complement that involves C5L2 and that the positive modulation

of C5a-induced pro-inflammatory responses by TLR activation is

a physiological feature that contributes to the prompt and

efficient innate immune response against microbial pathogens.

The modulatory capacity of TLRs does not appear to be

restricted by the nature of the pathogen, as we demonstrated that

ligands activating a variety of TLRs are capable of inducing

hypersensitivity to C5a. Notably, pre-exposure to a wide range of

TLR ligand concentrations, even to concentrations well below

those found in sepsis patients, resulted in enhanced responses to

C5a (Fig. 1C). This finding indicates that TLR modulation of cell

responses to C5a is an extremely sensitive mechanism that might

operate during the course of mild as well as severe infections.

However, TLR positive modulatory activity appears to be tightly

controlled, as it was accompanied by a marked TLR-induced

downregulation of C5aR expression and reduced C5a-induced

mobilization of the late mediator of inflammation, HMGB1. This

latter effect most likely resulted from the negative effect of TLR

activation on C5L2 – previously demonstrated to be the receptor

for C5a that mediates release of HMGB1 [11]. Of note, increased

levels of HMGB1 were observed in the culture supernatants from

blood cells of C3H/HeJ mice exposed to LPS that were not

stimulated with C5a ex vivo (Fig. 6B, C3H/HeJ, 1LPS/No C5a).

The lack of the postulated negative modulation of C5L2

activity by TLR4 activation in these mice may have led to the

observed increase in HMGB1, which most likely was generated

as a consequence of LPS-induced complement activation

in vivo and the resulting generation of C5a, which leads

to C5L2-mediated induction and late release of HMGB1. This

DNA-binding protein behaves as a potent pro-inflammatory

cytokine following its late release from activated or necrotic cells

[33, 34]. Indeed, it has been demonstrated that HMGB1

acts as a late mediator of sepsis and endotoxin lethality, is

increased in the plasma of septic patients and its blockade

improves survival of septic rodents [34–38]. Thus, although TLR

activation imparts higher sensitivity to cellular responses to C5a,

this positive modulatory effect appears to be counterbalanced by

modulation of the pro-inflammatory activities of C5a and HMGB1

through the simultaneous negative effect on C5aR and C5L2

respectively. In line with the regulatory mechanism postulated

here, it has been demonstrated that the combined blockade of

C5aR and C5L2 greatly improved survival in a mouse model of

severe sepsis [11].
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This study has also shed light on the mechanism underlying

the TLR modulatory effect. The TLR-mediated hypersensitivity to

C5a did not result from C5a receptor upregulation, as discussed

above. Furthermore, a TLR modulatory effect of similar intensity

was observed over a wide range of LPS concentrations

(0.1–1000 ng/mL, Fig. 1C). This, together with the observation

that a 30-min cell pre-exposure to LPS was sufficient to achieve

maximal hypersensitivity to C5a (Fig. 4A), suggested that

modulation did not result from a carryover effect of TLR-induced

cytokines. Consistent with this possibility, cells pre-exposed to

LPS and subsequently cultured in the absence of C5a did not

show activation of the transcription factor NF-kB – a key regu-

lator of cytokine/chemokine gene transcription – at the end of

the culture (Fig. 1F). This observation also indicated that the TLR

enhancing effect did not result from residual TLR ligands carried

over from the TLR activation phase.

The findings described previously, and the fact that TLR

modulation did not affect Ca21 mobilization, prompted us to test

whether a C5a-triggered G-protein-independent signalling event

was the primary target of TLR modulation. We therefore sought

to test the effect of TLR activation on the activity of the G protein-

uncoupled C5a receptor, C5L2. The reduced levels of C5a-

induced HMGB1 observed following cell pre-exposure to LPS in

vitro and ex vivo, and the LPS-mediated downregulation of C5L2

expression – although occurring indirectly upon subsequent C5a

stimulation – confirmed C5L2 as a target for negative modulation

by TLRs. In neutrophils, activation of C5L2 appears to occur only

as a consequence of C5aR activation [13]. If this was also the case

in monocytes, it may be speculated that the marked down-

regulation of C5aR expression induced by TLR activation

observed in this study contributes to the TLR negative modula-

tory effect on C5L2 activity. C5L2 was demonstrated to bind C5a

with high affinity, similar to that of C5aR. However, in contrast to

C5aR, it is unable to couple to intracellular G proteins and induce

Ca21 mobilization [26]. Consistent with these findings, it has

been demonstrated that C5L2 can act as a decoy or scavenger C5a

receptor, controlling C5aR activity [26–28]. It has also been

reported that C5L2 negatively modulates C5aR signalling by
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inhibiting C5aR-b-arrestin-mediated ERK1/2 activation [13]. In

contrast, a number of reports have demonstrated positive or dual

signalling functions of C5L2 [11, 12, 39, 40]. In particular, the

work by Rittirsch et al. [11] demonstrated that the absence of

C5L2 in mice subjected to cecal ligation and puncture (CLP)

resulted in decreased levels of IL-1b, MIP-1a, MIP-2 and HMGB1,

suggesting pro-inflammatory activity by C5L2. Notably, however,

the same work showed that in C5L2KO mice subjected to cecal

ligation and puncture, the levels of the pro-inflammatory cyto-

kine IL-6 were significantly increased. These findings suggest that

the mechanism regulating pro-inflammatory mediator release

involving C5L2 is complex and that the net result of C5L2 activity

may depend on the magnitude of the C5L2 modulatory effect on

each mediator affected and the relative contribution of that

mediator to the net resulting effect. In the present study, the

similarities between the effects of C5L2 receptor blockade and

those resulting from cell pre-exposure to LPS, and the lack of

response of C5L2KO mice to pre-exposure to LPS (no increased

sensitivity to C5a) led us to conclude that TLRs may enhance cell

sensitivity to C5a by regulating the negative modulatory capacity

of C5L2 on a number of pro-inflammatory mediators.

Notably, the C5a-stimulated blood cells from C5L2-deficient

mice that had not been challenged with LPS did not show

increased KC production. This was unexpected, as we speculated

that the absence of the putative negative regulator of C5aR,

C5L2, should result in increased cell sensitivity to C5a. It is

possible that an additional, compensatory, negative regulatory

mechanism controlling responses to C5a operates only in the

complete absence of C5L2 (C5L2KO mice). This would be

compatible with the increased sensitivity to C5a resulting from

C5L2 receptor inhibition by TLR activation or Ab blockade

observed in this study, as such a compensatory negative regula-

tory mechanism would not be operational due to the presence of

C5L2. In contrast to C5L2, the second regulatory mechanism

would not be susceptible to negative regulation by TLRs, as the

blood cells from C5L2KO mice pre-treated with LPS did not show

increased KC production (Fig. 7B, C5L2KO1LPS).

We observed that the degree of the TLR-induced enhancing

effect on cell sensitivity to C5a varies among individuals

(Fig. 2B). This may be due to the differing extent of the down-

modulatory effect exerted by TLRs on C5aR and C5L2 expression,

which may depend on the different constitutive expression levels

of these receptors in each individual. We also observed a decline

in most individuals’ response to TLR activation at higher

concentrations of C5a (Fig. 2B). It is possible that at higher C5a

concentrations, such as those that might be generated in vivo

during an acute infection, a more pronounced activation and

ligand-induced downregulation of C5aR may lead to C5L2

becoming comparatively more engaged. This may result in a

stronger negative modulatory effect on C5aR responses that

would counteract and limit the TLR enhancing effect. Thus, an

individual’s capacity to clear infections efficiently and success-

fully resolve inflammation might be determined, at least in part,

by the extent of the TLR enhancing effect relative to C5L2’s

capacity to counteract this positive effect.

In conclusion, the findings reported in this study demonstrate

the existence of an efficient immunomodulatory network involving

two major components of the innate immune system, TLRs and

complement. In particular, we show that the positive modulation

of TLR-mediated pro-inflammatory responses by complement

receptors reported previously is paralleled by an equally substan-

tial enhancing effect of TLRs on cell sensitivity to the pro-inflam-

matory peptide, C5a, through TLR negative modulation of the

C5aR activity regulator, C5L2. The description of the mutually

regulated and concerted activities of TLRs and complement in

innate host defense may help to identify new therapeutic targets to

control acute and chronic inflammatory conditions.

Materials and methods

Cell activations

Human blood samples were obtained from healthy volunteers as

approved by the local Research Ethics Committee. PBMCs were

obtained through Ficoll density-gradient centrifugation. For cell

activation experiments, triplicate cell aliquots (1.5�105 cells/

well, unless stated otherwise) were cultured in RPMI 1640

medium (Invitrogen) supplemented with 10% heat-inactivated

(561C, 30 min) FCS (HyClone;o0.06 U/mL endotoxin) and 2 mM

glutamine (complete medium), and stimulated at 371C for 14 h or

the time indicated with optimal concentrations of ultra-pure LPS

(E. coli O111:B4 strain), zymosan, flagellin, imiquimod – all from

Invivogen – Pam3-Cys-Ser-(Lys)4 HCl (Pam3Cys; EMC micro-

collections GmbH) as indicated, or medium alone (mock

stimulation). Following incubation, cells were washed (3� ,

RPMI 1640 medium), resuspended in complete medium and

activated for a further 12–14 h with the indicated concentrations

of human recombinant C5a (kindly provided by Dr P.N. Monk,

Sheffield University, UK) or mock activated. Cell culture super-

natants were then tested for IL-8 or IL-6 by ELISA (Duoset, R&D

Systems). For C5L2 receptor blocking experiments, PBMCs were

preincubated (30 min at 371C) with the anti-human C5L2

blocking mAb, 1D9-M12 (5mg/mL; Biolegend), before stimula-

tion with C5a (2.5 nM). In control experiments, the 1D9-M12

mAb was denatured by boiling for 10 min. For the experiments

shown in Fig. 2, triplicate samples of heparinized (10 IU/mL)

human whole blood (100 mL/well) were exposed for 14 h to LPS

(500 pg/mL) or heat-killed E. coli (O111:B4 strain, 1� 108 CFU/

mL). Subsequently, samples were centrifuged (300� g, 5 min),

the blood cells washed (�3, RPMI 1640 medium), resuspended

in heat-inactivated 100% autologous plasma and activated with

the indicated concentrations of C5a.

The C5a-induced IL-8 concentrations were estimated by

subtracting the background levels of IL-8 present in cultures not

activated with C5a and pre-exposed or not to TLR ligands from

the corresponding C5a-activated samples (background levels of

the experiments described in Fig. 1B – typical of all experiments

– are shown in the figure legend).
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Quantitative RT-PCR (RT-qPCR)

PBMCs (1� 106 cells/condition) were cultured in complete

medium, stimulated or not with 100 pg/mL LPS, washed, and

activated with C5a (10 nM), as described above. RNA was phenol

extracted (Tri Reagent, Ambion) and reverse transcription was

performed using random primers (High Capacity cDNA Reverse

Transcription, Applied Biosystems). qPCR was performed on the

resulting cDNA using the Power SYBR Green PCR master

mix (Applied Biosystems) and specific primers (Invitrogen):

IL-6, 50-CAGTTCCTGCAGAAAAAGGC-30 and 50-GAATGAGAT-

GAGTTGTCATG-30; IL-8, 50-GAACTGAGAGTGATTGAGAGT

GGA-30 and 50-CTCTTCAAAAACTTCTCCACAACC-30; C5aR,

50-GGAGACCAGAACATGAACTC-30 and 50-ATCCACAGGGGTGTT-

GAGGT-30; b-glucuronidase, 50-TCTGTATTCATTGGAGGTGC-30

and 50-AAGGTTTCCCATTGATGAGG-30. PCR was carried out

using the ABI 7900HT real-time PCR system (Applied Biosys-

tems), and results were analyzed by the DDCt method [41].

NF-jB assays

PBMCs (1� 107 cells/condition) were pre-exposed or not to

100 pg/mL LPS, washed and activated with C5a (10 nM) as

previously described. Nuclear extracts were prepared (Nuclear

Extract kit, Active Motif), and their protein concentration

determined (ProStain Fluorescent Protein Quantification, Active

Motif). Five micrograms of total protein/sample were used to

determine NF-kB p65 concentrations (ELISA, TransAM NF-kB

p65, Active Motif).

In vivo model of TLR activation

Inbred 8- to 12-wk-old C3H/HeN, C3H/HeJ (Harlan), BALB/c

(The Jackson Laboratory) and C5L2KO (on BALB/c background)

mice were maintained under barrier conditions and pathogen

free. All experimental procedures were carried out under Home

Office (UK) or the Ministerium für Landwirtschaft, Umwelt und

ländliche Räume (Kiel, Germany) project licenses. Mice (n 5 5/

condition) were i.p. injected with a previously defined dose of

LPS (50 mg/mouse) or phosphate-buffered saline (PBS). After 1 h,

blood was collected by cardiac puncture and samples (100mL/

condition) were washed (�3, RPMI 1640), resuspended in

complete medium and stimulated (14 h) with the indicated

concentrations of mouse C5a (Hycult). The cell culture super-

natants were tested for KC and MCP-1 by ELISA (R&D Systems),

and for HMBG1 by Western blot.

C5aR cell-surface expression

PBMCs (1�106/condition) or whole blood (100 mL/condition)

were stimulated (30 min) with 100 pg/mL (PBMCs) or 500 pg/mL

(whole blood) LPS or mock stimulated. Following incubation, cell

aliquots were collected for C5aR expression analysis, and the

remaining samples were washed and activated or not with C5a

(10 nM) for the indicated times. At each time point, cell aliquots

were tested for C5aR cell-surface expression on gated monocytes

or neutrophils – identified by their CD141 staining and forward

and side scatter profiles – by flow cytometry using a human

C5aR-specific mAb (S5/1, Hycult), as described [42].

Ca21 mobilization assays

Ca21 mobilization in gated monocytes was analyzed by flow

cytometry, as described [43]. PBMCs (1�106 cells/condition)

were activated or not with LPS for 30 min or 14 h before

staining (30 min, room temperature) with the Ca21-chelating

fluorescent dye Fluo3-AM (10 mM, Molecular Probes) or first

stained with Fluo3-AM before a 3-min activation with LPS. An

aliquot was taken from each sample for testing the background

fluorescence at time 0. C5a (10 nM) was subsequently added to

the remaining samples, and fluorescence was first measured 10 s

after addition of C5a, and thereafter every 30 s for a total of

3 min. Results are expressed as normalized [Ca21]i, as a measure

of the fold increase in intracellular Ca21 concentration at each

time point after the addition of C5a, by determining the ratio

between the mean fluorescence intensity at time t and that at

time 0.

Western blots

HMGB1 and C5L2 levels in cytoplasmic preparations from PBMCs

and in culture supernatants (20 mL) of mouse blood cells

(HMGB1) were evaluated by Western blot analysis, as described

[44]. Here, PBMCs (0.5� 106 cells/condition) were cultured with

or without LPS, washed and stimulated or not with C5a. Cells

were then lysed (0.5% v/v Nonidet P-40, 50 mM Tris-HCl,

150 mM NaCl, 1mg/mL leupeptin and pepstatin, 1 mM PMSF,

pH 7.4 buffer) for 1 h on ice, and the protein content of the

cytoplasmic cell extracts was estimated (BCA assay, Bio-Rad).

HMGB1 and C5L2 were detected by using an anti-human and

mouse HMGB1-specific polyclonal Ab (Ab18256, Abcam) and the

anti-human C5L2 mAb 1D9-M12.

Statistical analysis

Statistical analysis of the data was performed by using a paired

Student’s t-test. p valueso0.05 were considered significant.
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