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Beta-catenin is a crucial component of the Wnt signalling pathway, which is 

imperative in many developmental processes and aberrantly regulated in several 

different cancers. The standard model of Wnt/Beta-catenin signalling states that, upon 

stimulation by Wnt ligand, Beta-catenin accumulates and subsequently translocates to 

the nucleus to activate TCF-dependent transcription of a variety of target genes, 

including oncogenes. However, the mechanisms regulating the nuclear localisation of 

Beta-catenin and its correlation with TCF-dependent transcription are poorly 

understood.  

 

In order to identify novel regulators of Beta-catenin levels and localisation in Wnt 

signalling imaging-based high-throughput knockout screens were developed in a Wnt 

inducible cell line, in addition to a cancer cell line in the presence of normal and 

downregulated APC. Results from the screens show that, in addition to known Wnt 

signalling components, genes not previously ascribed to the pathway appeared to 

modulate Beta-catenin. The study has provided sources of possible mechanistic 

insights into a number of areas of biology that may be involved in !-catenin 

regulation. Furthermore, it reveals an unprecedented degree of cross talk between Wnt 

and many other major signalling pathways. Moreover, the data indicated a degree of 

cell-type specificity in the regulators identified and, significantly, a lack of correlation 

between !-catenin levels and transcriptional activity.  

 

The study also identified heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as 

a negative regulator of !-catenin. Investigations into its mechanistic role implied that 

hnRNP A1 modulates !-catenin post-transcriptionally, revealing an unanticipated 

level of !-catenin regulation at the mRNA level. Further work is required to decipher 

its precise mechanism of action, with the gene lists identified in this study providing a 

useful entry point into the future analysis of regulators of !-catenin and how they 

relate to Wnt signalling. 

+ +
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Cell fate is highly influenced by environmental cues or ‘signals’ secreted from 

neighbouring cells. Dynamic research over two decades resulted in the identification 

of a plethora of signalling molecules and a greater understanding of the intracellular 

transduction pathways and interacting networks they instigate to drive the 

development of complex multicellular organisms [1]. Seven major signalling 

pathways appear in several developmental contexts and are sufficient for the majority 

of metazoan development [2]. These are the wingless related (Wnt) [3, 4], Hedgehog 

(Hh) [5], transforming growth factor ! (TGF-!) [6], receptor tyrosine kinase (RTK) 

[7], Janus kinase (JAK)/signal transducer and activator of transcription (STAT) [8], 

Notch [9] and nuclear receptor pathways [10].  From the direct transcriptional control 

by the nuclear receptor proteins to sequential protein phosphorylation cascades of 

RTK pathways, these seven are highly diverse pathways, whilst sharing the same 

principal outcome of the signal-regulated transcription of specific target genes 

required in response to a myriad of stimuli at any given time [2]. 

 

The development of complex multicellular organisms relies on the tightly regulated, 

coordinated and dynamic equilibrium between migration and adhesion [11, 12]. 

Adherens junctions (AJs) are especially important as they connect the adhesive 

function of cadherin-catenin protein complexes to the dynamics of the actin 

cytoskeleton and are vital for sustaining tissue plasticity during development [12]. 

Moreover, members of cadherin-catenin protein complexes are inextricably linked to 

many of the important aforementioned developmental signalling pathways [12]. An 

interesting protein involved in both adhesion and a major developmental signalling 

pathway is Beta-catenin (!-catenin), a key mediator of the Wnt signalling pathway.  

 

1.1 Wnt signalling 
 

The Wnts are a large family of conserved growth factors that, upon binding to 

extracellular receptors, initiate a cascade of signalling events that regulate a variety of 

cellular processes. Wnt signalling is fundamentally important during the development 

and maintenance of multicellular differentiated organisms. Studies in Drosophila 

melanogaster, Caenorhabditis elegans, Xenopus laevis and mice have demonstrated 

the involvement of Wnt signalling in developmental processes as diverse as 
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asymmetric cell division, CNS patterning, segmentation and axis formation in 

vertebrates, in addition to controlling cell growth and fate [3, 13, 14]. Furthermore, 

Wnt signalling has also been linked with stem cell differentiation and regulation in 

various systems [15]. The crucial role of Wnt signalling in such diverse processes 

highlights the importance of its precise regulation, with its aberrant signalling 

implicated in a wide variety of developmental disorders and disease [13].  

 

To date, 19 Wnt proteins have been described. So called ‘canonical’ Wnts include 

Wnt-1, Wnt-3a and Wnt-8, which were first observed to cause duplication of the 

embryonic axis when overexpressed in ventral blastomeres of Xenopus laevis 

embryos [16, 17], with many others demonstrated to promote transformation of 

mammary epithelial cells [18, 19]. So called ‘non-canonical’ Wnts, including Wnt-5a 

and Wnt-4, were unable to replicate these effects [18, 19] and were able to antagonise 

the effects of ‘canonical’ Wnts in Xenopus laevis axis duplication assays [20, 21].   

 

A variety of extracellular receptors, such as Frizzled family of receptors [22], LRP5/6 

(low-density lipoprotein receptor-related protein 5/6) co-receptors [23-25], or the 

tyrosine kinases Ryk [26, 27] or Ror2 [28] mediate the activation of intracellular 

signalling pathways upon binding of Wnt ligands. Different Wnt ligands can stimulate 

distinct Wnt pathways, even upon recruiting shared intracellular components, through 

binding different combinations of unrelated receptors [29, 30]. Currently, there are 

five Wnt pathways identified that are activated by various combinations of Wnt 

ligands and receptors (Figure 1.1).  

 

The Wnt/!-catenin (often referred to as the canonical) pathway is the best described 

and was the main focus of this study. The mechanism and consequences of its 

activation will be described in further detail within this chapter, with schematic 

representations of this pathway displayed in Figures 1.1 and 1.2.  

 

Other Wnt induced pathways include the ‘Planar cell polarity’ (also referred to as the 

Wnt/JNK pathway) where Wnt-5a or Wnt-11 activate mediators such as JNK or Rho 

kinase (ROK) downstream of Dishevelled activated Rho GTPases [31, 32]. In 

vertebrates this pathway has been shown to regulate convergent extension movement 
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during gastrulation and the migration of neural crest cells [33, 34], in addition to 

epithelial polarity in Drosophila melanogaster [31, 32].  

 

Binding of Wnt-4/Wnt-5a/Wnt-11 induces the Wnt/calcium pathway to release 

intracellular calcium, and subsequently activate enzymes such as PKC, CamKII, and 

the calcium sensitive phosphatase calcineurin that can activate the transcription factor 

NFAT [35, 36].  This pathway, through the activation of Nemo-Like Kinase (NLK), 

can also lead to inhibition of Wnt/!-catenin signalling by phosphorylation of TCF 

transcription factors [37].  

 

Ryks are conserved tyrosine kinase-related Wnt receptors which play key roles during 

neurogenesis, axon guidance and synaptogenesis [38]. The Wnt/Ryk pathway has 

been demonstrated to both activate TCF-dependent transcription, through Dishevelled 

dependent inhibition of the !-catenin destruction complex, in addition to also being 

able to inhibit transcription [26]. 

 

The Wnt5A/Ror2 pathway has been shown to inhibit TCF-dependent transcription 

induced by Wnt/!-catenin pathway activation [39]. This complexity is further 

exemplified by observations where non-canonical Wnts can inhibit or activate 

canonical Wnt/!-catenin signalling depending on receptor context, such as Wnt5a, 

which was demonstrated to activate canonical signalling when co-expressed with Fz4 

and LRP5 in Human Embryonic Kidney 293 (HEK293) cells [39]. In addition, the 

Wnt5A/Ror2 pathway has been shown to activate the JNK signalling cascade by 

signalling through cdc42 and PI3Kinase [40].   
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Figure 1.1 Wnt ligands at the cell surface activate at least 5 different pathways.  
The best characterised is the ‘canonical’ ß -catenin/TCF pathway (A) where Wnt binding to a 
receptor complex involving Frizzled and LRP5/6 leads to the inhibition of ß-catenin turnover. 
Downstream of Frizzled receptors two other pathways have been described, the PCP and the 
Ca2+ pathway (B, C). Two tyrosine kinase receptors appear to mediate Wnt signalling. Ryk 
binds Wnts through an extracellular Wnt Inhibitor protein domain (WIF; D) with Ror binding 
Wnts through an extracellular Frizzled-like domain (E). Figure kindly provided by Dr 
J.Freeman.  
 
 

1.1.1 The Canonical Wnt/Beta-catenin signalling pathway 
 
 
!-catenin is a 90 kDa vertebrate homologue of Armadillo; a Drosophila melanogaster 

protein involved in inducing segment polarity during embryogenesis and the first 

characterised member of the armadillo protein family. Armadillo proteins share a 

central “arm repeat” domain consisting of a repeating 42 amino acid motif that acts as 

a versatile interface to mediate protein binding [41]. The central armadillo domain of 
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ß-catenin possesses 12 arm repeats that form a superhelix of helices that creates a 

long positively charged groove. This can act as a binding surface for many of its 

negatively charged interactors such as lymphoid enhancer factor (LEF)/T-cell factor 

(TCF) transcription factors, the Axin/APC degradation complex and the cadherin 

adhesion receptor [42, 43]. Different binding partners interact with ß-catenin’s arm 

domain in a mutually exclusive fashion and will often dictate its localisation within 

the cell and subsequently its function [42, 44].  

 

In addition to its key role in canonical Wnt signalling, ß-catenin acts as a central 

structural component of adherens junctions (AJs). ß-catenin mediates the association 

of plasma membrane cadherins with other catenins, such as "-catenin, which 

dynamically links AJs with the actin cytoskeleton [45]. Furthermore, ß-catenin 

protects the cytoplasmic domain of cadherins from degradation; in addition to 

recruiting "-catenin to cell-cell contact sites and is therefore a prerequisite for 

adhesion [42, 45, 46]. Disruption of !-catenin/cadherin interactions has significant 

consequences for cell-cell adhesion, with abnormal adherens junctions implicated in 

many disease states, such as cancer [47, 48]. 

 

The events that dictate !-catenin’s binding partners and function is especially 

complex, which will be discussed after an introduction into !-catenin’s role in the 

Wnt/!-catenin signalling pathway, the most widely characterised Wnt pathway. 

.  

1.1.1.1 Mechanism of canonical Wnt signal transduction 

 

In the standard text-book model of the Wnt/!-catenin pathway (Figure 1.2), binding 

of Wnt ligands to an extracellular receptor induces a signalling cascade that results in 

the accumulation of ß-catenin and subsequently its translocation to the nucleus, where 

it acts as a co-transcriptional activator by interacting with the transcription factors T-

Cell Factors (TCFs) or Lymphoid Enhancing Factors (LEFs). This in turn activates 

the transcription of Wnt target genes, which include oncogenes, developmental and 

proliferation regulators from c-myc [49] to BMP4 [50] and cyclinD1 [51]. 
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Briefly, in the absence of a Wnt ligand the signalling pathway remains inactive with 

cytoplasmic levels of ß-catenin kept at low levels by continuous proteasomal 

degradation thus preventing unnecessary activation of Wnt target genes [52]. In the 

inactive state ß-catenin is held in a ‘destruction complex’ with several other proteins, 

including Axin, Adenamatous Polyposis Coli (APC), Casein Kinase 1" (CK1") and 

Glycogen Synthase Kinase 3! (GSK3!) amongst many other undefined players [15, 

53-55]. Within this complex, ß-catenin is sequentially phosphorylated by CK1" and 

GSK3! [55], which targets !-catenin for ubiquitination and subsequent degradation 

by the proteasome [56]. Meanwhile in the nucleus the TCFs/LEFs are bound to 

transcriptional repressors [57] (Figure 1.2 [58]). 

 

Binding of Wnt ligand to its extracellular receptors, low-density lipoprotein receptor-

related protein (LRP)5/6 and Frizzled, activates the protein Dishevelled leading to the 

apparent relocation of Axin to the cytoplasmic domains of the LRP receptors [59, 60]. 

This leads to the dissociation of the destruction complex, which prevents ß-catenin 

from being phosphorylated and results in its accumulation and subsequent 

translocation to the nucleus where it binds TCFs/LEFs to activate TCF-dependent 

transcription of Wnt target genes [61]. 

 

The Wnt/!-catenin signalling pathway can be broken down to four key stages that 

employ specific complexes of proteins at the cell surface, in the cytosol and in the 

nucleus. These will be described in further detail in the following sub-sections before 

describing !-catenin’s roles and regulation in further detail. 

 

1.1.1.1.1. Wnt/!-catenin signalling at the cell surface – the receptor complex. 
 

Various ligand/receptor complexes at the cell surface tightly regulate Wnt signalling. 

With 19 Wnt proteins, 10 Frizzled (Fz) receptor proteins and 2 LRP co-receptor 

proteins, a vast variety of different ligand:receptor combinations can be formed. 

Frizzled (Fz) receptors bind to different Wnt ligands with varying efficiencies [62] 

through their extracellular Cysteine Rich Domains (CRDs) [63]. Proteoglycans, such 

as Dally [64] or Syndecan 1 [65], concentrate Wnt ligands at cell surfaces where they 

can bind to LRP5/6 and Fz receptors to mediate their interaction. Various antagonists 
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can inhibit Wnt signalling, including Wnt inhibitory factor 1 (WIF 1), secreted 

Frizzled related proteins (sFRPs), Dickkopf (Dkk) proteins and the Wise/SOST 

family, with Norrins and R-spondin (Rspo) proteins acting as agonists for Wnt/!-

catenin [66]. Dkk family members bind with high affinity the LRP6 receptor, at 

domains distinct from those mediating Wnt/Fz interaction and are considered specific 

inhibitors of the Wnt/!-catenin signalling pathway [66, 67]. Dkk1’s inhibitory action 

has been suggested to be either due to disruption of the Wnt-induced Fz-LRP6 

complex [68] or by inducing LRP6 internalisation/degradation through 

transmembrane Kremen (Krm) proteins [69]. Secreted Frizzled related proteins 

(sFRPs) sequester Wnt ligands with their CRDs, which are similar to Fz CRD 

domains but are incapable of activating signalling [70]. [66]. 

 

Upon Wnt ligand binding, the LRP co-receptor undergoes phosphorylation of highly 

conserved motifs on its intracellular domain, which contain CK1 consensus sites and 

PPPSPxS motifs (P, proline; S, serine or threonine; x, a variable residue) [71, 72].  

The PPPSPxS sites are phosphorylated by GSK3 in response to Wnt signalling (Zeng 

et al, 2005), enabling the subsequent phosphorylation of the CK1 sites by CK1# or 

CK1$ isoforms [72, 73]. In turn this results in the plasma membrane recruitment of 

Axin for inactivation/degradation [60, 71], in addition to the inhibition of !-catenin 

phosphorylation by GSK3! by phosphorylated PPPSPxS in a sequence and 

phosphorylation dependent manner [74, 75]. How these processes result in elevated !-

catenin levels are discussed in the following sub-section. Fz co-receptors are believed 

to mediate Dvl membrane recruitment and activation, although the precise 

mechanisms of Dvl activation are still unclear [66]. Both Dvl and Axin harbour 

homologous DIX domains that demonstrate dynamic polymerisation that allows them 

both to form large aggregates that facilitate dynamic protein interactions [66, 76, 77] 

with Wnt-induced receptor clustering requiring an intact DVL DIX domain [77]. Dvl 

recruitment following Wnt binding to the Fz-LRP6 receptor complex induces the 

production of phosphatidylinositol 4,5-bisphosphate [PtdIns (4,5) P2 or PIP2] by 

binding (via its DIX domain) and activating the phosphatidylinositol kinases PI4KII 

and PIP5KI [78]. The resulting PIP2 generated in regions of activated receptors serves 

to promote LRP6 clustering and phosphorylation through the recruitment of 

adenomatous polyposis coli membrane recruitment 1 (Amer1, also called WTX), 
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which in turn recruits Axin/GSK3! and CK1! to LRP6 [79]. These LRP6 protein 

complexes (often called signalsomes [80]) are presumed to represent endocytic 

vesicles with many reports implicating Wnt in the internalisation of the 

ligand/receptor complexes, possibly by caveolin-mediated endocytosis [81, 82].  

 

1.1.1.1.2 The !-catenin destruction complex 
 

In the absence of Wnt signalling, a multi-protein complex mediates the 

phosphorylation of !-catenin within the cytosol, which targets it for degradation. This 

so called destruction complex consists primarily of the scaffold proteins Axin and 

APC and the kinases CK1" and GSK3! [15, 53-55], although many more 

components are envisaged with its complexity yet to be fully revealed [83]. 

 

Within the destruction complex, Axin scaffolds CK1", GSK! and !-catenin to 

coordinate the sequential phosphorylation of !-catenin at serine45 by CK1" [55], 

which primes it for subsequent phosphorylation at threonine 41, serine 37 and serine 

33 by GSK3! [55, 84]. This targets !-catenin for ubiquitination by the Skp1-Cul1-

Fbox !-Trcp ubiquitin conjugation complex and subsequent degradation by the 

proteasome [85].  GSK3! and CK1" also phosphorylate Axin and APC, leading to 

their increased association, and therefore phosphorylation/degradation of !-catenin 

[86].  

 

The role of APC in !-catenin regulation appears multi-functional. It recruits !-catenin 

to the ubiquitination complex and protects it from dephosphorylation by Protein 

Phosphatase 2A [87]. Interestingly, phosphorylated APC (by GSK3!/CK1") and 

Axin compete for the same !-catenin interaction surface, suggesting that APC may 

act to remove phosphorylated #-catenin from Axin for ubiquitination thus enabling 

Axin to be free to participate in further rounds of !-catenin phosphorylation events 

[86, 88]. APC has also been demonstrated to act as a chromatin-associated suppressor 

for #-catenin target genes (discussed below) and is implicated in promoting !-catenin 

nuclear export, which will be discussed in the subsequent sub-section. 
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As mentioned above, binding of Wnt ligands to Fz-LRP6 receptors induces LRP6 

phosphorylation, providing docking sites for Axin and subsequent disruption of the 

destruction complex, although the exact nature of Wnt induced inhibition of the 

complex and of !-catenin phosphorylation is unclear [60, 71, 73, 89]. Postulated 

mechanisms include Wnt induced and Dvl-dependent Axin-GSK3 (or #-catenin) 

dissociation [90, 91], Axin degradation [60, 92, 93] and inhibition of GSK3! by the 

phospho-PPPSPxS sites in the cytoplasmic domain of  LRP6 [74, 75]. Activation of 

Wnt/!-catenin signalling upon ligand binding results in the inhibition of the 

destruction complex and !-catenin phosphorylation, resulting in its stabilisation and 

translocation to the nucleus. Further details regarding the role of !-catenin’s 

phospho/dephospho status in dictating its localisation and function will be discussed 

in more detail later in the chapter. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2 The mechanism of Wnt/!-catenin signalling (Reproduced from[58] with 
permission from Nature Publishing Group). 
 
A. ‘OFF’ state -  !-catenin is held in the destruction complex where it is phosphorylated and 
targeted for degradation by the proteasome in the absence of Wnt ligand. TCF transcription 
factors are complexed with transcriptional inhibitors such as TLE/Groucho (GR), and target 
genes are not transcribed. B. ‘ON’ state  - Wnt binding causes disassociation of the complex 
in a Dishevelled dependent manner, allowing the nuclear translocation of beta-catenin to 
activate transcription of target genes/ APC, adenomatous polyposis coli; !-cat, !-catenin; 
CBP, CREB-binding protein; CK, casein kinase; DKK, Dickkopf; DSH, Dishevelled; GBP, 
GSK3-binding protein; GSK, glycogen synthase kinase; LRP, LDLreceptor-related protein; P, 
phosphorylation; sFRP, secreted Frizzled-related protein; TCF, T-cell factor. 
 
 

TLE/ 
GR 
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1.1.1.1.3 !-catenin nuclear/cytoplasmic shuttling and retention 
 

The standard model of Wnt/!-catenin signalling presented above states that upon Wnt 

induced stabilisation, !-catenin translocates to the nucleus to activate TCF-dependent 

transcription of Wnt target genes [66, 91]. While this view has become increasingly 

challenged of late, which will be discussed in detail later, this part of the chapter will 

describe current knowledge with regards to the shuttling of !-catenin between the 

nucleus and cytosol.  

 

Selective and active nucleocytoplasmic transport of proteins through the nuclear pore 

complex (NPC) is mediated by carriers called Karyopherins, that either facilitate the 

RanGTPase dependent nuclear import (importins) or export (exportins/CRM) of their 

cargoes [94]. These transport receptors recognise specific basic nuclear localisation 

signals (NLS) or nuclear export signals (NES) on their cargoes to mediate their 

transport. NLS signals typically consist of one, or more, short sequences of positively 

charged arginines/lysines exposed on the protein surface, while NES’s normally 

comprise of a short amino acid sequence of 4 hydrophobic residues within a protein 

[95]. 

 

Earlier studies implied that !-catenin’s nuclear translocation was independent of 

classical NLS and importin mediated mechanisms and that, due to structural 

similarities with importin-ß HEAT repeats, it could bind directly with nucleoporins in 

the NPC thus facilitate its own transport [96]. However, this was challenged by 

observations that !-catenin was unable to interact with nucleoporins [97].  

 

!-catenin is reported to shuttle between compartments via its binding partners that 

possess the required motifs for the importin/exportin mediated transport pathway [98, 

99].  APC has been suggested to bind ß-catenin in the nucleus and transport it back to 

the cytoplasm for degradation [100], in addition to Axin [101, 102]. RanBP3 (Ran 

binding protein 3), a cofactor of CRM1 mediated nuclear export that binds !-catenin 

in a Ran-GTP dependent manner [103], has also been implicated in its 

nucleocytoplasmic shuttling. Pegylated-Interferon-"2a was demonstrated to inhibit #-

catenin signalling through the up-regulation of RanBP3 and subsequent decreased !-
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catenin nuclear accumulation in human hepatoma cell lines [104]. However, ß-catenin 

has been shown to shuttle between the cellular compartments independently of APC, 

importin-ß and Ran, suggesting the existence of a carrier-independent import pathway 

in cells [96, 105-107]. 

 

Other ß-catenin interacting proteins proposed to play a role in directly and actively 

transporting it across the nuclear envelope include its co-activator of transcription, B-

cell lymphoma 9 (BCL9 – a homologue of Drosophila Legless), and its nuclear 

binding partner Pygopus, with their roles in relation to the nuclear transcription 

complex discussed in the following section [108, 109].  

 

Live-cell imaging and fluorescence recovery after photobleaching (FRAP) assays 

revealed that APC, Axin, TCF and BCL/Pygo modulated ß-catenin subcellular 

distribution by retention, rather than by active nucleocytoplasmic transport [109].  

More recently, it was demonstrated that !-catenin accumulation in the nucleus in 

response to GSK-3! inhibition was mediated by increased LEF-1 levels in response to 

Wnt signalling [110]. Figure 1.3 summarises the above theories on ß-catenin nucleo-

cytoplasmic shuttling. Taken together, the data suggests that !-catenin nuclear and 

cytoplasmic partitioning results from both dynamic shuttling and retention between 

compartments and that this is mediated by several mechanisms [66]. 
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Figure 1.3. Nucleo-cytoplasmic shuttling of ß-catenin (reproduced from [111] with 
permission from Elsevier). 
 
Summary of the various theories regarding the transport of beta-catenin (Arm) through the 
NPC. ß-catenin itself is not directly dependent on import by the carrier proteins importin "/ß 
and the cycling of Ran, although it may be imported in by its binding partners that do utilise 
this pathway. Export can also be Exportin/RanGTP independent or by interaction partners 
that are Ran dependent.  More likely ß-catenin is retained in specific compartments by its 
interaction partners rather than actively transported across the nuclear envelope. 
 
 

1.1.1.1.3.1 Alternative mechanisms of ß-catenin nucleocytoplasmic transport 
 

In addition to the above models of ß-catenin nuclear localisation, other alternative 

mechanisms have been recently suggested, with many revolving around !-catenin’s 

post-translational modifications. HDAC6 deacetylation of !-catenin at lysine 49 in 

response to EGF stimulation was observed to inhibit !-catenin phosphorylation at 

serine 45, resulting in its nuclear localisation and increased c-myc gene expression 

[112]. Leucine zipper tumour suppressor 2 (LZTS2) was identified as a novel ß-

catenin interacting protein that could regulate its export from the nucleus [113], in 

addition to Chibby, which has been shown to interact with 14-3-3 proteins to also 

facilitate its nuclear export and cytoplasm sequestration [114]. O-GlcNAc 

glycosylation (O-GlcNAcylation) of #-catenin was shown to negatively regulates its 

levels in the nucleus [115], while another study demonstrated that !-catenin’s nuclear 

accumulation may be dependent on Rac1 activation and its phosphorylation on 
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specific serine residues by JNK2 kinase [116]. The regulation of !-catenin’s levels, 

localisation and transcriptional activity by phosphorylation will be discussed in 

further detail in a specific subsection within this chapter. 

 

1.1.1.1.4 The nuclear transcription complex 
 

In the absence of activated Wnt signalling and nuclear !-catenin, members of the TCF 

or LEF family of DNA-bound transcription factors reside in complexes with 

transcriptional repressors, such as CtBP and Groucho/TLE, which promote histone 

deacetylation and chromatin compaction. Following Wnt induction, active !-catenin 

translocates into the nucleus and displaces these repressors to associate with 

TCFs/LEFs and recruit further co-activators to form a transcriptionally active 

complex, leading to the expression of target genes such as c-myc and cyclin D1 [49, 

51, 57, 117-119].  Dominant negative forms of TCF-1 and LEF-1, lacking the amino-

terminal !-catenin binding domain, are generated through alternative promoter usage 

in TCF-1 and LEF-1 genes [120]. TCFs have also been shown to bind to alternative 

sequences, leading to Wnt dependent gene repression [121]. 

 

Associated co-activators of !-catenin include BCL-9/Legless, which interacts with !-

catenin’s N-terminal region and recruits Pygopus (Pygo) and Parafibromin with 

TCF/LEF [122, 123]. As mentioned, Pygo was demonstrated to play a role in 

recruiting/retaining BCL-9/!-catenin in the nucleus upon activated Wnt signalling 

[124, 125]. Upon interaction with BCL-9, Pygo’s PHD (plant homology domain) 

appears to bind preferentially to dimethylated H2K4, suggesting a role for Pygo/BCL-

9 in participating in histone methylation changes during activation of Wnt-induced 

transcription [126], although it’s precise mechanism of action is far from clear [66]. 

 

 !-catenin also recruits the histone acetyltransferase CREB Binding Protein 

CBP/p300, both an inhibitor and an activator of TCF-dependent transcription 

depending upon cellular context [127-129] and various other chromatin remodelling 

complexes through its C-terminal region, such as TRRAP/TIP60 histone 

acetyltransferases (HATs), MLL1/2 histone methyltransferases (HMTs) and the 

SWI/SNF family of ATPases for chromatin remodelling [66, 130]. Post-translational 
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modifications of TCF/LEFs such as phosphorylation and sumoylation provide an 

additional level of control over gene expression activation by Wnt/!-catenin 

signalling [66]. For example, TCFs can be inhibited by phosphorylation by kinases 

such as NLK (Nemo-like kinase) as a target of ‘non-canonical’ Wnt signalling [131], 

while PIASy mediated sumoylation of TCF-4 and LEF-1 enhances and represses 

transcription respectively [66, 132]. 

 

To summarise, Wnt/!-catenin signal transduction is mediated by a variety of protein 

complexes at various cellular locations, which heavily relies on the coordinated 

interactions between these complexes for the strict regulation of transcriptional output 

[66].  

 

The remainder of this section of the chapter will mostly focus on !-catenin’s 

regulation and the relationship between its levels, localisation and transcriptional 

activity within Wnt signalling. Firstly, the role of Wnt/!-catenin signalling in 

development and disease will be briefly discussed.  

 

1.1.2       Wnt /ß-catenin signalling in development and disease. 
 
The Wnt/!-catenin signalling pathway is fundamentally important in most aspects of 

embryonic development across many species, from regulating asymmetric cell 

division in Caenorhabditis elegans [133], segmentation in Drosophila [134] and axis 

formation in vertebrates [16, 135]. Wingless (wg), which regulates segment polarity 

during larval development in Drosophila, was demonstrated to be a fly homolog of 

Wnt1 [136]. In wg mutant fly embryos, epidermal segmentation is impaired with the 

overlying ventral cuticle covered with denticles compared to the alternative denticle 

and naked belts exhibited in wild-type cuticle [136]. Mutations in armadillo, 

porcupine and dishevelled genes result in similar cuticle abnormalities to mutant 

embryos, while naked cuticles are observed in mutant shaggy/ zeste-white 3 embryos 

[14]. Duplication of the body axis in Xenopus was observed following the injection of 

mouse Wnt1 mRNA into ventral blastomers of 4-cell embryos with Wnt11 

subsequently identified as the specific Wnt signal that triggered axis induction in 

Xenopus [137]. Axis duplication was also induced by β-catenin (the vertebrate 
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homolog of armadillo), Dishevelled (Dsh) and dominant-negative glycogen synthase 

kinase 3 (GSK3, the vertebrate homolog of shaggy/zeste-white 3) [138-140]. These 

combined observations in Drosophila and Xenopus delineated a highly conserved 

signalling pathway activated by secreted Wnt proteins. In turn, this supported the 

notion that Wnt signalling was shared between vertebrates and invertebrates [14]. 

Independently, the adenomatous polyposis coli (APC) gene was discovered in familial 

adenomatous polyposis (FAP), a hereditary cancer syndrome [141, 142]. The 

discovery that the large cytoplasmic APC protein interacted with β-catenin provided 

the first connection between human cancer and the Wnt signalling pathway[143].  
 

In adult tissues, Wnt/!-catenin signalling has been implicated with regulating diverse 

processes from cell fate decisions [144], cell morphology [145], motility [146] and 

proliferation [147]. Furthermore, it has also been linked with stem cell differentiation 

and regulation in various systems [15, 148]. Thus, Wnt signals can co-ordinately 

regulate both proliferative responses, and subsequent tissue expansion, along with cell 

fate determination or terminal differentiation of postmitotic cells [14]. Moreover, the 

Wnt pathway is able to activate these disparate events in different cell types within 

the same structure, such as the intestinal crypt or the hair follicle [15]. 

 

Wnt signalling is widely recognised as a crucial regulator of intestinal homeostasis, 

having a vital role in maintaining a pool of undifferentiated cells in the colon [149]. 

Additionally, Wnt/!-catenin regulates stemness, proliferation and differentiation in 

other adult stem niches from the haematopoietic systems [150] and mammary gland 

[151] to the skin and hair follicle in a dosage and context-dependent manner [152, 

153]. Consequently, the key roles Wnt signalling plays in self-renewing adult tissues 

intimately links it to disease development upon its deregulation, from defects in 

kidney formation [154] and the production of nervous system progenitors [155] to the 

progression of a plethora of cancers, including colorectal, breast, skin and bone 

marrow [14, 156, 157]. Furthermore, given !-catenin’s key role in cell-cell adhesion, 

the integration between this and its role Wnt driven gene expression must be tightly 

and co-ordinately regulated for the correct development and maintenance of 

multicellular, differentiated organisms [158]. Mutated !-catenin has been implicated 
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in a myriad of developmental defects in various organs, such as the CNS, limb, 

kidney and heart [12]. 

While many studies have demonstrated Wnt pathway activation in different cancers 

often the mechanisms of action are unknown [159-164], (reviewed in [13, 15, 156]). 

In certain malignancies epigenetic inactivation of secreted Wnt inhibitors have been 

implicated in disease progression, such as the inactivation of Dkk in colorectal [165] 

and breast [166] cancers or sFRPs in lung cancer[167]. Abnormal ß-catenin levels and 

localisation has been implicated in the progression of oncogenesis, through 

inactivating mutations of negative regulatory Wnt components, such as Axin and 

APC, in addition to activating mutations of ß-catenin itself observed in various 

cancers from colorectal cancers to hepatocellular carcinomas [61, 168]. Consequently, 

the Wnt signalling pathway is a prime target for therapeutic intervention in the 

treatment of cancer. The role of Wnt signalling in the development and 

tumourigenesis of one particular tissue, the colon, is discussed in detail below to 

further explore the implications of Wnt pathway activation in key biological 

processes. 
 
 

1.1.2.1 Wnt signalling in intestinal homeostasis and colon cancer. 

 
 
A single layer of absorptive epithelium, ordered into luminal protrusions (villi) 

surrounded by sub-mucosal invaginations (crypts), lines the rapidly self-renewing 

small intestine (Figure 1.4) [14]. Crypts consist of undifferentiated multipotent stem 

or progenitor cells anchored at the base, which give rise to transit amplifying (TA) 

cells. TA cells rapidly proliferate and expand into non-proliferating daughter cells 

upon reaching the crypt-villus junction, which are capable of differentiating toward 

all epithelial lineages that make up the villi, (enterocytes, enteroendocrine cells and 

goblet cells) [169], in addition to paneth cells [170]. While the paneth cells migrate to 

the crypt bottom the other differentiated cell types migrate upwards to the apex of the 

villus where they undergo apoptosis (Figure 1.4) [171, 172].  

 

Current evidence demonstrates the importance of Wnt signalling in the regulation of 

cell fate along the crypt-villus axis of the intestine. Nuclear !-catenin is observed 

throughout crypts [173], with neonatal TCF4 knockout mice completely lacking the 
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crypt progenitor compartment, implying the requirement of physiological Wnt 

signalling for the establishment of this compartment [174]. Furthermore, transgenic 

expression of DKK-1 and resulting Wnt signalling inhibition in adult mice induces 

the complete loss of crypts, with overexpression of the Wnt agonist R-spondin 

resulting in crypt hyperproliferation [175]. Similarly, APC inactivation results in the 

repopulation of the villi by crypt-like cells, which are unable to migrate and 

differentiate and have nuclear !-catenin [176].  In addition, a decreasing gradient of 

!-catenin nuclear accumulation was observed from the crypt base towards the crypt-

villus axis [149, 173]. Wnt target genes were revealed by microarray analysis to be 

repressed in the differentiated villus cells but highly expressed in proliferative crypt 

cells [149]. As a result, the Wnt/!-catenin pathway is widely recognised as being a 

crucial regulator of intestinal homeostasis through the maintenance of cells in an 

undifferentiated state [149]. The recent identification of the Wnt target gene Lgr5 as a 

specific marker for the stem cell in colonic crypts further supports this [177], with 

neoplastic transformation of the intestine being driven by abnormal activation of Wnt 

signalling specifically in these stem cells [178]. 

 

 

 

 

 

 

This image has been removed by the author for 

copyright reasons 
 
Figure 1.4 Adult Intestinal homeostasis (Reproduced from [172] with permission from 
CSH Press). 
 
(A) Tissue section of mature small intestine. Black arrowheads indicate Ki67 positive transit-
amplifying cells, while white arrowheads indicate the Paneth cell compartment. (B) Schematic 
representation of the crypt-villus unit. While differentiated cells occupy the villus, cells residing 
in crypts are highly proliferative. Crypt progenitors migrate up (red arrow) the crypt-villus axis 
before undergoing apoptosis and shedding into the lumen. Asymmetrically dividing stem cells 
at the bottom of the crypts ensure epithelial renewal in approximately 3-6 days. The 
proliferation of progenitor or transit-amplifying (TA) cells is regulated by a Wnt signalling 
gradient, which also regulates commitment toward secretory lineages. 
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Deregulation of intestinal homeostasis results in hyperproliferation and a loss of 

differentiation, which in turn drives tumourigenesis. Germline loss of function 

mutations in the tumour suppressor gene APC results in FAP (Familial Adenamotous 

Polyposis) (124) with 1% of these resulting in colorectal cancers [142]. 80% of 

sporadic colon cancers have been observed to also contain loss of function mutations 

in APC, with the majority of the remaining tumours resulting from activation 

mutations in !-catenin [179]. Whilst sufficient for neoplastic transformation other 

mutations, such as k-Ras activation or loss of p53, are required to drive a tumour into 

an adenoma [180]. Mouse models of colon cancer with bi-allelic truncation and 

inactivation of APC in the colorectal epithelium develop colorectal tumours that are 

lethal within 4 weeks, thus demonstrating that APC is sufficient for tumour 

progression [181]. Knockdown of c-Myc, a known Wnt target gene in the intestine, 

was demonstrated to rescue the colorectal tumourogenic phenotype induced by APC 

loss, even in the presence of high nuclear !-catenin levels [182]. The majority of 

target genes activated as a result of APC loss were demonstrated by microarray 

analysis to be dependent on Myc expression [182]. Therefore, the Wnt/!-catenin 

signalling pathway is not only a vital regulator of intestinal homeostasis but leads to 

tumour formation upon abnormal !-catenin stabilisation in a manner dependent on the 

expression of a Wnt target gene. 

 

Wnt signalling’s similar role in other mammalian self-renewing adult tissues, such as 

bone, hair follicle and the haematopoietic system, intimately links it to disruption in 

the homeostatic balance in such tissues upon its deregulation, resulting in profound 

pathological conditions ranging from cancer to disturbances in bone mass [14]. 

 

1.1.3 Beta-catenin 

1.1.3.1 Transcriptional and translational regulation of !-catenin. 

 

Given !-catenin’s vital function in mediating Wnt activation of TCF-dependent 

transcription its regulation at the protein level has been subject to dynamic research. 

It’s regulation at the transcriptional and translational level however has, for the most 

part, been largely ignored due to an overwhelming assumption that it plays no part 
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during Wnt signalling itself. However, more recent work suggests otherwise and point 

to an unanticipated level of !-catenin regulation in Wnt signalling [183, 184]. !-

catenin mRNA was observed to be stabilised upon the activation of both PI3K-AKT 

and Wnt signalling through the inhibition of KSRP, an RNA-binding protein involved 

in mRNA degradation [185]. KSRP was later demonstrated to bind Dishevelled with 

Wnt stimulation mediating the release of !-catenin mRNA from this complex, 

resulting in its translation [183]. In addition, another apparent Dishevelled-associated 

protein, G3BP1, was postulated to regulate !-catenin mRNA in response to Wnt 

signalling [184]. While these examples could be cell type specific, it may also be a 

general level of Wnt regulation that has been, thus far, overlooked.  

 

1.1.3.2 !-catenin and activated TCF-dependent transcription 

 

A widely held belief, extensively advocated in major reviews of the field, is that 

increased total levels of !-catenin correlates with increased nuclear localisation and 

subsequently with activation of transcription [66, 91]. Recently, this philosophy has 

been increasingly challenged with evidence emerging that the relationship between !-

catenin levels, localisation and activation of TCF-dependent transcription is far more 

intricate than envisioned, with many reports demonstrating a lack of increased 

transcriptional activity with increased levels of wild-type !-catenin [92, 186-188]. 

Indeed, correlations between stabilised !-catenin (from mutations in the GSK3 

phosphorylation sites for example) and increased TCF-dependent transcription have 

been demonstrated to be as a result of the stabilised mutant form titrating negative 

regulators such as APC, thus allowing for wild-type !-catenin to mediate signalling 

[102, 189, 190]. Additionally, research in the colorectal cell line HCT116 that 

harbours both an oncogenic and wild type !-catenin allele demonstrated that the 

transcriptional activity of the two resulting proteins were equivalent [191]. 

Furthermore, studies suggest that other pathways may regulate transcriptionally active 

!-catenin independently of its overall cellular levels, such as Notch [192-194].  

 

While nuclear !-catenin accumulation is a more reliable indicator of Wnt activation 

than simply increased levels, this ‘hallmark of Wnt signalling’ does not always hold 
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true, with Wnt driven transcriptional activity reported even in the absence of 

detectable nuclear !-catenin [195-197]. For example, conflicting observations are 

reported in colon carcinoma cells, where mutations in APC (leading to 

hyperactivation of Wnt/!-catenin signalling) is believed to be one of the earliest 

events in the sequence of genetic changes that result in intestinal tumourigenesis, with 

increased transcription of Wnt target genes such as c-myc and cyclin D1 observed [49, 

51, 198-200]. According to the standard model for Wnt/!-catenin (as represented in 

Figure 1.2), one would predict that within colon tumours initiated by APC (or 

activating !-catenin mutations) each tumour cell should possess elevated !-catenin 

intracellular levels and/or nuclear accumulation, associated with increased TCF-

dependent transcription of Wnt target genes. Yet, highly heterogeneous !-catenin 

distributions are observed upon immuno-histochemical analysis of colorectal cancers, 

with membranous !-catenin, akin to normal colon epithelium, observed in well-

differentiated cells in the tumour centre and only invasive tumour cells at the invasion 

front observed to possess nuclear !-catenin accumulation [153, 201]. This indicates 

that APC loss, which was shared by all tumour cells, does not consistently result in 

detectable nuclear !-catenin, with this ‘!-catenin paradox’ observed in both human 

and mouse intestinal adenomas and carcinomas [153, 197, 202]. The non-random 

distribution of tumour cells with !-catenin accumulation and nuclear localisation at 

the invasive front has been suggested to be due to differential levels of Wnt signalling 

activation, in response to both intrinsic (autocrine) and extrinsic (paracrine) factors, 

which can differentially modulate !-catenin levels, localisation and active TCF-

dependent transcription [153, 203, 204].  

 

Interestingly, recent theoretical and functional assays suggested that fold changes in 

!-catenin and not absolute levels dictated the output of Wnt signalling and is a more 

precise reporter of Wnt stimulation in a heterogeneous cell population [205]. This 

signalling system may act to compensate for natural biological (both environmental 

and genetic) noise so that, despite large variations in basal nuclear levels of !-catenin, 

the actual fold change is equivalent between all cells [205].  

 

Furthermore, it has been demonstrated that distinct molecular forms of !-catenin, with 

different binding properties to TCF and cadherins, dictate its functions within the cell 
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[158, 206]. The non-Wnt-stimulated form of !-catenin forms a dimer with "-catenin, 

while Wnt induces a monomeric form selective for TCF-binding, with !-catenin’s C-

terminus regulating the availability of the ARM repeat region for other binding 

partners [206-208]. Overall, it is becoming increasingly appreciated that !-catenin 

levels does not always couple with transcriptional activity. 

 

Ascertaining the roles of elevated !-catenin in circumstances of inactive or low basal 

transcriptional activation has proven to be challenging. Albeit controversial, with 

contradictory studies published, !-catenin has been increasingly linked with 

maintenance of the pluripotency of Embryonic Stem (ES) cells [209-214], in a role 

that appears to be intriguingly independent of its transcriptional activity, with its 

overall levels seemingly imperative to this process [215, 216]. It is postulated that in 

this role !-catenin titrates TCF3 thus preventing its repressive function [216] and 

given’s !-catenin ability to bind a plethora of proteins this may hint at an important 

function of !-catenin as an ‘interactor’; where it dictates its binding partners functions 

through the regulation of their amounts and localisations in response to specific 

signals at any given time. More recently, !-catenin has been implicated as a 

component of the centrosome involved in its function and activity [217], suggesting 

that it may be involved in many more biological processes other than in adhesion and 

Wnt signalling. 

 

1.1.3.3 The role of phosphorylation in the regulation of !-catenin transcriptional 

activity. 

 

As described above, while accumulation and especially nuclear localisation of !-

catenin are often regarded as hallmarks of Wnt activation, this has been increasingly 

disputed [92, 186-188]. For example, in Xenopus embryos, !-catenin’s signalling 

ability was demonstrated to be dependent on its N-terminal GSK3-! phosphorylation 

sites (S33, S37, T41), irrespective of its total levels [186]. This was corroborated in 

mammalian cells whereby a !-catenin Ser37 and Thr41 de-phospho specific antibody 

was utilised to demonstrate that transcriptional activity was mediated by molecular 

forms of !-catenin that remained unphosphorylated at these sites [187]. Levels and 
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nuclear localisation of this N-terminally de-phosphorylated form of !-catenin (often 

called ABC –Active !-catenin) correlated well with TCF-dependent transcriptional 

activation [187]. This pool represents a very small percentage of total !-catenin and 

intriguingly is normally localised in cadherin complexes at the plasma membrane but 

with decreasing prevalence upon increasing TCF-dependent transcription [188, 218]. 

Another isoform, termed PS45 (phospho-serine 45), has also been implicated with 

enhanced correlation with TCF-dependent transcriptional activity, but is less well-

characterised than ABC [219]. As mentioned, ß-catenin was demonstrated to be 

exported from the nucleus independently of CRM1 but in a RanGTPase dependent 

manner by interacting with Ran binding protein 3 (RanBP3) (Hendriksen et al, 2005). 

Interestingly it was demonstrated that RanBP3’s antagonism of nuclear accumulation 

was specific to the de-phospho ABC form of !-catenin involved in transcriptional 

activation, although how it distinguished phosphorylated and unphosphorylated forms 

was unknown [103, 220]. 

 

Other notable phospho-serine residues for !-catenin include phospho-S552 and S675 

mediated by AKT [221] and PKA[222], which have been reported to promote 

interactions with its transcriptional co-activators, such as CBP, to enhance TCF-

dependent transcription [42]. Furthermore, Rac1 and JNK have been implicated in 

regulating !-catenin nuclear localisation by phosphorylation on S191 and S605, 

downstream of PI3-kinase [116]. Tyrosine kinases and phosphatases are associated in 

the shift between cadherin-mediated adhesion and activated TCF-dependent 

transcription [42, 158]. Phosphorylation of !-catenin at the C-terminal Y654 by src 

kinase lowers its affinity for E-cadherin, thus increasing its availability for 

interactions with TCF proteins to activate transcription [223]. Phosphorylation at 

Y142 by the tyrosine kinases Fer, Fyn or Met also disrupts !-catenin’s interactions 

with "-catenins in adherens junctions [224] and promotes its interaction with BCL9-2 

to sequester it in the nucleus [124]. !-catenin phosphorylation at Y489 by Abl kinase 

(Rhee et al, 2007) has also been suggested to modulate !-catenin’s interaction with 

cadherin and enhance Wnt activity [124, 225]. Given the key role for phosphorylation 

in !-catenin regulation, it and its regulatory components are subject to fine tuning by 

a myriad of kinases involved in diverse signalling pathways, from src kinases [224] 
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and PKC[226] to AKT[221] and CDKs [227]. Figure 1.5 and Table 1.1 summarises 

key phosphorylation sites on !-catenin and their associated effects.  

 

 

 
 

 
 
Figure 1.5  !-catenin phosphorylation sites  
Phosphorylation of !-catenin can promote its degradation or its signalling activity in Wnt 
signalling. Phosphorylation in the armadillo domain alters its affinity to cadherins thus 
promoting nuclear localisation, while phosphorylation at the amino terminus promotes !-
catenin degradation. Adapted from [158]. 
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Table 1.1. !-catenin phosphorylation sites and effects. 

 

To summarise, post-translational modifications can dictate !-catenin’s binding 

partners and therefore its subcellular localisation and subsequent function within a 

cell [232-234]. The levels and localisation of specific transcriptionally competent 

forms of !-catenin, especially ABC, are increasingly considered as the hallmark of !-

catenin transcriptional activity rather than simply changes to total levels. Depending 

on the cell and environmental contexts at the time, both Wnt-dependent and -

independent !-catenin modifications are likely to co-operate, or compete, in 

modulating its localisation and function, in order to regulate the required adhesion and 

signalling responses [42, 235].  

 

Several aspects of Wnt signalling are currently ill defined from early events leading to 

the dissociation of the destruction complex to the precise mechanisms regulating the 

nuclear transport of ß-catenin. Although many core components of the Wnt/!-catenin 

pathway required for !-catenin mediated signal transduction have been identified, 

discrepancies are clearly prevalent with regards to the current model. In particular the 

relationship between !-catenin levels and localisation and activated TCF-dependent 



 33 

transcription is poorly understood, with this aspect especially important as a better 

understanding would aid interpretation, diagnosis and prognosis of various tumours. 

Due to the importance of Wnt/!-catenin signalling in development and disease, it has 

been the subject of several high-throughput RNAi screens to identify novel regulators 

of the pathway. 

 

1.2 RNA Interference 
 

RNA interference (RNAi) is a naturally occurring biological phenomenon that has 

been manipulated to become a powerful tool for targeted gene silencing in research.  

 

In brief, long dsRNA molecules triggers the RNAi process and these are cleaved 

intracellularly by a ribonuclease III-type protein called DICER to generate small 

interfering (si)RNA double stranded duplexes. These siRNA duplexes are ~21-23 

nucleotides and possess a 3’ hydroxy termini with 2nt overhangs and a 5’-phosphate 

termini. The siRNAs then become incorporated into a multimeric nuclease-containing 

complex called RNA-induced silencing complex (RISC), which gets activated 

following the loss of one siRNA strand. This siRNA (now single stranded) can bind to 

a complementary mRNA molecule thus guiding the RISC complex for its 

endonucleolytic cleavage and subsequent decreased expression of that target sequence 

[236]. 

 

1.2.1  Using RNAi in High Throughput Screens 
 

RNAi has become a powerful tool for targeted gene silencing in research and it is 

often used for the assessment of gene functions. Whilst the introduction of long 

dsRNAs into mammalian cells triggers a cytotoxic non-specific interferon response 

this is not observed with shorter dsRNAs (which are the active mediators of RNAi 

processed from long dsRNA). Since the genome sequences of many model organisms 

such as human, mouse and rat, are now known, in addition to the availability of 

sophisticated algorithms to design efficient RNAi sequences, it has become possible 

to use siRNAs against the entire genome in a high-throughput format. 
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1.2.2     endoribonuclease-derived siRNA (esiRNA). 
 

Whilst siRNA has clear potential in high-throughput knock out screens the use of 

synthetic siRNA is hampered, not only by its cost, but also by its variation in its 

inhibitory ability to different sequences within a gene [237]. However, upon 

enzymatic processing into shorter dsRNAs, different siRNA capable of interacting 

with various sites on target mRNA are generated and this in turn enhances the 

likelihood that at least one of them will pair with its target sequences [237]. This 

highlighted the possibility of generating multiple siRNA for a target from long 

dsRNA in vitro using DICER or RNaseIII, which led to the development of 

endoribonuclease-derived siRNA (esiRNA) [238-240]. Endoribonuclease digestion of 

long dsRNA transcribed from DNA in vitro results in a heterogeneous pool of several 

overlapping esiRNAs, capable of interacting with different sites on target mRNA. 

This in turn recapitulates the enhanced potency and specificity of gene knockdown 

conferred by long dsRNA utilised in C.elegans and D.melanogaster [238] (Figure 

1.6). This is a major advantage over siRNA in large scale studies as siRNA often 

possess variable inhibitory abilities, often requiring more than one siRNA per gene 

for efficient gene targeting [238]. Furthermore, esiRNA not only have the advantage 

of being relatively cheap to generate a full genome-wide library (when compared to 

synthetic siRNA), it is also less likely to cause off target effects because each 

individual siRNA present in the pool is at a very low concentration [237-239, 241]. 
 

Figure 1.6. Production of esiRNA (Reproduced and adapted from).  

Further details can be found in Chapter 2. 
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1.2.3 Genome-wide high-throughput RNAi screens 
 

As mentioned, since the advent of genomic sequencing, RNAi technology has been 

utilised in high-throughput formats to define the functional influence of nearly every 

gene to specific cellular processes and signalling pathways [242]. A range of high-

throughput genome wide screens have been undertaken, from a full genome analysis 

of the immune deficiency pathway using a reporter gene system in D. melanogaster 

[243] to a genome-wide analysis of fat storage and mobilisation in living C. elegans 

using imaging based methods [244]. 

 

Due to the inherent simplicity of their workflows and generally strong robustness and 

high reproducibility, plate reader based assays, such as those that rely on the use of 

luminescent reporters for example, are widely used as read-outs for high throughput 

cell-based screens [245]. Despite these obvious advantages, limited information and 

insights into cellular physiology are gained from such assays that average the 

biological response of entire cell populations. This, in turn, has driven the 

development of automated high-throughput imaging platforms to capture functional 

and morphometric information from single cells, with this so-called high content 

analysis (HCA) defined as the ‘extracting and understanding of multi-parametric data 

from high-throughput, sub-cellular imaging’ [245, 246]. This is highly relevant in 

assays with heterogeneous populations or when subtle ‘shifts’ in responses may be 

expected in different subpopulations of cells, which would be lost by taking single 

measurements of cell populations [246]. The power of HCA as a tool in compound 

and genetic screening lies in the use of various imaging filters that enables the 

acquisition of multiple fluorophores, and subsequently the simultaneous measurement 

of multiple features, in addition to the capability for both fixed and live cell imaging 

[247-249].  

 

The combination of HCA and RNAi screening has been especially powerful in 

ascertaining potential gene function from cellular phenotypes, with a wide variety of 

HCA assays utilised in genome-wide RNAi screens in various systems, from 

screening for novel components regulating mitotic spindle integrity in human cells 

[250] and cell division [240] to the genome-wide analysis of the role of kinases in 
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endocytosis [251]. Moreover, this technology is becoming increasingly applied to 

studying more complex systems such as stem cell biology [252, 253] and organotypic 

human cell co-culture system [254].  

 

HCA has been extensively applied to the analysis of transcription factor activity, from 

single-cell kinetic studies of intracellular relocalisation of transcription factors to 

screening large compound libraries to identify novel selective inhibitors of 

transcription factor nuclear translocation for example [255]. 

 

 Transcription factors that have been successfully studied by HCA include members 

of the AP-1 complex [256], HSF-1 [257], p53 [258], Stat3 [259], NF-$B [260] and 

forkhead transcription factor (FOXO) family [255, 261]. For example, the first potent 

and selective inhibitor of phosphoinositide 3-kinase (PI3K) was discovered and 

developed through employing a high content imaging screen of nearly 34,000 

compounds that monitored the nuclear translocation of the Akt effector, Forkhead box 

O (FOXO [261]. Activation of the PI3-kinase/Akt pathway results in FOXO 

phosphorylation and cytoplasmic retention with decreased phosphorylation and 

subsequent nuclear translocation of FOXO members observed upon PI3K inhibition. 

Therefore, nuclear translocation can be used as a marker of the activation status of the 

whole pathway in this case, with HCAs generally providing an excellent means of 

studying intracellular pathways and the subsequent characterisation of the hits 

identified [255]. Table 1.2 summarises the differences between high content image 

based assays and transcriptional reporter gene assays. 

 

1.2.3.1 High-throughput functional genetic screens for novel regulators of the ß-

catenin dependent Wnt signalling pathway. 

 

Although the major players within the ß-catenin dependent Wnt pathway are fairly 

well characterised, it is believed that a great number of core and cell-specific 

components are still to be identified [242]. With improving RNAi technology, several 

genome-wide and smaller select RNAi screens for additional components of the Wnt 

signalling pathway have been undertaken [262-267]. These screens mainly utilised a 

TCF-dependent reporter as their assay readouts, thus identifying regulators of TCF 
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dependent transcription. The first whole-genome RNAi screen to identify modulators 

of the Wnt signalling pathway was performed in Drosophila where Wg 

overexpression was used as a means of activating the pathway alongside an RNAi 

library [268]. A more recent screen in DLD-1 cells used a luciferase reporter gene to 

identify regulators of TCF-dependent transcription in the context of elevated 

endogenous transcriptional activation in a colon cancer cell background [242]. 

 

Within this laboratory, a human embryonic kidney (HEK293) cell line, based on the 

TOPflash reporter [269], was derived, which can be activated in response to Wnt 

signalling. The cell line contains a Dishevelled2-estrogen receptor ligand-binding site 

(DVL-ER) construct, which allows the activation of the fused protein, and 

subsequently TCF-dependent transcription, upon addition of !-estradiol to cells [270]. 

In addition, the cell line also contains a construct consisting of multimerised TCF 

binding sites driving the transcription of a Luciferase-IRES-GFP sequence 

(IRES=Internal Ribosomal Entry Sequence) allowing the monitoring of TCF-

dependent transcription via a luciferase assay [271] (Figure 2.1 in Chapter 2). This 

gives a system that is easily inducible by Wnt signalling activation, with the ability to 

measure the response given by quantifiable levels of reporter activation. This reporter 

cell line has already been used in a luciferase based, genome-wide esiRNA screen to 

identify novel regulators of TCF-dependent transcription in the context of Wnt-

signalling (manuscript under preparation). However, whilst this screen was able to 

identify components that played a role in the activity of the Wnt signalling on a 

transcriptional level, no information could be obtained in relation to ß-catenin levels 

and subcellular localisation and how this would then correlate to transcriptional 

activity.  
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Table 1.2 Comparison of high content and gene reporter assays in high-throughput 
screening 
Adapted from [255] and [272]. 
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Inherent differences in screen experimental set up, be it different cell types, pathway 

activation status (either exogenously or endogenously), and whether an 

overexpression or knockdown system is utilised, can not only provide novel 

information on Wnt signalling regulation but also an improved global insight into the 

organisation of the pathway. However, none of the screens for Wnt pathway 

regulators indicated above investigated !-catenin levels, with TCF-dependent 

transcriptional activation as the primary readout. The relationship between !-catenin 

and TCF-dependent appears to be far more complex and intricate than what the 

standard textbook model of the Wnt/!-catenin signalling pathway (Figure 1.2) 

portrays, therefore screening for regulators of !-catenin would potentially be very 

powerful.  

 

A brief report described the development of a fluorescent imaging screening assay in 

primary human preosteoblasts capable of identifying compounds that modulated !-

catenin nuclear translocation, but only presented experiments using Wnt3a and 

GSK3-! inhibitors to validate the method, with no new biological insights revealed 

[273, 274]. More recently, studies applied enzyme fragment complementation to 

measure !-catenin nuclear localisation to identify novel compounds that activated !-

catenin [275], whereby complementation occurs between a peptide fragment of !-

galactosidase tagged to !-catenin and a nuclear-resident complementary enzyme 

[276] [275].  

 

Notably, comparative or parallel studies using both traditional gene reporter assays 

and image based assays have been undertaken for certain proteins, such as the 

FOXO3a transcription factor, whereby the transcriptional activity of endogenous 

FOXO3a was measured using both a high-content FOXO3a-GFP nuclear 

translocation assay in parallel with a luciferase reporter assay [255, 277]. Whilst not 

in parallel, high throughput functional screens have been undertaken for regulators of 

both TGF!-driven gene expression and the nuclear localisation of SMADs that 

activate downstream TGF-! gene transcription, thus allowing for potential integration 

and correlation between these data sets [278-281]. The ability to correlate !-catenin 

levels and nuclear accumulation data with TCF-dependent transcription, in addition to 

utilising similar integrative screening approaches employed in another recent Wnt 
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screen [242] would hold immense power in furthering our understanding of !-catenin 

regulation within Wnt signalling. As mentioned, a refinement of the current textbook 

model of Wnt/!-catenin is required for the better interpretation of not only bench-side 

biological data but, more significantly, for improved diagnosis and treatment of 

patient tumours. Furthermore, given the increasing awareness of the complexity of 

Wnt/!-catenin signalling, it is widely believed that there are many components, both 

core and cell specific, yet to be identified [242]. Moreover, the presence of extensive 

cross-talk between different signalling pathways further complicates our 

understanding of this important pathway and this aspect should also be a major focus 

of future signal transduction studies [282] . Determining the core components 

involved in Wnt/!-catenin signalling and cell-type specific differences is crucial for 

the improved understanding of the development of specific tissues, in determining 

how signalling becomes perturbed in different cancers and importantly in the 

generation of new target therapeutics [58, 242].  

 

1.3 Aims of the project 
 
The primary aim of the project was to develop image-based high-throughput genome-

wide esiRNA knockout screens to identify novel regulators of ß-catenin levels and 

nuclear localisation in the context of Wnt-signalling. Furthermore, this project aimed 

to investigate the correlation between ß-catenin accumulation and nuclear targeting 

with subsequent transcriptional activation through comparative analysis with the 

previously undertaken screen for regulators of TCF-dependent transcription. The 

following chapters describes the development of three screening assays for regulators 

of !-catenin levels and localisation; one in the aforementioned HEK293 derived TCF-

dependent reporter cell line in an active Wnt signalling context, the other two in a 

U2OS derived cancer cell line of differential Wnt activation levels. The results from 

the screens were integrated with screening data for regulators of TCF-dependent 

transcription in the reporter cell line in addition to other published work. Furthermore, 

a selection of hits were reconfirmed, in addition to initial characterisation of one 

promising potential novel regulator of !-catenin and subsequent TCF-dependent 

transcription. Results from the study hold great potential in shedding light on how ß-
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catenin modulation is linked to Wnt induced initiation, continuation and termination 

of gene expression. 
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2.1 The 7df3 TCF-luciferase reporter cell line 
 
The 7df3 luciferase reporter cell line was constructed by Dr. Helen Wildish using a 

cell line originally generated by Dr. Matthew Smalley [283] and is described in Ewan 

et al, 2010 [271].   

 

Briefly, HEK293 cells expressing a Dishevelled-estrogen receptor (Dvl2-ER) fusion 

protein that allowed estrogen-dependent induction of the Wnt signalling pathway 

were engineered to express a Wnt-responsive bicistronic reporter.  

 

A cDNA encoding a mouse Dvl2-ER fusion protein was integrated into the FRT site 

of ‘Flp-In’ HEK293 cells (Invitrogen) using Flp recombinase (Invitrogen), and 

selected with 200 µg/ml hygromycin (Invitrogen) to isolate stably transfected clones 

[283].  Similar to the rationale used to create inducible activation of Raf-1 [283, 284], 

this enabled inducible activation of TCF-dependent transcription in all cells by the 

addition of Estradiol [283, 284].   

 

A fragment of the Xnr3 enhancer [285]  (-180 to -60) was fused to four TCF 

consensus-binding sites and a c-Fos minimal promoter [286]. This promoter construct 

was inserted into the pUB-bsd blasticidin resistance plasmid (Invitrogen). The 

luciferase gene from pGL3-basic (Clontech) and the IRES-GFP-SV40 polyA 

sequences from pIRES-hrGFP-2a (Stratagene) were inserted downstream of the 

promoter (Figure 2.1). The reporter vector was transfected into a stable HA-Dvl2-ER 

(estrogen receptor) expressing cell line [283]. Stably transfected cells were selected 

using 3µg/ml Blasticidin (Invitrogen) and 200µg/ml hygromycin (Invitrogen) with 

resistant clones were exposed to the GSK-3 inhibitor lithium (9 mM concentration for 

16 hours) to induce the Wnt-dependent expression of GFP. FACS was used to enrich 

for responsive cells that had high levels of GFP. A second round of lithium induction 

and FACS was used to isolate highly inducible clones, which were confirmed with 

luciferase assays. The clone 7df3 was selected based on its low background luciferase 

expression and high induction in response to Lithium and estradiol (Figure 2.2). 
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Figure 2.1 Schematic representation of the reporter plasmid  
 
The plasmid was stably transfected into HEK293 cells to create a sensitive reporter cell line 
for assaying the level of activity of the Wnt signalling pathway.  The plasmid contains 4 
multimerised TCF binding sites driving the transcription of luciferase and GFP reporter genes. 
Figure kindly provided by Dr Jamie Freeman. 
 
 

2.2 Cell culture 

2.2.1 7df3 reporter cell line 
 
The 7df3 TCF-luciferase reporter cells were cultured at 37°C and 5% CO2 in DMEM 

(Invitrogen) supplemented with 10% heat inactivated Fetal Calf Serum (Invitrogen), 

50units/ml Penicillin (Invitrogen), 50µg/ml Streptomycin (Invitrogen) and 0.5% L-

Glutamine 50mg/ml (Invitrogen). They were maintained under constant antibiotic 

selection using 200µg/ml hygromycin (Invitrogen) and 3µg/ml blasticidin 

(Invitrogen). ß-estradiol (Sigma) was added to the luciferase reporter cells 24 hours 

prior to analysis at a final concentration of 4µM to induce Wnt signalling. 

  

Minimal c-Fos promoter 

Xnr3 promoter region -180bp to -60bp 

6X multimerised TCF binding sites 
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Figure 2.2 Schematic representation of the selection process used to 
produce the reporter cell line.   
HEK293 cells were sequentially stably transfected with a Dsh-ER fusion, and the TCF 
reporter construct.  The clones were selected for responsiveness to Lithium induction, before 
individual clones were screened for the highest induction:lowest background ratio. Figure 
kindly provided by Dr K.Ewan and Dr J. Freeman. 

 

2.2.2 U2OS cell lines 

2.2.2.1 eGFP-!-catenin U2OS cells 

 
The U2OS Osteocarcinoma cell line stably expressing GFP-tagged ß-catenin was 

purchased from BioImage (Fisher BioImage, Denmark, data sheet displaying 

construct provided in Appendix A).  

 

These cells were cultured at 37°C and 5% CO2 in DMEM-GlutaMAX  (Invitrogen), 

supplemented with 10% heat inactivated Fetal Calf Serum (Biochrom), 50units/ml 
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Penicillin (Invitrogen), 50µg/ml Streptomycin (Invitrogen) and 0.5% L-Glutamine 

50mg/ml (Invitrogen). They were maintained under constant antibiotic selection using 

0.5mg/ml geneticin G418 (Invitrogen). A GSK3ß inhibitor, (2’Z,3’E)-6-

Bromoindirubin-3%-oxime (BIO; Sigma) was added to the U2OS cells 16 hours prior 

to analysis at the concentrations indicated in figure legends. 

 

2.2.2.2 U2OS cells 

 

The U2OS Osteocarcinoma cell line (ATCC) was cultured at 37°C and 5% CO2 in 

DMEM-GlutaMAX (Invitrogen), supplemented with 10% heat inactivated Fetal Calf 

Serum (Biochrom), 50units/ml Penicillin (Invitrogen), 50µg/ml Streptomycin 

(Invitrogen) and 0.5% L-Glutamine 50mg/ml (Invitrogen). 

 

2.3 esiRNA 
 

2.3.1 Genome-wide esiRNA Library and secondary esiRNA 

sublibrary. 
 
A genome-wide esiRNA library was obtained from Professor Frank Buchholz at the 

Max-Plank-Institute for Molecular and Cell Biology and Genetics in Dresden 

(Germany) and represents 17,188 human genes [239, 240]. The library was diluted 

and plated onto test plates using the JobiWell robotic micropipetting system (CyBio) 

at GE Healthcare, Maynard Centre, Cardiff. The library was used at a final 

concentration of 20ng per well in the primary and secondary screening experiments. 

Table 1, Appendix B (on the DVD) provides information regarding well IDs and 

sequences of the primary library.  

 

A secondary sub-library of 164 esiRNAs (representing 161 different genes) was used 

for the reconfirmation assays of a subset of genes identified in the primary screens. 

These esiRNAs were generated from non-overlapping sequences designed and 

produced by Dr Mirko Theis and Professor Frank Buchholz from the MPI-CBG at 
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Dresden. Gene IDs and esiRNA sequences for the sublibrary can be found in 

Appendix B, Table 27. 

2.3.2 Control esiRNA production.  
 
Control esiRNA (APC, R-luciferase, and ß-catenin esiRNA) were made from 

purchased PCR templates containing T7 sites at both ends (ImaGenes; previously 

RZPD) and from the MPI (Dresden). In vitro transcription of the templates by T7 

RNA polymerase (RNAmaxx High yield transcription kit, Stratagene) was undertaken 

to yield dsRNA, which was digested by RNAseIII for 4 hours at 28oC, followed by 2 

hours at 37oC, resulting in a pool of short siRNA duplexes. These were run on 4% 

agarose gel to check that the duplexes were between 18-21 nucleotides long before 

being spun through siRNA purification columns (Ambion), which removed impurities 

and undigested/partially digested duplexes. 

 

2.4 Transfection procedures 

2.4.1 Reverse transfections 
 

Cells were cultured to ~80% confluency prior to transfection. Reverse transfection is 

an alternative method of transfecting multi-well plates (96-well and above) where 

cells are transfected while still in suspension (i.e. after trypsinisation and prior to 

plating). Briefly, esi or siRNA are plated at the desired concentration followed by 

addition of transfection reagent in optimem (serum free) media (Invitrogen). After 20 

minutes incubation, cells are seeded onto the transfection complex at the desired 

densities. During optimisation experiments, various reagents at different 

concentrations were used in addition to various cell counts as indicated in figure 

legends where appropriate. Screening conditions per screen are described in section 

2.5 below.  

 

For follow up studies in 384 well format, 3000 7df3 cells/well were reverse 

transfected with 20ng esiRNA/siRNA and 5ul of Interferin (Polyplus):Optimem 

complex, diluted at 1:100 according to manufacturers guidelines. 1500 eGFP-!-

catenin U2OS cells/well were reverse transfected with 20ng esiRNA/siRNA and 
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0.12µl Lipofectamine 2000 (Invitrogen) in 5ul Optimem according to manufacturers 

guidelines. 

 

2.4.2 DNA and esi/siRNA forward transfections – Rescue 

experiments. 
 

7df3 cells were cultured to ~80% confluency then seeded into 96 well plates at a 

density of 3X105 cells/ml in 100 µl antibiotic free DMEM 24hrs prior to transfecting.  

Each well of a black-walled 96 well plate (Nunc) were transfected using 

Lipofectamine 2000 (Invitrogen). Briefly, cells were co-transfected with 50ng 

esiRNA (hnRNPA1 or control), 10ng CMV-LacZ and 90ng empty vector control or 

mouse hnRNPA1 cDNA per well using 0.3 µl/well of Lipofectamine 2000 diluted in 

10 µl optimem (Invitrogen) following manufacturers guidelines. 24 hours after 

transfection !-estradiol was added to 4uM. 48 hours after transfection cells were lysed 

in Glo lysis buffer and incubated with luciferase substrate (Promega Bright-Glo) and 

!-galactosidase substrate as detailed in 2.9. TCF-luciferase activity was normalised to 

!-galactosidase expression levels since esiRNAs had been co-transfected with the 

CMV-LacZ plasmid to allow assessment of relative transfection efficiencies. 

 

2.5 Primary Screens 
 

As mentioned, the library was seeded at a concentration of 20ng per well in a volume 

of 5ul, in 384-well format and stored at -80oC until assay. On the day of screening 

20ng of controls were added to the following wells. In the 7df3 H screen however, !-

catenin esiRNA were only added to wells M 18 and N18. 
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In small-scale optimising experiments of screening conditions all liquid handling 

steps were undertaken manually. In the full screen of the entire esiRNA library, all 

liquid-handling procedures were performed using a WellMate liquid dispenser 

(Matrix Technologies). Screens were undertaken as a single experiment with all 47 

384-welled plates corresponding to the whole screen transfected using the same 

passage cells grown from the same original vial, during the same day and processed 

together as one during latter stages to minimise day-to-day experimental variability. 

 

2.5.1 7df3 Reporter cell line (H) screen 
 

The 7df3 cell line was reverse-transfected with the esiRNA library using Interferin 

(Polyplus) according to manufacturers instructions. In brief, 20ng of esiRNA was pre-

plated onto 384-well plates with 20ng of control esiRNA (or water) spotted onto each 

plate on the day of the screen as indicated in Figure 2.3 above. Only 2 wells of control 

!-catenin esiRNA, however, were added in this particular screen. The transfection 

reagent Interferin (Polyplys) was diluted 1:100 in Optimem and after a 5 minute 

incubation added to the esiRNA in the plates (5ul per well) and incubated for 20 

minutes.  The 7df3 cells were subsequently seeded onto the esiRNA/Transfection 

complex in antibiotic free media, with approximately 3000 cells per well deemed to 

be a suitable number following optimisation. 24 hours post-transfection cells were 

treated with 4µM !-estradiol for a further 24hrs prior to fixation and 
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immunocytochemistry for !-catenin (48hrs hours post transfection) as detailed in 

section 2.6. 

 

2.5.2 eGFP-!-catenin U2OS cell line – UA and UB screens. 

2.5.2.1 eGFP-!-catenin U2OS screen (UB screen) 

 

The U2OS cell line was reverse-transfected with the esiRNA library using 

Lipofectamine2000 (L2K; Invitrogen) according to manufacturers instructions. In 

brief, 20ng of esiRNA was pre-plated onto 384-well plates with 20ng of control 

esiRNA (or water) spotted onto each plate on the day of the screen as indicated in 

Figure 2.3. The desired concentration of L2K (optimised at 0.12nl/well L2K) was 

added to optimem, incubated for 5 minutes at room temperature, prior to addition of 

5ul of L2K/optimem mix onto the esiRNA plates. Following a 20 minute incubation, 

the U2OS cells were subsequently seeded onto the esiRNA/transfection complex in 

antibiotic free media, with approximately 1500 cells per well deemed to be a suitable 

number following optimisation.  

 

2.5.2.2 eGFP-!-catenin U2OS APC (UA) screen  

 

20ng/well of APC esiRNA (produced by myself as detailed in section 2.3.2) was 

added to each well of the entire esiRNA library on the day of the screen. Otherwise, 

experimental procedures for the UA screen were identical to the UB screen, unless 

otherwise mentioned (section 2.5.2.1).  

 

2.6 Fixation and immunocytochemistry 
 
Cells were reverse transfected and treated as described above. 48hrs post transfection 

the luciferase reporter cells were fixed in 4% Paraformaldehyde for 20mins, 

permeabilised in 0.2% Triton X-100 for 5 minutes and blocked with 10% horse serum 

(Invitrogen) for 40 minutes, all made up in phosphate-buffered saline (PBS) and at 

room temperature. Cellular ß-catenin was immunostained by incubating the cells for 1 
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hour at room temp and then 40C overnight with primary monoclonal ß-catenin 

antibody (Becton-Dickinson), used at 1:500 in 10% Horse serum/PBS. Next day, cells 

were incubated for 1 hour with Alexa fluor.488 goat anti-mouse secondary antibody 

(Invitrogen), used at a 1:500 dilution in 10% Horse Serum/PBS. Cells were then 

incubated for 20 minutes with 3&g/ml DAPI (4%,6%-diamidino-2-phenylindole; Sigma) 

in PBS to stain for nuclei. Cells were thoroughly washed in PBS following all 

antibody incubation steps at room temperature and left in PBS following completion, 

with plates sealed and stored at 40C prior to imaging. 

 

U2OS cells stably expressing eGFP-tagged ß-catenin were fixed as above and 

subsequently incubated with 3&g/ml DAPI and 0.2% TritonX-100 in PBS for 20 

minutes. Between steps cells were washed with PBS and treated at room temperature 

and left in PBS following completion, with plates sealed and stored at 40C prior to 

imaging. 

 

2.7    Imaging and Analysis 
 
Following fixation and staining image acquisition was performed using the IN Cell 

Analyzer 1000 system (GE Healthcare, Maynard Centre, Cardiff). Acquisition and 

analysis parameters for each screen are indicated in their specific subsections below. 

 

2.7.1 7DF3 H screen 
 

One field of view was acquired per well using a x10 objective, with a 1 second 

exposure time for DAPI and 2 seconds for Alexa 488 secondary antibody labelling ß-

catenin. Image analysis was carried out using the Multi Target Analysis assay in the 

IN Cell Analyzer1000 Workstation software version 3.4 (GE Healthcare). Algorithms 

for data analysis were established and optimised according to assay conditions and 

manufacture instructions. In brief, the final segmentation protocol used was as 

follows: 

 

 ‘Top-hat’ algorithm applied to both DAPI and !-catenin channels  
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DAPI channel : minimum area 60µm2 / sensitivity setting 60 

!-catenin channel : minimum area 100µm2 / sensitivity setting 60 

 

The ‘Top-hat’ algorithm is a relatively rapid transformation used to accentuate objects 

of a specified size, thus increasing the efficiency of their detection. Furthermore, it is 

also useful for distinguishing objects from a surrounding uneven background. This 

algorithm is optimal for objects that are fairly uniform in size and shape, for example 

nuclei and cells that are generally similar sizes/shapes such as the 7df3 cells utilised 

in this particular screen. The sensitivity setting determines which pixel clusters 

qualify as objects based on their intensity relative to local background. Increasing the 

percent sensitivity increases the detection of dimmer objects. Conversely, the lower 

the sensitivity setting the brighter a cluster of pixels is required to be in order to be 

differentiated from the background.  

 

2.7.2 eGFP-!-catenin U2OS UA and UB screens 
 
Two fields of view were acquired per well using a x10 objective, with a 1 second 

exposure time for DAPI and 3 seconds for eGFP-!-catenin. Image analysis was 

carried out using the Multi Target Analysis assay in the IN Cell Analyzer1000 

Workstation software version 3.4 (GE Healthcare). Algorithms for data analysis were 

established and optimised according to assay conditions and manufacture instructions. 

In brief, final segmentation protocol used was as follows 

 

 ‘Top-hat’ algorithm was applied to the DAPI channel, collar algorithm applied for !-

catenin channel 

 

DAPI channel : minimum area 60µm2 / sensitivity 80 

!-catenin channel : collar 2µm 

 

The collar algorithm defines a ring-shaped cytoplasmic sampling region by dilating 

outwards a set distance (e.g. 2µm in this case) from the established nuclear region as 

defined by the DAPI channel. This has the advantage of being able to sample the 

cytoplasmic intensity rapidly. The same analysis protocol was applied to both U2OS 
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screens. 

 

2.8 Statistical Methods. 
 

2.8.1 Z-factor analysis 
 

The Z-factor is a dimensionless screening window coefficient that reflects the quality 

and suitability of a screen in identifying true hits by assessing the signal dynamic 

range and its associated variation. It is defined as the ratio of the separation band to 

the dynamic range of the assay, based on the positive and negative control data, and is 

given by the formula: 

 

Z factor = 1 - 3 x SSD/R 

 

whereby SSD is the sum of the standard deviations of the positive and negative 

controls with R representing the range between the means of the positive and negative 

controls (Figure 2.4) [287].  

 

 

 
Figure 2.4 Schematic adapted from [288] with permission from SAGE publications. 

See text below for details. 

 

Figure 2.4 displays data for both negative and positive controls and defines the 

separation band between the two. The horizontal axis displays the value determined 

by the assay while the vertical axis illustrates the prevalence of each value. The 
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dynamic range of the assay is defined as the difference between the means of the 

negative and positive controls. As defined by the arbitrary equation above, all 

background values will be less than a threshold defined as the mean of the 

background, plus three times the standard deviation of those values. With normally 

distributed data (a Gaussian distribution) 99.86% of the values would be expected to 

be less than that threshold, with 0.14% of the values expected to be greater. Similarly, 

true hits in the assays would be expected to have values greater than a threshold set by 

the mean of the positive controls minus three times the standard deviation of those 

values. The difference between these two thresholds (difference between the mean 

signal of the positive and negative controls) defines the separation band (Figure 2.4).  

 

A robust HTS will have a large dynamic range between positive and negative 

controls, with small standard deviations, resulting in high Z factors. A Z-factor 

between 0 and 0.5 indicates that an assay is workable, with Z-factors greater than 0.5 

indicative of an ‘excellent screening assay’[288].  

 

Z-factor analysis was used in preliminary tests to assess the quality of the assay to 

predict its suitability for use in a high-throughput screen. Subsequently it was used in 

optimisation assays as a means of comparing the effects of different conditions on the 

positive and negative controls, thus allowing the assay to be fine-tuned to obtain the 

most optimal conditions for use in the full screen. Furthermore, each screen plate 

possessed control wells allowing the Z-factor for each plate to be worked out after 

screening, thus giving an indication of the success of the transfection for that 

particular plate.  

 

2.8.2 Non-controls based normalisation  
 

Normalisation (also termed standardisation) of screening raw data is beneficial as it 

allows measurements to be comparable across plates by removing systemic plate-to-

plate variation. The nature of screening means that the overwhelming majority of 

samples screened are assumed to be inactive and can serve as their own controls. 

Therefore, it is possible to remove the control data from each plate and normalise the 

raw data to plate means and select as ‘hits’ those that deviate significantly from this 
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sample average. If from plate to plate the sample average shifts by a significant 

amount then this is likely to be due to a shift in the measurement process and not in 

the samples being measured themselves [289]. 

 

2.8.3 Z scores 
 
Each esiRNA was expressed as fold over plate means in both !-catenin parameters 

under investigation, followed by conversion into their equivalent z-scores. This 

statistical measure represents the number of standard deviations a sample is from its 

plate mean.  This allows the esiRNAs from across the whole screen to be rank-

ordered as it provides clear information on the strength of each esiRNA relative to the 

distribution of the rest of the plate [289] 

 

It is calculated by subtracting the plate mean from each data point sample value, with 

this difference then divided by the plate standard deviation. 

 

Z =  xi - X 

Sx 

 

Z is the Z-score for the raw value xi as defined by the formula above with X being the 

mean of all the raw values (minus controls) on a plate and S the standard deviation of 

these values (plate standard deviations). A positive Z-score means that the data point 

was greater than the mean while negative Z-scores reveal that the data point was 

below the mean.  

 

Different thresholds were set for generating lists of primary hits as indicated in the 

text. These included selecting genes with Z-score of >2 and <-1.5 with cell numbers 

greater than 30% of the mean cell number/well of associated plates. For less stringent 

analysis cut offs of Z-scores >1.75 and <-1.3 were set.  

 

Following analysis in Excel, the database program FilemakerPro (version 10) was 

used to store and sort the screening data. 
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2.8.4  Other statistical procedures. 
 

All other statistical procedures (as indicated in figure legends) were carried out in 

GraphPad Prism software, version 4.0a. 

 

2.9 Luminescence assays 
 
48 hours post-transfection, cells were lysed in 50 µl/well of a 96 well plate of Glo-

lysis buffer (Promega) and incubated with agitation at room temperature for 30 

minutes.  20 µl was set aside for !-Galactosidase activity, with 30 ul Bright-Glo 

reagent added to the remaining 30 µl lysates, and assayed immediately for luciferase 

activity by luminescence using a FluoStar Optima plate reader (BMG Labtech). 20 µl 

of !-Glo (Promega) reagent was added to the 20 µl lysates set aside, incubated with 

agitation at room temperature for 30 minutes prior to assaying luminescence using a 

FluoStar Optima plate reader (BMG Labtech). 

 
To control for transfection efficiencies and potential toxic effects, luciferase values 

were normalised to !-Galactosidase activity.  

 

2.10 Cell Extraction 
 

Cells were seeded in 6 well plates at a density of 2x105 cells per well and transfected 

(if required) 24hrs later using Lipofectamine 2000, according to manufacturers 

guidelines. 48 hours post-transfection cells were placed on ice, washed in ice-cold 

PBS before scraping in the required lysis buffer (as described below). 

 

2.10.1 Whole cell extractions 
 

Cells were lysed in a 1% Triton X, 150mM NaCl, 50mM Tris HCl pH8 buffer 

supplemented with Roche Complete protease inhibitor cocktail, stored on ice for 10 
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minutes prior to centrifugation at 13,000g, 4oC, for 10 minutes with the supernatant 

kept for use in downstream assays. 

 

2.10.2 Crude cytoplasmic and nuclear extractions 
 

To extract crude cytoplasmic extracts, cells were lysed in a 50mM TrisCl (pH 8.0), 

100mM NaCl, 5mM MgCl2, 0.5% NP-40 buffer supplemented with Roche Complete 

protease inhibitor cocktail, stored on ice for 5 minutes prior to centrifugation at 500g, 

4oC, for 5 minutes with the supernatant kept for use in downstream assays 

(cytoplasmic fraction). 

 

To extract crude nuclear extracts, pellets obtained from above were lysed in a 50mM 

TrisCl (pH 8.0), 150mM NaCl, 0.1% SDS buffer supplemented with Roche Complete 

protease inhibitor cocktail, stored on ice for 20 minutes prior to centrifugation at 

500g, 4oC, for 5 minutes with the supernatant kept for use in downstream assays 

(nuclear fraction).  

  

2.11 Immunoprecipitation 

Glutathione-sepharose 4B beads were pre-equilibrated by washing 3 times in lysis 

buffer (1% Triton X, 150mM NaCl, 50mM Tris HCl pH8). 20ul of a 2x bead slurry 

(packed bead volume of 10ul) was used per sample and incubated with the cell lysates 

(cell fractions or whole cell lysates as indicated in legends) and 2ul #-catenin (BD 

Transduction laboratories), hnRNP A1 (Sigma) or KSRP (provided by Dr. Douglas L. 

Black (Howard Hughes Medical Institute at UCLA, Los Angeles, USA)) antibodies 

with agitation for 2 hours at 4oC. Beads were then washed in lysis buffer 3 times 

before eluting the protein in 2x NuPage Sample Buffer (containing 5% #-

mercaptoethanol) to undergo gel electrophoresis and western blotting as described 

below. 
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2.12 SDS/PAGE and Western Blotting. 

Proteins were separated on 4-12% linear gradient SDS-PAGE gels and transferred to 

nitrocellulose using the Iblot Module (Invitrogen), according to manufacturers 

guidelines. Membranes were blocked in 5% milk in Tris-buffered saline with 0.1% 

Tween (TBS-T; 20mM Tris pH7.6, 137mM NaCl, 0.1% Tween) for 1hr at room 

temperature then incubated overnight with primary antibody at 4 o C. Mouse 

monoclonal anti-!-catenin (BD Biosciences) and mouse monoclonal anti-hnRNPA1 

(Sigma) were used 1:1000 except where stated. Anti-tubulin and Anti-!-Actin 

antibodies (Thermo scientific, Loughborough, UK and Sigma respectively) were used 

at 1:5000 with Ab5 anti-KSRP (provided by Dr. Douglas L. Black [Howard Hughes 

Medical Institute at UCLA, Los Angeles, USA]) used at 1:500. All primary antibodies 

were used in TBS-T+ 5% BSA. Membranes were washed in TBS-T 5 times over 

30min before incubating for an hour at room temperature with an HRP-conjugated 

secondary anti-mouse or anti-rabbit antibody (GE Healthcare) diluted at 1:5,000 in 

TBS-T. Membranes were again washed in TBS-T 5 times over 30min before being 

developed using SuperSignal West Pico chemiluminescent substrate (Thermo 

scientific, Loughborough, UK) followed by exposure to film (Kodak, Hemel 

Hempstead, UK). 

 

2.13 Pulse-Chase (Metabolic Assay)  

48 hours prior to transfection cells were seeded in 25cm2 flasks (five flasks per 

treatment: hnRNP A1, APC esiRNA and water control) so that they were 30-50% 

confluent on the day of transfection. 2µg of esiRNA (R-luc control, APC and hnRNP 

A1) was transfected into cells using Interferin (Bio-Rad, 15µl) at 1:100 dilution, for 

the 7df3 cell line, and Lipofectamine 2000 for the eGFP-!-catenin cell line following 

manufacturers guidelines. 24 hours post transfection, 7df3 cells were treated with 

estradiol (4µM) to stimulate Wnt signalling for a further 24 hours before pre-starving 

of methionine and cysteine for 1 hour (48 hours post transfection in total). Media was 

then replaced with Pro-mix medium (GE Healthcare) containing 3.2MBq/ml (1.6MBq 

per flask) 35S methionine and cysteine and incubated for a further hour to label newly 
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synthesised proteins. Media was subsequently replaced with normal medium 

(indicating the start of the chase) with cells harvested and extracted in lysis buffer 

(1% Triton X, 150mM NaCl, 50mM Tris HCl pH8 supplemented with Roche 

complete protease inhibitor cocktail) at the time points indicated in the figures after 

the removal of 35S medium for each esiRNA treated condition. β-catenin was 

immunoprecipitated (as above) and proteins re-suspended in NuPage Sample Buffer 

(containing 5% β-mercaptoethanol), denatured and run on pre-cast 4-12% NuPAGE 

gels (Invitrogen) as described in 2.12. The gel was fixed in acetic acid (10%)-

methanol (30%), dried and exposed to film (Kodak) to detect radioactive bands. 

 

2.14 RNA Extraction and RT-PCR 
 

RNA was extracted from transfected reporter cells using High Pure RNA Extraction 

Kit (Roche) according to manufacturers guidelines and quantified using the Nanodrop 

small volume spectrophotometer (Thermo scientific). Reverse transcription was 

performed using 1µg RNA and 1µg primers (random or OligodT) using M-MLV 

Reverse Transcriptase, RNase H minus (Promega, Southampton, UK). PCR of exons 

13 and 16B of #-catenin and 18S rRNA (as a control) was undertaken with primer 

sequences displayed below. PCR on 0.2 µg template DNA was undertaken using the 

GoTaq® Flexi DNA polymerase (Promega), 0.5µM primers with 30 cycles of 

denaturing at 95oC, annealing at 55oC and extension at 72oC with products 

subsequently separated on a 1% agarose gel.  

 

Primers for RT-PCR were as follows: 

 

18S rRNA (control)  
Forward TCA AGA ACG AAA GTC GGA GGT 
Reverse GGA CAT CTA AGG GCA TCA CA 
 
!-catenin (exon 13) 
Forward GAC CAG CTC TCT CTT CAG AAC A 
 
!-catenin (exon 16B) 
Reverse TTC TTG TGC ATT CTT CAC T 
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2.15 qRT-PCR 
 
Cells were treated with 5&g/ml Actinomycin D (Sigma) 48hrs post transfection with 

total RNA isolated using High Pure RNA Extraction Kit (Roche), at the indicated 

time points in figure legends, and quantified using the Nanodrop small volume 

spectrophotometer (Thermo scientific).  Relative levels of #-catenin, hnRNP A1 and 

housekeeping gene mRNA at each time point following Actinomycin D treatment 

were assessed by qRT-PCR.  

 

1&g of total RNA was reverse transcribed using random primers from the Quantitect 

Reverse Transcription kit (Qiagen, Crawley, UK) and the cDNA produced diluted 

1:100 with 5 &l of the diluted material used in qPCR assays. iQ SYBR green 

supermix (BioRad, Hemel Hempstead, UK) was used alongside the primers indicated 

below (Sigma).  Opticon Monitor software  (MJ Research, Waltham, USA) was used 

to analyse the course of the reaction and calculate CT values.   

 

Relative amounts of mRNA at each time point were derived using the 2(-
%
C

T
) formula 

[290], where 'CT is (CT, Time X  - CT, Time 0).  The amount of mRNA at time zero was set 

at 100%.  As Actinomycin D treatment inhibits all general transcription this formula 

was used instead of the 2(-''C
T

) formula, where relative mRNA values are normalised 

to a housekeeping gene as, in this particular assay, it was deemed inappropriate to 

normalise to housekeeping genes as each would possess different mRNA decay rates. 

 

In untreated cells (i.e. no Actinomycin D treatment), the 2(-''C
T

) formula was used, 

where ''CT is (CT, Target gene  - CT, Housekeeping gene) hnRNP A1 knockdown cells - (CT, Target gene  - CT, 

Housekeeping gene) Control cells.  Several housekeeping genes were tested, with GAPDH or 

RPL32 used as housekeeping genes in the data displayed within Chapter 5, with the 

amount of mRNA in cells treated with R-luciferase (control) esiRNA set to 100%.   

 
qPCR primers were as follows:  

 
!-catenin  
Forward CCATTCCATTGTTTGTGCAG 
Reverse GGTCAGCTCAACTGAAAGCC 
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HnRNP A1 
Forward AAAGCCCTGTCAAAGCAAGA 
Reverse ACGACCGAAGTTGTCATTCC 
 
GAPDH 
Forward TGCACCACCAACTGCTTAGC 
Reverse GGCATGGACTGTGGTCATGAG 
 
RPL32 
Forward TTAAGCGTAACTGGCGGAAAC 
Reverse GAGCGATCTCGGCACAGTAA 
 
!-actin 
Forward CTGGAACGGTGAAGGTGACA 
Reverse AAGGGACTTCCTGTAACAATGCA 
 
!2M 
Forward TGCTGTCTCCATGTTTGATGTATC 
Reverse TCTCTGCTCCCCACCTCTAAG 
 
HPRT1 
Forward TGACACTGGCAAAACAATGCA 
Reverse GGTCCTTTTCACCAGCAAGCT 
 

2.16 RNP-IP Assays 
 
Nuclear and cytosolic extracts were prepared from U2OS and eGFP-!-catenin U2OS 

cells as described in 2.10 followed by hnRNP A1 immunoprecipitation (and bead only 

control) as described in 2.11. After the third IP wash, STAT60 reagent (500 µl/IP) 

was added directly to the beads to extract RNA, vortexed and incubated at room 

temperature for 5 minutes. 100 ul of chloroform was added, followed by vortexing 

and incubating at room temperature for 2 minutes, prior to a high speed spin at 14,000 

RPM for 15 min. 250 µl isopropanol was then added to the supernatant, followed by 

spinning at 14,000 RPM for 10 minutes. The resulting pellet was washed once with 

70% ethanol (500ul) prior to another spin at 14,000 for 5 minutes. Ethanol was then 

removed with the pellet dissolved in 10 µl water with qRT-PCR carried out as above 

on the resulting RNA. 
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2.17 Time-lapse microscopy  
 
48hrs after transfection eGFP-!-catenin cells were treated with 100µg/ml 

cycloheximide with time lapse images taken every 10minutes for 15 hours using an 

Olympus IX71 inverted microscope with a x40 objective. The rate of eGFP 

fluorescence decay was quantified using ImageJ, and displayed as a % of the 

fluorescence at Time 0, which was set at 100%. esiRNA treated cells and Wnt3a 

treated (400ng/ml) that weren’t treated with cycloheximide were imaged every 

10minutes for approximately 29 hours (Movies provided in Appendix C on the 

associated DVD). 

 

2.18 Plasmids and siRNA 

2.18.1 siRNA 
 
Chemically synthesised hnRNP A1 siRNA were obtained from Ambion with product 

siRNA ID and sequences provided below:  

 

hnRNP A1 siRNA ID: s6711  
Sense sequence AAUUAUAGAUGGGAAUGAAtt 
Antisense sequence UUCAUUCCCAUCUAUAAUUtt 
 
hnRNP A1 siRNA ID: s6710 
Sense sequence GAAUAAUGGUACCAGAUAAtt 
Antisense sequence UUAUCUGGUACCAUUAUUCaa 
 

2.18.2 Plasmids 
CMV-Lac Z plasmid (Invitrogen) 

CytoMegaloVirus driven constitutively active LacZ expression plasmid.  Used as a 
transfection control. 
 
Mouse hnRNP A1  
Purchased from Open Biosystems (Thermo Scientific) used in rescue experiments in 
Chapter 5. Catalogue number MMM1013-98477917. 
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The primary objective of this project was to identify novel regulators of !-catenin 

accumulation and nuclear localisation in a Wnt signalling context. To facilitate this 

aim, genome-wide screens utilising esiRNA technology, in combination with high-

throughput, high content fluorescence imaging, were employed to investigate !-

catenin levels and localisation in fixed cells. An esiRNA library targeting over 17,000 

human genes was used in two different cell lines with differing Wnt signalling 

activities. This enabled the development of screens that were able to identify both 

positive and negative regulators of !-catenin. The current chapter will describe the 

work involved in developing the high-throughput screening experiments. High false 

positive and negative rates are prevalent in high-throughput screens, with the setting 

up phase of establishing and optimising parameters essential for preventing screen 

failure and for controlling this issue, as rescreening thousands of genes in secondary 

assays is unfeasible [291]. Later chapters will present the primary data obtained and 

subsequent follow up studies that were initiated as a result of their successful 

completion.  

 

3.1 High-throughput, high content imaging RNAi screens for 

novel !-catenin regulators.  
 
In order to identify novel regulators of !-catenin in a Wnt signalling context three 

high content image based, high-throughput RNAi screens were developed in two cell 

lines. The rationale for the use of these cells in addition to the specifics of their assay 

development is discussed in their respective sections of this chapter. Before 

describing these in further detail, a brief introduction to the cell based assays is 

provided. 

  

3.1.1 IN Cell Analyzer 1000 – A semi automated, high-throughput 

fluorescence imaging system 
 
As part of an on-going collaboration with GE Healthcare (Maynard Centre, Cardiff), 

the IN Cell Analyzer 1000 platform was to be used in the high content, high-

throughput fluorescence imaging of the screens. 
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To screen for regulators of !-catenin accumulation and nuclear localisation, two main 

parameters were to be assessed during image analysis; !-catenin nuclear to cytosolic 

ratio (nuc/cyt ratio) and whole cell (WC) fluorescence intensities. WC fluorescence 

intensity represented !-catenin’s accumulation in the cell as a whole. The nuclear to 

cytosolic ratio on the other hand represents its localisation, with increased !-catenin 

nuclear to cytosolic ratios indicative of enhanced translocation/targeting to the 

nucleus for example. Comparing !-catenin WC intensities with the ratio parameter 

allows for the correlation between !-catenin accumulation and its subsequent nuclear 

localisation to be assessed. 

 

A dual channel approach enabled the analysis of the aforementioned !-catenin 

parameters. In addition to !-catenin fluorescence (be it by immunocytochemistry or 

by GFP), nuclei were stained with DAPI, allowing for the creation of a nuclear mask 

(Figure 3.1, blue) thus enabling the accumulation of !-catenin fluorescence intensity 

specifically within this mask to be quantified in another channel (green; Figure 3.1). 

A second outer ‘cellular’ mask in the region outside the nucleus was generated based 

on the !-catenin fluorescence channel (green), with fluorescence intensity in this 

region also quantified. This process of distinguishing defined objects within images, 

such as the nucleus and the cell boundary, from the background is referred to as 

segmentation. The degree of nuclear accumulation is then represented by the ratio of 

the average !-catenin nuclear intensity over the average !-catenin cytosolic intensity. 

Two examples of segmentation parameters are displayed in Figure 3.1, one where the 

‘cytosolic’ mask extends to the cell edge (A) and one where a ‘collar’ is drawn around 

the nuclear mask defined by DAPI (B). For each screen, various algorithms for image 

analysis were tested and optimised prior to analysing the primary screen data; details 

of which are given in Chapter 2. A further advantage of staining nuclei with DAPI 

was the ability to extract information regarding cell numbers from the images, thus 

enabling the degree of cytotoxicity caused by any individual esiRNA to be assessed.  
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Figure 3.1 Screen shots of image analysis using two different segmentation 
parameters. 
Nuclear masks are obtained using the DAPI image (blue channel, top panels) with a secondary 
‘cytosolic’ mask applied in !-catenin image (green channel, middle panels). !-catenin levels can be then 
measured within both of the segmentation masks. (A) 7df3 cells stained for !-catenin and DAPI, x10 
objective. (B) eGFP-!-catenin U2OS cells, DAPI stained. x10 objective. 
 

 

3.1.2 Z-factor analysis for an image-based high-throughput assay  
 

High-throughput screens (HTS) require sufficient robustness and sensitivity in order 

to identify true ‘hits’ in large compound or siRNA/cDNA libraries, especially given 

each reagent are often only tested once in a primary screen. Theoretically based, 

interpretable quality control (QC) metrics are utilised to ascertain the quality and 

power of a screen in identifying, with a high degree of confidence, true hits with 

significant biological activity in a given assay [292].  Z-factor [288] and Strictly 

Standardised Mean Difference (SSMD) [292, 293] are commonly employed QC 

metrics developed to evaluate data quality in HTS assays. Both are able to assess 

dynamic ranges between signals in addition to capturing variability within a data set, 

which is of added benefit in assays with narrow, but highly significant, dynamic 

ranges [288, 292, 293]. SSMD was proposed more recently as a method of assessing 

HTS data quality so the extensively cited and widely used Z-factor [288] was 

favoured in the present study.  

 

The Z-factor is a dimensionless screening window coefficient that reflects the quality 

and suitability of a screen in identifying true hits by assessing the signal dynamic 

range and associated variation (see Chapter 2 for formula). A robust HTS will have a 
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large dynamic range between positive and negative controls, with small standard 

deviations, resulting in high Z factors. A Z-factor between 0 and 0.5 indicates that an 

assay is workable, with Z-factors greater than 0.5 indicative of an ‘excellent screening 

assay’[288].  

 

To assess whether both the experimental and imaging approach were suitable for 

identifying novel regulators of ß-catenin accumulation and nuclear localisation on a 

high-throughput scale, a Z-factor for each potential screen was obtained. During 

optimisation of screening conditions, Z-factor analysis was performed throughout to 

refine the assay to maximise its potential for identifying esiRNAs that had real 

significant biological effects on !-catenin levels and nuclear localisation.  

 

In order to assess the dynamic range of the proposed screening assay, APC and !-

catenin esiRNA were employed as controls with esiRNA against R-luciferase serving 

as a control for non-specific effects of esiRNA transfection per se. Along with water, 

these esiRNAs were also to be used as positive and negative controls on each plate in 

the primary screens to enable the screening performance of each individual plate to be 

assessed (see Chapter 2 for details).  

 

3.2 Development of a HTS esiRNA imaging screen in the 

7df3 reporter cell line 
 

As mentioned in Chapter 1, an RNAi screen for regulators of TCF-dependent 

transcription was successfully undertaken in a human embryonic kidney (HEK293) 

derived reporter cell line by Dr Katja Seipel (unpublished). This cell line was named 

the 7df3 cells and will hence be referred to as such from now on [271].  Undertaking a 

concurrent screen for regulators of !-catenin accumulation and nuclear localisation in 

the same cell line would allow for the correlation between the two data sets to be 

investigated. This in turn could provide valuable information towards deciphering the 

relationship between Wnt regulated !-catenin and TCF-dependent transcription of 

target genes. Before describing the development of the !-catenin imaging screen a 

brief introduction into this particular cell line is first provided. 
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3.2.1 The 7df3 Cell line 
 

The 7df3 cell line is a HEK293 derived cell line that possesses two stably integrated 

constructs; a luciferase reporter gene under the control of a promoter containing 

multimerised TCF binding sites and a Dishevelled2-Estrogen receptor ligand-binding 

site fusion (DVL-ER). !-estradiol treatment of the cell line results in the activation of 

this fused protein and subsequent induction of TCF-dependent transcription that is 

quantifiable using luciferase-based assays [271, 283]. The 7df3 clone was selected as 

it possessed a large dynamic range and very low background luminescence, leading to 

the development of a cell line that was easily inducible and gave a quantifiable level 

of reporter activation upon induction of the Wnt signalling pathway [271]. The 

inducible nature of the cell line allows for identification of both positive and negative 

modulators of the pathway in a more physiologically relevant context than using 

cancer cell lines possessing long-term constitutively active Wnt signalling for 

example.  

 

The previous esiRNA screen for regulators of TCF-dependent transcription in this cell 

line identified potential novel Wnt pathway components, which will be further 

discussed in Chapter 4. The approach taken in developing a screen for regulators of !-

catenin accumulation and nuclear localisation in this particular cell line is described in 

the subsequent section of this chapter. Dr Perihan Nalbant, a visiting research fellow, 

contributed to the early stages of the project and in the undertaking of the primary 

screen and is acknowledged where appropriate.  

 

3.2.2. Induction of ß-catenin levels with Estradiol treatment 
 

In the previous esiRNA screen for modulators of TCF-dependent transcription, it was 

ascertained that the optimal !-estradiol concentration to induce Wnt signalling and 

increase reporter activity to a significant and quantifiable level was 4µM for 24hrs 

prior to assay. It was deemed appropriate to retain these treatment parameters to 

enable any non-specific estradiol-induced effects to be consistent between the two 

screens. !-catenin levels in 7df3 cells could be induced with !-estradiol at 

concentrations of 2µM and 4µM but with no further increase apparent at a 



 69 

concentration of 6µM (Figure 3.2A). 4µm !-estradiol treatment for 24hrs results in 

approximately a two-fold increase in cellular !-catenin levels, which was observed to 

be robust and reproducible both by immunofluorescence and western blotting (Figure 

3.2B and C). !-estradiol treatment also resulted in significantly increased TCF-

dependent transcription (Figure 3.3A) that could be further induced or downregulated 

by esiRNA against APC and !-catenin itself respectively (Figure 3.3B). 

 

3.2.3  Optimisation of 7df3 reporter cell line transfection conditions 

for an imaging-based, RNAi high-throughput screen. 

 

Dr Seipel previously established that the lipid-based transfection reagent Interferin 

was highly efficient at introducing esiRNA into 7df3 cells by reverse transfection. 

Reverse transfection is an alternative transfection method where cells are transfected 

while still in suspension rather than having been pre-plated. This method has been 

shown to be highly efficient at transfecting cells with low siRNA concentrations on a 

high-throughput scale and is less time consuming than standard pre-plated ‘forward’ 

transfections, having no need to pre-plate the cells in advance [294-296]. 
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Figure 3.2 !-estradiol treatment induces !-catenin levels in 7df3 cells. 
 
(A) 7df3 cells were seeded on glass coverslips and treated with the indicated !-estradiol 
concentrations for 24hours before fixation and immunostaining for !-catenin. Confocal 
imaging (x60 objective) undertaken and images provided by Dr Perihan Nalbant.  
(B) 7df3 cells were treated with ethanol (control) or 4µM !-estradiol for 24hrs prior to fixation 
and immunostaining for !-catenin. Mean whole cell fluorescence intensities ± s.e.m of 4 
replicate wells per condition (n=4) are displayed. P-value <0.05 (two-tailed independent 
samples t-test).  
(C) 7df3 cells were treated with ethanol (control) or 4µM !-estradiol for 24hrs prior to    
extracting cytoplasmic lysates for western blot analysis of !-catenin protein levels. 
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Figure 3.3 !-estradiol treatment results in activated TCF reporter activity that 
can be modulated by downregulating key Wnt pathway components. 
 
 (A) 7df3 cells were treated with ethanol (control) or 4µM !-estradiol for 24hrs prior to 
luminescence assays for TCF-dependent reporter activity. Mean values ± s.e.m of three 
independent experiments (n=3; multiple replicate wells per condition) are displayed, p =  
0.0015 versus EtOH control. (Two-tailed independent samples t-test). (B) 7df3 cells were 
transfected with esiRNA (or water ‘-’) and treated with 4µM !-estradiol after 24hrs with 
luminescence assays undertaken 48hrs post transfection. Mean luciferase values ± s.e.m of 
two independent experiments (n=2, multiple replicate wells per condition) are displayed as 
fold over control esiRNA (R-luciferase) * p = <0.0001 versus control esiRNA (two-tailed 
independent samples t-test). 
  

!%

!%

!!! 

! 



 72 

Two main !-catenin parameters were to be analysed during the imaging screens; the 

nuc/cyt ratio and WC fluorescence intensity. For an imaging readout, optimal cell 

numbers are paramount for obtaining high quality images that can be accurately 

segmented by image analysis software. Therefore, cell density during the reverse 

transfection procedure was extensively optimised due to the tendency of these 

HEK293 derived cells to grow in large 3-dimensional colonies (Figure 3.2). At lower 

cell concentrations, increased cytotoxicity was often observed with consequently 

decreased cell numbers per field of view. Higher cell seeding densities on the other 

hand resulted in healthier but often overcrowded cells by fixation 48 hours later, with 

accurate segmentation of images challenging (Figure 3.4). Importantly, published 

observations suggest that ß-catenin nuclear localisation is lower in confluent contact-

inhibited cells [297, 298], which in turn may indirectly affect the cells response to 

estradiol and esiRNA treatment. In support of this, it was observed that the abilities of 

control esiRNAs to modulate !-catenin levels and localisation were attenuated with 

increasing cell densities, resulting in decreased dynamic ranges between these 

controls (Figure 3.4). Nonetheless, it should be noted that it was unclear at this point 

if this was due to increased cell-cell junctions or simply due to lower transfection 

efficiencies at higher seeding densities.  

 

Optimal seeding densities (approximately 3000 cells per well), in addition to longer 

trypsinisation times to improve single cell re-suspension, resulted in 7df3 cells that 

displayed more appropriate spreading behaviour to aid image analysis. Despite their 

small size and characteristic ‘clonal’ growth properties, the 7df3s yielded good 

quality images with high signal:noise ratios. Furthermore, this seeding density 

resulted in sufficient numbers within one field of view to achieve a statistically 

relevant population without being to the detriment of the dynamic range of the assay 

window, with significant alterations in !-catenin levels and localisation observed in 

response to APC and !-catenin downregulation (Figure 3.5).    
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Figure 3.4 esiRNA effects on !-catenin levels and localisation are reduced in 
densely packed cells  
 
7df3 cells were reverse transfected with esiRNA at different cell densities, treated with 4µM !-
estradiol after 24hrs, followed by !-catenin immunocytochemistry and DAPI staining at 48hrs 
post transfection. Images were acquired using the IN Cell Analyzer 1000. (A) Representative 
images from control esiRNA. Bars, 25µm. Images were analysed using IN Cell Analyzer 
Workstation software with !-catenin Nuclear/Cytosolic ratio (B) and whole cell intensities (C) 
quantified. Mean values  ± s.e.m of 3 replicate wells per condition are displayed. * p = 0.06, # 
p = 0.02 compared to corresponding esiRNA controls (two-tailed independent samples t-test).  
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 3.2.3.1 Z-factor analysis for an image-based HTS assay in the 7df3 cell line 

 

To assess whether both the experimental and imaging approach were suitable for 

identifying novel regulators of ß-catenin accumulation and nuclear transport in a high-

throughput system, a Z-factor for the assay was required [288].  

 

During assay development, Z-factor analysis of the data was undertaken to assess the 

optimisation of esiRNA reverse transfection in order to obtain the greatest dynamic 

range possible between the controls, with minimal associated variation. Whilst 

depletion of APC could significantly enhance !-catenin nuclear localisation (as 

displayed by the nuclear to cytosolic ratio), in addition to overall levels, the dynamic 

range between controls was low with approximately a 15-20% increase in !-catenin 

nuc/cyt ratio observed upon APC knockdown compared to control. However, this 

small effect was observed to be highly reproducible and robust, resulting in a Z-factor 

of 0.44 for !-catenin nuc/cyt ratio, therefore a workable assay just slightly below the 

ideal Z-factor of 0.5 and above. Upon assessing the single cell data it was clear that 

there many cells displayed far higher !-catenin Nuc/Cyt ratios in the APC treated 

sample but variable responses from cell-to-cell resulted in a lower effect upon taking 

the mean of the cell population. Imaging at higher resolutions gave similar results, 

and it was noticed that whilst the degree of !-catenin nuclear accumulation was 

indeed marginal, the percentage of cells displaying such accumulation had increased 

dramatically compared to control cells. When displayed as a histogram, the 

percentage of cells above a certain !-catenin nuc/cyt threshold were far greater with 

APC esiRNA treated cells compared to control and provided an additional method for 

analysing an esiRNA effect (Appendix A, Figure 1). These relatively small changes in 

!-catenin nuclear to cytosolic ratio, despite subtle, was in line with published work on 

the nuclear translocation of other similar proteins such as STAT3 

[259]andERK1/2(http://www.gelifesciences.com/aptrix/upp00919.nsf/Content/A1F48

F519 178F8BAC1257628001D1617/$file/ERK-AN.pdf). Whilst APC 

downregulation often resulted in small but nevertheless significant increases in ß-

catenin accumulation in !-estradiol treated 7df3 cells (which already possessed only a 

partially activated !-catenin destruction complex due to DVL2 activation), !-catenin 

esiRNA markedly reduced !-catenin levels as expected. Z-factor analysis 
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demonstrated that this !-catenin accumulation parameter possessed a Z-factor 0.6, 

again comfortably within the acceptable range for a HTS (Figure 3.5). Intriguingly, in 

the 7df3 cells, small increases in !-catenin fluorescent intensity levels led to 

significant increases in transcriptional activity (Figure 3.3B).  

 

3.2.3.2 Effect of plate edge location on esiRNA. 

 

Systematic errors are common in HTS assays, with those linked to well position 

within a multi-well plate often dictating the subsequent analysis procedures required 

to minimise the impact of such effects [293]. Briefly, the effect of APC control 

esiRNA on various edges were compared to those in mid plate wells, with results 

suggesting that, in the case of APC esiRNA, well location had minimal effects on the 

degree of !-catenin accumulation and localisation compared to water control (Figure 

3.6).  
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Figure 3.5 Z-factor analysis of screening conditions. 
  
Following refinement of transfection conditions, 7df3 cells were reverse transfected with 
esiRNA, treated with !-estradiol after 24hrs, followed by !-catenin immunocytochemistry and 
DAPI staining at 48hrs post transfection. Images were acquired using the IN Cell Analyzer 
1000. Images were analysed using IN Cell Analyzer Workstation software with !-catenin 
Nuclear: Cytosolic ratio (A) and whole cell intensities (B) quantified. Mean values  ± s.e.m of 2 
independent experiments displayed as fold over control. * p = 0.001 (One-way ANOVA, 
Bonferroni's multiple comparison correction post test). (C) Representative images of cells 
treated with the indicated esiRNA. Bar, 25µm.  
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Figure 3.6 esiRNA on plate edges behave similarly to those in the middle of the 
plate. 
  
esiRNA against APC and water were plated in the middle of the plate in addition to various 
edges with 7df3 cells reverse transfected, treated with !-estradiol after 24hrs, followed by !-
catenin immunocytochemistry and DAPI staining at 48hrs post transfection. Images were 
acquired using the IN Cell Analyzer 1000. Images were analysed using IN Cell Analyzer 
Workstation software with !-catenin Nuclear:Cytosolic ratio (A) and whole cell intensities (B) 
quantified. Mean values of at least 8 replicate wells per condition are displayed with individual 
well values as points around the mean. APC esiRNA significantly increased both !-catenin 
parameters to a similar degree regardless of plate location (p-value <0.001) with no 
significant effect observed between locations of the same treatment (One-way ANOVA, 
Bonferroni's multiple comparison correction post test). 

 !
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3.3 Development of two HTS esiRNA imaging screens in an 

eGFP-!-catenin-U2OS cell line. 
 

The aforementioned screen was undertaken in the reporter cell line to enable the 

correlation of the data with a corresponding TCF-dependent transcriptional screen 

undertaken previously. The screen was successfully completed with the primary data 

discussed further in Chapter 4.  

 

In addition, an approach to use a human osteocarcinoma cell line stably expressing an 

enhanced green fluorescent protein-ß-catenin fusion (eGFP-!-catenin) was initiated. 

For high-throughput, high content screening purposes these cells were good 

candidates for several reasons. Firstly, the intensity and redistribution of the eGFP-!-

catenin could be easily followed and quantified without the need for expensive and 

laborious antibody based immunocytochemistry procedures. Additionally, the large, 

flat nature of these epithelial-like cancer cells were ideal for image segmentation and 

could provide a more robust system for assessing !-catenin nuclear localisation; a 

parameter that was challenging to analyse in the small, ‘clumpy’ 7df3 cell line.  

U2OS cells possess normal Wnt/!-catenin signalling with no reported mutations in 

known key components of this pathway. Moreover, upon treatment with the GSK3-! 

inhibitor, (2’Z,3’E)-6-Bromoindirubin-3%-oxime (BIO), robust !-catenin accumulation 

and subsequent nuclear translocation was observed (Figure 3.7A). Increasing BIO 

concentration resulted in ß-catenin accumulation with approximately a two-fold 

increase observed at a concentration of 10µM (Figure 3.7), with drug-induced 

cytotoxicity becoming apparent past this concentration. Z-factors for individual 

experiments ranged between 0.4-0.7 for both !-catenin nuc/cyt ratio and whole cell 

intensity parameters (data not shown). Intriguingly, the effect of BIO treatment on !-

catenin accumulation and nuclear localisation was observed to be attenuated in more 

confluent cells (data not shown) suggesting that increased cell-cell junctions may be 

functioning to sequester !-catenin at the membrane. Overall, these cells were deemed 

excellent candidates for two esiRNA screens for !-catenin to not only corroborate 

data from the 7df3 screen but also highlight other potential novel regulators of ß-

catenin accumulation and nuclear localisation in different contexts.  
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The first screen in the eGFP-!-catenin U2OS cells was to be undertaken in 

unstimulated cells with negligible amounts of detectable cytosolic and nuclear !-

catenin levels (Figure 3.7A, DMSO panel). The subsequent follow up screen was to 

be undertaken in an active Wnt-signalling context, with !-catenin accumulation 

induced by APC depletion alongside the transfection of the esiRNA library.  

 

3.3.1 Image based high-throughput screen in the U2OS eGFP-Beta-

catenin cell line. 
 

Undertaking an esiRNA screen in cells with very low basal levels of cytosolic and 

nuclear !-catenin levels would allow for the identification of esiRNAs that resulted in 

elevated !-catenin levels and nuclear localisation. Similarly to the 7df3 primary 

screen, the same esiRNA controls were used in this particular cell line at the same 

concentration, with an incubation time of 48hrs also selected to maintain consistency 

with the previous screen. 

 

Reverse transfection was again to be utilised for high-throughput transfection of this 

particular cell line.  Extensive optimisation showed that the transfection reagent 

Lipofectamine 2000 was superior to other reagents tested (Figure 3.8) and that a 

concentration of 120nl (Figure 3.9) alongside 1500 cells/well was optimal for 

significant APC and !-catenin esiRNA effects (Figure 3.10). This seeding density 

resulted in sufficient numbers within one field of view without being to the detriment 

of the dynamic range of the assay window, with significant alterations in !-catenin 

levels and localisation observed in response to APC and !-catenin downregulation. 
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Figure 3.7 Inhibition of GSK-!  results in increased !-catenin levels and nuclear 
localisation in U2OS-eGFP-!-catenin cells. 
 
(A) eGFP-!-catenin cells were seeded on glass coverslips prior to 10µM BIO treatment for 
16hrs before fixation. Confocal images (x60 objective) kindly provided by Dr P. Nalbant. 
U2OS-eGFP-!-catenin cells treated with increasing concentrations of BIO for 16 hrs prior to 
fixation and DAPI staining were imaged and analysed using the IN Cell Analyzer 1000 
platform. !-catenin Nuclear:Cytosolic ratio (B) and whole cell intensities (C) were quantified. 
Mean values  ± s.e.m of 3 independent experiments (of multiple replicate wells per 
concentration) are displayed as fold over DMSO control. * p = 0.001 (One-way ANOVA, 
Bonferroni's multiple comparison post test). 
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Figure 3.8 Lipofectamine 2000 appears superior to Interferin and RNAiMAX for 
esiRNA transfection in U2OS-eGFP-!-catenin cells. 
 
 
U2OS-eGFP-!-catenin cells were reverse transfected with esiRNA using different reagents 
and fixed after 48hrs. Images were acquired and analysed using IN Cell Analyzer 1000 
platform with eGFP-!-catenin Nuclear:Cytosolic ratio (A) and whole cell intensities (B) 
quantified. Mean values  ± s.e.m of 3 independent experiments (of multiple replicate wells per 
condition) displayed as fold over esiRNA control. * p = 0.001 (One-way Anova, Bonferroni's 
multiple comparison post test). 
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Figure 3.9 APC esiRNA results in increased !-catenin stabilisation and nuclear 
localisation in eGFP-!-catenin U2OS cells with increasing concentrations of 
Lipofectamine 2000 but to the detriment of cell numbers. 
 
U2OS-eGFP-!-catenin cells were reverse transfected with varying concentrations of 
Lipofectamine 2000 and fixed after 48hrs. Images were acquired and analysed using the IN 
Cell Analyzer 1000 platform with eGFP-!-catenin Nuclear:Cytosolic ratio (A) and whole cell 
intensities (B) quantified. Mean values  ± s.e.m of 2 independent experiments (of multiple 
replicate wells per condition) displayed as fold over esiRNA control. *** p < 0.001, ** p < 0.01 
* p < 0.05 (One-way Anova with Bonferroni's multiple comparison post test). (C) Mean cell 
numbers per condition are displayed along with their associated scatter. Data points from 2 
independent experiments of multiple replicate wells per condition, with changes significant to 
at least p < 0.01(One-way Anova with Bonferroni's multiple comparison post test). 
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Figure 3.10 Increasing cell densities reduces the dynamic range between 
esiRNA controls in eGFP-!-catenin U2OS cells 
 
U2OS-eGFP-!-catenin cells were reverse transfected with the indicated esiRNA at varying 
cell densities and fixed after 48hrs. Images were acquired and analysed using IN Cell 
Analyzer 1000 platform with representative images from APC esiRNA treated cells displayed 
(A). Bar; 50µm. Images were analysed for eGFP-!-catenin Nuclear:Cytosolic ratio (B) and 
whole cell intensities (C). Mean values  ± s.e.m of 2 independent experiments (of multiple 
replicate wells per condition) displayed as fold over esiRNA control.  
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3.3.1.1 Z-factor analysis for an image-based HTS assay 

 

During assay development, Z-factor analysis of the data was undertaken to assess the 

optimisation of esiRNA reverse transfection. Depletion of APC enhanced the nuclear 

localisation of ß-catenin as displayed by the nuclear to cytosolic ratio and, whilst the 

dynamic range between the controls was once again narrow at approximately 15-20%, 

it was shown to be highly robust and reproducible (Figure 3.11). This robustness 

resulted in an average Z-factor of 0.42 for this !-catenin localisation parameter, 

indicative of a good screening assay. Contrary to the 7df3s, APC downregulation 

resulted in much greater !-catenin accumulation due to there being low basal levels of 

!-catenin in the cells. !-catenin esiRNA markedly reduced !-catenin levels as 

expected, although the more stable membrane associated !-catenin pool was still 

observable 48hrs post transfection. Z-factor analysis demonstrated that the !-catenin 

accumulation parameter also possessed a Z-factor 0.42, again comfortably within the 

acceptable range for a HTS (Figure 3.11).   
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Figure 3.11 APC and !-catenin downregulation can robustly and reproducibly 
modulate !-catenin levels and nuclear accumulation in eGFP-B-catenin U2OS 
cells, resulting in good Z-factors for a potential screen. 
 
U2OS-eGFP-!-catenin cells were reverse transfected at a density of 1500 cells per well with 
esiRNA using 120nl/well Lipofectamine 2000 and fixed after 48hrs. Images were acquired 
and analysed using IN Cell Analyzer 1000 platform with eGFP-!-catenin Nuclear:Cytosolic 
ratio (A) and whole cell intensities (B) quantified. Mean values  ± s.e.m of 3 independent 
experiments (of multiple replicate wells per condition) displayed as fold over esiRNA control. * 
p =<0.001 (Kruskal-wallis test with Dunn multiple comparison test/correction). (C) 
Representative images displayed. Bar; 50µm. 
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3.3.2 Image based high-throughput screen in the U2OS eGFP-Beta-

catenin cell line with APC downregulation 
 
In the screen undertaken above, genes that led to increased ß-catenin levels and 

nuclear accumulation upon knockdown were clearly identifiable compared to those 

that decreased amounts, due to the low basal levels of !-catenin within these cells. 

Therefore, the feasibility of undertaking a screen in the presence of enhanced ß-

catenin levels to identify both up-regulators and downregulators within an active Wnt 

signalling context was investigated. Downregulating APC as a means of enhancing !-

catenin was proposed due to the prohibitive cost of purified Wnt3a ligand, with Wnt 

conditioned media treatment deemed inappropriate due to inherent variation between 

different batches, which could potentially hinder re-confirmation of the primary 

screen data. APC downregulation consistently produced robust and reproducible !-

catenin accumulation and nuclear translocation within this cell line (Figure 3.11) and 

would also be synonymous to several cancers where APC mutations contribute to 

tumourigenesis. In turn, the potential of identifying downregulators of APC esiRNA 

induced !-catenin within this screen was deemed highly attractive.  

 

The ability to knockdown elevated levels of ß-catenin by co-transfecting more than 

one esiRNA was investigated. Co-transfecting increasing concentrations of APC 

esiRNA with control esiRNA resulted in increased !-catenin accumulation and 

nuclear localisation compared to control on its own, with the highest concentration 

displaying the most robust induction of !-catenin nuclear localisation and 

accumulation (Figure 3.12). Importantly, co-transfecting !-catenin esiRNA was able 

to reverse the effect of APC esiRNA, even at the highest concentration, returning !-

catenin levels and nuclear localisation to control levels (Figure 3.12).  
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Figure 3.12 Co-transfecting varying concentrations of APC esiRNA with 
controls result in enhanced ß-catenin nuclear accumulation and levels, which 
is reversible in the presence of ß-catenin esiRNA. 
 
U2OS-eGFP-!-catenin cells were reverse transfected with the indicated esiRNA in addition to 
increasing concentrations of APC esiRNA. 48 hours post transfection, cells were fixed, 
imaged and analysed using IN Cell Analyzer 1000 platform for eGFP-!-catenin 
Nuclear:Cytosolic ratio (A) and whole cell intensities (B). Mean values  ± s.e.m of 3 
independent experiments (of multiple wells per condition) displayed as fold over esiRNA 
control.  
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3.3.2.1 Z-factor analysis for an image-based HTS assay 

 
Co-transfecting APC esiRNA along with control R-luciferase and APC esiRNA 

resulted in increased !-catenin nuc/cyt ratios and whole cell intensity, which could be 

abrogated when co-transfected with !-catenin esiRNA. A representative experiment 

displayed Z-factors of 0.68 and 0.61 for !-catenin nuclear localisation (Nuc/Cyt ratio) 

and !-catenin whole cell intensity respectively upon comparing APC/!-catenin 

esiRNA with APC/control esiRNA transfected cells. These Z-factors are indicative of 

an ‘excellent’ screening assay and gave confidence in the assay’s suitability for the 

high-throughput screening of the esiRNA library for regulators that are able to 

modulate APC eiRNA induced !-catenin levels and localisation in the eGFP-!-

catenin U2OS cells (Figure 3.13). Representative images demonstrate the induction of 

!-catenin levels in the control wells following APC esiRNA co-transfection and its 

downregulation in the presence of !-catenin esiRNA. 

  



 89 

 
Figure 3.13 Co-transfecting APC esiRNA with controls result in robust 
accumulation and nuclear translocation of !-catenin, which can be 
downregulated by ß-catenin esiRNA.  
 
U2OS-eGFP-!-catenin cells were reverse transfected at a density of 1500 cells/well with 
esiRNA using 120nl/well Lipofectamine 2000 and fixed after 48hrs. Images were acquired 
and analysed using IN Cell Analyzer 1000 platform with eGFP-!-catenin Nuclear:Cytosolic 
ratio (A) and whole cell intensities (B) quantified. Mean values ± s.e.m of 4 wells in a 
representative experiment displayed as fold over esiRNA control. Average Z-factors of 3 
independent experiments displayed. 
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Figure 3.13 continued. Co-transfecting APC esiRNA with controls result in 
robust accumulation and nuclear translocation of !-catenin, which can be 
downregulated by ß-catenin esiRNA. 
 
(C) U2OS cells were reverse transfected with 20ng esiRNA or water control along with 
varying concentrations of APC esiRNA for 48hrs before fixation and DAPI staining. Images 
were acquired and analysed using IN Cell Analyzer 1000 platform. Representative images 
displayed. Bar; 50µm. 
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3.4 Summary 
 

The primary aim of the project was to develop and employ high content imaging 

based high-throughput esiRNA screens to identify novel regulators of !-catenin levels 

and localisation in Wnt signalling. Additionally, a particularly important objective 

was to correlate the results from the imaging screens with the previous screen for 

regulators of TCF–dependent transcription. Three screens were developed as 

described, with Z-factors of approximately 0.5 for each screen, suggestive of robust 

screening assays for detecting potential novel regulators or !-catenin accumulation 

and nuclear localisation. High Z-factors imply low false positive and false negative 

rates, a potential major issue in downstream assays as thousands of genes cannot 

feasibly be re-assessed. The first screen in the HEK293-derived reporter cell line with 

activated Wnt signalling, utilised in the aforementioned transcriptional screen, 

possessed good signal to noise ratio although an assessment of !-catenin nuclear to 

cytosolic ratio was challenging due to their morphology. In contrast, the U2OS cell 

line possessed superior imaging qualities although in the endogenous state, 

intracellular levels of !-catenin were very low, suggesting it would be difficult to 

identify downregulators of !-catenin in the screen. Undertaking the same screen in an 

active Wnt signalling context upon APC downregulation resulted in an assay capable 

of identifying both up- and down-regulators of !-catenin levels and localisation. 

Initial experiments in the 7df3 reporter cell line suggested a non-linear relationship 

between TCF-dependent luciferase activity and !-catenin levels, in contrast to the 

textbook model of Wnt/!-catenin signalling. !!

+ +
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In this chapter, the primary screening data will be presented in addition to extensive 

pathway analysis and cross comparisons between the three screens undertaken. These 

were as follow: 

 

1. H -  7df3 screen - HEK293 derived (7df3) reporter cell line  

 

2. UB - U2OS screen - eGFP-!-catenin U2OS screen, esiRNA library only  

 

3. UA - U2OS APC screen - eGFP-!-catenin U2OS APC screen, esiRNA library 

+APC esiRNA 

 

For simplicity, the three screens will be referred to by their codes in bold above in the 

text when comparing screens. 

 

Comparative analysis of the primary data with RNAi screens for regulators of TCF-

dependent transcription will also be presented, with the regulators and biological 

processes that couple !-catenin to transcriptional activity highlighted. Additionally, 

validation of a subset of hits identified from each screen will be described. 

 
 

4.1 esiRNA screens for novel regulators of !-catenin 

accumulation and localisation in Wnt signalling 
 
An esiRNA library targeting 17,188 human genes [238-240], plated in 384-well 

format, was screened in each of the three assays developed in Chapter 3. Specific 

details regarding the library and production of test plates are provided in Chapter 2 

with esiRNA sequences, ENSEMBL IDs and associated plate/well locations provided 

in Table 1, Appendix B (on disc provided). Images taken using the IN Cell Analyzer 

1000 were analysed using the associated IN Cell Investigator image analysis software 

to quantify both !-catenin whole cell fluorescence intensity, in addition to !-catenin 

nuclear:cytosolic ratio. Detailed experimental and image analysis parameters for each 

screen is provided in Chapter 2. 
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4.1.1 7df3 (H) primary screen 
 
 
Having established screening conditions, the library of 17,188 esiRNAs was screened 

in the reporter cell line as described in Chapter 2. All raw and normalised data of !-

catenin nuclear/cytosolic ratio and whole cell intensities, along with cell numbers 

from this screen, are provided in Table 2 in Appendix B on the disc provided.  

 

4.1.1.1 Z-factor analysis of the H primary screen. 

 

To assess the screening performance of the 47 plates, individual plate Z-factors were 

calculated using the replicate control wells within each plate (Figure 4.1). Plate Z-

factors for !-catenin whole cell fluorescence intensity were highly robust, resulting in 

an average Z-factor of 0.61; indicative of an excellent screening assay [288]. 

However, plate Z-factors for !-catenin fluorescence nuclear to cytosolic (nuc/cyt) 

ratio were unfortunately variable, resulting in an average Z-factor of 0.21 for this 

parameter, which is towards the lower end of a ‘workable’ screening assay (Figure 

4.1). Given the small size and colony-like growth patterns of the HEK293 derived 

7df3 reporter cells, accurate segmentation of the cells during image analysis proved 

challenging, which in turn could have affected the data. However, on further 

inspection, low Z-factors could be attributed to a failure in one well of four within a 

control set, which resulted in increased standard deviations. All other positive control 

wells displayed the expected response, indicating that transfection of the overall plate 

had not failed. Therefore, whilst potential issues must be noted, the potential for 

extracting useful information from this dataset was still highly promising.  
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Figure 4.1 Plate Z-factors for the H esiRNA screen 
 
Plate Z-factors for !-catenin Nuclear to Cytosolic (nuc/cyt) Ratio (black squares) and !-
catenin whole cell intensity (blue triangles) parameters. Z-factors assess the dynamic range 
and associated variability between controls on each plate, with Z-factors between 0-0.5 
indicative of a workable assay and >0.5 deemed an ‘excellent’ screening assay. Low or 
negative Z-factors could be attributed to failed transfection in 1 of 4 positive control wells 
resulting in greater variability (see text). 
 
 

4.1.1.2 Z-score analysis of !-catenin stabilisation and localisation data from the 

H primary screen. 

 

To allow for data integration and to enable all the esiRNAs to be compared to each 

other, raw data were normalised to remove systematic plate-to-plate variation, thus 

make the measurements comparable across all plates. Histogram visualisation of the 

raw screening data for both the !-catenin nuc/cyt ratio parameter as well as !-catenin 

whole cell (WC) intensities suggested that the data was normally distributed, hence 

standard statistical measures (such as means and standard deviations) could be used 

for normalisation and analysis (data not shown).  

 

It was assumed that the majority of esiRNAs would not influence !-catenin levels and 

localisation, with the average !-catenin nuc/cyt ratios and whole cell intensities across 

a plate equivalent to the level caused by !-estradiol activation of the Wnt pathway. 

This is especially valid in libraries such as this where esiRNAs targeting functionally 

or structurally related genes are not grouped but are randomly distributed across all 
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plates. Therefore, within the two parameters investigated, each well was normalised 

to their corresponding plate mean values, excluding control wells, with the samples 

themselves acting as de facto negative controls (so-called “non-controls-based” 

normalisation [289, 299]). Each esiRNA was therefore expressed as fold over plate 

means in both !-catenin parameters under investigation, followed by conversion into 

their equivalent z-scores, which represents the number of standard deviations a 

sample is from its plate mean (See Chapter 2 for z-score formula). This allows the 

esiRNAs from across the whole screen to be rank-ordered as it provides clear 

information on the strength of each esiRNA relative to the distribution to the rest of 

the plate [289].  

 

Figures 4.2 A and B display the spread of the screen Z-scores for !-catenin nuclear: 

cytosolic ratio and whole cell intensities respectively. Cell numbers for the most part 

were relatively stable across the entire screen although, given they were transfected in 

batches (but within the same experiment using cells from the same passage), some 

variability was observed across certain plates (Figure 4.2 C). To control for this when 

assessing for cytotoxic effects, cell numbers were expressed as a percentage of the 

mean number of cells per well of their corresponding plates. Wells with less than 30% 

of the average cell number of the plate were considered toxic.  

 

esiRNAs with Z-scores greater than 2 and less than -1.5  in each parameter (coloured 

red in Figure 4.2) that passed the cell toxicity filter were considered as primary ‘hits’.  

432 and 745 esiRNAs resulted in increased and decreased !-catenin nuclear 

localisation (as denoted by the nuc/cyt ratio) respectively, resulting in a list of 1177 

esiRNAs (Table 3 in Appendix B). 453 and 737 esiRNAs resulted in increased and 

decreased !-catenin whole cell levels respectively, resulting in a list of 1190 esiRNAs 

(Table 4 in Appendix B). Known Wnt components were enriched in these lists of 

primary hits, including CTNNB1, AXIN1, DVL2, DKK2, LRP5, SKP1, CUL1, 

CTNNBIP1, CSNK1A1 and TCF7L1, providing confidence in the validity of the 

screen’s ability to identify both positive and negative regulators of !-catenin mediated 

by Wnt signalling. Other notable hits included many proteasomal components, 

especially in the list of modulators of !-catenin whole cell levels, in addition to those 

involved in regulating translation, such as multiple elongation initiation factors. Table 
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4.1 summarises the number of hits extracted that passed the set thresholds, along with 

examples of known !-catenin regulators identified. 

 

Intriguingly, the overlap between the esiRNAs that modulated !-catenin nuclear 

localisation and those that modulated !-catenin whole cell levels was small, with only 

143 genes present in both data sets (Figure 4.3, Appendix B Table 5), which included 

known components as indicated in Table 4.1. One could argue that this may be due to 

poor screen performance with regards to extracting !-catenin fluorescence nuclear to 

cytosolic ratios as indicated by the lower than expected average Z-factor for this 

parameter. However, as introduced in Chapter 1, it has become increasingly apparent 

that stabilisation of !-catenin in the cytoplasm does not always result in its increased 

nuclear localisation, with the current data supporting this notion. 

 

 
Having extracted lists of genes that appear to modulate !-catenin levels and nuclear 

localisation, detailed reconfirmation assays were carried out on a subset of select 

esiRNAs, which is described later. Furthermore, extensive in silico analysis was 

undertaken on the primary data so that genome-scale observations could be made, 

although individual genes within the data sets may not be reconfirmed. The screening 

process and threshold criteria for selecting esiRNAs for further investigation is 

summarised in Figure 4.4. Results from the in silico analysis will be displayed 

alongside the primary data obtained from both U2OS screens, which will first be 

presented in the subsequent section.   
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Figure 4.2 Over 1000 esiRNAs appear to affect !-catenin nuclear localisation 
and accumulation in 7df3 reporter cells 
 
After transfection and subsequent !-catenin immunostaining, cells were imaged and analysed 
using the IN Cell Analyzer 1000 platform. Raw data from the entire screen were analysed for 
their respective Z-scores for the parameters !-catenin Nuc/Cyt Ratio  (A) and !-catenin whole 
cell accumulation (B). The graphs indicate the spread of data obtained from the primary 
screen with each point representing a single esiRNA. A subset of genes of Z-scores greater 
than 2 and less than -1.5 are coloured red and were considered for further analysis alongside 
other criteria. (C) Raw cell numbers per well. Each point corresponds to an esiRNA and is 
colour-coded by plate number with 384 spots per plate. The graphs indicate the spread of cell 
numbers obtained across each plate and the entire screen.  
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Figure 4.3 Venn diagram of overlapping modulators of !-catenin nuclear 
localisation and whole cell accumulation from the 7df3 primary screen. 
 
Raw data from the primary screen were analysed for their respective Z-scores for !-catenin 
nuc/cyt ratios and whole cell (WC) accumulation. Numbers of esiRNAs with z-scores >2 or <-
1.5 in each !-catenin parameter that passed toxicity thresholds are indicated, in addition to 
the degree of overlap between screens. Gene symbols of a subset of the overlapping 
esiRNAs are indicated, with the full list provided in Appendix B, Table 5. 
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Figure 4.4 Schematic representation of the screening workflow  
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Table 4.1 Summary of primary screen assays 

Numbers of esiRNA’s that led to increased (!) or decreased (") !-catenin accumulation (WC levels) and nuclear localisation (nuc/cyt ratio) above set 
thresholds in the three primary screens are displayed. Thresholds were set at z-scores of >2 and <-1.5 for genes considered for reconfirmation while less 
stringent cut offs were set at z-scores >1.75 and <-1.5 for selecting genes for in silico analysis in addition to passing the cell toxicity filter (set at 30% of plate 
mean cell numbers). Examples of known !-catenin regulators that passed the stringent thresholds are provided for each parameter. Full lists of ENSEMBL 
IDs and associated z-scores are provided in Appendix B with table numbers indicated by the associated contents page.
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4.1.2 eGFP-!-catenin U2OS primary screens 
 

Two screens were developed in the eGFP-!-catenin U2OS cell line; the first in a 

background of unstimulated !-catenin, synonymous of inactive Wnt signalling 

(referred to as the UB screen) with the second undertaken in a backdrop of elevated !-

catenin induced by APC downregulation (referred to as the UA screen); a setting 

synonymous to active Wnt signalling found in certain tumours. 

 

Following the establishment of screening conditions, the library of 17,188 esiRNAs 

was again employed in this cell line with imaging and analysis undertaken once more 

using the IN Cell Analyzer 1000 platform to quantify !-catenin whole cell 

fluorescence intensity and nuclear:cytosolic ratio. All the raw and normalised UB and 

UA screen data of !-catenin nuclear to cytosolic ratio and whole cell intensities along 

with cell numbers are provided in Tables 6 and 7 respectively in Appendix B on the 

disc provided.  

 

4.1.2.1 Z-factor analysis of the U2OS primary screens. 

 
 
Unless otherwise mentioned, experimental and analysis approaches were identical to 

the H screen. In the UB screen, the !-catenin nuc/cyt ratio and whole cell intensity 

parameters possessed good Z-factors, averaging at 0.51 and 0.4 respectively (Figure 

4.5A). Similarly, the UA screen possessed excellent Z-factors of 0.57 and 0.52 for !-

catenin ratio and whole cell intensity parameters respectively (Figure 4.5 B). 

Similarly to the H screen, low or even negative Z-factors could be attributed to an 

error in one specific control well which increased the variability between the 4 control 

wells that resulted in the lower than expected Z-factors. However, this did not indicate 

a failure in transfection across the plate as other control wells displayed the expected 

phenotypes.  
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Figure 4.5 Z-factor analysis of eGFP-!-catenin U2OS esiRNA primary screens 
 
Plate Z-factors for !-catenin Nuc/Cyt Ratio (black squares) and !-catenin whole cell intensity 
(blue triangles) parameters in eGFP-!-catenin U2OS cells transfected with the library only (A –
UB screen) and when co-transfected with APC esiRNA (B, UA screen). Z-factors assess the 
dynamic range and associated variability between controls on each plate with Z-factors between 
0-0.5 indicative of a workable assay and >0.5 deemed an ‘excellent’ screening assay. 
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4.1.2.2 Z-score analysis of !-catenin stabilisation and localisation data from both 

U2OS primary screens. 
 

Raw data from both screens were normalised and analysed similarly to the H screen. 

For both !-catenin measurements under investigation, each well was expressed as fold 

over their corresponding plate mean values (excluding controls), which were then 

converted into z-scores (number of standard deviations away from plate mean, see 

chapter 2 for formula) thus enabling the data to be compared across the entire screen 

as one data set. Figures 4.6 and 4.7 display the spread of the screen Z-scores for !-

catenin nuclear to cytosolic ratio and whole cell intensities in the UB and UA screens 

respectively. Cell numbers were slightly variable across plates (Figures 4.6 C and 4.7 

C), especially in the UA screen given they were transfected in batches (but within the 

same experiment using cells from same passage). As before, to control for this, cell 

numbers for each esiRNA were expressed as a percentage of the mean number of cells 

per well of their corresponding plates.  Wells with less than 30% of the average cell 

number of the plate were considered toxic.  

 

esiRNAs with Z-scores greater than 2 and less than -1.5  in each parameter (coloured 

red in Figures 4.6 and 4.7) that passed the cell toxicity filter were considered as 

primary ‘hits’. In the UB screen, 657 (543 up, 114 down) and 678 (605 up, 73 down) 

esiRNAs modulated !-catenin nuclear localisation and whole cell levels respectively, 

with full lists provided in Appendix B, Tables 8 and 9. In the UA screen 1078 (481 

up, 597 down) and 746 (610 up, 136 down) esiRNAs modulated !-catenin nuclear 

localisation and whole cell levels respectively, with full lists provided in Appendix B, 

Tables 10 and 11. Table 4.1 summarises the number of hits extracted that passed the 

set thresholds for both !-catenin parameters in the two U2OS screens. Known Wnt 

components were enriched in the datasets from both U2OS screens, including AXIN1, 

APC, CTNNB1, WNT7A, WNT2, WNT5B, FBXW11, CTBP1, RBX1, DKK, and 

SKP1 (Appendix B, Tables 8-11) therefore giving credibility to both screens in terms 

of their abilities to identify both positive and negative regulators of !-catenin 

mediated by Wnt signalling. As expected, proteasomal components were also picked 

up in addition to several RhoGTPases and components involved in focal adhesion, 



 105 

such as ITGA5, ITGB8, TLN1/2, RHOA, CDC42, RAC1, RAP1GAP and RAP2A  

(Appendix B, Tables 8-11). 

 

In both U2OS screens the degree of overlaps between regulators of !-catenin nuclear 

localisation and !-catenin levels, whilst still relatively low, were far more significant 

compared to that observed in the H screen, with over 300 genes overlapping between 

the sets in both primary screens (Figure 4.8). Selected components known to regulate 

!-catenin are indicated with full lists of overlapping esiRNAs provided in Appendix 

B, Tables 12 and 13.  
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Figure 4.6 Over 600 esiRNAs appear to affect !-catenin nuclear localisation and 
accumulation in the UB screen. 
 
After transfection and subsequent fixation and DAPI staining, cells were imaged and eGFP-!-
catenin intensity in both nucleus and cytoplasmic compartments quantified. Raw data from the 
entire screen were analysed for their respective Z-scores for the parameters !-catenin Nuc/Cyt 
Ratio  (A) and !-catenin whole cell accumulation (B). The graphs indicate the spread of data 
obtained from the primary screen with each point representing a single esiRNA. A subset of 
genes of Z-scores greater than 2 and less than -1.5 are coloured red and were considered for 
further analysis alongside other criteria. (C) Raw cell numbers per well - each point corresponds 
to an esiRNA (17,188) and is colour-coded by plate number with 384 spots per plate. The 
graphs indicate the spread of cell numbers obtained across each plate and the entire screen in 
the UB screen.  
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Figure 4.7 Over 10000 esiRNAs appear to affect !-catenin nuclear localisation and 
accumulation in the UA screen 
 
After co-transfection of the esiRNA library and APC esiRNA, subsequent fixation and DAPI 
staining, cells were imaged with eGFP-!-catenin intensity in both nucleus and cytoplasmic 
compartments quantified. Raw data from the entire screen were analysed for their respective Z-
scores for the parameters !-catenin Nuc/Cyt Ratio  (A) and !-catenin whole cell accumulation 
(B). The graphs indicate the spread of data obtained from the primary screen with each point 
representing a single esiRNA. A subset of genes of Z-scores greater than 2 and less than -1.5 
are coloured red and were considered for further analysis alongside other criteria. (C) Raw cell 
numbers per well - each point corresponds to an esiRNA (17,188) and is colour-coded by plate 
number with 384 spots per plate. The graphs indicate the spread of cell numbers obtained 
across each plate and the entire screen in the UA screen. 
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Figure 4.8 Venn diagrams of overlapping modulators of !-catenin nuclear 
localisation and whole cell accumulation from the U2OS primary screens. 
 
Raw data from the UB (A) and UA (B) screens were analysed for their respective Z-scores for 
!-catenin nuc/cyt ratios and whole cell (WC) accumulation. Numbers of esiRNAs with z-
scores >2 or <-1.5 in each screen that passed toxicity thresholds are indicated, in addition to 
the degree of overlap between the !-catenin parameters. Gene symbols of a subset of the 
overlapping esiRNAs are indicated, full lists are provided in Appendix B Tables 12 and 13 for 
(A) and (B) respectively. 

 

#"
"
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4.2 In silico analysis of the esiRNA regulators identified in 

the primary screens 
 

While RNAi-based screens can identify new components that functionally contribute 

to the phenotype under investigation, they are unable to establish physical 

relationships between identified ‘hits’ and hence provide little mechanistic insights 

[242]. Data integration from various sources in addition to taking a global analysis of 

the data in the context of pathways and networks can be particularly useful in 

understanding how genes work together in different contexts, as well as highlighting 

un-anticipated processes within a system [242, 262, 300]. For instance, by 

investigating whether pathways, processes or functionally related groups of genes are 

enriched in the primary screening data, the process of elucidating and extracting 

biological meaning to the dataset can be vastly improved [300, 301]. A vast majority 

of genes are annotated with a Gene Ontology (GO) identifier that represents 

information on three ontologies or ‘terms’; namely biological process, cellular 

component and molecular function. Genes are annotated to the most detailed GO term 

possible but can be associated with broader ‘GOSlim’ terms (such as transport, signal 

transduction etc) to provide a higher-level view of the ontologies. Additionally, 

KEGG (Kyoto Encyclopaedia of Gene and Genomes) is a collection of manually 

curated pathway maps that represent up to date knowledge on the molecular 

interaction and reaction networks for various processes [302]. 

 

The esiRNAs identified in the aforementioned screens as potential modulators of both 

!-catenin levels and nuclear localisation were subject to analysis for over-

representation of features such as cellular localisation, biological processes and 

pathways in Genecodis, an open source online program 

(http://genecodis.dacya.ucm.es/) [301]. A similar program, MetaCore [303], was also 

used, but to a limited degree due to licence requirements. This integrated knowledge 

database for pathway and network analysis is based on a proprietary, manually 

curated database of human protein-protein, protein-DNA and protein compound 

interactions, metabolic and signalling pathway. A slightly less stringent list was used 

for this purpose, whereby esiRNAs with Z-scores >1.75 and <-1.3, which passed the 

toxicity filter, were selected to try and capture esiRNAs that may have weaker, but 
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still significant, effects on !-catenin levels and nuclear localisation, in order to 

provide a better global picture of the processes involved in its regulation. The 

numbers of esiRNAs extracted in each list is provided in Table 4.1 with these 

extended subset lists provided in Tables 14-19, Appendix B. Converting ENSEMBL 

IDs to gene symbols for in silico analysis resulted in slightly smaller lists than 

indicated in Table 4.1 due to the gene ID conversion software failing to associate a 

gene symbol for every single ENSEMBL ID.  

 

Firstly, a brief overview of the results obtained from each of the three screens will be 

presented individually in their associated screen specific sections. Subsequently, a 

summary of the over-represented processes and pathways common to more than one 

screen is provided at the end of this particular section.  

 

 4.2.1 Enrichment analysis of the 7df3 (H) primary screen 
 
 
Analysis of the primary esiRNA datasets identified in the H screen (Tables 14 and 15, 

Appendix B) revealed that the majority of the putative regulators of both !-catenin 

accumulation and nuclear translocation are localised to the cytoplasm, with the 

remainder mainly split between localisation at the plasma membrane and nucleus 

(Figure 4.9). Both datasets were also analysed for enrichment in their occurrence in 

GeneGo pathway maps in Metacore (GeneGo’s equivalent to KEGG). Within both 

datasets, pathways that were significantly over-represented included Wnt and TGF 

signalling, especially with regards to their role in cytoskeletal remodelling (Tables 4.2 

and 4.3). The TGF-! components that modulated !-catenin included BMP2/4, TGF!1 

and SMAD 3, with this pathway possessing extensive links to Wnt/!-catenin 

signalling, which will be discussed further in the summary subsection of this part of 

the chapter [304, 305]. 

 

Notable differences between the data sets are the enrichment of genes involved in cell 

adhesion and E-cadherin signalling within the esiRNAs that modulated !-catenin 

nuclear localisation (Table 4.2) compared to the over-representation of regulators of 

!-catenin accumulation in cell cycle pathways (Table 4.3). These included CKS, 
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CDKN1A, CDKN1B, CDKN3, CDC6, CINP, CDC5L and CCND3. CDKN3 is an 

inhibitor of CDK2, which, along with CDK6, has been shown to phosphorylate !-

catenin, leading to its degradation [227, 231]. This may in turn explain the modulation 

of !-catenin levels upon CDKN3 knockdown. As a regulator of cell cycle progression 

at G1, CDKN1A (p21) inhibits the activity of cyclin D-CDK2/4 complexes and is 

reported to be a Wnt target gene [306]. Its identification as a potential regulator of !-

catenin accumulation is intriguing as it may imply the existence of an alternative 

feedback mechanism in certain contexts. 

  

Direct links between Wnt signalling and the cell cycle are emerging, with the mitotic 

CDK14/cyclin Y complex recently demonstrated to promote Wnt signalling through 

phosphorylation of the LRP6 co-receptor [307, 308]. Additionally, !-catenin has also 

been demonstrated to possess a non-transcriptional function in mitosis as an important 

component of centrosomes, where, as a Nek2 substrate, it is essential for centrosomal 

separation at the onset of spindle formation [217]. Interestingly, centromere proteins 

such as CENPH, CENPJ and CEP63 were among the genes identified as regulating !-

catenin accumulation and may function to localise !-catenin to centrosomes for 

example. Additional experiments, such as further microscopic analysis at higher 

resolutions than undertaken in the current study, could be used to assess !-catenin’s 

distribution to subcellular structures, such as centromeres, upon knockdown of the 

components identified in this screen.   

 

Adhesion processes were highly over-represented within the modulators of !-catenin 

levels and localisation identified in the H screen. Many reports describe links between 

cell adhesion and Wnt signalling, with !-catenin’s crucial function in adherens 

junctions delicately balanced with its transcriptional role [158, 309]. This is 

highlighted by the enrichment of both E-cadherin and Wnt signalling regulators 

associated with gastric cancer within the esiRNAs that modulated !-catenin nuclear 

localisation, in addition to genes that regulate gastric cell motility upon H.pylori 

infection (Table 4.2) [310, 311]. A link between H.pylori -induced activation of !-

catenin via inhibition of GSK3-! [312] or phosphorylated LRP6 and Dvl [313] has 

been described, with this particular screen dataset potentially able to provide further 

insight into this process. The role of adhesion and cytoskeletal modulators in !-
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catenin regulators will be broached again in the summary section of 4.2, in addition to 

Chapter 6.  

 

Within the esiRNAs that modulated !-catenin nuclear localisation there was an over-

representation of genes involved in proteolysis, specifically ubiquitin-proteasomal 

proteolysis, in addition to Wnt signalling and cell adhesion processes (Table 4.4). The 

esiRNAs that regulated !-catenin accumulation however were enriched in mRNA 

processing and translational processes (Table 4.5), implying an unanticipated level of 

regulation at !-catenin synthesis. These included a plethora of ribosomal components, 

EIF4A1/G3/B5, EXOSC4/C8, HNRNPA1, MAGOH, DCPS, SNRPB, XPO1, 

SNRPD2/3 and UPF1. This interesting result will be addressed in further detail in the 

summary of this particular section (4.2.3). 

 

 
 
Figure 4.9 The majority of the identified genes in the primary H screen are localised to the 
cytoplasm. 
The datasets were analysed for enrichment in cellular compartments by their GeneGO annotations in 
Metacore, with modulators of !-catenin localisation (defined by their effect on !-catenin Nuc/Cyt ratio) 
and !-catenin accumulation (defined by !-catenin whole cell fluorescence intensity) represented in (A) 
and (B) respectively. Of the genes linked to cellular compartments that were over-represented, 68% 
reside in the cytoplasm, which was similar across both data sets.  
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Table 4.2 Wnt pathway genes are significantly enriched within the dataset of esiRNAs 
that modulated !-catenin nuclear localisation in the H screen. 
 
The dataset of esiRNA regulators of !-catenin nucleus:cytoplasmic ratio was analysed for 
enrichment in their occurrence in GeneGo pathway maps in Metacore. Pathways that were 
significantly over-represented included Wnt, TGF and adhesion. Min(pValue); Hypergeometric 
pValue. 
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Table 4.3 Wnt pathway genes are significantly enriched within the dataset of esiRNAs 
that modulated !-catenin accumulation in the H screen. 
 
The dataset of esiRNA regulators of !-catenin whole cell intensity was analysed for 
enrichment in their occurrence in GeneGo pathway maps in Metacore. Pathways that were 
significantly over-represented included Wnt, TGF and cell cycle. Min(pValue); Hypergeometric 
pValue. 
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Table 4.4 A large proportion of the esiRNA dataset that modulated !-catenin nuclear 
localisation in the H screen are associated with Ubiquitin-proteasomal proteolysis and 
Wnt signalling  
 
esiRNAs were analysed for enrichment in biological processes in Metacore. Processes that 
were significantly over-represented included proteolysis, signal transduction and cell 
adhesion. Min(pValue); Hypergeometric pValue. 
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Table 4.5 A large proportion of the esiRNA dataset that modulated !-catenin 
accumulation in the H screen are associated with mRNA processing and translation 
processes.  
 
esiRNAs were analysed for enrichment in biological processes in Metacore. Processes that 
were significantly over-represented included translation, mRNA processes and cell adhesion. 
Min(pValue); Hypergeometric pValue. 
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4.2.2 Enrichment Analysis of the U2OS primary (UA and UB) 

screens  
 
Analysis of the primary esiRNA U2OS datasets (Tables 16 - 19, Appendix B) 

revealed that the majority of the putative regulators of both !-catenin accumulation 

and nuclear translocation in both U2OS screens were similar to the 7df3 screen, with 

two thirds also localised to the cytoplasm. Other regulators were mainly split between 

localisation at the plasma membrane and nucleus (Figure 4.10) 

 
 
 
 

 
Figure 4.10 The majority of the identified genes in the primary U2OS screens are 
localised to the cytoplasm. 
 
The datasets identified from the UB screen were analysed for enrichment in cellular 
compartments by their GO annotations in Metacore, with modulators of !-catenin localisation 
and !-catenin accumulation represented in (A) and (B) respectively.  Of the genes linked to 
cellular compartments that were over-represented, 68% reside in the cytoplasm, which were 
similar across both data sets. Data sets from the UA screen resulted in near identical cellular 
component enrichment and are hence not shown.  
 
 
Both U2OS screen datasets were also analysed in Genecodis for over-representation 

of KEGG terms to identify enrichment of specific pathways within the modulators of 

!-catenin accumulation and localisation. Furthermore, using their GOSlim 

annotations these datasets were also analysed for the enrichment of specific biological 

processes.  
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4.2.2.1 U2OS UB screen enrichment analysis 

 

In the UB screen, pathways that were significantly over-represented in the datasets of 

regulators of !-catenin localisation and accumulation included Wnt, endocytosis and 

adhesion (Figures 4.11 and 4.12). Notch and TGF-! signalling were also over-

represented in the modulators of !-catenin accumulation (Appendix B, Table 21). 

Crosstalk between signalling pathways will be assessed further in the summary of this 

section of the data analysis. 

 

Interestingly, calcium signalling was over-represented in the esiRNAs that modulated 

!-catenin nuclear localisation, with components such as CAMK2A, PLCD3, PLCB4, 

PRKCA, ATP2A1, PDE1A and PRKCG identified (Figure 4.11). Calcium has been 

widely implicated as an important second messenger in non-canonical, !-catenin-

independent signalling [314] with the identification of key components of the 

Wnt/calcium signalling components in this screen, such as CAMK2A and PKC 

isoforms, interesting as it hints at a potential regulatory mechanism for non-canonical 

Wnt signalling in !-catenin localisation. Studies have demonstrated that antagonism 

exists between the !-catenin-independent and –dependent Wnt pathways, such as 

through the activation of nuclear factor of activated T cells (NF-AT) for example, 

which was demonstrated to play an essential role in mediating ventral signals in the 

Xenopus embryo through downregulating !-catenin signalling [35].  

 

The enrichment in components of endocytosis in modulators of both !-catenin 

localisation and levels (Figures 4.11 and 4.12) in addition to over-representation in 

transport/vesicle-mediated transport processes (Tables 4.6 and 4.7) is also particularly 

relevant due to the role of Wnt-induced internalisation of LRP6 in regulating Wnt/!-

catenin signalling [81, 315-317]. However, the precise trafficking pathway that drives 

this process and how it regulates Wnt signalling is unclear, with conflicting reports 

regarding the role of both caveolin and clathrin-dependent endocytic pathways in 

activating and/or attenuating Wnt/!-catenin signalling [82, 316]. Caveolin-1 was 

identified as possessing a repressive role in !-catenin stabilisation and nuclear 

localisation, suggesting that, in the U2OS cells at least, caveolin-mediated endocytic 

pathways may predominate to attenuate active signalling, contradictory to previous 
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reports where Wnt induced LRP6 internalisation activates the pathway [81, 318]. 

However, the observations in this screen are in line with a report where siRNA 

against caveolin-1 in EGFR over-expressing tumours resulted in increased Wnt/!-

catenin signalling, which was hypothesised to be due to decreased expression of E-

cadherin following caveolin-1 depletion [317].  

 

Comparisons of over-represented GOSlim annotations with both !-catenin nuc/cyt 

ratio and WC levels data sets revealed a high degree of similarity between the two, 

with signal transduction, cell differentiation, cell adhesion and transmembrane 

transport processes enriched within the modulators of !-catenin nuclear localisation 

and accumulation (Tables 4.6 and 4.7). Given the higher degree of overlap between 

these datasets compared to that observed in the H screen this is not entirely 

unexpected. Upon further investigation, the over-representation in transmembrane 

transport processes were mainly due to the identification of a surprising number of 

solute carrier proteins as potential regulators of !-catenin levels and localisation 

(Appendix B, Tables 16 and 17). While not identified in this screen, the solute carrier 

SLC9A3R1 (EBP50 - solute carrier family 9 (sodium/hydrogen exchanger), member 

3 regulator 1) has been demonstrated to bind !-catenin in hepatocellular carcinoma 

cell lines and promote !-catenin-mediated TCF-transcription, but only in cells where 

!-catenin was already stabilised [319]. Otherwise, the role of solute carriers in !-

catenin regulation is unprecedented, suggesting potential new avenues for 

investigation. Processes involved with mRNA processing and translation were also 

over-represented within the gene lists and will be discussed further in the summary of 

this section of the chapter (Table 4.6).  

 

Over-representation of cell differentiation processes was observed with the 

identification of components from a wide range of pathways such as BMP1, FRK, 

NOTCH2, EFNB2, YIPF3, CTBP 1 and CTBP 2. CTBP has been demonstrated to 

both repress and activate Wingless nuclear targets in differing contexts in Drosophila 

[320, 321] in addition to acting as a transcriptional co-repressor in Xenopus [322]. 

How CTBP may regulate !-catenin levels rather than its transcriptional activity is 

unclear although it is likely to be linked to its interaction with APC, which acts as an 

adaptor between !-catenin and CTBP [323]. Following APC loss, CTBP1 has been 
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suggested to result in failed intestinal differentiation, which was demonstrated to 

occur in elevated cytosolic !-catenin but in the absence of detectable nuclear !-

catenin [197], suggesting that it’s levels may play a key role in this effect.  
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Figure 4.11 Calcium, ubiquitin and Wnt signalling pathway links were 
enriched within the set of esiRNAs that regulate !-catenin nuclear 
localisation in the UB screen. 
 
The UB dataset that regulated !-catenin Nuc/Cyt ratio was analysed for enrichment 
in their occurrence in KEGG pathways using GeneCodis.  The signalling pathways 
that were over-represented included calcium, Wnt, ubiquitin and adhesion, which had 
more members in the gene set than would be expected if a random set of genes 
were analysed. Genes not represented in the above chart were either not associated 
with a KEGG signalling pathway enriched relative to the genome, or had no signalling 
information associated with them. Associated hypergeometric p-values are provided 
in Appendix B, Table 20. 
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Figure 4.12 Chemokine, Wnt and adhesion/cell junction signalling 
pathways were enriched within the set of esiRNAs that regulate !-
catenin accumulation in the UB screen. 
 
The UB dataset that regulated !-catenin whole cell intensity was analysed for 
enrichment in their occurrence in KEGG pathways using Genecodis.  The signalling 
pathways that were over-represented included chemokine, endocytosis and 
adhesion, which had more members in the gene set than would be expected if a 
random set of genes were analysed. Genes not represented in the above chart were 
either not associated with a KEGG signalling pathway enriched relative to the 
genome, or had no signalling information associated with them. Other notable 
pathways included Notch and TGF-! signalling. Further details and associated 
hypergeometric p-values are provided in Appendix B, Table 21 
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Table 4.6 A large proportion of the esiRNA dataset that modulated !-catenin nuclear 
localisation in the UB screen are associated with signal transduction processes and 
transport. 
 
The UB screen dataset that regulated !-catenin Nuc/Cyt ratio was analysed for enrichment in 
biological processes using their GOSlim annotations in GeneCodis. Processes that were 
significantly over-represented within the gene set included translation, mRNA processes and 
cell adhesion. Min(pValue); Hypergeometric pValue. 
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Table 4.7 A large proportion of the esiRNA dataset that modulated !-catenin 
accumulation in the UB screen are associated with differentiation, transport and signal 
transduction processes. 
 
The UB screen dataset that regulated !-catenin whole cell intensity was analysed for 
enrichment in biological processes using their GOSlim annotations in GeneCodis. Processes 
that were significantly over-represented within the gene set included cell differentiation, 
transport processes and translation. Min(pValue); Hypergeometric pValue 
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4.2.2.2 U2OS APC (UA) screen enrichment analysis 

 
 
In the UA screen, ‘pathways in cancers’ were notably over-represented in the datasets 

of regulators of !-catenin localisation and accumulation (Figures 4.13 and 4.14, 

Appendix B Tables 22 and 23). This annotation category in the KEGG database 

represents genes enriched in pathways aberrantly regulated in cancers. This list 

contains a plethora of genes ranging from Wnts, APC and !-catenin to NF-"B, 

multiple FGFs, EGF, VEGF, BCL2, and STAT3, implicating a diverse range of 

pathways in the modulation of !-catenin upon APC downregulation.  Other notable 

pathways, in addition to Wnt, were Insulin, MAP kinase and calcium signalling, as 

well as endocytosis and adhesion processes, with many also over-represented in the 

UB screen as discussed above.  

 
Comparisons of over-represented GOSlim annotations within both the !-catenin 

localisation and stabilisation datasets revealed a high degree of similarity between the 

two, with signal transduction, cell differentiation and transmembrane transport 

processes enriched within the modulators of !-catenin nuclear localisation and 

accumulation (Tables 4.8 and 4.9). Processes involved with mRNA and translation 

were once again over-represented, with the spliceosome notably over-represented in 

the modulators of !-catenin accumulation. These included hnRNPA1, hnRNPA1L2, 

SF3A2/B1/B3 and SNRPA/B. !-catenin possesses three splice variants of varying 

stability therefore this may suggest the favoured production of more or less stable 

variants of !-catenin mRNA upon downregulation of specific splicing factors [324]. 

Interestingly, cell cycle and division were highly significantly enriched within the 

gene sets identified from the UA screen, but were not over-represented in the 

esiRNAs dataset from the UB screen (Compare Tables 4.8 and 4.9 with 4.6 and 4.7). 

These included CDK14, CDK2, CDC34, CDC23, CDCA2, GSPT2, UPF1 and 

CETN1. APC has been implicated in regulating cell cycle at many points with 

overexpression shown to lead to G1 cell cycle arrest, which is presumably related to 

its function in the Wnt pathway resulting in repressed transcription of cyclin D1[325]. 

It has also been implicated in mitosis [326, 327] and more recently in regulating 

G2/M transition through association with TopoisomeraseII# [328]).  Disrupting cell 

cycle processes may indirectly affect !-catenin levels and localisation, even in the 
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absence of active Wnt signalling. Further experiments, such as time-lapse microscopy 

assays to investigate the role of downregulating the identified cell cycle components 

listed above on !-catenin levels and localisation, in the presence of normal and 

abrogated APC, may provide further insight.  
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Figure 4.13 Cancer pathways were enriched within the set of esiRNAs that 
regulate !-catenin nuclear localisation in the UA screen. 
 
The UA screen dataset that regulated !-catenin Nuc/Cyt ratio was analysed for enrichment in 
their occurrence in KEGG pathways.  The pathways that were over-represented included 
several pathways involved in cancer (details in Appendix B table 22 and 23) with Wnt 
signalling not as significantly enriched compared to other signalling pathways (see Appendix 
B, Table 22 for further details and associated hypergeometric p-values). Genes not 
represented in the above chart were either not associated with a KEGG signalling pathway 
enriched relative to the genome, or had no signalling information associated with them.
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Figure  4.14 Cancer pathways were enriched within the set of esiRNAs that 
regulate !-catenin accumulation in the UA screen. 
 
The UA screen dataset that regulated !-catenin whole cell intensity was analysed for 
enrichment in their occurrence in KEGG pathways.  The pathways that were over-represented 
included adhesion, cytoskeletal regulation and insulin signalling, in addition to proteasomal, 
protein processing and spliceosome pathways (see Appendix table 24 for detailed breakdown 
and associated hypergeometric p-values). Wnt signalling was significantly enriched but not to 
the same degree as in the UB screen and when compared to other pathways such as insulin 
signalling (Appendix table 24) .Min(pValue); Hypergeometric pValue. Genes not represented 
in the above chart were either not associated with a KEGG signalling pathway enriched 
relative to the genome, or had no signalling information associated with them. 
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Table 4.8 A large proportion of the esiRNA dataset that modulated !-catenin nuclear 
localisation in the UA screen are associated with signal transduction, cell cycle and 
transport processes. 
The UA screen dataset that regulated !-catenin Nuc/Cyt ratio was analysed for enrichment in 
biological processes using their GOSlim annotations. Min(pValue); Hypergeometric pValue. 
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Table 4.9 A large proportion of the esiRNA dataset that modulated !-catenin 
accumulation in the  UA screen are associated with signal transduction and 
cell cycle processes. 
 
The UA screen dataset that regulated !-catenin whole cell intensity was analysed for 
enrichment in biological processes using their GOSlim annotations. Min(pValue); 
Hypergeometric pValue. 
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4.2.3 Overlaps and enrichment analysis summary of the 3 screens 
 
 
The enrichment analysis demonstrated that the screens had identified a diverse range 

of potential regulators of !-catenin that are implicated in a wide range of pathways 

and processes. These ranged from Wnt signalling and Ubiquitin-mediated proteolysis 

to endocytosis and cell cycle/division. However, certain biological processes and 

pathways were over-represented in the regulators identified in all three screens, 

implying an important and conserved role for these processes in !-catenin regulation, 

meriting further discussion in Chapter 6. Therefore, only a brief overview of the types 

of genes identified within each common process/pathway will be provided below. 

Recurring themes in the enrichment analysis were the over-representation of 

components involved in: 

 

1) Other signalling pathways such as TGF-!, MAP kinase and Insulin in the screens 

with activated Wnt signalling  

 

2) Cell adhesion and cytoskeletal processes  

 

3) mRNA processing and translation 

 

4.2.3.1 Signalling crosstalk. 

 

Many TGF-! components were identified across the 3 screening assays and include 

(with the screens which identified them in brackets) BMP1 (UA and UB screens) 

BMP2/4, (H), TGF!1 (H) and SMAD 3 (H), SMAD9 (UA and UB) and SMAD1 (UA 

and UB). TGF-! signalling has been demonstrated to cross talk with many pathways, 

including Wnt (reviewed in [305]). For example, two of the components identified 

have been directly implicated in !-catenin regulation with TGF-beta1 demonstrated to 

induce nuclear translocation of !-catenin in mesenchymal stem cells in a Smad3-

dependent manner [329]. Insulin/AKT signalling components identified in the screens 

included INSR (UA), PI3K3CD (UA), PIK3CB (UA,UB and H), GSK3! (UA) IRS4 

(UA), INSR (H and UA) and EIF41EB (UA). PI3-kinase signalling has been 
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implicated in mediating Wnt3a-induced proliferation of fibroblasts [330] in addition 

to AKT directly phosphorylating !-catenin to enhance its transcriptional activity [221].  

A plethora of MAP3 kinases such as MAP3K1 (H), MAP3K13 (UA and UB), 

MAP3K6 (UA) and MAP3K4 (UA), in addition to MAP4K4 (H), MAPK3 (H) and 

MAP4K4 (H) were identified as putative regulators of !-catenin regulators across two 

different cell types. One major pathway of the MAP kinase network, relevant to Wnt 

in particular, is mediated by c-Jun N-terminal kinase (JNK) [331]. In addition to 

mediating non-canonical Wnt/PCP (or Wnt/JNK pathway), it has also been 

demonstrated to have a more direct role in Wnt/!-catenin signalling by directly 

phosphorylating !-catenin and disrupting cell-cell junctions in keratinocytes [332] in 

addition to enhancing its nuclear transport, again by phosphorylation events [116]. 

 

4.2.3.2 Adhesion and cytoskeletal organisation  

 

Cell adhesion and cytoskeletal organisation regulators were over-represented in the 

identified !-catenin modulators across all three screens. Putative !-catenin modulators 

in adhesion processes included ACTN4 (UA), TLN2 (UA), PXN (UA), LAMB3 (UA), 

ITGA3 (UA), ITGA8 (UB), ITGA5 (UA), CTNND1 (H), CDH2 (H, UA), EFNA4 

(UB), NRXN2 (UB) and EPHA3 (UA) to name but a few. Cytoskeletal organisation 

is intimately linked to cell adhesion (both cell-cell and cell-matrix) and the gene lists 

were also enriched for RhoGTPases and their regulators such as RAC1 (UA, H), 

RAP1A (UA), ROCK2 (UB, H), ROCK1 (H), CDC42 (UA, H), VAV1 (H), RHOG 

(H), and CDC42EP2 (H). The enrichment in processes that potentially revolve around 

!-catenin’s adhesive roles is particularly interesting, especially those involving the 

RhoGTPases given their activation can be mediated by JNK, which a role in Wnt/PCP 

signalling [333] and directly regulates !-catenin by phosphorylation [116, 332]. This 

may indicate a more involved role for Wnt/PCP (JNK) non-canonical signalling in !-

catenin regulation than currently appreciated.  

 

4.2.3.3 .mRNA processing and translation 

 
The over-representation of mRNA processing and translation regulators in the 

identified !-catenin modulators may be argued to be simply an indirect effect of 
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inhibiting general transcription and translation. However, validation work on a subset 

of hits identified form the 7df3 transcriptional screen demonstrated that no effect was 

observed on CMV-LacZ co-transfected in these experiments, suggesting specificity 

for TCF-dependent transcription rather than a general transcriptional effect (data not 

shown). This is likely to apply also to the CMV-driven eGFP-!-catenin in the U2OS 

cells. Furthermore, the fact that upregulation is observed in many of the cases 

suggests that this is not simply due to the blocking of the transcriptional/translation 

process. Lastly, a general effect on transcription/ translation would be expected to kill 

cells and this is excluded in the esiRNA modulators that were selected for further 

analysis. Many pathways, such as mTor, regulate ribosomal synthesis and Axin and 

!-catenin have been demonstrated to bind Tor components for example, therefore 

prematurely disregarding ribosomal processes may well be unwise [334].  

 

The apparent enrichment in mRNA processing is surprising, as it is often assumed, 

albeit presumptuously, that !-catenin synthesis regulation is independent of Wnt 

signalling. Components identified relating to mRNA processing included hnRNPA1 

(UA,UB and H), HNRNPA1L2 (UA,UB), hnRNP H1 (UA,UAB, H), JMJD6 (UB), 

MAGOH (H), NHP2L1 (UA,UB H), UPF1 (UA,UB,H) and SNRPD2 (H) in addition 

to factors involved in RNA transport such as NUP85 (UA), NUP133 (UA), NUPL1 

(UA, UB), NUP160 (UB), NUP205 (H) and NUP155 (UA, H). !-catenin mRNA 

stability has been demonstrated to be regulated both by Wnt and PI3-kinase though 

recently identified Dvl binding partners [183, 184, 335], although, for the most part, 

this aspect of !-catenin regulation is widely overlooked. This will be addressed 

further in Chapter 5, where the work will describe the study into hnRNPA1’s role in 

regulating !-catenin. 

 

4.3 Comparative analysis of the !-catenin esiRNA screens 
 
Using the datasets generated in 4.1, based on the more stringent threshold criteria 

(Appendix B, Tables 3,4,8-11), the degree of overlaps between the primary screens 

were assessed to highlight esiRNAs that may have conserved roles in !-catenin 

regulation in multiple systems. All overlapping gene IDs in Figure 4.15 and 4.16 are 
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provided in Appendix B, Tables 25 and 26.Only 16 esiRNAs modulated !-catenin 

nuclear localisation in all three primary screens (Figure 4.15), namely; AIP, CC2D2A, 

CHMP7, CTNNB1, FBXO41, FBXW11, IL-18, KIAA0664L3, N4BP3, NDUFB7, 

PALM, RRBP1, SSX2IP, TAPBP, TIMM17B and UPF1. 31 esiRNAs overlapped in 

the modulators of !-catenin whole cell levels identified from the three screens (Figure 

4.16), which included CTNNB1 itself, along with AXIN1, PSMD1, HNRNPA1, 

HNRNPH1, ANK2, HIF3A and SPEN for example.  

 

It is well established that !-catenin is degraded through an ubiquitin-mediated 

pathway involving the cullin based SCF complex (SKP1, CUL1, F-box protein 

FBXW11 (!-TRCP)) with the substrate recognition component FBXW11 (!-TRCP), 

identified in all screens as a regulator of !-catenin nuclear localisation (Figure 4.15) 

[336, 337]. Also in the overlapping set of regulators in Figure 4.15 were FBXO41, 

again implicated in the E3 ubiquitin-ligase pathway, and N4BP3, a binding partner of 

the E3 ubiquitin ligase, NEDD-4, which mediates its localisation to vesicles within 

the cytoplasm [338]. In addition to !-catenin, several other Wnt regulators have been 

shown to be targeted for ubiquitination-mediated degradation, including Dvl [339-

342], APC [343, 344] and TCF/LEF[345]. In these cases, however, much less is 

known about the ubiquitin ligase complexes involved [341].  

 

SSX2IP (ADIP) is a component of adherens junctions that may be involved also in the 

organisation of the actin cytoskeleton [346] and could therefore present alternative 

forms of !-catenin regulation at junctional complexes. GJBP and ANK2 are also 

involved in cytoskeletal processes and were identified as potential regulators of !-

catenin accumulation in all three screens (Figure 4.16). Observed in the overlapping 

regulators of !-catenin accumulation is SPEN homolog (or SHARP), a corepressor 

protein that has been implicated in the regulation of the Notch and EGF/Ras 

signalling pathways in Drosophila [347, 348] in addition to being required for Wnt-

dependent signalling in the wing, eye and leg imaginal discs [349]. Furthermore, 

SPEN homolog was demonstrated to be a positive regulator of TCF-dependent 

transcription in human cancer cells, but downstream of already deregulated !-catenin 

levels in cancer cells [350]. Therefore, the screen results suggest an alternative 

mechanism is involved, potentially mediated by cross talk with EGF and Notch 
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signalling pathways, with the latter demonstrated to be overrepresented within the 

regulators of !-catenin identified (Table 4.4, Appendix B, Table 21). 

 

EDAR (ectodysplasin A receptor), which was identified as a modulator of !-catenin 

levels in all screens (Figure 4.16), is a member of the TNF receptor family with key 

roles in ectodermal differentiation [351]. While it may mediate its influence of !-

catenin via activating JNK (as mentioned earlier) [351] it has also been demonstrated 

to play a role alongside NF-"B to regulate Wnt/!-catenin activity during the 

maintenance of primary hair follicle placodes [352], suggesting that an assessment of 

the role of NF-"B in !-catenin regulation alongside EDAR would also be insightful.  

 

The presence of mRNA processing regulators in the overlap of modulators of !-

catenin, such as hnRNPA1, hnRNPH1, and UPF1 is surprising. Indeed, hnRNP A1 

knockdown resulted in one of the strongest responses in terms of elevated !-catenin 

levels and localisation (in the UA and UB screen) in all three screens. This particular 

protein and the role it may play in !-catenin regulation will be discussed in the 

following chapter.  

 

CHMP7 (Charged multivesicular body protein 7) is an ESCRT (enrichment of 

endosomal sorting complexes required for transport) that functions in the 

endosomal sorting pathway [353] and was identified as a regulator of !-catenin 

nuclear localisation in all screens (Figure 4.15). Due to the overrepresentation of 

endocytosis components within the identified hits from screens UA and UB in 

particular (Figures 4.11, 4.12, 4.13) this may be highly relevant to the process of 

internalisation of LRP6 upon Wnt signalling.  

 

Overlaps between the two cell lines were also small with 46 and 60 genes overlapping 

between the H screen and the UB and UA screen respectively within the regulators of 

!-catenin localisation (not including the central overlapping set) (Figure 4.15). 

Furthermore, only 30 and 36 esiRNAs were demonstrated to overlap between the cell 

lines for regulators of !-catenin accumulation (Figure 4.16), suggestive of cell-type 

specific effects. A recently published screen for regulators of TCF-dependent 

transcription demonstrated that the degree of overlap between hits identified in DLD-
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1 and SW480 cells was also surprisingly low, despite both being APC mutant colon 

carcinoma cell lines [242]. Overlaps between the putative regulators of !-catenin 

localisation and levels identified in the UA and UB screens were far higher at 179 and 

272 respectively (Figures 4.15 and 4.16). Therefore, the surprisingly low overlap 

between the H and UA/UB screens may be indeed a result of cell type-specificity. 

 

In summary, the screens have identified a wide variety of components implicated in a 

diverse range of processes and provide sources of possible mechanistic insight into a 

number of areas of biology that may be involved in regulating !-catenin’s functions 

within a cell.  The subsequent section will describe the reconfirmation of a subset of 

‘hits’ identified in each of the three screens, prior to an assessment of the relationship 

between !-catenin and TCF-dependent transcription.   
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Figure 4.15. Overlapping modulators of !-catenin nuclear localisation 
from the three primary screens. 
 
Raw data from the primary screen were analysed for their respective Z-scores for !-
catenin Nuc/Cyt ratios. esiRNAs with Z-scores of >2 or <-1.5 in each screen that 
passed toxicity thresholds are indicated, in addition to the degree of overlap between 
screens. Known !-catenin regulators were picked up in all screens including Wnt 
pathway and proteasomal components. Full lists provided in Appendix B, Table 25. 
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Figure 4.16. Overlapping modulators of !-catenin accumulation from the 
three primary screens. 
 
Raw data from the primary screen were analysed for their respective Z-scores for !-
catenin whole cell intensities. esiRNAs with Z-scores of >2 or <-1.5 in each screen 
that passed the cell toxicity filter are indicated, in addition to the degree of overlap 
between screens. Known !-catenin regulators were picked up in all screens including 
Wnt pathway and proteasomal components. Full lists provided in Appendix B, Table 
26. 
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4.4 Reconfirmation assays 
 
False positives are inherent in high-throughput experiments [248] so secondary 

studies, frequently utilising a non-overlapping siRNA against selected hits, are 

required to reconfirm the primary data. Time and resources dictated how much of the 

primary data that could be reconfirmed, therefore small subsets of esiRNAs from each 

screen were marked for revalidation through the use of new esiRNAs generated from 

sequences non-overlapping from those utilised in the primary library. 

 
Approximately 225 esiRNAs were chosen for reconfirmation based on several 

criteria. The esiRNA lists that were generated for the inter-screen overlap assessments 

(Appendix B, Tables 3,4,7-10) were rank ordered by their Z-scores and were assessed 

for criteria such as their effects in the other primary screens, the strength of a 

particular assay in identifying up or down regulators of !-catenin and the performance 

of a particular screen as denoted by z-factor analysis of the plates. Both U2OS screens 

had the advantage of possessing two fields of view of the same well so esiRNAs 

scoring strongly positive in both fields of view were favoured above those that only 

scored positive in one field of view. Furthermore, the information gained from the in 

silico analysis of the data sets, such as the identification of novel pathways and 

processes enriched in the datasets, were also considered when selecting genes. For 

example, genes involved in mRNA processing and translation were particularly 

attractive given their surprisingly high prevalence within the identified data sets. 

Moreover, esiRNAs that resulted in decreased !-catenin levels and nuclear 

localisation in the UA esiRNA screen were also interesting given their applicability to 

cancers and the potential of finding novel modulators that can decrease oncogenic 

induced !-catenin upon knockdown/inhibition.  

 
Of the 225 or so selected, 164 esiRNAs were successfully generated by our 

collaborators at the MPI in Dresden (Professor Frank Buchholz and Dr Mirko Theis) 

against 161 genes, with 3 (MAGOH, RBX1 and KIAA0280) possessing two esiRNAs 

as it wasn’t possible to generate one esiRNA that didn’t completely overlap with the 

primary sequence. Those that were not produced either failed during design or 

production. Details of the reconfirmatory sublibrary are provided in Appendix B 
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Table 27. All of the graphs from the reconfirmation assays are provided in Appendix 

B in the PNG folder for clarity and better resolution. 

 

4.4.1 Reconfirmation of the selected H screen hits 
 
 
All 164 secondary esiRNAs were re-assayed in the 7df3 cells with methods identical 

to that of the primary screen. Figures 4.17 and 4.18 display the data for !-catenin 

nuc/cyt ratio and !-catenin whole cell levels respectively for all 164 esiRNA. For 

clarity, the esiRNAs that were originally identified from the H primary screen (43 

esiRNAs) are extracted with their reconfirmation data tabulated in Table 4.10.  

 

Unfortunately, the 7df3s during the period of reconfirmation experiments were 

inexplicably unresponsive to !-estradiol so the effects of esiRNA were significantly 

attenuated compared to the primary screen. Given time these experiments would have 

been repeated once the source of the problem had been identified. Nevertheless, the 

data was still deemed to be useful in reconfirming the ‘trend’ of the esiRNA effects at 

least, even if the data lacked statistical significance. esiRNAs that increased or 

decreased !-catenin nuclear:cytosolic ratios and whole cell levels by 2 or 1.5 standard 

deviations of control means respectively were considered as reconfirming in this 

secondary screen. Table 4.10 display the esiRNAs that were identified in the original 

H screen along with their reconfirmation data and associated P-values, in addition to 

an indication of their reconfirmation status. 11/43 (26%) esiRNAs were considered 

reconfirmed and promising candidates for further validation assays before they can be 

considered as true regulators of !-catenin accumulation and/or nuclear localisation. A 

further 2 were borderline where they did have an effect on !-catenin but on a different 

parameter than when it was first identified e.g. MAX where it resulted in decreased !-

catenin nuc/cyt ratio in the primary screen but here resulted in decreased !-catenin 

levels instead. Together, the reconfirmation rate for the H was 30%, which was very 

similar to the reconfirmation rate seen in the TCF-dependent transcriptional screen 

undertaken previously by Dr Seipel. Reasons for potential reconfirmation failure will 

be considered alongside the reconfirmation rates of the U2OS assays in the 

subsequent sections. 
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Figure 4.17 Reconfirmation of esiRNA identified in the H screen as regulators of !-
catenin nuclear localisation 
  
 Secondary non-overlapping esiRNA were generated against a subset of ‘hits’ from all three 
screens and re-tested in 7df3 cells. 24hrs post transfection cells were treated with !-estradiol 
prior to fixation and immunostaining for !-catenin 48hrs post transfection. !-catenin nuclear to 
cytosolic ratios were quantified and are displayed normalised to control esiRNA. !-catenin 
esiRNA (CTNNB1) served as an additional control. Dotted lines represent 2 or 1.5 standard 
deviations above or below the mean of the esiRNA control respectively. Dark bars represent 
esiRNAs with p-values <0.0001 (two-tailed independent samples t-test). Mean values ± s.e.m 
of two independent experiments (n=2) of triplicate wells per condition are displayed. Graphs 
from the reconfirmation assays are provided in Appendix B for clarity and better resolution. 
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Figure 4.18 Reconfirmation of esiRNA identified in the H screen as regulators of !-
catenin accumulation. 
  
 Secondary non-overlapping esiRNA were generated against a subset of ‘hits’ from all three 
screens and re-tested in 7df3 cells. 24hrs post transfection cells were treated with !-estradiol 
prior to fixation and immunostaining for !-catenin 48hrs post transfection. !-catenin whole cell 
intensities were quantified and are displayed normalised to control esiRNA. !-catenin esiRNA 
(CTNNB1) served as an additional control. Dotted lines represent 2 or 1.5 standard deviations 
above or below the mean of the esiRNA control respectively. Dark bars represent esiRNAs 
with p-values <0.05 (two-tailed independent samples t-test). Mean values ± s.e.m of two 
independent experiments (n=2) of triplicate wells per condition are displayed. Graphs from the 
reconfirmation assays are provided in Appendix B for clarity and better resolution.  
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#6C%#8DE" CWS4*C5[* ;:A99J* A:AA9G* ;:A>>G* A:A;J9* bX@*

$F%G" CWS* A:<<<J* A:>F9<* ;:A9;;* A:=AI=* @*

!H-9<HI" C5S* ;:AA>>* A:;G>;* ;:AI>I* A:JAGA* @*

!J!KDL8D" C5S* A:<<<=* A:AI<J* A:<<<=* A:AAAI* @*

!JCD" CW[* ;:A>AJ* A:AAAA* A:<GJ;* A:9JI9* bb*

!L8DM" CW[* A:<<=9* A:F;F>* ;:AJI9* A:9;>F* @*

!NOE" CWS4*C5S* ;:A99<* A:AI>G* ;:9A;>* A:AAA>* @*

J7PFE" C5[* ;:AAIG* A:JAG;* ;:AAIG* A:A;=A* @*

L788Q" C5S* ;:A;J9* A:IGJ9* ;:A<G9* A:AJ=J* @*

R#PKM!" C5S* ;:A;>F* A:;I<A* A:<<;>* A:>I;F* @*

C768CE" C5[4[VW[4[V5[4[NW[4[N5[* A:<=;>* A:J=F=* A:<=;>* A:;G=F* @*

OS8O#E" CW[* A:<><<* A:A9A9* A:<<AI* A:GF<J* @*

P#%&C" C5S* ;:AA=>* A:=;<I* A:<==G* A:I=FJ* @*

P#%&C" C5S* ;:AA;G* A:G;9>* A:<;=G* A:AGJ;* b*

P#8GTEQ" CWS* ;:A9;I* A:A<;A* ;:;G>G* A:AJI<* @*

P#U" CWS* A:<>FF* A:A=A=* A:<AFF* A:AAA<* bX@*

PLJV" C5S* ;:AA=>* A:9G9>* ;:AA=>* A:JIIG* @*

PPJ" C5[* A:<=;>* A:AJFI* A:<=;>* A:AF=I* @*

7#78" C5[* ;:AI;9* A:AAII* A:<IF=* A:FJ<<* @*

7C8DOE" C5[4*[V5[4*[NW[4*[N5[* A:<>>F* A:AI9I* ;:A<I<* A:AAA>* b*

7TW6#'E" CW[4*C5[* A:<=;>* A:GJ<=* A:<=;>* A:AAJJ* @*

&J!E" C5[* ;:A;9A* A:A;J;* A:<=>9* A:;G;;* @*

888V!" C5[* A:<=;>* A:F>AG* A:<=;>* A:AA9A* @*

8'P!D" C5[* ;:AAIG* A:AG>J* ;:AAIG* A:AJAF* @*

8'P!G" C5[* ;:AA;G* A:A99;* ;:AA;G* A:AA>F* @*

8'P!V" C5[* ;:A;F;* A:A9JF* ;:I>F;* A:AAA9* b*

8'PJE" C5[4*[VW[4*[V5[4*[NW[4*[N5[* ;:A;IG* A:9AI;* ;:IJGF* A:AA;I* b*

8'PJD" C5[* ;:AA=>* A:AAFA* ;:AA=>* A:AAA9* @*

8'PJV" C5[* A:<GG>* A:AAAA* ;:99FJ* A:A;AJ* b*

8'PJM" C5[4*[V5[*Y[VW[Z* ;:A;GF* A:AJAG* ;:A9A<* A:;=I;* @*

6$$8I" C5[* A:<>FF* A:AAAI* A:<>FF* A:AIGJ* @*

67REKV" C5S* A:<<=A* A:F=AI* A:<GJG* A:J<IG* @*

'#PJK#" CWS* A:<GFJ* A:A;IJ* A:<<A<* A:G;=;* b*

'P8U" CW[* ;:AAA<* A:<JJ>* ;:;A>=* A:A<;F* @*

'768JD" CW[4*C5[* ;:A9A>* A:;JIF* A:<<AI* A:GFJA* b*

'86LJE" CW[* ;:A9<>* A:AA<F* ;:;9I>* A:AA9I* b*

'N'JD" C5[* A:<>FF* A:I9=>* A:<>FF* A:IGG>* @*

F#REO" C5[* ;:A;=J* A:AF9;* A:<>J>* A:J>IA* @*

FPK'RQ" CW[* A:<<<=* A:<9;9* A:<=9J* A:;F<<* @*

F6#88!K" C5[* ;:A9J;* A:;A=9* ;:AIF;* A:9A>;* b*

U8&V" CWS* A:<=G=* A:AA;F* ;:AI;>* A:9FF9* b*

X7RQQD" C5[* ;:AAIG* A:=<>A* ;:AAIG* A:9AG=* @*

!F#%LQ" CW[* A:<GFJ* A:GJI=* A:<GFJ* A:AIG>* @*

888D!#" C5[* ;:AAIG* A:AJJ>* ;:AAIG* A:A;;J* @*

!-,.9-("
*

;:AAAA* "" ;:AAAA*

*

**

!F77$E" ** ;:AA9G* A:FAFF* A:FJ>F* A:AAAA* **

 
Table 4.10 Reconfirmation of esiRNAs that modulated !-catenin accumulation 
and nuclear localisation in the H primary imaging screen with secondary 
esiRNA. 
 
Legend overleaf 
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Summary of Figures 4.17 and 4.18 displaying the reconfirmation efforts of a subset of ‘hits’ 
from the primary H screen specifically. EsiRNA that resulted in !-catenin nuc/cyt ratios and 
whole cell intensities >2 or <-1.5 standard deviations from the controls are coloured green 
and pink respectively. Associated p-values are displayed (two-tailed independent samples t-
test) in addition to a reference to their reconfirmation status. “-” and “+” or “++” represent 
negative and positive reconfirmation respectively. “-/+” represent esiRNAs that were deemed 
weakly borderline reconfirmed candidates. 
 
The esiRNAs original effects in the primary H screen in addition to any effects in both U2OS 
screens are indicated with the coding as follows: 
 
H = 7DF3 Screen 
UA = U2OS APC screen 
UB = U2OS (library only) screen 
 
W = whole cell !-catenin intensity 
R = Ratio of nuclear to cytosolic !-catenin 
 
D= downregulated !-catenin 
U= upregulated !-catenin 
 
e.g. HWD - 7df3 Whole cell !-catenin intensity Down 
       UBRU - U2OS library only screen !-catenin nuc/cyt Ratio Up 
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 4.4.2 Reconfirmation of UB screen primary hits 
 
 
All 164 secondary esiRNAs were re-assayed in the eGFP-!-catenin U2OS cells with 

methods identical to that of the primary UB screen. Figures 4.19 and 4.20 display the 

data for !-catenin nuc/cyt ratio and !-catenin whole cell levels respectively for all 164 

esiRNA. For clarity, the esiRNAs that were originally identified from the UB primary 

screen (54 esiRNAs) are extracted, with their reconfirmation data tabulated in Table 

4.11. esiRNAs that increased or decreased !-catenin nuclear:cytosolic ratios and 

whole cell levels by 2 or 1.5 standard deviations of control means respectively were 

considered as reconfirming in this secondary screen. Stringent Bonferroni adjusted P-

values were selected for ascertaining significance to improve the confidence that the 

esiRNAs had reconfirmed given the small number of controls that were able to be 

tested alongside the sublibrary. Table 4.11 display the esiRNAs that were identified in 

the original UB screen along with their reconfirmation data and associated P-values, 

in addition to an indication of their reconfirmation status. 38/54 esiRNAs 

(corresponding to 37 genes due to 2 esiRNA for KIAA0280) were considered to have 

reconfirmed and be promising candidates for further validation assays. This resulted 

in a reconfirmation rate of 70% (Table 4.11). A further 2 were borderline where they 

did have an effect on !-catenin but on a different parameter than when it was first 

identified e.g. ARAF where it resulted in increased whole cell !-catenin levels in the 

primary screen but resulted in increased nuc/cyt ratio in the reconfirmation assay 

instead. All together the reconfirmation rate for the UB screen was 74%.  
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Figure 4.19 Reconfirmation of esiRNA identified in the UB screen as regulators of !-
catenin nuclear localisation 
 
  
Secondary non-overlapping esiRNA were generated against a subset of ‘hits’ from all three 
screens and re-tested in eGFP-!-catenin U2OS cells. 48hrs post transfection cells were fixed, 
DAPI stained and imaged using the IN Cell Analyzer 1000 platform. !-catenin nuclear to 
cytosolic ratios were quantified and are displayed normalised to control esiRNA. APC and !-
catenin (CTNNB1) esiRNA served as additional controls. Dotted lines represent 2 or 1.5 
standard deviations above or below the mean of the esiRNA control respectively. Dark bars 
represent esiRNAs with Bonferronni adjusted p-values of <0.00031 (two-tailed independent 
samples t-test). Mean values ± s.e.m of three independent experiments (n=3) of triplicate 
wells per condition are displayed. Graphs from the reconfirmation assays are provided in 
Appendix B for clarity and better resolution. 
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Figure 4.20 Reconfirmation of esiRNA identified in the UB screen as regulators of !-
catenin accumulation. 
 
  
Secondary non-overlapping esiRNA were generated against a subset of ‘hits’ from all three 
screens and re-tested in eGFP-!-catenin U2OS cells. 48hrs post transfection cells were fixed, 
DAPI stained and imaged using the IN Cell Analyzer 1000 platform. !-catenin whole cell 
levels were quantified and are displayed normalised to control esiRNA. APC and !-catenin 
(CTNNB1) esiRNA served as additional controls. Dotted lines represent 2 or 1.5 standard 
deviations above or below the mean of the esiRNA control respectively. Dark bars represent 
esiRNAs with Bonferronni adjusted p-values of <0.00031 (two-tailed independent samples t-
test). Mean values ± s.e.m of three independent experiments (n=3) of triplicate wells per 
condition are displayed. Graphs from the reconfirmation assays are provided in Appendix B 
for clarity and better resolution.  
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VRK* [VW[4[V5[4[N5[* ;:A;I* ;:=;?@A;* A:<<A* >:9I?@A;* @*

V6M9* [VW[4[V5[4[N5[* A:<>>* G:<G?@A9* A:>J9* I:AA?@AI* @*

V6KI9?* [N5S* ;:AJA* F:G>?@A9* ;:;A=* ;:=<?@A9* @*

VWV3* [N5[* ;:AGA* 9:IF?@AI* ;:A<=* I:G9?@AI* bX@*

NWS9* [NW[4[N5[* ;:AGF* ;:=G?@AI* ;:;9F* F:AA?@A9* b*

NcS!9* [NWS* A:<<I* I:AJ?@A;* A:<FG* I:<=?@A;* @*

!;$+B=G* [NWS* ;:AAF* F:;;?@A;* A:<>I* F:A<?@A;* @*

!9A$+B=G* [N5[* ;:A=9* I:<G?@AI* ;:IJG* ;:F>?@AJ* bb*

!!1=V* [N5S* ;:AIJ* ;:AI?@A9* ;:9;;* ;:;9?@A9* @*

!SJA* [V5[4[NW[4[N5[* ;:AIF* >:=J?@AI* ;:;9=* J:=;?@A9* b*

!^K?* [N5[* ;:;A;* ;:;=?@AG* ;:=II* 9:;F?@AG* bb*

S!CU9* [NW[* ;:AJG* 9:FA?@AI* ;:A>G* I:I<?@A;* b*

SCSC* [NW[4*[N5[* ;:AFJ* F:=J?@AI* ;:A<<* =:A<?@A9* b*

S1c;* [NW[4*[N5[* ;:AF=* I:>J?@AJ* ;:FA<* I:JG?@A=* bb*

?36VJ* [N5[* ;:AJI* 9:9A?@AI* ;:;>A* 9:>=?@AI* b*

3Nc^J;* [VW[4[V5[4[NW[4[N5[* ;:;A=* ;:9I?@AF* ;:FA9* I:==?@AJ* b*

3^cKJ* [NW[4*[N5[* ;:AFJ* I:A>?@A=* ;:;FJ* I:A>?@A=* bb*

2VU>* [V5[4*[NW[4*[N5[* ;:AF;* ;:>>?@AJ* ;:9J;* =:GG?@AJ* b*

2dNI* [V5[4*[N5[* ;:A;=* G:>F?@AI* ;:;F;* ;:9<?@AJ* bb*

2KWIGL;* [V5[4*[N5[* ;:A>;* ;:;<?@AI* ;:9JG* I:JF?@A9* b*

C6WKC;* C5[4[VW[4[V5[4[NW[4[N5[* ;:AG>* 9:GI?@AI* ;:9;G* <:I<?@AF* bb*

C^cV;* [VW[4[V5[4[NW[4[N5[* ;:AG9* I:G;?@AJ* ;:;FJ* I:<J?@AI* b*

RL;>* [NWS* ;:A;<* ;:;G?@A9* A:<II* ;:<=?@A;* @*

RU^!9* [V5[4[NW[4[N5[* ;:A9J* ;:<J?@A9* ;:9A<* F:=I?@AJ* b*

d]dS=* [N5[* ;:AFF* I:F=?@AJ* ;:99A* =:<;?@AJ* b*

M!6W2* [VW[4[V5[4[NW[4[N5[* ;:A;F* I:A>?@A=* ;:A>9* I:A>?@A=* @*

MRVVA9>A* [VW[4[V5[4[NW[4[N5[* ;:A=G* I:G9?@AI* ;:I<J* 9:9I?@AJ* bb*

MRVVA9>A* [VW[4[V5[4[NW[4[N5[* ;:;A9* 9:J9?@A=* ;:>FJ* G:AG?@A=* bb*

MRVVAG><* [VW[*Y[NW[Z* ;:AJG* I:9>?@AJ* ;:AAI* <:I=?@A;* b*

MLM>XK* [N5[* ;:A9>* <:9I?@AJ* ;:I;;* =:;F?@AF* bb*

L^!;;J<>J* [VW[4[V5[4[N5[* ;:AJ<* F:=>?@AF* ;:99A* ;:<J?@AF* bb*

LWW!J* [NW[4*[N5[* ;:A9G* 9:9F?@A9* ;:;;9* 9:G>?@A9* b*

]!KC;* [V5[4[NW[4[N5[* ;:AIF* I:A>?@A=* ;:;I>* I:A>?@A=* bb*

]2V]* [NWS* ;:AIG* =:A<?@AJ* ;:A<I* G:A>?@A9* @*

]2K* [N5[* ;:A9J* ;:AG?@A;* ;:;AI* =:;G?@A9* bX@*

]R!VL;* [NW[4*[N5[* ;:AF;* I:=I?@AJ* ;:I;>* ;:JJ?@AF* bb*

6CK9L;* C5[4*[V5[4*[NW[4*[N5[* ;:AF;* I:A>?@A=* ;:JG<* I:A>?@A=* bb*

6$#8EJ* [V5[4*[NW[4*[N5[* ;:AJJ* I:A>?@A=* ;:A;=* I:A>?@A=* bb*

6Wc69* [NW[* ;:AGI* I:A>?@AJ* ;:J9>* 9:A>?@AF* bb*

K!e19* [NW[* ;:A9J* G:IJ?@AI* ;:;=A* 9:;A?@A9* b*

KR2U* [VW[4*[V5[4*[NW[* ;:A;A* F:G=?@A9* A:<J<* 9:G>?@A;* @*

KWK3JAN* [N5[* ;:A9<* J:=A?@AI* ;:;9G* F:GI?@AI* b*

KU]S;* C5[4*[VW[4*[V5[4*[NW[4*[N5[* ;:;F;* 9:IG?@AF* ;:JG=* I:<I?@AI* b*

KU]S>* [V5[4*[N5[*Y[VW[Z* ;:A<>* 9:JI?@AF* ;:F><* >:=J?@AF* bb*

WVS<N* [N5S* ;:AJ;* ;:9<?@AI* ;:AJ9* ;:I>?@A;* @*

WNL9* [V5S4*[N5S* ;:AAJ* I:II?@A;* ;:A9>* 9:A9?@A;* @*

U?]VIN* [V5[4*[NW[4*[N5[* ;:A=I* I:FG?@AJ* ;:I<9* F:G>?@AJ* b*

UW?N3;* [N5[*Y[V5[Z* ;:AA=* I:<F?@A;* ;:;;F* J:9I?@A9* b*

U[L1;!;* [V5[4*[NW[4*[N5[* ;:AF9* 9:F;?@AI* ;:9IJ* I:I;?@AI* b*

1N!;S>N* [N5S* ;:AIA* >:;F?@A9* ;:AJ9* 9:A>?@A;* @*

16RK9* [NW[4*[N5[* ;:AGJ* <:G<?@AF* ;:JJ=* J:9=?@AJ* b*

[UKI9* [NW[4*[N5[* ;:AJF* 9:;>?@AI* ;:AJ;* I:I9?@A;* b*

cSC* [NW[4*[N5[* ;:A;A* 9:>=?@A;* A:<J9* 9:JJ?@A;* @*

f63;I;* [VWS4*[V5S4*[N5S* A:<<;* ;:F<?@A;* A:>><* I:9>?@A9* b*

!$)#+$(* * ;:AAA* * ;:AAA* * *

VK!* * ;:;JI* ;:GA?@J=* ;:=I;* 9:9F?@I=* *

!166N;* * A:<GG* G:;>?@99* A:>II* 9:A=?@9G* *

* * * * * * *

 
Table 4.11 Reconfirmation of esiRNAs that modulated !-catenin accumulation 
and nuclear localisation in the UB primary imaging screen with secondary 
esiRNA. 
Legend overleaf 
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Summary of Figures 4.19 and 4.20 displaying the reconfirmation efforts of a subset of ‘hits’ 
from the primary UB screen. EsiRNA that resulted in !-catenin nuc/cyt ratios and whole cell 
intensities >2 or <-1.5 standard deviations from the controls are coloured green and pink 
respectively. Associated p-values are displayed (two-tailed independent samples t-test) in 
addition to a reference to their reconfirmation status. “-” and “+” or “++” represent negative 
and positive reconfirmation respectively. “-/+” represent esiRNAs that were deemed weakly 
borderline reconfirmed candidates. 
 
The esiRNAs original effects in the primary UB screen in addition to any effects in the UA and 
H screens are indicated with the coding as follows: 
 
H = 7DF3 Screen 
UA = U2OS APC screen 
UB = U2OS (library only) screen 
 
W = whole cell !-catenin intensity 
R = Ratio of nuclear to cytosolic !-catenin 
 
D= downregulated !-catenin 
U= upregulated !-catenin 
 
e.g. 
       UBRU - U2OS library only screen !-catenin nuc/cyt Ratio Up 
UBWD – U2OS library only screen Whole cell !-catenin intensity Down 
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4.4.3. Reconfirmation of UA primary screen hits 
 
 
All 164 secondary esiRNAs were co-transfected with APC esiRNA to be re-assayed 

in the eGFP-!-catenin U2OS cells with methods identical to that of the primary UA 

screen. Figures 4.21 and 4.22 display the data for !-catenin nuc/cyt ratio and !-

catenin whole cell levels respectively for all 164 esiRNA. For clarity, the esiRNAs 

that were originally identified from the UA primary screen (96 esiRNAs for 94 genes, 

2 esiRNA for KIAA0280 and RBX1) are extracted, with their reconfirmation data 

tabulated in Table 4.12. esiRNAs that increased or decreased !-catenin 

nuclear:cytosolic ratios and whole cell levels by 2 or 1.5 standard deviations of 

control means respectively were considered as reconfirming in this secondary screen. 

Stringent Bonferroni adjusted P-values were selected for ascertaining significance to 

improve the confidence that the esiRNAs had reconfirmed given the small number of 

controls that were able to be tested alongside the sublibrary. Table 4.12 display the 

esiRNAs that were identified in the original UA screen along with their 

reconfirmation data and associated P-values in addition to an indication of their 

reconfirmation status. 31/96 esiRNAs (corresponding to 30 genes due to 2 esiRNA for 

KIAA0280) were considered having reconfirmed and promising candidates for further 

validation assays (Table 4.12). A further 9 were borderline where they did have an 

effect on !-catenin but either weren’t significant or had an effect on a different 

parameter than when it was first identified e.g. EPHA3 where it resulted in decreased 

nuc/cyt ratio in the primary screen but resulted in decreased !-catenin whole cell 

levels in the reconfirmation assay instead. Taken together the reconfirmatory rate for 

this screen was 42%.  
  



 147 

 
 
 
 
 

 
 
 
 
 

 
 
 
Figure 4.21 Reconfirmation of esiRNA identified in the UA screen as regulators of !-
catenin nuclear localisation. 
  
Secondary non-overlapping esiRNA were generated against a subset of ‘hits’ from all three 
screens and re-tested in eGFP-!-catenin U2OS cells with APC esiRNA. 48hrs post 
transfection cells were fixed, DAPI stained and imaged using the IN Cell Analyzer 1000 
platform. !-catenin nuclear to cytosolic ratios were quantified and are displayed normalised to 
control esiRNA. APC and !-catenin (CTNNB1) esiRNA served as additional controls. Dotted 
lines represent 2 or 1.5 standard deviations above or below the mean of the esiRNA control 
respectively. Dark bars represent esiRNAs with Bonferroni adjusted p-values of <0.00031 
(two-tailed independent samples t-test). Mean values ± s.e.m of three independent 
experiments (n=3) of triplicate wells per condition are displayed. Graphs from the 
reconfirmation assays are provided in Appendix B for clarity and better resolution.  
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Figure 4.22 Reconfirmation of esiRNA identified in the UA screen as regulators of !-
catenin accumulation. 
 
  
Secondary non-overlapping esiRNA were generated against a subset of ‘hits’ from all three 
screens and re-tested in eGFP-!-catenin U2OS cells with APC esiRNA. 48hrs post 
transfection cells were fixed, DAPI stained and imaged using the IN Cell Analyzer 1000 
platform. !-catenin whole cell intensities were quantified and are displayed normalised to 
control esiRNA. APC and !-catenin (CTNNB1) esiRNA served as additional controls. Dotted 
lines represent 2 or 1.5 standard deviations above or below the mean of the esiRNA control 
respectively. Dark bars represent esiRNAs with Bonferroni adjusted p-values of <0.00031 
(two-tailed independent samples t-test). Mean values ± s.e.m of three independent 
experiments (n=3) of triplicate wells per condition are displayed. Graphs from the 
reconfirmation assays are provided in Appendix B for clarity and better resolution. 
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Table 4.12 Reconfirmation of esiRNAs that modulated !-catenin accumulation 
and nuclear localisation in the UA primary imaging screen with secondary 
esiRNA 

4/)67#" 89)*+9:"/;944,"4<<4;."-,"=>;+.4,),"0#(("
/;944,/5"

"=>;+.4,),"
73;?!4(("
W,.4,/).:"

1>@+(34"
"=>;+.4,),"
AB-(4" ;4(("
),.4,/).:"

1>@+(34" 64;-,<)9*+.)
-,"/.+.3/"

VN!N<* [V5[* ;:AI=G* =:GG?@AI* ;:;=<;* <:<F?@AI* b*

V!^1;;* [VWS* A:<=JI* ;:<=?@AI* A:>9<J* ;:9I?@AF* bb*

V!^1>* [V5[* ;:A;A9* F:AJ?@A;* ;:A=9A* 9:=<?@A;* @*

VS^WVI* [VWS* ;:AIIG* I:<I?@AG* ;:;;9;* ;:IG?@AI* @*

VRK* [VW[4[V5[4[N5[* A:<J>F* I:=F?@AG* A:>A<>* F:I9?@AG* @*

V6M9* [VW[4[V5[4[N5[* A:<IFA* ;:A9?@A=* A:==<G* I:F<?@AG* @*

V1^C>* [VW[4[V5[* ;:A;>=* ;:<A?@A;* ;:A=>A* ;:<=?@A;* @*

NKRL;* [V5[* A:<=<F* >:<=?@AJ* A:<A>G* 9:FJ?@AJ* @*

NWSJ* [VW[4[V5[* ;:AGI9* J:JG?@AJ* ;:F><A* ;:JG?@AI* b*

!;$+BIJ* [VWS* ;:A9F>* G:FG?@A9* ;:AGJI* <:;J?@A9* @*

!SJA* [V5[4[NW[4[N5[* A:<>FJ* G:A<?@A9* A:<9GG* =:9<?@A9* @*

!S!V9* [VWS* A:<FF<* ;:A9?@AJ* A:GJ9G* G:JG?@;F* bb*

!SC9A* [VWS* ;:AII<* ;:J;?@A;* ;:A>=9* 9:>J?@A;* @*

!?V!V]>* [VWS4*[V5S* A:<GFJ* 9:;J?@A;* A:=<FG* 9:F>?@AJ* bb*

!U1J* [V5[* ;:AF>I* ;:GJ?@A=* ;:IJGG* >:F=?@A=* bb*

S1cJ* [VWS* A:<=FA* =:J9?@AI* A:>9J<* ;:;F?@AI* b*

S[UK;I* [V5[* A:<=GJ* J:IA?@A9* A:>IAG* 9:>A?@A9* @*

?KCVI* [VWS* A:<>;I* >:G;?@A9* A:G;9F* 9:;I?@A>* bX@*

3Nc^J;* [VW[4[V5[4[NW[4[N5[* ;:AIA<* ;:;9?@A;* ;:A>>G* 9:J=?@A9* @*

3Nc5;;* [VW[* ;:A9=;* ;:=G?@A9* ;:A<AG* 9:=F?@AI* @*

3Ld9A9GI* [VW[* A:<>GJ* >:G=?@A9* ;:;FA;* ;:9>?@AJ* bX@*

2VU>* [V5[4*[NW[4*[N5[* ;:A9I<* 9:I9?@A9* ;:;;AI* G:G9?@AI* @*

2dNI* [V5[4*[N5[* A:<<JJ* 9:;9?@A;* ;:A;=F* F:IA?@A;* @*

262;9* [V5S* A:<>GJ* I:G=?@A9* A:>J<=* 9:GG?@AF* bb*

2KRVK;* [V5[* A:<<>F* >:I<?@A;* ;:A;FG* G:IG?@A;* @*

2KWIGL;* [V5[4*[N5[* ;:A9;<* ;:;>?@A;* A:<=>I* J:<A?@A;* @*

C?!5;* [V5S* A:<F=A* ;:;G?@AJ* A:>;=A* ;:<9?@AF* bb*

C?WK[S9* [V5[* ;:A9A>* I:;J?@A9* ;:AG<I* ;:9J?@A;* @*

C6WKC;* C5[4[VW[4[V5[4[NW[4[N5[* ;:AGJA* ;:;I?@AI* ;:9I><* ;:J<?@AI* b*

C^cV;* [VW[4[V5[4[NW[4[N5[* ;:AII=* 9:G>?@AI* ;:AFF<* >:9;?@A9* bX@*

RU^!9* [V5[4[NW[4[N5[* ;:A;;>* J:9;?@A;* ;:AJFA* 9:>F?@A;* @*

R12VF* [VWS* A:<FG9* 9:;J?@A9* A:>=>;* 9:FG?@A9* b*

M!669* [V5S*Y[VWSZ* ;:AA;<* I:A>?@A=* ;:I99F* I:A>?@A=* @*

M!6W2* [VW[4[V5[4[NW[4[N5[* ;:A;JI* I:A>?@A=* ;:A=FF* I:A>?@A=* @*

MRVVA9>A* [VW[4[V5[4[NW[4[N5[* ;:AJJ;* J:F=?@AI* ;:II=;* F:I=?@AF* bb*

MRVVA9>A* [VW[4[V5[4[NW[4[N5[* ;:AF<=* 9:>A?@AJ* ;:==<G* ;:AA?@AF* bb*

MRVVAG><* [VW[*Y[NW[Z* A:<=<I* I:>F?@A9* A:GI=9* ;:=F?@AF* @*

MK6V9* [VWS* A:<<;=* ;:JF?@A;* A:><;;* 9:FJ?@AF* bX@*

L^!;;J<>J* [VW[4[V5[4[N5[* ;:A9JF* <:FJ?@AI* ;:;J=<* ;:JF?@AI* b*

LUK;* [VW[* A:<J<=* =:>J?@A;* ;:IA><* ;:;F?@A;* bX@*

]!KC;* [V5[4[NW[4[N5[* A:<>9;* I:A>?@A=* A:>J9A* I:A>?@A=* @*

6VK;LF* [VW[* A:<IIA* I:A>?@A=* A:=GJ>* I:9;?@A=* @*

63MN;* [V5S* ;:A9<A* G:<=?@AI* A:<AG;* =:;A?@AF* bb*

6CK9L;* C5[4*[V5[4*[NW[4*[N5[* A:<<>F* I:A>?@A=* ;:;;<;* I:A>?@A=* bb*

6$#8EJ* [V5[4*[NW[4*[N5[* ;:AA9G* I:A>?@A=* A:<F9G* I:A>?@A=* @*

6Wc6;* [VW[* ;:AII>* F:;A?@A9* ;:A=IA* ;:>=?@A;* b*

6[139* [VW[* A:<=GJ* ;:AA?@AF* A:>A=I* ;:A;?@A=* @*

^26* [VWS4*[V5S* ;:AA<>* ;:9F?@A;* A:<J9=* ;:;9?@A9* @*

KVWK;F* [V5S* ;:AIIG* =:AJ?@AI* ;:9>>=* I:=>?@AF* @*

K!!N* [VW[* ;:AAJJ* G:A>?@A;* A:<>;;* =:IF?@A;* @*

K!UM=* [VWS* A:<9IA* I:I=?@A=* A:GAA;* 9:=I?@A>* bb*

KC3;9* [VWS* ;:AF;<* 9:F;?@AI* ;:9AJ9* ;:FG?@A9* @*

KR2U* [VW[4*[V5[4*[NW[* A:<>;>* F:=>?@AJ* A:><;G* <:9F?@A>* @*

KR6;* [V5[* ;:A9F;* ;:=;?@A9* A:<G<I* G:<<?@A;* @*

KR5RL9* [VWS* A:<G;I* ;:IF?@A9* A:>>;G* ;:IJ?@A9* b*

KL?!;* [V5[* ;:AI<9* >:9<?@AI* ;:AI9;* I:J<?@A;* @*

KLK;* [VWS* A:<>;J* <:9G?@A9* A:>9F9* I:J9?@AF* bX@*

K6W!9* [VWS4*[V5S* A:<<=J* G:J=?@A;* A:<;<A* J:GG?@A9* @*

KWR]9V* [VWS* A:<>F<* G:=J?@AI* A:>J;F* ;:;<?@AJ* bX@*

KW^M;* [V5[* ;:AJ=;* ;:9G?@A;* ;:9G9I* ;:=>?@A;* bX@*

KU]VG* [VW[* ;:A>;G* ;:==?@A9* ;:A=G<* ;:<J?@A;* b*

KU]S;* C5[4*[VW[4*[V5[4*[NW[4*[N5[* ;:;I<=* J:IA?@AG* ;:JF;J* I:<<?@AJ* bb*

KU]S;9* [VW[:*[V5[* A:<G;F* G:IJ?@AJ* A:>>J;* 9:<J?@AJ* @*

KU]SI* [VW[4*[V5[* ;:A=G9* ;:AI?@AI* ;:I<FG* ;:A;?@AI* b*
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Table 4.12 Reconfirmation of esiRNAs that modulated !-catenin accumulation 
and nuclear localisation in the UA primary imaging screen with secondary 
esiRNA. 
Legend overleaf 
 
Summary of Figures 4.21 and 4.22 displaying the reconfirmation efforts of a subset of 
‘hits’ from the primary UA screen. EsiRNA that resulted in !-catenin nuc/cyt ratios 
and whole cell intensities >2 or <-1.5 standard deviations from the control are 
coloured green and pink respectively. Associated p-values are displayed (two-tailed 
independent samples t-test) in addition to a reference to their reconfirmation status. “-” and 
“+” or “++” represent negative and positive reconfirmation respectively. “-/+” represents 
esiRNAs that were deemed weak/borderline reconfirmed candidates. 
 
The esiRNAs original effects in the UA screen in addition to any effects in the U2OS (library 
only) and 7df3 screens are indicated with the coding as follows: 
 
H = 7DF3 Screen 
UA = U2OS APC screen 
UB = U2OS (library only) screen 
W = whole cell !-catenin intensity 
R = Ratio of nuclear to cytosolic !-catenin 
D= downregulated !-catenin 
U= upregulated !-catenin 
e.g.       UBRU - U2OS library only screen !-catenin nuc/cyt Ratio Up 
UBWD – U2OS library only screen Whole cell !-catenin intensity Down 

KU]SG* C5[4*[V5[*Y[VW[Z* A:<FA=* ;:AA?@AF* A:>;99* =:9A?@AG* @*

KU]S>* [V5[4*[N5[*Y[VW[Z* ;:;I;F* 9:<;?@A=* ;:=>AI* =:9I?@A<* bb*

K12?W9* [V5S* A:<FIF* =:FF?@A=* A:>FAG* I:<<?@AJ* b*

WNL9* [V5S4*[N5S* A:>FJG* 9:;;?@A;* A:>AFA* <:=>?@A9* bX@*

WNc;* [V5[* A:<<><* <:AF?@A;* A:<JG;* 9:;I?@A;* @*

WNc;* [V5[* ;:AAF9* F:>I?@A;* A:<<G=* <:FI?@A;* @*

W6S;* [VWS* ;:AJIF* <:F9?@AF* ;:I;9=* 9:;G?@AJ* @*

W639* [VWS* ;:A=9<* G:9G?@AJ* ;:;IAJ* ;:;F?@AI* @*

U?!9JS* [V5S* ;:AG9F* I:G>?@AI* A:<F=G* =:J;?@A;* @*

U?!=;V;* [VWS* ;:AI=F* J:G>?@AJ* ;:99II* 9:>>?@AJ* @*

U?]VIN* [V5[4*[NW[4*[N5[* ;:AJ>G* >:>G?@AJ* ;:I<>J* I:A=?@AF* bb*

U?]VJ3* [VWS* ;:AA<>* I:II?@A;* A:<I<<* I:=A?@A9* @*

URVCNK;* [V5[* A:<>I=* J:F=?@A9* A:<J>9* ;:9G?@A;* @*

UL!99V9* [VWS* A:<GAI* J:<G?@AJ* A:<G;>* ;:>A?@A;* b*

ULR1WM9* [VWS4*[V5S* ;:AAI<* J:9>?@A;* ;:AJ;=* ;:;;?@A;* @*

UL[G* [VW[4*[V5[* ;:A9JF* I:F<?@A9* ;:A9;G* J:GF?@A;* @*

U]VS;* [V5S* A:<>JF* <:G9?@A9* ;:A=JJ* G:<>?@A9* @*

UK?6* [V5[* A:<J==* F:;>?@AI* A:GJF9* <:IJ?@AF* @*

UW?N3;* [N5[*Y[V5[Z* A:<FFI* 9:;G?@AJ* A:<AGJ* J:A>?@AI* @*

U[L1;!;* [V5[4*[NW[4*[N5[* ;:A;9=* 9:I;?@A;* ;:A<GG* >:<<?@A9* @*

U[]3;* [V5[* A:<=I;* ;:;I?@AI* A:><FI* ;:JI?@AI* @*

1V3;V* [VW[4*[V5[* A:<>J;* ;:=<?@A;* A:<;A;* >:A>?@A9* @*

1CUSGV* [V5S* A:<>A>* >:<F?@AI* A:>=II* <:9G?@AF* bb*

16RKI* [VWS4*[V5[* ;:AA;A* >:>G?@A;* ;:AF;J* ;:9;?@A;* @*

1WK!F* [VWS4*[V5S* A:<F=A* G:=9?@AG* A:>AI>* ;:JI?@AG* bb*

1[N* [VW[* A:<J=A* I:I>?@AF* A:>I=<* ;:A9?@AJ* @*

15U2;* [V5S* A:<=G<* =:9;?@AF* A:>JIF* F:=G?@A<* bb*

[UK;>* [V5S* A:<<;G* I:;9?@A;* A:<=JI* <:<<?@A9* @*

g!KRK;* [V5S* A:<III* <:F;?@AF* A:=9G>* G:9J?@AG* bb*

fRM;* [VWS* ;:AAA<* I:A>?@A=* ;:;AA<* I:A>?@A=* @*

f63;I;* [VWS4*[V5S4*[N5S* A:<=9F* ;:F=?@AJ* A:G<>A* J:G=?@A>* bb*

f63;=G* [VWS* ;:AIAG* ;:>;?@A9* ;:AJAA* J:FA?@A;* @*

!$)#+$(* ** ;:AAAA* ** ;:AAAA* ** **

VK!*

*

;:A9A==* ;:I;?@AF* ;:A=G=* ;:;>?@AF*

*!166N;*

*

A:>>A=>* I:;<?@JJ* A:FJ<<* F:F>?@=;*

*
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4.4.4 Reconfirmation Summary 
 
 
The esiRNAs that were considered to have reconfirmed and borderline were 

combined, resulting in a final list of 81 esiRNAs representing 80 genes (as both 

esiRNAs against KIAA0280 reconfirmed) (Table 4.13). These include esiRNAs 

that reconfirmed in more than one screening assay, which are highlighted in red. 

Therefore, overall, the reconfirmation rate in the secondary assays was 

approximately 49% (81/164 secondary esiRNAs tested), which was higher than 

that of the reconfirmation rate of the TCF-dependent luciferase screen, at 30% 

(Data not shown) and that of a published Wnt screen [242]. The difference in 

reconfirmatory rates between the 3 assays (H. UA and UB) may be a reflection of 

the strength of each particular assay in identifying up or down regulators of !-

catenin and the number of ‘up’ and ‘down’ hits chosen for reconfirmation in each 

particular assay. The particularly low reconfirmation rate in the 7df3 cell line is 

likely to be due to the cells unresponsiveness to !-estradiol treatment at the time 

(i.e. activation of the Wnt pathway) with repeat assays merited once the issue is 

rectified. The secondary esiRNAs were required to be generated from non-

overlapping sequences to that used to produce the primary library. In some cases 

sub optimal sequences may have had to be used to ensure this, which could have 

resulted in less potent esiRNAs. Therefore, low reconfirmation rates is as likely to 

be due to a failure in confirming true hits as the labelling of false hits. 

 

Many of the esiRNAs that did not reconfirm in the screening assay in which they 

were originally identified did have an effect in one or both of the other 

reconfirmatory assays. While these are not included in the final reconfirmation 

rate a summary table displaying the effect of each secondary esiRNA in all three 

screens is included in Appendix B, Table 28. Given time and resources, tertiary 

reconfirmatory experiments would have been undertaken, such as utilising 

chemically synthesised siRNA against the subset above and repeating the assays 

in the standard (not expressing eGFP-!-catenin) U2OS cell line and staining for 

endogenous !-catenin to further validate the regulators identified, prior to 

undertaking mechanistic studies on a select few.  
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Table 4.13  49% of selected esiRNAs from the primary screens reconfirmed 
with secondary non-overlapping esiRNA 
 
Summary table of esiRNAs that reconfirmed in the assays that originally identified them (as 
denoted by screen codes) ‘+’ denotes strength of reconfirmation with ‘+/-‘ representing 
borderline reconfirmation status. esiRNAs highlighted in red were reconfirmed in more than 
one assay. Screen codes as used in other reconfirmatory tables. Gene information obtained 
from Entrez Gene (http://www.ncbi.nlm.nih.gov/gene). 
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4.5 The relationship between !-catenin accumulation, 

nuclear localisation and TCF-dependent transcription.  
 
As one of the project’s objectives was to assess the relationship between !-catenin 

levels and localisation with TCF-dependent transcription, the correlation between the 

!-catenin imaging screening data and the previous screen for regulators of TCF 

dependant transcription (performed by Dr Seipel in the 7df3 cells) was investigated. A 

distinct lack of a relationship between TCF-dependent transcription and !-catenin 

levels and localisation on a genome wide scale was demonstrated in both the reporter 

7df3 cell line and the U2OS screens (Figure 4.23). 

 

This prompted further investigation into the effect of the 81 reconfirmed esiRNA on 

TCF-dependent transcription. The entire secondary sublibrary of 164 esiRNAs were 

assayed in 7df3 reporter cells for their effects on TCF-luciferase (Figure 4.24) with 

the relationship between !-catenin and TCF-dependent transcription of the 

reconfirmed set of 81 secondary esiRNAs (see Table 4.13 for full list) subsequently 

assessed (Figure 4.25). By assessing only the 81 reconfirmed esiRNA (rather than the 

164 esiRNAs in total) the effects of potential false positives on the analysis is 

minimised. 

 

 In the 7df3s, there appeared to be no correlation between TCF-dependent 

transcription and !-catenin localisation as dictated by it nuclear to cytosolic ratio 

(black points in Figure 4.25A) alongside a weak positive correlation with !-catenin 

whole cell levels (4.25B). A stronger positive correlation was observed in the two 

U2OS cell assays between TCF-dependent transcription and !-catenin nuclear 

localisation, far stronger than the weak positive correlation observed with !-catenin 

total levels (Figure 4.25). This is in line with the notion that nuclear accumulation of 

!-catenin is a better indicator of active transcriptional activity than simply increased 

levels [196]. 

 
Whilst preliminary, this data implies that !-catenin changes are not directly coupled 

to transcriptional effects, with alterations in !-catenin levels and localisation by the 

identified modulators either a) unrelated to Wnt signalling or b) necessary for Wnt 
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signalling but not sufficient, requiring the need for a second signal/modification to 

induce transcriptional changes. This interesting concept will be discussed in further 

depth within Chapter 6. 
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Figure 4.23 No correlation between the primary !-catenin screening data and the 
primary TCF-dependent transcription screen. 
 
Z-scores of both !-catenin accumulation and localisation parameters in all three !-catenin 
imaging screens for all esiRNAs are plotted against their corresponding Z-scores in the 
previous luciferase screen for regulators of TCF-dependent transcription. Scatter plots and 
associated R-values show weak or no correlation between the !-catenin imaging parameters 
and luciferase. (A) and (B) represent the H screen data with (C)/(D) and (E)/(F) representing 
the UB and UA screens respectively. Lines represent orthogonal straight line fit. 
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Figure 4.24 Effects of the secondary esiRNA sublibrary on TCF-dependent 
transcription in 7df3 reporter cells. 
  
  
The secondary non-overlapping esiRNA sublibrary was reverse-transfected into 7df3 
luciferase reporter cells. At 24hrs post transfection the cells were treated with !-estradiol prior 
to luciferase assay, 48hrs post transfection. Raw luciferase values are displayed (RLU – 
Relative light units) of all esiRNAs across two plates, which possessed control esiRNA, with 
!-catenin and APC esiRNA as additional controls. Grey bars represent esiRNAs with p-values 
<0.05 (two-tailed independent samples t-test). Mean values ± s.e.m of three triplicate wells 
per condition displayed of a single experiment. Graphs are provided in Appendix B for clarity 
and better resolution. 
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Figure 4.25 Correlation between !-catenin levels, localisation and TCF-
dependent transcription in the reconfirmed set of !-catenin regulators 
 
Scatter plot displaying the relationship between the secondary esiRNAs effect on TCF-
dependent transcription and !-catenin nuclear:cytosolic ratio (A) and whole cell intensity (B) in 
the three screening assays. Black points represent assays in 7df3 cells, blue represents 
assays in the eGFP-!-catenin U2OS cell line with red indicating data from assays in the 
eGFP-!-catenin U2OS cell line in the presence of downregulated APC (similar to the UA 
screen). R2 values are displayed, in addition to lines of the appropriate colour representing 
orthogonal straight line fit. * p<0.05, **p<0.001 (Pearson’s correlation coefficient, two tailed). 
Mean values are of at least n=2 independent experiments (of triplicate wells) for the !-catenin 
imaging data and n=1 luciferase assay of esiRNAs in triplicate wells. 
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4.6 Comparative analysis of Wnt/!-catenin siRNA screens in 

different cell lines to identify modulators of !-catenin and 

TCF-dependent transcription.  
 

To define a common set of !-catenin modulators that were also implicated in 

regulating TCF-dependent transcription, different genome-wide RNAi screens for 

TCF-dependent regulators were compared with the imaging screens undertaken in this 

study. 

 

Firstly, the degree of overlap between the imaging screens and the previous screen for 

regulators of TCF-dependant transcription in the reporter 7df3 cells (performed by Dr 

Seipel) was investigated. esiRNAs that possessed Z-scores of >2 and <-1.5 from the 

transcriptional screen (745 esiRNAs in total, Appendix B Table 29) was assessed for 

overlaps with the modulators identified from the H primary screen using the same z-

score threshold cut offs (Appendix B, Tables 3 and 4). 70 and 111 esiRNAs from the 

transcriptional screen overlapped in the datasets for !-catenin nuclear localisation and 

whole cell levels respectively, with 27 common to all three data sets (Figure 4.26). 

These relatively low numbers further underlines the lack of a direct correlation 

between !-catenin levels and localisation with transcriptional output as implied by the 

genome-scale comparisons undertaken in Figure 4.23. Overlapping esiRNA IDs are 

provided in Appendix B, Table 30. Additionally, overlaps with both U2OS screens 

were investigated, which also displayed a distinct lack of common esiRNAs (Figure 

4.27, Appendix B Tables 31 and 32 for UB and UA overlaps respectively). Within the 

U2OS screens there was a greater overlap between esiRNAs that modulated !-catenin 

nuclear localisation and TCF-dependent transcription compared to the set that had an 

effect on !-catenin whole cell levels, especially in the UA screen (Figure 4.27B). This 

is in line with the notion that nuclear accumulation of !-catenin is a better indicator of 

active transcriptional activity than simply increased levels [196]. Surprisingly, the 

opposite is observed with the 7df3 set where more esiRNAs overlapped with 

transcriptional regulators in the set that modulated !-catenin whole cell levels 

compared to !-catenin nuclear to cytosolic ratio (Figure 4.26). However, as 

mentioned earlier this particular data set possessed lower than ideal Z-factors for the 
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assay, which may have resulted in a greater number of false negatives, hence the 

smaller overlap. Overall, there was a greater degree of overlap between the !-catenin 

modulators identified in the H screen and the TCF-transcriptional screen within the 

same cell line (Figure 4.26) compared to that observed with the U2OS screen data sets 

(Figure 4.27). This again suggests potential cell type specific effects whereby !-

catenin is regulated by different modulators in different contexts.  

 

Known !-catenin regulatory components were observed in the overlapping 

modulators of !-catenin and TCF-dependent transcription such as APC (screens UB, 

UA), CTNNB1 itself (H, UA,UB), PSMD1 (UA,UB), PSMD12 (UA), RBX1 (UA), 

CUL1 (H), SIAHBP1 (UB) and RYK (UB). A plethora of ribosomal components 

were identified in the H and UA screen overlaps with regulators of TCF-dependent 

transcription (Figure 4.26 and 4.27 B) but intriguingly none were observed in the 

central overlap in the UB screen (Figure 4.27 A). This screen however was 

undertaken in the context of very low basal levels of !-catenin whereby identifying 

downregulators was difficult, which possibly explains the lack of ribosomal 

components within the modulators identified within this screen.  A variety of 

modulators from a diverse range of biological processes were identified from the 

overlaps between the screens. Insights from these in terms of !-catenin regulation in 

the context of activated Wnt signalling and subsequent TCF-dependent transcription 

will be discussed upon integration with other transcriptional screens, described below. 
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Figure 4.26. Lack of overlap between modulators of !-catenin accumulation 
and nuclear localisation with TCF-dependent transcription in the H screens. 
  
esiRNAs identified from the H screen  with Z-scores of >2 or <-1.5 in both !-catenin nuclear to 
cytosolic (N/C) ratio and whole cell (WC) intensities that passed the cell toxicity filter were 
cross-compared with results from a previous screen for regulators of TCF-dependent 
transcription in the same 7df3 cell line. Numbers of overlapping esiRNAs are indicated with 
the full overlaps provided in Appendix B, Table 30. 
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Figure 4.27. Lack of overlap between modulators of !-catenin accumulation 
and nuclear localisation with TCF-dependent transcription in different U2OS 
screens. 
  
esiRNAs from the UB (A) and UA (B) screens  with Z-scores of >2 or <-1.5 in both !-catenin 
nuclear to cytosolic (N/C) ratio and whole cell (WC) intensities that passed the cell toxicity 
filter were cross-compared with results from a previous screen for regulators of TCF-
dependent transcription in the 7df3 cell line. Numbers of overlapping esiRNAs are indicated 
with the full overlaps provided in Appendix B, Table 31 and Table 32 for (A) and (B) 
respectively. 

#"

$"
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In order to extend the common set of modulators that couple !-catenin to TCF-

transcriptional changes (identified in Figure 4.26 and 4.27) comparative analysis was 

also undertaken between the H imaging screen and two published genome-wide RNAi 

screens for regulators of TCF-dependent transcription. 

 
Using the less stringent thresholds set for the previous in silico analysis of !-catenin 

modulators (Appendix B Tables 14 and 15), overlapping genes between the H screen 

and the TCF-transcriptional screen in the 7df3 reporter cell line were re-extracted, 

resulting in a larger list of 133 and 174 for !-catenin nuclear localisation and levels 

respectively (Figure 4.28 and 4.29, Appendix B tables 33 and 34). Additionally, 

overlaps with two published siRNA screens for regulators of Wnt-3a–induced TCF-

dependent transcription in HeLa cervical cancer cells [267] and for endogenous levels 

of TCF-dependent transcription in DLD-1 colon cancer cells [242] were assessed 

(Figures 4.28 and 4.29, Appendix B tables 33 and 34). A smaller overlap was 

observed between the H imaging screen and the siRNA transcriptional screens in 

HeLa and DLD-1 cells than with the 7df3 transcriptional screen, indicative of cell-

type and screen specificity.  

 

In total only seven components were identified in the triple overlap set of regulators 

between the H screen and published siRNA transcriptional screens including !-

catenin itself (CTNNB1). FBXW11 (!-TRCP) is the substrate recognition component 

of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex, which 

mediates the ubiquitination of !-catenin [85]. PITX2 is a known Wnt target that 

mediates cellular growth response by activating Cyclin D2 [354]. Interestingly 

TRIM6 was identified in the regulators of !-catenin nuclear localisation and has a 

putative role in the recognition of cell compartments [355]. POLR2E encodes the fifth 

largest and most abundant subunit of RNA polymerase II, which was recently 

identified as a strong hit in a screen for components of the G!-M DNA damage 

checkpoint [356] and is required for hepatocellular carcinoma cell proliferation [357]. 

This subunit was observed to bind a hepatitis virus transactivating protein, suggesting 

that interactions between polymerase and transcriptional activators can occur via this 

subunit [358]. The role of acetyl-Coenzyme A acyltransferase 1 (ACAA1), which 

encodes an enzyme operative in the beta-oxidation system of peroxisomes, is more 
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obscure, although it may provide an additional link between Wnt/!-catenin signalling 

and the peroxisome proliferator-activated receptor (PPAR) pathway. CSK (c-src 

tyrosine kinase) has been demonstrated to form a complex with !-catenin at adherens 

junctions and is involved in the regulation of FYN, a kinase implicated in !-catenin 

phosphorylation and in controlling vertebrate gastrulation cell movements [224, 359, 

360]. 
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Figure 4.28. Overlapping modulators of !-catenin nuclear localisation 
with modulators of TCF-dependent transcription in three different cell 
lines 
 
Hit comparisons in RNA interference screens for !-catenin and Wnt signalling components in 
different human cell lines. Primary hits of !-catenin nuclear localisation in the 7df3s compared 
with hits from the transcriptional screens undertaken in the 7df3 (unpublished), HeLa [267] 
and DLD1 [242] screens. Numbers of overlapping esiRNAs are indicated with the full overlaps 
provided in Appendix B, Table 33. 
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Figure 4.29. Overlapping modulators of !-catenin accumulation (whole 
cell levels) with modulators of TCF-dependent transcription in three 
different cell lines 
 
Hit comparisons in RNA interference screens for !-catenin and Wnt signalling components in 
different human cell lines. Primary hits of !-catenin total levels in the 7df3s were compared 
with hits from the transcriptional screens undertaken in the 7df3 (unpublished), HeLa [267] 
and DLD1 [242] screens. Numbers of overlapping esiRNAs are indicated with the full overlaps 
provided in Appendix B, Table 34. 
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4.6.1 Integration of functional genomic data  
 
 
Previous work demonstrated the utility of integrating putative Wnt modulators 

identified from siRNA screens with proteomic interaction networks to reveal proteins 

previously un-associated with the Wnt/!-catenin pathway [242]. Moreover, 

integrating similar gene data sets were shown to ‘link’ siRNA regulators to other 

identified modulators and provide mechanistic insights gained through their 

associations with proteins of known function. A similar approach was applied to the 

modulators of !-catenin that were identified as hits in several TCF-dependent 

transcriptional screens identified above, in order to detect interactions that may 

provide insight into how !-catenin modulation couple to transcriptional changes. 

 

The comparative analysis of various functional genomic screens undertaken above 

(Figure 4.28 and 4.29) resulted in a list of 511 putative !-catenin modulators that 

altered TCF-dependent transcription in other systems. These were combined with the 

esiRNAs from both U2OS screens that overlapped with the TCF-transcriptional 

screen in the 7df3 cell line (Figure 4.27). This resulted in a list of 698 esiRNAs. 

Following deletion of duplicates this resulted in a final list of 558 of identified !-

catenin modulators that altered TCF-dependent transcription in various systems 

(Appendix B table 35). 

 

To investigate links between the esi and siRNAs identified above, MetaCore, a 

knowledge database for pathway and network analysis, was used [303]. This 

integrated knowledge database is based on a manually curated database of human 

protein-protein, protein-DNA and protein compound interactions, metabolic and 

signalling pathways for human, mouse and rat. It allows functional relationships to be 

represented with genes portrayed as nodes and connections as vertices (edges). Edges 

represent protein-protein or protein-DNA interactions and provide specific 

information with regards to the nature of the regulation mediated by an interaction, 

such as phosphorylation, ubiquitination and transcriptional activation. The 

information provides a guide in which links between molecules have differing 

confidence levels dependent upon the number of links between molecules and the 

nature of the relationship. The open-source software, Cytoscape was used for 
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visualisation of the network generated by MetaCore  [361-363] and is available for 

download at http://www.cytoscape.org/download.php. 

 

A tab-delimited excel list of the identified 558 !-catenin modulators that altered TCF-

dependent transcription in other screens  (Appendix B table 35) was submitted to the 

MetaCore database using database default options. The protein-protein/DNA 

interaction network produced is displayed in Figure 4.30, in addition to being 

provided as a Cys file in Appendix B (Cys 1 Figure 4.30) to be opened in Cytoscape 

for visualisation. In the resulting interaction network, of the 558 identified ‘hits’ 

(represented as nodes) 215 possessed at least one interaction with another node in a 

highly connected network of 321 interactions. For clarity, only those nodes with 

connections are displayed with details of the nature of the interactions (i.e. edges) 

only visible in the associated Cys file (Legend provided in the associated Word 

document titled ‘Appendix B legends’).  The numerous interactions that were detected 

between the hits identified from the imaging screens (which were also identified in 

TCF-dependent transcriptional screens) suggest that they may constitute functional 

units important for the regulation of !-catenin and associated TCF-dependent 

transcription. ‘Hubs’ are highly connected nodes (genes/proteins) with !-catenin 

being the ‘convergent’ hub of this particular network i.e. the component which 

possesses the most interactions converging onto it to regulate its activity, such as 

binding by other proteins to mediate its phosphorylation for instance. This is turn aids 

the validation of the dataset as identified modulators of !-catenin.  

 

In addition to the clusters of known regulators of Wnt/!-catenin signalling, such as 

core Wnt components, proteasomal components and members of the ubiquitin ligase 

pathway, several other complexes were apparent within the network generated (Figure 

4.30). The ‘divergent’ hub within the network (i.e. the component regulating the most 

other components within the network) was AP-1, a dimeric transcription factor 

composed of one protein of the Fos family (c-Fos, FosB, Fra-1) and one protein of the 

Jun family (c-Jun, JunB and JunD) [364]. Links between AP-1 and Wnt/!-catenin 

signalling have previously been demonstrated, with c-Jun suggested to act as a 

scaffold to mediate the interaction of Dishevelled with TCF-4 and !-catenin at the 

promoter of Wnt target genes to regulate transcription [365]. !-catenin has been also 
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been co-immunoprecipitated with c-Jun and c-Fos via its armadillo repeat domain 

[366] with the interaction of c-Jun with TCF4 reported to be involved in colon cancer 

cell proliferation [367]. Interestingly, this study suggests a favoured role for junD 

rather than c-Jun in the regulation of Wnt/!-catenin. Interestingly, AP-1 signalling is 

also reported to regulate the transcription of !-catenin, providing an additional layer 

of complexity in the regulation between these two pathways [364]. 

 

Cytokine signalling was also prevalent along with STAT-1, another prominent hub 

within the network. The JAK/STAT pathway is relevant to Wnt/!-catenin signalling 

having been demonstrated to play an important role in eye disc patterning by 

promoting the formation of the eye field through repressing Wg [368]. Additionally, 

!-catenin was observed to be downregulated by a JAK2 inhibitor in leukaemia cells, 

which was mediated by !-Trcp [369]. The link between Wnt and JAK/STAT 

signalling was further highlighted by the identification of a cluster of protein-protein 

interactions between JAK/STAT pathway regulators and combined hits from the 

screen (Fig.4.30) with CHD8 (duplin) shown to repress both STAT and TCF-

dependent transcription [370, 371]. SMAD3 was also well connected within the 

network, having been previously demonstrated to induce nuclear translocation of !-

catenin in mesenchymal stem cells in response to TGF-!1 [329] with its interactions 

within the network potentially providing additional insights into its precise 

mechanism.  

 

Integrin signalling was also highly associated with the identified Wnt/!-catenin 

modulators (Figure 4.30). While the mechanical roles of integrins in mediating focal 

adhesion may be important in terms of regulating !-catenin’s localisation in adherens 

junctions, its signalling roles may also be key. For instance, Integrin and Wnt 

signalling cross talk has previously been reported where the adaptor protein, Grb2, 

was demonstrated to bind Dvl2 and acts downstream of focal adhesion kinase (FAK) 

to amplify !-catenin-dependent transcription through a mechanism involving Rac1, 

JNK and c-jun [372]. In this study, !1 integrin mediated signalling in response to 

binding to the ECM protein collagen was shown to be synergise with Wnt pathway 

activation [372]. 

 



 172 

 
Ribosomal and transcriptional complexes were also observed and while this may be a 

general effect, the arguments for their potential specificity in the regulation of Wnt/!-

catenin signalling has previously been presented in section 4.2.3.3. Of interest 

however is the role of WDR5 in linking both small and large ribosomal subunits to 

the core of the network, although the nature of these interactions is unspecified.  

WDR5 is a BMP-2 induced gene and part of the MLL1/MLL histone 

methyltransferase complex in addition to be being involved in the expression of 

Runx-2, Wnt1 and Wnt3a [373]. Interestingly, WDR5 has been suggested to regulate 

chromatin modifications at the Twist-1 promoter leading to activation of Twist-1 

expression [374]. TWIST is an EMT inducer that has, in turn, been demonstrated to 

regulate nuclear localisation of !-catenin and subsequent TCF-dependent transcription 

in breast cancer MCF7 and HeLa cells [375]. 
 

Similar network diagrams were generated from the lists of !-catenin modulators 

identified in all three screens that were used for the Go enrichment analysis in section 

4.2 (Appendix B Cys 2-7). Nodes and edges are as described above. These network 

are highly complex, with their extensive analysis beyond the scope and mathematical 

capabilities of the current study. However, they provide potential insights into !-

catenin biology and may be of value upon considering genes in isolation. The smaller 

network above was generated from overlapping !-catenin modulators identified in 

several screens/cell lines therefore may potentially provide insights into conserved 

biological processes/genes involved in !-catenin regulation.   

 

Figure 4.30 Network diagram of the !-catenin modulators identified that also 
regulates TCF-dependent transcription (overleaf) 
 
Overlapping esiRNAs that were identified in the three imaging screens for modulators of !-
catenin levels and localisation were integrated with the overlaps between the H screen and 
regulators of TCF-dependent transcription, as identified in three transcriptional RNAi screens 
(7df3s, Katja Seipel; HeLa cells [267] and DLD1 cells [242]) and submitted to the MetaCore 
database. Nodes represent genes/proteins with edges representing protein-protein/DNA 
interactions between nodes. Details with regards to edges are displayed in the original Cys 1 
file (Appendix B) and can be visualised in Cytoscape 
(http://www.cytoscape.org/download.php). 
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4.7 Potential cell type specificity of the identified regulators 

of !-catenin  
 

As observed in Figures 4.15 and 4.16, only 16 and 31 esiRNAs were identified as 

modulators of !-catenin localisation and levels in all three imaging screens 

respectively.  Overlaps between the two cell lines were also small, with 46 and 60 

genes overlapping between the H screen and the UB and UA screen respectively in 

the identified regulators of !-catenin localisation (not including the central 

overlapping set) (Figure 4.15). Furthermore, only 30 and 36 esiRNAs overlapped 

between the 7df3 and U2OS cells lines for regulators of !-catenin accumulation 

(Figure 4.16). Overlaps between the putative regulators of !-catenin localisation and 

levels identified in the UA and UB screens on the other hand were far higher at 179 

and 272 respectively (Figures 4.15 and 4.16). Additionally, upon comparing the !-

catenin imaging screen with the screen for regulators of TCF-dependent transcription 

in the 7df3 cells (Figures 4.26 and 4.27), the H screen displayed a far greater degree 

of overlap, with 208 shared esiRNAs compared to 72 and 115 in the UB and UA 

screens respectively. The degree of overlap when comparing the H screen with 

published TCF-dependent transcriptional screens in HeLa [267] and DLD1 cells[242] 

was also low as demonstrated in Figure 4.28 and 4.29. 

 

Notably, even upon comparing the transcriptional screen in the 7df3s with the 

aforementioned published screens, the majority of the primary screen hits from each 

screen appeared to be specific to the respective cell line, despite the fact that 

comparable assay readouts were utilised (Figure 4.31). Moreover, overlaps between 

hits identified in DLD-1 and SW480 cells were also surprisingly low, despite both 

being APC mutant colon carcinoma cell lines [242]. The overlapping gene sets were 

selectively enriched for ‘core pathway’ components including Axin, APC, CTNNB1 

and TCF, suggesting that these proteins are essential for TCF-dependent signalling in 

many cellular contexts (Figure 4.31). The other common components comprised the 

chromatin regulator ATF7IP (MCAF1) and the transcription factor PITX2. ATF7IP 

(MCAF1) is an MBD1-dependent transcriptional repressor [376] found to be 

frequently overexpressed in naturally occurring cancers where it is implicated in 
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immortalisation by maintenance of telomerase activity [377]. PITX2 is a known Wnt 

target and mediates the cellular growth response by activating the Cyclin D2 gene. 

NAE1 (formerly APPBP1) is able to bind and activate the ubiquitin-like protein 

NEDD8 and has been implicated in the downregulation of !-catenin during neuronal 

death in Alzheimer's disease [378]. The overlap between any two cell lines was also 

small, 17 to 28 genes, including more Wnt pathway ‘core’ components such as 

AXIN1, BCL9, DVL2, LEF1, PYGO2, TLE1, WNT7 (Figure 4.31, Appendix B 

Table 36).  

 

Therefore, the majority of the primary screen hits from each screen appeared to be 

specific to the respective cell line.  
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Figure 4.31 VENN Diagram of Wnt pathway components identified by RNAi 
screens in different human cell lines. 
 
Hit comparison in RNA interference screens for Wnt signalling components in different human 
cell lines: Primary hits in the 7df3 (our data), HeLa [267] and DLD1 screen [242]. Numbers of 
hits in the different compartments are indicated.  
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 4.8 Summary  
 
The three screens developed in Chapter 3 for the identification of novel regulators of 

!-catenin were successfully undertaken. Hundreds of esiRNAs were identified as 

potential novel regulators of !-catenin levels and localisation within two cell lines of 

differing Wnt signalling contexts. Various in silico analysis methods were employed 

to characterise the ‘hits’ further with known Wnt and !-catenin regulators identified, 

providing confidence in the validity of the screens to identify both novel up- and 

down- regulators. In addition to Wnt signalling, other pathways and processes were 

over-represented in the gene sets, from MAP kinase signalling and cell cycle 

processes to cytoskeletal organisation, adhesion and mRNA processing and 

translation. 49% of the esiRNAs selected for secondary assays reconfirmed their 

effects from the primary screens. The screens provided genome scale insights into 

cellular processes linked to !-catenin and the possible mechanistic processes involved 

from the identified modulators.  

 

Interestingly, a lack of a significant correlation was observed when comparing the !-

catenin imaging screening data with the previous screen for regulators of TCF-

dependent transcription in the 7df3 reporter cell screen. Within the reconfirmed set, 

there was a slight positive correlation between !-catenin nuclear localisation and 

TCF-dependent transcription in the U2OS cell line. This suggested that alterations in 

!-catenin are not necessarily directly coupled to transcriptional changes.  

 

Comparing the !-catenin imaging screening data with several genome-wide screens 

for regulators of TCF-dependent transcription revealed an overlapping subset of genes 

that were highly connected, which strongly implicated processes such as Integrin and 

AP-1 signalling to the role of !-catenin in TCF-dependent transcription. Overlaps 

between the screen ‘hits’ were low between the different cell lines, indicative of cell-

type specific effects. These interesting observations will be discussed further in 

Chapter 6.  The subsequent chapter will discuss an investigation into hnRNP A1, an 

mRNA binding protein that was consistently identified as a potential repressor of !-

catenin in all three imaging screens, in addition to the screen for TCF-dependent 

transcription.  
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Having identified and reconfirmed a small subset of genes in Chapter 4, the next 

objective was to characterise a novel gene in an attempt to understand further how it 

may regulate !-catenin levels and/or localisation.  

 

Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was chosen for further 

investigation as its downregulation resulted in strong !-catenin accumulation in the 

three primary screening assays, in addition to enhanced TCF-dependent transcription 

in the primary luciferase screen. HnRNP A1 had been shown to bind !-catenin by co-

immunoprecipitation [379] and mass spectrometry [380]. Enrichment analysis 

strongly implicated mRNA processing, transport and translation in the primary screen 

data sets interrogated, suggestive of a significant degree of !-catenin control at the 

post-transcriptional level, an area often overlooked in the field. Therefore, it was 

deemed a promising and interesting candidate for further studies. 

 

The current chapter describes the reconfirmation of hnRNP A1 as a repressor of 

Wnt/!-catenin signalling and the investigation into its potential role in !-catenin 

regulation. As mentioned in the acknowledgements, James Platt and Rosalind Roberts 

were two undergraduate students assigned to me for their final year projects and they 

ably assisted at different stages of this chapter and are credited in legends where 

appropriate.  

 

Reconfirmation of hnRNP A1 was undertaken separate to the subset of esiRNAs 

investigated in Chapter 4. Work on HUWE1, a novel Dishevelled ubiquitin ligase 

identified from the TCF-dependent screen, was also undertaken but will not be 

discussed further here as it would require the presentation of significant amounts of 

data from collaborating laboratories.  

 

Before describing the specifics of the investigation into hnRNP A1, it is important to 

briefly provide background information on this protein and it’s known cellular 

functions.   
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5.1 Background 
 
Following gene transcription by RNA polymerase II, the resulting precursor-

messenger-RNAs (pre-mRNAs) are subject to a variety of regulatory post-

transcriptional modifications, such as differential splicing, editing and 

polyadenylation. This in turn can significantly affect the proteins generated, both in 

terms of levels and, in the case of alternative splicing and translation, the precise 

protein isoform produced [381]. Furthermore, messenger RNA (mRNA) nuclear 

export and subcellular localisation, in addition to their stability and translation, are 

highly regulated to enable the correct functioning of these mature mRNAs. Such post-

transcriptional regulatory events are mediated through the assembly of a large number 

of RNA-binding proteins (RBPs) [381, 382] and processing factors, such as non-

coding RNAs (e.g. microRNAs [383]), in ribonucleotide (RNP) complexes.  

 

5.1.1 Heterogeneous nuclear ribonucleoproteins (hnRNPs). 
 

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of predominantly 

nuclear RNA-binding proteins that bind to nascent primary transcripts (pre-mRNA or 

historically called hnRNA), produced by RNA polymerase II, and package them into 

hnRNP particles [384]. HnRNPs are also loosely defined as proteins that bind to 

hnRNA (consisting of pre-mRNA and nuclear mRNA), but which are not stable 

components of other classes of RNP complexes such as small nuclear RNPs (snRNPs) 

[384, 385]. 20 different human hnRNP proteins with different RNA sequence binding 

preferences have been identified following the purification of hnRNP particles, which 

were named hnRNP A-U (Table 5.1). HnRNP complexes that co-purify with the same 

hnRNA are often large and highly diverse, consisting of several ‘traditional’ hnRNPs 

(described in Table 5.1), in addition to numerous other RBPs, such as splicing factors, 

that co-ordinate post-transcriptional regulation of gene expression [382]. These 

complexes are highly dynamic with some hnRNPs confined to binding mRNA only in 

the nucleus whilst others can accompany mRNAs to the cytoplasm [384]. 

Furthermore, events such as phosphorylation changes mediated by intracellular 

signalling pathways can alter the binding activity of specific hnRNP proteins, in 

addition to the availability of specific binding sequences [386, 387]. 
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These multifunctional proteins have been demonstrated to be involved in a diverse 

range of molecular processes, from telomere biogenesis and DNA repair to cell 

signalling and gene expression regulation at both transcriptional and translational 

levels. As a result of these functions, which also includes proto-oncogene splicing, 

hnRNPs have been implicated in the development and progression of tumourigenesis 

[388]. The roles of different hnRNP family members are summarised in Table 5.1. 

 

HnRNPs are modular proteins that share certain structural features, most notably 

RNA-binding/recognition domains called the RNA recognition motif (RRM) or RNA-

binding domain (RBD), a prevalent motif in the proteome that is present in up to 1% 

of gene products [389-391]. The structure of these domains enables their binding to 

single stranded nucleic acids (including ssDNA) of variable length in both a 

sequence-specific and general non specific manner [392]. Other, less prevalent 

domains include K homology (KH) domains involved in RNA and DNA binding[393] 

and Arg-Gly-Gly (RGG) motifs, which are postulated to be involved in protein-

protein interactions, nuclear localisation and transcriptional activation [384, 391].  

 

 
Table 5.1 (overleaf).  Summary of hnRNP Functions.  
Reproduced and adapted from [391] and [394]  
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hnRNP 
RNA-
binding 
motifs 

Proposed 
Functions References 

A0 2 x RRM, RGG Splicing (By analogy) [395] 

A1 2 x RRM, RGG Telomere maintenance 
 
Transcription 
DNA replication 
Splicing 
 
miRNA processing 
mRNA stability 
Translation regulation 
mRNA trafficking 

[396-399] 
[400] 
[401] 
[402-405] 
[406, 407] 
[408] 
[409] 
[410, 411] 

A2/B1 2 x RRM, RGG Telomere maintenance 
Transcription 
Splicing 
 
mRNA stability 
Translation regulation 
mRNA trafficking 
mRNA packaging 

[398, 412] 
[413, 414] 
[403, 415, 416] 
[417] 
[418] 
[419, 420] 
[421] 

A3 2 x RRM, RGG Telomere maintenance 
mRNA trafficking 

[422] 
[423] 

C1/C2 1 x RRM Chromatin remodelling 
Transcription  
Splicing 
mRNA retention 
mRNA packaging 
mRNA stability 
Translational regulation 
Telomere biogenesis 

[424] 
[425] 
(Martinez-Contreras et al, 2006) 
[382] 
[421, 426] 
[427] 
[428, 429] 
[399] 

D1/D2 
(AUF 1 p42, p45) 

2 x RRM, RGG Transcription 
mRNA stability 
Translation regulation 

[430] 
[431] 
[432] 

E1/E2 
(poly (rc) binding 
protein 1-!CP1/2) 

3 x KH Transcription 
Telomere biogenesis 
Splicing 
mRNA stability 
Translational regulation 
 

[433]. 
[399] 
[434, 435] 
[436, 437] 
[435, 437-439] 

F 3 x RRM mRNA stability 
Splicing 

[440] 
[416, 441] 

G 1 x RRM, RGG DNA repair 
Tumour Suppressor 
Transcription factor 
Splicing 

[442] 
(Shin et al, 2008) 
[443] 
[444] 

H/H’ (DSEF-1) 3 x RRM mRNA stability 
Splicing 
Polyadenylation 

[440] 
[445] 
[446] 

I (Polypyrimidine 
tract binding 
protein 1-PTB 1) 

4 x RRM Splicing 
mRNA stability 
Polyadenylation 
Translational regulation 

[447-449] 
[450] 
[451] 
[452] 

K 
(Transformation 
Up Regulated 
Nuclear Protein-
TUNP) 

3 x KH, RGG Transcription 
Chromatin remodeling 
Telomere biogenesis 
Splicing 
Translational regulation 
mRNA stability 

[453-455] 
[454] 
[399] 
[456, 457] 
[436, 458] 
[459] 

L 4 x RRM Transcription 
Splicing 
mRNA stability 
Polyadenylation 
mRNA export 
Translation Regulation 

[460] 
[461] 
[462] 
[463] 
[463] 
[452, 464] 

M 3 x RRM Splicing 
Heat Shock Response 

[434] 
[465] 

P2 (TLS/FUS) 1 x RRM, RGG Transcription 
Genome stability 
Splicing 

[466] 
[467] 
[468] 

Q (glycine and 
tyrosine-rich 
RNA binding 
protein (GRY-
RBP)/R 

3 x RRM, RGG Splicing 
RNA replication 
mRNA stability 
mRNA trafficking 

[469] 
[470] 
[471] 
[472, 473] 

U 
(Scaffold 
Attachment 
Factor A-SAF A) 

1 x RGG Chromatin organisation 
DNA binding 
RNA binding 

[474, 475] 
[475] 
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5.1.2 hnRNP A1  
 

HnRNP A1 is a highly abundant hnRNP consisting of an RGG and two RBD motifs, 

with the N-terminal RBD involved in mediating protein-protein interactions [394]. 

While mostly nucleoplasmic in distribution, a C-terminus proximal 38 amino acid 

domain, called the M9 motif, facilitates signal-mediated nucleo-cytoplasmic shuttling 

of hnRNP A1 [410, 476, 477], such as in response to stress [478] or post-translational 

modifications [479]. In turn, this implicated a function for hnRNP A1 in the nucleo-

cytoplasmic shuttling of newly synthesised mRNAs for translation [410]. In support 

of this, it was revealed that hnRNP A1 could bind polyA+ mRNA in both the nucleus 

and cytoplasm [411]. Its protein binding function has also been demonstrated to 

mediate protein trafficking, with hnRNP A1 contributing to the control of NF-!B-

dependent transcription by binding NF-!B inhibitor, I!B", to mediate its degradation 

[480]. 

 
In addition to mRNA and protein trafficking, hnRNP A1 plays a role in a plethora of 

other processes, both in the cytoplasm and nucleus (summarised in Figure 5.1). Its 

involvement as a splicing silencer is well established where it inhibits splicing by 

binding pre-mRNA at the same site as splicing factor 2 (SF2) [402]. It’s inhibition of 

alternative splicing of a variety of genes, including CD44, c-src and PKM, has been 

linked to tumour development and progression [402-405, 481, 482]. More recently, 

hnRNP A1 has been suggested to play a role in microRNA biogenesis, by assisting 

Drosha in cleaving pre-miR-18a from it pre-miRNA transcript to generate microRNA 

18a (miR-18a) and conversely inhibiting Drosha mediated processing of pri-let-7a-1 

[406, 483, 484]. This latter role was shown to exert its effect by interfering with the 

ability of another RBP, K homology splicing regulatory protein (KSRP), to bind and 

promote let-7a biogenesis [406]. Furthermore, by recruiting telomerase to telomeric 

DNA, hnRNP A1 can maintain telomere length with further details regarding its role 

becoming increasingly elucidated in recent years [396-399]. HnRNP A1 has also been 

associated with stimulating cap-dependent translation alongside other RBPs [485] as 

well as regulating internal ribosome entry site (IRES) mediated translation [409, 486].  

 

Additionally, hnRNP A1 has been demonstrated to regulate mRNA stability through 

association with AU-rich elements (ARE) in the 3’-untranslated region of target 
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mRNAs [487]. This role appears to be context dependent however, as it has been 

demonstrated to both stabilise mRNA [488] and promote its degradation [408].  

 

5.1.2.1 hnRNP A1 and KSRP  

 

HnRNP A1 has also been associated with regulating mRNA stability as part of a 

complex with KSRP; another RNA-binding protein involved in the decay of target 

transcripts [335, 489]. It was demonstrated that PI3K-AKT or Wnt signalling lead to 

stabilisation of KSRP target mRNA, which included hnRNP A1[489] and !-catenin 

mRNA [185]. More recently, KSRP was shown to interact with Dishevelled in a 

complex that mediated !-catenin mRNA degradation. Wnt stimulation was observed 

to induce !-catenin mRNA release and subsequent stabilisation, resulting in rapid 

translation and accumulation of protein levels. [183]. The role for hnRNP A1, if any, 

in this process has yet to be explored. 
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Figure 5.1.  The numerous roles of hnRNP A1 (red, A1) within the cell. a) hnRNP A1 acts as a 
splicing silencer.  b) hnRNP A1 aids Drosha (D) in excising pre-miRNA18a from the pri-miRNA 
transcript.  c) hnRNP A1 is involved in mRNA export.  d) hnRNP A1 aids telomerase (T) with telomere 
elongation.  e) i) Through binding  AU rich elements (ARE), hnRNP A1 can either promote or prevent 
the degradation of particular mRNAs. ii) hnRNP A1 also forms part of the KSRP complex, which 
degrades certain mRNAs.  Its exact role in the complex is unknown, but it is shown here as positively 
regulating the activity of the complex, as proposed by our model.  f) i) hnRNP A1 binding internal 
ribosome entry sites (IRES) can either promote or inhibit the translation of that mRNA. ii) With other 
general RNA binding proteins (yellow), hnRNP A1 promotes cap-mediated translation. Figure produced 
by Rosalind Roberts as part of her final year research project. 

e) 

i) 
ii) 
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5.2 hnRNP A1 identified as a novel repressor of !-catenin – 

primary screening data. 
 

In the primary !-catenin localisation H screen, esiRNA against hnRNP A1 resulted in 

increased !-catenin levels in both nuclear and cytoplasmic compartments of the cell 

to give a whole cell !-catenin intensity Z-score of 3.2 (Figure 5.2 A and B). However, 

in this particular cell line no significant change was observed in terms of !-catenin 

Nuclear to Cytosolic Ratio (Figure 5.2 C). Slight toxicity was observed with cell 

numbers reduced to 56% of the average counts from it’s respective plate, which was 

still above the filtering threshold for excluding wells on the grounds of toxicity (set at 

<30%) (Figure 5.2). 

 

A similar result was obtained in the UB screen whereby hnRNP A1 esiRNA treated 

cells possessed striking increases in !-catenin levels and !-catenin nuclear to 

cytosolic ratios, as indicated by Z-scores of 5.7 and 3.6 respectively (Figures 5.3). In 

addition, esiRNA against its paralog, hnRNPA1-like 2, also resulted in increased !-

catenin levels (Figure 5.3 B). The increase in !-catenin nuclear targeting as shown by 

increased Nuclear to cytosolic ratio (Figure 5.3 C) was not apparent in the 7df3 cell 

line (Figure 5.2 C), possibly due to the challenging morphology in these cells for 

accurate segmentation, as discussed previously. Cell numbers were slightly decreased 

in this field of view, but not detrimentally. Similarly, knockdown of hnRNP A1 

further enhanced APC esiRNA induced !-catenin levels in the UA screen (Figure 

5.4), with Z-scores of 2.6 and 6 observed for !-catenin nuclear:cytosolic ratio and 

whole cell intensities respectively. In addition, esiRNA against its paralog, 

hnRNPA1-like 2, also resulted in increased !-catenin levels. 
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Figure 5.2 hnRNP A1 knockdown resulted in !-catenin accumulation in the H 
primary screen. 
 
(A) 7df3 cells transfected with the indicated esiRNAs were fixed and immunostained for !-
catenin with DAPI staining DNA. A single field of view was acquired and is displayed; bar, 50 
µm. Images were analysed for !-catenin whole cell intensity and !-catenin nuclear to 
cytoplasmic (Nuc/Cyt) ratio with the entire esiRNA primary screen Z-scores for both 
parameters plotted in (B) and (C) respectively. Each spot represents an individual esiRNA 
and are coloured red if passed Z-score thresholds of >2 and <-1.5. hnRNP A1 esiRNA’s Z-
score in relation to the entire esiRNA library is highlighted in green along with esiRNA against 
known Wnt pathway components (Axin, !-catenin) in the library.  
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Figure 5.3 hnRNP A1 knockdown resulted in !-catenin accumulation in the UB 
primary screen. 
 
(A) eGFP-!-catenin cells transfected with the indicated esiRNAs were fixed and 
immunostained for !-catenin with DAPI staining DNA. Two fields of view were acquired, 
which were in high agreement and a representative field is displayed; bar, 50 µm. Images 
were analysed for !-catenin whole cell intensity and !-catenin nuclear:cytoplasmic (Nuc/Cyt) 
ratio with the entire esiRNA primary screen Z-scores for both parameters averaged from the 
two fields of view and plotted in (B) and (C) respectively. Each spot represents an individual 
esiRNA and are coloured red if passed Z-score thresholds of >2 and <-1.5. Z-scores for  
HnRNP A1 and hnRNP A1L2 esiRNAs are highlighted in green, along with esiRNA against 
known Wnt pathway components (APC, !-catenin) in the library.  
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Figure 5.4 hnRNP A1 knockdown results in enhanced !-catenin accumulation in 
the UA primary screen. 
 
(A) eGFP-!-catenin cells co-transfected with the indicated esiRNAs and APC esiRNA were 
fixed and immunostained for !-catenin with DAPI staining DNA. Two fields of view were 
acquired, which were in high agreement and a representative field is displayed; bar, 50 µm. 
Images were analysed for !-catenin whole cell intensity and !-catenin nuclear:cytoplasmic 
(Nuc/Cyt) ratio with the entire esiRNA primary screen Z-scores for both parameters averaged 
from the two fields of view and plotted in (B) and (C) respectively. Each spot represents an 
individual esiRNA and are coloured red if passed Z-score thresholds of >2 and <-1.5. Z-
scores for  HnRNP A1 and hnRNP A1L2 esiRNAs are highlighted in green, along with 
esiRNA against known Wnt pathway components (APC, !-catenin) in the library.  
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5.3 hnRNP A1 identified as a novel repressor of TCF-

dependent transcription. 
 

Although !-catenin has been shown to be the core effector of the Wnt pathway, many 

TCF-transcription factors are able to bind to the promoters of Wnt target genes and, as 

observed in Chapter 4, increased !-catenin levels appeared to poorly correlate with 

TCF-dependent transcription. However, in the case of hnRNP A1, increased !-catenin 

levels and nuclear localisation (as observed in the U2OS screens) following it’s 

knockdown resulted in increased TCF-dependent transcription, as demonstrated in the 

corresponding high-throughput luciferase screen undertaken by Dr Katja Seipel 

(Figure 5.5).  

  

Furthermore, co-transfecting !-catenin esiRNA alongside hnRNP A1 esiRNA 

abrogated the effect of hnRNP A1 knockdown on TCF-dependent transcription, 

demonstrating that CTNNB1 is epistatic to hnRNP A1 and further underlying the 

specificity of the response to the !-catenin/Wnt signalling pathway (Appendix C, 

Figure 1).  

 

The primary screening data (both experimental and in silico) therefore suggested that 

hnRNP A1 was a promising potential regulator of !-catenin in a Wnt signalling 

context and was hence chosen for further investigation. 

 

5.4 Reconfirmation of hnRNP A1 as a novel repressor of !-

catenin and subsequent TCF-dependent transcription. 
 
Off target effects are an inherent issue within RNAi screening, therefore potential 

‘hits’ must be reconfirmed in secondary and tertiary assays before proceeding to 

mechanistic studies.  
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Figure 5.5 hnRNP A1 identified as a novel repressor of TCF-Dependent 
transcription. 
Primary luciferase screen data - hnRNP A1 functions as a transcriptional repressor in !-
estradiol treated 7df3 cells. HnRNP A1 esiRNA transfected cells displayed increased 
luciferase counts with APC and !-catenin esiRNA used as positive and negative controls 
respectively. Control esiRNA was used to control for non-specific esiRNA effects. A single 
well is displayed as fold over it’s corresponding screen plate mean (A) or its corresponding Z-
score (B). Data generated by Dr Seipel 
 
  



 192 

5.4 Reconfirmation of hnRNP A1 as a novel repressor of !-

catenin and subsequent TCF-dependent transcription. 
 
Off target effects are an inherent issue within RNAi screening, therefore potential 

‘hits’ must be reconfirmed in secondary and tertiary assays before proceeding to 

mechanistic studies.  

 

5.4.1 Secondary hnRNP A1 esiRNA reagents result in !-catenin 

accumulation in both eGFP-!-catenin and parent U2OS cell lines. 
 
Freshly synthesised esiRNA of the same sequence utilised in the primary library was 

transcribed from 7df3-based cDNA (labelled Val1) in addition to the generation of a 

secondary non-overlapping esiRNA against hnRNP A1 (Val2; See appendix C, table 

1 for sequences). HnRNP A1 Val1 esiRNA reconfirmed the primary screen data in 

eGFP-!-Catenin U2OS cells with increased eGFP-!-catenin detected by fluorescence 

microscopy and by western blotting (Figure 5.6A and B).  

 

HnRNP A1 esiRNA’s effect was corroborated in the standard U2OS cell line, 

whereby hnRNPA1 esiRNA resulted in increased endogenous !-catenin levels 

(Figure 5.6C), albeit more subtly (Figure 5.6 D). Despite the robustness of the 

activation of TCF-dependent transcription by both APC and hnRNP A1 esiRNA in 

the primary luciferase screen (Figure 5.5), this appears to equate to relatively small 

changes in !-catenin cellular levels (Figure 5.6 B and C), suggestive of highly 

sensitive transcriptional responses to alterations of !-catenin levels and localisation.  

 

Western blotting was also used to verify hnRNP A1 knockdown by both of the 

secondary esiRNAs against hnRNP A1 (Figure 5.6 B and C), providing further 

confidence that the effect on !-catenin was specific. Quantitative RT-PCR was also 

undertaken to verify the knockdown of hnRNP A1 mRNA by the different esiRNAs, 

which averaged at a reduction of approximately 20-50% depending on the esiRNA 

utilised (example provided in Figure 5.12 C). 
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Figure 5.6 hnRNP A1 negatively regulates !-catenin – reconfirmation. 
 
(A) hnRNPA1 depletion using a secondary esiRNA results in increased !-catenin levels. 
eGFP-!-catenin U2OS cells were fixed and nuclei DAPI stained 48hrs following esiRNA 
transfection. Representative image displayed, Bars; 50um. (B) Crude Cytosolic and Nuclear 
eGFP-!-catenin U2OS extracts prepared from esiRNA transfected eGFP-!-catenin U2OS 
cells. Representative blot displayed. (C) Endogenous cytosolic !-catenin levels following 
esiRNA transfection of standard U2OS cells with secondary hnRNP A1 esiRNA, as detected 
by western blotting. (D) Quantification of !-catenin levels in (C) by normalising to actin loading 
control. Data displayed as !-catenin fold over siRNA control.  
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5.4.2 Rescue of hnRNP A1 depletion  
 

Both validation esiRNAs against hnRNP A1 (Val1 and Val2) were tested in !-

estradiol treated 7df3 cells along with two chemically synthesised siRNAs against the 

gene. The validation esiRNAs resulted in significantly increased TCF-dependent 

luciferase in the 7df3 cells (Figure 5.7A). Both the purchased hnRNP A1 siRNAs 

resulted in an increase in TCF luciferase, although this was not significant upon 

combining independent experiments. However, qRT-PCR analysis suggested that the 

knockdown efficiency of these two chemically synthesised siRNAs were not as 

efficient with approximately only a 30% decrease in hnRNP A1 mRNA levels 

observed, which may explain their comparatively weak effect (data not shown).  

 

Expressing low levels of esiRNA-resistant mouse hnRNP A1 decreased Dvl-ER- 

induced TCF-dependent transcription and was able to significantly rescue the hnRNP 

A1 esiRNA mediated increase in TCF-luciferase when co-transfected, thus 

confirming the specificity of the hnRNP A1 esiRNA effect.  

 

Overall, the data strongly suggested that hnRNP A1’s apparent suppression of !-

catenin/Wnt signalling was not simply due to off target effects and that it merited 

further investigation. The remainder of this chapter describes the various hypothesis 

and methods applied in an attempt to establish its mechanism further.  
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Figure 5.7 Secondary esi/siRNAs for hnRNP A1 increases TCF-dependent 
transcription, which can be rescued by mouse mhnRNPA1 expression. 
 
(A) hnRNP A1 esi/siRNA transfected and !-estradiol treated 7df3 cells displayed increased 
luciferase counts compared to control-transfected cells, reconfirming the primary data. APC 
and !-catenin esiRNA were used as positive and negative controls respectively. Data 
represent mean RLU (relative light units) expressed as fold over control ± s.e.m of at least 
two independent experiments per reagent (n= !2 of at least duplicate wells per condition). **p 
<0.001, *p<0.01 (One-way ANOVA, Tukey's Multiple Comparison Test).  
 
(B) Expression of low levels of esi-resistant mouse hnRNP A1 decreases TCF-dependent 
luciferase and rescues the effect of hnRNPA1 esiRNA in !-estradiol treated 7df3 cells. Cells 
were co-transfected with control or hnRNPA1 esiRNA/cDNA as indicated, induced with !-
estradiol for 24hrs with luciferase assays undertaken 48hrs later. Data represent the mean ± 
s.e.m. of three independent experiments (n=3 of multiple replicate wells per condition) 
normalised to control siRNA/empty vector control samples. " p<0.01, "" p <0.001 (Kruskal-
Wallis, Dunn’s multiple comparison test).  
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5.5 hnRNP A1 interacts with !-catenin. 
 

Co-immunoprecipitation experiments were undertaken to investigate whether hnRNP 

A1 binds !-catenin in the cell lines used in the primary screening assays. No 

interaction was observed when using whole cell 7df3 and eGFP-!-catenin-U2OS 

lysates (data not shown) therefore crude nuclear and cytosolic extracts were prepared, 

as undertaken previously [379]. HnRNP A1 was demonstrated to bind !-catenin both 

in the nucleus and in the cytoplasm (Figure 5.8 A and B respectively) suggesting a 

potential protein shuttling role for hnRNP A1 where it may mediate the export of !-

catenin into the cytoplasm for degradation, as demonstrated for I!B" in the regulation 

of NF-!B signalling [480]. Initial experiments in standard U2OS cells (therefore 

endogenous !-catenin only) appeared to corroborate the above observations, although 

given more time these would have been repeated (data not shown). Variability was 

observed with regards to the cellular location of this apparent binding, along with 

occasional issues of hnRNP A1 binding non-specifically to the bead matrix (Figure 

5.8 B). While hnRNP A1 shuttles between cell compartments it is mostly localised in 

the nucleus, with the variability observed between experiments potentially a reflection 

of increased cytoplasmic distribution of hnRNP A1 in certain situations, such as 

cellular stress [478]. Overall, however, the co-immunoprecipitation experiments 

appeared to support published reports of an interaction between !-catenin and hnRNP 

A1 [379]. 

 

5.6 hnRNPA1 negatively regulates !-catenin levels 

independently of its protein turnover. 
 

Due to the key role of !-catenin turnover in the regulation of the Wnt/!-catenin 

pathway, the vast majority of research has centred on deciphering the regulation of !-

catenin protein stability [185]. Therefore, assessing the role of hnRNP A1 on this 

aspect of !-catenin was one of the first questions tackled upon reconfirmation of the 

primary data.  
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Figure 5.8 hnRNP A1 binds !-catenin  

 #-catenin and/or hnRNP A1 were immunoprecipitated from crude eGFP-!-Catenin U2OS 
nuclear (N) and cytosolic (C) lysates. Blots were subsequently probed with hnRNP A1 and !-
catenin antibodies. (A) hnRNP A1 Co-IP’d with !-catenin in nuclear extracts. Produced by 
Rosalind Roberts as past of her final year research project. (B) Similar to (A), except that the 
Co-IP is displayed both ways. Controls are protein G beads alone. A degree of hnRNP A1 
non-specific binding is observed in the controls (Lanes 1 and 4), although significantly less 
compared to samples with antibody incubation. Representative blots displayed.  
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Firstly, metabolic pulse-chase assays were undertaken to investigate the effect of 

hnRNP A1 downregulation on !-catenin protein stability. 48 hours post-esiRNA 

transfection, cells were incubated in 35S methionine media for an hour to label any 

newly synthesised protein during this period by the incorporation of radioactively 

labelled amino acids. Following the replacement the media with normal unlabelled 

media cells were harvested at varying time points, as indicated in Figure 5.9 (T0 – 

harvested instantly after media replacement), and !-catenin subsequently 

immunoprecipitated. Therefore, proteins that were produced during the pulse would 

be radioactively labelled thus allowing the degradation of #-catenin to be followed 

over time and to observe the effects of the esiRNA upon its stabilisation.  

 

APC esiRNA resulted in the expected stabilisation of #-catenin (i.e. its decreased 

degradation over time) as demonstrated by the increased levels of radiolabelled #-

catenin at T30 and T45 time points in both cell types (Figure 5.9 A and B). These 

assays revealed that, whilst hnRNPA1 esiRNA treated cells displayed the expected 

increase in !-catenin levels at time zero, it’s degradation rate appeared far faster than 

APC esiRNA treated cells, suggesting that loss of hnRNPA1 did not disrupt !-catenin 

degradation in the same manner as loss of APC (Figure 5.9A and B). This implied 

that the increase in #-catenin observed at T0 with hnRNP A1 esiRNA was due to 

increased synthesis of #-catenin. In the eGFP-!-Catenin U2OS cell line shorter 

timepoints were used based on the observation in the 7df3s that after 30minutes !-

catenin in the hnRNP A1 treated sample had degraded to control levels. In the 7df3 

reporter cell line the control esiRNA surprisingly does not show the expected pattern 

of #-catenin breakdown, which may be due, in part, to the prevalent, stable membrane 

bound !-catenin masking the turnover of free !-catenin. An attempt at isolating free 

!-catenin using a GST-E-Cadherin pull-down within these assays failed. 

 

To support these observations, single cell time-lapse microscopy assays were 

undertaken in esiRNA-treated eGFP-!-catenin U2OS cells following the addition of 

the translational inhibitor, cycloheximide. If hnRNP A1 altered !-catenin degradation, 

the decay rate of eGFP-!-catenin would be expected to be delayed/slower compared 

to control (under circumstances where no new protein was translated). Cells were 

imaged every 10 minutes for approximately 15hours after cycloheximide treatment, 
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with eGFP-!-catenin fluorescence within individual cells quantified every hour (every 

6 frames) in Image J.  APC esiRNA treated cells displayed the expected increase in !-

catenin stability, whilst hnRNP A1 esiRNA treated cells displayed !-catenin 

degradation rates similar to the control (Figure 5.9C, Movies in Appendix C). The 

data appeared to support the results obtained from the pulse-chase analyses. Taken 

together, the studies suggested that increased !-catenin levels upon hnRNP A1 

ablation may be due to increased synthesis of !-catenin, rather than its decreased 

protein degradation, which could be attributed to increased transcription, mRNA 

stability or increased translation for example. 

 

5.6.1 Dynamic regulation of !-catenin 
 
Time-lapse microscopy was also undertaken in eGFP-!-Catenin esiRNA and Wnt3a 

treated cells in the absence of cycloheximide. Images were acquired every 10minutes 

for approximately 29hours with the movies provided in Appendix C. !-catenin levels 

was observed to cycle with a variable period time of between 5-9 hours, which was 

unaffected by hnRNPA1 esiRNA and Wnt3a treatment. !-catenin cycling was not 

observed in the presence of APC esiRNA and cycloheximide treatment (Appendix C). 

Moreover, levels did not appear to precisely correlate with cell cycle as previously 

reported [490, 491] with cells dividing in both the presence and absence of cycling 

detectable !-catenin. However, given time further cell numbers would have been 

assessed, in addition to quantification of !-catenin dynamics in synchronised cells, 

which would enable more accurate conclusions to be drawn. The regulation of !-

catenin dynamics may reflect novel roles for its modulators with further studies 

warranted on this interesting observation.  
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Figure 5.9 hnRNP A1 does not appear to regulate !-catenin protein stability 

 
(A) esiRNA transfected 7df3 cells were labelled with [35S] methionine then chased with 
nonradioactive medium for the indicated time points. Cells were then lysed and 
immunoprecipitated for !-catenin prior to western blotting analysis. Experiment in 7df3 cells 
undertaken by Dr Seipel and James Platt. Repeated in eGFP-!-catenin U2OS cell line (by 
myself) with endogenous !-catenin bands displayed (B).  (C) esiRNA transfected U2OS-GFP-
!-Catenin cells were treated with the translational inhibitor cycloheximide and imaged at x40 
magnification for approximately 15hours. GFP fluorescence in individual cells were measured 
every hour using ImageJ and expressed as a percentage of Time 0 (T0) fluorescence. Points 
represent mean ± SD values of between 8-11 cells per condition. Control esiRNA vs APC 
esiRNA p<0.001 and hnRNP A1 vs APC esi RNA p<0.01 (One way ANOVA, Tukey’s multiple 
comparison test). There was no significant difference in eGFP-!-catenin degradation between 
control and hnRNP A1 esiRNA treated cells. Single cell data points are displayed in Appendix 
C, Figure 2. 
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5.7 hnRNPA1 negatively regulates !-catenin levels 

independently of its mRNA synthesis and stabilisation. 
 

Given hnRNP A1’s numerous roles in mRNA processing it was envisaged that it 

could be exerting its effects either pre or post-transcriptionally, by affecting !-catenin 

mRNA synthesis, stability or splicing for instance.  

 

HnRNP A1 is well known as a splicing repressor, in addition to well-documented 

roles in regulating mRNA metabolism [405, 408, 492]. While !-catenin possesses 

three splice variants in the 3’UTR of differing stabilities (as indicated in the schematic 

in Appendix C, Figure 3) [324, 493], no evidence currently exists implicating hnRNP 

A1 in !-catenin splicing. The levels of each !-catenin splice variant upon hnRNP A1 

knockdown in 7df3 cells were assessed by RT-PCR analysis on extracted mRNA, 

utilising primers for !-catenin that spanned exons 13 and 16A (Appendix C, Figure 

3). A number of splice variants were uncovered and largely correlated with previous 

studies of !-catenin splicing ([324]. However, no effects of hnRNPA1 depletion were 

observed on the abundance or pattern of splicing products. As these variants exist in 

the 3’UTR region on !-catenin mRNA, this is not unexpected due to the absence of 

both 5’ and 3’ UTRs in the !-catenin sequence incorporated into the eGFP construct 

in the U2OS cells (Crude schematic provided in Appendix C, Figure 4), which 

suggests that the 3’UTR was not sufficient for the effects of hnRNP A1 observed with 

both endogenous and eGFP-!-catenin. 

 

5.7.1 !-catenin mRNA half-life appears unaffected by hnRNP A1 

downregulation  
 

HnRNPA1 has been shown to regulate mRNA stability as part of the KSRP complex 

(as introduced in section 5.1.3) so its effect on !-catenin mRNA stability was assessed. 

To investigate the role of hnRNP A1 in regulating !-catenin mRNA stability, esiRNA 

transfected GFP-!-cat-U2OS cells were treated with Actinomycin D to inhibit further 

transcription, with RNA harvested at the indicated time points (Figure 5.10) prior to 
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undertaking qRT-PCR to assess !-catenin mRNA half-life. HnRNP A1 depletion 

appeared to have no effect on !-catenin mRNA stability, with the half-life unchanged 

from control conditions (Figure 5.10). !-catenin mRNA appeared to undergo rapid 

decay in both instances with a t1/2 of approximately 75 minutes; similar to previous 

reports whereby !-catenin mRNA half-life in unstimulated Wnt conditions varied 

from 45 minutes [494] to 100 minutes [183], depending on cell type.  GAPDH mRNA 

was highly stable and also did not change significantly with hnRNP A1 depletion 

(Figure 5.10).  While the data was not entirely unexpected given the lack of 3’UTR 

and therefore AREs in the eGFP-!-catenin U2OS cells, the role of hnRNP A1’s role 

in regulating mRNA stability through association with elements within the coding 

region, as observed with c-fos [495] and IL-2 [496] for example, scould not have been 

discounted prior to this experiment.  

 

5.7.1.1 hnRNP A1 and KSRP do not associate in eGFP-!-Catenin U2OS cells. 

  

As it was hypothesised that hnRNP A1 regulated !-catenin mRNA as part of a 

complex with KSRP (section 5.1.3), co-immunoprecipitation assays were undertaken 

with eGFP-!-catenin U2OS whole cell lysates to verify the reported interaction 

between hnRNP A1 and KSRP [185, 489]. While both hnRNP A1 and KSRP 

immunoprecipitated efficiently, no interaction was detected for either (Figure 5.11A), 

implying that they do not interact in this particular cell line. Furthermore, hnRNP A1 

mRNA stability was assessed as it was also reported to be a target of KSRP, [185, 

489], with hnRNP A1 mRNA intriguingly stable in eGFP-!-catenin U2OS cells, 

indicating that it may not be targeted by KSRP in this particular context (Figure 

5.11B).  

 

Taken together the data suggests that, despite strong links to KSRP, hnRNP A1 

appears unlikely to be mediating its effects by regulating !-catenin mRNA stability, 

as part of, or independently, of a ribonucleocomplex with KSRP in the cell types 

studied within this project.  
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Figure 5.10 hnRNP A1 does not regulate !-catenin mRNA stability 
 
esiRNA transfected U2OS eGFP-!-catenin cells were treated with Actinomycin D with RNA 
isolated at the indicated time points following treatment. Quantitative RT-PCR analysis of !-
catenin (A) or GAPDH (B) mRNA levels in cells transfected with control or hnRNP A1 
esiRNA. Data displayed as a percentage of the mRNA level at T0 (100%) and represents 
mean values ± S.E.M from 3 independent experiments in triplicate. (C) qRT-PCR analysis of 
hnRNP A1 mRNA levels reveal that, in the above experiments, average knockdown by 
esiRNA was 56%. Data normalised to GAPDH with mean± S.E.M from 3 independent 
experiments in triplicate displayed. Rosalind Roberts contributed to the experiments and 
analysis as part of her final year research project. 
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Figure 5.11 hnRNP A1 mRNA is highly stable and does not appear to be part of 
the KSRP complex in eGFP-!-catenin U2OS cells.  
 
(A) Western blot analysis of whole cell eGFP-!-Catenin U2OS cell extracts 
immunoprecipitated with KSRP or hnRNP A1 antibody (lanes 2 + 3, respectively).  Control is 
protein G beads alone.  
(B)  Quantitative RT-PCR analysis of GAPDH or hnRNP A1 mRNA levels in control esiRNA 
treated cells.  eGFP-!-catenin U2OS cells were treated with Actinomycin D and RNA isolated 
every half hour following treatment.   Raw values were converted to % with 2(-$C

T
) formula, 

with time zero values taken as 100%.  The results were obtained in two independent 
experiments in triplicate and are shown ±S.E.M. 
Rosalind Roberts contributed to the experiments and analysis as part of her final year 
research project.  
  

!"

#"
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5.7.2 !-catenin mRNA synthesis is unaltered upon hnRNP A1 

downregulation  
 

The eGFP tagged !-catenin in the U2OS cell line is transcribed from an artificial 

cytomegalovirus (CMV) promoter. Therefore, it was unlikely that hnRNP A1 would 

be involved in regulating !-catenin mRNA synthesis as its downregulation resulted in 

increased !-catenin in both endogenous !-catenin in the 7df3 and parent U2OS cell 

lines, in addition to the eGFP-!-catenin in the U2OS cell line. However, to confirm 

this, !-catenin mRNA levels upon hnRNP A1 knockdown was investigated in the 

parent U2OS cell line by qRT-PCR. 

 

In hnRNP A1 esiRNA transfected U2OS cells there appeared to be no increase in !-

catenin mRNA levels (Figure 5.12A and B). Upon repeating in the eGFP-!-catenin 

U2OS cell line, a 35% increase in !-catenin mRNA was observed, which wasn’t 

significant due to the highly variable nature of the data (Figure 5.12 C) as indicated 

by the large associated p-values. Therefore, the data implies that hnRNP A1 does not 

negatively regulate !-catenin by inhibiting its synthesis at the mRNA level. 

 

5.7.3 hnRNP A1 may bind !-catenin mRNA. 
 
Given recent work on a KSRP-Dishevelled complex that harboured and regulated !-

catenin mRNA [183] , the ability of hnRNP A1 to also bind to its mRNA was 

investigated. HnRNP A1 was immunoprecipitated from standard U2OS cell lysates 

with RNA subsequently isolated and amplified by qRT-PCR. !-catenin transcripts 

were found in an abundance of over 9 fold compared to bead only control in both 

nuclear and cytoplasmic compartments (Figure 5.13). This was also observed in 

eGFP-!-catenin U2OS cells, although to a lesser degree (approximately 4 fold, data 

not shown). This interesting preliminary result hints at a possible role for hnRNP A1 

in transporting !-catenin mRNA between compartments and potentially harbouring it 

in the cytoplasm ready for release and subsequent translation upon initiation of Wnt 

signalling. Future assays will investigate this observation further. 
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Figure 5.12 hnRNP A1 down regulation has no effect on !-catenin mRNA levels 
in both eGFP-!-catenin and parent U2OS cell lines. 
 
qRT-PCR analysis of !-catenin mRNA levels in cells treated with control and hnRNP A1 
esiRNA in standard U2OS cells (A) and eGFP-!-catenin U2OS cells (B) following 
normalisation to RPL32 and GAPDH respectively using the 2(-$$C

T
) formula.  Mean values ± 

s.e.m of triplicates from n=2 (A) or n=3 (B) independent experiments are displayed. (C) qRT-
PCR analysis of hnRNP A1 mRNA levels in (A) revealed a 66% knockdown by hnRNP A1 
esiRNA in the standard U2OS cell line. Data normalised to RPL32 with mean ± S.E.M from 2 
independent experiments in triplicate displayed. Rosalind Roberts contributed to the 
experiments and analysis in part (B) of the figure as part of her final year research project. 
 
 
 

Figure 5.13 hnRNP A1 binds !-catenin 
mRNA 
 
RNA immunoprecipitation assay of U2OS 
cell lysates with anti-hnRNP A1 antibody. 
RNA isolated from the immunoprecipitates 
were analysed by qRT-PCR with primers 
specific for !-catenin with bars representing 
relative amounts of !-catenin mRNA 
compared to bead only control of a single 
experiment in triplicate. 
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5.8 Summary 
 

HnRNP A1 was identified in the three imaging screens in two different cell lines as a 

potential novel regulator of !-catenin and subsequent TCF-dependent transcription. 

The primary data was extensively reconfirmed and validated using alternative RNAi 

reagents in addition to rescue experiments. Whilst an interaction between hnRNP A1 

and !-catenin was observed, it appeared to play no role in regulating !-catenin protein 

stability, with the investigation then turning to its many mRNA processing functions. 

HnRNP A1 knockdown did not appear to affect the stability of !-catenin mRNA, nor 

was hnRNPA1 a part of a KSRP complex, the strongest published link to !-catenin 

mRNA regulation currently available. Preliminary data indicated that hnRNP A1 was 

able to bind !-catenin mRNA, which in turn suggested possible roles in regulating !-

catenin mRNA localisation and/or translation initiation. Further studies will be 

required to fully understand hnRNP A1’s suppressive regulatory role in the Wnt/!-

catenin signalling pathway. 
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The !-catenin/Wnt signalling pathway is a highly conserved pathway crucial to 

several aspects of development and disease. The aim of this study was to develop 

high-throughput imaging assays to identify novel regulators of !-catenin levels and 

nuclear localisation in the context of Wnt signalling. Three genome-wide screens 

were undertaken, with all identifying known !-catenin/Wnt signalling components, in 

addition to genes previously unascribed to this pathway. Subsets of esiRNA from 

each screen were selected for reconfirmation, with 81 genes being identified as 

promising candidates for further validation and mechanistic studies. The identity and 

potential insights gained from some of the identified novel Wnt regulators in !-

catenin regulation will be discussed briefly alongside consideration of the two main 

findings of the study; the lack of correlation between !-catenin levels and localisation 

with TCF-dependent transcription and the identification of a novel post-

transcriptional regulator of !-catenin, hnRNP A1. Firstly, the apparent cell-type 

specificity of the !-catenin regulators identified will be briefly discussed. 

 

6.1 Cell type specificity of !-catenin and TCF-dependent 

transcription regulation. 
 

The degree of overlap between the genes that regulated !-catenin levels and nuclear 

localisation in both U2OS screens was relatively high, despite the despite the fact that 

!-catenin levels were at basal levels in the UB screen and at induced levels (via loss 

of APC) in the UA screen (Figure 4.15 and Figure 4.16). However, upon comparing 

the data sets obtained from different cell lines the majority of the components 

identified in these genome-scale screens were detected in only one cell line. This was 

true for both the H and UA/UB imaging screens, in addition to the comparisons 

between the different screens for regulators of TCF-dependent transcription (Figure 

4.31). The overlap gene sets from the TCF-dependent transcriptional screens (7df3, 

this lab, HeLa [267], DLD-1 [242]) were selectively enriched for ‘core pathway’ 

components including Axin, APC and TCF, suggesting that these proteins are 

essential for TCF-dependent signalling in many cellular contexts. The overlap 

between any two cell lines from the transcriptional screens was rather small, 17 to 28 



 210 

genes, including more Wnt pathway ‘core’ components like AXIN1, BCL9, DVL2, 

LEF1, PYGO2, TLE1, WNT7 (Figure 4.31).  

 

A number of factors could contribute to this apparent specificity. Most trivially, 

screen-specific RNAi reagents could non-specifically alter levels of ‘core-pathway’ 

regulators through off-target effects. However, the use of siRNA reagents that target 

non-overlapping regions of target mRNAs can exclude off target effects in >70% of 

cases [497-499]. The number of hits validated through the use of non-overlapping 

siRNA reagents were broadly similar in the imaging screens, the 7df3 transcriptional 

screen and the DLD-1 screen [242] representing 49% (average of the three imaging 

screens), 33% and 39% of primary hits respectively. Importantly, the majority of 

genes that were validated through the use of non-overlapping siRNA reagents in the 

transcriptional screens were found only within one of the cell lines examined, 

suggesting that most regulators of TCF-dependent transcription are cell type specific. 

Similar cell-type specific differences were highlighted by Major et al., who showed 

that only 40% (119/298) of the validated regulators identified in DLD-1 colon cancer 

cells were shared by SW480 colon cancer cells [242]. While no large-scale 

comparisons can be made with the !-catenin imaging screens, comparisons between 

the re-confirmed esiRNAs corroborate the above, with only 9 of the 81 regulators that 

reconfirmed with non-overlapping esiRNA scoring positive in both cell lines (Table 

4.13). 

 

Genetic redundancy, differences in the efficacy of siRNA mediated action and the use 

of arbitrary ‘hit’ selection thresholds all lead to apparent ‘cell-type specificity’. 

However, several of these limitations are not applicable upon comparing the !-catenin 

imaging screens undertaken in this study, as the same esiRNA reagents, in addition to 

data analysis methods, were utilised. Mining of mRNA expression databases show 

that the majority of HEK293-specific hits identified were differentially expressed in a 

range of cell lines and tissues (UCSC genome browser database: [500]; data not 

shown), suggesting that cell-type specific effects on !-catenin levels and activity, in 

addition to TCF-dependent transcription, may result, at least in part, from cell-specific 

expression of the regulators. Similar analysis is required for the gene sets identified in 

the U2OS imaging screens to corroborate this further. Overall, the data implies the 
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presence of cell-type specific regulation of both !-catenin levels and activity, in 

addition to TCF-dependent transcription in response to gene downregulation.  

 

The physiological relevance of having many potential !-catenin and TCF-dependent 

regulators within Wnt signalling, in addition to ‘core’ pathway components, is 

currently unclear. As will be discussed in subsequent sections, the complexity of !-

catenin regulation within Wnt signalling is such that the pathway can no longer be 

considered a single linear entity interacting linearly with others [282, 501]. 

Unprecedented levels of cross-talk between the major signal transduction pathways, 

and indeed even between different Wnt ‘pathways’, were revealed in the screens 

undertaken within this study, which will be discussed in further detail in the 

subsequent section of this chapter. This, along with mounting evidence in the 

literature, suggests that the ‘out-put’ from !-catenin signalling in the Wnt pathway 

(i.e. activated transcription of target genes) relies heavily on additional inputs from 

other signalling modules, including those downstream of PI-3-kinase and upstream of 

c-jun [116, 372]. It has been suggested that such complexity would allow for context-

dependent Wnt/!-catenin signalling, whereby Wnt stimulation induces different gene 

expression patterns in different cells depending on the degree of cross-talk with other 

pathways and the variety of secondary inputs [282, 372].  

 

This may explain, at least in part, the surprisingly small overlap in gene expression 

profiles obtained from Wnt3a stimulation of different cells [502-504]. Different levels 

of Wnt can result in the transcription of different target genes, suggesting that it can 

act as a graded morphogen in its regulation of development. For instance, different 

levels of !-catenin activation was observed to have different phenotypic 

consequences [505] with Wnt/!-catenin regulating stemness, proliferation and 

differentiation in adult stem niches, such as the skin and hair follicle, in a dosage and 

context-dependent manner [152, 153]. Recent theoretical and functional assays 

suggested that fold changes in !-catenin and not absolute levels dictated the output of 

Wnt signalling and is a more precise reporter of Wnt stimulation in a heterogeneous 

cell population [205]. This signalling system may act to compensate for natural 

biological (both environmental and genetic) noise so that, despite large variations in 

basal nuclear levels of !-catenin, the actual fold change is equivalent between all cells 
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[205, 506]. This is corroborated in a study where fold changes in nuclear ERK2 and 

not its absolute levels were more reliable indicators of response to ligand stimulation 

[506]. 

 

Taken together, the data suggests the need to consider the Wnt/!-catenin pathway as a 

larger network of interactions, with ‘core’ pathway components providing the 

backbone that connects cell-type specific regulators of !-catenin levels and 

localisation to a common transcriptional output [282, 501]. The overall organisation 

of the Wnt/!-catenin network would differ between cells, resulting in the observed 

cell-specificities.  

 

6.2 !-catenin and TCF-dependent transcription. 
 

A widely held and extensively advocated notion within the field is that increased total 

levels of !-catenin correlate with increased nuclear localisation and subsequently with 

activation of TCF-dependent transcription [66, 91]. Genome scale correlation analysis 

between the primary imaging screens (H, UB and UA) and a previous screen for TCF-

dependent transcription in the 7df3 reporter cell line suggested that there was no 

relationship between !-catenin levels, localisation and transcriptional activity (Figure 

4.23). A slight positive correlation was observed between !-catenin localisation in the 

UA and UB screens and TCF-dependent transcription in the reconfirmed set of 

identified !-catenin regulators. Comparative analysis of the putative !-catenin 

modulators identified in the H screen with the transcriptional screen in the same cell 

line displayed a surprising lack of overlap (Figures 4.26), which was even smaller 

when comparing with published TCF-transcriptional RNAi screens in DLD-1 [242] 

and HeLa cells [267] (Figures 4.28 and 4.29). Comparative analysis of the primary !-

catenin imaging screen data from both U2OS screens with TCF-transcriptional screen 

data in the 7df3s also displayed a lack of significant overlap in the identified 

modulators (Figure 4.27). Overall, the data challenged the prevailing model of Wnt/!-

catenin signalling and suggested that modulating !-catenin levels and localisation 

does not directly couple to transcriptional changes. 
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One could argue that a number of trivial, technical factors may contribute to these 

observations, as it is widely appreciated that within each individual screening 

approach there are inherent experimental and/or theoretical limitations, such as high 

false positive and negative discovery rates [248, 262, 507]. However, the imaging 

screens were deemed high quality as assessed by: 1) good screen associated Z-factors, 

2) the identification of known Wnt/!-catenin pathway regulators in each screen and 3) 

the enrichment of Wnt and ubiquitin mediated proteolysis pathways in the identified 

regulators of !-catenin. Cell type specificity is another potential reason as to why the 

modulators of !-catenin identified in the imaging screens were not picked up in 

comparative TCF-transcriptional screens.  However, this cannot be the case in the H 

screen as it was undertaken, not only in the same cell line, but also utilising the same 

esiRNA reagents as one of the TCF-transcriptional assays compared to. Nevertheless, 

greater overlaps in identified ‘hits’ were observed between screens undertaken in the 

same cell line (Figures 4.15, 4.16, 4.26 and 4.27), indicative of the cell-type specific 

effects described in the previous section. In subsequent sections, the lack of 

correlation between !-catenin levels and localisation with transcriptional activity will 

be discussed in further detail, alongside examples of some of the mechanistic insights 

provided by the screening data obtained from this work. 

 

6.2.1 !-catenin phosphor-isoforms and transcriptional activity 
 

While accumulation and nuclear localisation of !-catenin is often regarded as the 

hallmark of Wnt activation, the observations within this study, whereby !-catenin 

levels and localisation did not correlate with transcriptional changes, is supported by 

several examples in the literature [92, 153, 186-188, 508, 509]. For example, studies 

have demonstrated activated Wnt signalling in the absence of detectable nuclear !-

catenin, such as in colon carcinoma cells [197, 202, 510, 511] and that levels of !-

catenin alone did not fully explain !-catenin/TCF-transcriptional activation [186]. In 

Xenopus embryos, !-catenin’s signalling ability was demonstrated to be dependent on 

its N-terminal GSK3-! phosphorylation sites (S33, S37, T41), irrespective of total 

levels [186]. This was corroborated in mammalian cells whereby a !-catenin Ser37 

and Thr41 de-phospho specific antibody (Active !-catenin (ABC) antibody) was 
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utilised to demonstrate that transcriptional activity was mediated by molecular forms 

of !-catenin that remained unphosphorylated at these sites [187]. ABC, representing a 

small fraction of the total !-catenin pool, resides in membrane in unstimulated 

conditions [188, 219, 512], and is associated with increased cytosolic levels and 

transcriptional activity upon Wnt stimulation [187, 219]. More recently, 

phosphorylation at S45 has also been suggested to be associated with transcriptional 

activity, with this form increasingly membrane localised upon stimulation of 

transcriptional activity [219].  

 

Other notable !-catenin phospho-isoforms that regulate its localisation and 

transcriptional function include a C-terminal Y654, phosphorylated by src kinase, 

which lowers !-catenin’s affinity for E-cadherin and increases its availability for 

interactions with TCF proteins to activate transcription [223]. Phosphorylation at 

Y142 by the tyrosine kinases Fer, Fyn or Met also disrupts !-catenin’s interactions 

with "-catenins in adherens junctions [224] and promotes its interaction with BCL9-2 

to sequester it in the nucleus [124]. CSK (c-src tyrosine kinase) has been 

demonstrated to form a complex with !-catenin at adherens junctions and is involved 

in the regulation of FYN [224, 359, 360], so may also be involved in mediating !-

catenin phosphorylation at Y142. Notably, CSK was observed as a modulator of !-

catenin in the H imaging screen, in addition to the RNAi screens for regulators of 

TCF-dependent transcription in HeLa and DLD-1 cell lines, suggesting a key role in 

regulating !-catenin levels and transcriptional activity in different cell contexts 

(Figure 4.29). An assessment of the phosphorylation status of !-catenin Y142 and 

other tyrosines, especially Y654 mentioned above, upon CSK knockdown may 

provide further insight into its precise role in !-catenin regulation.  

 

In addition to phosphorylation, other post-translational modifications appear to play a 

role in mediating !-catenin’s levels and transcriptional activity. For example, O-

GlcNAc glycosylation (O-GlcNAcylation) of #-catenin has been demonstrated to 

negatively regulate its levels in the nucleus and is associated with decreased 

transcriptional activity [115]. Furthermore, HDAC6 deacetylation of !-catenin at 

lysine 49 in response to EGF stimulation was observed to inhibit !-catenin 

phosphorylation at serine 45, resulting in its nuclear localisation and increased c-myc 
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gene expression [112]. Intriguingly, some forms of Wnt activation result in the 

induction of the export of a repressive TCF from the nucleus, suggesting that the 

active form of !-catenin may itself be out of the nucleus and a scaffold role for a 

membrane complex, which may aid signalling to a subset of target genes that are 

derepressed [513, 514]. 
 

 

Taken together, the levels and localisation of specific transcriptionally competent 

forms of !-catenin, especially ABC, are increasingly considered as the hallmark of !-

catenin transcriptional activity, rather than simply changes to total levels, which was 

the form of !-catenin assayed within this study. Recently, a multiplexed assay has 

been developed that combines protein-protein interaction, co-immunoprecipitation 

and sandwich immunoassays in a single suspension bead array to allow for the 

quantification of different forms of one protein within the same sample [235]. This 

was elegantly used to quantify total #-catenin, its phosphorylation at multiple sites 

and the ratio of complexed and free #-catenin in HEK293s treated with Wnt3a and 

GSK-3! inhibitors [235]. Future studies utilising this technique, along with more 

traditional isoelectric focusing assays, to investigate the novel !-catenin regulators 

identified within this work may be highly beneficial in ascertaining their roles in 

regulating the dynamics of specific !-catenin isoforms. 

 

6.2.2 Fine tuning the Wnt signalling output 
 

As described above, post-translational modifications, such as phosphorylation, 

acetylation and sumoylation can dictate !-catenin’s binding partners and therefore its 

subcellular localisation and subsequent function within a cell [232-234]. It is 

becoming increasingly appreciated that the Wnt signalling pathway is neither in an 

‘on’ or ‘off’ state, but rather has a range of activation levels, with !-catenin post-

translational regulation, especially phosphorylation events, key to the “fine-tuning” of 

Wnt signalling [234]. This fine-tuning means that !-catenin and its regulatory 

components are subject to inputs from a myriad of factors, notably kinases, involved 

in diverse signalling pathways, from src kinases [224] and PKC[226] to AKT[221] 

and CDKs [227]. Depending on the cell and environmental contexts at the time, both 
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Wnt-dependent and -independent !-catenin modifications are likely to co-operate or 

compete in modulating its localisation and function in order to regulate the required 

adhesion and signalling responses [42, 235].  

 

The precise components and pathways that mediate the balance and/or switching 

between !-catenin’s transcriptional and non-transcriptional roles have yet to be fully 

established and are likely to be highly context dependent. The screening data 

presented here may provide further insights into the pathways/processes that may be 

particularly involved in switching !-catenin from a transcriptionally inactive form to a 

form capable of activating transcription of Wnt target genes; potential examples of 

these are discussed further in section 6.3. 

 

6.2.2.1 Switching between !-catenin’s roles in adhesion and activated TCF-

dependent transcription. 

 

!-catenin’s role in calcium dependent adherens junctions is well established, 

providing a means of associating plasma membrane cadherins with other catenins, 

such as "-catenin, which dynamically links adherens junctions (AJs) with the actin 

cytoskeleton [45]. The disruption of the !-catenin/cadherin interactions, by post-

translational modifications to !-catenin for example, has significant consequences for 

cell-cell adhesion in addition to cytoskeletal organisation, with both processes playing 

key roles in many disease states, such as cancer, upon their aberrant regulation [48]. 

 

An enrichment of adhesion and cytoskeletal components were identified in all the 

screens undertaken within the study (Chapter 4.2). Given !-catenin’s well-established 

role in adherens junctions this is not entirely surprising, but the fact that this appears 

seemingly uncoupled from TCF-dependent transcription on a genome-wide scale was 

unexpected.  

 

It’s acknowledged that changes in !-catenin’s levels and localisation may be an 

indirect consequence of disrupting junctional complexes, with the screens, by proxy, 

identifying regulators of junctional formation in cells. The utility of high content 
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analysis allows for the re-interrogation of images using alternative algorithms to 

address new questions. Therefore, re-analysing the images for the degree of cell 

clustering/boundaries and correlating this with !-catenin levels and localisation for 

example would allow for the identification of more specific regulators of cell-cell 

junction formation and would, in turn, provide further insights into how this may, or 

may not, be linked to Wnt/!-catenin signalling. 

 

Studies have demonstrated that !-catenin’s interactions with cadherins in AJs govern 

its ability to interact with its Wnt signalling co-activators in the nucleus [158]. Loss of 

E-cadherin has been shown to result in increased !-catenin nuclear localisation and 

TCF-dependent transcription in various cell types [158, 515-517]. Expression of E-

cadherin and N-cadherin was observed to trigger the relocalisation of !-catenin to the 

membrane resulting in inhibition of TCF/LEF1 mediated transcription [517, 518]. 

However, studies have also demonstrated that the absence of E-cadherin alone does 

not induce !-catenin nuclear accumulation and activate Wnt signalling, except in 

cases where aberrant !-catenin is already present [519, 520]. siRNA-induced 

downregulation of E-cadherin appeared to enhance TCF-dependent transcription in 

colon carcinoma cells with mutated APC (and therefore compromised !-catenin 

degradation), while having no effect in normal non-transformed HaCaT keratinocytes 

[520]. In addition, loss of E-cadherin did not enhance Wnt signalling in Rip1Tag2 

mice [521] while shRNA against E-cadherin resulted in !-catenin nuclear 

translocation in Ras transformed mammary gland cells [522]. This indicates that Wnt-

dependent gene expression may be modulated by E-cadherin regulating the 

availability of !-catenin, especially ABC, but that, in the absence of Wnt signalling, 

this has negligible impact on transcriptional activation [520]. This suggests therefore, 

that loss of junctional integrity, which results in release of !-catenin from the 

membranes, may not be sufficient for induction of transcriptional activity and requires 

additional signal input(s) to mediate the nuclear accumulation of a specific 

transcriptionally competent form of !-catenin, such as ABC. Such inputs may mediate 

the phosphorylation or conformational changes to !-catenin that is required for 

nuclear transport [116] and binding to specific interaction partners, such as BCL9-2 

for example [124], to sequester it in the nucleus. Furthermore, it has been 

demonstrated that distinct molecular forms of !-catenin, with different binding 
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properties to TCF and cadherins, dictate its role in adhesion or Wnt signalling, 

suggesting that its role in both processes may be regulated independently [158, 206]. 

The non-Wnt-stimulated form of !-catenin forms a dimer with "-catenin, while Wnt 

induces a monomeric form selective for TCF-binding with !-catenin’s C-terminus 

regulating the availability of the ARM repeat region for other binding partners such as 

cadherin [206-208].  

 

In addition, !-catenin’s ability to co-activate the transcription of Wnt target genes rely 

on several other factors, such as TCFs, CBP/p300 histone acetylases and mixed-

lineage-leukaemia (MLL1/MLL2) histone methyltransferase complexes, and these are 

also highly regulated by local activation of kinases [42, 523]. For example, 

phosphorylation of TCF3 by CK1 enhances its binding to !-catenin, while GSK3! 

mediated phosphorylation of TCF3 inhibits this interaction [524].  

 

Taken together, this might suggest that, while disruption of !-catenin’s contacts at 

cell junctions often results in its enhanced cellular distribution, other modifications, as 

discussed in the preceding section of the chapter, are required to convert !-catenin 

(and its co-factors) into a form capable of activating TCF-dependent transcription 

[158]. Therefore, some of the regulators of !-catenin levels and localisation identified 

in the screen might also turn out to be TCF-transcriptional regulators if combined 

with other activating events within the pathway, with the implication that !-catenin 

modulation is necessary but insufficient for activated TCF-dependent transcription in 

these cases. For example, SPEN homolog (or SHARP), a corepressor protein 

implicated in the regulation of the Notch and EGF/Ras signalling pathways in 

Drosophila and identified as regulating !-catenin levels in the three imaging screens 

(Figure 4.16) [347, 348], is required for Wnt-dependent signalling in the wing, eye 

and leg imaginal discs [349] and was demonstrated to be a positive regulator of TCF-

dependent transcription downstream of mutant !-catenin [350]. Anther example is the 

solute carrier, SLC9A3R1 (EBP50 - solute carrier family 9 (sodium/hydrogen 

exchanger), member 3 regulator 1), which has been demonstrated to promote #-

catenin-mediated TCF-transcription, but only in cells where !-catenin was already 

stabilised [319].  This may even indicate that mutant !-catenin could be subject to 

other forms of transcriptional activity regulation, possibly by binding to proteins that 
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may prevent access to the nucleus for example, or by requiring secondary inputs from 

other signalling pathways, such as phosphorylation mediated by AKT signalling 

[221]and src signalling [229]. This interesting concept will be discussed in further 

detail in section 6.3 below, alongside examples of insights gained from the primary 

screening data.  

 

6.3 Mechanistic insights from the primary screen data  
 

The high-throughput imaging screens undertaken within this study identified a wide 

variety of potential regulators of !-catenin, with most appearing to be uncoupled to 

transcriptional regulation. Plausible explanations for this interesting finding have been 

extensively discussed above, with this section aiming to provide examples of insights 

gained from the screens that may support the ideas presented in the preceding section.  

 

Whilst the primary ‘hits’ obtained from each of the three !-catenin screens differed 

greatly, recurring themes were observed: 

 

1) !-catenin regulation by adhesion and cytoskeletal components - There were 

significant enrichments in genes involved in various aspects of adhesion and 

cytoskeletal regulation within each of the data sets obtained from the primary screens. 

These included: ACTN4 (UA), TLN2 (UA), PXN (UA), LAMB3 (UA), ITGA3 (UA), 

ITGA8 (UB), ITGA5 (UA), CTNND1 (H), CDH2 (H, UA), EFNA4 (UB), NRXN2 

(UB), EPHA3 (UA), RAC1 (UA, H), RAP1A (UA), ROCK2 (UB, H), ROCK1 (H), 

CDC42 (UA, H), VAV1 (H), RHOG (H), and CDC42EP2 (H). (Chapter 4.2)  

 

2) Signalling cross-talk - !-catenin regulation appears to involve various other major 

signalling pathways other than Wnt, such as JNK/MAP kinase, Insulin/PI3-kinase 

TGF-! and Notch signalling, which were all overrepresented in the identified 

modulators of !-catenin.  

 

3) Transcriptional and translational regulators - a surprising number of 

transcriptional and translational regulators were identified from all screens, implying 
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that !-catenin regulation at this level may be of greater importance and more limiting 

than previously anticipated. mRNA processing factors included hnRNPA1 (UA, UB 

and H), HNRNPA1L2 (UA, UB), hnRNP H1 (UA, UB, H), JMJD6 (UB), MAGOH 

(H), NHP2L1 (UA, UB, H), UPF1 (UA, UB, H) and SNRPD2 (H), in addition to 

factors involved in RNA transport such as NUP85 (UA), NUP133 (UA), NUPL1 

(UA, UB), NUP160 (UB), NUP205 (H) and NUP155 (UA, H) (Chapter 4.2). 

 

The sheer variety of potentially interesting components and biological processes 

identified from the screens mean that an extensive discussion on all the findings is 

impossible within the space constraints of this thesis.  Given the primary aim of the 

study was to identify !-catenin regulators in the context of Wnt signalling, the 

molecular processes and components identified in various combinations of the screens 

that may regulate both !-catenin levels/localisation and transcriptional activity (as 

observed through comparative analysis with published RNAi screens for regulators of 

TCF-dependent transcription) are particularly interesting, especially those that 

implicate signalling cross talk with that of Wnt/!-catenin signal transduction. Links 

between Wnt/!-catenin regulation and two specific molecular processes/pathways 

identified in the screens will be discussed: namely Ephrin and Integrin mediated 

adhesion and signalling, in addition to a brief discussion into non-canonical 

Wnt/Calcium signalling. 

 

6.3.1 Ephrin-mediated signalling 
 

Numerous Ephrin receptors and ligands were identified in the U2OS imaging screens 

for regulators of !-catenin levels and localisation, which included EPHA3 (UA), 

EPHA8 (UB), EFNA4 (UB), EFNB2 (H), with EFNA4 (UB) and EPHA3 (UA) 

selected for secondary assays and reconfirming their primary screen effects (Table 

4.13). Ephrin receptors and associated ligands are involved with regulating tissue 

morphogenesis during development and in adult life [525]. Genes encoding the 

receptors EphB2 and EphB3 are known !-catenin/Tcf4 target genes in normal and 

cancerous intestinal cells [149, 173] with EphB signalling regulating the positioning 

of cell types along the crypt-villus axis [173, 526]. EphB has been demonstrated to 
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suppress progression of colorectal cancers [527] and is believed to compartmentalise 

the expansion of CRC cells in a manner dependent on E-cadherin mediated adhesion 

[526]. The identification of Ephrin Receptors of the ‘A’ group in !-catenin regulation 

is interesting and suggests a wider role of Ephrin signalling in Wnt/!-catenin 

signalling than envisioned, with previous research mostly dedicated on the Ephrin 

receptor B group due to their tumour suppressive roles [528].  

 

Intriguingly, increased nuclear localisation of !-catenin following ablation of various 

Ephrin receptors and ligands did not result in transcriptional activation, suggesting 

that in certain cellular contexts (such as in the 7df3 reporter cells), an additional step 

is required to mediate !-catenin transcriptional activity, as discussed in section 6.2 of 

this chapter. Potentially relevant to the regulation of !-catenin’s activity by 

phosphorylation, is the link between Ephrin signalling and activation of c-src 

signalling, with the observation that clustering of Ephrin-A molecules and Ephrin-A 

receptors leads to the recruitment of Fyn; a kinase known to be important for the 

Tyr142 phosphorylation of !-catenin [224]. Significantly, c-src tyrosine kinase (CSK) 

is involved in FYN regulation [360]and was observed as one of the few overlapping 

genes between the !-catenin imaging screens and various transcriptional screens 

suggesting a conserved role in different contexts (Figure 4.29). Assessing !-catenin’s 

tyrosine phosphorylation upon loss of Ephrin for example, may provide further 

insight into this potential link to the regulation of !-catenin activity. 

 

Alternatively, Ephrin receptor activity also provides avenues for the stimulation of 

multiple Rho family GTPases, through the activation of various Rho GTPase 

exchange factors. For example, Ephrin-A receptor ligand binding activates the Rho 

exchange factors, Ephexin, VAV-2 [529] and Tiam 1 [530], leading to both RhoA and 

Rac1 activation. Rac1 has been implicated in Wnt induced nuclear accumulation of !-

catenin by stimulating JNK2 mediated phosphorylation of !-catenin at Ser191 and 

Ser605, thus providing a potential link between Ephrin induced modulation of !-

catenin levels and its transcriptional activity. 
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6.3.2 Integrin mediated signalling. 
 
Amongst the many cell adhesion molecules identified from all screens, focal adhesion 

components were particularly prevalent in addition to mediators of Integrin signalling. 

These included ACTN4 (UA), TLN1/2 (UA), PXN (UA, UB), LAMB3 (UA), ITGA3 

(UA, UB), ITGB8 (UA, UB, H), ITGAV (UA, H), ITGB1 (H), ITGB8 (UB, H) 

ITGA8 (UB), ITGA5 (UA, UB), ROCK2 (UB, H), PIK3R5 (UB, UA), MYLPF (UA, 

UB), PRKCG (UA, UB) and PIK3CB (UA) to name but a few. Integrins were also 

prevalent in the overlapping list of genes between the imaging screens and the 

comparative screens for regulators of TCF-dependent transcription (as displayed in 

Figure 4.30). 

 

Integrins mediate connections between focal adhesions and the extracellular matrix 

(ECM) and have been demonstrated to also be important during embryonic 

development, tissue maintenance and repair [531]. In addition to their mechanical 

roles in mediating adhesion to the extracellular matrix and to other cells, integrins 

facilitate so called ‘outside-in signalling’, whereby extracellular chemical signals are 

transmitted intracellulary to regulate the cellular responses, such as differentiation, 

survival and migration required in relation to the cells local environment and adhesive 

state at a time [531]. Focal adhesion kinase (FAK) and integrin-linked kinase (ILK) 

are two receptor associated kinases that mediate integrin signalling [532] and while 

FAK knockdown had no effect in cell lines utilised in the primary screens, 

downregulation of ILK resulted in increased !-catenin levels in the U2OS screen. 

Integrin-linked kinase (ILK), interacts with the cytoplasmic domain of !-1 integrin 

and acts as a proximal receptor kinase regulating integrin-mediated signal 

transduction [532]. Interestingly, ILK has been previously demonstrated to induce !-

catenin nuclear translocation, in the absence of increased overall levels [533] with its 

inhibition in colon carcinoma cells resulting in decreased nuclear !-catenin and 

transcriptional activity [534]. ILK was also reported to be stimulated upon cell 

attachment of cells to fibronectin and by insulin in a PI(3)-kinase-dependent manner 

to directly phosphorylate GSK-!, in addition to AKT, resulting in its activation [535]. 

Integrin mediated signalling has previously been implicated in potentiating insulin 

receptor phosphorylation [536] with focal adhesion kinase demonstrated to play a role 
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in mediating the cytoskeletal remodelling required for glucose uptake following 

insulin stimulation [537]. Many Insulin/AKT signalling components were identified 

in the screens, including PI3K3CD (UA), PIK3CB (UA, UB and H), GSK3! (UA) 

IRS4 (UA), INSR (H and UA) and EIF41EB (UA), suggesting a potential role for 

PI3-kinase signalling in !-catenin regulation in response to changes in Integrin 

mediated adhesion. PI3-kinase signalling has been implicated in mediating Wnt3a-

induced proliferation of fibroblasts via AKT activation [330], while EGFR stimulated 

AKT activation has previously been demonstrated to phosphorylate !-catenin at S552, 

resulting in its dissociation from cell-cell junctions and increased nuclear 

translocation [221]. Furthermore, Integrin and Wnt signalling cross talk has 

previously been reported via the adaptor protein, Grb2, which was demonstrated to 

bind Dvl2 and acts downstream of focal adhesion kinase (FAK) to amplify #-catenin-

dependent transcription through a mechanism involving Rac1, JNK and c-jun [372]. 

In this study, !1 integrin mediated signalling in response to binding to the ECM 

protein collagen was shown to be synergise with Wnt pathway activation [372]. Rac1 

and JNK have both been implicated in regulating !-catenin nuclear localisation by 

phosphorylation on S191 and S605, downstream of PI3-kinase [116]. The effect of 

ILK and integrin ITGB1 knockdown on !-catenin phosphorylation at S552, S191 and 

S605, in both the absence and presence of PI3-kinase inhibitors such as LY294002 

and Wortmannin, may provide further insights into this link between Integrin and 

Insulin/PI3-kinase signalling and !-catenin regulation. Investigating whether integrin 

associated complexes may directly associate with or modify !-catenin may reveal 

further insights into this link identified from the screens, such as undertaking in vitro 

kinase experiments to assess the ability of ILK for example to phosphorylate !-

catenin on the key residues implicated in its localisation. Interestingly, Paxillin, an 

adaptor protein that recruits components such as ILK, FAK, and CSK to focal 

adhesions in addition to binding to integrin cytoplasmic tails, has been reported to 

interact with !-catenin during Rac/Cdc42-mediated endothelial barrier-protective 

response to oxidized phospholipids [538]. This interaction between focal adhesions 

and AJ complexes via paxillin and !-catenin association was demonstrated to be 

critically dependent on Rac and Cdc42 activities [538]. Interestingly, in both UA and 

UB primary screens downregulation of Paxillin resulted in increased !-catenin levels. 

Taken together, the data may suggest a means of transmitting extracellular signals 
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from cell surface integrin-ECM interactions to the modulation of Wnt/!-catenin 

driven gene expression in response to specific environmental cues and changes to the 

extracellular matrix. Further investigation however would be required to ascertain if 

integrin signalling plays a more direct role in !-catenin regulation than previous 

studies suggest [372, 533]. 

 

6.3.3 Non-canonical Wnt pathways in !-catenin regulation 
  

‘Non-canonical’ Wnt pathways, such as the Wnt/Calcium and Wnt/JNK (or PCP) 

pathways, possess roles in cytoskeletal and adhesion processes and have been 

demonstrated to both activate or suppress Wnt/!-catenin signalling [39]. Different 

Wnt ligands can stimulate distinct Wnt pathways through binding of different 

combinations of unrelated receptors, even upon recruiting shared components such as 

Dvl, Axin and GSK3 [29, 30].  

 

6.3.3.1. Wnt/Calcium signalling 

 

A wide variety of genes implicated in calcium signalling were identified from the UB 

and UA screens, including CAMK2A, PDE1A, PTK2B, PRKCA, PLCB4, PLCD3, 

PRCKG. Protein kinase C (PKC) has been demonstrated to negatively regulate 

Wnt/!-catenin signalling through phosphorylating !-catenin, which resulted in its 

degradation [226]. In line with this, downregulation of PKC", in addition to PKC$, 

resulted in increased !-catenin nuclear localisation in the U2OS imaging screen. 

Calcium has been widely implicated as an important second messenger in non-

canonical (!-catenin) independent signalling [314], with the identification of key 

components of the Wnt/calcium signalling pathway in this screen, such as CAMK2A 

and PKC isoforms, interesting as it hints at a more involved regulatory role for non-

canonical Wnt signalling in !-catenin localisation. Studies have demonstrated that 

antagonism exists between the !-catenin-independent and –dependent Wnt pathways, 

such as through the activation of NF-AT for example, which was demonstrated to 

play an essential role in mediating ventral signals in the Xenopus embryo through 

downregulating !-catenin signalling [35]. NF-AT, via activated Nemo-Like Kinase 



 225 

(NLK), is known to inhibit Wnt dependent transcription of target genes through the 

phosphorylation of TCF transcription factors [37]. The screens, however, suggests 

that non-canonical Wnt/Calcium signalling may play a more intimate role in 

regulating !-catenin levels and localisation than currently envisioned. Conversely, 

given !-catenin’s crucial role in calcium dependent adhesion, the effect of the calcium 

signalling components identified on !-catenin levels and localisations may also have 

been as a result of aberrant adherens junction formation. Further investigations, such 

as the re-analysis of the primary imaging data to assess the effects of the identified 

components above on cell boundaries, in addition to assays involving Wnt5a/Wnt 11 

stimulation of cells along with downregulation of key components may clarify this 

issue.  

 

6.3.4 Transcriptional and Translation regulation of !-catenin 
 

Significantly over-represented within the genes identified from all screens were 

components of transcriptional, mRNA processing and translational processes. While 

the plethora of ribosomal components identified may well be a general effect, for 

reasons stated in Chapter 4.2, such as the identification of upregulators of !-catenin 

and the lack of toxicity observed upon knockdown of the components that were 

selected for further analysis, a more involved role for Wnt/!-catenin signalling in 

ribosomal processes cannot be discounted. Especially in light of !-catenin’s ability to 

bind Tor components [334], with the mTor pathway demonstrated to be involved in 

ribosomal biogenesis [539].  

 

Components identified in the screens relating to mRNA processing included 

hnRNPA1 (UA, UB and H), HNRNPA1L2 (UA, UB), hnRNP H1 (UA, UB, H), 

JMJD6 (UB), MAGOH (H), NHP2L1 (UA, UB H), UPF1 (UA, UB, H) and SNRPD2 

(H), in addition to factors involved in RNA transport such as NUP85 (UA), NUP133 

(UA), NUPL1 (UA, UB), NUP160 (UB), NUP205 (H) and NUP155 (UA, H). 

Moreover, the mRNA processing factors hnRNP H1, JMJD6, MAGOH, NHP2L1 and 

SNRPD2 were reconfirmed in secondary assays (Table 4.13) and merit further 

investigation in future studies. As described in Chapter 5, an investigation into the 
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role of hnRNP A1 is underway, which will be discussed in further detail in the 

penultimate section of this chapter. Research into !-catenin’s transcriptional and post 

transcriptional regulation is lacking with the general assumption that these processes 

are not linked to active Wnt signalling. Data from the imaging screens undertaken 

within this study implies otherwise and may reveal further insight into unanticipated 

levels of control within this complex developmental pathway. 

 

In summary, this section has focused on a few molecular processes that were 

identified as regulating !-catenin levels and localisation in the imaging screens 

undertaken within this study, in addition to regulating transcriptional activity as 

revealed by comparative analysis with genome wide TCF-dependent transcription. 

These are examples of where the work has provided further insights into the processes 

and signalling events that regulate !-catenin, in addition to highlighting potential 

novel regulators that merit further investigation in future studies. The degree of 

overrepresentation of components from several signalling pathways, such as 

Insulin/PI3-kinase, Calcium, Notch and TGF-! signalling, observed within the 

primary imaging data was unprecedented. This implies a high level of cross talk 

between !-catenin (which does not automatically mean Wnt signalling as the primary 

data demonstrated) and other major signal transduction pathways, which recapitulate 

a common theme of ‘cross-pathway interactions’ that is supported by independent 

studies of selected pathways [305, 540-543]. Unfortunately, a detailed discussion of 

all the pathways and processes implicated in !-catenin regulation in this study is 

beyond the scope of this thesis, although the work may provide the foundations for 

several other projects in the future.  

 

6.4 Dynamic regulation of !-catenin 
 

Preliminary time-lapse microscopy revealed that !-catenin levels appeared to cycle 

with variable periods of approximately 5-9 hours, which was still present in the 

presence of hnRNPA1 esiRNA, Wnt-3A but not in the presence of APC or 

cycloheximide (movies provided in Appendix C). !-catenin has been reported to 

oscillate with stages of the cell cycle, increasing in S-phase to peak at G2/M, before 
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decreasing as the cells enter into a new G1 phase, which was suggested as a means of 

protecting cells from suspension-induced apoptosis (anoikis) [308, 490, 491].  

 

 In the assays presented in Chapter 5, !-catenin levels appeared to not correlate 

precisely with cell division in all cells imaged, although a greater number of cells 

require analysis, in addition to utilising similar assay conditions as previous studies 

(such as synchronising the cells), prior to drawing any conclusions. These movies 

provide a link between the gene lists and a dynamic process that has multiple 

parameters, which might account for the observations in the fixed cell populations. 

For example, it may explain, at least in part, the lack of correlation between TCF-

dependent transcription and !-catenin levels and localisation, in addition to the 

heterogeneous responses observed with esiRNA and Wnt3a treatment, which could be 

attributed to asynchronous responses of individual cells.  

 

This cycling appeared masked upon stabilisation of !-catenin by inhibition of the 

destruction complex with APC esiRNA (Appendix C, movies APC 1 and 2) and is 

also not observed with inhibition of translation by cycloheximide treatment. Treating 

the cells with a transcriptional inhibitor, such as Actinomycin D, may shed further 

light on the process and whether it may be due to a level of control at translation 

initiation. Investigating select components identified in the screens (such as those 

identified in more than one cell line and identified in transcriptional screens) using 

time-lapse imaging would potentially be extremely useful in ascertaining their 

functions in !-catenin regulation. For example, utilising time-lapse microscopy assays 

to investigate the role of downregulating the identified cell cycle components on !-

catenin cycling, in the presence of normal and abrogated APC, may provide clear 

clues as to their mechanisms of action. A more in-depth, quantitative analysis to 

obtain an indication of the cycling period of !-catenin in normal situations is required, 

which would then allow for the effects of the identified esiRNAs on !-catenin’s 

cycling period to be observed. Not only would assays utilising life-cell imaging aid 

the mechanistic studies into the novel regulators of !-catenin identified, but it would 

also allow for a systematic analysis of the effects of gene deletion on !-catenin 

modification status. 
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The screens only display a frozen snap shot of what is a highly dynamic process, with 

Wnt signalling regulating the expression of specifics genes required at precise points 

in time in response to various stimuli. There are many parameters associated with the 

dynamics of cycling, which may be targeted by the genes identified and be relevant to 

changes in !-catenin itself, from its phosphorylation status to its interaction partners. 

This may be particularly relevant as the assays suggest the possibility of a regulatory 

process for !-catenin analogous to that of the NF-!B system, where cycling is 

intimately linked to the phosphorylation of the transcription factor, its nuclear 

dephosphorylation (and inactivation) followed by its export to allow for re-

phosphorylation [544]. For example, a similar negative feedback loop may regulate !-

catenin levels, whereby Axin2, for example, may be directly involved in mediating !-

catenin nuclear export for its degradation as an additional role to its established 

function in the reformation of the !-catenin destruction complex [101, 545].  

 

Due to time constraints, this exciting data was unfortunately not repeated. Future 

studies are warranted to investigate !-catenin’s dynamic regulation further, alongside 

the many interesting potential novel regulators identified in the screens undertaken 

within this study. 

 

6.5 hnRNP A1’s regulation of !-catenin and TCF-dependent 

transcription. 
 

HnRNP A1 was identified as a negative regulator of !-catenin in all three imaging 

screens, in addition to the screen for novel regulators of TCF-dependent transcription. 

hnRNP A1 is an RNA binding protein, primarily known for its role in pre-mRNA 

splicing inhibition [402] but also functions in various other mRNA processing events 

such as mRNA transport [410, 411], mRNA stability [546] and translation [409]. 

hnRNP A1 also possesses a protein binding domain, with it being implicated in the 

regulation of NF-!B-dependent transcription by binding NF-!B inhibitor, I!B", to 

mediate its degradation [480]. Therefore, hnRNP A1 may be involved in regulating !-

catenin at the protein level or mRNA level (by synthesis, degradation or translational 

control), which will be considered in further detail in the subsections below. 
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6.5.1 hnRNP A1 and !-catenin protein regulation 
 

Due to the key role of !-catenin turnover in the regulation of the Wnt/!-catenin 

pathway, the vast majority of research has centred on deciphering the regulation of !-

catenin protein stability [185]. Therefore, once the primary screening data had been 

reconfirmed, assessing the role of hnRNP A1 in this aspect of !-catenin regulation 

was one of the first questions addressed. 

 

Both the pulse-chase assays and time-lapse microscopy of cycloheximide treated cells 

demonstrated that hnRNP A1 did not affect !-catenin protein degradation, thus 

implying an unanticipated level of regulation at !-catenin synthesis.  

 

Co-immunoprecipitation assays demonstrated that hnRNP A1 was able to bind !-

catenin, confirming previous reports where an interaction was shown by mass-

spectrometry [380] and co-immunoprecipitation [379]. This interaction poses 

interesting questions with regards to hnRNP A1’s role in !-catenin protein regulation. 

Originally, it was postulated that this interaction between !-catenin and hnRNP A1 

allowed !-catenin to function in the splicing of target genes, implying a role for 

hnRNP A1 in regulating the activity of !-catenin rather than its levels [379]. This in 

turn could imply dual roles for hnRNP A1, where it could be regulating the activity of 

!-catenin in one part of the cell and its levels in another [379], analogous to the 

relationship between APC and !-catenin. In this case, APC is crucial for the 

regulation of !-catenin levels in the cytoplasm and has also has been demonstrated to 

regulate its transactivating activity in the nucleus [130, 523]. Alternatively, hnRNP 

A1 may be involved in trafficking !-catenin from the nucleus for its degradation in 

the cytosol, similar to its role in the cytoplasmic shuttling of the NF-!B inhibitor, 

I!B", to regulate NF-!B-dependent transcription [480]. This is supported by the 

observation of increased nuclear localisation of !-catenin upon hnRNP A1 

knockdown in the primary U2OS screens. 
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6.5.2 hnRNP A1 and !-catenin mRNA synthesis and stability 
 

The protein stability assays mentioned above indicated that hnRNP A1 may be 

involved in regulating !-catenin post transcriptionally. hnRNP A1 has been associated 

with regulating mRNA stability as part of a complex with KSRP; an RNA-binding 

protein that mediates the degradation of !-catenin mRNA that can be inactivated by 

Wnt and PI3-kinase signalling [185, 489]. A more recent study extended this, 

whereby a KSRP-Dvl complex was demonstrated to mediate !-catenin mRNA 

degradation, with Wnt stimulation inducing !-catenin mRNA release and subsequent 

stabilisation, resulting in rapid translation and accumulation of protein levels. [183]. It 

was therefore hypothesised that hnRNP A1 might regulate !-catenin mRNA stability 

as part of a complex with KSRP. 

 

qRT-PCR assays demonstrated that hnRNP A1 had no apparent effect on !-catenin 

mRNA stability, in addition to having no observed effect on its mRNA synthesis. 

Additionally, no association between hnRNP A1 and KSRP was observed in the 

U2OS cell line, contradictory to previous reports [489, 494]. However, the studies 

that first described an interaction between hnRNP A1 and KSRP were mainly reliant 

on murine "T3-1 pituitary cells [489, 494], with the more recent study, which 

revealed a role for a Dvl-KSRP complex in the de-stabilisation of !-catenin mRNA, 

utilising F9 mouse teratocarcinoma cells [183]. Therefore, cell type specific 

differences may explain the discrepancies between the data presented here and these 

reports [183, 489, 494]. 

 

Taken together the data suggests that, despite strong links to KSRP, hnRNP A1 

appears unlikely to be mediating its effect by regulating !-catenin mRNA stability, as 

part of, or independently, of a ribonucleocomplex with KSRP in the cell types studied 

within this project.  

6.5.3 hnRNP A1 and !-catenin mRNA transport and translation  
 

Preliminary experiments revealed that hnRNP A1 interacted with !-catenin mRNA in 

the nucleus and cytoplasm of both U2OS and eGFP-!-catenin U2OS cells. Future 
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experiments could utilise in vitro UV cross-linking, affinity chromatography and 

electrophoretic mobility shift assays to reconfirm the data and to identify the regions 

of !-catenin mRNA that are required for hnRNPA1 interaction. The studies suggests 

that regions within the coding sequence are involved, since the eGFP-!-catenin 

cDNA expression construct present in the U2OS cells lacked 5’ and 3’ !-catenin UTR 

sequences. If the data unequivocally demonstrates that hnRNP A1 can bind !-catenin 

mRNA in both cellular compartments, its potential role in regulating mRNA 

localisation and translation initiation merits investigation. For instance, the levels of 

cytosolic and nuclear !-catenin mRNA in the presence of hnRNP A1 knockdown 

could be assessed using qRT-PCR and mFISH assays [547]. Luciferase reporter 

plasmids containing the hnRNP A1 binding region of !-catenin mRNA could be 

utilised to demonstrate that hnRNP A1 interaction regulates translation.  

HnRNP A1 has been shown to regulate cap-mediated translation [485], in addition to 

both positively and negatively regulating IRES-mediated translation of specific 

mRNAs [409, 486, 548]. Despite the absence of an IRES in the !-catenin sequence, 

the frequent discovery of new roles for hnRNP A1 in diverse cellular processes [388] 

makes an investigation into its role in regulating !-catenin translation, using the 

assays mentioned above, prudent.  

 

6.5.4 hnRNP A1 in sequestering !-catenin mRNA? 
 

Overall levels of !-catenin mRNA were unaltered upon hnRNP A1 downregulation, 

suggesting that the regulation of its translation is important. Within the control of 

translation, many complexes have been implicated, including processing bodies (P-

bodies) and stress granules (SGs). mRNA degradation and translational processes are 

often in competition, which in turn appears to be dependent on their localisation 

[549]. Both P-bodies and SGs play key roles in the localisation and spatial control of 

mRNAs, with observations suggesting the interaction and exchange of mRNA-protein 

complexes between them [550].  

 

mRNA targeted for degradation are often concentrated with mRNA decay factors in 

P-bodies while translating mRNAs are distributed throughout the cytosol [551]. SGs, 
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on the other hand, appear to be highly dynamic and composed of mRNAs that have 

stalled in translation initiation, along with specific translation initiation factors (eIF4E, 

eIF4G, eIF4A, eIF3, and eIF2), the 40S ribosomal subunit, poly (A) binding protein 

(Pab1)[549, 550, 552] and Ras GTPase activating protein-binding protein 1 (G3BP1) 

[553]. Interestingly, G3BP1 has been demonstrated to associate with Dvl to regulate 

!-catenin mRNA in response to Wnt signalling [184]. In this study, G3BP1 was 

demonstrated to harbour !-catenin mRNA, with its methylation in response to Wnt3a 

treatment resulting in !-catenin mRNA dissociation and subsequent translation [184]. 

Interestingly, hnRNP A1 has also been shown to localise to stress granules, as 

described in further detail below [478]. 

 

SGs accumulate in response to heat shock, genotoxic and oxidative stresses and 

harbour translationally arrested mRNAs and protein components ranging from RNA 

helicases, translation and stability regulators to factors involved in cell signalling 

[550]. It is postulated that by harbouring mRNAs in an abortive translation initiation 

complex, SGs enable the rapid re-initiation of translation and subsequent protein 

production upon recovery from stress [550]. In response to various extracellular 

stresses, a number of signalling cascade components, such as c-jun N-terminal kinases 

and p38 mitogen-activated (MAP) kinase, are activated to regulate the transcriptional 

and post-transcriptional events that drive the functional response to the stress applied 

[483]. Activation of the p38 MKK (3/6)-signalling cascade has been demonstrated to 

result in the hyperphosphorylation and stress-induced cytoplasmic accumulation of 

hnRNP A1 [479], which, when bound to mRNA, can localise to SGs [478]. While !-

catenin mRNA has yet to be identified in SGs, the arm-repeat family member and 

structural component of desmosomes Plakophilin (PKP) 3, has been reported to be 

harboured in SGs, along with FXR1, G3BP and PABPC1 [554]. Interestingly, all 3 of 

these RNA-binding proteins, along with PKP2, resulted in increased TCF-dependent 

transcription and/or !-catenin nuclear localisation upon knockdown in the primary 

screens (data not shown). Additionally, in many cases, stress induced phosphorylation 

of the translation initiation factor eIF2 alpha triggers translational silencing and 

intriguingly the eIF2alpha kinase, eIF2AK2 (PKR), was identified in the overlapping 

hits between the imaging and TCF-dependent screen (Appendix B table 35), with 
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network analysis in Metacore revealing that hnRNP A1 is involved in eIF2AK2 

transcriptional regulation (Figure 4.30). 

 

Taken together, the data suggests that an investigation into the presence of !-catenin 

mRNA in stress granules along with hnRNP A1 is merited. Of particular interest is 

the role of G3BP and it’s ability to interact with hnRNP A1 could be investigated 

using co-immunoprecipitation and co-localisation assays in stress-induced cells. Also 

of interest is the stress mediated interaction of histone deacetylase 6 (HDAC6) with 

G3BP and its subsequent localisation to SGs in a manner dependent on its ubiquitin 

binding domain [555]. HDAC6 deacetylation of !-catenin at lysine 49 in response to 

EGF stimulation was observed to inhibit !-catenin phosphorylation at serine 45, 

resulting in its nuclear localisation and increased c-myc gene expression [112]. 

Therefore, a study into SGs, !-catenin and hnRNP A1 appears to be warranted. 

 

6.5.5 Alternative roles for hnRNPA1 in !-catenin regulation  
 

More recently, hnRNP A1 has been suggested to play a role in microRNA biogenesis, 

with these non-coding RNAs implicated in gene expression regulation as translational 

inhibitors in animals [483, 484, 556]. hnRNP A1 has been implicated in the 

biogenesis of microRNA 18a (miR-18a) in addition to inhibiting Drosha mediated 

processing of pri-let-7a-1 [406, 483, 484]. This latter role was shown to exert its 

effect by interfering with the ability of KSRP to bind and promote let-7a biogenesis, 

providing another link between these two RNA-binding proteins [406]. While miR-

18a has been demonstrated to inhibit oestrogen receptor-" (ER") mRNA translation 

[557], in addition to targeting K-Ras [558], it has not been associated with !-catenin 

mRNA regulation, although further targets are yet to be identified [559]. The 

possibility that hnRNP A1 may regulate !-catenin through modulating the abundance 

of a specific endogenous microRNA is enticing, with several microRNA’s identified 

as regulators of Wnt/!-catenin signalling, such as miR-135a/b (reviewed in [560]). 

 

hnRNP A1 has been demonstrated to be transcriptionally regulated by c-myc [403], 

an established Wnt/!-catenin target gene [49], which in turn raises the possibility of a 
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negative feed mechanism in the regulation of !-catenin upon Wnt signalling 

activation. This would imply that hnRNP A1 expression may be upregulated by active 

Wnt signalling, via the induction of myc, and that this increased expression may lead 

to a decrease in #-catenin levels, in order to reset the system to normal, reminiscent of 

the Axin2 feedback loop [545]. Indeed, during this study it was occasionally noticed 

that in the presence of downregulated APC, hnRNP A1 levels appeared to increase 

concurrently with elevated !-catenin levels, while !-catenin knockdown lead to 

decreased hnRNP A1 levels (Figure 5.5 for example). This was however, not 

consistently reproduced. Moreover, other hnRNP proteins were observed to modulate 

!-catenin levels and/or TCF-dependent transcription in the primary screens, with 

hnRNP H1’s effect on !-catenin reconfirming with non-overlapping esiRNA (Table 

4.13). Therefore, the possibility of the involvement of a larger hnRNP complex in 

mediating the regulation of Wnt/!-catenin signalling is raised. 

 

To summarise, hnRNP A1 was identified as a putative repressor of Wnt/!-catenin 

signalling with work conducted within this study suggesting that it plays a role in the 

post-transcriptional regulation of !-catenin. Future work will aim to investigate the 

role of hnRNP A1 in regulating !-catenin mRNA localisation and translation 

initiation. hnRNP A1 is implicated in a wide range of cellular processes, which in turn 

could suggest that it may regulate !-catenin indirectly or on multiple levels. A greater 

understanding of the post-transcriptional regulation of !-catenin will allow for an 

improved appreciation of the Wnt signalling pathway and how it must be tightly 

regulated on various levels.  

 

6.6 Conclusions 
 

Genome wide RNAi screens were successfully developed and undertaken to identify 

novel regulators of !-catenin in Wnt signalling. The study has provided sources of 

possible mechanistic insights into a number of areas of biology that may be involved 

in !-catenin regulation. Furthermore, it revealed an unprecedented degree of cross 

talk between Wnt and many other major signalling pathways, demonstrating the 

complexity of the regulation involved in what is a key developmental pathway. 
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Moreover, the data indicated a degree of cell type specificity in the regulators 

identified and, significantly, a lack of correlation between !-catenin levels and 

transcriptional activity. The standard ‘textbook’ model of Wnt signalling, extensively 

advocated in major reviews of the field, states that increased total levels of !-catenin 

correlates with increased nuclear localisation and subsequently with activation of 

transcription, despite emerging evidence to the contrary. This work demonstrates, on 

a genome-wide scale, that this view is simplistic and more in line with the increasing 

belief that distinct isoforms of !-catenin are of greater importance in mediating Wnt 

dependent transcription. Future studies into the effect of the reconfirmed regulators on 

!-catenin phosphorylation will help to link specific candidate molecules to this 

molecular complexity. 

 

The recent time-lapse data that displayed !-catenin levels and localisation 

dynamically changing over time (Appendix C movies) bears striking resemblance to 

the oscillations in the nuclear translocation of NF-!B upon activation of this pathway 

[544, 561]. Due to time constraints, this exciting observation was unfortunately not 

repeated and while it is not possible to speculate as to the significance of this data in 

terms of regulated gene expression by !-catenin, future studies will concentrate on 

characterising the dynamics and mechanism of its nuclear translocation further.  

 

The screens identified a surprising number of genes involved in mRNA processing 

and translation, including hnRNP A1, which was identified in the screens as a 

potential negative regulator of !-catenin. Investigations into its mechanistic role 

implied that hnRNP A1 regulates !-catenin post transcriptionally and not through the 

regulation of its protein turnover. Given the key role of !-catenin protein degradation 

in Wnt signalling regulation, this observation, along with the enrichment of genes 

involved in mRNA processing and translation from the primary screens, reveal an 

unanticipated level of !-catenin regulation at the mRNA level. This, in turn, implies 

that transcriptional and translational regulation of !-catenin are more intricately 

involved in Wnt signalling than first assumed and that this should be taken into 

consideration in future studies. Further work is required to decipher hnRNP A1’s 

precise mechanism of action, with the gene lists identified here providing a useful 
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entry point into the future analysis of regulators of !-catenin post-transcriptional 

control and how it relates to Wnt signalling. 

 

This study has highlighted the complexity of !-catenin regulation and its role in 

mediating transcription of Wnt target genes, in addition to providing insights into the 

processes and individual components that that are likely to be involved and merit 

further investigation in future studies. The novel regulators may provide new 

information on the role of !-catenin in tumour biology and provide promising targets 

for drug and combinatorial therapies. A greater appreciation of the regulation and 

interplay between !-catenin’s transcriptional and non-transcriptional roles, and how 

this relates to development and disease, is especially important. In turn, a better 

understanding would aid interpretation, diagnosis and prognosis of tumours in a 

clinical setting 
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#AADEF:GDH!
All appendices can be found on the provided DVD. 

 

Appendix A – Chapter 3 
 
1) Data sheet of the eGFP-!-catenin cell line – crude plasmid map provided by 
BioImage (Thermo Scientific). 
 
2) Figure 1. APC downregulation enhances nuclear !-catenin localisation in 7df3 
cells – shift in population effects. 
 

Appendix B – Chapter 4 
 

Tables folder: 
 
T1 - esiRNA Primary library details 

T2 - Raw and normalised H screen data 

T3 – H screen primary hits Ratio stringent selection 

T4 – H screen primary hits Whole cell stringent selection 

T5 – H screen primary hits Ratio and WC overlap 

T6 – Raw and normalised UB screen data 

T7 – Raw and normalised UA screen data 

T8 – UB screen primary hits Ratio stringent selection 

T9 – UB screen primary hits Whole cell stringent selection 

T10 – UA screen primary hits Ratio stringent selection 

T11 – UA screen primary hits Whole cell stringent selection 

T12 – UB screen primary hits Ratio and WC overlap 

T13 – UA screen primary hits Ratio and WC overlap 

T14 – H screen primary hits Ratio for in silico 

T15 – H screen primary hits Whole cell for in silico 

T16 – UB screen primary hits Ratio for in silico  

T17 – UB screen primary hits Whole cell for in silico 

T18 – UA screen primary hits Ratio for in silico 
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T19 – UA screen primary hits Whole cell for in silico 

T20 – UB Ratio KEGG enrichment P values 

T21 – UB WC KEGG enrichment P values 

T22 – UA Ratio KEGG enrichment P values 

T23 – UA Ratio KEGG enrichment Cancer pathways P values 

T24 – UA WC KEGG enrichment P values 

T25 – Overlaps in Figure 4.15 

T26 – Overlaps in Figure 4.16 

T27 - Secondary esiRNA list and original screen identified 

T28 - Secondary esiRNA reconfirmation summary 

T29 – Ensembl IDs of primary hits from TCF-dependent luciferase screen 

T30 - Overlaps in Figure 4.26 

T31 - Overlaps in Figure 4.27 (A) UB screen 

T32 - Overlaps in Figure 4.27 (B) UA screen 

T33 - Overlaps in Figure 4.28 

T34 - Overlaps in Figure 4.29 

T35 - Overlaps in Figure 4.27-4.29 for network analysis 

T36 – Overlaps in figure 4.31 

 

PNG folder 
 
PNGs from reconfirmation assays at higher resolutions than can be printed due to size 
of the graphs. 
 
Figure 4.17 Part 1 
Figure 4.17 Part 2 
Figure 4.18 Part 1 
Figure 4.18 Part 2 
Figure 4.19 Part 1 
Figure 4.19 Part 2 
Figure 4.20 Part 1 
Figure 4.20 Part 2 
Figure 4.21 Part 1 
Figure 4.21 Part 2 
Figure 4.22 Part 1 
Figure 4.22 Part 2 
Figure 4.24 Part 1 
Figure 4.24 Part 2 
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Cytoscape Folder 
 
Cys 1 Figure 4.30  
Cys 2 H screen !-catenin nuc/cyt modulators network 
Cys 3 H screen !-catenin WC modulators network 
Cys 4 UB screen !-catenin nuc/cyt modulators network 
Cys 5 UB screen !-catenin WC modulators network 
Cys 6 UA screen !-catenin nuc/cyt modulators network 
Cys 7 UA screen !-catenin WC modulators network 
 

Appendix C – Chapter 5 
 
Figure 1. !-catenin is epistatic to hnRNP A1 

Table 1. Sequences used to make hnRNP A1 esiRNA (.xls file) 

Figure 2. hnRNPA1 knockdown has no affect on eGFP-!-catenin decay rates in 
eGFP-!-catenin U2OS cells 
 
Figure 3. hnRNP A1 downregulation appears to have no effect on !-catenin splicing. 
 
Figure 4. Crude linear schematic of !-catenin in the eGFP-construct in U2OS cells 
 
 
Movies  
 
Cycloheximide Movies folder 
 
Three movies per esiRNA treatment (1 frame every 10minutes for approximately 
15hours) 
 
R-luc CHX 1-3, APC CHX 1-3, hnRNP A1 CHX 1-3 
 

!-Cat dynamics (No CHX treatment) folder 

Two movies per esiRNA treatment (1 frame every 10minutes for approximately 29 

hours) 

R-luc 1-2, APC 1-2, hnRNPA1 1-2 

 

Two movies Wnt3a treatment, 1 Movie DMSO treatment (1 frame every 10minutes for 

approximately 29 hours) 

Wnt3a 1-2, DMSO 1 


