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Summary 

Magnetic characteristics of grain oriented electrical steel (GOES) are usually 

measured at high flux densities suitable for its applications in power transformers. 

There are limited magnetic data at low flux densities which are relevant for the 

characterisation of GOES for applications in metering instrument transformers and 

low frequency magnetic shielding in MRI (magnetic resonance imaging) medical 

scanners. Magnetic properties of convention grain oriented (CGO) and high 

permeability grain oriented (HGO) electrical steels were measured and compared at 

high and low flux densities at power magnetising frequency. HGO was found to have 

better magnetic properties at both high and low magnetisation regimes. This is 

because of the higher grain size of HGO and higher grain-grain misorientation of 

CGO. 

As well as its traditional use in non-destructive evaluation, Barkhausen Noise (BN) 

study is a useful tool for analysing physical and microstructural properties of 

electrical steel which control their bulk magnetic properties. Previous works deal with 

measurements carried out at high flux densities (0.2 T and above) but this work 

demonstrates that BN has different characteristics at low flux densities. The results 

show that the amplitude sum and the rms BN signals are higher for HGO than CGO 

steels at high flux densities. Below 0.2 T, the BN signal becomes higher for CGO 

steel. This is because of grain size/misorientation effects. Mechanically scribing of 

HGO samples on one surface transverse to the rolling direction was found to reduce 

the BN amplitude at high flux densities due to the decrease of domain width by 

scribing. The trend reverses again at low flux density. 

Removal of the coating from the surface of CGO and HGO electrical steels was found 

to increase the BN due to the widening of the 180° domains as a result of the release 

of the tensile stress imparted to the materials during coating. 

The BN characteristics of decoated samples with a 3 MPa tension applied were found 

to be similar to those observed before decoating demonstrating the close similarity 

between the effects of coating stress and externally applied stress on BN due to their 

similar roles in domain refinement. A strong correlation between average velocity of 

domain wall movement and changes in BN in conventional and high permeability 

steels was found which demonstrates that the dominant factor responsible for BN 
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emission is the mean free path of domain wall movement and hence the width of the 

predominant 180° domains in these materials. 

 

 BN of commercially produced non-oriented electrical steel was found to be 

influenced by silicon contents and sample thickness. BN was found to increase with 

decreasing strip thickness and increase with increasing silicon contents owing to eddy 

current shielding effects. The rms values of the BN and the total sum of amplitudes 

were found to increase with the rate of change of flux density at all the peak flux 

densities measured. The findings show that the influence of sample thickness and 

silicon content is significant and must be taken into consideration when measuring 

and interpreting BN in non-oriented electrical steel. 
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BN  Barkhausen noise 
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HGO  High grain oriented 

HTCA  High temperature coil anneal 

KMO  Kerr magneto-optic 

LabVIEW Laboratory virtual instruments engineering workbench 
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MFL  Magnetic flux leakage 
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RMS  Root mean square 
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TCR  Temperature Coefficient of Resistance 

TNP  Total number of peaks 

TSA  Total sum of amplitudes 
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Chapter 1 General introduction 

 
1.1 Introduction 

 

Electrical steel is categorised into a number of product types. These are comprised of 

grain oriented and non grain oriented electrical steels. Grain oriented electrical steel 

(GOES) is a soft magnetic material and usually has a silicon level of 3% and is so 

called because it contains a grain structure with a distinct preferred orientation. The 

magnetic properties such as relative permeability and power loss are optimised when 

the material is magnetised along this direction of preferred orientation. For this reason 

GOES is usually used in the construction of medium to large transformer cores. 

GOES is comprised of the conventional grain oriented (CGO) and high permeability 

grain oriented (HGO) steels. 

  

Non grain oriented (NGO) electrical steels are also soft magnetic materials but 

contain a much finer grain structure and exhibit little or no preferred orientation and 

are most commonly used in applications such as rotating electrical machines and 

small transformers used in domestic appliances that require isotropic magnetic 

properties in the plane of the sheet. In these applications, the magnetic flux is oriented 

at various angles with respect to the rolling direction of the sheet in some parts of the 

magnetic circuits. They can be supplied with or without one of a range of coatings 

either in a fully processed state or semi-processed condition depending on the 

intended use of the steel. Fully processed material requires no further processing by 

the customer because it is supplied after final properties developing anneal. With 

semi-processed material, tempering during the extension pass is the last stage of 

processing that is undertaken by the supplier. The process involves giving the strip a 

final cold reduction which results in a material with an increased surface hardness. 

This surface stiffness helps the stamping of laminations especially where strip is 

supplied without a coating. The laminations then require a final property developing 

customer anneal to fully optimise their magnetic properties [1.1]. Strips are supplied 

without coating to allow for gas penetration if decarburisation is needed in the final 

customer anneal. 
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As these materials are extensively used, they are responsible for a large portion of the 

energy loss in electrical power systems because of the non-linearity of the B-H 

characteristic. For this reason, the study and the control of the magnetic and 

microstructural parameters of these steels becomes a very important economic issue 

[1.2] and this accounts for the reason why these materials are investigated in this 

study. Microstructural features such as grain size, number and distribution of pinning 

sites, grain boundaries and grain-grain misorientation are the main parameters that 

distinguish CGO from HGO in relation to their bulk magnetic properties.   

Magnetic characteristics of electrical steel are usually measured at the high flux 

densities suitable for applications in power transformers, motors, generators, 

alternators and a variety of other electromagnetic applications. Magnetic 

measurements at very low inductions are useful for magnetic characterisation of 

electrical steel used as cores of metering instrument transformers and low frequency 

magnetic shielding such as for protection from high field MRI (magnetic resonance 

imaging) medical scanners. Magnetisation levels in these applications are generally 

believed to be in the low flux density region so material selection based on high flux 

density grading is seriously flawed.  

 

Barkhausen Noise (BN) is a very important tool for non-destructive characterisation 

[1.3-1.5]. Although the BN was reported more than 90 years ago [1.6], its origin and 

characteristics remain not fully understood [1.2]. The BN mechanism can provide 

understanding of the microstructure of the material, without the use of laborious 

methods such as the Epstein frame typically used for characterisation of electrical 

steels. The Barkhausen effect arises from the discontinuous changes in magnetisation 

(M) under the action of a continuously changing magnetic field (H) when domain 

walls encounter pinning sites [1.7]. This noise phenomenon can be investigated 

statistically through the detection of the random voltage observed on a search coil 

placed on the surface or encircling the material during the magnetisation of the 

material. BN are related to the way domain walls interact with pinning sites, such as 

defects, precipitates and grain boundaries, as domains reorganise to align magnetic 

moments in the direction of the applied magnetic field.  Within the body of a pinning 

site, magnetic dipoles are formed at the surrounding interface. This dipole 

arrangement is split forming a four-pole system if a domain wall bisects the pinning 

site thereby reducing the overall magnetostatic energy and pinning the domain wall as 
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a result [1.8, 1.9]. The number of Barkhausen emissions is determined by the number 

of pinning sites provided that the volume of the sites is sufficient to cause pinning. 

BN is therefore an important tool for evaluating the scale of interaction between 

pinning sites of varying sizes and magnetic domains [1.10].  

 

1.2      Relationship Between Barkhausen Noise and Bulk Magnetic Properties 

 

It is required that the magnetisation, M, be reproduced for each measurement in order 

to generate consistent BN. A general description of bulk magnetic behaviour in a 

material is: 

 

→→→→
=+=+= HHMHB rµµχµµ 000 )1()(      (1.1) 

 

where B is the flux density, 0µ  is the permeability of free space having a value of 4π 

x 10-7 H/m,χ  is the susceptibility, and rµ  is the relative permeability and is 

dimensionless. In ferromagnetic materials, χ  » 1 in regions where BN primarily 

occurs [1.11], so B ≈  0µ M. 

Therefore, the dominant contribution to flux density distribution in a ferromagnetic 

material is the sample magnetisation distribution, making B a suitable control 

parameter for Barkhausen noise measurements [1.12]. 

 

1.3      Aims of the Investigation 

 

BN at low and high flux densities in electrical steel were studied in this work. It is 

believed that low magnetisation Barkhausen studies particularly at power magnetising 

frequencies have not been carried out on such materials previously. This gives a new 

approach to studying the effects of micro structure on magnetic properties of electrical 

steel. BN measurements at high and low flux densities were compared.  

 

Magnetic properties such as the B-H loop, coercivity, relative permeability and 

specific power loss were also measured at both high and low flux densities. 
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In summary, the main aims of this work are as follows: 

 

� To investigate the magnetic properties and BN of GOES. 

� To investigate the effect of domain refinement on BN and magnetic properties 

of HGO. 

� To study the effects of surface coating and externally applied stress on BN in 

GOES and their role in domain refinement. 

� To study the effects of strip thickness and silicon content on BN of NGO 

electrical steel.  

� To investigate the effects of strips thickness on BN of GOES.  

 

1.4       Research Methodology 

 

A laboratory based technique was developed to magnetise single strips at 50 Hz over 

a flux density range from 0.008 T to 1.5 T. The single strip rig is capable of 

incorporating a linear stressing mechanism to evaluate the effect of external stress in 

the strips. Equipment for generating B-H characteristics, magnetic properties and BN 

of electrical steel were assessed and procured. Accurate, repeatable and reproduceable 

measurements of magnetic properties and BN at low flux densities (0.008 T – 0.2 T) 

are extremely challenging so proper care was taken to avoid external influence on the 

measurements and the use of very low distortion generation and amplification stages 

(in onboard DAQ card) in the design together with improved systems for waveform 

control. 

 

Static magnetic domain observation was carried out using magnetic domain viewer 

for coated samples and Kerr magneto optic (KMO) microscope for decoated samples 

to determine how magnetic properties and BN of the samples are affected by domain 

width and also under coated and decoated conditions. The results of the magnetic 

properties were evaluated in terms of the coercivity, relative permeability and power 

loss. BN was analysed using the root mean square (rms), total sum of amplitudes 

(TSA) and total number of peaks (TNP) of the induced voltage peaks. 
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1.5       Structure of the Thesis 

 

Chapter one gives an introduction to the research, the objectives of the research and 

the research methodology. The basics of ferromagnetism is treated in chapter two. 

Also included in this chapter is the magnetic domain theory including closely related 

energy components and the effects of domains and domain walls motion during 

magnetisation. In chapter three, the development and production of electrical steel 

comprising CGO, HGO and NGO electrical steels are highlighted. The effects of 

applied stress in these materials are also discussed. The BN phenomenon and the 

various factors that affect it are discussed in chapter four. Past works of other 

researchers are also reviewed in this chapter including the parameters used to analyse 

BN in this work. The details of the development of the magnetisation and BN 

measurement systems used in this work are given in chapter 5. The tension stressing 

rig for the application of tensile stress and the KMO technique for magnetic domain 

observation are discussed. The uncertainty in the measurements as recommended by 

UKAS (United Kingdom Accreditation Service) M3003 is detailed in this chapter. 

 

The experimental results and discussions on: 

a) Measurement of magnetic properties and BN of GOES 

b) Effect of domain refinement on BN and magnetic properties of HGO steel. 

c) Effect of surface coating and external stress on BN of GOES. 

d) Effect of strip thickness and silicon content on BN of NGO electrical steel and 

e) Effect of strip thickness on BN of GOES 

are presented in chapters 6 – 10 respectively. 

The thesis is concluded in chapter 11 followed by suggestions for further work.  
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Chapter 2 Ferromagnetism and domain theory  
 

2.1 Introduction  

 

Study of electrical steel requires background knowledge of ferromagnetic materials 

and magnetic domains. The existence of ferromagnetic materials is due to the 

presence of magnetic domains which are spontaneously magnetised regions separated 

by domain walls in the material. In this chapter, the effect of domains and domain 

walls motion including the various related energy components during magnetisation 

are discussed. The total loss at power magnetisation frequency composed of 

hysteresis, eddy current and anomalous losses are also highlighted. 

 

2.2 Magnetic moments 

 

 The magnetic moments of individual atoms lead to bulk magnetic behaviour. The two 

contributions to the atomic magnetic moment come from the momentum of electrons 

viz: spin and orbital motion. From Pauli Exclusion Principle, only one electron in an 

atom is allowed to have a particular combination of the four quantum numbers: n, l, 

ml and ms. The electron energy state is specified by the first three quantum numbers. 

The fourth, ms, can only take values 2/1± . Up to two electrons may therefore be 

contained in each energy state. If only one electron is present, its spin moment 

contributes to the overall spin moment of the atom. A second electron having an 

antiparallel spin to the first will cause the two spins to cancel out, giving no net 

moment.  Materials which have a larger number of unpaired spins have strong 

magnetic properties. In crystalline solids, the orbital moments are strongly coupled to 

the atomic lattice and therefore cannot change direction when a magnetic field is 

applied and as a result the magnetic moments in solids can be considered as being due 

to the spins only.   

 

2.3       Ferromagnetic materials 

 

Atoms in ferromagnetic materials possess permanent magnetic moments that are 

aligned to each other in parallel over extensive regions. Ferromagnetic materials 
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contain spontaneously magnetised magnetic domains where each individual domain’s 

magnetisation is oriented differently with respect to the magnetisation of its 

neighbour. This spontaneous domain magnetization exists due to unpaired electron 

spins from partially filled shells, spins aligned parallel to each other because of strong 

exchange interaction between neighbouring atoms. The arrangement of spins and the 

spontaneous domain magnetisation are dependent on temperature. The total 

magnetisation of a material is the vector sum of the domain magnetisations. When the 

total resultant magnetisation of all magnetic domains is zero, a ferromagnetic material 

is said to be demagnetised. When a high enough magnetic field is applied however, 

the resultant magnetisation changes from zero to saturation value. When the magnetic 

field is decreased and reverses in direction, the magnetisation may not retrace its 

original path relative to the magnitude of the field, thus exhibiting hysteresis [2.1] 

 

In anti-ferromagnetic material, the exchange interaction between neighbouring atoms 

leads to anti-parallel alignment of the atomic magnetic moments. This causes the 

magnetisation to be cancelled out and the material appears to behave to some extent 

as paramagnetic. Paramagnetic materials possess a positive but small susceptibility to 

magnetic fields and so do not retain the magnetic properties when the external field is 

removed. Ferromagnetic materials also have a Curie point above which they exhibit 

paramagnetic behaviour [2.2]. Examples of ferromagnetic materials are iron, cobalt, 

nickel, several rare earth metals and their alloys. A strong ferromagnet such as 

electrical steel has a high relative permeability.  

Other forms of magnetism exist such as diamagnetism and paramagnetism but the 

material permeabilities are very low [2.3, 2.4] and not relevant to this research. 

 

2.4       Magnetic domains 

 

In ferromagnetic materials, individual atomic magnetic moments tend to stay parallel 

to each another, keeping the exchange energy low, (the exchange energy is brought 

about when individual atomic magnetic moments attempt to align all other atomic 

magnetic moments within a material). Such an alignment can increase the 

magnetostatic energy by creating a large external magnetic field as shown in Fig. 2.1 

(a). Magnetostatic energy is a self-energy owing to the interaction of the magnetic 

field created by the magnetization in some portion of the material on other portions of 
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the same material. Therefore within the material, many magnetic domains are created 

to lower the external magnetic field as in figures 2.1 (a) and (b). Within each domain, 

individual magnetic moments add up to a total domain magnetization [2.2]. 

Furthermore, the domain magnetizations of neighbouring magnetic domains are 

antiparallel. In this configuration, the exchange energy is increased, however the 

magnetostatic energy is lowered. Domain walls are formed between magnetic 

domains. It should be noted that some of these walls of different orientation occur in 

closure domains as illustrated in figure 2.1 (d). The latter are created when the 

material divides into magnetic domains to allow more of the magnetic flux to stay 

within the material, thereby minimizing magnetostatic energy [2.4]. 

 

 

Fig. 2.1: Rearrangement of domains at the demagnetised state due to the energy 

minimization: a) saturated sample with high magnetostatic energy, Em, b) dividing 

into two reduces Em c) more division reduces Em further d) free poles eliminated by 

closure domains [2.5]. 
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2.5       Domain walls 

 

Domains are separated by domain walls containing layers of atoms. As shown in 

figure 2.2, within a domain wall, the direction of magnetic moments changes from its 

direction in one domain to the direction in another domain leading to the creation of a 

transitional region. If the transition from one magnetization direction to another is 

abrupt, such as the case for a perfect antiparallel domain magnetization, the exchange 

energy will be too high to keep this domain configuration in equilibrium. A domain 

wall of a certain thickness that is comprised of atomic magnetic moments of slowly 

varying orientation as shown in figure 2.2 ensures a smoother transition opposite to 

domain magnetization direction thereby decreasing the exchange energy. The 

thickness of the transition layer is determined, being limited by the magnetocrystalline 

energy, which tends to keep atomic magnetic moments aligned along one of the easy 

directions of the crystal axes in order to maintain a minimum [2.4].  

 

 

Fig. 2.2: Illustration of domains and domain wall containing atomic magnetic 

moments of gradually varying orientation, ensuring a smoother transition to opposite 

domain magnetization in a single crystal of iron [2.2]. 

 

Since domain magnetizations tend to align with one or more of the preferred 

crystallographic axes in iron alloys, domain walls separating domains of different 

orientations can be classified as 180° or 90° as in iron depending on the angles these 

crystallographic axes make in a specific lattice [2.4]. 
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2.6        Magneto crystalline anisotropy energy 

 

Anisotropy is the directional dependence of the properties of a material. 

Magnetocrystalline anisotropy is defined as the variation of magnetic properties of a 

material from one crystallographic direction to another. For a given magnetic field 

along the crystallographic directions, the measured magnetization varies. The concept 

of easy and hard directions of magnetization arises because of this. The magnetic field 

needed to reach saturation magnetization in the easy direction is less than the field 

needed to reach saturation in the hard direction. The easy and hard directions can be 

easily determined by measuring the magnetic properties of single crystals magnetised 

along different directions and vary from material to material. Iron and electrical steel 

alloys have easy direction along <100> and the hard directions along <111> with the 

intermediate being <110>. 

 

The amount of magnetocrystalline anisotropy is normally represented in terms of 

energy density which varies with crystal structure because of different lattice 

symmetries. The grains in electrical steels which have a cubic crystal structure, 

magnetocrystalline anisotropy energy, Ek, is given by: 

 

Ek=K1 (α1
2α2

2+ α2
2α3

2+ α3
2 α1

2) + K2 (α1
2 α2

2 α3
2)      (2.1) 

 

where α1, α2 and α3 are the cosines of the angles between the saturation magnetization, 

MS, and the x, y and z axis of the cubic crystal structure. K1 and K2 are the first and 

second order cubic anisotropy constants respectively which for 3% silicon iron at 

room temperature are 4.8 x 104 J/m3 and 5 x 104 J/m3 respectively [2.2]. A positive 

value of K shows a material having the direction of domain moments aligned with the 

[100] crystal direction while a negative value show an alignment with the [111] 

direction. 

 

2.7        Magnetostatic energy 

 

The magnetostatic energy indicates the total free pole energy of the domain structure. 

When considering a piece of ferromagnetic material containing only a single domain, 

free magnetic poles exist at the discontinuous ends of the sample. This would create a 
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field within the sample known as the demagnetising field. The demagnetising field 

has an energy Em associated with it given by [2.6]: 

 

 Em = 1/2 ND M2              (2.2) 

 

where ND is its demagnetising factor of the material. Subdividing the material into 

two oppositely magnetised domains will reduce the demagnetising field and hence the 

magnetostatic energy. The subdivision would continue indefinitely with each 

subsequent division reducing the magnetostatic energy further if the magnetostatic 

energy were the only contributing factor.  

 

2.8      Magnetoelastic energy 

 

Application of stress causes reorientation of the atomic magnetic moments of the 

lattice. This reorientation takes place because the mechanical strain that is set up in 

the lattice moves the magnetic moments away from the easy axis of the lattice. The 

magnetic energy that is associated with these lattice strains is called magnetoelastic 

energy. Stress has similar effects on both magnetoelastic energy and  

magnetocrystalline anisotropy where there is the creation of easy axes of 

magnetisation. The magnitude of the magnetoelastic energy, λE , for a cubic crystal 

under uniform stress )(σ can be expressed as shown in equation 2.3: 
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2
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1100 γγααγγααγγαασλγαγαγασλλ ++−++−=E  

                 (2.3) 

where 100λ  and 111λ  are the magnetostriction constants  with strains measured under 

magnetic field along the <100> and <111> directions respectively. 1γ , 2γ , and 3γ  are 

the direction cosines of the stress components with respect to the crystal axes [2.7]. 

 

2.9        The effect of an externally applied field 

 

If a small magnetic field is applied to a magnetic material such as electrical steel, 

magnetisation occurs by the motion of 180° and 90° domain walls until the net force 

on all walls is zero. This takes place by the motion of domain walls through the 
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material such that domains in the direction of the applied field grow at the expense of 

all others. A second effect that may also occur during magnetisation is that the 

magnetic moments within a domain may be rotated out of the easy axes of 

magnetisation and into the direction of the applied field. A higher applied magnetic 

field than domain wall motion is needed in this effect since the domain magnetisation 

is being moved away from the easy axes and is associated with an increase in the 

stored magnetocrystalline anisotropy energy [2.8]. The energy due to an externally 

applied field can be described by equation 2.4 [2.1] as follows: 

 

φcosHMEH =         (2.4) 

 

where H  is the applied magnetic field, M  is the magnetisation and φ  is the angle 

between the easy lattice direction and the field. 

 

2.10       Energy loss due to magnetisation 

 

Magnetic materials are characterised uniquely by their B-H loops. 

Work is done in changing the magnetisation of a magnetic material resulting in the 

dissipation of energy (mainly heat) from the material to its surroundings. As the 

material is taken through a magnetisation cycle the time lag between the instantaneous 

applied H and the corresponding B of the material results in a typical B-H loop as 

shown in figure 2.3.  
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Fig. 2.3: Typical B-H loop of a ferromagnetic material [2.9]. 

The B-H loop is generated by measuring B of a ferromagnetic material while H is 

changed. A ferromagnetic material that has been completely demagnetized will follow 

the dashed line as H is increased from zero along a given direction. All of the 

magnetic domains are aligned at point "a" and an increase in H will produce very little 

increase in B. At this point, the material has almost reached magnetic saturation. The 

curve arrives at point "b" when H is reduced to zero where some magnetic flux 

remains in the material even though H is zero. This is known as the state of 

remanence often denoted as BR which is caused by domain walls being pinned by 

impurities. The point "c" will be reached after H is reversed, which is known as the 

coercive point, HC, where the flux has been reduced to zero. Point "d" will be reached 

where the material will again become magnetically saturated as H is increased in the 

opposite direction. Reducing H to zero brings the curve to point "e" which will have a 

level of remanence equal to that achieved in the other direction. Applying H again 

along the positive direction will return B to zero. From point "f”, the curve will take a 

different path back to the saturation point where the loop will be completed [2.9]. The 
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area enclosed by the loop is directly proportional to the energy loss in the material per 

unit volume per magnetisation cycle which is often referred to as hysteresis loss.  

A number of basic magnetic properties of a material can be determined from the 

hysteresis loop viz:  

Remanence – This is the magnetic flux density that remains in a material when the 

magnetic field is zero. It is the value of B at point b in figure 2.3 and can be 

represented with the symbol BR. 

Coercivity – This is the amount of reverse magnetic field that is applied to a magnetic 

material to make the magnetic flux density to return to zero. It is the value of H at 

point c in figure 2.3. It is also known as the coercive field and is symbolised as HC. 

Permeability –The ease at which magnetic flux is established in a material defines 

the permeability of that material. Permeability (µ) is used to define the relationship 

between B and H as: 

                          
→→

= HB µ        (2.5) 

The relationship between B and H in free space is written as: 

                      
→→

= HB 0µ        (2.6) 

B is expressed relative to free space in other mediums as: 

                  
→→

= HB r 0µµ        (2.7) 

When a small external magnetic field is applied, domains with moment oriented 

nearest to the direction of the field will grow at the expense of their neighbours as 

illustrated in figure 2.4 for a crystal of iron. The blue lines in the figure show domain 

wall positions in the absence of an applied field. The black vertical lines are the new 

wall position under the influence of applied field. The distance between the blue and 

the black lines in the figure is the domain wall displacement. This growth occurs by 

180° domain wall movement in this particular case and this process is reversible when 
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the magnetic field is removed. At higher field amplitude the domain wall motion 

becomes irreversible and irreversible domain rotation also occur. When the field 

amplitude is further increased, saturation occurs and the sample will be converted into 

a single domain. This is the state of technical saturation magnetisation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.4: Schematic diagram showing domains with moments aligned most closely 

with the applied field will increase in volume at the expense of the other domains. 

 

2.11 Hysteresis process and energy loss 

 

The wider the B-H loop, the more energy is stored and dissipated in the material. 

Permanent magnets which are hard magnetic materials require wider B-H loops to 

store more energy while B-H loops of soft magnetic materials like electrical steel 

should be narrow to achieve low loss. The anhysteretic (i.e. without hysteresis) B-H 

characteristic is ideal for soft magnetic material. Under ac magnetisation, the B-H 

loop in figure 2.3 is wider due to additional magnetic fields from the eddy current 

(electric currents which are created when the material experiences changes in 

magnetic field) and excess losses (explained in section 2.13) and the energy loss per 

cycle is higher than under quasi-static (so slowly as appear to be static) condition. 

New wall position as a 
result of applied field 



 18 

These losses are frequency dependent and are referred to as dynamic losses [2.10]. 

The static hysteresis losses are frequency independent. 

 The loop area is equal to the total energy lost per cycle for sinusoidal magnetisation. 

This total loss can be broken into components which can be expressed as: 

 

Total loss = Static hysteresis Loss + Classical eddy current loss + Excess (anomalous) 

loss              (2.8) 

 

2.12      Classical eddy current loss 

 

When an alternating magnetic field is applied to a magnetic material, its 

magnetization changes which in turn gives rise to a flux. This flux leads to eddy 

currents which results to a distribution of flux density through the material. The eddy 

currents will, in turn, create a counter field encircled by them. The originally applied 

field is opposed by the counter field leading to a shielding effect which is                                                                                                                                                                                                              

proportional to the rate of change of flux density [2.11]. Classical eddy current loss is 

as a result of circulating currents induced in a thin lamination.  Fig. 2.5 is a simplified 

diagram showing the distribution of eddy currents (Ieddy) in an infinite sheet of 

homogeneous magnetic material when subjected to sinusoidal magnetisation at a 

frequency, f. 

 

The classical eddy current loss,clW , in the material in figure 2.5 is given by [2.12]: 

 

f
Bd

W m
cl β

πσ 222

=          (2.9) 

 

where σ is the electrical conductivity, mB  is the peak value of the flux density, β is a 

geometrical factor and d is the thickness of the lamination. Equation (2.9) is derived 

from Maxwell’s equation assuming a perfectly homogenous body with a uniform flux 

distribution over the sheet. For a sheet β = 6 [2.13]. For a sinusoidal applied field of 

frequency, f, the value of β is valid when d is smaller than the depth of penetration 

[2.14], i.e.:  
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f
d

r σµπµ 0

1<         

there will be eddy current shielding effect if the condition in the expression above is 

not satisfied and greater opposing field caused by the eddy currents will be exhibited 

by the inner regions of the material than the outside regions. The shielding effects 

occur when eddy currents flowing in the material produce magnetic fields which 

oppose the applied field thereby reducing the net magnetic flux and causing decrease 

in current flow as the depth increases. The shielding effect will increase with 

frequency since eddy current increases with frequency.  

 

 

Fig.2.5. Schematic diagram of the distribution of eddy current in a lamination of 

width w and thickness d [2.11]. 

 

2.13       Anomalous  loss 

 

 The discrepancy between the total measured loss and that due to the sum of the 

classical and static hysteresis loss account for the anomalous or excess losses and is 

known to be due to complex domain structures causing inhomogeneities in the 

magnetisation of the material. This leads to higher eddy current losses than those due 

to the classical loss. Both eddy current and anomalous losses are dependent on the 

rate of change of magnetization. The anomalous loss in modern grain-oriented 

electrical steel is responsible for about 50% of the total loss for the power frequency 

range [2.14], [2.15]. Hence, it is important for the causes of this loss to be defined.  

Early experiments [2.12], [2.15] attributed the excess loss to such causes as the 

formation of domain walls and domain wall angles, change of domain wall spacing 

with thickness of laminations, domain wall pinning and bowing, effects of grain size 

and nucleation of domains. Attempts have been made to connect excess losses with 
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Barkhausen noise [2.16], or to attribute them to continuous rearrangements of the 

domain configuration [2.17]. This loss has been found to occur in many magnetic 

materials but as with the curvature of loss per cycle against frequency characteristics 

shown in figure 2.6, the phenomenon has been found to be most prevalent in grain- 

oriented materials [2.15]. Figure 2.6 is a sketch showing the division of total power 

loss into its constituent parts as expressed in equation 2.8 and explained in sections 

2.11, 2.12 and 2.13.  

A statistical loss theory built on description of the magnetization that has some active 

correlation regions that are randomly distributed in the material was proposed [2.14], 

[2.15]. The microstructure of the material such as grain size, crystallographic textures 

and residual stresses are connected to the correlation regions. The excess losses per 

cycle for sinusoidal induction in grain oriented steel can be expressed as [2.15]:  

 

5.05.1 fCBW mexc =          (2.10) 

where C is a fitting parameter. 

 

         Fig. 2.6: Sketch showing division of total loss into constituent parts [2.15]. 
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Chapter 3 Electrical steel production and 

processing 
 

3.1 Introduction 

 

 Electrical steels may have originated from the work of Barret, Hadfield and Brown in 

the turn of the 20th century. They discovered [3.1] that alloying high purity steel with 

silicon greatly increased the resistivity of the steel thereby reducing eddy current 

losses. Alloying with silicon also improved the magnetic properties by reducing 

coercivity and increasing permeability. Another major breakthrough took place in 

1934 [3.2] when a rolling process was developed which caused a large proportion of 

individual grains in the electrical steel to be aligned with a <001> direction along the 

rolling direction of the sheet. In 1940, Armco Steel Corporation developed this 

method which was subsequently adopted by other producers of electrical steel from 

1953. This preferred orientation is known as the Goss texture and the sheet becomes a 

(110) plane.  

Grain oriented electrical steel (GOES) has usually a silicon level of 3% by mass. It is 

produced in such a way that the best magnetic performance occurs when magnetised 

along the rolling direction, due to preferential secondary recrystallisation of [001] 

(110) grains. Secondary recrystallisation is a process by which grain size increases 

consisting in an exaggerated growth of only a few larger grains at the expense of the 

many smaller ones and occur in the presence of conditions which can inhibit normal 

grain growth [3.3]. Figure 3.1 shows the schematic diagram of the [001] (110) grain 

orientation in a crystal of silicon iron. 

The resulting product had grain-grain misorientation in the angle of yaw of around 7° 

and is known as Conventional Grain Oriented (CGO) steel. Nippon Steel Company 

exploited this method in 1966 which lead to the development of high permeability 

grain oriented silicon steel known as ‘Hi-B’ [3.4] which has grain-grain 

misorientation of around 3° [3.5]. In this thesis high permeability grain oriented 

silicon steel is referred to as High grain oriented (HGO) steel. The grain size of HGO 

is on average higher, approximately 9.0 mm diameter compared to 4.0 mm in CGO.  
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Grain orientation determines the static magnetic domain configuration. The wall 

spacing is wide in grains oriented near (110) [001], and narrower in grains having 

[001] directions out of the sheet plane [3.6]. As a rule, the grain-grain misorientation 

in (110)[001] oriented silicon steel increases as the grain size decreases, larger grain 

boundary micro demagnetising fields would be expected in small grain materials[3.6] 

such as CGO compared to HGO.  

 

  

 

 

Fig. 3.1: (110) [001] grain orientation in a crystal of silicon-iron.  

The magnetic properties of non grain-oriented (NGO) electrical steels are much more 

isotropic in nature. They are less expensive and are utilised in applications where the 

direction of magnetic flux changes in the plain of the sheet. They are mainly used for 

cores in motors, generators, alternators, ballasts, small transformers and a variety of 

other electromagnetic applications. They are also used in applications where 

efficiency is not paramount and also when there is lack of space to adequately orient 

components in order to make use of the anisotropic properties of GOES. 

Precipitates greatly influence the magnetic properties of electrical steels either as an 

essential controlled requirement involved in the process of production or in the final 

product as an unwanted harmful residual. In the electrical steel matrix, they are 

second phase particles, usually metal sulphides, carbides or nitrides in the size range 

10-400 nm [3.7]. Precipitates in the form of grain growth inhibitors play an important 

role in the manufacture of grain-oriented electrical steels because during secondary 

recrystallization they promote the development of Goss texture [3.8] but can have a 

detrimental effect on loss and permeability in the final product as they create non 

magnetic voids within the iron lattice that interferes with domain wall motion during 

the magnetisation process. 

 

(110)

[001]

[100]

[010]
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3.2 Manufacture of grain oriented electrical Steel 

3.2.1 Conventional grain oriented electrical steel production route 

The steel is produced using the basic oxygen steel (BOS) making process with 

elements like carbon, manganese, sulphur and silicon added during the vacuum 

degassing stage. Carbon is essential for maintaining the correct phases after hot band 

and intermediate anneal and also for the cultivation of the desired texture during cold 

reduction [3.9].  Manganese on the other hand with the combination of sulphur forms 

manganese sulphide (MnS) during the high temperature coil annealing (HTCA) 

process to inhibit primary grain growth. Silicon increases the resistivity of the steel 

thereby minimizing eddy currents in the steel laminations. A typical composition of 

the added elements could be 0.035% for Carbon, 0.06 % for manganese, 0.025 % for 

sulphur and 3.25 % for silicon. 

The alloy is cast into ingots and then passed to a reheating stage where the 

temperature of the slab is maintained at about 1400°C. The high temperature at this 

stage is necessary for the MnS to form solution and well homogenised throughout the 

metal. The steel is then rapidly cooled after hot rolling and coiled at around 600°C to 

cause the MnS to precipitate in a finely dispersed form to ensure that the correct 

microstructure is developed for the eventual growth of the oriented grains in the 

finished product. The thickness after hot rolling is normally 1.9 mm. 

As shown in figure 3.2, this hot rolled coil is conveyed to the electrical steel 

production line where it is side trimmed, then annealed, descaled and pickled. The 

steel is initially annealed continuously at around 950°C, descaled by removing the 

iron oxide scale physically using iron shot fired at the strip’s surface by a wheel 

abrator and then pickled by cleaning in a hydrofluoric and sulphuric acid mixture 

which is followed by a hot dip in an alkaline oil solution all in a bid to refine the 

metallurgical structure of the hot rolled coil and make it suitable for cold rolling.  

The next stage as shown in figure 3.2 is that of cold reduction. The coil is reduced to 

around twice the finished gauge. In order to produce steel of flat shape of appropriate 

intermediate gauge, the coil is reduced to an intermediate thickness of around 0.6 mm 

determined by the final gauge of the strip.  High density of dislocations follows this 
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gauge reduction which causes the larger grains to break up and leads to energy storage 

in the strip necessary for the secondary recrystallisation of the well oriented grains. As 

shown in the blue arrow in figure 3.2, a return to the anneal and pickle line for an 

intermediate anneal follows this primary gauge reduction which leads to stress relief, 

recrystallisation and softening of the material ready for final rolling. 

A final cold reduction brings the material to finished gauge of 0.23 to 0.50 mm and 

this introduces further energy into the strip necessary for the development of the Goss 

texture during the high temperature anneals. 

The next stage is the decarburising anneal line as shown in figure 3.2. In this line, 

preheating is done in an open furnace to burn off a residue of the rolling oil on the 

surface of the strip. Decarburisation is achieved by annealing in an atmosphere of 

moist hydrogen and nitrogen at about 840°C to eradicate the relatively high levels of 

carbon in the steel which are no longer useful and are detrimental to the magnetic 

properties of the strip. This anneal also recrystallises the well oriented grains and also 

forms an oxide layer on the surface of the strip made of silica (SiO2) bonded to the 

surface and Fayalite (Fe2SiO4) lying on top of this. 

 A magnesium oxide (MgO) coating is then put on the strip after being quickly cooled 

and one of the main reasons for this is to prevent sticking during the next stage of 

HTCA.  

For the HTCA, the coils are stacked on end in an atmosphere of dry hydrogen at about 

1200°C and may take as much as 4-5 days in all. This length of time is needed to 

ensure that the required temperature is reached by all of the coils for at least two 

hours. This produces secondary recrystallisation of well oriented grains. Also, the 

MgO on the steel surface reacts with the silica and Fayalite to form an electrically 

insulating glass film mostly made of Forsterite (2MgO.SiO2) that prevents the build 

up of eddy currents between the laminations in a transformer. The HTCA also 

removes impurities such as sulphur, nitrogen and oxygen that are absorbed into the 

coating [3.10] so that these inclusions do not impede domain wall motion. 

 The strip is washed to remove unreacted magnesium oxide powder with a dip in a 

bath of sulphuric acid solution. This is followed by coating the strip with a phosphate 
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solution which is then cured at a temperature of approximately 800°C. The coating  

creates a tension at the surface of the steel, due to the effect of the difference in 

thermal expansion coefficient between the coating and the steel base during the 

application onto the steel surface thereby reducing the power loss and 

magnetostriction that occur during magnetisation of the fully processed steel [3.11], 

[3.12]. 

Strip distortions caused by the high temperature coil anneal process are removed by a 

thermal flattening process. The strip may also be laser scribed at this stage to improve 

magnetic properties.  

Finally, the edges of the coil are trimmed before the coil is sent to be packaged or slit 

into several widths. 
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 Fig.3.2: CGO Electrical Steel Production Process at Cogent Power Ltd, Newport, UK 

[3.13]. 

  

3.2.2    High permeability grain oriented electrical steel production route 

The manufacturing route for HGO differs slightly from that of CGO. HGO utilises 

aluminium nitride in addition to MnS as a grain growth inhibitor [3.14] and the cold 

reduction is accomplished in one operation. This additional inhibitor is required 
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because the strain energy in the strip is greater than from a single stage cold reduction. 

The remaining processes are similar to that of the CGO described in section 3.2.1. 

In comparison, HGO has lower core loss and higher permeability than CGO and as a 

result is used for high efficiency transformer applications. Core loss is a measure of 

the amount of electrical energy that is lost as heat when magnetic flux flows through 

the steel. The higher grain size and better grain orientation of HGO are the reasons for 

the superior magnetic properties of HGO over CGO. Figure 3.3 shows a typical grain 

structure of HGO having large grains. 

 

 

 

 

 

Fig. 3.3: Grain structure of a typical HGO showing large grain size [3.15]. 

3.3       Non Grain Oriented Electrical Steel Production Route 

Non grain oriented (NGO) electrical steel grades contain between 0.5 and 3.25% 

silicon plus up to 0.5% aluminium which are added to improve the resistivity and 

reduce the temperature of primary recrystallisation. NGO electrical steel grades 

generally have much smaller grain growth than the GOES grades.  

Processing to the stage of hot rolled band is similar to that described for the CGO and 

HGO grade. The bands are usually cold rolled directly to final gauge after surface 

conditioning and sold to the end user in either fully-processed or semi processed state. 

The strip is annealed, decarburised and the grain structure needed for the magnetic 

properties developed after the final cold rolling.  

Fully processed NGO electrical steels are generally used in applications in which 

quantities are too small to warrant stress relieving by the consumer or grain oriented 

-------3 cm 
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steel laminations are so large that it would be difficult to maintain good physical 

shape after an approximately 800°C stress relief anneal.  

The NGO electrical steels have a random orientation i.e., the grain structure is 

isotropic. Fully processed electrical steels in comparison with semi-processed 

products are given full strand anneal in order to develop the maximum magnetic 

properties making them softer and harder to punch. Grades of steel having higher 

alloy content are harder and so are easier to punch. Compared with semi-processed 

products, improved punchability can be provided in fully processed NGO electrical 

steels by addition of organic coating acting as a lubricant when stamping and also 

gives some insulation to the base scale.  

Semi processed electrical steel products have more level of carbon than fully 

processed material because after the final cold rolling they are generally given a 

lower-temperature decarburizing anneal. In order to obtain additional decarburization 

and optimise the magnetic properties, the end user will subsequently stress relief 

anneal the material in a wet decarburizing atmosphere.  After the mill decarburization 

anneal, samples are cut into specimens and decarburized at about 800°C for at least 

one hour and tested to grade the coil.  

Other advantages of coating NGO steel include: 

� To provide electrical insulation between the laminations  

� To provide oxidation resistance 

� To give a uniform surface 

� To improve hardness 

� To improve temperature stability 

The coatings used depend on the requirements of the final product.   

The NGO steel production process can be summarised as follows: 

� BOS making process followed by a continuous casting of slabs designed to 

give a clean, homogenous material with very low levels of impurities.  

� Hot rolled down to approximately 2 mm. 
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� The hot rolled coil is cleaned and trimmed.   

� Some grades then go through a strand anneal before cold rolling to an 

intermediate gauge.   

� Strand anneal in a moist hydrogen atmosphere at approximately 800ºC which 

decarburises the steel and recrystallises the material.   

� Cold rolling to final gauge (usually between 0.35 and 0.65 mm).   

� Fully finished strip has a continuous anneal in order to develop the correct 

grain size. 

Figure 3.4 shows the grain structure of typical NGO steel. The grain size is smaller 

than that of GOES. 

 

 

                                   

 

 

 

 

Fig. 3.4: Grain structure of a typical NGO steel showing small randomly oriented 

grains [3.16]. 

 

Electrical steels are used to manufacture efficient transformers and motors which 

results in significant reduction of the total energy needed throughout their lives span. 

This saving amount to more than the carbon dioxide emissions generated from the 

original production stage. The key challenge from the electrical steel industry is to 

work closely with its customers in optimising the design and use of electrical steel in 

their  products. In order to continue these efforts and to identify all the opportunities 

to reduce the carbon emissions from steel’s life cycle, it is necessary to take a full life 

cycle approach. This approach considers both the emissions associated with the 

-------3 cm 
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manufacture of electrical steel products and the reduction in energy consumption 

associated with the use of new generation electrical steels in lighter and stronger 

products. Further, the inherent recyclability of electrical steel must be given serious 

consideration in the search for sustainable materials for the future [3.17]. 

 

 

3.4 Stress effects of applied coatings on CGO and HGO electrical steel 

 

The coating applied on GOES could be organic or inorganic and depends on the 

intended use of the steel, the heat treatment of the laminations, the operating 

temperature of the steel and whether the lamination will be immersed in oil. Primitive 

practice was to insulate the laminations with a varnish coating or layer of paper but 

with the disadvantage of limiting the maximum temperature and reducing the stacking 

factor of the core.  

When the steel is coated with an insulating solution and baked at high temperature, 

the insulating coating imparts tension to the steel due to a difference in thermal 

expansion coefficient between the coating and the steel base. The coating film 

tension, which refines the magnetic domain size, reduces the core loss and the 

magnetostriction induced vibration of the core [3.14].  

The primary purpose of the formation of two separate coatings on the surface of HGO 

and CGO electrical steel is the provision of electrical insulation between adjacent 

laminations. The effects of these coatings have been reported by many authors. It was 

reported in [3.18] and [3.19] when forsterite coatings was applied to electrical steel 

that the 180° domain structure was refined with the domains narrowing which is 

consistent with the behaviour of a tension applied in the rolling direction. The effects 

of applying various secondary coatings was investigated in [3.20] and reported that 

further refinement of the 180° domain structure occurred. 

The authors of [3.21] carried out laboratory experiment to determine the role of 

phosphate coating by studying the effects both of removing the coating and of heat 

treatment under tension on the stress sensitivity of magnetostriction and power loss of 

silicon iron. The investigation showed that coating plays two main roles in 

determining the stress sensitivity of the steel; not only does it hold the steel in a state 
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of isotropic tension, caused by the different contractions but it can also hold the steel 

in a state of uniaxial tension along the rolling direction.  

Nippon Steel conducted research to solve the shortcomings of a conventional 

insulating coating composed of magnesium phosphate alone and developed a new 

insulating coating of the colloidal silica-aluminium phosphate based acid system 

[3.22]. 

 

3.4.1 Longitudinal tensile stress 

 

When a tension is applied parallel to the rolling direction in grain oriented electrical 

steel, little effect will be produced on a well oriented grain with mainly [001] 

domains. However, there will be refinement of domains with transverse 

supplementary structure leading to the disappearance of the supplementary structure. 

The resultant effect of the application of a tension in the <100> direction is the 

increase of the magnetoelastic energy of the transverse domains while at the same 

time decreasing that of the longitudinal domains [3.10]. This will make the 

longitudinal domains to become energetically more favourable and so will grow at the 

expense of the transverse supplementary domains. The magnetostatic energy will 

increase because of the removal of the supplementary structure by the applied stress. 

This is countered by reducing the demagnetising field by the narrowing of the [001] 

domains [3.1]. Fig.3.5a shows domain pattern of grain oriented steel without tension. 

Fig.3.5b shows the domain pattern under applied tension of 3 MPa in the rolling 

direction with the domains refined. The rolling direction is 180° to the direction of the 

bar domains in both figures. The images were obtained using the equipment and 

technique described in sections 5.5.2 and 8.2 respectively. 
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                          (a)                                                                              (b)                                                                                                                                       

Fig .3.5: Domain structure of grain oriented steel (a) without tension (b) with tension. 

 

3.4.2 Longitudinal compressive stress 

 

When a compressive stress is applied along the rolling direction of grain oriented 

electrical steel, the magnetoelastic energy of the [001] domains increases. This leads 

to a rearrangement of the domain structure to give two patterns that are distinct viz: 

Stress Pattern I and Stress Pattern II, after a transition stage where the domain pattern 

seem to disappear completely [3.23]. Stress pattern I is the simplest of the structures 

and is the first to appear. The now energetically favourable [100] domains with small 

[001] flux closure domains constitutes the bulk of the domain. Increasing the 

compressive stress results in further increase of the magnetoelastic energy of the flux 

closure domains and consequently decreasing in size at the expense of the [100] 

domains. The decreasing size of the closure domains leads to a simultaneous 

narrowing of the bulk domains by the same mechanism as with applied tension. 

In stress pattern II which is more complex, the main domains are still in the [100] 

direction and the domain wall lie in the <010> direction. The main domains no longer 

transverse the strip at 90° to the rolling direction. The surface closure structure has a 

zigzag pattern although still consisting of [001] domains. It was proposed in [3.19] 

that the transition between stress pattern I and stress pattern II occur due to the 

decreasing domain width with stress of the main [100] domains of stress pattern I and 

the corresponding increase in wall energy. It was also shown in [3.19], how the 

domain wall energy of stress pattern II decreases with increasing stress and therefore 

becomes more energetically favourable. This transition typically occurs at a 

compressive stress of 2 to 3 MPa in a well oriented grain [3.10]. Figure 3.6 shows the 

domain structure of unstressed domains, stress pattern I and II in grain oriented steel. 

 

-------2 mm -------2 mm 
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Fig.3.6: Domain structure of (a) unstressed domains; (b) Stress pattern I; (c) Stress 

pattern II in grain oriented steel [3.23]. 
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Chapter 4  Barkhausen Noise 
 

4.1 Introduction 

 

The BN phenomenon is discussed in this chapter. Domains and domain wall 

processes and their contribution to BN are discussed. The effects of stress, grain size, 

precipitates, measurement depth, magnetising waveform and magnetising frequency 

on BN and previous works in these areas are also presented. 

 

4.2 Origin of Barkhausen Noise 

 

 Barkhausen noise (BN) was discovered in 1917 and firstly published in 1919 [4.1]. It 

was found that the magnetisation change as a function of the applied magnetic field is 

not smooth but increases in random steps. The magnetic flux density, B, changes 

discontinuously when the magnetic field, H, is changed continuously. A given volume 

of a ferromagnetic material such as electrical steel will contain a number of sites 

which include dislocations, grain boundaries, precipitates, voids, etc and cause local 

variations in the magnetoelastic energy, and non-magnetic inclusions, which minimise 

both wall area and the magnetostatic energy of the inclusion. These lattice defects will 

pin the moving domain wall until the applied field is increased sufficiently to 

overcome it. When this condition is reached, sudden changes in magnetisation shown 

in the magnified B-H curve in figure 4.1 are produced by the abrupt movement of 

domain walls. This phenomenon can be macroscopically observed as a Barkhausen 

voltage pulse induced in a search coil placed around the specimen.  

 

                          

 

 

 

 

 

 

Fig.  4.1: Barkhausen jumps along the initial magnetisation curve. 
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A representation of this pinning effect, the most important cause of Barkhausen noise, 

is shown in figure 4.2 with increasing magnetic field: 

 

           (a)    (b)      (c) 

Fig . 4.2: (a) The domain wall will start moving towards the particle (pinning site) 

(b) The domain wall hits a pinning site and is pinned (‘bows’) (c) The domain wall 

releases the pinning site and generates a Barkhausen jump. 

 

Domain wall motion contributes more to BN than domain rotation as can be explained 

by looking at the nature of the effects. When a domain wall moves, it travels a greater 

distance than a domain wall which ‘bows’ and is still fixed on the ends as in figure 4.2 

(b)  thus generating higher rate of change of magnetisation which results in more BN 

amplitude. When considering a B-H loop, most Barkhausen activities occur in the 

area around the coercive field where the rate of change of magnetisation is highest 

[4.2, 4.3]. The shape and amplitude of the BN depends on microstructure. This makes 

its examination an important method for investigating properties such as grain size, 

heat treatment, strain, and mechanical properties such as hardness of magnetic 

materials [4.4]. This noise phenomenon can be investigated statistically through the 

detection of the random voltage observed on a search coil during the magnetisation of 

the material [4.5]. There are two types of search coil techniques for BN measurement 

viz: surface and encircling. For surface BN measurement, a search coil (pick-up coil) 

is placed on the surface of the specimen while in the encircling type, the search coil is 

wrapped around the specimen. Surface BN measurement makes use of a surface 

transducer for detecting magnetic field transients and magnetisation discontinuities 

with the advantage of a rapid and continuous structure control [4.6]. It was 

highlighted that when a search coil has many turns to provide high output signals, its 

Domain wall 

Particle 
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resistance might become too high with the consequence of higher thermal noise 

because of the heating effect of the magnetising current. 

Analysis of BN can give information on the compositional microstructure of a 

magnetic material or the interaction between domain walls and stress configurations. 

It is also a complementary non-destructive evaluation (NDE) technique to both eddy-

current probe sensors [4.7] and magnetic flux leakage (MFL) [4.8]. Whereas eddy 

current probe sensors and MFL detect cracks, corrosion and impurities in steel 

structures, BN sensors are incorporated in the system to detect stress in the steel under 

evaluation. 

 

4.3        Domain Processes and their role in Barkhausen noise 

 

Application of a magnetic field to a magnetic material leads to two domain processes 

viz:  domain wall motion and domain rotation as shown in figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3: Domain magnetisation processes and their role in BN. 
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Three reversible and three irreversible domain processes occur. A reversible process 

is one such that if the external magnetic field is reduced or removed the magnetisation 

in the material returns to its original value. Domain wall motion is classified into 

domain wall bowing and domain rotation. Domain wall bowing can be either 

reversible or irreversible under certain conditions. When a low magnetic field is 

applied, this process is reversible. The domain wall is likened to a rubber band which 

extends under the influence of the magnetic field and returns to its original position 

when the magnetic field is removed. When the domain wall is sufficiently deformed 

such that the extension continues without further increase of the magnetic field the 

effect becomes irreversible. A second even more important process which makes this 

effect irreversible is when the domain wall, while extending, encounters a further 

pinning site. This pinning site prevents the wall from returning to its original position 

when the field is removed. The pinning effect occurs when the magnetic field further 

increases and the domain wall breaks away from its pinning sites [4.4].  

Domain wall translation is usually irreversible unless no pinning sites exist in the 

material. Hence when the field is removed, all walls can return to their original 

positions. Irreversible domain wall translation is the effect which contributes most to 

BN generation.  

Domain rotation is a process where the atomic magnetic moments in a domain are 

turned from their original position towards the direction of a magnetic field applied to 

the sample. It is reversible in low fields when magnetic moments just slightly turn 

from their preferred low energy axis towards the direction of the magnetic field. For 

intermediate to high fields domain rotation becomes irreversible when the magnetic 

moments change their direction from their original preferred low energy axis to the 

one which is closest to the field direction. This occurs when the field energy 

overcomes the anisotropy energy [4.5]. All the irreversible domain processes lead to 

BN. 

 

4.4       Barkhausen noise and 180° domain walls 

 

It is believed that BN occur mainly because of 180° domain wall motion [4.5], [4.9] 

as the 90° domain walls have associated stress fields with them making 

magnetisations lie at right angles on either side of the wall, causing lattice spacing to 

be slightly larger in the direction of magnetisation. The resulting strain impedes 90° 
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domain wall motion, making it less significant than 180° domain walls that have a 

higher velocity [4.10]. In [4.11] and [4.12], the authors developed a method of 

determining the size distribution and number of Barkhausen jumps over all or any part 

of the magnetisation cycle. A slowly varying magnetic field was applied to a 

specimen hard-drawn iron and the Barkhausen jumps were amplified and detected as 

voltage pulses on an oscilloscope for visual inspection. Based on the above 

experimental investigation the authors concluded that Barkhausen jumps originate 

mostly from movement of 180º domain walls [4.13]. They observed that the number 

of countable Barkhausen discontinuities in a half-cycle was very large and to 

minimise overlap effects the rate of change of magnetic field must be vey small. 

 

4.5         Barkhausen noise and stress effects 

 

Due to its high sensitivity to stress, BN can be used in NDE of elastic and plastic 

deformations [4.14]. A stress will change the bulk magnetization of a ferromagnetic 

material even if no field is applied [4.5]. Magnetic domains undergo stress-induced 

volume changes just as they do under the influence of an external magnetic field. The 

magnetic field needed to move a domain wall across a pinning site and the wall 

energy gradient increases as the internal elastic stress increase [4.4]. The pinning sites 

themselves are also influenced by stress. In fact, elastic strain effects are more 

influential on BN than plastic strain effects [4.15]. To gain a better idea of how stress 

influences BN, its influence on magnetic domains should be considered. 

 

An applied stress disturbs the balance of the energy terms described in chapter 2. If no 

external field is present, the magnetostatic energy is zero and the magnetocrystalline 

and magnetoelastic energy are dominant [4.16]. Both magnetocrystalline and 

magnetoelastic energy compete to determine the direction of the domain 

magnetization under stress. A new energy configuration is achieved when under 

applied uniaxial tensile stress domains lying closest to the stress direction grow at the 

expense of domains with perpendicular domain magnetization while the domains with 

magnetic moments perpendicular to the axis of applied stress become favourable 

energetically under compressive stress [4.17]. 
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Generally under stress, the 180° domain wall population in the stress direction 

increases if the stress is tensile. Since BN is associated with wall pinning, a lower 

signal is obtained with compressive stress, and a higher for tensile stress [4.18]. 

The influence of applied stress on BN amplitude was first observed in [4.9]. It was 

shown that the most favourably oriented domains increased in size primarily by 

movement of 180° walls when the applied field was increased. A magnetising 

frequency of 0.09 Hz was used to magnetise the samples. In [4.19], Barkhausen 

discontinuities were generated by a triangular waveform with a maximum frequency 

of 4 Hz. 

BN was generated by a 50 Hz applied magnetic field in [4.20]. It was found that an ac 

excitation field to generate Barkhausen jumps gives a cleaner and more reproducible 

Barkhausen signal. BN was also found to increase with frequency. This same trend 

was found at both high and low fields in this thesis. 

Investigation of the BN envelope amplitude and its relation to surface stress in a 

surface modified steel specimen was conducted in [4.21]. The result showed that the 

Barkhausen signal envelope amplitude decreases with increasing compressive stress.  

 

4.6      Barkhausen noise and depth variation in electrical steel 

 

BN is sensitive to changes in the surface condition of electrical steel because the 

magnetic properties are closely linked to stress through magnetoelastic coupling and 

are reported to be within the frequency range of 20-200 kHz in steel in [4.22]. The 

frequency bandwidth of the detected signal can be selected to control the depth 

sensitivity to analyse material condition at different depths. Changes in material 

condition at different depths inside the material are evaluated by the selective 

attenuation of high frequency components of the BN signal as a result of eddy 

currents.  

The authors in [4.21] found the frequency band at which BN was detected to be 

inversely proportional to skin depth using the standard skin depth expression given in 

section 2.12. These frequencies correspond to the mean of each of the five frequency 

bands over which measurements were taken. The values of the classical skin depth for 

a material with σ  = 1 x 106 Ω-l.m-l and µr = 200 are given for different frequencies in 

Table 4.1. 
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 Table 4.1: BN penetration depth (skin depth) at different detection frequency 

bandwidths. 

 

 

 

 

 

 

 

 

 

 

4.7      Effect of grain size on Barkhausen noise 

 

Grain boundaries affect domain structures by the generation of closure domains 

(reverse spikes) at and by acting as obstacles to wall movement. The domain width in 

3% Si-Fe increases with increasing grain size [4.10] as illustrated in figure 4.4 

showing fine (smaller) and coarse grains in grain oriented electrical steel. This is 

because domains follow the easy direction in each grain although they are continuous 

over the grain boundaries, and since the boundary has no special angular relationship 

to the [001] directions of the two grains, the normal component of magnetisation 

across the boundary is generally discontinuous. If a grain is of larger size, domain 

walls can move further between pinning sites than in a grain with a smaller size. Since 

BN is mainly caused by domain wall motion, it is affected by grain size and 

boundaries of grains are likely sources for domain wall pinning [4.23].  

 

The effect of grain size and carbon content on BN was investigated in decarburized 

steels [4.24]. Carbon content was seen to have a direct influence on the grain size, 

which becomes smaller when the carbon content is increased. It was observed that BN 

is affected by grain size and the number and distribution of inclusions. The rms value 

of the BN signal was found to increase with increasing grain diameter. The reason 

advanced was that increased grain size and therefore reduced carbon content allow 

domain walls to move further between pinning sites thereby generating larger changes 

in magnetisation which results in a larger BN signal. 

BN detection frequency  

Bandwidths (kHz) 

Calculated penetration depth 

(mm) 

120-160 0.095 

100-120 0.107 

80-100 0.119 

50-80 0.140 

20-50 0.190 
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(a) (b) 

Fig. 4.4:  Domain spacing in (a) fine and (b) coarse (110) [001] grain 
oriented silicon steel [4.10].  

 

It was reported in [4.26] that a large number of grain boundaries result in more intense 

BN signals. Large number of grain boundaries is found in small grain samples. Small 

grain samples it argued have larger BN emissions because the grain boundaries act as 

pinning sites, and because their volume fraction is larger, more pinning sites need to 

be overcome when the walls move. It was stated in [4.18] that the 180° domain walls 

increases in number in the presence of applied tensile stress, and an expression was 

derived for the resulting change in magnetoelastic energy. From this expression, a 

threshold stress which depends on the grain size and increases with the number of 

existing domain walls was calculated that would be required to add another domain 

wall to the configuration. Hence, BN emission is linked to grain boundaries and grain 

size. Reference [4.25] advanced the idea that the interaction between the domain walls 

and dislocation angles leads to different BN profiles than the interaction between the 

walls and grain boundaries. This argument was used to explain secondary peaks 

observed in some of the BN signals. This is because the physical nature of the pinning 

site is assumed to dictate the restoring force acting on the wall. It was shown in [4.26] 

that rms BN is inversely proportional to the square root of the grain size in carbon 

steel consisting of ferrite grains. This implies that large number of Barkhausen pulses 

mean smaller grains, therefore more pinning sites in this material. The authors of 

[4.27] also reported a decrease in BN signal when the grain size in iron samples 

increased. However, segregation of phosphorus at grain boundaries and precipitates 

can act as additional pinning sites for domain walls thereby increasing the number of 

BN pulses even in specimens with large grains, as experimentally observed in 
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decarburized steel [4.28]. This shows that more or less precipitates can change the 

relationship between grain size and BN. 

 

4.8     Evaluation of Barkhausen noise signals   

 

BN are analysed statistically after filtering due to the stochastic nature of the signals. 

Figure 4.5 shows the shape of the BN signal obtained as voltage pulses from a search 

coil during one cycle of magnetisation. Since the voltages produced in the search coil 

are both positive and negative, the average is always nominally zero. So there is the 

necessity of choosing parameters that account for both positive and negative 

amplitudes of instantaneous BN events [4.29]. 

 

 

Fig. 4.5: Barkhausen noise emission pulse [4.30]. 

 

 Three main parameters were utilised to analyse BN in this work using LabVIEW viz: 

total sum of amplitudes (TSA), root mean square (rms) and total number of peaks 

(TNP). These three parameters were selected because they are mostly used methods 

of analysing BN in order to allow comparison with the work of other investigators. 

The data points acquired during one cycle of magnetisation were stored within an 

array.  The amplitude sum of the absolute values within the array added together in 20 

successive cycles (to have good representation of the BN events) is given by: 
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where the variable ‘a’ represents the amplitude of the measured data point, index ‘k’ 

shows its position within the measured data point array ‘m’. Variable ‘z’ indicates that 

the measurement has been taken 20 times successively. Index ‘i’ displays how often 

the measurement has been carried out. The TSA represents the sum of the individual 

voltage pulses in the BN cycle. 

 

 RMS value of the BN is the mean BN event amplitude in the BN cycle and is given 

by: 
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TNP is the sum of all detected BN events from the LabVIEW peak detection 

algorithm and is equivalent to integrating the probability of an event occurrence over 

the range of flux in the BN cycle. Using figure 4.5 as an example, the TNP would be 

the sum of the peaks of the voltage pulses in the BN cycle. 

 Other statistical parameters that are used in the analysis of BN include arithmetic 

mean, standard deviation, variance, median, mode, skewness, kurtosis and power 

spectrum [4.31]. 

 

 

4.9      Effects of precipitates on Barkhausen noise 

 

BN are influenced by the way domain walls interact with pinning sites, such as 

precipitates, as domains reorganize so that magnetic moments can be aligned in the 

direction of the applied field. Within the body of a precipitate, magnetic dipoles are 

formed at the surrounding interface [4.4, 4.32]. If a domain wall then bisects the 

precipitate, the dipole arrangement is split thereby reducing the magnetostatic energy 

and pinning the wall as a result. The number of Barkhausen jumps is to some extent 

determined by the number of precipitates provided that their volume is sufficient to 
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cause pinning. This makes BN an important tool for evaluating the scale of interaction 

between precipitates of different sizes and magnetic domains. 

 

The presence of copper-manganese sulphide (CuMnS) precipitates increased the rms 

BN in grain oriented steel but precipitates which are relatively small compared to the 

width of domain walls, approximately 150 nm, for 180° domain wall do not impede 

domain wall motion [4.33]. This is because the inclusions are completely engulfed by 

the wall, and thus the dipole surrounding the inclusion is maintained. 

 

4.10      Effects of magnetising waveform on Barkhausen noise 

 

The influence of sinusoidal, triangular and square wave form excitation on 

Barkhausen emissions were investigated in [4.34]. The frequency spectra of 

sinusoidal and triangular alternating field excitations showed similar behaviours but 

the spectrum under square wave excitation was different due to the existence of high 

frequency components during square wave switching. It was observed that changes in 

the field waveform led to different emission pulse shapes. When a square wave 

excitation was used the total sum of amplitude of the Barkhausen pulse was four times 

higher than in the case of a triangle excitation. Under sinusoidal excitation, the total 

sum of total sum of amplitude of the Barkhausen pulse was about 1.6 times higher 

than under triangle excitation. It was also found that the signal to noise ratio changed, 

square wave excitation had the highest signal to noise ratio and lowest for triangle 

excitation. Nevertheless, sinusoidal and triangle waveform excitation were rated to be 

more suitable than square wave excitation because the latter can lead to spurious 

signals (harmonics) because of the high frequency content at the voltage step.  

 

4.11 Effects of magnetising frequency on Barkhausen noise 

 

The influence of magnetising frequency and ac flux density on BN per cycle of 

pipeline steel magnetised up to 50 Hz, 1.5 T was detected by a surface mounted coil 

[4.35]. Increasing the flux density caused the Barkhausen noise to initially increase 

then decrease at high flux density. It was also shown that the BN increases with 

increasing magnetising frequency. 
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The research in [4.31] showed both an increase of Barkhausen noise with increasing 

flux density and increasing magnetising frequency for electrical steel. When the BN 

amplitude was plotted against magnetising frequency while the peak flux density was 

held constant, a linear relationship between BN amplitude and frequency was found. 

A benefit of a higher frequency of magnetisation is that the time needed to capture a 

cycle is reduced. For BN measurement at quasi-static dc, the period of the 

magnetising waveform will be a few seconds or more while at a frequency of 50 Hz, 

the capturing time is reduced to 20 ms if events in one cycle are captured. 
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Chapter 5 The magnetisation and Barkhausen 

noise measurement system 
 

5.1 Introduction  

 

The details of the magnetising and BN measurement system are presented in this 

chapter. The tensile stressing rig and the domain observation techniques used are 

illustrated. The specifications of the equipment used are also highlighted. The chapter 

concludes with the calculation of the uncertainty in the measurements. 

 
5.2     The measurement system 

 

The BN measuring system comprising of the magnetisation system and a signal 

detection unit shown in figure 5.1 [5.1] was used as a reference for the development 

of the measurement system used in this work. The feedback circuit shown in the 

figure ensured that the time variation of the flux density was sinusoidal with a form 

factor better than 1.11+−  3 % over the measurement range. Form factor is the ratio of 

the rms value to the average value and is calculated using equation 5.1 below: 

 

11072.1
2.2

=== πideal

average

rms

V

V
Formfactor      (5.1) 

 

Two 80 turns search coils connected in series opposition and would around a plastic 

carrier slid provided a differential signal feed to a National Instruments (NI) 4552 AD 

card with a resolution of 16 bit, sample rate of 204 kHz  and 95 kHz bandwidth. The 

output signal at 50 Hz from each coil was of the order of 200 mVrms (at 1.4 T) and 

comprises a dominant Faraday emf component and the low level (in micro volts 

range) Barkhausen signal so by connecting in series opposition the Faraday emf 

cancels out and the voltage fed to a personal computer (PC) mainly comprised the 

Barkhausen noise component [5.2].  
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 Digital signal processing was carried out with the NI software package LabVIEW. 

The 1 Ohm resistor in figure 5.1 was used so that the potential difference across it will 

give the current that will magnetise the sample. 

 

 

 

Fig. 5.1: BN measuring system [5.1]. 

 

In this study, a computer-controlled system capable of providing high accuracy and 

automatic measurements was developed for the magnetisation and measurement of 

BN of electrical steels at high and low flux densities. It does not require any discrete 

instrument since a program written in LabVIEW is used to calculate magnetic 

properties. Figure 5.2 shows a schematic diagram of the system. It comprises a PC in 

which LabVIEW version 8.5 from NI was installed, a NI 4461 data acquisition 

(DAQ) card [5.3], an impedance matching transformer, Krohn-Hite model MT- 56R, 

to match the 600 Ω minimum load impedance of the DAC card with the 5 to 20 Ω low 

impedance of the magnetising circuit, and a 4.7 Ω shunt resistor (Rsh) from Tyco 

Electronics BDS2A1004R7K  having less than 40 nH inductance corresponding to 

reactance of 12.6 µΩ, so adds virtually no error to amplitude and phase of the current 

measurement. The shunt resistor has 100 W power rating and low Temperature 

Coefficient of Resistance (TCR) (150ppm/°C). Low TCR was necessary to ensure 
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that changes in its temperature will not affect the overall accuracy of the system. The 

shunt was attached to a thermo electric heat sink device, model TDEX3132/100, in 

conjunction with silicon based thermal grease. 

 

A double vertical yoke made of grain-oriented (GO) steel which is 290 mm long and 

32 mm wide is used. A 500-turn secondary winding (search coil, N2), about 80 mm in 

length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, 

while a 100-turn primary winding (magnetising coil), covering the entire length of the 

plastic former was wound over the secondary winding. A standard Epstein strip (305 

mm x 30 mm) to be tested is placed between the yokes. 

 

Fig 5.2: Block diagram of Barkhausen Noise measurement system. 

 

The magnetising voltage was generated by the LabVIEW program through a voltage 

output from the DAQ card. The voltage drop across the shunt resistor, Vsh, and the 

secondary voltage,e, were acquired by the card for calculation of magnetic field 

strength and flux density respectively. The sampled waveforms of e and Vsh had 

3000 points per cycle which is large enough to avoid quantization errors. 

The instantaneous magnetic field strength, H (t) was calculated inside the LabVIEW 

program thus; 
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where
sh

sh

R

V
ti =)( , 1N  is the number of primary turns, ml  is the magnetic path length, 

which is the distance between the inner edges of the yoke which is 0.27 m in this 

system. 

The instantaneous flux density B (t) was obtained by means of digital integration of 

the e signal as:   

 

  edt
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2

)(
ρ

         (5.3) 

 

where l  is the sample length, m is the mass of the sample, and ρ  is the density of the 

sample. 

The specific power loss,P , was determined by multiplying the total energy, W , by 

the magnetising frequency, f , over ρ . The amount of energy lost when magnetising 

a magnetic material is related to the B-H loop area. The total energy needed if a 

material is taken through a complete B-H loop is given by: 

 

dBHW .∫=       3/ mJ        (5.4) 

 

Therefore the specific power loss is: 
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  The AC relative permeability,rµ , was derived from: 
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where peakH  is the peak value of magnetic field andpeakB  is the peak flux density. 

peakB  and peakH  were determined numerically by using the maximum function in 

LabVIEW. 

 

A feedback control system implemented in LabVIEW was used to control the flux 

density and to make the induced secondary voltage waveforms sinusoidal to have 

repeatable and comparable measurements. The form factor (FF) of the induced 

secondary voltage was maintained at 1.111+
− 0.3% which satisfies the recommendation 

in [5.4] to ensure that the time variation of the flux density was sinusoidal over the 

measurement range. Figure 5.3 shows the procedure for each measurement. Firstly, a 

table of Bpeak values and the measurement criteria which are the 0.3% error of Bpeak 

and the 0.3% error of the ideal FF of the induced secondary voltage is read. This is 

followed by applying the first magnetising waveform to the single sheet tester. If the 

criteria are met, the flux density and the magnetic field waveforms are averaged to 

minimise random errors and improve repeatability [5.5], otherwise the magnetising 

waveform is adjusted by the feedback algorithm. After averaging, the criteria are re-

checked then the measurement data for this point is saved. A spread sheet file is 

generated if all the values of Bpeak are measured and the sample is demagnetised by 

reducing the magnetic field gradually to zero. 

The system is also capable of low-field measurements because the 24 bit resolution of 

the NI data acquisition card makes it capable of sensing signals as small as 10-6 V. 

The system shown in figure 5.2 was used to measure power loss, permeability, 

coercivity, magnetic field and B-H loops. 
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Fig. 5.3: Flowchart showing procedure of each measurement of the single strip tester 

[5.6]. 
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5.3      Measurement and evaluation of Barkhausen noise signals 

 

The secondary voltage was filtered to remove the dominant Faraday emf in order to 

obtain the BN signals. A digital band pass filter was used so that components in the 

range 25 kHz to 75 kHz were detected at a magnetizing frequency of 50 Hz. It was at 

this bandwidth that the Barkhausen emission which is maximum at the coercive points 

was detected. As observed previously in section 4.6 from the work of others, BN 

detection frequency lie any where in the range of 20 kHz – 200 kHz.  

 

One search coil technique rather than a double coil arrangement is used to avoid 

losing some Barkhausen events in the subtraction process [5.7]. Using two search 

coils connected in series opposition has been mentioned in section 5.2. This is the 

differential search coil arrangement with the advantage of eliminating the dominant 

Faraday emf component which allows for the selection of the smallest input range and 

the best resolution of the data acquisition card. The disadvantage of the differential 

coil arrangement is that some Barkhausen jumps cancel each other [5.2, 5.7].  

 

The major challenge in BN measurement is the reduction of background noise. It was 

also reported in [5.1] that one way to improve background noise measurements with a 

single search coil would be to use an acquisition system with a high resolution. The 

low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 

92 KHz bandwidth was chosen to take the measurements to minimize the influence of 

thermal noise. The card was placed in a PXI (Peripheral component interconnect 

eXtension for Instrumentation) platform instead of in a computer system hence it 

operates in a predictable environment which means the measurements are more 

reliable and repeatable. In order to reduce environmental noise, the yokes, sample and 

search coil carrier were placed in a noise shielding chamber. Figure 5.4 shows the 

measurement system in the noise shielding chamber and the DAQ in a PXI interface. 

The computer monitor was remote from the measuring system to avoid interference 

with the measurements. Coaxial cables were used for all connection leads. The noise 

level of the measurement system is more than 100 times lower than the lowest BN 

signal to be measured as shown in figure 6.10.  
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Fig. 5.4: Barkhausen Noise measurement system in the noise shielding chamber and 

the PXI platform housing the data acquisition card. 

 

5.4     System for measurement of tensile stress in Epstein strips 

 

The rig for applying tensile stress during BN measurement is shown in figure 5.5. The 

rig has jaws to clamp an Epstein strip at each end. Omega strain gauges with 

specifications shown below were used to measure the longitudinal strain: Resistance 

(120 Ω), Gauge factor (2.1±5%), Gauge length (7 mm), Gauge width (3 mm) and 

Package diameter (16 mm) [5.7]. The error range stated is used to calculate the 

measurement uncertainty. 

The strain gauge was attached at the middle of the Epstein strip. The insulating 

coatings on each strip were removed by dipping into 36% hydrochloric acid and then 

cleaning with acetone. Two scratched lines were marked approximately at the centre 

of the samples by an empty ball-pointed pen with the aid of a metal ruler. The top side 

of the strain gauge was attached with transparent adhesive tape and then the gauge 

was positioned on the marked lines. Once the gauge was correctly positioned, half of 

the adhesive tape length was lifted. A drop of Omega 496 instant adhesive [5.8] was 

spread on the sample over the gauge area. After using the palm to press the gauge on 

the sample for about 2 minutes, the adhesive tape was carefully removed and the 
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strain gauge leads were connected to a Vishay 3800 strain indicator [5.9]. The bond 

was given 24 hours to firmly set. The circular head of the tensile stressing rig is 

moved in anticlockwise direction to create a tensile stress on the sample and the strain 

read from the strain indicator from which the stress was calculated from the stress-

strain relationship: 

 

εσ E=           (5.7)  

 

where σ  is the stress, ε  is the strain and E  is the elastic modulus which for CGO 

and HGO in the rolling direction are 114.9 and 113.9 KN/mm2 [5.10] respectively. 

Tensile stress was applied to the samples and a strain of 20 ppm (part per million) was 

read from the strain indicator which corresponds to a stress of approximately 2.3 MPa 

using equation 5.7. More tension was added to the material to increase the strain to 26 

ppm from which a stress of approximately 3 MPa was calculated. These amount of 

stress fall within the range of beneficial stress that is imparted to grain oriented 

electrical steel during manufacture [5.11]. 

 

 

 

 

 

Fig. 5.5: Barkhausen noise measurement system with tension stressing rig and strain 

indicator.    
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5.5       Methods used for domain observation 

 

Magnetic domains are observed and studied so as to understand the properties of 

magnetic materials. Domains are regions of uniform magnetisation which are so 

arranged for energy minimization in the material. There are a number of different 

methods used to study the domain structure of magnetic materials. The magnetic 

domain viewer and the Kerr magneto-optic (KMO) effect [5.12] are the methods used 

in this work to observe the domains in the coated and decoated samples respectively. 

The KMO technique makes use of the longitudinal Kerr effect to form domain 

patterns [5.13]. 

 

5.5.1     The magnetic domain viewer 

In this method, a magnetic pattern is formed in the magnetic domain viewer. The 

domain viewer uses colloidal magnetic particles to detect surface leakage fields. By 

applying a low vertical dc magnetic field using an enwrapping coil, the small 

ferromagnetic particles congregate on the domains that are in the direction of the 

magnetic field and avoid the others that are not in the field’s direction. This makes for 

the observed domain contrast in the sample under observation. The domain patterns of 

coated CGO and HGO steels observed in this work using the domain viewer are 

shown in figures 8.1a and 8.2a respectively. 

   

5.5.2        The Kerr magneto-optic technique 

 

 The principle of operation of the KMO effect is that the light reflected from the 

surface of the specimen to be observed will interact with the magnetization at the 

specimen surface. This interaction will rotate the polarisation plane of the light and 

the difference between the incident and reflected beams can be utilized to study the 

magnetisation within different regions of the specimen.  

The magnetic domain structure of the prepared samples was examined using a low-

magnification longitudinal Kerr effect microscope. The schematic diagram of the 

components of a Kerr microscope is shown in figure 5.6. A high pressure mercury 

light that illuminates the sample is the light source which is reflected with changes in 

polarization, amplitude, and phase determined by the orientation of the magnetisation. 

This light is reflected back through the sample under observation through the 
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polarizing beam splitter and the analyzer before being focused on the camera after 

under going changes due to the orientation of the magnetization. The second polarizer 

(analyser) functions as a filter for the light which reflects off the sample without 

changes in polarization. The rotation angle of the polarization is very low and 

consequently the signal of the Kerr-affected light is very weak. This weak signal 

passes through the analyzer into the camera which is connected to a computer for 

image processing and enhancement [5.14]. Three types of Kerr effect microscopy are 

used viz: polar, transverse and longitudinal. The polar case have the magnetization 

normal to the reflecting surface while in the transverse case,  the magnetization vector 

in the surface is normal to the plane of incidence. In the longitudinal case, the 

magnetization vector is in the plane of incidence and parallel to the surface. It is used 

widely in electrical steel due to comparably better contrast than other Kerr effects. 

 

The KMO technique was preferred to other domain imaging techniques in this 

research because it is ideal for view relatively large domains with high image contrast. 

The CGO and HGO electrical steel used in this research have relatively large 

domains. The high image contrast obtainable often eliminates the need for image 

processing. The second reason for choosing KMO technique is that no optical 

elements other than the sample exist between the polariser and the analyser, there is 

no depolarisation of the light beam. 
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Fig. 5.6:  Schematic representation of the main components of a Kerr microscope. 

Inset shows the longitudinal effect. 

 

The model of the polarising microscope is Neoark BH-780-IP and the specifications 
are as shown below: 

• Super high pressure mercury light source (100 W). 
• Mitsutoyo M plan Apo, strain free, long working distance objective lens (50x, 

20x, 10x & 5x) with better than 1 µm resolution. 
• Polarisation optical unit incorporating polariser and analyser made from 

Calcite (Glan-Thompson) prisms. 
• ¼ wavelength optical filter. 
• Micro translation sample stage with X, Y, Z fine movement. 

 
 
The specifications of the High Speed Intensified Digital CMOS Camera (model HCC-
1000) are as follows: 

• 1024 x 1024 pixels sensor format. 
• 462 frames/sec. at full resolution. 
• Up to 512 Mbytes internal memory. 
• Progressive scan. 
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• 8-bit digital output with up to 30 frames/sec. 
• Control via RS-232. 
• C-mount compatible sensor size (2/3"). 
• Power supply: 12 V, 500 mA. 

 

 

5.6      Uncertainty in measurement 

 

Uncertainties in the measurements were estimated from the recommendations in 

UKAS (United Kingdom Accreditation Service) M3003 [5.15]. The standard 

uncertainty is divided into two viz: Type A and Type B. Type A uncertainty is 

evaluated by statistical analysis of a series of observations and is normally used to 

obtain a value for the repeatability or randomness of a measurement process. On the 

other hand, systematic components of uncertainty, which account for errors that 

remain constant while the measurements are made, are estimated from Type B 

evaluations. The combined uncertainties of the measurement has been tabulated and 

shown in Appendix A while Appendix B shows the type A uncertainties. 

 

5.6.1       Mathematical expression for type A and type B uncertainties  

The measurand,y , is the functional relationship of the input quantities, Nxxx ,...,, 21  

as  

  Nxxxfy ,...,,( 21= )                             (5.8) 

 

The type A uncertainty of ))(( yuy A  is obtained from the standard deviation, )( ds , of 

the n times repeated measurements as  
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where iq  is the measured value ofy , q  is the mean value of  y  and is expressed as  
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The type B uncertainty is contributed by the standard uncertainties ))(( 1xu of the 

measurement inputs 1x  and is mathematically expressed as  
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where ic is called the sensitivity coefficient and is the partial derivative
ix

y

∂
∂
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In measurement of magnetic properties, ic can be experimentally determined from  

ix

y

∆
∆

 by varying the value of ix  [5.15]. 

The combined standard uncertainty of y is derived from )(yuA and )(yuB as: 

 

)()()( 22 yuyuyu BA +=        (5.13)             

which is finally multiplied by the coverage factor,95K , to be the expanded 

uncertainty, )(yU . 95K  provides a confidence level of 95% of the normal distribution 

[5.6]. 

 

Thus )()( 95 yuKyU =         (5.14) 

The measured value of )(Yy is then reported as )(yUYy ±= . 

The uncertainty sources obtained from equipment specification sheets were divided 

by 2 before used as the sources of uncertainties since these values were supposed to 

be expanded uncertainties with .295 =K  If the specification sheet were not found, the 

uncertainty values have been estimated to be a half of their minimum scale divided by 

3  as a coverage factor of the rectangular distribution. 

 

The number of degrees of freedom )( iv is infinity for all the uncertainty sources 

because it can be any value whereas iv for Type A uncertainty is 1−n . 

The effective number of degrees of freedom  
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effv  is eventually used to determine 95K  from the t-distribution table. effv  is often 

infinity where 295 =K  and n is the number of repeated measurements. 

 

The values in the tables of appendix A have been estimated in the following way: 

a) Accuracy of NI PXI-4461 DAQ card: the accuracy of the voltage 

measurement range of ±3 V is ± 10.4mV [5.3]. Thus the relative accuracy is 

10.4 mV/3 V x 100 = 0.347% 

b) Frequency setting: this value (0.002 %) was taken from the base clock 

accuracy of the NI PXI-4461 DAQ card. 

c) Sample mass measurement: the mass of the sample was measured using an 

Avery Berkel FB31 scale with a resolution of 0.01 g and accuracy of ±0.0002 

g. Each sample was weighed 5 times and the expanded uncertainty of all 

samples was within ±0.01%. 

d) Sample length measurement: the length of every sample was measured using a 

metal ruler with a resolution of 0.5 mm. Its uncertainty was assumed as a half 

of the resolution resulting in 0.082% of the nominal length of 305 mm. It was 

approximated to 0.1 %. 

e) Control of Bpeak and form factor:  the control algorithm written in LabVIEW 

was able to maintain the value of Bpeak and form factor of the secondary 

voltage within ±0.3%. 

f) Shunt resistor: Calculated by getting standard deviation of ten measurements 

and dividing the result by the number of measurements taken. The result 

(0.000434) is further divided by the resistance (4.7 Ω) then multiplied by 100. 

The value is 0.009 %. 

g)  Shunt temperature change was calculated by multiplying the temperature 

coefficient (1.50E-04) by the expected temperature variance (±30%). The 

result was truncated to 0.005. 

h) Magnetic path length: A metal ruler with a resolution of 0.5 mm was used to 

measure the length between the inner edges of the flux closure yoke. The 
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nominal length is 270 mm, so the relative uncertainty was 0.25 mm/270 mm x 

100 = 0.093 %, rounded to 0.1 %. 

i) Density: The quoted value is 7650 kg/m^3. The uncertainty is presumably a 

half of the last digit of the quoted value which is ±0.0025. This yields a 

relative value of 0.033%. 

j) Type A uncertainty was derived from the standard deviation of 3 times 

repeated measurements of each sample tested. 

k) Accuracy of the strain amplifier: The gain of the strain amplifier of the Vishay 

system 3800 has a resolution of 0.05% [5.9]. 

l) Accuracy of the shunt calibration resistors: The shunt calibration resistors of 

the strain indicator of the Vishay system 3800 have the accuracy of ±0.05 Ω. 

m) Width of the sample: the sample width was measured by means of a digital 

veneer calliper having an accuracy of 0.02 mm. It is 0.067 of the nominal 

value at the nominal value of 30 mm. It is approximated to 0.07%. 

n) Thickness of the sample: A digital micrometer was used to measure the 

thickness and its accuracy was 0.0025 mm, which is 0.83% of the 0.30 mm 

thick sample. 

o) Gauge factor: the uncertainty of the gain factor is ±1% [5.7]. 

p) Jaw gripping: The sample has the tendency of slipping slightly at the start of 

applying tensile stress. It was difficult to quantify this effect, so the 

uncertainty of ±2.5% was estimated [5.6]. 
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Chapter 6 Investigation of magnetic properties 

and Barkhausen noise of grain oriented electrical 

steel  
 

6.1 Introduction 

The experimental results obtained on the strips of CGO and HGO steels using the 

measurement equipment described in section 5.2 are presented in this chapter. 

Measurements of coercivity, B-H loop, AC relative permeability and specific power 

loss are presented and discussed. Experimental measurements of BN of the test 

samples at high and low flux densities are also presented and discussed. 

An average of 3 measurements made on every strip was used in analysing the result. 

Between repeatability measurements each sample was removed and then re-inserted 

into the test system. The percentage difference of the measured properties was 

quantified using equation 6.1. The actual difference could be positive or negative 

depending on the values of the measured parameters under consideration. The 

parameters quantified are the rms, TSA, coercivity, relative permeability and power 

loss. The actual difference is the result of subtracting the one value of a parameter 

from another value of the same parameter in the different samples under 

consideration. The subtrahend is the ‘original value’ in equation 6.1. 

 

% Difference = Actual difference/Original value x 100 %   (6.1) 

 

6.2  B-H loops, coercivity, relative permeability and specific power loss of CGO 

and HGO 

 

This part of the investigation was carried out on samples of HGO and CGO steels, 

305 mm x 30 mm x 0.27 mm from Cogent Power Limited United Kingdom. 40 strips 

comprising 20 CGO and 20 HGO were tested. The HGO and CGO strips had average 

grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under 

sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 

Hz. The uncertainty of measurement for the peak flux density and peak magnetic field 

at low and high flux densities are shown in tables A1-A3. 
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Typical B-H loops of HGO and CGO strips measured at 50 Hz, 1.5 T are shown in 

figure 6.1. The B-H loops of all strips tested had similar characteristics, e.g., the 

coercive field of CGO samples was always higher than that of HGO sample at all flux 

densities as expected.  

Figure 6.2 shows the variation of average coercive fields of the same CGO and HGO 

strips with peak flux density at 50 Hz. In the materials under investigation, the 

average domain width decreases by 22 % because the average domain width of the 

HGO is 0.63 mm and that of CGO is 0.49 mm as illustrated in section 8.2. Figure 6.3 

shows the variation of the percentage difference of average coercivity of CGO and 

HGO at high and low flux densities. The highest percentage difference of 14 % 

occurred at 0.2 T. From 0.008 T to 0.2 T referred to as low flux densities in this work, 

the percentage difference maintained a steady rise except at 0.04 T where the value 

decreased. The percentage difference at 0.3 T is 12 % and thereafter every other two 

measured peak flux density had approximately the same percentage difference viz: 11 

% at 0.4 T and 0.6 T, 13 % at 0.8 T and 1.0 T, 11 % at 1.2 T and 1.3 T, and 10 % at 

1.4 T and 1.5 T. The above figures did not tally with the earlier stated decrease of 22 

% in average domain width of CGO because such other factors as number and 

distribution of pinning sites, precipitates, grain boundaries etc also influence 

coercivity and in fact other magnetic properties such as relative permeability and 

power loss.  
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Fig. 6.1: Typical B-H loop of CGO and HGO measured at 1.5 T and 50 Hz. 
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Fig. 6.2: Variation of average coercivities of HGO and CGO with peak flux density. 
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Fig. 6.3: Variation of percentage difference of average coercivity of CGO and HGO 
with peak flux density. 
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The coercive field of CGO is higher than that of HGO because the average grain size 

of HGO is higher than that of CGO. As stated earlier, the average grain size of the 

tested HGO is 9 mm while that of CGO is 4mm. As the grain size increases, it is 

expected that coercive field would decrease as larger grains provide fewer pinning 

sites to impede the movement of the domain walls due to lower volume fraction of 

grain boundaries as found in decarburised steels at high flux densities (above 0.1 T) 

[6.1].   

In [6.2], coercive field was also found to be higher in conventional 3 % Si-Fe sheets 

manufactured by Pohang Steel Corporation of Korea having average grain size of 6 

mm than in highly grain oriented HiB-8 manufactured by Nippon Steel Corporation of 

Japan having average grain size of 15 mm. The reason advanced was the increase in 

the grain boundary area of conventional 3 % Si-Fe acting as obstacle to the domain 

wall movement. The measurement was carried out at high induction and at 

magnetising frequencies of 0.05 Hz and 0.1 Hz.  

Coercive field is related to how much anisotropy energy is required for magnetic 

moment rotation away from easy axes to the axis of the applied field and depends to a 

large extend on the number of pinning sites present in a material.  

 

Figure 6.4 shows the variation of average AC relative permeability of CGO and HGO 

with peak flux density. It was derived from equation 5.6 in LabVIEW. The 

measurement uncertainties at low and high flux densities are shown in tables A6 and 

A7 respectively. The graph of the variation of the percentage difference of average 

relative permeability of HGO and CGO with peak flux density is shown in figure 6.5. 

The average AC relative permeability of HGO is higher than that of CGO at both high 

and low fields. Previous work made at high inductions agrees with this [6.2]. The 

larger grain size and better grain-grain orientation of HGO are responsible for this. In 

grain oriented electrical steel, higher grain size implies lower number of grain 

boundaries and precipitates which usually impede domain wall motion and thus 

reduces permeability. In the samples under test, the percentage increase in average 

relative permeability of HGO peaks at 0.04 T and 0.06 T at low flux densities with a 

value of 39 % and thereafter decreased steadily until 0.6 T and 0.8 T where the value 

was maintained at 22 %. It thereafter increased steadily peaking at 1.5 T with a value 

of 110 %. As inferred earlier, the higher level of grain boundaries acting as pinning 

sites in CGO caused a reduction in grain size thereby reducing the relative 
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permeability. Magnetic characterisation of grain oriented electrical steel is normally 

measured at high inductions (1.5 T/ 1.7 T) [6.3] which is suitable for its typical 

application in power transformers. For a given magnetic material, the permeability is 

not usually specified over the low flux density range applicable in current transformer 

cores and other applications where electrical steel is used at low flux densities. Recent 

work at below 1mT [6.4] shows the permeability of CGO is higher than that of HGO 

at this regime and confirms that performance at low magnetisation level cannot be 

predicted from measurements made at high inductions especially when comparing the 

performance of CGO and HGO. 
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Fig. 6.4: Variation of average AC relative permeability of HGO and CGO with peak 

flux density. 
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Fig. 6.5: Variation of percentage difference of average relative permeability of HGO 

and CGO with peak flux density. 
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Figure 6.6 shows the variation of the power loss (W/kg) of CGO and HGO with peak 

flux density and the variation of percentage difference of average specific power loss 

of CGO and HGO with peak flux density shown in figure 6.7. The uncertainty of 

measurement at low and high flux density regimes are shown in tables A8 and A9. As 

expected the average specific power loss of CGO samples is higher than the average 

specific power loss of HGO samples at all flux densities. The percentage difference 

was erratic below 0.2 T with a peak of 25 % at 0.1 T. It reduced to 11 % at 0.4 T and 

thereafter increased steadily to 25 % at 1.5 T. As coercivity, power loss depends 

largely on the number of pinning sites present in a material. These pinning sites 

reduce the speed of domain wall motion resulting to a decrease in power loss. 

Similar reason was given in [6.2] where it was stated the lower power loss of HGO 

samples is due to a decrease in the grain boundary area and an increase of the 180° 

domain width of HGO than CGO. As a rule, the grain-grain misorientation in 

(110)[001] oriented silicon steel increases as the grain size decreases, thus larger grain 

boundary micro demagnetising fields would be expected in small grained materials 

[6.5]. 

 In [6.6], 3 types of uncoated CGO with different amounts of precipitates were 

compared at field strength of 800 A/m and magnetising frequency of 50 Hz to 

determine the effects of precipitates on their magnetic properties. It was reported that 

increased number of precipitates significantly reduced permeability and almost 

doubled power loss. This drop in magnetic performance was linked to increased 

number of pinning sites. 

 

This investigation shows that in comparing the magnetic properties of CGO and 

HGO, the same trend of relationship is found at both low flux densities (8 mT -0.2 T) 

and high flux densities (above 0.2 T). 

 

 In grain-oriented electrical steel, microstructural features such as grain size, grain 

boundaries and grain-grain misorientation are the dominant parameters that 

distinguish CGO and HGO in relation to coercivity, relative permeability, power loss 

and BN. Hence these parameters influence BN in CGO and HGO.  
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Fig. 6.6: Variation of average specific power loss of CGO and HGO with peak flux 

density. 
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Fig. 6.7: Variation of percentage increase of average specific power loss of HGO over 

CGO with peak flux density. 
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6.3 Barkhausen noise measurement of HGO and CGO 

 

This part of the investigation was carried out on samples of CGO and HGO, 305 mm 

x 30 mm x 0.27 mm from Cogent Power Limited United Kingdom and ThyssenKrupp 

Electrical Steel, Germany. 40 strips from Cogent Power Company referred to as P1 

comprising 20 CGO and 20 HGO strips were tested. Another 40 strips from 

ThyssenKrupp denoted as P2 comprising 20 CGO and 20 HGO strips were also 

tested. Each strip was singly magnetised under sinusoidal flux density, Bpeak, from 

8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. Each measurement of BN was 

made three times and then averaged. The uncertainties of measurement at low and 

high flux densities are shown in tables A10 and A11. 

BN studies aimed at non-destructive testing applications are usually carried out under 

quasi-static or very low frequency magnetisation conditions but 50 Hz has been 

chosen in this work because it is believed that at this frequency the BN signal is 

possibly more related to dynamic processes and can give more information about the 

magnetisation processes which low frequency BN measurements cannot. Such 

information include eddy current anomalous loss influence on magnetisation. 

 

Figures 6.8 and 6.9 show typical BN spectra obtained from HGO and CGO at 1.2 T 

and 50 Hz. The sinusoidal curve is the flux density waveform at a 1000 times smaller 

scale. One cycle of magnetisation is shown. As expected, the BN is highest at points 

in time corresponding to when the material was experiencing maximum rate of 

change of magnetisation at the coercive fields [6.7, 6.8]. The coercive fields are the 

points where the flux density waveforms are zero in the figures. As can be observed 

from the figures, the BN amplitude is higher in HGO with the maximum peak 

occurring at 2mV while the maximum peak in CGO occurs at 1.4mV and this shows 

that the BN induced voltage in HGO is higher than that of CGO especially at high 

flux densities as subsequent results in this investigation show.  
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 Fig.6.8: BN spectrum of HGO during one cycle of magnetisation at 1.2 T and 50 Hz 

showing variation of BN amplitude with time. 

 

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

time (mS)

B
ar

kh
au

se
n

 n
o

is
e 

am
p

 (V
)

 

 
BN

B(/1000)T

 

Fig. 6.9: BN spectrum of CGO during one cycle of magnetisation at 1.2 T and 50 Hz 

showing variation of BN amplitude with time. 
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Figure 6.10 shows the rms values of the BN spectra shown in figures 6.8 and 6.9 as 

well as the background noise of the experimental set up at all the peak flux densities 

measured. Preliminary test determined the background noise level in the experimental 

set up. The same relationship was obtained when the background noise was plotted 

against the total sum of amplitudes (TSA) and total number of points (TNP). It can be 

observed from the figure that the background noise is more than 100 times less that 

the BN amplitude of the test samples. This was achieved by applying all the 

background noise reduction techniques discussed in section 5.3. Background noise 

reduction is particularly challenging at very low inductions and measurements must 

be made in an environment free from electromagnetic interference. 
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Fig. 6.10: Comparison of average rms BN of CGO and HGO strips at different flux 

densities at 50 Hz with background noise of Experimental set-up. 

 

Figure 6.11 shows the variation of average rms BN of 20 strips of CGO and 20 strips 

of HGO from P1 at both high and low flux densities. It can be observed that the 

average rms BN is higher in HGO than in CGO above 0.2 T but at lower flux 

densities the trend changes. A similar characteristic was obtained when the same 

number of test samples from P2 was investigated at both magnetisation regimes. This 

is shown in figure 6.12. The variation of the percentage difference of the average rms 

BN of these test samples with peak flux density is shown in figure 6.13. 
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Figure 6.14 shows the same BN signals expressed in terms of the average TSA of BN 

peaks of the test samples from P1. As with the rms BN, the TSA of HGO is higher 

than that of CGO above 0.2 T and the trend changes at lower flux densities. TSA of 

samples from P2 show the same relationship as with P1 and is plotted in figure 6.15 

with the variation in percentage difference at both high and low flux densities shown 

in figure 6.16. 
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Fig. 6.11: (a) Variation of average rms BN of 20 strips each of CGO and HGO from 

P1 with peak flux density (b) the same comparison in the low field regime.                
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Fig. 6.12: (a) Variation of average BNrms of 20 strips each of CGO and HGO from 

P2 with peak flux density (b) the same comparison in the low field regime. 
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Fig. 6.13: Variation of percentage difference of average rms BN of HGO and CGO 

from P1 and P2 with peak flux density. 
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Fig. 6.14: (a) Variation of average TSA of 20 strips each of CGO and HGO from P1 

with peak flux density (b) the same comparison in the low field regime. 
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Fig.6.15: (a) Variation of average TSA of 20 strips each of CGO and HGO from P2 

with peak flux density (b) the same comparison in the low field regime.   
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Fig. 6.16: Variation of percentage difference of average TSA of HGO and CGO from 

P2 with peak flux density. 

 

The BN amplitude of HGO is higher than that of CGO at high flux densities but the 

trend changes at lower flux densities as shown in all the presented results. As figures 

6.13 and 6.16 show, it is interesting that below 0.2 T, the percentage difference in 

average rms BN of the test samples from P1 and P2 , and that of the average TSA  

respectively are very similar but at high flux densities, they are far different. This is 

because domain wall activity is higher at high flux densities so the effects of the 

difference in microstructure of the samples which account for BN will be more 

pronounced than at low field regime. 

 

The observed higher BN response in terms of average rms and average TSA of HGO 

over CGO at higher flux densities in this work is because the grain size of HGO is 

higher than that of CGO and also grain to grain misorientation in CGO is higher than 

that of HGO. The domain width in 3% Si-Fe increased with increasing grain size as 

illustrated in section 8.2. Increased grain size means that domain walls will move 

further between pinning sites and thereby generate larger changes in magnetization 

which results in a larger BN signal amplitude.  
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Secondly, the grain-grain misorientation which is higher in CGO [6.9, 6.10] results in 

strong depression of the BN level which is caused by a decrease in the instantaneous 

rate of change of the magnetic flux during Barkhausen jumps, because of increased 

demagnetizing effects.  

Similar results were found at high flux densities in decarburised steel [6.1], carbon 

steel [6.11], high purity iron [6.12] and grain oriented electrical steel from Nippon 

Steel Corporation and Pohang Steel Corporation [6.2]. The reason advanced in [6.2] 

for the lower BN amplitude of CGO compared to HGO is the larger energy loss in 

CGO due to domain nucleation and annihilation. 

However, contradictory result was obtained [6.13] when the BN was measured at 50 

Hz and peak flux densities of 0.5 T- 1.4 T in 3 Epstein sized samples comprising of 

0.27 mm thick HGO with average grain size of 13 mm, 0.27 mm thick CGO with 

average grain size of 8 mm, and 0.20 mm thick, 0.1 % silicon NGO with average 

grain size of 100µm. The investigation showed that the BN amplitude is higher for the 

material with a smaller grain size. 

This apparent contradiction suggests that the BN process is more complex and the 

results might be associated with materials having different densities of pinning sites, 

precipitates , grain boundaries, etc possibly higher in smaller grain materials. 

 

BN measurement has not been carried out at low flux densities (below 0.1 T) before. 

At low fields, domain wall motion has an intermittent, jerky character, with sparse 

Barkhausen jumps. The implication of this is that smaller grain samples (CGO) which 

have more grain boundaries acting as pinning sites and hence large fractional volume 

than HGO will have a greater number of these sparse Barkhausen jumps which will 

sum up to higher Barkhausen noise amplitude. This explains why at low flux density, 

the BN amplitude is higher in CGO material. This investigation shows that in 

comparing CGO and HGO, BN amplitude changes trend at high and low flux 

densities. 
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Chapter 7 Effect of Domain Refinement on 

Barkhausen Noise and Magnetic Properties of Grain 

Oriented Steel 

 
7.1 Introduction 

 

Domain refinement is an effective technique for reducing power loss in highly grain 

oriented (HGO) electrical steel. It can be accomplished by scribing scratch lines on 

one surface transverse to the rolling direction of the steel. In this part of the 

investigation, one surface of each of ten HGO samples from Cogent Power Limited, 

United Kingdom was mechanically scribed by using a ball pen at 5 mm intervals 

transverse to the rolling direction. Further domain refinement was carried out on 3 

samples of HGO with very large grains of average diameter of 20 mm. Domain 

scribing was carried out at intervals of  16 mm, 8 mm and 4 mm respectively 

transverse to the rolling direction. Firstly, BN was measured on the strips without 

scribing and then subsequently measured after each scribing. The relative 

permeability, coercivity and power loss of the test samples were also measured. 

Experimental measurement results at high and low flux densities are also presented 

and discussed. 

An average of 3 measurements made on every strip was used in analysing the result. 

Between repeatability measurements each sample was removed and then re-inserted 

into the test system. The percentage difference of the measured properties was 

quantified using equation 6.1. The actual difference could be positive or negative 

depending on the values of the measured parameters under consideration. 

 

7.2 Effect of domain scribing on Barkhausen Noise of HGO 

 

 Figure 7.1 shows domain patterns observed on surfaces of an unscribed and scribed 

strip using magnetic domain viewer. The vertical lines in figure 7.1(b) introduced by 

scribing acts as additional pinning sites. Figure 7.2 shows the variation of average rms 

BN of the HGO and domain scribed HGO samples from P1 with peak flux density. It 

is observed that the BN amplitude is higher in HGO without scribing than in HGO 
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with scribing at high flux densities but the trend changes at lower flux densities. The 

variation of the percentage difference in average rms BN of the HGO with and 

without scribing at different flux densities is shown in figure AC 1 in Appendix C. 

Figure 7.3 shows the variation of the average TSA of the tested samples with peak 

flux density. Similar relationship was found as with the rms BN. The percentage 

difference in average TSA of the samples with peak flux density is shown in figure 

AC 2.      

                                                                                                

                                                

                                                  (a)                

                                             

       

 

                

 

                                                  (b) 

Fig. 7.1: Static domain patterns observed on surfaces of (a) unscribed (b) scribed 

strips (5mm scribing interval) of HGO. 
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                                                            (b) 

Fig. 7.2: (a) Variation of average rms BN of 10 strips each of HGO and Domain- 

scribed HGO from P1 with peak flux density (b) Comparison in the low field regime. 
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                                                     (b) 

Fig. 7.3: (a) Variation of average TSA of 10 strips each of HGO and Domain- scribed 

HGO with peak flux density from P1 (b) Comparison in the low field regime. 
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The variation of average rms BN of the HGO with very large grains at different flux 

densities is shown in figure 7.4. Figure AC 3 shows the variation of percentage 

difference in average rms BN between HGO without scribing and HGO domain 

scribed at 16 mm, 8 mm and 4 mm intervals respectively with flux density. The 

variation of percentage difference in average rms BN between HGO domain scribed 

at 16 mm and 8 mm; 16 mm and 4 mm; and 8 mm and 4 mm intervals respectively 

with flux density is shown in figure AC 4. 

 The average TSA of the same BN signals were also evaluated. Figure 7.5 shows the 

variation of average TSA of 3 strips each of HGO without scribing and domain- 

scribed HGO at the different intervals at both high and low field regimes. The 

percentage difference in average TSA between the test samples is also quantified in 

figure AC 5. Furthermore, figure AC 6 shows the variation of percentage difference in 

average TSA between HGO domain scribed at 16 mm and 8 mm; 16 mm and 4 mm; 

and 8 mm and 4 mm intervals respectively with flux density. 
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                                                          (b) 

Fig. 7.4: (a) Variation of average rms BN of 3 strips each of HGO and Domain- 

scribed HGO with peak flux density (b) Comparison in the lower field regime. 
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Fig. 7.5:(a) Variation of average TSA of BN of 3 strips each of  unscribed HGO and 

domain-scribed HGO with peak flux density (b) Comparison in the lower field 

regime. 
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The average rms BN and TSA were observed to increase as the grain size and the 

scribed intervals increases especially at high flux densities. When the 16 mm interval 

domain scribed samples were compared with the samples without scribing, the 

average rms BN was found to be higher in the samples without scribing. The 

percentage difference is highest at 0.2 T being 46 % and having a change in trend at 

0.06 T. The average TSA between these two sets of samples have similar trend. The 

highest percentage difference occurred at 0.2 T with a value of 39 %. However, a 

change in trend occurs at 0.06 T.  

Analysis of the average TSA of BN in the 8 mm intervals samples and the samples 

without scribing show the highest percentage difference occurring at 0.8 T with a 

value of 51 % and having a crossover occurring at 0.01 T. The percentage difference 

in the rms parameter was highest at 0.2 T with a value of 61 % and having a cross 

over at 0.01 T.  

 

The percentage difference in average TSA of BN between the samples domain scribed 

at 4 mm and the samples without scribing was highest at 0.8 T with a value of 60 % 

and lowest at 0.01 T with no percentage difference. Changes in trend occurred at 0.06 

T and 0.008 T. Similarly, the percentage difference in average rms BN is highest at 

0.8 T with a value of 69 % and lowest at 0.01 T with a value 0f 0.6 % and having 

cross overs at 0.08 T and 0.008 T. 

 

Between the samples with 8 mm and 16 mm domain scribed intervals, the highest 

percentage difference in average TSA occurred at 0.1 T with a value of 13 % and 

having a cross over at 0.01 T. The highest percentage difference in average rms BN 

occurred at 1.3 T with a value of 15 % and a change in trend similarly occurring at 0.1 

T. 

 

For the 4 mm and 16 mm scribed samples, the percentage difference in average TSA 

of BN was highest at 1.2 T with a value of 23 % and recording no increase at 0.06 T 

and 0.008 T. For the average rms BN, the highest percentage difference similarly 

occurred at 1.2 T with a value of 24 % but the crossover occurred at 0.1 T and again 

at 0.04 T. 
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Samples with scribed intervals of 4 mm and 8 mm were also analysed. The highest 

percentage difference in average TSA occurred at 0.6 T with a value of 11 % and 

crossovers occurred at 0.3 T and 0.04 T. On the other hand, the highest percentage 

difference in average rms BN is 10 % at 1.2 T. There are crossovers at 0.3 and 0.06 T. 

 

Scribing introduced local strain to the HGO samples resulting in stress by reducing 

the spike domain population and the 180° domain wall spacing thereby limiting the 

mean free path of domain walls. Also scribing which leads to domain refinement 

causes the number of walls which move effectively under alternating field to increase 

and the velocity of an individual wall in a constant flux density to decrease thereby 

reducing BN amplitude. Scribing breaks spatial correlation between jumps [7.1]. The 

multiple changes of trend at low flux densities is probably because of low domain 

wall activity and the fact that hysteresis processes dominate at low field 

magnetisation. 

This higher BN amplitude as the grain size/scribed interval increases is attributed to 

the higher mean free path of domain wall movement which leads to higher rate of 

change of magnetisation. There is no definite trend between BN and grain size/scribed 

interval below 0.4 T which is thought to be because of reduced domain wall activity 

and the fact that hysteresis processes dominate at low field regime. 

 

 7.3 Effect of domain scribing on the magnetic properties of HGO 

 

The variation of average relative permeability of the HGO with very large grains at 

different peak flux densities is shown in figure 7.6. Figure AC 7 shows the variation 

of percentage difference in average relative permeability between HGO without 

scribing and HGO domain scribed at 16 mm, 8 mm and 4 mm intervals respectively 

with peak flux density while the variation of percentage difference between HGO 

domain scribed at 16 mm and 8 mm; 16 mm and 4 mm; and 8 mm and 4 mm intervals 

respectively with peak flux density is shown in figure AC 8. The relationship between 

the average coercivity of the test samples at different flux densities is shown in figure 

7.7 while the variation of the percentage difference in their average coercivities are 

shown in figures AC 9 and AC 10. The variation of the average power loss of the 

same test samples at different peak flux densities is shown in figure 7.8. Figures AC 

11 and AC 12 show the variation of their percentage differences.   
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 Fig. 7.6: Variation of average relative permeability of 3 strips each of unscribed HGO 

and domain- scribed HGO with peak flux density. 
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Fig. 7.7: Variation of coercivity of 3 strips each of unscribed HGO and domain- 

scribed HGO with peak flux density. 
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Fig. 7.8: Variation of average power loss of 3 strips each of unscribed HGO and 

domain- scribed HGO with peak flux density.  

 

The percentage differences between the average relative permeability of test samples 

at different flux densities are quantified and plotted in figures AC 7 and AC 8. For the 

unscribed HGO, scribed HGO at 16 mm interval and the scribed HGO at 8 mm 

interval, the average relative permeability follow almost a particular trend. It increases 

with increasing grain size/scribe interval above 1.0 T. From 0.3 T -1.0 T, it decreases 

with increasing grain size/scribe interval but the trend reverses from 0.008 T-0.1 T. At 

0.2 T, the average relative permeability is highest in the 16 mm scribed samples and 

lowest in the unscribed sample hence there is no definite trend here. 0.2 T is the 

threshold between low and high flux densities. The trend at 0.3 T – 1.0 T is the 

expected trend over the range of flux densities because very large grain samples 

(unscribed HGO and the HGO scribed at 16 mm interval) have high power loss 

because of large 180° domain wall spacing which lead to increase in anomalous loss. 

It is at this range of flux densities that irreversible domain wall displacement 

(maximum domain activity) takes place. The trend above 1.0 T and below 0.2 T is 

probably because domain rotation and reversible domain wall motion take place 

respectively in these regions with reduced domain activity. The average relative 

permeability of the 4 mm scribed samples is the least of all flux densities compared to 

Bpeak (T) 
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the other test samples. This is because the 4 mm scribed sample has a small domain 

width (compared to the 8 mm scribed sample) with the resultant lower domain wall 

activity. 

 

The variation of the average coercivity and the average power loss of the test samples 

at different peak flux densities are shown in figures 7.7 and 7.8 respectively and the 

quantification of their percentage differences shown from figure AC 9 – AC 10 for 

coercivity and figures AC 11 – AC 12 for power loss. For the unscribed HGO, scribed 

HGO at 16 mm interval and scribed HGO at 8 mm interval, the coercivity and the 

average power loss follow a particular trend at all flux densities. These magnetic 

properties decrease with decreasing grain size/scribed interval. The reason is because 

more domain refinement occurs as the scribed interval is reduced which decreases the 

number of closure domains that contributes to increase in power loss and coercivity. 

There is no particular trend in the coercivity and power loss of the 4 mm scribed HGO 

sample in relation to the samples. This investigation shows that very large grains and 

small grains (4 mm scribed interval) do not have good magnetic properties compared 

to moderately large grains. This is because very large grain or large interval-scribed 

sample will have very large domain width so domain walls will have freer path to 

move thus generating more power loss in the process. The small interval-scribed 

sample will have a lot of stress lines which impedes domain wall motion. 
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Chapter 8 Effect of Surface Coating and External 

Stress on Barkhausen Noise of Grain Oriented 

Electrical Steel 
 

8.1 Introduction 

 

Grain-oriented electrical steel has an insulating surface coating which provides a 

beneficial stress in the steel. BN is sensitive to changes in the surface condition of 

steels because magnetic properties of the material are closely linked to stress via 

magnetoelastic coupling [8.1]. BN measurements have been carried out on strips of 

HGO and CGO 3% silicon steels from Cogent Power Limited, United Kingdom, at 50 

Hz in the peak flux density range 8.0 mT to 1.0 T before and after chemical removal 

of the coatings. BN was also measured in the decoated samples under external tensile 

stress. An average of 3 measurements made on every strip was used in analysing the 

result. Between repeatability measurements each sample was removed and then re-

inserted into the test system. The percentage difference of the measured properties 

was quantified using equation 6.1. The actual difference could be positive or negative 

depending on the values of the measured parameters under consideration. 

The measurement uncertainties at low and high flux densities are shown in tables A12 

and A13 respectively. 

 

8.2 Effect of coating stress and external stress on BN of CGO and HGO 

 

Figures 8.1 and 8.2 show typical static domain patterns observed on the surfaces of 

the coated and decoated CGO and HGO respectively. The coatings were removed by 

dipping the samples into 36% laboratory grade hydrochloric acid. The centres of the 

110 mm x 30 mm, CGO and HGO samples about 30 mm2 used for the Kerr magneto-

optic study were mechanically polished following standard metallurgical preparation 

technique [8.2]. The final stage was a stress relief anneal under vacuum for 1 h at 810 

°C followed by cooling to room temperature at a rate of 15° C per hour. The ends of 

the samples were screwed to a stressing rig used for domain observation so that 

tension could be added to the sample as the domains are observed. The tensile stress 
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was determined using strain gauge attached at the back of the polished samples 

according to the method described in section 5.3. The average domain width of the 

samples under investigation increased when decoated and then decreased when the 

decoated samples were subjected to tensile stress.  

The average number of domains in each grain of the coated CGO sample as shown in 

figure 8.1 (a) is 41 from the dimension given. This computes to 61.5 domains in a 30 

mm wide sample giving an average domain width of 0.49 mm. Similarly, in the 

coated HGO, there are average of 32 domains in each grain of the sample in the given 

dimension according to figure 8.2 (a). This computes to an average of 48 domains in a 

30 mm wide sample resulting in an average domain width 0.63 mm. 

For the decoated samples, in CGO, as shown in figure 8.1 (b), there are 8 domains in 

the 6 mm X 6 mm area observed according to the scale of the Kerr microscope used 

in the domain observation. This results to an average domain width of about 0.75 mm. 

For the decoated HGO, as shown in figure 8.2 (b), there are 5 domains in the area 

observed resulting in the average domain width of 1.2 mm. 

 

For the tensile stressed samples, there are 15 domains in the 6 mm X 6 mm area 

observed for CGO as shown in figure 8.1 (c) giving an average domain width of 0.4 

mm. Tensile stress of 3 MPa was added to the uncoated samples. In the HGO sample 

as shown in figure 8.2 (c), 10 domains in the same area yields an average domain 

width of 0.60 mm. All these data are summarised in the bar chart in figure 8.3. 
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Fig. 8.1: Static domain image of (a) coated CGO using magnetic domain viewer (b) 
decoated CGO using Kerr Magneto-optic effect  showing widening of 180º domains 
and (c) with tensile stress of 3 MPa applied to the uncoated strip showing narrowing 
and creation of 180º domains. 
 

 

 

 

Fig. 8.2: Static domain image of (a) coated HGO using magnetic domain viewer (b) 
decoated HGO using Kerr Magneto-optic effect  showing widening of 180º domains 
and (c) with tensile stress of 3 MPa applied to the uncoated strip showing narrowing 
and creation of 180º domains. 
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Fig. 8.3: Chart showing average domain width of coated, decoated and stressed-

decoated CGO and HGO samples under investigation. 

 

Figures 8.4 and 8.5 show the corresponding variation of average rms BN with peak 

flux density in the same strips of CGO and HGO respectively before and after coating 

removal. The samples are the same as the domain viewed samples. The coating 

removal causes the average rms BN to increase at any flux density in both materials. 

The percentage increase in average rms BN arising from the coating removal in both 

CGO and HGO are quantified and plotted in figure 8.6 
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Fig. 8.4: Variation of average rms BN in a strip of CGO before and after decoating 

with peak flux density.  
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Fig. 8.5: Variation of average rms BN in a strip of CGO before and after decoating 

with peak flux density. 
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Fig. 8.6: Variation of percentage difference of average rms BN of decoated HGO and 

coated HGO; and decoated CGO and coated CGO with peak flux density. 

 

Figure 8.7 shows the variation of average rms BN with peak flux densities in coated 

CGO and coated HGO. It is observed that the average rms BN is higher in HGO than 

CGO in the coated samples at flux densities above 0.2 T but the trend is opposite at 

lower flux densities when the rms BN of CGO becomes on average  higher than that 

of HGO. The variation of the percentage difference in average rms BN of both 

materials with peak flux density is shown in figure 8.8.  

 

Figure 8.9 shows the variation of average rms BN with peak flux density in decoated 

CGO and decoated HGO. As the graph indicates, the average rms BN of HGO is 

higher than that of CGO over the full range of peak flux densities. The change in 

trend observed previously with the coated samples no longer exists fuelling 

speculation that it is probably caused by the coating stress imparted in the samples 

during manufacture. The variation of the percentage increase of average rms BN with 

peak flux density of decoated HGO over decoated CGO is shown in figure 8.10. 

 

Bpeak (T) 
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Fig. 8.7: Variation of average rms BN in coated CGO and coated HGO with peak flux 

density. 
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Fig. 8.8: Variation of percentage difference in average rms BN of coated HGO and 

coated CGO with peak flux density. 
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Fig. 8.9: Variation of average rms BN in decoated CGO and decoated HGO with peak 

flux density.  
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Fig. 8.10: Variation of percentage difference in average rms BN of decoated HGO 

and decoated CGO with peak flux density. 
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Between the coated and decoated CGO, according to the data in figure 8.3, the 

average domain width increased by 53 % while the average rms BN increased by 

average of 35 % from 0.2 T and above with the highest percentage increase occurring 

at 0.1 T with 38%. 

In HGO, the average domain width increased by 90 % between the coated and the 

decoated samples while the average rms BN increased by an average of 35 % from 

0.4 T and above with the highest percentage increase of 84 % observed at 0.1 T. 

These results confirm that increased domain width leads to increased BN amplitude. 

This investigation show that removal of the coating from the surface of grain-oriented 

electrical steel at power frequency increase the BN due to the widening of the 180° 

domains as a result of the release of the tensile stress imparted to the material during 

coating. It was reported in [7.13] that the effective tension of the coating on grain 

oriented steel is 2-3 MPa. 

 

8.3. Effect of tensile stress on Barkhausen noise  

 

When tensile stress of 3 MPa was applied to the decoated CGO and HGO samples 

using the method described the section 5.4, the average rms BN decreased in both 

samples. This is shown in figures 8.11 and 8.12 for HGO and CGO respectively. The 

graph showing the percentage decrease of rms BN between the decoated HGO and the 

tensile stressed HGO; and the decoated CGO and the tensile stressed CGO samples at 

all values of peak flux densities are shown in figure AC 13 and AC 14 in Appendix C 

respectively.  

The average domain width narrowed by 47 % in CGO and 50 % in HGO. The average 

rms BN decreased in HGO by 31 % at 0.1 T and 25 % at 1.0 T. In CGO, the 

percentage decrease in average rms BN is 17 % at 0.1 T and 23 % at 1.0 T.  

 

Application of a 3 MPa tensile stress to the decoated CGO and decoated HGO 

samples caused the rms BN in the decoated CGO up to 0.2 T to be higher than in 

decoated HGO as shown in figure 8.13 and this is similar to the result obtained in 

figure 8.7 for the coated CGO and coated HGO demonstrating the close similarity 

between the effects of coating stress and externally applied stress on BN due to their 

similar roles in domain refinement. This close similarity is graphically illustrated in 

figures 8.14 and 8.15 for the CGO and HGO samples respectively.  
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This investigation shows that changes in static domain width pattern are directly 

related to the changes in BN in grain oriented electrical steel. As domain widths 

increase (by decoating the materials), the BN is increased and as the domains become 

narrower (by applying tensile stress), the BN is reduced. 

. 
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Fig. 8.11: Variation of average rms BN of decoated HGO and decoated HGO with 3 
MPa at different values of peak flux density. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

Bpeak (T)

B
N

rm
s 

(m
V

)

Decoated CGO Decoated CGO with 3 MPa
 

 
 
Fig. 8.12: Variation of average rms BN of decoated CGO and decoated CGO with 3 
MPa at different values of peak flux density. 
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Fig. 8.13: Variation of average rms BN in decoated CGO and HGO with tensile stress 

of 3 MPa with at the various values of peak flux density. 
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Fig. 8.14: Variation of average rms BN of decoated CGO with 3 MPa and coated 

CGO with peak flux density. 
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Fig. 8.15: Variation of average rms BN of decoated HGO with 3 MPa and coated 

HGO with peak flux density. 
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8.4 Calculation of the distance of domain wall movement in grain oriented 

steel. 

 

Figure 8.16 is used to simplify the mathematical treatment of calculating the distance 

of domain wall movement in grain oriented steel which is used to calculate the 

average velocity of domain wall in the material at various peak flux densities for one 

period of 50 Hz bulk magnetisation. 

 

Fig. 8.16: Sketch showing domains of width, d, separated by a domain wall of width, 

w, in a bulk magnetic material to estimate how far domain wall moves. 

 

When a magnetic field, H, is applied, the domain in region (1) of the figure expands 

by wall moving right being in the direction of the applied field. 

 

The flux,  

  

BA=φ                                      (8.1) 

 

where A is the cross sectional area of the material and B is the flux density. 

d d 

 
 

w 

H (1) 
(2) 
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In any one domain, SBB = , where SB  is the saturation flux density. Hence for unit 

length of domains, the flux in the domains in region (1), 

 

                             11 dBS=φ                      (8.2) 

 

If a wall moves distance, x , to the right on application of field, 1φ  increases to  

)( xdBS +  and the flux in the domains in region (2), 2φ , decreases to )( xdBS −  

hence the  

 

resultant   xBS 2*=φ    and    

 

  resultant    dxBB S 2/)2*(=       

 

                       dxBS /)*(=                        (8.3) 

 

In grain oriented steel, TBS 03.2= , so given the domain width, d, and the flux density, 

B, the distance moved by the wall can be calculated using: 

 

 SBdBx /)*(=                  (8.4) 

      03.2/)*( dB=         

 

 The velocity of domain wall movement for the coated, decoated and the 3 MPa 

tensile stressed HGO and CGO samples was computed by deriving the average 

distance of domain wall movement at all the flux densities measured using equation 

(8.4) and dividing by 0.02 seconds for one period of 50 Hz bulk magnetization. This 

was plotted against the rms BN at peak flux density. This is shown in figures 8.17 and 

8.18 for HGO and CGO bulk samples respectively. 
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 Fig. 8.17: Variation of average rms BN with average domain wall movement in HGO 

at each value of peak flux density from 8.0 mT to 1.0 T.                       

                                       

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 4 8 12 16 20

Average velocity of domain wall movement (mm/s)

B
N

rm
s 

(m
V

)

Coated CGO Decoated CGO Decoated CGO with 3MPa
 

Fig. 8.18: Variation of average rms BN with average domain wall movement in CGO 

at each value of peak flux density from 8.0 mT to 1.0 T.    
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 The assumption in the above calculation is that domain wall motion does not vary 

from grain to grain and sample to sample. 

A significant correlation was found between the average velocities and changes in BN 

at all the peak flux densities which demonstrates that the dominant factor responsible 

for BN emission is the mean free path of domain wall movement and hence the width 

of the predominant 180° domains in these materials. 

 

Figure 8.19 shows the variation of average rms BN of decoated HGO, decoated HGO 

with 2.3 MPa and decoated HGO with 3 MPa with peak flux density. It can be 

observed that the average rms BN of the decoated sample is higher than that of the 

tensile stressed samples at all the peak flux densities measured. When a tensile stress 

of 2.3 MPa was applied, the average rms BN of the decoated HGO decreased by 30 % 

at 0.1 T and 11 % at 1.0 T. When the amplitude of the tensile stress was increased to 3 

MPa, the percentage decrease was 31 % at 0.1 T and 25 % at 1.0 T. Figure 8.22 shows 

the variation of the percentage decrease in average rms BN at all measured flux 

densities between the decoated HGO and the 2.3 MPa stressed HGO and also between 

the decoated HGO and the 3 MPa stressed HGO. It can be observed that from 0.1 T 

and below, the percentage difference between the average rms BN of the decoated 

HGO and the 2.3 MPa stressed HGO on one hand and the decoated HGO and the 3.0 

MPa stressed HGO on the other hand is almost the same. This suggests that in HGO, 

at low flux densities, increase in tensile stress has very little effect on rms BN unlike 

at high flux densities where the percentage difference is almost double. It can also be 

observed that a change in trend occurred below 0.1 T between the tensile stressed 

samples. 

 

In CGO, as shown in figure 8.21, the average rms BN of the decoated sample is 

higher than that of the tensile stressed samples at all flux densities except at 0.01 T 

and 0.008 T where it became lower. When a tensile stress of 2.3 MPa was applied, the 

average rms BN of the decoated HGO decreased by 18 % at 0.1 T and 12.5 % at 1.0 

T. When the tensile stress was increased to 3 MPa, the average rms BN of the 

decoated CGO decreased by 17 % at 0.1 T and 23 % at 1.0 T. Figure 8.22 shows the 

variation of the percentage decrease between the average rms BN of the decoated 

CGO and the tensile stressed CGO at all peak flux densities measured. It can be 

observed that the amplitude of the average rms BN of the CGO with 2.3 MPa tensile 
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stress is higher than that of the 3 MPa tensile stress from 0.3 T and above. The trend 

changes at lower flux densities down to 0.04 T where another change of trend 

occurred. This observation shows that tensile stress produces different effects at high 

and low flux densities in the BN of CGO and HGO. 

 

Application of the tensile stress caused the 180° domain structure to be refined with 

the domains narrowing. The narrowing of the 180° domains reduced the mean free 

path of domain wall movement leading to lower rate of change of magnetisation 

hence decreased BN amplitude. The application of a tensile stress parallel to the 

rolling direction favours an increase in the 180º domains at the expense of the 90º 

domains because of a shift of the magnetic easy axis towards the direction of applied 

stress [8.4].  
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Fig. 8.19: Variation of average rms BN of decoated HGO, decoated HGO with 2.3 

MPa and decoated HGO with 3 MPa at various peak flux densities. 
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Fig. 8.20: Variation of percentage differences in average rms BN between decoated 

HGO and decoated HGO with 2.3 MPa and 3 MPa respectively with peak flux 

density. 
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Fig. 8.21: Variation of average rms BN of decoated CGO, decoated CGO with 2.3 

MPa and decoated CGO with 3 MPa at various peak flux densities. 
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Chapter 9 Effect of Strip Thickness and Silicon 

Content on Barkhausen Noise of Non Grain Oriented 

Electrical Steel 
 

9.1 Introduction 

 

Measurements were made on 15 strips of NGO 3% Si-Fe from J. F. E. Steel 

Corporation, Japan at peak magnetic flux densities  from 8 mT to 0.6 T, at 50 Hz 

magnetising frequency. The 280 mm x 30 mm strips were cut parallel to the rolling 

direction. Five samples each, 0.65 mm, 0.5mm and 0.35 mm thick were tested.  

Another twelve 280 mm x 30 mm x 0.5 mm samples from the same producer, also cut 

parallel to the rolling direction were tested at peak flux density from 8 mT to 0.3 T. 

These comprised four strips each with 1.8%, 1.3% and 0.3% silicon content. The 

investigation was carried out with the measurement system described in section 5.2. 

Experimental measurement results at high and low flux densities are also presented 

and discussed. An average of 3 measurements made on every strip was used in 

analysing the result. Between repeatability measurements each sample was removed 

and then re-inserted into the test system. The percentage difference of the measured 

properties was quantified using equation 6.1. The actual difference could be positive 

or negative depending on the values of the measured parameters under consideration. 

The uncertainties of the measurement are as outlined in tables A10 and A11 at high 

and low flux densities respectively. 

 

9.2  Influence of strips thickness on Barkhausen noise of NGO 

 

The size and distribution of the pinning sites are almost the same for this set of 

samples as they are from the same batch of materials. The samples also have the same 

amount of silicon content, therefore the principal reason for differences in Barkhausen 

emission could mainly be attributed to thickness effects.  

Figure 9.1 shows the variation of average rms BN of the groups of strips of NGO 3% 

Si-Fe of different thicknesses with peak flux density. It is observed that the thinner the 
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sample, the greater is the rms BN. Figure 9.2 shows the variation of the percentage 

difference in rms BN of the NGO of different thicknesses with peak flux density. 

The percentage difference in average rms BN between 0.35 and 0.65 mm thick 

samples is highest at all peak flux densities. The reason for this is obvious. 0.35 mm is 

the thinnest of the samples tested which has the highest average rms BN while 0.65 

mm is the thickest of the tested samples which has the lowest average rms BN.  There 

is a higher percentage increase in average rms BN amplitude between 0.35 mm and 

0.50 mm thick samples than between 0.50 mm and 0.65 mm thick samples although 

the trend changes from 0.06 T and below.  Between the 0.35 mm and the 0.65 mm  

thick samples, the percentage increase in average rms BN rises from 0.008 T and 

peaking at 0.2 T with a value of 77 % and thereafter falls to 62 % at 0.6 T. Similarly, 

between the 0.35 mm and 0.50 mm thick samples, the percentage increase rises from 

0.008 T and peaking at 0.2 T with 47 % and then falls to 35 % at 0.6 T. 0.2 T seems to 

be the threshold flux density between high and low flux densities as different domain 

activities take place before and after it. The sample sets with thicknesses of 0.5 mm 

and 0.65 mm however recorded the highest percentage increment at 0.06 T, 0.2 T and 

0.6 T with a value of approximately 20 %. 

 

 The variation of the average total sum of BN amplitude (TSA) of the test samples 

showed similar trend to the rms BN and is shown in figure 9.3. The percentage 

variation in TSA of the test samples with peak flux density is shown in figure 9.4. 

Between the samples with thicknesses 0.35 mm and 0.65 mm, the highest percentage 

increment occurred at 0.2 T with a value of 73 % and falls to 62 % at 0.6 T. The 

percentage increase rises steadily from 0.008 T and peaks at 0.2 T with a value of 48 

% and gradually falls to 36 % at 0.6 T in the sample set with thicknesses of 0.35 mm 

and 0.50 mm. Also the percentage increase in average TSA of the 0.5 mm and 0.65 

mm sample set rises from 0.008 T and peaks at 0.06 T with 22 % and thereafter falls 

and rises until 0.6 T at a value of 20 %. 
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Fig. 9.1: Variation of average rms BN of NGO (3% Si) of different thicknesses with 

peak flux density. 
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Fig. 9.2: Variation of % difference in average rms BN of NGO of different 

thicknesses with peak flux density. 
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Fig. 9.3: Variation of average TSA of NGO (3% Si) of different thicknesses with peak 

flux density. 
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Fig. 9.4: Variation of percentage difference in average TSA of NGO of different thicknesses 

with peak flux density. 
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The observed trend is due to eddy current effects which increase with increasing depth 

(thickness) and thus limits the movement of domain walls as was previously reported in En 36 

gear steel [9.1], nine different samples of different thicknesses on unspecified steel materials 

[9.2] and S235JGR2 steel with a ferrite-pearlite structure [9.3].  A moving domain wall in a 

conducting sample of ferromagnetic material induces eddy currents which give rise to an 

effective retarding pressure on the domain wall. In response to the applied magnetic field, the 

eddy current pressure is proportional to the domain wall velocity, and the resulting motion is 

damped. The significance of the dynamic effect of eddy current is regulated by the smaller 

sample dimension hence the thinner the sample, the smaller the effect [9.4].  

 

The total number of BN peaks (TNP) as a function of the peak flux density is shown 

in figure 9.5. It is observed that the higher the peak flux density, the fewer events are 

detected and this leads to higher BN amplitude. This agrees with previous work done 

at flux densities above 0.1 T in non oriented steel [9.5] and a lamination of SiFe from 

a transformer core [9.6]. So this observation is true in NGO of different thicknesses 

and at lower flux densities as this work has shown. An increasing number of BN 

peaks (induced voltages) imply more obstacles (pinning sites) to domain wall 

movement are present which decreases the mean free path for domain wall movement 

leading to lower BN amplitude.  

 

Figure 9.6 shows the variation of rms BN with the rate of change of peak flux density 

(dB/dt). The peak values of the rate of change of peak flux density were calculated in 

LabVIEW. It is well known that higher rates of change of flux density lead to higher 

BN amplitude as shown in the figure. 
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Fig. 9.5: Variation of average TNP with peak flux density in NGO (3% Si) of 

different thicknesses. 
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9.3 Influence of silicon content on Barkhausen noise of NGO 

 

Figure 9.7 shows the variation of average rms BN with peak flux density in each of 4 

strips of 0.5 mm thick NGO with different silicon contents. It is observed that the rms 

BN increases as the silicon content increases. The variation of percentage difference 

of the average rms BN of the test samples with peak flux density is shown in figure 

9.8. The rms of BN increased by a much greater percentage between samples with 

silicon contents of 1.3% and 1.8% than samples with silicon contents of 0.3% and 

1.3% although there is a change of trend at 0.08 T and 0.06 T. The highest percentage 

difference occurs between samples with silicon contents of 1.8% and 0.3% at all the 

range of peak flux densities measured. The highest percentage increase in average rms 

BN between the samples with silicon contents of 0.3 % and 1.8 % occurred at 0.3 T 

with a value of over 155 %. Similarly, between the samples with silicon contents of 

1.3 % and 1.8 %, the highest percentage increase occurred at 0.3 T at a value of 112 

%. Between the samples with 0.3 % and 1.3 % silicon, the highest percentage increase 

in average rms BN occurred at 0.08 T with 22 % and then falls and rises to 20 % at 

0.3 T. 

The average TSA of BN was also found to increase as the silicon content increases as 

shown in figure 9.9. The percentage increases in TSA between the test samples as 

shown in figure 9.10 has the same characteristics with the percentage increases in rms 

BN of the test samples but there is no change of trend at lower flux densities. The 

percentage increment in average TSA between the samples with silicon contents of 

0.3 % and 1.8 % is higher than the percentage increment in all the other set of samples 

measured. Between these test samples, the percentage difference in average TSA is 

highest at 0.3 T at a value of 132 %. For the samples with 1.3 % and 1.8 % silicon 

contents, the percentage difference maintained a steady increase from 0.04 T and 

peaks at 0.3 T with 105 %. The highest percentage increase occurred 0.1 T with a 

value of 22 % and fall to 15 % at 0.3 T between the samples with silicon contents of 

0.3 % and 1.3 %. 

 

These observations are also due to BN signals being attenuated by eddy current 

shielding effects. Higher silicon content causes the eddy current shielding effect to be 

reduced which decreases the retarding eddy current pressure on the domain walls 

resulting in the higher BN amplitude. Eddy-current losses are inevitable in conducting 
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magnetic materials, and in silicon iron sheets they can be minimised by using thin 

sheet or increasing silicon content in the steel. By making the sheets thin, the path-

resistance for eddy currents is increased, and the magnetic utilisation of the material is 

improved, since the eddy currents also give rise to a distribution of flux density 

through the sheet thickness, being greatest at the surface and least at the centre. The 

use of thin sheets ensures that the penetration depth of the flux is as high as possible. 

The second way of reducing eddy currents is to increase the electrical resistivity of the 

steel. Further increases in resistivity are possible; using greater proportions of silicon, 

but over addition hardens the grain structure and embrittles the steel which can 

adversely affect the workability and applicability of the material. BN is primarily a 

surface test method due to the attenuation of its signal by eddy current shielding 

effects. This is because the domain wall velocity is limited by microscopic eddy 

currents [9.4]. The relationship of BN detection frequency and the penetration depth is 

discussed in section 4.6. 
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Fig. 9.7: Variation of average rms BN of NGO (0.5 mm thick) of different silicon 

contents with peak flux density. 
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 Fig. 9.9: Variation of average TSA of NGO (0.5 mm thick) of different silicon 

contents with peak flux density. 
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Fig. 9.10: Variation of percentage difference in TSA of NGO of different silicon 

contents with peak flux density. 
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Figure 9.11 shows the variation of average rms of BN of 0.50 mm thick NGO of 

different silicon contents with the rate of change of flux density (dB/dt). As observed 

in the test samples with different thicknesses, higher rate of change of flux density 

leads to higher BN amplitude because of increased domain wall movement. 

 

The variation of rms BN with TNP in NGO (0.50 mm thick) of different silicon 

contents are shown in figure 9.12. It is interesting to observe that BN increases with 

the total number of peaks as the silicon content increases at increasing peak flux 

densities.  This trend is different to that shown in figure 9.5 where the average rms 

BN increases as the TNP decreases in the case of NGO (3% Silicon) of different 

thicknesses. This change in trend is thought to be due to the increasing silicon content 

reducing the eddy current shielding effect more than the effect of reducing the 

thickness of the strips. It is reported in [9.7] that addition of only 3.5% silicon 

increases the resistivity four fold. This accounts for the reason why the BN amplitude 

increases with the TNP as the silicon contents increases. 
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Fig. 9.11: Variation of average rms BN of NGO (0.5 mm thick) of different silicon 

contents with peak dB/dt at different peak flux densities. 
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Fig. 9.12: Variation of average rms BN with TNP in NGO (0.50 mm thick) of 

different silicon contents at different flux densities. 

 

The investigation in this chapter show definite correlations between BN of non-

oriented electrical steel with thickness and silicon content. BN was found to increase 

with decreasing strip thickness and increase with increasing silicon contents owing to 

eddy current shielding effects. The rms values of the BN and the total sum of 

amplitudes was found to increase with the rate of change of flux density at all the 

peak flux densities measured. The findings show that the influence of sample 

thickness and silicon content is significant and must be taken into consideration when 

measuring and interpreting BN in non-oriented electrical steel. 
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Chapter 10 Effect of Strip Thickness on 

Barkhausen Noise of Grain Oriented Electrical Steel 
 

10.1     Introduction 

 

In this part of the investigation, BN measurements were made on 3 Epstein strips each 

of CGO of thicknesses 0.23 mm, 0.27 mm, 0.30 mm, 0.35 mm and 0.50 mm and 

HGO 0.27 mm and 0.30 mm from Cogent Power Limited in the peak flux density 

range of 8 mT to 1.2 T. The investigation was carried out with the measurement 

system described in section 5.2. The relative permeability, coercivity and power loss 

of the test samples were also measured. Experimental measurement results at high and 

low flux densities are also presented and discussed. An average of 3 measurements 

made on every strip was used in analysing the result. Between repeatability 

measurements each sample was removed and then re-inserted into the test system. 

The percentage difference of the measured properties was quantified using equation 

6.1. The actual difference could be positive or negative depending on the values of the 

measured parameters under consideration. The uncertainties of the measurement are 

outlined in tables A10 and A11 at high and low fields respectively. 

 

10.2  Effects of strips thickness on the Barkhausen noise of CGO 

 

The size and the distribution of the precipitates are assumed to be the same for the 

respective CGO and HGO samples since they are from the same batch of materials. 

Therefore the primary reason for the differences in BN could be attributed to grain 

size and thickness effects. In grain oriented electrical steel, pinning sites are 

preferentially located at grain boundaries which act as obstacles to the movement of 

domain walls [10.1] hence it is reasonable to expect some relationship between grain 

size and BN [10.2]. 

Figure 10.1 shows the variation of average rms BN of the 3 strips each of CGO of the 

different thicknesses with peak flux density at 50 Hz excitation frequency.  It is 

observed that average rms BN increases with peak flux density in the entire test 

samples. In all tested materials, it is interesting to observe that the average rms BN 

increases with thickness for samples with thicknesses less than 0.35 mm. The eddy 
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current damping which increases with increasing strips thickness and retards the 

movement of domain wall thereby reducing the BN amplitude seem to have no effect 

here. This is because in silicon iron sheet of standard thickness, typically 0.33 mm 

and below, at 50 Hz magnetisation, the ‘skin effect’ is negligible [10.3], that is the 

flux may be taken as being uniformly distributed through the sheet thickness. 

 

 The percentage variation of the rms BN of the CGO samples of thicknesses from 0.30 

mm and below and the graph showing the variation of the percentage difference in 

rms BN of the 0.35 mm and 0.50 mm thick CGO samples with peak flux density are 

shown in figures AC 15 and AC 16 of Appendix C.  The percentage increase between 

samples of thicknesses 0.23 mm and 0.30 mm is higher than the percentage increase 

between samples of thicknesses 0.23 mm and 0.27 mm and also samples with 

thicknesses 0.27 mm and 0.30 mm especially from 0.1 T and above. At lower flux 

densities, there is no particular trend in the percentage difference of rms BN in all the 

tested samples. 
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Fig. 10.1: Variation of average rms BN in CGO of different thicknesses at various 

peak flux density.  
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As was shown in figure AC 17, the average rms BN of the samples with thickness of 

0.35 mm is higher than that of the 0.50 mm thick samples from 0.5 T and above. The 

trend changes at lower flux densities. This shows that both the domain width and the 

sample thickness influenced the BN.  This is because of eddy current damping which 

increases with thickness and is always higher at high flux densities. This accounts for 

the decreased rms BN of the 0.5 mm thick samples in this regime. The influence of 

domain width hence grain size predominates below 0.5 T which accounts for the 

higher rms BN of the 0.5 mm thick samples over the 0.35 mm thick samples in this 

regime.  

 

10.3  Influence of thickness on Barkhausen noise of HGO steels 

 

Figure 10.2 shows the variation of average rms BN of the 3 strips each of HGO of 

thicknesses of 0.27 mm and 0.30 mm with peak flux density. HGO strips are normally 

manufactured with thicknesses of 0.27 mm and 0.30 mm. It is observed as in CGO 

that average rms BN increases with peak flux density in the entire test samples being 

higher in the 0.3 mm thick samples than in the 0.27 mm specimens. The variation of 

the percentage increase of rms BN of the 0.30 mm thick samples over the 0.27 mm 

thick samples with peak flux density is shown in figure AC 18. A change of trend 

occurred at 0.01 T. It is interesting to also observe that the average rms BN increases 

with thickness in HGO samples with thicknesses less than 0.35 mm indicating that the 

so called eddy current effect that increases with thickness of strips and retards domain 

wall motion wall has no influence as observed. 

 

BN in grain-oriented electrical steel is affected by both average domain width and 

thickness for strips 0.35 mm thick and above. It increases with increasing domain 

width and decreases with increasing sample thickness owing to eddy current damping 

effects as stated previously. Domain width, hence grain size is the only influence on 

BN for strip thicknesses below 0.35 mm, given the same microstructure. 
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Fig. 10.2: Variation of average rms BN with B in HGO of different thicknesses with 

peak flux density. 

 

10.4  Influence of thickness on the magnetic properties of CGO and HGO 

steels 

 

Figure 10.3 shows the variation of average AC relative permeability of the 3 strips 

each of CGO of the different thicknesses with peak flux density.  It is observed that 

the average AC relative permeability increases with peak flux density in the entire test 

samples. In all tested materials, it is interesting to observe that the average AC relative 

permeability is inversely proportional to the thickness of the samples at all the flux 

densities. The percentage variation of the average AC relative permeability of the 

CGO samples of thicknesses from 0.30 mm and below and the graph showing the 

variation of the percentage difference of the 0.35 mm and 0.50 mm thick CGO 

samples with peak flux density are shown in figures AC 18 and AC 19 of Appendix 

C.   

 

The variation of the average coercivity of the CGO test samples at different flux 

densities is shown in figure 10.4. As can be observed, the average coercivity increases 

Bpeak (T) 
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as the thickness of the strips increases at all flux densities. The percentage variation of 

the average coercivity of the test samples is quantified and plotted in figures AC 20 

and AC 21 of Appendix C. 

 

The average power loss varies directly with sample thickness at all the flux densities 

as shown in figure 10.5. The variation of the percentage difference in average power 

loss of the test samples is shown in figures AC 22 and AC 23 in Appendix C. 
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Fig. 10.3: Variation of average relative permeability of CGO of different thicknesses 

with flux density. 
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Fig. 10.4: Variation of average coercivity of CGO of different thicknesses with flux 

density. 
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Fig. 10.5: Variation of average power loss of CGO of different thicknesses with peak 

flux density. 
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In HGO, the average relative permeability decreases as the sample thickness increases 

at all flux densities as in CGO. This is shown in figure 10.6 and the quantification of 

the variation of the percentage differences between the test samples shown in figure 

AC 24. 

 

Figure 10.7 shows the variation of average coercivity of the 3 strips each of the HGO 

of thicknesses of 0.27 mm and 0.30 mm with peak flux density. It is observed as in 

CGO that the average coercivity increases with peak flux density in the entire test 

samples being higher in the 0.3 mm thick samples. The variation of the percentage 

difference in average coercivity of the test samples is shown in figure AC 25.  

 

The average power loss show similar trend as coercivity at all flux densities. This is 

shown in figure 10.8. The variation of the percentage difference in average power loss 

of the test samples is shown in figure AC 26. 

The reason for the observed trends in this part of the investigation is that reducing 

thickness restrains eddy current loss at power frequency. This accounts for the 

reduction of power loss and coercivity, and the increase in relative permeability as the 

thickness decreases in the tested materials. 
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Fig. 10.6: Variation of average relative permeability of HGO of different thicknesses 

with peak flux density. 
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Fig. 10.7: Variation of average coercivity of HGO of different thicknesses with peak 

flux density. 
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Fig. 10.8: Variation of average power loss of HGO of different thicknesses with peak 

flux density. 
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Chapter 11 Conclusions and future work 
 

11.1 Conclusions 

 

BN in grain-oriented electrical steel at power frequency has different characteristics at 

high and low flux density.  

The larger BN signal of HGO compared to CGO at high flux densities occurs because 

the grain size of HGO is on average higher than that of CGO. Increased grain size 

enables domain walls to move further between pinning sites and so generate larger 

changes in magnetization which results in larger BN signal. In addition, grain to grain 

misorientation results in a strong suppression of the BN level. At low fields domain 

walls exhibit a jerky motion consisting of random sequence of Barkhausen jumps 

whose cumulative effect is higher in amplitude for CGO steels because of increase in 

the number of grain boundaries and grain boundary area acting as pinning sites since 

their fractional volume is larger. 

 

 Mechanically scribing HGO on one surface transverse to the rolling direction reduced 

the BN amplitude at high flux densities. This is due to the decrease of domain width 

by scribing. Then the trend reverses at low flux density. Scribing introduces local 

strain which decreases domain wall spacing thereby limiting the mean free path of 

domain walls. 

 

Removal of the coating from the surface of grain-oriented electrical steel at power 

frequency increase the BN due to the widening of the 180° domains as a result of the 

release of the tensile stress imparted to the material during coating. The BN 

characteristics of decoated samples with a 3 MPa tension applied were similar to 

those observed before decoating demonstrating the close similarity between the 

effects of coating stress and externally applied stress on BN due to their similar roles 

in domain refinement. A strong correlation between average velocity of domain wall 

movement and changes in BN in conventional and high permeability steels was found 

which demonstrates that the dominant factor responsible for BN emission is the mean 

free path of domain wall movement and hence the width of the predominant 180° 

domains in these materials. 
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BN was also found to be directly proportional to externally applied tensile stress 

especially at high flux density. As tensile stress is increased, more 180° domain walls 

are created and this limits the width of domain walls thereby limiting the speed of 

domain walls movement hence reducing Barkhausen noise amplitude. In this work 

Barkhausen noise has proved to be a useful technique for detecting the stress 

sensitivity of grain oriented electrical steel. 

 

BN in grain-oriented electrical steel is affected by both average domain width and 

thickness for strips 0.35 mm thick and above. It increases with increasing domain 

width and decreases with increasing sample thickness owing to eddy current damping 

effects. Domain width, hence grain size is the only influence on BN for strip 

thicknesses below 0.35 mm, given the same microstructure.  

 

 BN on commercially produced non-oriented steel is influenced by silicon contents 

and sample thickness. BN was found to increase with decreasing strip thickness and 

increase with increasing silicon contents owing to eddy current shielding effects. The 

rms values of the BN and the total sum of amplitudes were found to increase with the 

rate of change of flux density at all the peak flux densities measured. The findings 

show that the influence of sample thickness and silicon content is significant and must 

be taken into consideration when measuring and interpreting BN in non-oriented 

electrical steel. 
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11.2 Future work 

 

This investigation has identified the need for further research especially in low field 

magnetisation and dynamic domain observation in that regime. 

There is limited magnetic data at low inductions and no account of the factors which 

might control the B-H properties. Magnetic characteristics of GOES are measured at 

high flux densities which are suitable for typical applications in power transformers. 

The magnetic properties of materials are not usually specified over the low flux 

density range used in metering current transformer cores and other low flux density 

applications so performance at this level of magnetisation cannot be predicted with 

measurements made at high inductions. Little headway is possible unless low flux 

density characteristics are better assessed and understood. 

 

 Dynamic domain observation is required to ascertain the number of domain walls 

that are active at low and high field magnetization regimes in CGO and HGO steels as 

BN in electrical steel is principally caused by the movement of domain walls. It may 

be discovered that dynamic domain observation especially at low fields will reveal 

new magnetisation features which could be of importance in material development 

and also to what extent non repeatable domain wall motion occur in that regime. 

 

An extension of the magnetising frequency of the measurement system would be 

useful as measurements were made at 50 Hz in this work. It will be interesting to 

observe if similar relationships of BN and magnetic properties seen in this work still 

exist at higher frequencies. 

 

Further work could also be carried out to understand more the metallurgy of the 

samples used in this work to have a greater understanding of the results observed in 

this work. 

  

 

 

 

 



 153 

APPENDIX A 

 
Uncertainty budget of the various parameters 
measured in the SST under sinusoidal 
magnetisation at 50 Hz 
 

Table A1: Uncertainty budget of Bpeak in Epstein strips of electrical steel samples 

measured in the SST under sinusoidal magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Accuracy of NI PXI-4461 

DAQ 
0.347 Normal 2.0000 1 0.1733 

∞ 

Frequency setting 0.002 Normal 2.0000 1 0.0010  ∞ 

Sample mass measurement 0.010 Normal 2.0000 1 0.0050 ∞ 

Sample length 

measurement 
0.100 Rectangular 1.7321 1 0.0946 

∞ 

Control of Bpeak 0.300 Rectangular 1.7321 1 0.1733 ∞ 

Control of form factor 0.300 Rectangular 1.7321 1 0.1733 ∞ 

Sum of squares         0.0989   

Combined uncertainty         0.3146   

Expanded uncertainty         0.6292   

             

Declared uncertainty in 

Bpeak 
        0.6 

  

at a confidence level of 95 

%             
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Table A2: Uncertainty budget in Hpeak for Bpeak from 8.0 mT to 0.2 T in Epstein 

strips of electrical steel samples measured in the SST under sinusoidal magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Accuracy of NI PXI-4461 

DAQ 
0.347 Normal 2.0000 1 0.1735 

∞ 

Frequency setting 0.002 Normal 2.0000 1 0.0010 ∞ 

Shunt resistor 0.009 Normal 2.0000 1 0.0045 ∞ 

Shunt resistor temperature 

change 
0.005 Normal 2.0000 1 0.0025 

∞ 

Magnetic path length 0.100 Rectangular 1.7321 1 0.0577 ∞ 

Dependence on B value 0.629 Rectangular 1.7321 1 0.3631 ∞ 

Repeatability (Type A 

uncertainty) 
0.300  Rectangular  1.7321   1 0.1732 

 4 

Sum of squares        0.1953   

Combined uncertainty        0.4420   

 Expanded uncertainty        0.8840   

            

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %          0.9   
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Table A3: Uncertainty budget in Hpeak for Bpeak greater than 0.2 T in Epstein strips 

of electrical steel samples measured in the SST under sinusoidal magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Accuracy of NI PXI-4461 

DAQ 
0.347 Normal 2.0000 1 0.1735 

∞ 

Frequency setting 0.002 Normal 2.0000 1 0.0010 ∞ 

Shunt resistor 0.009 Normal 2.0000 1 0.0045 ∞ 

Shunt resistor temperature 

change 
0.005 Normal 2.0000 1 0.0025 

∞ 

Magnetic path length 0.100 Rectangular 1.7321 1 0.0577 ∞ 

Dependence on B value 0.629 Rectangular 1.7321 1 0.3631 ∞ 

Repeatability (Type A 

uncertainty) 
0.700  Rectangular  1.7321   1 0.4041 

 4 

Sum of squares         0.3286   

Combined uncertainty        0.5733   

 Expanded uncertainty        1.146   

            

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %         1   
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Table A4: Uncertainty budget in coercivity for Bpeak from 8.0 mT to 0.2 T in Epstein 

strips of electrical steel samples measured in the SST under sinusoidal magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Hpeak uncertainty 0.884 Normal 2.0000 1 0.4420 ∞ 

Repeatability 0.600 Rectangular 1.7321 1 0.3464 4 

Sum of squares     0.3154  

Combined uncertainty     0.5616  

Expanded uncertainty     1.123  

            

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %         1.1   

 

 

Table A5: Uncertainty budget in coercivity for Bpeak greater than 0.2 T in Epstein 

strips of electrical steel samples measured in the SST under sinusoidal magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Hpeak uncertainty 1.146 Normal 2.0000 1 0.5730 ∞ 

Repeatability 0.700 Rectangular 1.7321 1 0.4041 4 

Sum of squares     0.4917  

Combined uncertainty     0.7012  

Expanded uncertainty     1.402  

            

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %         1.4   
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Table A6: Uncertainty budget in relative permeability for Bpeak from 8.0 mT to 0.2 T 

in Epstein strips of electrical steel samples measured in the SST under sinusoidal 

magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Bpeak uncertainty 0.629 Normal 2.0000 1 0.3145 ∞ 

Hpeak uncertainty 0.884 Normal 2.0000 1 0.4420 ∞ 

Repeatability 0.700 Rectangular 1.7321 1 0.4041 4 

Sum of squares     0.4576  

Combined uncertainty     0.6765  

Expanded uncertainty     1.3529  

            

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %         1.4   

 

Table A7: Uncertainty budget in relative permeability for Bpeak greater than 0.2 T in 

Epstein strips of electrical steel samples measured in the SST under sinusoidal 

magnetisation. 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Bpeak uncertainty 0.629 Normal 2.0000 1 0.3145 ∞ 

Hpeak uncertainty 1.146 Normal 2.0000 1 0.5730 ∞ 

Repeatability 0.400 Rectangular 1.7321 1 0.2309 4 

Sum of squares     0.4806  

Combined uncertainty     0.7686  

Expanded uncertainty     1.5373  

            

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %         1.5   
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Table A8: Uncertainty budget in specific power loss for Bpeak from 8.0 mT to 0.2 T 

in Epstein strips of electrical steel samples measured in the SST under sinusoidal 

magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Frequency setting 0.002 Normal 2.0000 1 0.0010 ∞ 

Bpeak uncertainty 0.629 Normal 2.0000 1 0.3145 ∞ 

Hpeak uncertainty 0.884 Normal 2.0000 1 0.4420 ∞ 

Density 0.033  Rectangular 1.7321 1 0.0191 ∞ 

Dependence on B value 0.629 Rectangular 1.7321 1 0.3631 ∞ 

Repeatability (Type A 

uncertainty) 
0.500  Rectangular  1.7321   1 0.2887 

 4 

Sum of squares        0.5098   

Combined uncertainty        0.7140   

 Expanded uncertainty        1.4280   

            

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %         1.4   
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Table A9: Uncertainty budget in specific power loss for Bpeak greater than 0.2 T in 

Epstein strips of electrical steel samples measured in the SST under sinusoidal 

magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Frequency setting 0.002 Normal 2.0000 1 0.0010 ∞ 

Bpeak uncertainty 0.629 Normal 2.0000 1 0.3145 ∞ 

Hpeak uncertainty 1.146 Normal 2.0000 1 0.5730 ∞ 

Density 0.033  Rectangular 1.7321 1 0.0191 ∞ 

Dependence on B value 0.629 Rectangular 1.7321 1 0.3631 ∞ 

Repeatability (Type A 

uncertainty) 
0.800  Rectangular  1.7321   1 0.4041 

 4 

Sum of squares        0.7227   

Combined uncertainty        0.8501   

 Expanded uncertainty        1.7000   

            

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %         1.7   
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Table A10: Uncertainty budget in Barkhausen Noise measurement for Bpeak from 8.0 

mT to 0.2 T in Epstein strips electrical steel samples measured in the SST under 

sinusoidal magnetisation. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Accuracy of NI PXI-4461 

DAQ 
0.347 Normal 2.0000 1 0.1733 

∞ 

Frequency setting 0.002 Normal 2.0000 1 0.0010  ∞ 

Control of Bpeak 0.300 Rectangular 1.7321 1 0.1733 ∞ 

Control of form factor 0.300 Rectangular 1.7321 1 0.1733 ∞ 

Total harmonic distortion 2.400 Rectangular 1.7321 1 1.3856 ∞ 

Dependence on B value 0.629 Rectangular 1.7321 1 0.3631 ∞ 

Repeatability 2.000 Rectangular 1.7321 1 1.1547 4 

Sum of squares         3.4750   

Combined uncertainty         1.8640   

Expanded uncertainty         3.7280   

             

Declared uncertainty in 

Bpeak 
         

  

at a confidence level of 95 

%          4   
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Table A11: Uncertainty budget in Barkhausen Noise measurement for Bpeak greater 

than 0.2 T in Epstein strips of electrical steel samples measured in the SST under 

sinusoidal magnetisation.  

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Accuracy of NI PXI-4461 

DAQ 
0.347 Normal 2.0000 1 0.1733 

∞ 

Frequency setting 0.002 Normal 2.0000 1 0.0010  ∞ 

Control of Bpeak 0.300 Rectangular 1.7321 1 0.1733 ∞ 

Control of form factor 0.300 Rectangular 1.7321 1 0.1733 ∞ 

Total harmonic distortion 2.400 Rectangular 1.7321 1 1.3856 ∞ 

Dependence on B value 0.629 Rectangular 1.7321 1 0.3631 ∞ 

Repeatability 1.200 Rectangular 1.7321 1 0.6928 4 

Sum of squares         3.1290   

Combined uncertainty         1.7689   

Expanded uncertainty         3.5378   

             

Declared uncertainty in 

Bpeak at a confidence level 

of 95 % 

        3.5 
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Table A12: Uncertainty budget in measurement of BN of Epstein strips with the 

application of tension using tension stressing rig for Bpeak from 8 mT to 0.2 T. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Accuracy of NI PXI-4461 

DAQ 
0.347 Normal 2.0000 1 0.1735 

∞ 

Frequency setting 0.002 Normal 2.0000 1 0.0010 ∞ 

Accuracy of strain 

amplifier 
0.050 Normal 2.0000 1 0.0250 

∞ 

Accuracy of the shunt 

calibration resistors 
0.050 Normal 2.0000 1 0.0250 

∞ 

Thickness of the sample 0.830 Normal 2.0000 1 0.4150 ∞ 

Width of the sample 0.070 Normal 2.0000 1 0.0350 ∞ 

Gauge factor 1.000  Normal  2.0000  1 0.5000 ∞ 

Jaw gripping 2.500 Rectangular 1.7321 1 1.4433 ∞ 

Dependence on B value  0.629 Rectangular 1.7321 1 0.3631 ∞ 

 Repeatability 2.000 Rectangular 1.7321   1 1.1546  4 

Sum of squares         4.0028   

Combined uncertainty         2.0007   

Expanded uncertainty     4.0014  

       

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %     4  
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Table A13: Uncertainty budget in measurement of BN of Epstein strips with the 

application of tension using tension stressing rig for Bpeak above 0.2 T. 

 

Sources of uncertainty 

 Value 

± %  

 Probability  

distribution  

 

Divisor  
 1c  

)(xu  

± % 

iv  or 

effv  

Accuracy of NI PXI-4461 

DAQ 
0.347 Normal 2.0000 1 0.1735 

∞ 

Frequency setting 0.002 Normal 2.0000 1 0.0010 ∞ 

Accuracy of strain 

amplifier 
0.050 Normal 2.0000 1 0.0250 

∞ 

Accuracy of the shunt 

calibration resistors 
0.050 Normal 2.0000 1 0.0250 

∞ 

Thickness of the sample 0.830 Normal 2.0000 1 0.4150 ∞ 

Width of the sample 0.070 Normal 2.0000 1 0.0350 ∞ 

Gauge factor 1.000  Normal  2.0000  1 0.5000 ∞ 

Jaw gripping 2.500 Rectangular 1.7321 1 1.4433 ∞ 

Dependence on B value  0.629 Rectangular 1.7321 1 0.3631 ∞ 

 Repeatability 1.200 Rectangular 1.7321   1 0.6928  4 

Sum of squares         3.1497   

Combined uncertainty         1.7747   

Expanded uncertainty     3.5495  

Declared uncertainty in 

Bpeak at a confidence level 

of 95 %     3.5  
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Table B1: Type A uncertainty (UA) of peak magnetic field (Hpeak) of test samples 

measured in the single sheet tester (SST) 

 HGO CGO 
Bpeak(T) Average 

Hpeak(A/m) 
UA(Hpeak) 

(%) 
Average 

Hpeak(A/m) 
UA(Hpeak) 

(%) 
0.008 0.743 0.3 0.98 0.31 
0.01 0.859 0.26 1.16 0.28 
0.04 2.3 0.29 3.2 0.29 
0.06 2.98 0.22 4.14 0.3 
0.08 3.59 0.27 4.96 0.3 
0.1 4.13 0.2 5.68 0.26 
0.2 6.41 0.25 8.43 0.27 
0.3 8.37 0.24 10.61 0.35 
0.4 10.03 0.36 12.49 0.32 
0.6 12.8 0.29 15.67 0.38 
0.8 15.31 0.4 18.66 0.45 
1.0 17.63 0.5 21.72 0.47 
1.2 20.02 0.45 26.25 0.69 
1.3 21.18 0.67 30.56 0.65 
1.4 22.7 0.6 38.11 0.56 
1.5 24.6 0.52 51.62 0.5 

 

Table B2: Type A uncertainty (UA) of coercivity of test samples measured in the 

single sheet tester (SST) 

 HGO CGO 
Bpeak(T) Average 

coercivity(A/m) 
UA(coercivity) 

(%) 
Average 

coercivity(A/m) 
UA(coercivity) 

(%) 
0.008 0.262 0.59 0.278 0.6 
0.01 0.302 0.48 0.322 0.55 
0.04 0.93 0.55 0.973 0.53 
0.06 1.34 0.43 1.47 0.34 
0.08 1.74 0.38 1.93 0.43 
0.1 2.11 0.45 2.37 0.4 
0.2 3.78 0.4 4.32 0.46 
0.3 5.38 0.54 6.03 0.38 
0.4 6.89 0.6 7.65 0.33 
0.6 9.5 0.65 10.63 0.34 
0.8 11.86 0.56 13.42 0.61 

1 14.1 0.52 15.94 0.42 
1.2 16.33 0.38 18.24 0.44 
1.3 17.34 0.36 19.26 0.4 
1.4 18.36 0.4 20.26 0.35 
1.5 19.258 0.35 21.376 0.33 
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Table B3: Type A uncertainty (UA) of relative permeability (µr) of test samples 

measured in the single sheet tester (SST) 

 

 HGO CGO 
Bpeak(T) Average µr UA(µr) 

(%) 
Average µr 

   
UA(µr) 

(%) 
0.008 8567 0.52 23123 0.62 
0.01 9253 0.5 29221 0.55 
0.04 13843 0.31 33846 0.35 
0.06 16031 0.15 36361 0.25 
0.08 17754 0.53 36618 0.58 
0.1 19257 0.7 34093 0.67 
0.2 24828 0.61 30465 0.51 
0.3 28534 0.35 25481 0.38 
0.4 31717 0.33 22486 0.36 
0.6 37304 0.4 18886 0.34 
0.8 41570 0.31 14007 0.3 

1 45120 0.35 12833 0.25 
1.2 47687 0.5 11528 0.36 
1.3 48510 0.32 9956 0.22 
1.4 48813 0.28 6879 0.38 
1.5 49083 0.3 6500 0.32 

 

 

Table B4: Type A uncertainty (UA) power loss of test samples measured in the single 

sheet tester (SST) 

 HGO CGO 
Bpeak(T) Average 

Power loss (W/kg) 
UA(power loss) 

(%) 
Average 

Power loss(W/kg) 
UA(power loss) 

(%) 
0.008 0.000044 0.5 0.000045 0.48 
0.01 0.000063 0.44 0.000066 0.5 
0.04 0.00079 0.42 0.0008 0.46 
0.06 0.0016 0.38 0.002 0.48 
0.08 0.0028 0.45 0.003 0.45 
0.1 0.004 0.4 0.005 0.36 
0.2 0.016 0.38 0.018 0.39 
0.3 0.033 0.36 0.037 0.8 
0.4 0.057 0.46 0.063 0.72 
0.6 0.12 0.55 0.133 0.7 
0.8 0.2 0.58 0.229 0.66 

1 0.304 0.65 0.354 0.67 
1.2 0.437 0.75 0.512 0.72 
1.3 0.515 0.7 0.608 0.68 
1.4 0.605 0.71 0.726 0.65 
1.5 0.705 0.66 0.881 0.6 
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Table B5: Type A uncertainty of rms BN of HGO and CGO from Producer 1 
measured in the SST 

 

 HGO CGO 
Bpeak(T) Average rms BN 

(mV) 
UA (rms BN of 

HGO) 
(%) 

Average rms BN 
(mV) 

UA(rms BN of 
CGO) 

0.008 0.010744 1.40 0.01277 1.35 
0.01 0.01188 1.43 0.01283 1.13 
0.04 0.0149 0.71 0.01681 1.30 
0.06 0.01805 0.64 0.0209 1.20 
0.08 0.02206 0.66 0.02561 0.58 
0.1 0.02659 0.89 0.03053 1.11 
0.2 0.05541 0.82 0.05822 1.20 
0.3 0.09785 0.71 0.08748 0.90 
0.4 0.1408 0.82 0.1163 0.81 
0.5 0.1835 1.02 0.1439 0.79 
0.6 0.2203 1.01 0.1742 0.48 
0.8 0.2913 0.77 0.2331 0.39 
1.0 0.3618 0.57 0.2949 0.37 
1.2 0.4408 0.42 0.3682 0.29 
1.5 0.5821 0.12 0.5218 0.30 

 

 

Table B6: Type A uncertainty of rms BN of HGO and CGO from Producer 2 
measured in the SST 
 

 HGO CGO 
Bpeak(T) Average rms BN 

(mV) 
UA (rms BN of 

HGO) 
(%) 

Average rms BN 
(mV) 

UA(rms BN of 
CGO) 

0.008 0.01183 1.31 0.01262 1.26 
0.01 0.01209 1.38 0.01286 1.34 
0.04 0.016 0.73 0.01724 1.01 
0.06 0.01924 0.56 0.02151 1.08 
0.08 0.02323 0.56 0.02644 1.01 
0.1 0.02763 0.85 0.03134 1.14 
0.2 0.05452 0.73 0.05946 1.19 
0.3 0.09275 0.76 0.09244 0.87 
0.4 0.1359 0.87 0.1276 0.79 
0.5 0.1736 0.97 0.1601 0.68 
0.6 0.2129 0.89 0.1976 0.41 
0.8 0.2859 0.77 0.2616 0.33 
1.0 0.359 0.69 0.3364 0.28 
1.2 0.4345 0.38 0.4109 0.22 
1.5 0.5544 0.19 0.553 0.26 
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Table B7: Type A uncertainty of TSA of BN of HGO and CGO from Producer 1 
measured in the SST 
 

 HGO CGO 
Bpeak(T) Average TSA of 

BN (V) 
UA (TSA of 

HGO) 
(%) 

Average TSA of 
BN (V) 

UA(TSA of 
CGO) 

0.008 0.0282 0.98 0.0303 1.18 
0.01 0.0282 0.87 0.0305 0.76 
0.04 0.0357 0.53 0.0394 0.62 
0.06 0.043 0.48 0.0484 0.53 
0.08 0.0511 0.39 0.0579 0.35 
0.1 0.0599 0.31 0.0699 0.37 
0.2 0.122 0.52 0.127 0.46 
0.3 0.211 0.32 0.191 0.37 
0.4 0.297 0.35 0.255 0.49 
0.5 0.388 0.29 0.321 0.39 
0.6 0.468 0.35 0.377 0.31 
0.8 0.631 0.31 0.527 0.28 
1.0 0.791 0.21 0.671 0.28 
1.2 0.974 0.21 0.847 0.17 
1.5 1.32 0.15 1.205 0.13 

 

 

Table B 8: Type A uncertainty of TSA of BN of HGO and CGO from Producer 2 
measured in the SST 
 

 HGO CGO 
Bpeak(T) Average TSA of 

BN (V) 
UA (TSA of 

HGO) 
(%) 

Average TSA of 
BN (V) 

UA(TSA of 
CGO) 

0.008 0.0285 1.08 0.0304 1.13 
0.01 0.0288 0.88 0.0309 0.86 
0.04 0.0378 0.50 0.0407 0.60 
0.06 0.0451 0.58 0.0495 0.55 
0.08 0.0539 0.49 0.0604 0.36 
0.1 0.0634 0.33 0.071 0.31 
0.2 0.121 0.56 0.13 0.45 
0.3 0.2 0.31 0.201 0.39 
0.4 0.288 0.38 0.278 0.42 
0.5 0.369 0.31 0.348 0.36 
0.6 0.449 0.33 0.427 0.34 
0.8 0.61 0.33 0.573 0.29 
1.0 0.773 0.22 0.747 0.23 
1.2 0.952 0.22 0.927 0.19 
1.5 1.269 0.17 1.235 0.14 
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Table B9: Type A uncertainty of rms of BN of HGO, domain refined HGO and CGO 
measured in the SST 
 

 HGO DR HGO CGO 

Bpeak(T) Average 
rms BN 
(mV) 

UA (rms 
BN of 

HGO (%) 

Average 
rms BN 
(mV) 

UA (rms BN 
of DR HGO) 

(%) 

Average 
rms BN 
(mV) 

UA (rms BN 
of CGO)     

(%) 
0.008 0.012 1.32 0.0118 1.06 0.013 1.38 
0.01 0.0118 1.40 0.0124 1.37 0.013 1.11 
0.04 0.0148 0.71 0.0146 2.01 0.016 0.79 
0.06 0.0173 0.56 0.0181 1.88 0.019 0.53 
0.08 0.0214 0.56 0.024 1.51 0.024 0.52 
0.1 0.0253 0.85 0.0292 1.40 0.028 0.38 
0.2 0.0548 0.73 0.064 1.19 0.055 0.50 
0.4 0.13 0.76 0.136 0.87 0.113 0.43 
0.6 0.209 0.80 0.209 0.79 0.172 0.53 
0.8 0.281 0.97 0.268 0.68 0.245 0.61 

1 0.377 0.89 0.353 0.41 0.313 0.57 
1.2 0.475 0.77 0.464 0.30 0.399 0.31 
1.3 0.532 0.49 0.512 0.28 0.448 0.25 

 

 

 

Table B10: Type A uncertainty of TSA of BN of HGO, domain refined HGO and 
CGO measured in the SST 
 

 HGO DR HGO CGO 

Bpeak(T) Average 
TSA (V) 

UA (TSA 
of HGO 

(%) 

Average 
TSA (V) 

UA (TSA 
of DR HGO) 

(%) 

Average 
TSA (V) 

UA (TSA of 
CGO)     
(%) 

0.008 0.029 1.22 0.028 1.06 0.031 1.30 
0.01 0.028 1.10 0.029 1.37 0.032 1.21 
0.04 0.035 0.91 0.035 2.01 0.038 0.76 
0.06 0.041 0.65 0.043 1.88 0.045 0.56 
0.08 0.05 0.58 0.055 1.51 0.055 0.50 
0.1 0.058 0.76 0.066 1.40 0.063 0.48 
0.2 0.12 0.75 0.14 1.19 0.12 0.59 
0.4 0.28 0.79 0.29 0.87 0.25 0.49 
0.6 0.45 0.82 0.45 0.79 0.38 0.63 
0.8 0.61 0.90 0.59 0.68 0.55 0.71 

1 0.83 0.88 0.79 0.41 0.71 0.67 
1.2 1.07 0.74 1.04 0.30 0.9 0.41 
1.3 1.18 0.46 1.17 0.28 1.01 0.35 

 

 



 170 

Table B11: Type A uncertainty of rms of BN of Coated and Decoated CGO measured 
in the SST 
 

 Coated CGO Decoated CGO 
Bpeak(T) Average rms of 

BN (mV) 
UA (rms BN of 
Coated CGO) 

(%) 

Average rms of 
BN (mV) 

UA(rms BN of 
Decoated CGO) 

0.008 0.013017 0.78 0.0131 0.70 
0.01 0.013167 0.85 0.0133 0.65 
0.04 0.0162 0.73 0.0189 0.68 
0.06 0.019667 0.77 0.0259 0.54 
0.08 0.02465 0.48 0.0331 0.43 
0.1 0.0301 0.67 0.0416 0.55 
0.2 0.060767 0.57 0.0822 0.46 
0.3 0.0937 0.49 0.124 0.41 
0.4 0.122833 0.78 0.163 0.60 
0.6 0.189 0.43 0.25 0.52 
0.8 0.262667 0.40 0.336 0.33 
1.0 0.332167 0.38 0.448 0.31 

 

 

Table B12: Type A uncertainty of rms of BN of Coated and Decoated HGO measured 
in the SST 
 

 Coated HGO Decoated HGO 
Bpeak(T) Average rms of 

BN (mV) 
UA (rms BN of 
Coated HGO) 

(%) 

Average rms of 
BN (mV) 

UA(rms BN of 
Decoated HGO) 

0.008 0.011783 0.98 0.0132 1.10 
0.01 0.011683 0.89 0.0136 0.96 
0.04 0.01405 0.70 0.019 0.62 
0.06 0.016633 0.68 0.0265 0.55 
0.08 0.0207 0.45 0.0348 0.38 
0.1 0.0255 0.37 0.0468 0.51 
0.2 0.056467 0.50 0.0943 0.49 
0.3 0.095533 0.41 0.143 0.49 
0.4 0.1375 0.58 0.186 0.40 
0.6 0.213333 0.51 0.279 0.56 
0.8 0.287667 0.43 0.377 0.44 
1.0 0.361833 0.35 0.493 0.30 
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Table B13: Type A uncertainty of rms of BN of Decoated HGO and CGO measured 
in the SST with tension of 3 MPa applied 
 

 Decoated HGO with 3 MPa Decoated CGO with 3 MPa 
Bpeak(T) Average rms of 

BN (mV) 
UA (rms BN of 
Decoated HGO) 

(%) 

Average rms of 
BN (mV) 

UA(rms BN of 
Decoated CGO) 

0.008 0.0132 1.21 0.011783 1.40 
0.01 0.0136 1.31 0.011683 0.96 
0.04 0.019 0.98 0.01405 1.25 
0.06 0.0265 1.01 0.016633 1.22 
0.08 0.0348 0.75 0.0207 0.88 
0.1 0.0468 0.87 0.0255 0.71 
0.2 0.0943 0.76 0.056467 0.69 
0.3 0.143 0.58 0.095533 0.53 
0.4 0.186 0.69 0.1375 0.41 
0.6 0.279 0.57 0.213333 0.52 
0.8 0.377 0.46 0.287667 0.40 
1.0 0.493 0.42 0.361833 0.31 

 

 

 

 

 

Table B14: Type A uncertainty of rms of BN of NGO (3% Si) of different thicknesses 
measured in the SST 
 

 0.35 mm thick  0.5 mm thick  0.65 mm thick 

Bpeak(T) Average 
rms BN 
(mV) 

UA (%) Average 
rms BN 
(mV) 

UA (%) Average 
rms BN 
(mV) 

UA (%) 

0.008 0.0135 1.55 0.0133 1.46 0.0127 1.32 
0.01 0.0138 1.28 0.0134 1.31 0.0127 1.20 
0.04 0.0175 1.91 0.0155 1.21 0.014 1.76 
0.06 0.0236 1.65 0.02 1.80 0.0166 1.54 
0.08 0.0296 0.98 0.0224 1.31 0.0201 0.80 
0.1 0.0372 0.96 0.0262 1.00 0.024 0.88 
0.2 0.0698 0.70 0.0472 0.80 0.0394 0.49 
0.3 0.0982 0.71 0.0678 0.67 0.0604 0.44 
0.4 0.129 0.62 0.0903 0.49 0.0806 0.33 
0.6 0.175 0.50 0.13 0.48 0.108 0.31 
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Table B15: Type A uncertainty of TSA of BN of NGO (3% Si) of different 
thicknesses measured in the SST 
 

 0.35 mm thick  0.5 mm thick  0.65 mm thick 

Bpeak(T) Average 
TSA BN 

(V) 

UA (%) Average 
TSA (V) 

UA (%) Average 
TSA BN 

(V) 

UA (%) 

0.008 0.032 1.45 0.032 1.36 0.031 1.39 
0.01 0.033 1.21 0.032 1.41 0.03 1.25 
0.04 0.041 1.18 0.037 1.20 0.033 1.26 
0.06 0.055 1.66 0.047 1.32 0.039 1.14 
0.08 0.066 1.08 0.052 1.21 0.048 0.98 
0.1 0.082 0.90 0.06 1.02 0.055 0.82 
0.2 0.152 0.75 0.103 0.83 0.088 0.53 
0.3 0.217 0.77 0.148 0.77 0.132 0.45 
0.4 0.285 0.52 0.199 0.45 0.175 0.53 
0.6 0.386 0.48 0.285 0.40 0.239 0.41 

 

 

 

Table B16: Type A uncertainty of TNP of BN of NGO (3% Si) of different 
thicknesses measured in the SST 
 

 0.35 mm thick  0.5 mm thick  0.65 mm thick 

Bpeak(T) Average 
TNP 

UA (%) Average 
TNP 

UA (%) Average 
TNP 

UA (%) 

0.008 2013 1.26 2037 1.09 2057 1.18 
0.01 2000 1.15 2006 1.21 2043 1.20 
0.04 1961 1.10 1970 1.14 2024 1.16 
0.06 1930 1.36 1940 1.42 1977 1.23 
0.08 1879 1.18 1914 1.02 1924 0.93 
0.1 1846 0.91 1880 1.00 1904 0.72 
0.2 1835 0.68 1851 0.63 1871 0.59 
0.3 1827 0.57 1840 0.70 1860 0.55 
0.4 1791 0.60 1815 0.55 1830 0.50 
0.6 1762 0.32 1813 0.38 1820 0.44 
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Table B17: Type A uncertainty of dB/dt of NGO (3% Si) of different thicknesses 
measured in the SST 
 

 0.35 mm thick  0.5 mm thick  0.65 mm thick 

Bpeak(T) Average 
dB/dt 

UA (%) Average 
dB/dt 

UA (%) Average 
dB/dt 

UA (%) 

0.008 1.265 0.89 1.255 1.12 1.24 1.08 
0.01 1.555 1.10 1.555 1.11 1.54 1.14 
0.04 6.145 0.96 6.115 1.18 6.115 1.06 
0.06 9.225 1.06 9.195 1.02 9.09 0.86 
0.08 12.19 0.87 12.175 0.84 12.02 0.73 
0.1 15.11 0.90 15.095 0.95 14.885 0.76 
0.2 28.605 0.78 28.165 0.68 28.165 0.69 
0.3 40.565 0.77 39.96 0.50 39.06 0.58 
0.4 51.07 0.69 50.39 0.49 48.675 0.65 
0.6 69.465 0.38 68.09 0.41 66.165 0.47 

 

 

Table B 18: Type A uncertainty of rms of BN of NGO (0.5 mm thick) of different 
silicon contents measured in the SST 
 
 1.8% Si 1.3% Si 0.3% Si 

Bpeak(T) Average 
rms BN 
(mV) 

UA (%) Average 
rms BN 
(mV) 

UA (%) Average 
rms BN 
(mV) 

UA (%) 

0.008 0.0132 1.05 0.0117 1.16 0.0109 1.22 
0.01 0.0132 1.20 0.0116 1.11 0.0103 1.00 
0.04 0.0169 1.01 0.015 1.22 0.014 1.16 
0.06 0.0221 0.95 0.0204 1.10 0.0185 1.04 
0.08 0.0294 0.78 0.0265         0.65 0.0219 0.82 
0.1 0.0383 0.92 0.027 0.78 0.0251 0.83 
0.2 0.0958 0.67 0.0533 0.80 0.0498 0.41 
0.3 0.158 0.61 0.0741 0.67 0.062 0.44 
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Table B19: Type A uncertainty of dB/dt of NGO (0.5 mm thick) of different silicon 
contents measured in the SST 
 

 1.8% Si 1.3% Si 0.3% Si 

Bpeak(T) Average 
dB/dt 

UA (%) Average 
dB/dt 

UA (%) Average 
dB/dt 

UA (%) 

0.008 2.54 1.02 2.51 0.85 2.47 1.04 
0.01 3.16 1.04 3.12 1.01 3.09 1.02 
0.04 12.46 1.11 12.38 1.00 12.36 0.89 
0.06 18.71 0.94 18.57 1.02 18.48 0.81 
0.08 24.77 1.08 24.61 0.87 24.46 0.98 
0.1 30.65 0.87 30.57 1.03 29.5 0.63 
0.2 57.77 0.75 56.92 0.54 53 0.47 
0.3 81.54 0.65 79.18 0.42 73 0.51 

 

 

Table B20: Type A uncertainty of dB/dt of NGO (0.5 mm thick) of different silicon 
contents measured in the SST 
 

 1.8% Si 1.3% Si 0.3% Si 

Bpeak(T) Average 
dB/dt 

UA (%) Average 
dB/dt 

UA (%) Average 
dB/dt 

UA (%) 

0.008 2.54 0.86 2.51 1.10 2.47 1.18 
0.01 3.16 1.13 3.12 1.09 3.09 1.01 
0.04 12.46 0.92 12.38 1.06 12.36 0.93 
0.06 18.71 1.09 18.57 0.97 18.48 0.89 
0.08 24.77 0.89 24.61 0.88 24.46 0.75 
0.1 30.65 0.92 30.57 0.65 29.5 0.67 
0.2 57.77 0.79 56.92 0.61 53 0.58 
0.3 81.54 0.70 79.18 0.46 73 0.51 
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Table B21: Type A uncertainty of TNP of BN of NGO (0.5 mm thick) of different 
thicknesses measured in the SST 
 

 1.8% Si 1.3% Si 0.3% Si 

Bpeak(T) Average 
TNP 

UA (%) Average 
TNP 

UA (%) Average 
TNP 

UA (%) 

0.008 1795 1.16 1783 1.19 1775 1.17 
0.01 1847 1.15 1795 1.11 1790 1.09 
0.04 1898 0.91 1880 1.04 1870 1.12 
0.06 1939 1.06 1920 1.12 1886 1.13 
0.08 1970 1.01 1940 0.85 1925 0.73 
0.1 1998 0.78 1978 0.62 1964 0.76 
0.2 2032 0.62 2006 0.61 2000 0.54 
0.3 2040 0.58 2024 0.40 2017 0.52 

 

 

Table B22: Type A uncertainty of rms of BN of CGO of different thicknesses 
measured in the SST 
 

 0.30 mm thick 0.27 mm thick 0.23 mm thick 

Bpeak(T) Average 
rms BN 
(mV) 

UA (%) Average 
rms BN 
(mV) 

UA (%) Average 
rms BN 
(mV) 

UA (%) 

0.008 0.0135 1.02 0.0135 1.08 0.0133 0.96 
0.01 0.013 1.00 0.0134 1.17 0.0138 1.01 
0.04 0.0161 0.81 0.0161 1.01 0.0167 0.88 
0.06 0.0201 0.69 0.0192 1.08 0.0192 0.64 
0.08 0.0243 0.59 0.0237 0.69 0.0232 0.57 
0.1 0.0296 0.86 0.0291 1.00 0.0287 0.58 
0.2 0.059 0.79 0.0563 0.92 0.0541 0.65 
0.3 0.0901 0.69 0.0885 0.71 0.0821 0.42 
0.4 0.119 0.84 0.118 0.82 0.109 0.61 
0.6 0.185 0.78 0.181 0.61 0.178 0.77 
0.8 0.258 0.89 0.256 0.53 0.239 0.66 

1 0.334 0.64 0.329 0.39 0.327 0.40 
1.2 0.412 0.41 0.400 0.36 0.396 0.36 
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Table B23: Type A uncertainty of rms of BN of CGO of different thicknesses 
measured in the SST 
 

 0.50 mm thick 0.35 mm thick 
Bpeak(T) Average rms 

BN (mV) 
UA (%) Average rms 

BN (mV) 
UA % 

0.008 0.0137 1.18 0.0131 1.12 
0.01 0.0137 0.98 0.0133 0.88 
0.04 0.0189 1.01 0.0154 0.68 
0.06 0.0232 0.89 0.0179 0.95 
0.08 0.0284 0.65 0.0215 0.43 
0.1 0.0337 0.56 0.0274 0.39 
0.2 0.0617 0.58 0.056 0.65 
0.3 0.0973 0.71 0.0861 0.43 
0.4 0.125 0.49 0.119 0.44 
0.6 0.184 0.61 0.191 0.39 
0.8 0.264 0.73 0.266 0.36 

1 0.325 0.38 0.363 0.49 
1.2 0.394 0.39 0.44 0.43 

 

 

Table B24: Type A uncertainty of rms of BN of HGO of different thicknesses 
measured in the SST 
 

 0.50 mm thick 0.35 mm thick 
Bpeak(T) Average rms 

BN (mV) 
UA (%) Average rms 

BN (mV) 
UA(%) 

0.008 0.0122 0.99 0.012367 1.10 
0.01 0.0123 0.91 0.0125 0.67 
0.04 0.0165 1.03 0.0154 0.78 
0.06 0.0197       1.05 0.0183 0.79 
0.08 0.0243 0.81 0.022333 0.67 
0.1 0.0294 0.54 0.0272 0.43 
0.2 0.0589 0.78 0.0556 0.60 
0.3 0.107 0.77 0.0996 0.53 
0.4 0.15 0.41 0.141 0.64 
0.6 0.232 0.64 0.223 0.51 
0.8 0.319 0.70 0.299 0.42 

1 0.392 0.42 0.359 0.50 
1.2 0.458 0.35 0.45 0.41 
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Table B25: Type A uncertainty of rms of BN of HGO with black marks defects on 
whole and half sample length measured in the SST 
 

 Black marks on half sample length Black marks on full sample length 
Bpeak(T) Average rms 

BN (mV) 
UA (%) Average rms 

BN (mV) 
UA (%) 

0.008 0.0137 1.81 0.013 1.29 
0.01 0.0138 1.68 0.0135 1.38 
0.04 0.0168 1.73 0.0202 1.31 
0.06 0.0213 1.56 0.0256 1.38 
0.08 0.025 0.96 0.0293 1.21 
0.1 0.0307 0.85 0.0348 1.11 
0.2 0.0593 0.93 0.061 1.10 
0.3 0.0834 0.79 0.0848 0.97 
0.4 0.117 1.17 0.112 0.72 
0.6 0.173 1.07 0.162 0.98 
0.8 0.22 0.88 0.213 0.91 
1.0 0.287 0.79 0.272 1.13 
1.2 0.371 0.79 0.334 0.88 
1.3 0.398 0.48 0.373 0.52 

 

 

Table B26: Type A uncertainty of rms of BN of HGO with burst marks, smudge 
marks and rough surface defects measured in the SST 
 

 Burst mark defects Smudge mark defects Rough surface defects 

Bpeak(T) Average rms 
BN (mV) 

UA(%) Average rms 
BN (mV) 

UA 
(%) 

Average rms 
BN (mV) 

UA(%) 

0.008 0.0137 1.62 0.0162 1.57 0.0154 1.41 
0.01 0.0151 1.60 0.0159 1.43 0.0158 1.88 
0.04 0.0209 1.03 0.0242 1.23 0.0255 1.23 
0.06 0.0263 1.37 0.0323 1.06 0.0323 1.51 
0.08 0.0309 0.90 0.0401 0.92 0.0406 1.06 
0.1 0.0385 1.85 0.0491 0.81 0.0458 0.82 
0.2 0.0676 0.99 0.0937 0.90 0.0893 1.13 
0.3 0.0967 1.01 0.135 0.88 0.135 0.73 
0.4 0.128 1.10 0.166 1.18 0.179 1.10 
0.6 0.176 1.00 0.243 1.03 0.27 1.07 
0.8 0.239 0.84 0.311 0.76 0.35 0.98 
1.0 0.317 0.89 0.396 0.71 0.416 0.70 
1.2 0.373 0.75 0.482 0.92 0.511 0.99 
1.3 0.42 0.46 0.548 0.88 0.569 0.68 
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APPENDIX C 
Graphs of variations of percentage difference of the 

measured properties at different peak flux densities 
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Fig. AC 1: Variation of percentage difference of average rms BN of HGO and domain 

scribed HGO from P1 with peak flux density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. AC 2: Variation of percentage difference of average TSA of HGO and domain 

scribed HGO from P1 with peak flux density.  
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Fig. AC 3: Variation of percentage difference in average rms BN between unscribed 

HGO and HGO domain scribed at 16 mm, 8 mm and 4 mm intervals respectively with 

peak flux density. 

-20

-15

-10

-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

Bpeak(T)

%
 D

iff
er

en
ce

 in
 B

N
rm

s

HGO domain scribed at 16 mm and 8 mm intervals

HGO domain scribed at 16 mm and 4 mm intervals

HGO domain scribed at 8 mm and 4 mm intervals
 

Fig. AC 4: Variation of percentage difference in average rms BN between HGO 

domain scribed at 16 mm and 8 mm, 16 mm and 4 mm, and 8 mm and 4 mm intervals 

with peak flux density. 



 181 

-20

-10

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2

Bpeak(T)

%
 D

iff
er

en
ce

 in
 T

S
A

HGO and HGO domain scribed at 16 mm intervals

HGO and HGO domain scribed at 8 mm intervals

HGO and HGO domain scribed at 4 mm intervals
 

Fig. AC 5: Variation of percentage difference in average TSA of unscribed HGO and 

HGO domain scribed at 16 mm, 8 mm and 4 mm intervals respectively with flux 

density. 
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Fig. AC 6: Variation of percentage difference in average TSA between HGO domain 

scribed at 16 mm and 8 mm, 16 mm and 4 mm, and 8 mm and 4 mm intervals with 

flux density. 
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Fig. AC 7: Variation of percentage difference in average relative permeability of 

unscribed HGO and HGO domain scribed at 16 mm, 8 mm and 4 mm intervals 

respectively with peak flux density. 
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 Fig. AC 8: Variation of percentage difference in average relative permeability 

between HGO domain scribed at 16 mm and 8 mm, 16 mm and 4 mm, and 8 mm and 

4 mm intervals with flux density. 
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Fig. AC 9: Variation of percentage difference in average coercivity of unscribed HGO 

and HGO domain scribed at 16 mm, 8 mm and 4 mm intervals respectively with flux 

density. 

-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4

B(T)

%
 D

iff
er

en
ce

 in
 c

o
er

ci
vi

ty

HGO scribed at 16 mm and 8 mm intervals

HGO scribed at 16 mm and 4 mm intervals

HGO scribed at 8 mm and 4 mm intervals
 

Fig. AC 10: Variation of percentage difference in average coercivity between HGO 

domain scribed at 16 mm and 8 mm, 16 mm and 4 mm, and 8 mm and 4 mm intervals 

with flux density. 
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Fig. AC 11: Variation of percentage difference in average power loss of unscribed 

HGO and HGO domain scribed at 16 mm, 8 mm and 4 mm intervals respectively with 

flux density. 
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Fig. AC 12: Variation of percentage difference in average power loss between HGO 

domain scribed at 16 mm and 8 mm, 16 mm and 4 mm, and 8 mm and 4 mm intervals 

with flux density. 
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Fig. AC13: Variation of percentage difference in average rms BN of decoated HGO 
caused by applying 3 MPa at different values of peak flux density. 
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Fig. AC14: Variation of percentage difference in average rms BN of decoated CGO 

caused by applying 3 MPa at different values of peak flux density. 



 186 

-6

-4

-2

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

B(T)

%
 D

iff
er

en
ce

 in
 B

N
rm

s

0.23 mm and 0.27 mm thick samples 0.27 mm and 0.30 mm thick samples

0.23 mm and 0.30 mm thick samples
 

Fig. AC 15: Variation of the percentage difference in rms BN between samples of 

CGO of named thicknesses with peak flux density. 
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Fig. AC 16: Variation of the percentage difference in rms BN of CGO samples of 

thicknesses 0.35 mm and 0.50 mm with peak flux density. 
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Fig. AC 17: Variation of percentage difference in BNrms of HGO samples of 

thicknesses 0.27 mm and 0.30 mm with peak flux density. 
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Fig. AC 18: Variation of the percentage difference in average relative permeability 

between samples of CGO of named thicknesses with peak flux density. 

Bpeak (T) 

Bpeak (T) 



 188 

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2

B(T)

%
 D

iff
er

en
ce

 in
 r

el
at

iv
e 

p
er

m
ea

b
ili

ty

 

Fig. AC 19: Variation of percentage difference in average relative permeability of 

CGO samples of thicknesses 0.35 mm and 0.50 mm with peak flux density. 
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Fig. AC 20: Variation of the percentage difference in average coercivity between 

samples of CGO of named thicknesses with peak flux density. 
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Fig. AC 21: Variation of percentage difference in average coercivity of CGO samples 

of thicknesses 0.35 mm and 0.50 mm with peak flux density. 
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Fig. AC 22: Variation of the percentage difference in average power loss between 

samples of CGO of named thicknesses with peak flux density. 
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Fig. AC 23: Variation of percentage difference in average power loss of CGO samples 

of thicknesses 0.35 mm and 0.50 mm with peak flux density. 
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Fig. AC 24: Variation of percentage difference in average relative permeability of 

HGO samples of thicknesses 0.27 mm and 0.30 mm with peak flux density. 
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Fig. AC 25: Variation of percentage difference in average coercivity of HGO samples 

of thicknesses 0.27 mm and 0.30 mm with peak flux density. 
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Fig. AC 26: Variation of percentage difference in average power loss of HGO 

samples of thicknesses 0.27 mm and 0.30 mm with peak flux density. 
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