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Data from a network of gravitational-wave detectors can be analyzed in coincidence to increase

detection confidence and reduce nonstationarity of the background. We propose and explore a geometric

algorithm to combine the data from a network of detectors. The algorithm makes optimal use of the

variances and covariances that exist among the different parameters of a signal in a coincident detection of

events. The new algorithm essentially associates with each trigger ellipsoidal regions in parameter space

defined by the covariance matrix. Triggers from different detectors are deemed to be in coincidence if their

ellipsoids have a nonzero overlap. Compared to an algorithm that uses uncorrelated windows separately

for each of the signal parameters, the new algorithm greatly reduces the background rate thereby

increasing detection efficiency at a given false alarm rate.
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I. INTRODUCTION

Long baseline interferometric gravitational-wave (GW)
detectors, such as the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [1], Virgo [2], and GEO 600
[3], are currently acquiring the best data ever. The data sets
from the different detectors can be either brought together
and analyzed phase coherently [4–7], or analyzed sepa-
rately followed up by a coincidence analysis [6,8–15] of
the triggers obtained. Coherent analysis maximizes signal
visibility (i.e., gives the best possible signal-to-noise ratio
in the likelihood sense) while the goal of coincidence
analysis is to reduce and mitigate the nonstationary and
non-Gaussian background noise. A recent comparison of
coherent analysis vis-à-vis coincidence analysis under the
assumption that the background noise is Gaussian and
stationary has concluded that coherent analysis, as one
might expect, is far better than coincidence analysis [16].
However, there are two reasons why current data-analysis
pipelines prefer the latter over the former. First, since the
detector noise is neither Gaussian nor stationary, coinci-
dence analysis can potentially reduce the background rate
far greater than one might think otherwise. Second, coher-
ent analysis is computationally far more expensive than
coincidence analysis and it is presently not practicable to
employ coherent analysis.

A. The problem of coincident detection

In coincidence analysis (see, for example, Refs. [11–
14,17–20]), data sets from each detector will be analyzed
separately and the triggers from the end of the pipeline
from different detectors compared with one another to

identify triggers that might be in coincidence with one
another. More precisely, the goal is to find if the parameters
of a trigger (e.g., in the case of a coalescing binary the time
of merger, the component masses and spins) from one
detector are identical to those from another. Since the
presence of noise causes errors in the measurement of
parameters of an inherent signal, it is highly improbable
that the same gravitational wave in different detectors can
be associated with exactly the same set of parameters.
However, it should be possible to detect signals in coinci-
dence by demanding that the measured parameters lie in a
sufficiently small range of each other [11–14,17,18]. Thus,
we can revise the coincidence criteria as follows: triggers
from different detectors are said to be in coincidence if
their parameters all lie within a certain acceptable range.
Events that pass the coincidence test are subject to further
scrutiny but we shall focus in this paper on the coincidence
test itself.
From the above discussion it is clear that an important

aspect of coincidence analysis is the determination of the
range of parameter values to be associated with each
trigger. To this end, until recently, the LIGO Scientific
Collaboration (LSC) has deployed a phenomenological
method for assigning the ranges [11–14,17,18]. More pre-
cisely, one performs a large number of simulations in
which a signal with a known set of parameters is added
in software to the data which is then passed through the
analysis pipeline. The pipeline identifies the most probable
parameters with each injected signal and the ensemble of
injected and measured parameters gives the distribution of
the errors incurred in the measurement process. Given the
distribution of the errors, one can choose a range for each
parameter such that more than, say, 95% of the injected
signals are detected in coincidence. Choosing wider win-
dows will enable greater detection probability but also
increases the rate of accidental triggers. On the contrary,
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smaller windows decrease the false alarm rate but also
reduce the detection probability. Recently, a Bayesian
coincidence test has been proposed [21] as an alternative
wherein one computes the likelihood of a candidate event
as belonging to a distribution obeyed by true signals rather
than the noise background. Unfortunately, measuring the
distribution function when the parameter space is large
could be computationally formidable [21] except when
the parameters are independent.

B. A geometric approach to choosing coincident
windows

In this paper we propose a new algorithm based on the
metric (equivalently, the information matrix) defined on
the signal manifold. The idea is very simple, even obvious,
but leads to a great reduction in the background trigger
rate. The advantages of the new algorithm are better ap-
preciated by listing certain drawbacks of the phenomeno-
logical method. The drawbacks are quite naturally
remedied in the new approach.

First, because the current method uses rectangular win-
dows it ignores the correlations between different parame-
ters. For instance, in the case of a chirping signal from a
black hole binary the shape of the signal depends, among
others, on the component masses. However, not all combi-
nations of the two masses lead to signals that are easily
distinguishable from one another. Indeed, at the lowest
post-Newtonian (PN) order the waveform depends only
on a certain combination of the masses called the chirp
mass; binaries of different values for the two masses but the
same chirp mass produce essentially the same signal. This
degeneracy is broken when post-Newtonian corrections are
included. Nevertheless, the two mass parameters continue
to be highly correlated.

The second drawback is that the method employs win-
dows of the same size throughout the parameter space
while we know that errors in the measurement of the
parameters depend, in some cases quite sensitively, on
the parameters. Drawing again from our example of a
binary, the error in the estimation of the chirp mass can
vary by more than 2 orders of magnitude across the pa-
rameter space of interest in the case of systems that LIGO
is expected to observe (see, e.g., [22–32]). Clearly, it is not
optimal to deploy windows of the same size all over the
parameter space.

Third, by not taking into account parameter covariances,
the method entails independent tuning of several parame-
ters at the same time. This could be a horrendous problem
when dealing with signals characterized by many parame-
ters. For instance, continuous radiation from a pulsar is
characterized by the location of the pulsar, its spin fre-
quency, the derivative of the frequency, and so on. These
physical parameters are all not independent; the existence
of covariances among them implies that the effect of
variation in one parameter can be absorbed by another—

thereby complicating the pipeline tuning procedure. In the
case where parameters have perfect or near perfect cova-
riances, variations of the parameters may not even lead to
distinct signals at all. This further implies that it may not be
necessary to tune each parameter separately, rather it
should be enough to tune only a subset of the parameters
or, more precisely, only the principal components.
Furthermore, the method does not provide a unique set of
windows, rather several possibilities could be worked out.
Finally, by using windows of the same size irrespective

of the signal-to-noise ratio (SNR) of the trigger, the method
suffers from an undesirably high false alarm rate, particu-
larly in the tail of the SNR distribution. Needless to say, a
successful detection of gravitational waves necessitates as
clean a distribution of the SNRs as possible, with little
contamination of the tails. One way of reducing the false
alarm rate is by using tighter windows at higher SNRs. This
is well motivated since true high-SNR events will be
associated with smaller errors.
The geometric algorithm proposed in this paper quite

naturally overcomes the drawbacks of the phenomenologi-
cal method. The algorithm takes into account the correla-
tions among the various parameters and deploys
parameter- and SNR-dependent ellipsoidal windows de-
fined by the Fisher information matrix using a single
parameter. The most important consequence of the new
algorithm is a great reduction in the background rate.

C. Organization of the paper

In Secs. II, III, and IV, we present and discuss the new
algorithm to identify events in coincidence. The algorithm
is comprised of two steps. The first step consists of asso-
ciating each trigger with a p-dimensional ellipsoid. In the
second step one tests if the ellipsoid associated with a
trigger from one detector overlaps, or at least touches, an
ellipsoid associated with a trigger from another detector. In
Sec. V we apply the algorithm developed in Sec. II to the
case of a transient chirp signal from a binary black hole.
This will help us assess the extent to which the algorithm is
helpful in reducing the background. Section VI concludes
by summarizing the application of the new algorithm in
real data-analysis pipelines and future prospects.

II. A GEOMETRIC COINCIDENCE ALGORITHM

This section begins with a brief introduction to the
geometric formulation of signal manifold and metric in-
troducing the terminology needed in later sections [33].
The metric so defined helps us in identifying ellipsoidal
regions with a given point on the manifold whose size is
chosen depending on the SNR and the parameter space
region where the point lies. As an exercise to estimate the
efficacy of the new coincidence algorithm we then com-
pare the volume of the ellipsoid with that of a proper
rectangular box enclosing the ellipsoid and aligned along
the coordinate lines.
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A. Scalar product, signal manifold, and metric

The problem of gravitational-wave data analysis was
addressed in a geometric framework with the intention of
understanding parameter estimation [29,30] and computa-
tional requirements for matched filtering [34–36]. In this
framework, one thinks of the outputs of an ensemble of
detectors as either finite- or infinite-dimensional vectors
depending on whether one considers data streams as a
discrete sampled set or the continuum limit of the same,
respectively. For the sake of convenience, in this paper we
shall deal with the continuum limit. However, all our
results are applicable to the more realistic case in which
detector outputs are treated as finite dimensional vectors. It
is easy to see that the set of all detector outputs form a
vector space satisfying the usual axioms of a vector space.
The starting point of our discussion is the definition of the
scalar product. Given any two functions xðtÞ and yðtÞ, their
scalar product hx; yi is defined as [22–25]

hx; yi ¼ 2
Z 1

0

df

ShðfÞ ½XðfÞY
�ðfÞ þ X�ðfÞYðfÞ�; (2.1)

where XðfÞ � R1
�1 dtxðtÞ expð�2�iftÞ is the Fourier

transform of the function xðtÞ [and similarly, YðfÞ] and
ShðfÞ is the one-sided noise power-spectral density of the
detector. The scalar product in Eq. (2.1) is motivated by the
likelihood of a known signal buried in a Gaussian, sta-
tionary background [37].

Among all vectors, of particular interest are those cor-
responding to gravitational waves from a given astronomi-
cal source. While every signal can be thought of as a vector
in the infinite-dimensional vector space of the detector
outputs, the set of all such signal vectors do not, by
themselves, form a vector space. One can immediately
see that the norm of a signal h (i.e., the square root of
the scalar product of a signal with itself) gives the SNR �
using an optimal template [38,39]:

� � hh; hi1=2 ¼ 2

�Z 1

0

df

ShðfÞ jHðfÞj2
�
1=2
; (2.2)

where HðfÞ is the Fourier transform of the signal hðtÞ. In
particular, we can define signals ĥ of unit norm:

ĥ � hffiffiffiffiffiffiffiffiffiffiffiffihh; hip ¼ h

�
; hĥ; ĥi ¼ 1: (2.3)

The set of all normed signal vectors (i.e., signal vectors
of unit norm) form a manifold, the parameters of the signal
serving as a coordinate system [29,30,35,36]. Thus, each
class of astronomical source forms an n-dimensional mani-
fold Sn, where n is the number of independent parameters
characterizing the source. For instance, the set of all signals
from a binary on a quasicircular orbit inclined to the line of
sight at an angle �, consisting of nonspinning black holes of

masses m1, and m2, located a distance D from the Earth1

initially in the direction ð�;’Þ and expected to merge at a
time tC with the phase of the signal at merger ’C, forms a
nine-dimensional manifold with coordinates fD; �; ’;
m1; m2; tC; ’C; �;  g, where  is the polarization angle of
the signal. In the general case of a signal characterized by n
parameters we shall denote the parameters by p�, where
� ¼ 1; . . . ; n. It should be noted that it is not possible in
general to determine all the parameters of a signal using
measurements from a single detector. In this case, we work
with the submanifold with coordinates given by the deter-
minable parameters.
The manifold Sn can be endowed with a metric g�� that

is induced by the scalar product defined in Eq. (2.1). The
components of the metric in a coordinate system p� are
defined by2

g�� � h@�ĥ; @�ĥi; @�ĥ � @ĥ

@p�
: (2.4)

The metric can then be used on the signal manifold as a
measure of the proper distance d‘ between nearby signals

with coordinates p� and p� þ dp�, that is signals ĥðp�Þ
and ĥðp� þ dp�Þ,

d‘2 ¼ g��dp
�dp�: (2.5)

Now, by Taylor expanding ĥðp� þ dp�Þ around p�, and
keeping only terms to second order in dp�, it is straight-
forward to see that the overlap O of two infinitesimally
close-by signals can be computed using the metric:

O ðdp�;p�Þ � hĥðp�Þ; ĥðp� þ dp�Þi
¼ 1� 1

2g��dp
�dp�: (2.6)

The metric on the signal manifold is nothing but the
well-known Fisher information matrix usually denoted
��� (see, e.g., [37,40]) but scaled down by the square of

the SNR, i.e., g�� ¼ ��2���. The information matrix is

itself the inverse of the covariance matrix C�� and is a very

useful quantity in signal analysis. The ambiguity function
Aðdp�;p�Þ, familiar to signal analysts, is the overlap
function defined above as Aðdp�;p�Þ ’ Oðdp�;p�Þ.
Thus, the equation

A ðdp�;p�Þ ¼ �; or Oðdp�;p�Þ ¼ �; (2.7)

where � (0< �< 1) is a constant, defines the ambiguity

1Even though we deal with normed signals (which amounts to
fixing D), astrophysical gravitational-wave signals are charac-
terized by this additional parameter.

2We have followed the definition of the metric as is conven-
tional in parameter estimation theory (see, e.g., Refs. [23–
25,30]) which differs from that used in template placement
algorithms (see, e.g., Refs. [35]) by a factor of 2. This difference
will impact the relationship between the metric and the match as
will be apparent in what follows.
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surface, or level surface. In gravitational-wave literature �,
which measures the overlap between two mismatched
signals, is also called the match. Using the expression for
the overlapO [cf. Eq. (2.6)] in Eq. (2.7), we can see that the
coordinate distance dp� to the ambiguity surface from the
coordinate point p� is related to the proper distance3 by

g��dp
�dp� ¼ 2ð1� �Þ: (2.8)

Equivalently, d‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �Þp

. For a given value of the
match � the above equation defines a ðn�
1Þ-dimensional ellipsoid in the n-dimensional signal mani-
fold. Every signal with parameters p� þ dp� on the ellip-
soid has an overlap � with the reference signal at p�.

B. Coincidence windows

Having defined the metric (equivalently, the information
matrix) and the ambiguity function, we next consider the
application of the geometric formalism in the estimation of
statistical errors involved in the measurement of the pa-
rameters and then discuss how that information may be
used in coincidence analysis. We closely follow the nota-
tion of Finn and Chernoff [23–25] to introduce the basic
ideas and apply their results in the choice of coincidence
windows.

Let us suppose a signal of known shape with parameters
p� is buried in background noise that is Gaussian and
stationary. Since the signal shape is known one can use
matched filtering to dig the signal out of noise. The mea-
sured parameters �p� will, in general, differ from the true
parameters of the signal.4 Geometrically speaking, the
noise vector displaces the signal vector and the process
of matched filtering projects the (noiseþ signal) vector
back on to the signal manifold. Thus, any nonzero noise
will make it impossible to measure the true parameters of
the signal. The best one can hope for is a proper statistical
estimation of the influence of noise.

The posterior probability density function P of the
parameters �p� is given by a multivariate Gaussian distri-
bution5:

P ð�p�Þdn�p ¼ dn�p

ð2�Þn=2 ffiffiffiffi
C

p exp

�
� 1

2
C�1
���p

��p�
�
;

(2.9)

where n is the number of parameters, �p� ¼ p� � �p�,

and C�� is the covariance matrix, C being its determinant.

Noting that C�1
�� ¼ �2g��, we can rewrite the above dis-

tribution as

P ð�p�Þdn�p ¼ �n
ffiffiffi
g

p
dn�p

ð2�Þn=2 exp

�
��2

2
g���p

��p�
�
;

(2.10)

where we have used the fact that C ¼ 1=ð�2ngÞ, g being
the determinant of the metric g��. Note that if we define

new parameters p0� ¼ �p�, then we have exactly the same
distribution function for all SNRs, except the deviations
�p� are scaled by �.
Let us first specialize to one dimension to illustrate what

region of the parameter space one should associate with a
given trigger. In one dimension the distribution of the
deviation from the mean of the measured value of the
parameter p is given by

P ð�pÞd�p ¼ d�pffiffiffiffiffiffiffi
2�

p
�

exp

�
��p2

2�2

�

¼ �
ffiffiffiffiffiffiffiffi
gpp

p
d�pffiffiffiffiffiffiffi

2�
p exp

�
��2

2
gpp�p

2

�
; (2.11)

where, analogous to the n-dimensional case, we have used
�2 ¼ 1=ð�2gppÞ. Now, at a given SNR, what is the volume

VP in the parameter space such that the probability of
finding the measured parameters �p inside this volume is
P? This volume is defined by

P ¼
Z
�p2VP

P ð�pÞd�p: (2.12)

Although VP is not unique it is customary to choose it to be
centered around �p ¼ 0:

P ¼
Z
ð�p=�Þ2�r2ðPÞ

d�pffiffiffiffiffiffiffi
2�

p
�

exp

�
��p2

2�2

�

¼
Z
�2gpp�p

2�r2ðPÞ

�
ffiffiffiffiffiffiffiffi
gpp

p
d�pffiffiffiffiffiffiffi

2�
p exp

�
��2gpp�p

2

2

�
;

(2.13)

where given P the above equation can be used to solve for
rðPÞ and it determines the range of integration. For in-
stance, the volumes VP corresponding to P ’ 0:683, 0.954,
0.997, . . ., are the familiar intervals ½��;��, ½�2�; 2��,
½�3�; 3��, . . ., and the corresponding values of r are 1, 2,

3. Since � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2gpp

q
we see that in terms of gpp the

above intervals translate to

1

�

�
� 1ffiffiffiffiffiffiffiffi

gpp
p ;

1ffiffiffiffiffiffiffiffi
gpp

p
�
;

1

�

�
� 2ffiffiffiffiffiffiffiffi

gpp
p ;

2ffiffiffiffiffiffiffiffi
gpp

p
�
;

1

�

�
� 3ffiffiffiffiffiffiffiffi

gpp
p ;

3ffiffiffiffiffiffiffiffi
gpp

p
�
; . . . :

(2.14)

Thus, for a given probability P, the volume VP shrinks as

3Here the proper distance refers to the distance between the
signal ĥðp�Þ at the coordinate point p� and a signal ĥðp� þ
dp�Þ with coordinates p� þ dp� on the ambiguity surface.

4In what follows we shall use an overline to distinguish the
measured parameters from true parameters p�.

5A Bayesian interpretation of P ð�p�Þ is the probability of
having the true signal parameters to lie somewhere inside the
ellipsoidal volume centered at the maximum likelihood point �p�.
In this case the overlap test for determining the coincidence test
is motivated by a test of concordance that the true signal
parameters p� should lie in the overlap region.

ROBINSON, SATHYAPRAKASH, AND SENGUPTA PHYSICAL REVIEW D 78, 062002 (2008)

062002-4



1=�. The maximum distance dmax within which we can
expect to find ‘‘triggers’’ at a given P depends inversely on

the SNR �: d‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpp�p

2
q

¼ r=�. Therefore, for P ’
0:954, r ¼ 2 and at an SNR of 5 the maximum distance
is 0.4, which corresponds to a match of � ¼ 1� 1

2d‘
2 ¼

0:92. In other words, in one dimension 95% of the time we
expect our triggers to come from templates that have an
overlap greater than or equal to 0.92 with the buried signal
when the SNR is 5. This interpretation in terms of the
match is a good approximation as long as d‘� 1, which
will be true for large SNR events. However, for weaker
signals and/or greater values of P we cannot interpret the
results in terms of the match although, the foregoing
equation (2.12) can be used to determine rðPÞ. As an
example, at P ’ 0:997, r ¼ 3 and at an SNR of � ¼ 4
the maximum distance is d‘ ¼ 0:75 and the match is � ¼
23=32 ’ 0:72, which is significantly smaller than 1 and the
quadratic approximation is not good enough to compute
the match.

These results generalize to n dimensions. In n dimen-
sions the volume VP is defined by

P ¼
Z
�p�2VP

P ð�p�Þdn�p: (2.15)

Again, VP is not unique but it is customary to center the
volume around the point �p� ¼ 0:

P ¼
Z
�2g���p

��p��r2ðP;nÞ
�n

ffiffiffi
g

p
dn�p

ð2�Þn=2

� exp

�
��2

2
g���p

��p�
�
: (2.16)

Given P and the parameter space dimension n, one can
iteratively solve the above equation for rðP; nÞ. The vol-
ume VP is bounded by the surface defined by the equation

g���p
��p� ¼

�
r

�

�
2
: (2.17)

This is the same as the ellipsoid in Eq. (2.8) except that its
size is defined by r=�. Let us note the generalization of a
result discussed previously, namely that the size of the
ellipsoid is not small enough for all combinations of P
and � and, therefore, it is not always possible to interpret
the distance from the center of the ellipsoid to its surface in
terms of the overlap or match of the signals at the two
locations except when the distance is close to zero. This is
because the expression for the match in terms of the metric
is based on the quadratic approximation which breaks
down when the matches are small. However, the region
defined by Eq. (2.17) always corresponds to the probability
P and there is no approximation here (except that the
detector noise is Gaussian).

When the SNR � is large and 1� P is not close to zero,
the triggers are found from the signal with matches greater

than or equal to 1� r2ðP;nÞ
2�2 . Table I lists the value of r for

several values of P in one, two, and three dimensions and
the minimummatch �MM for SNRs of 5, 10, and 20. Table I
should be interpreted in light of the fact that triggers come
from an analysis pipeline in which the templates are laid
out with a certain minimal match and one cannot, there-
fore, expect the triggers from different detectors to be
matched better than the minimal match.
From the table, we see that when the SNR is large (say

greater than about 10) the dependence of the match �MM on
n is very weak; in other words, irrespective of the number
of dimensions we expect the match between the trigger and
the true signal (and for our purposes the match between
triggers from different instruments) to be pretty close to 1,
and mostly larger than a minimal match of about 0.95 that
is typically used in a search. Even when the SNR is in the
region of 5, for low P again there is a weak dependence of
�MM on the number of parameters. For large P and low
SNR, however, the dependence of �MM on the number of
dimensions becomes important. At an SNR of 5 and P ’
0:997, �MM ¼ 0:91, 0.87, 0.85, for n ¼ 1, 2, 3 dimensions,
respectively.
In general, for a given probability P the size of the

ellipsoid at an SNR � is smaller by a factor � compared
to that at � ¼ 1. Thus, the volume in the parameter space in
which the measured parameters will lie at a given proba-
bility P will scale with the SNR as ��n. Therefore, if the
goal of an experiment is to have false dismissal probability
that is no greater than 1� P then the ellipsoidal windows
given by Eq. (2.17) could be employed when testing trig-
gers from different detectors for coincidences. We now
have our first result which states that:
When performing coincidence analysis of triggers one

should test to see if the associated ellipsoids overlap with
each other. These ellipsoids describe the smallest possible

TABLE I. The value of the (squared) distance d‘2 ¼ r2=�2 for
several values of P and the corresponding smallest match that
can be expected between templates and the signal at different
values of the SNR.

P ¼ 0:683 P ¼ 0:954 P ¼ 0:997
� d‘2 �MM d‘2 �MM d‘2 �MM

n ¼ 1
5 0.04 0.9899 0.16 0.9592 0.36 0.9055

10 0.01 0.9975 0.04 0.9899 0.09 0.9772

20 0.002 5 0.9994 0.01 0.9975 0.0225 0.9944

n ¼ 2
5 0.092 0.9767 0.2470 0.9362 0.4800 0.8718

10 0.023 0.9942 0.0618 0.9844 0.1200 0.9695

20 0.005 75 0.9986 0.0154 0.9961 0.0300 0.9925

n ¼ 3
5 0.141 2 0.9641 0.32 0.9165 0.568 0.8462

10 0.035 3 0.9911 0.08 0.9798 0.142 0.9638

20 0.008 83 0.9978 0.02 0.9950 0.0355 0.9911
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volume within which the false dismissal probability is no
more than a prespecified value.

Notice also that, if one assumes that false alarms are due
to accidental coincidences between triggers which are
otherwise uncorrelated,6 the false alarm rate would then
also go down by ��n. Thus, given the false dismissal
probability 1� P the size of the ellipsoid further depends
on the SNR of the events that are being subject to coinci-
dence analysis, the size shrinking sharply as a function of
the event’s SNR. Thus we have the second of our results:

The size of the ellipsoids should be chosen in inverse
proportion to the signal-to-noise ratio.

However, this latter feature has not yet been imple-
mented in current gravitational-wave searches and will
be a priority for implementation in future versions of the
search pipeline [41]. The final, and practically speaking
probably the most important result is the following:

Our coincidence algorithm reduces the number of tuna-
ble parameters from n (where n is the number of parame-
ters) to 1, irrespective of the dimensionality of the signal
parameter space.

The tunable parameter, 	, which will be introduced in
Eq. (3.2), essentially scales the volume of the ambiguity
ellipsoid. The appropriate value of this parameter can be
determined by extensive Monte Carlo tests, for example by
injecting fake signals into interferometer data, and opti-
mizing the detection efficiency vis-à-vis false alarm rate.
Having just one parameter greatly simplifies the tuning
procedure.

III. OVERLAP OF ELLIPSOIDS

A key tool in determining coincidences of triggers from
two or more detectors is a mathematical algorithm to
determine if the ellipsoids associated with triggers either
touch or overlap with each other. This algorithm forms the
workhorse for identifying coincidence of triggers from two
or more detectors.

As stated in Sec. II A, triggers resulting from the analy-
sis pipeline are projections of the data by normed signal
vectors onto an n-dimensional space Sn, where n is the
number of independent parameters characterizing the
source. In the foregoing section we introduced ellipsoidal
regions in the n-dimensional parameter space with their
centers at the location of the maximum likelihood point.
When we analyze the data, however, we will not know
beforehand if a signal is present in the data and even when
there is one we would not know where its location in the
parameter space is. We will have, nevertheless, the knowl-
edge of the location of the triggers in the parameter space.
Let us denote the coordinates of a trigger from a detector A
as q�A , where � is the index on the parameter space. The
coincidence analysis proceeds in the following manner.

Define an ellipsoidal region EðpA; �gÞ around each trigger
q�A by

E ðpA; �gÞ ¼ fpA 2 SnjðpA � qAÞT �gðpA � qAÞ � 1g;
(3.1)

where qA 2 Sn is the position vector of the center of the
ellipsoid (i.e., the location of the trigger from detector A)
and �g is the rescaled metric which we shall refer to as the
shape matrix. It is related to the metric by

�g �� ¼ 	2g��; (3.2)

where 	2 is a numerical scaling factor used to expand the
linear distances of the ellipsoid while holding the position
of the center and the spatial orientation constant.
Equation (2.17) allows us to interpret the parameter 	 in
terms of the probability P with which the trigger can be
expected to be found within the ellipsoid EðpA; �gÞ:

	2 ¼ �2

r2ðPÞ : (3.3)

Further, the probabilities P associated with a given 	 can
be found using Eq. (2.16) when the background noise is
Gaussian. However, most detector noise is non-Gaussian
and nonstationary and in those cases	 serves as a parame-
ter that must be tuned to achieve a certain detection effi-
ciency or, alternatively, a certain false alarm rate.
Note that the ellipsoids associated with high-SNR trig-

gers are expected to overlap (and hence pass coincidence)
even if they each have a smaller volume. On the other hand,
for weaker signals we need to associate larger ellipsoids in
order for them to overlap.
Thus, the shape matrix is the scaled metric and encodes

the local correlations between the parameters in the neigh-
borhood of the trigger. It is trivial to check that when 	 ¼
1, Eq. (3.1) defines the interior of the ambiguity ellipsoid
previously defined in Eq. (2.7).
Once an ellipsoidal model for the trigger is established,

following [42] one can construct a contact function
F ABð
Þ of two ellipsoids EðqA; �gAÞ and EðqB; �gBÞ (defined
around triggers from detectors A and B) as

F ABð
Þ ¼ 
ð1� 
ÞrTAB½
 �g�1
B þ ð1� 
Þ �g�1

A ��1rAB;

(3.4)

where rAB ¼ qB � qA and 
 2 ½0; 1� is a scalar parameter.
The maximum of the contact function over 
 in the interval
[0, 1] can be shown [42] to be unique. It can also be shown
that for two overlapping ellipsoids, the maximum of the
contact function is less than 1, i.e.,

F ¼ max
0�
�1

½F ABð
Þ�< 1: (3.5)

When F ¼ 1, the two ellipsoids ‘‘touch’’ each other ex-

6This is not the case for colocated detectors such as the two
LIGO Hanford interferometers.
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ternally. Figure 1 shows the contact function in the case of
overlapping and nonoverlapping ellipsoids.

In the ‘‘coincidence’’ data-analysis paradigm, given
triggers from N detectors (N � 2), one draws up a list of
‘‘coincident triggers’’ for further analysis to test their
significance. The simplest coincident triggers consist of
those which have ‘‘consistent’’ parameters in two detectors
(two-way coincidence). Testing for two-way coincidences
for triggers from colocated detectors (e.g., the two LIGO
detectors at Hanford) can be accomplished by a single test
of Eq. (3.5) on a pair of triggers.

When the detectors are noncolocated, one needs to allow
for a nonzero ‘‘time-of-flight’’ delay between the trigger
arrival times. One assumes that the GW signals travel at the
speed of electromagnetic radiation in vacuum c and the
maximum allowed time delay is then set to	�=c, where�
is the distance between the two detectors. As far as the
geometrical picture of the coincidence test is concerned,
for the noncolocated case one needs to test for the overlap

of a ‘‘cylindrical’’ volume (of length 2�=c along the time
dimension) and an ellipsoid.7 In practice, however, the test
can be carried out iteratively by adding discrete time delays
to the trigger (spanning the allowed time delay) from one
detector and testing for the overlap condition against the
trigger from the other detector, keeping the latter fixed in
time. The discrete time step can be set to the inverse of the
sampling frequency of the time series. The fact that the
overlap test is computationally cheap allows for such a
brute-force implementation strategy to be viable.
These 2-way coincident triggers can now be used as

building blocks to construct more complex coincidence
triggers that have consistent parameters over three or
more interferometers (3-way, . . ., n-way coincidence trig-
gers). For example, the set of triggers ðTA; TB; TCÞ can be
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FIG. 1 (color online). (a) plots the contact function Eq. (3.4) for two pairs of three-dimensional ellipsoids taken from a search for
binaries consisting of nonspinning compact objects characterized by parameters ðtc; �0; �3Þ [see Sec. V, in particular, Eq. (5.4)]. (b)–(d)
are the projections of the ellipsoids in ðtc; �0Þ, ðtc; �3Þ, and ð�0; �3Þ orthogonal planes, respectively. Solid lines refer to the case of
nonoverlapping ellipsoids and dashed lines are for overlapping (i.e., coincident) triggers. Note that in the latter case the maximum of
the contact function is � 1, which is the test that is carried out to determine if a pair of triggers are in coincidence.

7Note that, in the case of an externally triggered search, where
the position of the source is known, we can use a fixed time delay
for noncolocated detectors.
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classified as 3-way coincident if ðTA; TBÞ, ðTB; TCÞ, and
ðTA; TCÞ 2-way coincident pairs exist. Here again, the sub-
scripts A � B � C are labels on interferometers. This idea
can be generalized to determine the list of n-way coinci-
dent triggers given the list of ðn� 1Þ-way coincidences. It
is useful to note that Eq. (3.5) is the only test we need in
order to build the entire hierarchy of coincidence triggers.

We conclude this section by drawing attention to two
practical issues in implementing this geometrical coinci-
dence test. The first has to dowith the algorithm one uses to
draw up two-way coincidences. Given the set of triggers
from two detectors, one can (a) work with time-ordered
triggers and (b) find the maximum length of the bounding
box of the ellipsoid along the time dimension over all the
triggers such that for any trigger from one detector, the test
for overlap is carried out only if a trigger from the other
detector occurs at a time that is within twice this interval.
This approach greatly reduces the overall number of over-
lap tests required to find two-way coincidences. The ex-
pression for the length of the sides of the bounding box can
be algebraically determined given the shape matrix of the
triggers and is explicitly given for 2 and 3 dimensions in
the next section.

The second point is about the numerical implementation
of the test of the overlap of ellipsoids where we maximize
the contact function over a single parameter 
. Evaluation
of the contact function involves matrix inversion which can
be computationally quite expensive. Under these circum-
stances, prior knowledge of the inverse of trigger shape
matrices can prove to be more efficient than on-the-fly
computation. Brent’s minimization method [43,44] is par-
ticularly suitable for fast convergence to the maxima given
the well-behaved nature of the contact function and is
available as part of the GNU Scientific Library [45].

IV. EXPECTED REDUCTION IN FALSE ALARM
RATE

Next, let us consider the reduction in the false alarm rate
as a result of using ellipsoidal windows as opposed to
rectangular windows.8 In order to achieve false dismissal
probability less than or equal to 1� P, a rectangular
window has to be at least as large as the box that encloses
the ellipsoid. Now the volume of an n-dimensional ellip-
soid (n � 2) whose semiaxes are ak; k ¼ 1; . . . ; n, is given
by a recursive formula:

Vn ¼ 2�Vn�2

n

Yn
k¼1

ak; where V0 ¼ 1; V1 ¼ 2:

(4.1)

On the other hand, the smallest volume an n-dimensional

box that encloses the ellipsoid would be

Un ¼
Yn
k¼1

ð2akÞ ¼ 2n
Yn
k¼1

ak; (4.2)

where a factor of 2 arises since ak are semimajor axes and
the side lengths of the enclosing box will be twice that
value. Thus, the rectangular box’s volume is larger than
that of the ellipsoid by the factor

r � Un

Vn
¼ n2n�1

�Vn�2

: (4.3)

Thus, in 2, 3, and 4 dimensions the savings are 4=�, 6=�,
and 32=�2, respectively. However, the real factor could be
far greater as the error ellipsoids are generally not oriented
along the coordinate axes.
When the ellipsoid is not aligned with the coordinate

axes, which will be the case when there are correlations
between the different parameters, the side lengths of the
bounding box are given by maximizing each coordinate
axis over the entire ellipsoidal surface as follows. Starting
from Eq. (2.17) one can express the first of the coordinates
p � p1 in terms of the other coordinates:

g11p
2 þ 2g1ipp

i þ gijp
ipj �

�
r

�

�
2 ¼ 0;

i; j ¼ 2; . . . ; n;

(4.4)

which can be solved to obtain

p	 ¼ 1

g11
½�g1ipi	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg1ig1j� g11gijÞpipjþðg11r2=�2Þ

q
�:

(4.5)

For our purposes we only need the ‘‘plus’’ solution. One
can then set up n� 1 equations in as many variables by
demanding that @pþ=@pk ¼ 0, which gives

�ðg1ig1k � g11gikÞðg1jg1k � g11gjkÞ
g21k

� ðg1ig1j � g11gijÞ
�

� pipj ¼ g11
r2

�2
: (4.6)

These are again quadratic equations that must be solved
(simultaneously) for the coordinates pj, j ¼ 2; . . . ; n. The

resulting (positive) roots, denoted pj1 can be substituted in

Eq. (4.4) to obtain the half side length of the ellipse. We
shall next give explicit expressions for the side lengths of
the enclosing box in two and three dimensions. In higher
dimensions the expressions are rather cumbersome but the
general procedure outlined above can be used to compute
the volume of the bounding box in all cases.
The side lengths of the bounding box are given in two

dimensions by

8This discussion again assumes that false alarms are due to
accidental coincidences between otherwise uncorrelated
triggers.
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x ¼ 2

ffiffiffiffiffiffiffi
�g22
j �gj

s
; y ¼ 2

ffiffiffiffiffiffiffi
�g11
j �gj

s
; (4.7)

and in three dimensions by

x ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �g223 � �g22 �g33Þ �g22

ð �g12 �g23 � �g22 �g13Þ2 � ð �g223 � �g22 �g33Þð �g212 � �g11 �g22Þ

s
;

y ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �g213 � �g11 �g33Þ �g11

ð �g12 �g13 � �g11 �g23Þ2 � ð �g213 � �g11 �g33Þð �g212 � �g11 �g22Þ

s
;

z ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �g212 � �g11 �g22Þ �g11

ð �g12 �g13 � �g11 �g23Þ2 � ð �g212 � �g11 �g22Þð �g213 � �g11 �g33Þ

s
:

(4.8)

V. APPLICATION TO COALESCING BINARIES

Inspiralling compact binaries are one of the most prom-
ising candidates for detection by the laser interferometric
detectors. It will, therefore, be interesting to investigate the
gains of using the new coincidence method in such
searches. For the purpose of our discussion, it will suffice
to use a simple model of the signal. We shall use the
Fourier representation of the waveform from a binary
consisting of nonspinning compact objects on a quasicir-
cular orbit in which post-Newtonian corrections to the
amplitude are neglected, but corrections to the phase are
included to the desired order. This waveform is calculated
using the stationary phase approximation, and is of the
form:

~hðfÞ ¼ AM5=6

D�2=3

ffiffiffiffiffiffi
5�

24

s
f�7=6 exp

�
i�ðf; tC;C; kÞ þ i

�

4

�
;

(5.1)

�ðfÞ ¼ 2�ftC þC þX
k


kf
ðk�5Þ=3; (5.2)

where M is the total mass of the system, and � is the
symmetric mass ratio, which is defined as � � m1m2=M

2.
D is the distance to the source, and A is a constant which
depends on the relative orientations of the detector and the
binary orbit, and tC and C are as defined in Sec. II A.
Waveforms of this type at second post-Newtonian order
[46,47] have been used in previous searches for binary
neutron star inspirals [12], and are currently being used
in searches for compact binary inspirals with a total mass
of<35M
 [41]. Moreover, the metric computed for such a
waveform has been shown to be approximately valid for a
range of physical approximants [48,49]. At the 2PN order,
the coefficients 
k are given by the following expressions:


0 ¼ 3

128�ð�MÞ5=3 ; 
1 ¼ 0;


2 ¼ 5

96��M

�
743

336
þ 11

4
�

�
; 
3 ¼ �3�1=3

8�M2=3
;


4 ¼ 15

64�ð�M1=3

�
3058673

1016064
þ 5429

1008
�þ 617

144
�2

�
:

(5.3)

The metric required for determining coincidence in the
case of nonspinning binaries is that in the three-
dimensional space of ðtC; �0; �3Þ, where �0 and �3 are the
chirp times, which are a convenient way of parametrizing
the masses of the binary system. They are given by

�0 ¼ 5

256�fL�
ð�MfLÞ�5=3;

�3 ¼ 1

8fL�
ð�MfLÞ�2=3;

(5.4)

where fL is the frequency below which no appreciable
signal can be detected due to rising detector noise at low
frequencies.
In obtaining the metric, it proves to be more convenient

to use parameters ðtC; �1; �2Þ, where �1 � 2�fL�0, and
�2 � 2�fL�3. This metric was obtained by Owen in
[35]. Here, Eq. (2.6) was used, and the phase C maxi-
mized over to give the expression for the metric:

g�� ¼ 1
2ðJ ½ � �� � J ½ ��J ½ ��Þ; (5.5)

where  � is the derivative of the Fourier phase of the
inspiral waveform with respect to parameter ��. J is the
moment functional of the noise power spectral density
(PSD), which is defined for any function aðxÞ as

J ðaÞ � 1

Ið7Þ
Z xU

xL

aðxÞx�7=3

ShðxÞ dx: (5.6)

IðqÞ is the qth moment of the noise PSD, which is defined
by

IðqÞ � Shðf0Þ
Z xU

xL

x�q=3

ShðxÞ dx; (5.7)

where x � f=f0, with f0 being a fiducial frequency used to
set the range of the numerical values of the functions
contained in the integrals. The value of xL is chosen so
that the contribution to the integral for values below xL
would be negligible. xU � fU=f0, where fU is the ending
frequency of the inspiral waveform in question. In deriving
the explicit expression for the metric, the starting point is
the Fourier phase of the waveform in the form [48]:

�ðf; tC; �1; �2Þ ¼ 2�ftC þ a01�1x
�5=3 þ ½a21ð�1=�2Þ

þ a22ð�1�22Þ1=3�x�1 þ a31�2x
�2=3

þ ½a41ð�1=�22Þ þ a42ð�1=�2Þ1=3
þ a43ð�42=�1Þ1=3�x�1=3; (5.8)
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where the coefficients akm are given by

a01 ¼ 3

5
; a21 ¼ 11�

12
; a22 ¼ 743

2016

�
25

2�2

�
1=3
;

a31 ¼ �3

2
; a41 ¼ 617

384
�2; a42 ¼ 5429

5376

�
25�

2

�
1=3
;

a43 ¼ 15 293 365

10 838 016

�
5

4�4

�
1=3
: (5.9)

Using the above in Eq. (5.5), one can find an explicit
expression for the metric. The expression can be obtained
[48] by utilizing the fact that, since the Fourier phase is a
polynomial function, J can be expanded in terms of
normalized moments J, where

JðpÞ � IðpÞ
Ið7Þ : (5.10)

To assess the potential gains of using this coincidence
method for inspiral analysis, it is useful to consider the

difference in volume between the ellipsoidal region defined
by �g, and its bounding box aligned with the coordinate axes
ðtC; �0; �3Þ. This ratio can be calculated with the help of
Eqs. (4.8). Figure 2 shows how this ratio varies across the
ð�0; �3Þ space in the case of Initial and Advanced LIGO,
Virgo and Einstein Telescope (a third generation European
detector that is currently being designed). It can be seen
that for most of the parameter space, the volume of the
bounding box is an order of magnitude larger than the
volume of the ellipsoid; however, in certain regions, cor-
responding to high masses, this ratio can be as large as
2 orders of magnitude. This suggests that significant re-
ductions of the background can be achieved by using
ellipsoidal windows. Runs on example data sets suggest
that in practice, the reduction in background coincident
triggers due to using such a coincidence method will be a
factor of �10.
To assess the improvement in the confidence in any

candidate detection, it is helpful to look at how reducing

FIG. 2 (color online). The log10 of the ratio of the volume of the bounding box to the volume of the ellipsoid as a function of location
in ð�0; �3Þ space. The plots shown are (clockwise from top right) for the initial LIGO, advanced LIGO, Virgo, and Einstein Telescope.
The low frequency cutoff is chosen to be 20 Hz.
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the background rate by a factor of k will improve the odds
O of a detection

Oðh j DÞ ¼ Pðh j DÞ
Pð0 j DÞ ; (5.11)

where Pðh j DÞ is the posterior probability of a signal h
being present if the set of triggersD has been obtained, and
Pð0 j DÞ is the probability of there being no signal givenD.
We take the accidental trigger rate to be a Poisson process,
with a trigger rate prior to reduction 
. Assuming that the
detection efficiency is not affected by the reduction in the
trigger rate, we see that the odds improve by the following
factor:

Oðh j DÞ
=k
Oðh j DÞ


¼ 1� e�
T

1� e�
T=k
; (5.12)

where T is the duration of the run.
After reducing the false alarm rate by a factor k, the odds

of a signal being present improve by a factor which de-
pends on how high the false alarm rate was to start with. If
the initial false alarm rate is low ð
T � 1Þ, the improve-
ment in the odds approaches the factor k. However, for
high false alarm rates, the improvement becomes less
marked, tending to a factor of 1 as 
T ! 1.

VI. SUMMARYAND CONCLUSIONS

A new method of coincidence analysis is proposed in
which, instead of the rectangular windows on parameters
conventionally used, ellipsoidal windows are employed
based on the metric defined on the signal manifold. This
allows us to use windows of appropriate size depending on
the location in the parameter space, instead of using a

phenomenological ‘‘best fit’’ choice of windows across
the entire space. The algorithm has a massive practical
advantage in that it requires the tuning of only one parame-
ter irrespective of the number of dimensions of the parame-
ters. This contrasts with the conventional method that
required us to tune nearly as many parameters as the
dimension of the parameter space. In addition, the method
allows us to take into account covariances between pa-
rameters, thus significantly reducing the volume enclosed
within the windows. In particular, for the case of nonspin-
ning compact binary coalescence in Initial LIGO, it is
expected that the use of such a method will reduce the
background rate of coincident triggers by roughly an order
of magnitude. By also incorporating SNR dependence into
the size of the windows, the background of high-SNR
events can be reduced even further.
The algorithm has been implemented in C code in the

LSC Algorithm Library (LAL) [50]. An implementation in
ðtC; �0; �3Þ space, as in Sec. V, using SNR-independent
windows, is being employed in the search for compact
binary coalescence in S5 data. This implementation is
referred to as e-thinca [41].
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