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Abstract 
 

A micromechanical constitutive model for concrete is proposed in which 

microcrack initiation, in the interfacial transition zone between aggregate particles and 

cement matrix, is governed by an exterior-point Eshelby solution. The model assumes a 

two-phase elastic composite, derived from an Eshelby solution and the Mori-Tanaka 

homogenization method, to which circular microcracks are added. A multi-component 

rough crack contact model is employed to simulate normal and shear behaviour of rough 

microcrack surfaces. It is shown, based on numerical predictions of uniaxial, biaxial and 

triaxial behaviour that the model captures key characteristics of concrete behaviour. An 

important aspect of the approach taken in this work is the adherence to a mechanistic 

modelling philosophy. In this regard the model is distinctly more rigorously mechanistic 

than its more phenomenological predecessors.  

Following this philosophy, a new more comprehensive crack-plane model is 

described which could be applied to crack-planes in the above model.  In this model the 

crack surface is idealised as a series of conical teeth and corresponding recesses of 

variable height and slope. Based on this geometrical characterization, an effective 

contact function is derived to relate the contact stresses on the sides of the teeth to the 

net crack-plane stresses. Plastic embedment and frictional sliding are simulated using a 

local plasticity model in which the plastic surfaces are expressed in terms of the contact 

surface function. Numerical simulations of several direct shear tests indicate a good 

performance of the model. The incorporation of this crack-plane model in the overall 

constitutive model is the next step in the development of the latter. 

Computational aspects such as contact related numerical instability and accuracy 

of spherical integration rules employed in the constitutive model are also discussed. A 

smoothed contact state function is proposed to remove spurious contact chatter 

behaviour at a constitutive level.  

Finally, an initial assessment of the performance of the micromechanical model 

when implemented in a finite element program is presented. This evaluation clearly 

demonstrates the capability of the proposed model to simulate the behaviour of plain 

and reinforced concrete structural elements as well as demonstrating the potential of the 

micromechanical approach to achieve a robust and comprehensive model for concrete. 
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Ac Contact surface area 
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Chapter 1 

Introduction  
 

In the age of nanocomposites, concrete could be regarded as a low-tech and well 

understood material. With an impressive amount of research having been carried out 

over the last century in order to understand the phenomena and mechanisms that govern 

its complex behaviour one would indeed think that all is known that can be known about 

this material. However, it has been the author’s experience that this is far from true. In 

fact, today there is still plenty of scope for exploring the fundamental nature of concrete 

and its behaviour. As will be explained later in this chapter, current mathematical 

models are as yet incapable of reproducing the mechanical and transient behaviour of 

this material in an accurate manner. Furthermore, only now is the true nanostructure of 

concrete being discovered (Jennings and Bullard, 2011) which should reveal the true 

mechanisms that control its complex behaviour. 

This does not mean that all research has ceased on the development of the basic 

material itself. To the contrary, there are now major research initiatives at making 

concrete more sustainable which come from both industry and environmentally 

motivated efforts  to produce a ‘greener’ and more durable type of concrete with less 

embodied energy and less CO2 emissions in its production (The Concrete Centre, 2010). 

This need for a more sustainable type of concrete has given birth to new, or revitalised, 

fields of research, engaging experimental as well as numerical investigations (Ulm, 

2010); from ‘green’ cement replacements (Vandeperre et. al, 2008; Komnitsas and 
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Zaharaki, 2007) to manufactured and recycled aggregates (Nanthagopalan and 

Santhanam, 2011; Huang et al, 2012; ), from fibre-reinforced (Farhat et al., 2007; Deeb 

et al, 2011; Sakulich and Li, 2011) to self-healing concrete (Wiktor and Jonkers, 2011; 

Wu et al., 2012) 

Nevertheless, as mentioned earlier, long-standing issues remain to this day that 

have not been addressed to a satisfactory conclusion. One such aspect is modelling the 

mechanical behaviour of concrete. The lack of a well-accepted, robust and accurate 

mathematical model for the mechanical behaviour of concrete is preventing the more 

widespread use of non-linear analysis of concrete structures in practice and may also be 

a hindrance to the development of the new research areas mentioned above. 

 

1.1 A brief history of concrete modelling  

Extensive research has been carried out over the last few decades in order to 

explain and model damage phenomena in quasi-brittle materials such as concrete. It is 

generally accepted that the heterogeneous structure of such materials observed at nano, 

micro and meso levels determines their complex macroscopic behaviour and failure 

mechanisms (van Mier 1997).  

The beginnings of research on numerical models for  plain and reinforced concrete 

is marked by the two notable papers published in the late 1960s by Ngo and Scordelis 

(1967) and Rashid (1968) in which the “discrete” and “smeared” approaches for 

simulating cracks in finite element applications were introduced. 

The short review presented in this section draws heavily on a number of previous 

reviews (Mazars and Pijaudier-Cabot, 1989; de Borst, 2002; Nguyen, 2005; Jefferson, 

2010) and focuses on constitutive formulations, although it is recognised that in the case 

of modelling the mechanical behaviour of concrete, constitutive aspects are strongly 

linked to the computational issues related to scaling and fracture associated size effects 

as pointed out by Jefferson (2010).  

Concrete modelling at a constitutive level can be classified in two main categories: 

macroscopic models that follow a phenomenological approach and models based on 

micromechanical solutions. Phenomenological models generally employ theories based 

on plasticity and /or damage mechanics in order to simulate the macroscopic behaviour 
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and their formulation often makes use of functions obtained by fitting experimental data 

(e.g. uniaxial tension and compression curves, strength envelopes). On the other hand 

micromechanical models aim to relate the microstructure of concrete, and the physical 

mechanisms that govern its evolution, to the macroscopic behaviour observed in 

experiments.  

 

1.1.1. Plasticity models 

In essence, plasticity theory, and therefore models based upon it, has the following 

main ingredients, a yield surface, a flow rule and a hardening function –or plastic 

evolution equation. Additionally, for the small strain case, plasticity models assume an 

additive decomposition or split of the total strain into the elastic strain and the plastic 

strain respectively and a constitutive relationship for the elastic part. The yield surface, 

defined by a yield function, initially bounds the elastic domain in the stress space and its 

evolution (i.e. the way it expands or contracts in the stress or strain space) is controlled 

by the hardening function. Finally, the flow rule governs the evolution of the plastic 

strain. The yield criterion is generally expressed as: 

( , ) 0F κ ≤σ          (1.1) 

where σ is the stress tensor and κ denotes the hardening variable.  

In general, yield surfaces have been proposed based upon biaxial and/or triaxial 

failure envelopes for concrete obtained experimentally. Willam and Warnke (1975) 

proposed such a yield surface which has since been widely applied in various models for 

concrete. The failure surface has an open shape, as indicated directly by experiments. In 

contrast, observations of the non-linear behaviour of concrete show that the initial yield 

surface should be “capped” to account for the plastic deformations which take place 

under hydrostatic compression. Therefore, as pointed out by Han and Chen (1985), yield 

surfaces prescribed as scaled down failure surfaces, although appealing, are inadequate. 

In addition, many authors have considered it necessary to use non-associated flow 

rules, based upon a plastic potential different from the yield function, in order to capture 

the volumetric dilatancy of concrete under compression (Kang and Willam, 1999).  
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Other notable plasticity based models for concrete are those by Feenstra and de 

Borst (1995) and Grassl et al. (2002).   

 

1.1.2. Damage models 

The roots of damage theory date back to 1958 with the definition of a scalar 

damage variable by Kachanov, although Hult was the first to introduce the term 

“continuum damage mechanics” in 1972 (Lemaitre and Desmorat, 2005). The early 

developments of damage mechanics concepts, largely attributed to the French school, 

took place in the context of modelling cracks in reinforced concrete (Mazars, 1984; 

Mazars and Pijaudier-Cabot, 1989; de Borst, 2002).  

Formulations based on continuum damage mechanics describe the progressive 

degradation of stiffness resulting from the propagation of microcracks. The degree of 

degradation is characterised by damage parameters that can be scalars, a family of 

vectors (Krajcinovic and Fonseka, 1981) or in the most general case a fourth-order 

tensor (Chaboche, 1979). Somewhat similar to plasticity theory, damage mechanics 

theory employs a damage function that controls the initiation of damage and evolution 

functions that govern the manner in which the damage function progresses with the 

damage parameter. These equations are generally written in terms of strains, stresses or 

energy based variables derived within a thermodynamic framework.  

The fundamental concepts of damage mechanics are best illustrated by a simple 

isotropic damage model (Eq. 1.2) which employs a simplifying assumption that the 

degradation of stiffness is isotropic. With an additional assumption that the Poisson’s 

ratio remains unaffected, damage can be characterised by a single scalar parameter.  

(1 ω) :el= −σ D ε         (1.2) 

where ‘:’ denotes tensor contraction. σ and ε represent the macroscopic stress and strain 

tensor respectively, Del is the elasticity tensor of the undamaged material and ω is the 

damage parameter generally defined such that it grows from 0 for an undamaged state to 

1 for a fully damaged state.  

While the formulation of such a model is appealing, it is unable to describe the 

difference between tensile and compressive behaviour of concrete. To account for this 
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discrepancy, Mazars (1986) assumed the damage parameter to comprise two 

components; one relating to tensile damage and governed by a tensile evolution function 

(ωt) and the other relating to compressive damage and controlled by a compressive 

evolution law (ωc). The overall damage parameter was then expressed as: 

t t c cω = α ω + α ω         (1.3) 

where αt and αc are parameters that depend upon the degree of tension and compression 

respectively in a multiaxial loading case.  

Other significant isotropic damage models for concrete that employ two scalar 

damage parameters for tension and compression were proposed by Faria et al. (1998), 

Comi and Perego (2001), Marfia et al. (2004). 

Damage in concrete, however, is not an isotropic process and models based on the 

isotropic damage assumption in general experience a number of deficiencies; in 

particular they are unable to capture the volumetric expansion (dilatancy) observed in 

uniaxial compression experimental tests and for large tensile strains applied in one 

direction the stiffness is completely lost in the loading direction and unrealistically 

reduced in lateral directions. In order to overcome these drawbacks, formulations have 

been explored and proposed that take into account the damage induced anisotropy. 

These anisotropic formulations however have a higher level of complexity as they 

usually employ second (Desmorat et. al, 2007) or even fourth-order tensors (Chaboche, 

1979) to characterize damage and as mentioned by Contrafatto and Cuomo (2006) they 

exhibit serious convergence problems when implemented in finite element codes. These 

drawbacks often cause the simplified although unrealistic assumption of isotropic 

damage to be preferred and employed over the anisotropic damage assumption (Jirásek 

and Zimmermann, 1998; Salari et al, 2004; Contrafatto and Cuomo, 2006). 

The reduction of stiffness and strength of concrete comes as a direct result of the 

onset and propagation of microcracking. Nevertheless, stress states do exist for which 

this effect diminishes or can disappear altogether. For instance when a previously open 

crack – that contributed to the stiffness reduction – is subsequently subjected to 

compressive stresses normal to the crack plane, it closes and the crack faces regain 

contact. The compressive stresses can thus be transferred across the crack plane 

although the damage state does not change (the damage parameter does not reduce). 
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These phenomena are referred to as unilateral or crack closure effects, damage 

deactivation or stiffness recovery. A very basic illustration of the abovementioned 

concepts is given for a one-dimensional damage model in Eq. (1.4) in which the 

deactivation of damage is taken into account by the introduction of a Heaviside function 

H that is 0 for negative (compressive) strains and 1 for positive (tensile) strains.  

[ ]1 ( )H Eσ ω ε ε= − ⋅ ⋅ ⋅         (1.4) 

where E denotes Young’s modulus. Extending the formulation to multiaxial models is 

not straightforward even for the case of isotropic damage models since a sudden 

deactivation of a damage parameter that multiplies a tensor can result in discontinuities. 

In these cases the formulations need to additionally satisfy a stress continuity condition. 

Damage mechanics based models are generally developed within the 

thermodynamic framework of irreversible processes which controls the formulation of 

the damage criterion and evolution law. Lemaitre and Desmorat (2005) summarised this 

in three steps: 1) the definition of state variables (i.e. damage variable), 2) the definition 

of a state potential (generally expressed as the free energy potential) based on which the 

damage function is derived and 3) the definition of a dissipation potential, in turn 

employed in obtaining the evolution law of the state variable associated with the 

dissipative mechanism. The thermodynamic admissibility of the formulation is then 

assessed by checking that the second law of thermodynamics, conveniently expressed as 

the Clausius-Duhem inequality, is satisfied for any evolution. It is worth noting that the 

convexity of the dissipation potential function ensures the fulfilment of the second law 

(Lemaitre and Desmorat, 2005). 

 

1.1.3. Plastic-damage models 

Formulations of constitutive models for concrete that combine plasticity and 

damage theory have been proposed (Simo and Ju, 1987a,b; Lee and Fenves, 1998; 

Jefferson, 2003; Contrafatto and Cuomo, 2006; Cicekli et al., 2007) based on the 

argument that plasticity or damage theory employed on their own were not sufficient to 

capture key characteristics of the overall behaviour. As discussed by Contrafatto and 

Cuomo (2006), plasticity theory is not able to address properly the stiffness degradation 

due to microcracking whereas models based on continuum damage theory alone cannot 
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capture other important facets of concrete behaviour such as permanent deformations 

and inelastic volumetric expansion in compression. Moreover, Jefferson (2010) 

suggested, based on observations of the behaviour of concrete in tension and 

compression cyclic tests, that on one hand the tensile behaviour with an approximately 

secant unloading path is better reproduced by damage theory and on the other hand 

behaviour in compression, which follows a relatively elastic unloading path, is captured 

better by pure plasticity. In general, plastic-damage models combine isotropic hardening 

with either isotropic damage (Lee and Fenves, 1998; Lubliner et al., 1989) or 

anisotropic damage (Ortiz, 1985; Cicekli et al., 2007). 

 

1.1.4. Microplane models 

The microplane model, developed by Bažant and co-workers since the mid 1980s, 

was originally inspired by micromechanics (Bažant and Oh, 1984; Bažant and Prat, 

1988), however it differs from the more mechanistic micromechanical models discussed 

in Chapter 2 as it was subsequently developed along a more phenomenological path 

(Bažant and Caner, 2005).  

The first generalised microplane model employed an idea initially proposed by 

Taylor (1938) and subsequently applied by Batdorf and Budianski (1949) in a 

constitutive model for polycrystalline metals. According to Taylor (1938) the stress-

strain relationship of a material can be defined in an independent manner on planes of 

various orientations – in this context called microplanes – by assuming either a static 

constraint (i.e. the stresses on a microplane are the resolved components of the 

macroscopic stress) or a kinematic constraint (i.e. the strains on a microplane are the 

resolved components of the microscopic strain tensor). The kinematic constraint was 

adopted by Bažant and Prat (1988) since it enabled, unlike the static constraint, a stable 

response during strain softening. On each microplane the strain vector comprised a 

normal and a shear component and the normal component was subsequently split into 

volumetric and deviatoric parts. Several assumptions were additionally employed. The 

volumetric, deviatoric and shear responses were assumed to be mutually independent 

and therefore each microplane was characterised by three decoupled, 

phenomenologically determined constitutive relations. Moreover, on each microplane 

these constitutive equations were assumed path independent for monotonic loading, 
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although the overall response displayed significant path dependence. Finally, the 

macroscopic stress tensor was obtained from the microplane stresses by employing the 

principle of virtual work.   

The basic formulation presented by Bažant and Prat (1988) was extended in 

several ensuing versions. Carol et al. (1992) kept the fundamental assumptions from 

Bažant and Prat (1988) and mainly addressed computational issues with the aim of 

obtaining a more efficient numerical algorithm. In Ožbolt and Bažant (1992) and 

Hasegawa and Bažant (1993) cyclic loading and rate effects (i.e. the sensitivity to the 

deformation rate of the strength, stiffness and ductility of concrete) were introduced and 

the nonlocal formulation proposed by Bažant and Ožbolt (1990) was implemented to 

address the spurious mesh sensitivity problems related to strain localization. 

Furthermore, the model of Hasegawa and Bažant (1993) did not employ the volumetric-

deviatoric split of the microplane normal strain. The thermodynamic validity of the 

microplane theory was assessed in Carol et al. (2001) and it was concluded that this was 

not guaranteed for the versions applying the split of the normal strain.  

The more recent version of the microplane models (Bažant et al., 2000; Caner and 

Bažant, 2000; Bažant and Caner, 2005a, b) followed an even more phenomenological 

route in an attempt to fit a wide range of experimental data.  

One of the impressive aspects of these developments is the range of experimental 

data used to calibrate the functions and to validate the model. However, one of the major 

drawbacks of the microplane model is the large number of model parameters used which 

do not have clear physical meanings. For example, Qiu (1999) reported that the 

microplane model proposed by Hasegawa and Bažant (1993) required a total of 39 

parameters and from a practical point of view this represented a significant problem 

since no clear guidance was given with respect to the calibration of these parameters.  In 

fact this is a common issue for macroscopic models: they have, in general, a large set of 

parameters, the majority of which having no physical interpretation. This is a direct 

consequence of the phenomenological or data-fitting approach.  

 

1.1.5. Alternative approaches 

Many macroscopic models based on damage and plasticity theories have been 

proposed and implemented in commercial FE codes with varying degrees of success 
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however, as mentioned earlier, they often use parameters that are difficult to determine 

and thus far no one model has been able to fully simulate all aspects of the complex 

behaviour of concrete. Therefore the development of an accurate and robust constitutive 

model remains a challenge.  

In recent years, alternative approaches to modelling the mechanical behaviour of 

concrete have been proposed such as micromechanical and multi-scale models. In 

contrast to the phenomenological approach employed by more established macroscopic 

models, micromechanical models aim to capture the macroscopic behaviour observed in 

experiments by considering simple physical mechanisms modelled at micro and meso 

scales. These models will be presented in more detail in Chapter 2. 

In the multi-scale approach, concrete is simulated by separately discretizing its 

components observed at a meso-level: aggregate particles, mortar and aggregate-mortar 

interfaces (Lopez et al., 2007; Gitman, 2006; Gitman et al., 2008).  

Gitman et al. (2007) and Gitman (2006) used a multiscale approach to explore the 

existence of an RVE for concrete in both the undamaged and damaged state, concluding 

that once damage has progressed to a certain point, the concept of an RVE ceases to 

have meaning for quasi-brittle materials such as concrete. 

The formulation proposed by Lopez et al. (2007) for the analysis of concrete 

specimens in 2D was able to predict realistic uniaxial and biaxial responses however 

such models can be expensive when large structures are analysed.  

 

1.1.6. Computational aspects 

The work presented in this thesis focuses on modelling the behaviour of quasi-

brittle materials such as concrete at a constitutive level. Nevertheless, it is recognised 

that for a complete and reliable approach, computational issues related to the application 

of the constitutive model within a finite element code such as stress locking, mesh 

dependency of strain softening models, numerical efficiency (Feenstra and de Borst, 

1995; Jefferson, 2010) need to be addressed likewise.  

Spurious mesh-sensitivity is a problem common to strain softening models in 

which damage tends to localise in a zone of single element width and the energy 
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dissipated when opening the crack by a certain amount becomes a function of the 

element size. Moreover, with mesh refinement, the energy dissipation that causes failure 

converges to zero which is physically unrealistic (Pijaudier-Cabot and Bažant, 1987).  

Several regularisation solutions have been proposed in order to address this issue. 

Bažant and Oh (1983) developed the crack-band theory based on the fundamental 

hypothesis that in the softening region damage localises to a band of single element 

width. The theory tends to be successful in situations where a discrete crack forms and 

thus the strains do localise to a defined fracture zone of one element width. However, it 

does not deal with the gradual development of a fracture process zone of changing width 

or mesh orientation bias (Jefferson, 2010). Strain softening related stability problems are 

not solved either. 

Alternative techniques proposed to address mesh sensitivity, mesh bias and 

stability issues are the integral (Pijaudier-Cabot and Bažant, 1987; Bažant and Pijaudier-

Cabot, 1988) and gradient (Peerlings et al., 1996 and 1998) nonlocal theories. It is 

interesting to note that after some years of following separate paths it was shown that 

the two approaches were effectively equivalent (Peerlings et al., 2001). The fundamental 

idea of integral nonlocal theory was explained for a simple isotropic damage model by 

Pijaudier-Cabot and Bažant (1987). The local damage parameter at a point was replaced 

by a nonlocal parameter that in turn was a function of a weighted average strain energy 

release rate over a representative volume centred on the given point. A general integral 

equation in strain terms reads:  

1
( ) ( ) ( )

V
g dV

V
= +∫ε x ξ ε x ξ        (1.5) 

where ε  denotes the non-local strain, x is the position vector of the given material point, 

g(ξ) is a weight function with 
1

( ) 1
V

g dV
V

=∫ ξ  and ξ denotes the relative position 

pointing to the infinitesimal volume dV. The size of the representative volume is defined 

by a characteristic length (lch). The gradient formulation is obtained by expanding the 

local strain into a Taylor series and introducing it, with higher order terms neglected, 

into the nonlocal strain definition. The governing equation becomes (see also Ru and 

Aifantis, 1993 and Askes and Aifantis, 2002): 

2 2
chl− ∇ =ε ε ε          (1.6) 
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in which 2
∇  denotes the Laplacian operator. 

The nonlocal approaches successfully address mesh sensitivity and bias but tend 

to be computationally expensive and their implementation can be problematic for 

complex constitutive models (Jefferson, 2010). 

In recent years, techniques to simulate the development of cracks within a finite 

element framework in which strong discontinuities (i.e. jumps in the displacement field) 

are embedded at the element level have been proposed (Belytschko and Black, 1999; 

Moes et al., 1999; Belytschko et al, 2001, Oliver et al., 2002; Oliver and Husepe, 2003).  

These methods have proved to be powerful and convenient tools for simulating cracking 

(Karihaloo and Xiao, 2003) however additional research is required to address issues 

such as tracking multiple cracks in 3D (Oliver et al., 2004; Oliver and Husepe, 2004). 

Nevertheless, there seems to be an increasing sense that the strong discontinuity 

approach should be included for a complete solution to modelling concrete structures 

(Wells and Sluys, 2001).  

 

1.2. Scope and outline of thesis 

As indicated in the brief review presented in the previous section, considerable 

research has been carried out since the late 1960’s for developing models and techniques 

to simulate the mechanisms leading to failure of quasi-brittle materials such as concrete. 

Although the progress achieved during this time is considerable, as yet, no one model 

has been able to fully capture all facets of the complex mechanical behaviour of 

concrete.  The work of this thesis aims to address this issue and to demonstrate the 

potential of micromechanical models to finally achieve a fully robust and 

comprehensive model for concrete. The author does not claim to have developed the 

definitive model but the work to be presented in the remainder of this thesis does, in the 

author’s opinion, clearly demonstrate the potential of the models developed and also 

does represent a significant step forward in the use of micro-mechanical theories in the 

constitutive modelling of concrete.   

A particular focus is dedicated to the development of a micromechanical 

constitutive model which employs the essential ideas described in Jefferson and Bennett 

(2007 and 2010). However the present model adopts a more mechanistic approach in 
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that a number of phenomenological aspects of the previous formulations have been 

replaced with mechanistic components. The author also considers that a generally more 

rigorous and comprehensive approach to the model developed has been adopted for the 

present work. 

In the first part of Chapter 2, a review of micromechanics based constitutive 

models for concrete is presented. The second part of Chapter 2 then provides details of 

three theoretical solutions employed in the formulation of the constitutive model. A two-

phase composite elasticity theory based on the classic Eshelby inclusion solution is 

adopted to simulate a composite material comprising an elastic matrix -to simulate the 

mortar- and spherical inclusions -to model the coarse aggregate particles. Microcracking 

in the elastic matrix is addressed by evaluating the added compliance from a distribution 

of cracks with various orientations. The third solution presented deals with crack closure 

effects in a multi-asperity rough crack component.  

In Chapter 3 a microcrack initiation criterion is proposed employing the exterior 

point Eshelby solution which captures tensile stress concentrations in the vicinity of the 

matrix-inclusion boundary. Microcracks can therefore be assumed to initiate in the 

interfacial transition between coarse aggregate particles and mortar. Numerical 

predictions compared against experimental results are presented for a range of uniaxial, 

biaxial and triaxial simulations in order to assess the performance of the proposed model 

at a constitutive level.  

A new 3D multi-asperity plastic-friction-contact mechanistic crack plane model is 

described in Chapter 4 with the intention of being incorporated in the overall 

constitutive model, although this has yet to be achieved. Nevertheless the formulation 

presented in Chapter 4 is a model in its own right which can be applied to simulate the 

characteristic crack-plane behaviour of micro, meso and macrocracks in a range of 

quasi-brittle geomaterials. The mechanistic components which include simulating 

crushing and frictional sliding on the sides of conical asperities and the derivation of an 

effective contact function to relate the contact stresses that develop on the sides of the 

teeth to the net stresses on a crack plane are presented followed by a study on the 

geometrical quantification of the morphology of a rough crack surface. Simulations of 

several experimental tests are then carried out in order to validate the model. 
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Chapter 5 deals with several computational issues namely; a smoothed contact 

state function is proposed to address rough contact related instability problems or 

‘chatter’, a study of integration rules is presented to assess the accuracy of such methods 

in the context of the micromechanical constitutive model and the derivation of the 

consistent tangent stiffness is given.  

In Chapter 6, details regarding the implementation of a 2D simplified version of 

the micromechanical model into the finite element commercial code LUSAS followed 

by a set of numerical simulations of experimental tests which show the potential of such 

a model are presented. 

Finally, Chapter 7 presents the overall conclusions and gives indications towards 

future work.  

 

1.3. List of publications 

Part of the work presented in this study is featured in a number of journal articles 

as follows: 

Mihai I.C., Jefferson A.D., 2011. A numerical model for cementitious composite 

materials with an exterior point Eshelby microcrack initiation criterion. 

International Journal of Solids and Structures 48(24), 3312-3325. (This paper 

covers the work detailed in Chapters 2 and 3) 

Mihai I.C., Jefferson A.D., 2012. A multi-asperity plastic-contact crack plane 

model for geomaterials. International Journal for Numerical and Analytical 

Methods in Geomechanics. Accepted. DOI: 10.1002/nag.2094 (This paper 

presents the crack plane model formulated in Chapter 4) 

Mihai I.C., Jefferson A.D. Smoothed contact in a micromechanical model for 

cement bound materials. Computers and Structures. Invited paper. Submitted 

for review and possible publication. (This paper presents the study on rough 

crack contact related instability problems) 

Additionally, the developments of the micromechanical constitutive model were 

systematically presented at national and international conferences: 

Mihai I., Jefferson T., 2009. A constitutive model for cementitious composites 
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based on micromechanical solutions. Proceedings of the 17 
th

UK Conference 

on Computational Mechanics (ACME), Nottingham 

Jefferson T., Mihai I., Lyons P. 2009. A model for concrete based on 

micromechanical solutions. Proceedings of the X International Conference on 

Computational Plasticity (COMPLAS X), Barcelona, Spain 

Mihai I.C., Jefferson A.D. 2010. The simulation of microcracking and micro-

contact in a constitutive model for concrete. Computational Modelling of 

Concrete Structures. Proceedings of  EURO-C, Rohrmoos-Schladming, Austria 

Mihai I., Jefferson T., 2011. An interface failure criterion in a micromechanical 

model for concrete. Proceedings of the 19 
th

UK Conference on Computational 

Mechanics (ACME), Edinburgh  

Mihai I., Jefferson T., 2011. Microcrack initiation criterion in a micromechanical 

model for concrete. XI International Conference on Computational Plasticity 

(COMPLAS XI), Barcelona, Spain 

  



15 

 

 

 

 

 

 

Chapter 2 

Micromechanical constitutive model 
 

2.1. Literature review. Micromechanics based concrete models  

In the context of applied mechanics, micromechanical analysis -or in short 

micromechanics- provides the mechanical and mathematical framework in which the 

overall or macroscopic properties and macroscopic behaviour of a composite or 

heterogeneous material are examined based on a priori knowledge regarding its 

microstructure and microscopic properties. In modelling composite or heterogeneous 

materials, a particular focus is given to evaluating their effective or homogenized 

properties and this can be achieved through various micromechanics-based 

homogenization or averaging schemes.  

A number of textbooks have been published over the years that provide details of 

the established micromechanical solutions as well as of the more recent advances in the 

field, notably the works of Mura (1987), Nemat-Nasser and Hori (1993) and more 

recently Dormieux et al. (2006) and Li and Wang (2008). It is noted that the 

aforementioned list is not by any means exhaustive.  

Micromechanical solutions have been employed extensively during the last few 

decades in modelling composite materials, in particular metal matrix composites (Ju and 

Chen, 1994; Ju and Tseng, 1996; Ju and Lee, 2001; Ju and Sun, 2001). In more recent 

years, work has been carried out on the application of micromechanics based solutions 
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to modelling various other materials with heterogeneous structures such as wood 

(Hofstetter et al., 2005), bones (Hellmich et al, 2004), fibre-reinforced composites (Kim 

and Lee, 2009), cementitious materials or rocks (Zhu et al. 2008; Xie et al, 2011). In the 

case of cement based materials, micromechanical solutions have been used to model a 

wide range of aspects; initially, work concentrated on the mechanical behaviour (Penseé 

et al., 2002; Penseé and Kondo, 2003; Zhu et al., 2008; 2009; 2011; Gambarotta, 2004) 

but more recently investigations have explored formulations for modelling early age 

properties (Bernard et al., 2003; Pichler et al., 2009a,b; Pichler and Hellmich, 2011) or 

shrinkage (Pichler et al, 2007; Zhang et al., 2012).  

This section presents a review of the micromechanics based constitutive models 

for simulating the mechanical behaviour of mature concrete. As the micromechanical 

approach is relatively recent in concrete modelling considerably fewer constitutive 

models have been proposed than those based on phenomenological theories. Three main 

research groups with significant contributions in this area can be identified; however, 

the author recognizes that this is not a strict classification: the group of Kondo, Shao and 

co-workers, the group of Gambarotta and co-workers and the group of Pichler and co-

workers, which are discussed in Sections 2.1.1, 2.1.2 and 2.1.3 respectively.  

Generally, the aim with micromechanical models is to capture the macroscopic 

mechanical behaviour observed in experiments by simulating simple physical 

mechanisms at micro and mesoscale. This is in contrast with the phenomenological 

macroscopic models for which uniaxial compression, uniaxial tension functions and 

strength envelope equations are generally prescribed directly. The mechanistic 

micromechanical models combine individual mechanistic components to predict a 

response which is not pre-prescribed. This means that the prediction of behaviour as 

apparently simple as the uniaxial compressive response of concrete, with the near peak 

associated dilatancy, becomes a significant challenge. This challenge is, however, worth 

addressing because, as alluded to in the introduction chapter, all present macroscopic 

models have shortcomings.   

 

2.1.1. Work of Kondo, Shao and co-workers 

Kondo, Dormieux, Shao, Pensée and Zhu conducted a detailed investigation of a 

number of micromechanical solutions applicable to quasi-brittle materials (Pensée et al., 
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2002, Pensée and Kondo, 2003, Zhu et al, 2008). Based on this study a number of 

models for concrete (Zhu et al, 2009, Zhu et al, 2011) and rocks (Xie et al, 2011) were 

proposed.  

In Pensée et al. (2002) two equivalent approaches for deriving the homogenised 

properties of a solid weakened by penny-shaped microcracks were investigated. Crack 

closure (unilateral effect) was also included in the study. This analysis, which in part 

represents a 3D generalization of the framework proposed by Andrieux et al. (1986), 

employed two assumptions, namely: i) the interaction between microcracks can be 

neglected and ii) the density of  microcracks is dilute (i.e. volume fraction of 

microcracks ≤ 0.05).   

In the first approach presented by Pensée et al. (2002), also referred to as the 

direct approach, the homogenised properties (i.e. the effective elasticity tensor relating 

macroscopic stresses to macroscopic strains) were obtained from a closed form 

expression of the free energy (effective potential). The free energy was in turn derived 

following a decomposition in which the macrostrain was split into an elastic 

homogeneous component and a ‘fracture’ strain component due to the presence of 

penny-shaped microcracks. The latter was obtained by employing the solution presented 

in Nemat-Nasser and Hori (1993) in which the normal and tangential components of the 

crack opening displacement were derived and then integrated over the crack surface and 

averaged over the crack volume to give the additional strains due to a family of cracks 

with the same orientation. In the derivation of the free energy, two cases of open 

microcracks and frictionless closed microcracks were explicitly considered and based on 

the dilute microcrack density assumption a strain-based opening/closure criterion was 

also derived.  

The homogenized properties were alternatively derived by employing the Eshelby 

inclusion approach in which the microcracks were modelled as flat ellipsoidal 

inclusions. The open cracks were characterized by null normal and shear stiffness 

whereas in the frictionless closed microcracks the normal stiffness was recovered.  

The formulation was then generalized in order to obtain the homogenized 

properties for a solid weakened by randomly distributed microcracks. The generalised 

macroscopic free energy was subsequently expressed as the integral of the free energy 

associated with each family of microcracks (microcracks that have the same 
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orientation). To account for the fact that the microcracks can occur in any direction, the 

integration is performed over a unit sphere and is evaluated numerically using an 

integration rule with 33 integration directions with associated weights, distributed over 

the upper hemisphere. 

Both methods made use of a crack density parameter d associated with the 

considered microcrack family (originally introduced by Budiansky and O’Connell, 

1976) and this parameter constituted a convenient internal damage variable. For a given 

microcrack family, a damage yield function in the form of Eq. (2.1) was proposed in 

which 
id

F is a thermodynamic force or a strain energy release rate associated with the 

ith microcrack and R(d) represents a crack resistance curve which was assumed to be a 

linear function in d. 
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in which the thermodynamic force 
id

F is defined based on the free energy W
i
 as 

i
i

d

i

W
F

d

∂
= −

∂
. 

Finally, the evolution of damage was obtained by employing the normality rule. 

The damage formulation has an intrinsic anisotropic nature given by the dependence of 

the damage variable on the microcrack orientation.
 

As discussed in Pensée et al. (2002) each of these equivalent approaches have 

unique advantages that facilitate the expansion of the formulation. On one hand, due to 

the fact that in the direct approach the normal and tangential crack opening 

displacements can easily be evaluated frictional sliding on closed microcrack faces can 

be incorporated in a straightforward manner. On the other hand, the Eshelby approach 

can be readily extended to account for microcrack interaction. These two issues are 

subsequently explored in the study of Zhu et al. (2008). 

In Pensée and Kondo (2003) an alternative stress-based formulation to the strain-

based anisotropic damage model of Pensée et al. (2002) was proposed. Following the 

direct method the homogenised compliance tensor was derived from a stress-based 

expression of the macroscopic free enthalpy or (Gibbs energy) – which is related to the 

free energy by the Legendre transform. Furthermore, a microcrack closure condition 

stating that open cracks become closed when the normal stress cancels was assumed. 
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This is not strictly equivalent to the strain-based criterion in Pensée et al. (2002) since 

the latter employs a dilute crack density assumption. The damage yield function 

associated with a microcrack family was kept in the form of Eq. (2.1); however, the 

thermodynamic force was defined based on the free enthalpy W
*i

 as 
*

i
i

d

i

W
F

d

∂
=

∂
 and 

under a non-interacting microcracks assumption represented the strain energy release 

rate. 

The comparative analysis of the predictive capabilities of the strain-based (Pensée 

et al., 2002) and stress-based (Pensée and Kondo, 2003) formulations under uniaxial 

tensile and compressive loading lead to the following conclusions: 

- For lower stress or damage levels the predictions obtained with the two 

formulations are similar 

- For higher stress levels predictions are significantly different 

- The strain based formulations is able to predict a peak whereas the stress based 

formulations does not seem to. Pensée and Kondo (2003) suggested that the 

strain based formulations should be used in their future work.  

The study of micromechanical solutions for modelling quasi-brittle materials was 

continued by Zhu et al. (2008) with the analysis of homogenizations schemes that take 

into account the interaction between microcracks and their spatial distribution. Frictional 

sliding on closed crack lips was also introduced into the formulation.  

The Eshelby inclusion approach presented in Pensée et al. (2002) was extended 

and the homogenised stiffness for a solid weakened by a single family of penny-shaped 

microcracks was derived for three homogenization schemes: the dilute scheme 

(equivalent to the formulation in Pensée et al., 2002), the Mori-Tanaka (MT) scheme 

and the Ponte-Castaneda and Willis (PCW) scheme. In the dilute scheme microcrack 

interactions are ignored and whilst the formulation is kept simple –essentially this is 

equivalent to the solution for a inclusion in an infinite elastic media- this assumption can 

be unrealistic for moderate and high concentrations of microcracks. A frequently used 

method that takes into account crack interaction effects is the Mori-Tanaka scheme. 

However, it was argued by Zhu et al. (2008) that because it requires only the shape of 

the inclusions, i.e. microcracks, and does not take into account their spatial distribution, 

the effects of microcrack interaction are not thoroughly captured by the Mori-Tanaka 
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scheme. To address this limitation they proposed the scheme developed by Ponte-

Castaneda and Willis (1995) as a more rigorous homogenisation method. This makes 

use of two Hill-type tensors, one that characterizes the shape of the inclusions and the 

other being associated to their spatial distribution.  

The formulation was further extended by the coupling between damage evolution 

and frictional sliding on closed crack faces. The framework based on the strain energy 

release rate proposed by Pensée et al. (2002) was employed to model damage evolution 

and for the case of closed microcracks this was coupled with Coulomb based friction. 

The friction yield criterion was formulated in the form: 

0cg F
γ βµ= + =F          (2.2) 

where µc represented the coefficient of friction on the crack faces and the 

thermodynamic forces F
γ
 and F

β
 were defined as: 
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W denotes the overall free energy and E
c
 represents the macroscopic inelastic 

strain due to microcracks. γ and β were originally introduced in Pensée et al. (2002) as 

kinematic variables that characterize the crack displacement jump; β is a scalar variable 

that represents the crack opening and characterizes the crack opening-closure state and γ 

is a vector that quantifies the sliding along the crack plane. The flow rule or the 

evolution of sliding vector γ was next postulated as follows: 

γ
γ

γ
λ=

F
γ

F

��          (2.4) 

An extensive comparative analysis of the predictions from the three 

homogenization schemes was carried out. In uniaxial tensile simulations the responses 

predicted by the three methods vary significantly. The dilute scheme produces a very 

brittle and unstable response, the response obtained when employing the Mori-Tanaka 

scheme resembles an elastic-perfectly plastic response with elastic unloading whereas 

the Ponte-Castaneda and Willis scheme leads to a strain softening behaviour. Friction 
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without damage evolution and friction coupled with damage were considered in a shear 

test under monotonous and cyclic loading paths. The simulation was in effect performed 

on a crack plane on which a compressive normal stress was pre-applied to ensure crack 

closure. In general, the model employing the MT scheme tended to predict strain 

hardening behaviour whilst both the dilute scheme and the PCW scheme led to a strain 

softening response, with the response predicted with the dilute scheme being 

considerably more brittle than with the PCW scheme. In this formulation dilatancy was 

directly addressed by the evolution of variable β and this component improved 

substantially the volumetric response in comparison with the formulations proposed by 

Pensée et al. (2002) and Pensée and Kondo (2003). However, it was observed that the 

(overall) response predicted with dilatant cracks was somewhat more brittle than for the 

non-dilatant crack case (in which the evolution of β was restrained).  

Based on the results of the investigations carried out by Pensée et al. (2002), 

Pensée and Kondo (2003) and Zhu et al. (2008) two distinct comprehensive constitutive 

models were subsequently proposed in Zhu et al. (2009) and Zhu et al. (2011) and their 

performance assessed against experimental data.  

In Zhu et al. (2009) an anisotropic damage model based on a homogenization 

procedure that made use of the Eshelby inclusion solution and Ponte-Castaneda and 

Willis scheme was proposed. The thermodynamics framework described at microscopic 

level by Pensée et al. (2002) for damage evolution with an energy release rate based 

damage criterion was employed. The model therefore simulated a solid material 

comprising a homogeneous matrix and a non-dilute distribution of penny-shaped 

microcracks with various orientations. Each microcrack family is characterised by a 

local (microscopic) damage yield surface and the overall (macroscopic) yield surface is 

the envelope of all individual surfaces. The model does not take into account frictional 

sliding on closed microcracks. It is also noted that crack initiation is not specifically 

addressed through a crack initiation criterion but it is merely and, in a somewhat 

simplified way, addressed by assuming an initial isotropic distribution of microcracks 

with a pre-set initial value of the crack density parameter variable in each direction. This 

rather simplified approach was employed by the authors due to the lack of significant 

information on the microstructure.  
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As mentioned before, the Ponte-Castaneda and Willis homogenization scheme 

considers crack interaction effects and takes into account both the shape of the cracks 

and their spatial distribution. Moreover the formulation of the model allows microcrack 

interaction to be also considered in both the damage criterion and in the crack opening-

closure condition by making use of a tensor that couples the damage induced effect on 

stiffness from all microcrack families. Zhu et al. (2009) argued that physically, crack 

propagation in a certain direction alters the distribution of local fields and this in turn 

influences the damage evolution in other directions.  

A noteworthy aspect of this model is its limited number of parameters; only four 

parameters, each with clear physical meaning, were employed: the elastic properties, 

i.e., Young’s modulus and Poisson’s ratio and two parameters involved in the damage 

criterion, which appear in the linear expression of the resistance curve R in Eq. (2.1). 

The latter parameters are, in fact, the primary means of calibrating the model. 

Numerical predictions were subsequently compared with experimental data from 

various tests performed on concrete in order to evaluate the capabilities of the model. In 

general the numerical results compared well against experimental data from uniaxial 

tension and compression tests. A slight tendency for over-ductile post peak predicted 

responses could be observed, however the pre-peak responses as well as the tensile and 

compressive strengths were successfully captured. The performance of the model in 

biaxial simulations was not as effective; the predicted biaxial compressive strength was 

lower than the experimental one and occurred for a lower level of strain. The authors 

argued that this underestimation of the biaxial strength was due to the frictionless closed 

microcrack assumption. It should be mentioned that biaxial simulations were presented 

only for one relatively low level of confinement and therefore only limited conclusions 

could be drawn in this case. No information is provided regarding predictions of triaxial 

response.  

More recently Zhu et al. (2011) proposed an isotropic damage model 

incorporating crack closure and friction effects. The homogenization scheme based on 

the Eshelby inclusion solution and the Ponte-Castaneda and Willis estimate proposed by 

Zhu et al. (2008) was employed and simplified for an isotropic case (although the dilute 

estimate and the Mori-Tanaka estimate could readily be obtained as particular cases of 

the Ponte-Castaneda and Willis estimate). The spatial distribution of damage was 
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therefore assumed to be uniform in all directions and hence the discrete damage 

variable, each one of them associated to a microcrack family (i.e. that was previously 

dependent on microcrack orientation), became a global damage variable that 

characterized the state of damage for all microcrack families. This led to the evaluation 

of the homogenized stiffness tensor for isotropic damage. Next, the thermodynamic 

framework proposed by Zhu et al. (2008) for damage evolution and the coupling of 

damage and frictional sliding on closed microcracks is employed and essentially 

modified for isotropic damage. Subsequently, the damage criterion using the strain 

energy release rate with the normality rule based damage evolution was formulated and 

the macroscopic stress-based and strain-based conditions for crack closure were also 

derived. For modelling frictional sliding on closed microcracks the mean-deviatoric split 

of the macroscopic stress and of the total inelastic strain were employed. In this way 

generalized Coulomb type and von Mises type yield criteria could easily and 

conveniently be implemented as friction criteria and investigated. It was found however 

that the von Mises criterion does not satisfy the requirement of continuity of stresses and 

free energy and therefore the Coulomb based friction criterion and an associated flow 

rule were adopted in the final model. Only results from simulations of uniaxial 

compression tests and compression under plane-strain conditions were presented in Zhu 

et al. (2011) although the authors recognized that this constituted merely the first phase 

of validation. Generally the numerical predictions compared well against experimental 

data.  

 

2.1.2. Work of Gambarotta and co-workers  

Another significant contribution to micromechanics-based modelling of concrete 

was made by the group led by Luigi Gambarotta at the University of Genova 

(Gambarotta and Lagomarsino, 1993, Brencich and Gambarotta, 2001, Gambarotta 

2004). 

The formulations proposed by Gambarotta present similarities in terms of 

fundamental concepts with the models proposed by Zhu et al. (2008, 2009, 2011); 

concrete was modelled as a linear elastic matrix weakened by microcracks and in the 

case of closed microcracks (i.e. when compressive stresses act on the crack planes) 

frictional sliding is introduced. The detailed derivation of the models has however 

significant differences.   
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The stated objective in the work of Gambarotta and co-workers (Gambarotta and 

Lagomarsino, 1993; Brencich and Gambarotta, 2001; Gambarotta, 2004) was to develop 

a constitutive model for concrete with a reduced number of internal variables and 

complexity that would capture the main aspects of the observed response: different 

responses under compressive and tensile loading regarding the strength and the shape of 

the stress-strain curve, energy dissipation at constant damage. Two fundamental 

simplifying assumptions were employed consequently: the effects of interaction 

between microcracks were ignored and the distribution of the microcracks at the natural 

state was assumed isotropic. Based on these assumptions the normal and tangential 

components of the added overall strains due to normal and tangential displacement 

discontinuities across the microcrack faces respectively were derived (Gambarotta and 

Lagomarsino, 1993, Brencich and Gambarotta, 2001). Two inelastic compliance scalar 

parameters -normal and tangential- whose values were assumed to be evaluated 

phenomenologically (i.e. from experimental data) appeared in these expressions as well 

as a damage variable ω defined as a measure of the relative microcrack size that varied 

with orientation. Due to the assumption of isotropy at natural state the normal and 

tangential compliance parameters were considered to take the same value for each 

orientation defined by the normal n.  

Brencich and Gambarotta (2001) employed a further simplifying assumption in 

which damage was considered isotropic throughout the whole deformation process and 

therefore the damage variable was assumed to have the same value on every damage 

plane. In this way damage was described by a single scalar variable as an overall 

measure of microcrack size. A damage criterion and evolution function, similar in form 

to the damage formulation proposed by the French group, was employed in a global 

sense:  

( , ) ( ) 0d Y Rω ωΦ = − ≤σ        (2.5) 

where Y was introduced as the energy release rate corresponding to the 

infinitesimal damage evolution ω� , σ represents the mean stress tensor and R was a 

phenomenologically determined monotonically increasing function representing the 

overall measure of the material fracture toughness, i.e., as an average value over all 

orientations n.  
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The microcrack opening/closing conditions were defined employing two 

symmetric second-order tensors P and F´ (with tr P ≤ 0 and tr F´ = 0) interpreted as the 

average of the normal and tangential contact tractions over all orientations. Therefore a 

case of open cracks in all directions was defined for a tensile stress field (P=0) and a 

partially closed or fully closed microcracks state was considered when compressive 

stresses act on at least one direction (P ≠ 0 and tr P < 0). It was argued in Brencich and 

Gambarotta (2001) that in the open crack case, frictional sliding cannot be expected and 

therefore only damage evolution was considered. Frictional sliding was introduced and 

coupled with damage on the closed microcracks by employing a global Drucker-Prager 

friction criterion: 

' tr 0s µΦ = + ⋅ ≤F P         (2.6) 

where µ denoted the global coefficient of friction.  

The performance of the model was assessed against experimental data for a set of 

uniaxial biaxial and triaxial simulations. Given the assumption of isotropic damage, 

Brencich and Gambarotta (2001) noted that the model’s domain of validity was up to 

peak load which represented the limit for homogeneous damage. Therefore the 

numerical predictions were compared to experimental data up to peak load. A generally 

good agreement was found between the experimental data of Maekawa and Okamura 

(1983) and numerical results predicted for loading-unloading uniaxial compression 

paths when employing an expression for the toughness function R similar to the type 

proposed by Ouyang et al. (1990). In the loading phase the predicted pre-peak 

nonlinearity is slightly overestimated. The experimental data shows a somewhat 

progressive evolution of the instantaneous unloading compliance in the unloading phase 

and permanent deformations due to frictional sliding on crack faces. These features are 

not properly captured by the proposed model due to the isotropic damage (with a single 

crack resistance curve) assumption and the global description of the friction mechanism 

that excluded progressive sliding. However the model was rather successful in 

predicting biaxial strength envelopes that compared well against experimental data. Less 

accuracy was found in triaxial compressive simulations where the strength was 

underestimated. 

The formulation was extended for anisotropic damage in Gambarotta (2004) in 

order to improve the performance of the aforementioned model. Damage was therefore 
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characterised by a second order damage tensor evolving from a natural isotropic state 

and the crack closure and frictional sliding mechanisms were described by a contact and 

a friction second order tensor respectively. Whilst the anisotropic form of the model is 

more comprehensive, it seems -from the limited simulations presented and from the lack 

of any comparison with experimental data- that the author struggled to validate the more 

advanced version of the model.  

 

2.1.3. Work of Pichler, Hellmich, Mang, Ulm, Dormieux 

Pichler and co-workers employed micromechanics solutions to model a broad 

range of problems associated with cement based materials such as early age properties 

of cement paste, mortar or shotcrete (Pichler et al., 2009a,b; Pichler and Hellmich, 

2011) or cracking in partially saturated porous media (Pichler and Dormieux, 2010a,b). 

While a detailed description of these models is beyond the scope of this review, a 

significant and worthwhile contribution to modelling the mechanical behaviour of 

concrete is their combined fracture-micromechanics model for tensile strain softening 

based on propagation of interacting microcracks (Pichler et al. 2007).  

As mentioned by the authors, the scope of the model (Pichler et al. 2007) was to 

capture the strain softening behaviour associated with uniaxial tensile loading, inside the 

fracture process zone ahead of a macrocrack. Also, several issues, some of them 

unsatisfactorily described by more established phenomenological models, were 

considered in the development of the model: the proposal of a theoretical framework 

that employed a suitable damage variable and that would appropriately describe the 

effect of damage on the material stiffness, the development of a criterion for initiation of 

microcracking and the definition of a damage evolution law. These points were 

therefore addressed in a model that employed the Eshelby matrix-inclusion 

homogenization scheme to simulate an elastic matrix weakened by penny-shaped 

microcracks (inclusions) with identical size and orientation. Since the model was 

intended for simulating tension induced strain softening crack closure was not 

considered. The case of both a dilute concentration of non-interacting microcracks and a 

non-dilute concentration of interacting microcracks based on the Mori-Tanaka estimate 

was analyzed. As in the case of the models proposed by Kondo and co-workers (Pensée 

et al., 2002; Zhu et al., 2009; Zhu et al., 2011) the crack density parameter of Budiansky 
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and O’Connell for the case of penny-shaped microcracks was chosen as a damage 

variable. Next a linear elastic fracture mechanics based criterion for the onset and 

propagation of microcracks was formulated which took into account the stress 

concentrations at the edge of a sharp microcrack. While this linear elastic fracture 

mechanics based formulation, described in more detail in Chapter 3, provides a more 

mechanistic rationale for damage initiation and evolution it tends to produce an 

extremely brittle post peak response and requires unrealistically large values for the 

microcrack radius. In fact, when the interaction between microcracks is ignored, the 

predicted post peak response follows an unrealistic path in which stresses decrease with 

decreasing strains. A possible explanation for this over-brittle predicted response is that 

the model does not include any mechanism or assumption that would account for the 

arrest of cracks due to the presence of large pores or aggregate particles.   

 

2.2 Theoretical components of the model 

The second part of this chapter contains a description of the theoretical 

components of the constitutive model developed in this thesis, in particular the two-

phase composite theory based on the matrix-inclusion Eshelby solution, microcracking 

based on the solution of an elastic body containing randomly distributed penny-shaped 

microracks (Nemat-Nasser and Hori, 1993) and a rough crack closure component based 

on the crack-plane model proposed by Jefferson (2002). These solutions were originally 

combined in a constitutive model for concrete proposed by Jefferson and Bennett (2007, 

2010) which provided the starting point for the present work.  

The model simulates a two-phase composite comprising a matrix phase (m) that 

represents the mortar and spherical inclusions (Ω) that represent the coarse aggregate 

particles. The composite incorporates penny-shaped microcracks with various 

orientations and rough surfaces on which stress can be recovered. It is assumed that the 

microcracks are initiated at the matrix-inclusion interface and then propagate through 

the matrix phase. This idealization is illustrated in Fig. 2.1. Furthermore, the two phases 

are characterised by two elastic properties, namely the Young’s modulus Eβ and 

Poisson’s ratio υβ, where subscript β = m denotes the matrix phase and β = Ω denotes 

the inclusion phase respectively. 
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A representative volume element (RVE) was assumed to represent the average 

elastic properties of the composite, however its existence becomes highly questionable 

once macrocracking begins. Gitman (2006) showed that, in the context of cracking, the 

concept of an RVE becomes meaningless, therefore in this study the term 

‘representative material element’ (RME) is used to define an RVE for elastic properties. 

It is however well established that cracking even in mode I fracture is distributed over a 

fracture process zone (FPZ) and it would seem reasonable to define an average strain 

measure within this region. The author therefore states clearly that the average strains 

used in the present model for a tensile case are consistent with the average strains in a 

FPZ. In compression the formation of a distinct FPZ is delayed in comparison with the 

tensile case but such a zone does ultimately develop and become a discrete crack. A 

further important point is that once a fully formed crack has occurred the model is not 

applicable and could only be applied to the material either side of the macrocrack. It is 

therefore the author’s opinion that for a comprehensive description of fracture the model 

representing the behaviour of a continuum needs to be combined with a model which 

includes a strong discontinuity. 

 

 

2.2.1 Elastic two-phase composite  

Firstly the elastic properties of the two-phase composite are determined by means 

of the classical micromechanical solution based on the work of Eshelby (1957) 

combined with the Mori-Tanaka homogenisation scheme for a non-dilute distribution of 

inclusions (Nemat-Nasser and Hori 1999).  

Figure 2.1. Microcracking and rough contact concepts 
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Eshelby (1957) showed that if a homogeneous elastic ellipsoidal subregion in an 

infinite elastic domain changes its size, shape or both, i.e. undergoes a transformation 

such as thermal expansion, so that it no longer conforms with its previous space, the 

state of stress and strain in the subregion is uniform.  If the change in strain in the 

subregion in a stress-free state is denoted by the ‘stress-free strain’ tensor (εεεεt) – also 

called ‘transformation strain’ or ‘eigenstrain’ - then the disturbance strain in the 

subregion (εεεεc) is given by  

c t:=ε S ε          (2.7) 

in which S is called the (interior point) Eshelby tensor. The components of S depend 

upon the shape of the inclusion and for isotropic spherical inclusions in an isotropic 

elastic medium, S is a symmetric fourth order tensor with the following non-zero terms 

(plus symmetric counterparts) (Nemat-Nasser and Hori, 1993)  

( )m m
ijkl ij kl ik jl il jk

m m

5υ -1 4-5υ
S = δ δ + δ δ +δ δ

15(1-υ ) 15(1-υ )
     (2.8) 

where δij is the Kronecker delta. It is noted that a direct tensor notation is employed 

throughout the thesis and the tensor operations are defined in Annex 1. 

In modelling composites it is inhomogeneities or inhomogeneous inclusions 

embedded in a matrix that are relevant. In this case a solution can be derived using 

Eshelby’s solution for homogeneous inclusions undergoing a transformation strain 

(equation 2.7). In this approach the inhomogeneous inclusion, which has different 

elastic properties from the the matrix, is replaced by an equivalent homogeneous 

inclusion which has identical elastic properties to those of the matrix material and into 

which is introduced an equivalent eigenstrain (ετ) that accounts for the in elastic 

properties between the two materials. This is done in such a way that the stress in the 

equivalent homogeneous inclusion is the same as for the inhomogeneous inclusion.  

If a uniform far field strain εεεε0 is then applied, the strain in the equivalent 

homogeneous inclusion becomes the sum of the far field strain and the disturbance 

strain: 

0 c 0 τ:Ω = + = +ε ε ε ε S ε         (2.9) 
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The equivalent transformation strain ετ accounts for the difference in the elastic 

properties of the materials and is not associated with any stress, therefore the stress in 

the equivalent homogeneous inclusion, formed from the matrix material, in obtained by 

applying Hooke’s law to (ε0 + εc - ετ) rather than (ε0 + εc) (Eshelby, 1957):   

( )m 0 c τ:  Ω = + −σ D ε ε ε        (2.10) 

in which Dm is the elasticity tensor of the matrix. The stress in the inhomogeneous 

inclusion is given by: 

( )0 c:   Ω Ω= +σ D ε ε         (2.11) 

where DΩ denotes the elasticity tensor of the inhomogeneity. 

The equivalent eigenstrain ετ is computed such that the stress in the inhomogeneity 

is equal to the stress in the equivalent homogeneous inclusion. The condition in which 

(2.10) is made equal to (2.11) is termed the consistency condition (Nemat-Nasser and 

Hori, 1993), which is different from the consistency condition in plasticity, and may be 

written: 

( ) ( )0 c m 0 c: : τΩ + = + −D ε ε D ε ε ε       (2.12) 

Using equation (2.7), equation (2.12) becomes:  

[ ] 4
0 τ m 0 τ: :  : ( ) :  s

Ω
 + = + − D ε S ε D ε S I ε      (2.13) 

Rearranging gives: 

( )( )m 0 m m τ( ) :  :  Ω Ω− + − ⋅ + =D D ε D D S D ε 0     (2.14) 

Hence  

τ 0 :Ω=ε A ε          (2.15) 

where ( )( )
1

m m m ( )
Ω

−

Ω Ω= − ⋅ + ⋅ −A D D S D D D  

Introducing (2.15) in (2.9) gives: 

( )4
0 :s

Ω Ω= + ⋅ε I S A ε         (2.16) 
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Using (2.15) in (2.10) or in (2.11) gives the following expressions for the stress in 

the inclusion: 

4 4
m 0( ) :s s

Ω Ω
 = ⋅ + − ⋅ σ D I S I A ε                (2.17) 

( )4
0 :s

Ω Ω Ω= ⋅ + ⋅σ D I S A ε                 (2.18) 

The above analysis is applicable to an infinite elastic matrix containing a single 

inclusion. Now an RME is considered in which fm is the volume fraction of matrix 

material and fΩ is the volume fraction of inclusions noting that 1mf fΩ+ = . For each 

phases the constitutive relationships are given by  

m m m

:

:

Ω Ω Ω=

=

σ D ε

σ D ε
                (2.19a,b) 

In this composite domain the following expressions for the average stress and 

average strain respectively hold: 

m mf fΩ Ω= +σ σ σ         (2.20) 

m mf fΩ Ω= +ε ε ε         (2.21) 

So far the effects of the interaction between inclusions have been ignored. 

However, in the case of concrete, for which the volume fraction of the coarse aggregate 

has a significant value, the assumption of non-interacting inclusions (dilute 

concentration) is unrealistic. Several homogenization schemes that take into account the 

interactions between inclusions are available in the literature i.e. the self-consistent 

method, the Mori-Tanaka scheme, the Ponte-Castaneda and Willis method etc. In the 

self-consistent method the effective properties are derived such that 1−=D C , where D  

and C  denote the effective elasticity and compliance tensors respectively.  

 In the Mori-Tanaka method the argument is made that when the inclusions are not 

dilute the ‘disturbance’ strain may be based on the average matrix strains (or stresses) 

rather than the far field strain (or stress). If the far field strain is replaced by the average 

strain in the matrix εεεεm, Eqs (2.16) becomes: 

( )4
m m : :s

Ω Ω Ω= + ⋅ =ε I S A ε T ε       (2.22) 
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Using (2.19a,b) and (2.22) in (2.20) gives: 

( )m m m : f fΩ Ω Ω= ⋅ +σ D T D ε        (2.23) 

From (2.21):  

( )
1

4
m m :s

f f
−

Ω Ω= +ε T I ε        (2.24) 

Using (2.24) in (2.23) gives: 

mΩ :  =σ D ε          (2.25) 

in which ( ) ( )
1

4
m m m m  

s
f f f f

−

Ω Ω Ω Ω Ω Ω= ⋅ + ⋅ +D D T D T I  

 

2.2.2 Microcracking 

Microcracking is a primary source of non-linearity in the mechanical behaviour of 

concrete (van Mier, 1997) and therefore needs to be addressed with a rigorous 

formulation. There are a number of micromechanical solutions that can be employed to 

simulate this mechanism. For example the Eshelby matrix-inclusion theory has been 

used by Penseé et al. (2002, 2003), Zhu et al. (2009), Gambarotta (2004) and Pichler et 

al. (2007) to derive the effective moduli of a solid containing ellipsoidal cracks. In this 

case open microcracks are modelled as flat ellipsoidal inclusions with zero stiffness. 

In the present model a micromechanical solution based on the classic work of 

Budiansky and O’Connell (1976) is employed to compute the additional strains from a 

dilute distribution of penny shaped cracks. This solution for microcracking in concrete 

was used in the model in Jefferson and Bennett (2007). Nemat-Nasser and Hori (1993) 

describe in detail the derivation of the additional compliance from a set of penny-shaped 

microcracks with the same orientation which gives rise to additional strains. It is 

assumed that microcracks occur only in the matrix (mortar) phase and therefore the 

elastic properties of the matrix are used in the following. 

The crack opening displacements for a penny-shaped crack of radius ai lying in the 

s-t plane and with the centre at the origin of a local coordinate system r s t (Fig. 2.2), r 

being the unit vector normal to the microcrack, are given by: 
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2
2 2m

m m

m

8(1 ) 2
( )

2

2

2

rr

i rs

rt

a a a
E

σ

υ
σ

π υ

σ
υ

 
 
 
 −

= −  
− 

 
 

− 

u      (2.26) 

where a is the radial coordinate and σrr, σrs and σrt are the normal and shear components 

of the farfield stress, with σrr > 0.  

 

 

The additional strains from crack i are next given by 

( )T T
add 3

1 1
( ) ( ) d

2i
i i i

i

a a
a Ω

= + Ω∫ε r u u r       (2.27) 

It is shown in Nemat-Nasser and Hori (1993) that direct calculation of εaddi from 

Eqs (2.26) and (2.27) yields a result independent of the crack radius. Therefore a single 

crack radius a0 is assumed. If a dilute distribution of cracks is assumed then the added 

strains from a system of cracks is obtained by considering the contribution from each 

crack to the average additional strain. Based on the above, the non-zero components of 

the additional strain tensor from a dilute series of cracks with the same orientation, i.e. 

same normal vector r, are given by: 

x3 

x1 

x2 

r 

t 

s 

ψ 

θ 

Ωi 

Figure 2.2. Reference system for a penny-shaped microcrack 
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2
m

m m

m

16(1 ) 4
( , )

3 2

4

2

rr

rs

rt

rr

rs

rt

f
E

α

α α

α

σε
υ

γ ψ θ σ
υ

γ
σ

υ

 
 

   
   −

= =   
−   

    
 

− 

ε      (2.28) 

noting that the engineering shear strain components γαij are double the tensor shear 

components εαij (i ≠ j) . f(ψ,θ)  is the crack density parameter introduced by Budiansky 

and O’Connell (1976) which for the particular case of penny-shaped cracks is 3
0f Na=  

where N denotes the number of cracks per unit volume. In Jefferson and Bennett (2007) 

the crack density parameter was expressed more conveniently in terms of a directional 

damage parameter ω(ψ,θ) that grows from 0 (for undamaged state) to 1 (for fully 

damaged state). The expression relating f(ψ,θ)  and ω(ψ,θ)  is: 

( )2
m

3 ( , )
( , )

1 ( , )16 1
f

ω ψ θ
ψ θ

ω ψ θυ
= ⋅

−−
      (2.29) 

Eq. (2.28) may now be written as: 

L

( , )
:

1 ( , )
α

ω ψ θ

ω ψ θ
=

−
ε C s         (2.30) 

where CL is assumed to be the local elastic compliance tensor which can be written in 

matrix form as L

m m

m

1 0 0

1 4
0 0

2

4
0 0

2

E υ

υ

 
 
 
 

=  
− 

 
 

− 

C  and s = (σrr, σrs, σrt)
T
.  

Eq. (2.30) gives the additional strains due to a set of microcracks with the same 

normal vector r(ψ,θ)  with respect to the local coordinate system. In general however 

microcracks do not develop in one direction only but can have various orientations. The 

total additional strain (εa), i.e. from a set of microcracks with arbitrary orientations is 

obtained by adding the contributions from all possible directions. The local added 

strains in Eq. (2.30) are first transformed from the local coordinate system rst to the 
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global Cartesian system and the total added strains are then obtained via an integral over 

a unit sphere which in turn can be reduced to an integral over a hemisphere due to 

symmetry. 

1
a

 

2

1
( , ) : sin( ) d d

2
α

ππ

ψ θ ψ ψ θ
π

−= ∫ ∫ε N ε
2

        (2.31) 

where N(ψ,θ) is a transformation tensor given in matrix form in Jefferson (2003). 

Moreover, the local stress (s) is related to the global stress as follows: 

( , ) :ψ θ=s N σ          (2.32) 

The matrix forms of the transformation tensor for stresses and strains respectively 

are given in Annex 2. Introducing Eqs. (2.32) and (2.30) into Eq. (2.31) the expression 

of the total additional strain due to the presence of microcracks with various orientations 

becomes: 

1
a L

 

2

1 ( , )
( , ) ( , ) sin( ) d d :

2 1 ( , )ππ

ω ψ θ
ψ θ ψ θ ψ ψ θ

π ω ψ θ
−

 
 

= ⋅ ⋅ − 
 

∫ ∫ε N C N σ
2

    (2.33) 

Eq. (2.25) describes the elastic constitutive relationship for an elastic two phase 

composite. When the effect of the presence of microcracks in the matrix is taken into 

account this expression becomes: 

( )m a:  Ω= −σ D ε ε          (2.34) 

The average stress-strain relationship for a two phase composite containing open 

penny-shaped microcracks with various orientations is then obtained by introducing Eq. 

(2.33) in (2.34) and rearranging: 

1

4 1m
L m

 

2

( , )
( , ) ( , )sin( ) d d :  

2 1 ( , )

s

ππ

ω ψ θ
ψ θ ψ θ ψ ψ θ

π ω ψ θ

−

−Ω
Ω

 
 

= + ⋅ ⋅ ⋅ ⋅ 
− 

 

∫ ∫
D

σ I N C N D ε
2

(2.35) 

It is worth noting that a dilute distribution of cracks is assumed in this 

formulation. The effects of interaction between microcracks are therefore ignored. This 

assumption is somewhat inaccurate when the crack distribution becomes concentrated. 
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However, when a solution for a non-dilute distribution of microcracks based on the 

Mori-Tanaka estimate was employed, little difference in the overall predicted response 

was observed compared to the predictions obtained using a dilute distribution 

assumption. Therefore in order to reduce the complexity of the overall model crack 

interaction effects are ignored throughout. 

Eq. (2.35) can be re-written as: 

1

4 1m
m  

 

2

( , ) ( , ) ( , ) sin( ) d  d :
2

s
cα

ππ

ψ θ ψ θ ψ θ ψ ψ θ
π

−

−Ω
Ω

 
 

= + ⋅ ⋅ ⋅ 
 
 

∫ ∫
D

σ I N C N D ε

2

  (2.36) 

where Ccα(ψ,θ) denotes the added local compliance and is given by: 

L

( , )
( , )

1 ( , )
cα

ω ψ θ
ψ θ

ω ψ θ
=

−
C C        (2.37) 

Since it is practically impossible to evaluate the integration over the hemisphere in 

Eq. (2.36) analytically, it is evaluated numerically. Therefore the integral is 

approximated with a weighted summation over a finite number of integration directions. 

The weights, as well as the integration directions, are associated with the chosen 

integration rule. The McLaren rule with 50 integration directions, which reduce to 29 for 

a hemisphere, is employed for numerical simulations; however, a discussion on the 

accuracy of these rules is provided in Chapter 5. 

 

2.2.3 Rough Crack Contact Model – stress recovery 

Rough crack closure was originally included in the model based on the 

macroscopic experimental observation (Walraven and Reinhardt, 1981) that cracks can 

regain contact with normal and shear movement and therefore stress can be transferred 

across the rough crack surfaces. However, it was argued (Jefferson and Bennett, 2007) 

that the same observations apply at micro and meso levels. The main principles are 

presented in Fig. 2.3.  
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The crack surface is idealised as a sequence of conical teeth (right circular cones) 

bounded on either side by bands of elastic material. Parameter mg characterizes the 

tortuosity of the crack surface and also defines the slope of the contact surface.  

In each direction the local stress tensor is written as a sum of the average stress on 

undamaged material and the recovered stress on microcracks in contact:  

u r= +s s s              (2.38)  

Jefferson and Bennett (2007) employed a set of assumptions to control stress 

recovery: 

a. When local strains εL are in the open region there is no contact and therefore 

the local recovered stress is 0. 

b. The recovered stress depends on a so-called ‘embedment strain’ (or ‘gap 

strain’) g which in the interlock region is the distance in strain terms to the 

contact surface. This assumption implies that the sides of the rough crack 

surface are frictionless.  

c. When the crack surfaces are locked in together, i.e. the local strains are in the 

closed region, the recovered stress depends directly on the local strain, i.e. g = 

εεεεL 

d. The maximum recovered stress that can be transferred across the crack 

decreases with increasing crack opening. When the crack opening reaches the 

point where the crack surfaces have no overlap the transferred stress is null. 

mg 

1 

u 

v 

g 

Contact surface 

   Closed surface 

Interlock 

region 

Open 

region 

Closed 

region 

u 

v 

1 

mg 

Figure 2.3. Concepts of the contact model 
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e. The recovered stress is related to the local strain vector by the elastic properties 

of the band of material either side of the crack faces and by a contact matrix 

(tensor) that depends on the contact state. 

f. The local strain vector is that for the idealised band of material from which the 

additional strains are derived by removing the elastic components 

g. In any one direction that is damaged, the proportion of material to which the 

contact model applies is equal to the damage parameter ω in that particular 

direction.  

Based on these assumptions the expression of the recovered stress can be written 

in a general way as follows: 

r f LH :ω= ⋅s D Φ g         (2.39) 

where Φ is the contact tensor that depends upon the state of contact according to Table 

2.1. 

      Table 2.1 Contact formulation 

Region Contact state Contact tensor 

If int L( , ) 0gmφ ≥ε  Open state 4s=Φ 0  

If     int L( , ) 0gmφ <ε  

and   cl L( , ) 0gmφ >ε  

Shear contact 

or interlock 

state 

g L

T 2
int int int

g L 2 2
L L L

( , )

1
( , )

1

g

g

g

m

m
m

φ φ φ

=

   ∂ ∂ ∂
 = +  
 ∂ ∂+ ∂   

Φ Φ ε

Φ ε
ε ε ε

 

If cl L( , ) 0gmφ ≤ε  Closed state 4s=Φ I  

in which: 

2 2
int L Lrr Lrs Lrt( , ) ε ε εg gm mφ = − +ε                (2.40a) 

is the contact or interlock surface which separates the open from the closed region and 

2 2
cl L Lrr Lrs Lrt( , ) ε ε εg gm mφ = + +ε                (2.40b) 

is the closed surface which separates interlock from the closed region. 
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Hf is a shear contact reduction function that reflects the fact that as the crack 

opening increases the potential for shear transfer reduces. It is assumed that the value of 

the Hf function is proportional to Aw/Ab (Fig. 2.4) giving: 

2

f

t

w
H 1

h

 
= − 
 

.                                     (2.41) 

in which w is the crack opening and ht is the height of the cone (asperity) taken as the 

limiting crack opening displacement (or relative-displacement at the end of the softening 

curve) u0. Strains are related to displacements by the characteristic length which here is 

taken as the maximum size of the coarse aggregate particles dmax, i.e. ε0 = u0/dmax.  

Hence, the contact reduction function can be written in strain terms as 

( )
2

fH 1 Lη= −          (2.42) 

where Lrr tm

0

ε ε

ε
Lη

 −
=  
 

 and εtm is the matrix strain at first uniaxial damage.  

However, for numerical reasons, the following exponential function, which 

provides an adequate match to Eq. (2.42), was preferred in order to avoid the gradient 

discontinuity when ηL = 1,  

fH l Lc
e

η−=           (2.43) 

in which cl is taken to be 3. 
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In Jefferson and Bennett (2010), the local recovered stress was based on a single 

contact surface, however in reality the asperities of a real crack have different heights 

and contact angles (mg). To account for these variations the recovered stress is now 

written as a summation which allows for statistical distributions of the crack roughness 

parameters, as follows:  

r L k fk k L

k

p H :ω
 

= ⋅ 
 
∑s D Φ ε        (2.44) 

The asperities heights for each component k are denoted λku0. 

As will be discussed in Chapter 3, it was found that crack surfaces tend to have a 

bimodal distribution of asperity heights which are associated with λ values of 1 and 0.1.  

The local stress in Eq. (2.38) then becomes: 

[ ]α L L L L(1 ) : :u r k fk k

k

p Hω ω
  

= + = − + ⋅  
   

∑s s s D ε D Φ ε    (2.45) 

Removing the elastic compliance from equation (2.45), the added compliance 

including contact Ccα becomes: 
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Figure 2.4. Schematic representation of the geometrical assumption for contact reduction  
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1

4s 4s
cα L(1 ) k fk k

k

p Hω ω

−   
 = − + − ⋅  
     

∑C I Φ I C       (2.46) 

 

2.3. Summary and concluding remarks 

A literature overview of the constitutive models for concrete that are based on 

micromechanical solutions is presented in the first part of the chapter. The second part 

details the formulation of a new constitutive model for concrete based on 

micromechanical solutions. The concept of a representative material element (RME) is 

employed which essentially defines an elastic representative volume element (RVE). 

The RME is simulated as a two-phase composite comprising an elastic matrix to 

simulate the mortar and spherical inclusions to model the coarse aggregate particles 

embedded in the matrix phase. The elastic properties of the two-phase composite are 

obtained by employing the Eshelby matrix-inclusion solution and the Mori-Tanaka 

averaging scheme. The reduction in stiffness due to microcracking is accounted for by 

considering the matrix phase to be weakened by penny-shaped microcracks that can 

have various orientations. Furthermore, the model also incorporates a multi-asperity 

rough crack contact component in order to take into account the recovery of stiffness 

(normal and shear) when microcracks regain contact.  

The formulation of the constitutive model is completed in the following chapter 

with a new criterion for the initiation and evolution of microcracks based on the 

assumption that microcracking is initiated at the matrix-inclusion interface.  
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Chapter 3 

Damage initiation and evolution. Numerical predictions 
 

In this chapter, details of the formulation of a microcrack initiation criterion based 

on the assumption that microcracks are initiated in the interfacial transition zone 

between coarse aggregate particles and the mortar matrix are presented. A brief 

discussion of the damage criteria employed in several other micromechanical 

constitutive models is first presented followed by the formulation of the criterion for the 

initiation and evolution of microcracking which makes use of the exterior point Eshelby 

solution. Aspects regarding the geometrical characterization of the morphology of the 

crack surface are also addressed. Finally, the performance of the proposed constitutive 

model is assessed in a set of uniaxial, biaxial and triaxial simulations. 

   

3.1. Damage initiation and evolution criteria in micromechanical models  

In general the progress of damage is described mathematically via a damage 

criterion and a damage evolution function. This mathematical characterization stems 

from damage mechanics and has become a trademark of damage models. In the case of 

damage models the damage criterion is based upon a damage function written in terms 

of stresses or strains or an energetic variable. An evolution law governs the expansion or 

contraction of the damage function with the damage variable. In the case of 

micromechanical models there are essentially two approaches of describing the progress 

of damage: one based upon energetic damage mechanics employed by Pensée et al. 
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(2002), Pensée and Kondo (2003), Zhu et al. (2008, 2009, 2011), Brencich and 

Gambarotta (2001) and Gambarotta (2004); and the other based upon linear elastic 

fracture mechanics applied by Pichler et al. (2007) and co-workers. 

As mentioned in the section 2.1.1, in the work of Kondo and co-workers, the 

degree of damage varies with orientation and therefore, in each direction i, it is 

described by an associated damage variables d
i
. For current direction i the damage 

function (Eq. 2.1) is expressed in terms of the strain energy release rate (thermodynamic 

force) obtained by differentiating the free (Helmholtz) energy potential associated to the 

i
th

 microcrack with respect to the damage variable. Damage is initiated when the 

thermodynamic force equals the initial crack resistance. The evolution of the damage 

variable, which in turn governs the expansion of the damage function in strain space, is 

controlled by an evolution law that employs the normality rule. The crack resistance R, 

which was assumed to depend linearly on the damage variable, i.e. R(d
i
) = c0 + c1·d

i
, is 

determined phenomenologically. In fact the two parameters featured in the linear 

expression of the crack resistance curve play an important role in the characterization of 

damage initiation and evolution. With a small, but non-zero, initial value of the damage 

variable, c0 defines the initial damage threshold and c1 describes the kinematics of 

damage evolution. The damage criterion is written in terms of energy variables, 

however it could be similarly expressed in strain terms, with the onset of damage being 

controlled by a critical strain value. Pensée and Kondo (2003) proposed a comparative 

damage criterion in which the thermodynamic force was obtained from the free enthalpy 

(Gibbs energy) and which could similarly be reduced to a stress based one. The stress 

based formulation employing the Gibbs energy was equivalent to the strain based 

formulation that made use of the free energy potential for low levels of strain (stress), 

however at higher strain levels it became unrealistic by not being able to predict a peak 

stress in uniaxial tension or compression.  

Gambarotta and co-workers (Brencich and Gambarotta, 2001; Gambarotta, 2004) 

employ a damage formulation somewhat similar in concept to the one discussed above 

and therefore with similar characteristics. In the isotropic model (Brencich and 

Gambarotta, 2001) the damage function makes use directly of the scalar value of the 

strain energy release rate whereas the damage function in the anisotropic model 

(Gambarotta, 2004) is written in terms of the determinant of the matrix associated to the 

strain energy release rate tensor. In a similar manner to the formulation of Pensée et al. 
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(2002), damage initiation and evolution is controlled by a phenomenologically based 

function R referred to as the overall damage toughness which can be interpreted as an 

overall measure of the crack resistance employed by Pensée et al. (2002). 

Pichler et al. (2007) attempted a more mechanistic description of the microcrack 

initiation and evolution process by proposing a formulation based on linear elastic 

fracture mechanics. The well known propagation law in linear elastic fracture mechanics 

theory states that a single crack embedded in an infinite matrix and subjected to uniaxial 

tensile stresses normal to it starts to propagate when the stress intensity factor that 

accounts for the stress concentrations at the tip of the crack reaches the fracture 

toughness of the material or, equivalently, when the energy release rate reaches a critical 

value. The criterion also describes the nature of propagation once initiated, i.e. if crack 

growth is quasistatic (stable) or dynamic (unstable). Pichler et al. (2007) employed this 

criterion that characterizes the propagation of a single crack to describe the onset and 

propagation of multiple microcracks. For this it was assumed that the far-field strains 

from the Eshelby matrix-inclusion solution -used to evaluate the homogenized 

properties of an RME (i.e. an RVE for elastic properties) weakened by a set of penny-

shaped microcracks with the same size and orientation- were equal to those caused by 

the remote uniaxial tensile stresses from formulation of the crack propagation criterion. 

As mentioned by the authors, this provided the ‘missing link’ that enabled the use of a 

linear elastic fracture mechanics solution in a micromechanics framework. Although the 

formulation is elegant, as mentioned in Chapter 2, it produces an unrealistically brittle 

response.  

An alternative way to consider microcrack propagation was proposed by 

Karihaloo et al. (1996) and Karihaloo and Wang (1997a) in which the development of 

periodic crack arrays is shown to produce softening behaviour. This was further 

developed by the same authors (Karihaloo and Wang, 1997b, Wang et al., 2000) and 

was shown to be both effective and accurate.  

This approach has not been employed in the current multi-phase composite model 

although this would provide a potential alternative mechanistic approach for the 

formulation of the microcrack initiation criterion and evolution function. 
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3.2. Exterior point Eshelby based microcrack initiation criterion 

In Jefferson and Bennett (2010), the cracking criterion was based on the average 

matrix strains, which in fact implies that cracking may be initiated anywhere in the 

matrix. In an attempt to obtain a better estimate of the cracking stress, microcracks are 

now assumed, based on experimental evidence, to initiate in the interfacial transition 

zone surrounding aggregate particles due to tensile stresses, shear stresses or a 

combination of the two (van Mier 1997). For this purpose, a criterion based on the 

exterior point Eshelby solution is employed. Before discussing the criterion, this 

solution will be presented for an elastic two-phase composite.  

 

3.2.1. Exterior point Eshelby. Stress outside an inclusion 

According to Ju and Sun (1999), the total strain εmΩ and the total stress σmΩ, at 

any local point in the matrix domain, defined by the position vector x relative to the 

centre of the inclusion (Fig. 3.1), can be written as: 

 E *
mΩ 0 τ( ) ( ) := +ε x ε S x ε        (3.1) 

 )(:)( mΩmmΩ xεDxσ =        (3.2) 

where 0ε  is the far-field strain tensor. S
E
(x) is the so-called exterior-point Eshelby 

tensor. For spheroidal inclusions the explicit components of S
E
(x) are derived in Ju and 

Sun (1999). Li et al. (2007) particularized Ju and Sun’s solution and obtained the 

explicit components for spherical inclusions in an infinite elastic medium in the 

following form: 
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 (3.3) 

where υm is the Poisson’s ratio of the matrix, ρ = a/|x|, ii xx=x , a is the radius of the 

spherical inclusion and ix  represent the unit position vector components, i = 1, 2, 3 

(Fig. 3.1). The unit position vector x  is set to the current sample direction vector. 



46 

 

 

0000000000000000000000000000000000000000000000000000000 

*

τε  in Eq. (3.1) is the eigenstrain given by Ju and Sun (2001):   

0

1

Ω

*

τ :)( εSAε
−+−=         (3.4) 

where m

1

mΩ )( DDDA ⋅−= −
 is the fourth-order elastic “phase-mismatch” tensor.  

Replacing the eigenstrain in Eq. (3.1) with Eq. (3.4) gives: 

4 E
mΩ Ω 0 0( ) [ ( ) : ] : ( ) :s= + =ε x I S x B ε T x ε      (3.5) 

where tensor 1
m

1
mΩΩΩ ])([ −− ⋅−+−= DDDSB . 

The Mori-Tanaka homogenization scheme for a non-dilute distribution of 

inclusions is applied in order to account for the interaction between inclusions. 

According to this scheme, the disturbance strain can be expressed in terms of the 

average matrix strain rather than the far-field strain. Hence, Eq. (3.5) becomes: 

mΩ m( ) ( ) :=ε x T x ε         (3.6) 

Moreover, it can be shown that the strain in the inclusions εΩ is related to the 

average matrix strain in a similar fashion: 

   : mεTε ΩΩ =          (3.7) 

The overall average strain of the RME before cracking occurs is given by: 

X1 

X2 

X3 

a 

 

x 
A 

x  

Figure 3.1.  Schematic representation of a spherical inclusion contained in an infinite 

elastic matrix 
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 m mf fΩ Ω= +ε ε ε         (3.8) 

Making use of Eq. (3.7) in Eq. (3.8) and rearranging gives: 

4 1
m m[ ] :s

f f
−

Ω Ω= +ε T I ε        (3.9) 

Replacing the expression of the average matrix strain in Eq. (3.6):   

 4 1
mΩ m( ) ( ) :[ ] :s

f f
−

Ω Ω= +ε x T x T I ε       (3.10) 

The stress field in the matrix is subsequently obtained by introducing Eq. (3.10) 

into Eq. (3.2): 

 4 1
mΩ m m( ) : ( ) :[ ] :s

f f
−

Ω Ω= +σ x D T x T I ε      (3.11) 

The stress and strain tensors in the matrix on each local plane are then as follows.  

 )(:)( mΩmΩ xσNxs i=         (3.12)  

 )(:)( mΩLLmΩ xsCxε =         (3.13) 

 

3.2.2.Crack initiation criterion and evolution function 

In Fig. 3.2 the lateral stress distribution given by Eq. (3.11) for a spherical 

inclusion of radius a embedded in an infinite elastic matrix subjected to uniaxial 

compressive stresses is plotted against the distance from the centre of the inclusion 

along the lateral direction. One can notice very sharp gradients and a tensile stress 

concentration in the matrix in the proximity of the matrix-inclusion interface. When the 

distance from the inclusion is large enough, the stress equals the Mori-Tanaka estimate 

of the mean matrix stress. In Jefferson and Bennett (2010) the onset of microcracking 

was assumed to occur when this mean matrix stress reached the tensile strength of the 

matrix. Whilst this formulation was able to simulate the mechanism of lateral tensile 

splitting in uniaxial compression or cross-cracking, somewhat unrealistic values for the 

elastic properties needed to be adopted, that artificially increased the lateral tensile 

stress predictions in the matrix in order to obtain the correct cross-cracking response. It 

can be readily observed that by employing estimates given by the exterior point Eshelby 
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solution for a region in the proximity of the matrix-inclusion interface where properties 

of this interface apply the aforementioned drawbacks can be addressed. 

 

 

Microcracking is therefore assumed to initiate in a band of matrix material (Fig. 

3.3) in the ITZ (Interfacial transition zone) when the local principal stress (sI) within 

this band – evaluated by employing the exterior point Eshelby based local stresses – 

exceeds the initial tensile strength of the interface fti. This then defines the initial 

damage surface Fs as follows: 

ti ti( , f ) - f 0s IF s s= =         (3.14)  
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Figure 3.2.  Lateral stress distribution given by the exterior point Eshelby solution 

 

Figure 3.3.  Microcrack initiation concept 
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It is assumed that in this band of material the only non-zero components of the 

local elastic strain tensor are the rr, rs and rt components. The local elastic constitutive 

relationship in matrix form reads: 

1 1

1 1

1 1

2

2

2

1 0 0 0

01 0 0 0

01 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0
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where m
m

m m

1

(1 )(1 2 )

υ
β

υ υ
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+ −
, m

1
m1

υ
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υ
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−
 and m

2
m

1 2
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υ
α

υ

−
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−
. Eq. (3.15) gives the 

following: 

m m

1 m m 1
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rr L

ss tt L rr

s E

s s E s

β ε

α β ε α

=

= = =
             (3.16a,b)  

The principal stresses can be derived as the eigenvalues of the stress tensor. 

Making use of Eqs. (3.16) and noting that rs srτ τ=  and rt trτ τ= , the characteristic 

equation is: 

1

1

0 0

0

rr rs rt

rs rr

rt rr

s

s

s

λ τ τ

τ α λ

τ α λ

−

− =

−

      (3.17) 

Expanding the determinant Eq. (3.17) becomes: 

( )2 2
1 1( ) ( )( ) 0rr rr rr rs rts s sα λ λ α λ τ τ − − − − + =

 
     (3.18) 

The root obtained by equating the first factor to 0 is not the major principal stress 

and therefore Eq. (3.18) can be simplified to give: 

( )2 2 2 2
1 1(1 ) 0rr rr rs rts sλ λ α α τ τ− + + − + =                          (3.18a) 

The local major principal stress is obtained as: 
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2 21 11 1-

2 2
I rr rr Ls s s

α α
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+   
= + +   
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     (3.19) 

in which 
2 2

L rs rtτ τ τ= +  and m

m1-
L

υ
α

υ

 
=  
 

, noting that s= smΩΩΩΩ  

Before damage is initiated the material is elastic and the local microcrack function 

(or local damage function) may equivalently be expressed in terms of local strains and 

an effective local strain history parameter ζ as follows, 

2
2 2 21 1

( , ) ( )
2 2

L L
L Lrr Lrr d LF r fζ ς

α α
ζ ε ε γ ζ ζ

 
+ −    = + + − = −       
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ε ε  (3.20) 

in which 
m2 2

m

1
2   and   

1
Lrs Lrt rζ

υ
γ ε ε

υ

 −
 = + =

− 
 

.  

Eq. (3.20) is subject to the standard loading / unloading condition: 

0;    0;      0F Fζ ζζ ζ≤ ≥ =� �          (3.21 a,b,c) 

As mentioned earlier microcracking is initiated when the local principal stress in 

the thin band of material located in the ITZ exceeds the tensile strength of the ITZ. In 

strain terms this is equivalent to an initial value of the effective local strain history 

parameter ζinit = εtm = fti/Em. It is noted that at initiation of damage, and indeed in the 

elastic domain, the local stress and strain components in Eqs. (3.19) and (3.20) are 

given by expressions (3.12) and (3.13) respectively for positions determined in Section 

3.3.2. 

Once formed, microcracks are assumed to extend whenever the above loading 

condition is satisfied. Also, once damage is initiated, Eqs. (3.10) and (3.11) no longer 

apply strictly; the development of microcracks disturbs the local stress and strain fields 

which are no longer linearly related to one another. An exact quantification of this 

damage induced disturbance is intractable (if all micro-level material variations are 

taken into account) and hence a simplified approach is adopted. In each direction, as 

microcracking progresses within the fracture process zone the effect described by the 

(elastic) stress and strain field given by Eqs. (3.12) and (3.13) is reduced, however, on 
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average, intact material that can carry stresses remains. The onset of microcracking is 

therefore controlled by the elastic stress field (Eq. 3.12) and its evolution by a local 

strain which starts as the concentrated matrix strain but which gradually becomes the 

elastic portion of the total transformed local strain. Thus εεεεL in Eq (3.20) is taken as the 

sum of the peak elastic strain in the matrix phase ( Lmeε ), which is based on smΩ  and the 

local microcracking strain as follows: 

L Lme α= +ε ε ε                     (3.22) 

where Lmeε  and αε are given by: 

( )Lme L mΩ1- :ω=ε C s          (3.23) 

:α ω=ε N ε          (3.24) 

and in which smΩ is calculated from equation (3.11) and (3.12) and remembering that 

( , )ω ω θ ψ= . 

It is noted that debonding is not simulated explicitly in the present model which is 

in contrast to the models of Ju and Lee (2001), Sun et al. (2003) and Viola and Piva 

(1981); rather, microcracking is simulated by added strains (increased compliance) 

within the matrix. 

The final element of the microcracking theory is the evolution function which 

links the local damage parameter ω with the effective local strain parameter ζ. Here, an 

established experimentally derived exponential equation (Willam et al., 1985) is used. 

This implicitly represents the statistical variations within the heterogeneous material 

but, as discussed in Section 3.1, an alternative to this function would be one derived by 

considering the development of period arrays of cracks (Karihaloo et al, 1996). 

tm

0 tm

-
-5

-tm1- e

ζ ε

ε εε
ω

ζ
=         (3.25) 

Several observations can be noted: 

• The onset of microcracking in the inclusion-matrix interface could alternatively 

be modelled by introducing yet another phase around the coarse aggregate 
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particles to simulate the ITZ. This would however further increase the 

complexity of the model. The EPE based solution enables the model to set the 

location of microcrack initiation in a region (within the matrix phase) in the 

proximity of the matrix-inclusion boundary where ITZ properties are assumed 

to apply. Thus, in this case the incorporation of an extra phase is not necessary. 

• Initiation of damage is stress-controlled however the evolution is strain 

controlled 

• The damage function (Eq. 3.20), evolution conditions (Eqs. 3.21) and evolution 

function (Eq. 3.25) characterize the onset and propagation of microcracking in 

each direction. By describing the overall damage by a set of local damage 

parameters the model has intrinsic anisotropic characteristics.  

 

3.3.  Discussion of EPE based crack initiation criterion and rough 

microcrack characteristics 

3.3.1. The interfacial transition zone (ITZ) of a two-phase composite   

The motivation for the development of a new crack initiation criterion lies in 

experimental observations which indicate that damage in normal strength concrete is 

initiated in the aggregate – hardened cement paste interfacial transition zone (ITZ) and 

that the onset of cracking is governed by both normal and shear stresses (van Mier 

1997). The elasticity solution presented in Section 3.2.2 certifies the existence of a 

sharp gradient, adjacent to a material discontinuity, in the stress field that generates a 

peak in the vicinity of the inclusion.  

The ITZ is normally considered the weakest link in concrete (van Mier, 1997) and 

it is generally described as a region around fine and coarse aggregate particles in 

concrete which has a significantly higher porosity than the bulk cement paste due to the 

so called “wall” effect (Ollivier et al. 1995, Scrivener and Nemati 1996). Aggregate-

cement bond tests (Hsu and Slate, 1963) revealed that this porous transition zone is also 

characterized by reduced (tensile) strength in comparison with the strength of the 

cement paste.  Experimental observations show that damage is not initiated directly at 

the aggregate-matrix physical boundary but rather in the porous transition zone (van 

Mier, 1997). 
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Studies by Scrivener et al. (2004) and Ollivier et al. (1995) show that the 

thickness of the ITZ between aggregate particles and hardened cement paste (hcp) is 

comparable to the size of cement particles, which typically range between 20 and 100 

µm. However, the transition zone between mortar (comprising hcp and sand) and coarse 

aggregate particles is not very well defined in the literature. Caliskan et al. (2002) 

assumed the transition zone to be the region between the coarse aggregate particles and 

the part of the mortar matrix which is free of sand particles. According to Monteiro et 

al. (1985), the transition zones around sand particles interfere with those around coarse 

aggregate particles and the intensity of this interference determines the final thickness of 

the transition zone. Moreover, the thickness of the mortar – coarse aggregate interface 

depends upon the size and shape of the sand rather than cement particles (Caliskan et al. 

2002; Monteiro et al. 1985). These observations would suggest that the size of the 

mortar – coarse aggregate transition zone is considerably greater than the cement paste 

–aggregate ITZ thickness and has a size which is of the same order as the fine aggregate 

particle size rather than that of the cement grains.  

 

3.3.2 Location of microcrack initiation  

As explained in Section 3.2.2, microcracking is initiated when the local principal 

stress (sI), which depends upon the local stress field in the matrix, exceeds the tensile 

strength of the interface fti. In order to establish the existence and location of a peak in 

sI, an analysis was carried out to obtain the variation of the local matrix stress (Eq. 3.12) 

and local principal stress (Eq. 3.19) with direction and distance from the inclusion. Due 

to symmetry, and for the purpose of the study, the 29 sample directions of the 

integration rule were reduced to six representative directions contained in the cross-

section plane X1X2 and defined by angle ψ (Fig. 3.4), in which Xi denote Cartesian 

coordinates.  
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Uniaxial compression and tension cases, with respect to the composite material, 

were considered for which the loading direction was set to be direction D1 and for 

which the elastic properties in Table 3.2 (Section 3.6.1) were employed. The results 

from this analysis are presented in Figs. 3.5a,b. 

The value of the compressive stress used to generate these data was chosen to be 

that which would just initiate cracking in the ITZ in the lateral direction D6, although it 

is recognised that this would not be the first direction to crack. Fig. 3.5a shows the 

variation of sI and also of the normal and shear components of the local matrix stress 

smΩ with the normalized distance parameter ρ for all six representative directions. The 

same analysis is performed for uniaxial tension and the results are shown in Fig. 3.5b. A 

tension positive sign convention is adopted unless otherwise indicated. 

D1 D2 

D3 

D4

D5 

D6 

ψ 

X1 

X2 

0 

Representative 

direction 

ψ 

D1 90° 

D2 64.76° 

D3 45° 

D4 35.26° 

D5 17.55° 

D6 0° 

 

Figure 3.4.  Representative directions 
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Figure 3.5a.  Variation of local principal stress and local stress components in representative directions 

(uniaxial compression) 
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Figure 3.5b.  Variation of local principal stress and local stress components in representative directions 

(uniaxial tension) 
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No attempt has been made to allow for a variation of elastic properties in the ITZ 

but it has been shown experimentally, for example by Hsu and Slate (1963) and van 

Mier (1997, Chapter 2), that the strength of the ITZ is significantly below that of the 

bulk matrix material. Hsu and Slate suggest the ITZ/matrix tensile strength ratio (rim) 

varies from 0.33 to 0.67. Thus, when considering the data shown in Figs. 3.5a,b, it is the 

value of sI, relative to the material strength at the location under consideration, that is 

relevant and which governs the assumed cracking criterion.   

In uniaxial compression, the peak in sI occurs at the interface for directions D3 

to D5 whilst for direction D6 (with no shear) the peak occurs at approximately at ρ = 

0.75. It may be seen that sI is strongly influenced by the local shear stress and thus 

initial damage (in uniaxial compression) would occur in direction D4 at the location of 

the interface (ρ = 1). 

In uniaxial tension the location of crack initiation is also at the interface (ρ = 1) 

and the local principal stress function displays no other maxima.  

 

3.3.3 Parametric study  

A parametric study was carried out in order to assess the validity of the findings 

from EPE analyses for a range of realistic values of elastic properties. A typical mortar 

mix of normal strength can be characterized by a Young’s modulus of Em = 31 GPa and 

a Poisson’s ratio of υm = 0.17. According to van Mier (1997), for frequently used types 

of coarse aggregate, the values of Young’s modulus can vary between 35 and 120 GPa 

and Poisson’s ratio between 0.17 and 0.25. For Young’s modulus, the corresponding 

range of the relative aggregate-mortar ratio EΩ/Em is 1.1 - 3.9 and for Poisson’s ratio the 

relative proportion υΩ/υm ranges 1 – 1.5. The variation of the local principal stress for 

direction D6 is shown for the uniaxial compressive case, for the given range of Young’s 

modulus and of Poisson’s ratio.  It can be observed in Figs. 3.6a, b that the local 

principal stress peak is present for virtually every value in the realistic range of elastic 

properties. The peak value depends upon the ratio of the Young’s moduli whilst the 

variation of Poisson’s ratio produces but little change in the peak position. 



58 

 

 

Figure 3.6.  sI vs. ρ for various elastic parameters: a) Young’s modulus, b) Poisson’s ratio  

 

3.3.4 Summary of findings from EPE study 

The following conclusions are drawn from the above investigation of the EPE 

crack initiation criterion 

• Although the current model does not contain a distinctive component to simulate 

the ITZ, it is concluded that microcracking will always initiate in a region close 

to the matrix-inclusion boundary where coarse aggregate – mortar interface 

properties apply. 

• The EPE solution adopted is able to capture tensile stress concentrations in the 

proximity of inclusion – matrix interfaces and in directions lateral to a 
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lateral splitting in uniaxial compression which is considered to be one of the 

causes of microcrack initiation (van Mier, 1997).  

• The crack initiation criterion takes into account the influence of both tensile and 

shear stresses on interface microcracking. 

• The EPE solution enables the use of realistic material properties.  

It is noted that this last point is in contrast to the previous model (Jefferson and 

Bennett, 2010) for which it was necessary to employ somewhat unrealistic elastic 

properties in order to obtain the correct cross-cracking response. 

The EPE microcrack initiation criterion may be summarised as follows.  

Loop over sample directions ni, for i=1 to np 

 Is direction ni already cracked? 

  No 

   Find (sI/ft*)max and associated position ρ 

   If (sI/ft*)max>1, microcracking is initiated. Evaluate initial  

   damage parameter using local stress given by Eq. 3.12 

  Yes 

   Update damage parameter using local strain tensor (Eqs. 3.22–

3.24).  

Note:  ft* = fti   if ρ≥ 0.7  

             ft* =ftm if ρ < 0.7 

where ftm is the tensile strength of the matrix and ρ is defined on page 45. 

 

3.3.5 Roughness of microcrack surface 

In the development of the contact model (Jefferson 2002), the author derived a 

linear expression for the interlock surface: 

int gΦ (u,v) m u |v |= −         (3.26) 
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where u is the crack opening and v is the shear displacement at which contact is 

regained.  

This function can be measured directly by forming a crack in a specimen under 

normal loading, to a certain opening, and then loading the specimen in shear, whilst 

maintaining the same opening, until significant contact is detected, i.e. the shear and 

normal compressive stresses start to increase significantly. This can be repeated for 

different openings and the contact (i.e. ‘interlock’) surface plotted. For a macrocrack, 

this is essentially the procedure followed by Walraven and Reinhardt (1981). 

The linear function of Jefferson was found to match reasonably, in a particular 

relative-displacement range, the regression analysis-based relationship of Walraven and 

Reinhardt (1981): 

( )0.80 0.707cu
cu

f
τ 1.8u 0.234u 0.20 f v

30

− − = − + + − ⋅ ⋅
 

    (3.27) 

where τ is the shear stress, fcu the compressive strength and in which the dimensions are 

assumed to be N and mm. 

The single value of mg which gives the best fit to equation (3.27) in the range u = 

0 to u0 is mg = 0.25, as illustrated in Fig. 3.7.  However, as is clear from micrographs of 

real crack surfaces (e.g. van Mier, 1997), asperities do not have all the same height and 

slope. 

 

Figure 3.7.  Experimental and numerical rough contact surface 
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In order to explore the variable nature of these surfaces, a study was made of 

micrographs and images obtained using various non-destructive techniques (In 

particular, see Plates 4 - 6 in van Mier, 1997; Fig. 15 in Bache and Nepper-Christensen, 

1965; Fig. 6 in Elaqra et el., 2007; Fig. 1 in Mouret et al., 1999; Figs. 8 and 9 in Nichols 

and Lange, 2006). From this study, the following observations are made regarding the 

roughness characteristics of crack surfaces in normal strength concrete at micro, meso 

and macro levels. 

(i) Fine microcracks in the hardened cement paste phase (hcp) are approximately 

smooth relative to u0.  

(ii) Microcracks that develop around fine aggregate particles tend to form sinuous 

paths that bridge-over the fine aggregate particles consequently increasing the 

roughness of the crack surface (implying that mg should decrease).  

(iii) Excluding the smooth sections of crack surface, the microcrack surfaces may be 

broadly split into two components which may be alternatively expressed as a 

bimodal distribution of asperities heights (Table 3.3, Section 3.6.1.): 

a) the first component is characterized by asperity heights of the order of u0 

and contact angles ranging from the sharp mg value suggested by 

Walraven’s function (Eq. 3.27) to 0.8 

b) the second component is characterized by asperity heights of u0/10 and 

somewhat shallower contact angles (mg in the range 0.5 - 2). 

When a rough crack is reloaded, it is assumed that, due to misalignments and 

loose material becoming lodged between the surfaces, the smooth sections do not regain 

direct contact. 

It is noted that the model represents the roughness around coarse aggregate 

particles by the variation in the overall microcrack plane orientations (r(θ,ψ)) and 

openings, and it is the microcrack roughness (Fig. 2.1) that is being addressed here.  

The above observations have been used as a guide to selecting roughness 

parameters for the model but since the model does not perfectly represent all of the 

complexities of the contact behaviour between crack surfaces some tuning of the 

parameters was necessary after reasonable ranges for the parameters were established. 
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3.4.  Summary of micromechanical constitutive model 

The development of a constitutive model for concrete, based on micromechanical 

solutions and geometrical consideration of microcrack morphology, was presented in 

Chapters 2 and 3. While the theoretical components may appear somewhat complex – 

this is nevertheless due to the complexity of the material microstructure and damage 

phenomena which in turn produce a complex mechanical behaviour – the final set of 

equations, given in Table 3.1, that describe this altogether intricate material is relatively 

compact. 

Table 3.1.  Summary of micromechanical constitutive model 

mΩ a: ( )= −σ D ε ε                                                                                      (M1) Elastic constitutive equation 

2π π/2
1

a cα

0 0

1
: ( , ) : sin( ) :

2π
d dθ ψ ψ ψ θ−

 
=  
 
 

∫ ∫ε N C N σ                              (M2) 
Added strains due to 

microcracking in the matrix.  

1

2s 2s
cα L(1 ) k fk k

k

p Hω ω

−   
 = − + − ⋅  
     

∑C I Φ I C

                (M3) 

Local added compliance tensor 

( )Lam L mΩ p ε( , ) 1- ( , ) : : ( ) ( , ) :   θ ψ ω θ ψ ω θ ψ= +ε C N σ x N ε            (M4) 

Amplified local strain (used 

for computing damage 

variable) 

( )
1

4 4

mΩ m E Ω m a( ) ( ) f f :s s
−

Ω Ω
   = ⋅ + ⋅ ⋅ + −   σ x D I S x B T I ε ε            (M5) 

Mori-Tanaka estimate of the 

EPE based stress field 

rr rr

2

2 2 21 1
ζ Lam Lam Lam

1 1
F ( , ) ε ε

2 2
rς

α α
ζ γ ζ

 + −    = + + −       
 

ε

    

      (M6) 
Local principal stress based 

damage function  

tm

0 tm

( , )-ε
-5

ε -εtmε( , ) 1
( , )

e

ζ θ ψ

ω θ ψ
ζ θ ψ

= −                                                          (M7) 

Evolution of the damage 

parameter, [ ]ω 0,1∈  

1

4s 1mΩ
cα mΩ

π2π
2

: ( , ) : sin( ) :
2π

d dθ ψ ψ ψ θ

−

−

 
 

= + ⋅ 
 
 

∫ ∫
D

σ I N C N D ε

      (M8) 

Final average stress-strain 

relationship 

 

3.5.  Numerical implementation 

The constitutive model presented above has been implemented in a MATHCAD 

sheet using the algorithm in Fig. 3.8.  
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Enter with  ε , set of 
iprvζ  Input strain vector and the previous equivalent 

strain parameters for each integration 

direction 

for i=1 to ns  Loop over integration directions 

i i=x n  Set unit position vector to current direction 

vector 

Determine ρi Determine the position of  (sI/ft*)max 

4 1
m m( ) ( ) :[ ] :s

i i f f
−

Ω Ω Ω= +ε x T x T I ε  Compute  average matrix strain at peak 

position (Eq. 3.10) 

m m m( ) : : ( )i iiΩ Ω=s x N D ε x  Compute local cracking stress at peak position 

(Eq. 3.12) 

If ωi = 0 Direction ni previously uncracked 

         If sI(smΩ)max ≥ ft* Condition for microcrack initiation 

L L mΩ:i =ε C s  Evaluate initial local strain vector (Eq. 3.23) 

L( )i d ifζ = ε  Determine effective strain parameter (Eq.3.20) 

          Else 
ii prvζ ζ=   

Else  Damage evolution 

Iteration loop  

L L m(1 ) :   :i i i iεω ωΩ= − +ε C s N ε  Evaluate local strain vector (Eq.3.22-3.24) 

( )  ( )
i i ii d L d L prvf if fζ ε ε ζ= >  Update strain parameter, if exceeds previous 

max 

Update ωi Update damage parameter (Eq.3.25) 

Close loop  

Evaluate contact matrix k fk k

k

p H=∑Φ Φ  Determine contact matrix (Table 2.1) 

Evaluate 
icαC  Evaluate local added compliance matrix 

(Eq.2.46) 

Close loop  

i

1
add cα

1

: :
sn

i i i

i

w−

=

=∑C N C N  Evaluate the total added compliance 

1
4

sec m :
s

add m

−

Ω Ω
 = + ⋅ D I D C D  Form secant constitutive matrix (Eq.M8) 

sec :=σ D ε  Compute stresses 

Figure 3.8.  Algorithm for a specified strain path  
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3.6.  Model parameters and numerical simulations 

This section demonstrates that the proposed model is able to emulate many of the 

characteristic features of the mechanical behaviour of concrete, i.e. pre-peak and post-

peak non-linearity, dilatancy and ductility. To illustrate this, uniaxial, biaxial and 

triaxial simulations are presented and discussed.  

If the simulations are considered in terms of a triaxial test, the axial stress and 

strain are taken as σxx and εxx, respectively. The zero stress components are taken as σyy 

= σzz in the uniaxial simulations and σzz in the biaxial simulations respectively. 

 

3.6.1 Constitutive parameters 

The model has a relatively small number of constitutive parameters, all of which 

having a clear physical meaning. The material parameters (see Table 3.2) include the 

elastic properties of the two phases, tensile strength of the ITZ, crack opening at the end 

of softening curve and the maximum coarse aggregate size. In addition, the model 

employs geometric contact parameters (contact angles, asperity heights and proportions) 

as given in Table 3.3. The elastic properties are taken from van Mier (1997), Yang 

(1998) and Yurtdas et al. (2004) and the tensile strength of the ITZ is based on the 

experimental data of Hsu and Slate (1963).  

Table 3.2. Material properties 

Material property Physical meaning  Value 

Em (MPa) 

EΩ (MPa) 

υm 

υΩ 

fti (MPa) 

u0 (mm) 

dmax (mm) 

Young’s modulus of mortar 

Young’s modulus of aggregate particles 

Poisson’s ratio of mortar 

Poisson’s ratio of aggregate particles 

Tensile strength of ITZ 

Crack opening at the end of softening curve 

Maximum aggregate size 

31000 

55000 

0.19 

0.21 

1.0 

0.08 

10 
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Table 3.3. Contact parameters 

Contact parameter Physical meaning  Value 

mg 

λ 

p 

Tangent of contact angle 

Height of asperity/u0 

Proportion 

0.25 

1 

0.2 

0.4 

1 

0.01 

0.8 

1 

0.05 

0.5 

0.13 

0.01 

1 

0.13 

0.01 

2 

0.13 

0.01 

 

3.6.2 Example 1. Uniaxial cases 

In this example, numerical predictions for uniaxial response are compared with 

experimental results. The contact parameters in Table 3.3 are used for this simulation. 

For uniaxial tension, the experimental data of Reinhardt (1984) and Hordijk (1991) are 

used in comparisons (Fig. 3.9a,b) whereas the numerical predictions for uniaxial 

compression are compared with the experimental results of Kupfer et al (1969) and van 

Mier (1986, 1997) (Fig. 3.10). 

In the figures, ft denotes the tensile strength and fc the uniaxial compressive 

strength.  
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Figure 3.9a.  Example 1. Uniaxial tension response  
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        Figure 3.10.  Example 1. Uniaxial compression response (compression +ve) 
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Figure 3.9b.  Example 1. Uniaxial tension response. Inelastic response only 
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Figure 3.11.  Example 1. Normalised stress – volumetric strain curves in uniaxial compression 

(compression +ve) 

 

These results show that the micromechanical proposed model is able to 

realistically capture the characteristic features of uniaxial tension and compression 

behaviour. It is noted in particular that the model predicts the dilatant behaviour 

observed in uniaxial compression tests (Fig. 3.11). 
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The model does not include friction on the surfaces or plastic embedment of one 

microcrack surface into another. This is believed to become increasingly important as a 

specimen is more constrained which implies that the model will become increasingly 

inaccurate as the confining stress (mean compressive stress) increases. Whilst 

acknowledging the aforementioned shortcoming, an attempt has nonetheless been made 

to arrive at a set of parameters (Tables 3.4 and 3.5) which give the best overall response 
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to result in a little too much ductility in uniaxial tension in particular. 
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Table 3.4. Material parameters. Example 2 

Material property Physical meaning  Value 

Em (MPa) 

EΩ (MPa) 

υm 

υΩ 

fti (MPa) 

u0 (mm) 

dmax (mm) 

Young’s modulus of mortar 

Young’s modulus of aggregate particles 

Poisson’s ratio of mortar 

Poisson’s ratio of aggregate particles 

Tensile strength of ITZ 

Crack opening at the end of softening curve 

Maximum aggregate size 

31000 

55000 

0.19 

0.21 

1.0 

0.11 

10 

 

Table 3.5. Contact parameters. Example 2 

Contact parameter Physical meaning  Value 

mg 

λ 

p 

Tangent of contact angle 

Height of asperity/u0 

Proportion 

0.25 

1 

0.15 

0.4 

1 

0.02 

0.8 

1 

0.1 

0.5 

0.2 

0.02 

1 

0.2 

0.02 

2 

0.2 

0.25 

 

Fig. 3.12 presents a comparison between the numerical softening curve in 

uniaxial tension and experimental curves of Hordijk (1991). The numerical response in 

this example is slightly more ductile than in the previous example and the tensile 

strength is overestimated a little (ft/fc=0.11). 

In Fig. 3.13 the numerical predictions for uniaxial and biaxial compression are 

compared with experimental data of Kupfer et al. (1969) and van Mier (1984, 1997) and 

Fig. 3.14 presents the numerical biaxial envelope. The numerical curves show good 

general agreement with the experimental curves.  

In Fig. 3.14 the predicted biaxial failure envelope is shown in comparison with 

the experimental envelopes of Kupfer et al. (1969) and Gerstle et al. (1978). When 

comparing the numerical predictions with the widely quoted findings of Kupfer et al. 

(1969) it would appear that the biaxial compressive strengths are generally 

overestimated. However, in an international comparative research programme (Gerstle 

et al., 1978) it was shown that the biaxial strength, as well as the shape of the strength 
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envelope, can vary considerably depending on the method of testing and size of the 

specimen. Fig 3.14 includes the inner and outer envelopes from the aforementioned 

study for tests with low friction loading platens. It is apparent that the predicted biaxial 

stress ratios lie within the experimental range.  It can also be noted that, in agreement 

with experimental results, the proposed model realistically simulates the envelope in the 

tension – compression regime.  

In Figs. 3.15 and 3.16 the predicted strengths under triaxial confinement are 

compared with a function empirically derived by Newman (1979) based on a set of 

triaxial experimental tests on four different concrete and mortar mixes. It can be 

observed that the increase of strength is a little overestimated, however, the predictions 

are considerably more realistic than those obtained with the previous model.  

 

   Figure 3.12.  Example 2. Inelastic deformations in uniaxial tension  
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        Figure 3.14.  Example 2. Biaxial failure envelope 
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3.6.4 Parametric study on roughness parameters 

An initial set of roughness parameters were determined using the observations 

given in Section 3.3.5 and these were then tuned by undertaking a numerical calibration 

exercise. In this section, the effect of varying the roughness parameters, within a limited 

range, is illustrated by considering the effects of changing the parameters on the 

following values; σc , σt/ σc , σb/ σc and  εc; where σc = the peak uniaxial compressive 
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Figure 3.16.  Example 2. Triaxial confinement strengths (compressive +ve) 
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stress, σt = peak tensile strength, σb = peak biaxial stress at a principal compressive 

stress ratio of 1:1 and εc = the strain at peak uniaxial compression. 

In the study, all parameters not given in Table 3.6 are as per Table 3.4. It may be 

seen that the same mg values have been used throughout and the dominant proportions 

of the regions with large and small asperities have been kept constant.     

From Table 3.6 the following observation can be made: 

(i) increasing the proportions for the shallower asperities (i.e. increasing p’s for 

the larger mg values) increases σc, decreases  σb/ σc ratio and increases the 

ductility. 

(ii) Increasing the asperity heights for the shallower asperities (i.e. increasing the 

last 3 λ values in Table 3.6) decreases  σb/ σc 

(iii) Increasing u0 increases both strength and ductility 

 

Table 3.6. Contact parameters used in parametric study  

u0  Roughness parameters σc σt/ σc σσσσb/ σc εεεε c 

 mg 0.25 0.4 0.8 0.5 1 2 MPa - - - 

0.11 λ 

p 

1 

0.15 

1 

0.02 

1 

0.1 

0.1 

0.02 

0.1 

0.02 

0.1 

0.25 

33 0.11 1.33 0.0022 

0.11 λ 

p 

1 

0.15 

1 

0.02 

1 

0.1 

0.1 

0.06 

0.1 

0.02 

0.1 

0.25 

33 0.11 1.34 0.0021 

0.11 λ 

p 

1 

0.15 

1 

0.02 

1 

0.02 

0.1 

0.02 

0.1 

0.02 

0.1 

0.25 

29 0.12 1.58 0.0016 

0.11 λ 

p 

1 

0.15 

1 

0.1 

1 

0.1 

0.1 

0.02 

0.1 

0.02 

0.1 

0.25 

35 0.11 1.4 0.0022 

0.11 λ 

p 

1 

0.15 

1 

0.02 

1 

0.1 

0.1 

0.1 

0.1 

0.02 

0.1 

0.25 

33 0.11 1.34 0.00215 

0.13 λ 1 1 1 0.1 0.1 0.1 38 0.10 1.37 0.0025 
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p 0.15 0.02 0.1 0.02 0.02 0.25 

0.12 λ 

p 

1 

0.15 

1 

0.02 

1 

0.1 

0.1 

0.02 

0.1 

0.02 

0.1 

0.25 

36 0.11 1.3 0.0023 

0.11 λ 

p 

1 

0.15 

1 

0.02 

1 

0.1 

0.2 

0.02 

0.2 

0.02 

0.2 

0.25 

33 0.11 1.17 0.0021 

 

3.7. Concluding remarks 

A micromechanical model for cementitious composites was presented which 

incorporates a new crack initiation criterion based on an exterior point Eshelby solution. 

It was shown that the presented approach successfully simulates the micromechanisms 

that lead to failure in the ITZ. The proposed model uses measured micromechanical 

material properties, i.e. elastic moduli of the individual phases and measured aggregate-

mortar interface strength parameters.  

By simulating specific physical mechanisms at micro and meso scale; e.g. matrix 

– spherical inclusion composite, microcrack initiation and propagation, and stress 

recovery through rough crack closure; the proposed model captures fundamental 

characteristics of the overall macroscopic behaviour: damage induced anisotropy, 

volumetric dilatancy under compressive stress states, realistic correlation between 

tensile and compressive strengths, predictions of ductility consistent with experimental 

observations, realistic biaxial failure envelope and a more favourable prediction of 

triaxial behaviour than the previous model. 

The final remarks in this chapter make, yet again, reference to the contrast 

between phenomenological macroscopic models -which generally employ uniaxial 

compression, uniaxial tension functions and strength envelope equations as direct input- 

and mechanistic micromechanical models, which combine individual mechanistic 

components in order to predict a response which is not pre-prescribed. In this context, 

the model presented here does show considerable promise and, in the author’s opinion, 

provides a significant step towards a comprehensive and accurate mechanistic 

micromechanical model for the mechanical behaviour of concrete.   
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Chapter 4 

Multi-asperity plastic-contact crack plane model 
 

4.1. Introduction 

Cracks in particulate materials exhibit dilatant frictional behaviour when subject to 

shear relative displacements, or slip, between the crack faces. Due to the geometric 

irregularities present on the crack surface, i.e. rough asperities, the shear slip is 

accompanied by a relative displacement in a direction normal to the crack plane termed 

normal separation or dilation. When such cracks are in compression, this slip is 

associated with the development of significant shear and normal stresses across the 

crack plane. ‘Aggregate interlock’, a term generally used to describe such behaviour in 

concrete (Paulay and Loeber, 1974), is a fundamental mechanism for the transfer of 

shear stress across crack faces. 

Several models have been proposed to simulate the transfer of stresses across 

rough cracks. These models use, to varying degrees, combinations of empirically based 

relationships and mechanistic models to describe the morphology of the crack surfaces 

and the contact expressions which govern the stress-displacement relationships. (Patton, 

1966; Bažant and Gambarova, 1980; Walraven and Reinhardt, 1981; Divakar et al., 

1987; Plesha, 1987; Li et al., 1989; Haberfield and Johnston, 1994; Bujadham and 

Maekawa, 1992; Ali and White, 1999; Jefferson, 2002; Wang et al., 2003). Related 

models which simulate concrete-rebar interfaces have also been developed (Serpieri and 

Alfano, 2011). 
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Following the generally phenomenological approach, Bažant and Gambarova 

(1980) developed an empirical stress-displacement relationship for cracks in concrete 

based on the experimental data of Paulay and Loeber (1974). Divakar et al. (1987) 

proposed a similar model based on data from experimental tests in which pre-cracked 

concrete specimens were sheared under constant normal stress.  

Walraven and Reinhardt (1981) conducted a series of experimental shear tests in 

which cracked concrete specimens, with both internal and external reinforcement, were 

subjected to shear loading for different initial crack openings. Based on these data, they 

developed a rather detailed model in which concrete was represented as a two-phase 

system of hard spherical inclusions (aggregate particles) embedded in a soft matrix 

(hardened cement paste). Assuming a probabilistic distribution of aggregate particle 

sizes, relationships for normal and shear stresses across cracks were derived in terms of 

crack opening and shear displacement. The model employed two fundamental 

assumptions: (i) that crack surfaces develop through the matrix and around the 

circumference of the inclusions and (ii) that the matrix material is characterised by a 

rigid-plastic stress-strain relationship.  

Li et al. (1989) proposed a contact density model for stress transfer in which the 

crack surface was idealized as a series of infinitely small areas (contact units) with 

different inclination angles that were described by a trigonometric contact density 

function. An elastic perfectly-plastic formulation was used to predict the contact stresses 

that develop on the constituent contact units –the directions of which were assumed to 

be fixed and normal to the initial contact direction, thus the effect of friction was 

ignored. The model also employed an effective contact ratio that accounts for the 

reduction in the contact area due to crack opening and shear. Following the same 

approach, Ali and White (1999) proposed a model that introduced friction in the contact 

density function. Additionally, the roughness of the interface was correlated with the 

fracture energy of concrete in order to enable the prediction of shear friction capacity of 

normal as well as high strength concrete. 

More recently Jefferson (2002) developed a two-dimensional model, based on a 

type of smooth contact theory, in which the crack surface was modelled as a series of 

triangular asperities. The model employed a contact function based on the data of 

Walraven and Reinhardt (1981) which was used to describe three contact states. Much 
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like in the contact density model of Li et al. (1989) an effective contact proportion 

function was used to relate the total ‘apparent’ stresses to the contact stresses, the latter 

being predicted using an elasto-plastic formulation.   

Computational aspects of several crack plane models, used with interface elements 

in a finite element code, were investigated by Feenstra el al. (1991 a, b). The main focus 

of their investigation was on numerical performance of the models although a number of 

simulations of experimental specimens were also presented.  

Several models that follow a mechanistic approach have been proposed for rock 

joints, one of the first of which was due to Patton (1966) in which the asperities of the 

interface surface were modelled as “saw-teeth”. For low compressive normal stresses, 

the shear response was related to dilation and asperity overriding whereas for high 

compressive normal stresses asperity shearing behaviour was assumed to be dominant. 

Employing Patton’s saw-tooth asperity surface, as well as a sine-tooth surface, Plesha 

(1987) developed a two-dimensional dilatant contact model which included a frictional 

sliding component and a tribological relation for surface degradation due to wear.  

In this chapter a new mechanistic model for fully formed cracks that includes 

contact, friction, crushing -or plastic embedment- along with a three-dimensional 

geometrical characterization of the crack surface is presented.  Whilst elements of this 

complex mechanism may be found in other models (the mechanistic models developed 

for concrete tend to make use of complex functions to characterize the crack surface and 

apply rigid-plastic or elasto-plastic formulations for stress predictions, whereas the 

models developed for rock joints generally employ a simple two-dimensional geometry 

-i.e. triangular asperities- and employ a frictional sliding formulation) the present model 

combines all these aspects in one constitutive law. The model includes multi asperities 

by simulating the crack surface with a series of conical teeth and corresponding 

recesses. Plastic embedment of a tooth into the recess wall, as well as frictional sliding 

on the teeth surfaces, is incorporated into a relative-displacement based plasticity 

formulation to predict the stresses that develop on the area in contact. Additionally, a 

geometrically based effective contact function is derived that accounts for the reduction 

of the contact area with crack opening. 

Although the physical mechanisms result in relatively complex behaviour, the 

proposed model predicts this behaviour simply by considering the contact and plasticity 
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which occurs between multiple conical asperities on opposing crack surfaces. For this, 

the plastic surfaces are written in terms of relative displacements. This has the 

advantage that the form of the function used for the contact surfaces can be used directly 

to describe the yield and plastic potential functions. 

The original motivation for developing the model was to simulate the behaviour of 

microcracks in a three-dimensional constitutive model for cementitious materials, but, in 

doing this it was recognized that the behaviour simulated is characteristic of a variety of 

situations which includes the behaviour of micro, meso and macrocracks in a range of 

quasi-brittle geomaterials. 

 

4.2. Constitutive model 

4.2.1. Concepts and assumptions 

The model describes the behaviour of a band of quasi-brittle material which 

contains a rough crack. The crack plane is defined as the mid surface of this band of 

material and the orientation of this plane is defined by the local Cartesian coordinates 

r,s,t, with unit vector r being the normal to the crack plane and s and t being orthogonal 

in-plane unit vectors (able to be represented by a zero thickness element such that the 

model could be used to govern the behaviour of a zero thickness interface element in a 

finite element code.  

Conceptually, the crack model comprises a series of conical teeth which form one 

of the crack faces and conforming conical recesses that form the opposing face. The 

teeth are characterised by slope mg and tooth height ht (Fig. 4.1). The interactions 

between a tooth and a corresponding recess simulate crushing (or embedment) of a tooth 

into a recess and friction along the slope of a tooth. Contacts are monitored via the 

relative movement between the crack faces. A limit is placed on the cone slope mg_lim, 

and when mg exceeds this limit the crack surface is assumed to be flat. This part of the 

crack plane is represented by a frictional contact surface in the s-t plane.  
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The stress tensor which pertains to the crack plane (σσσσ) can be written in reduced 

vector form as follows [ ]
T

rr rs rtσ σ σ=σ . These stresses are computed from the sum 

of the forces on individual cones, plus the forces acting on the flat parts of the surface, 

per unit area of crack plane. The associated relative displacement vector is given by U = 

[Ur Us Ut]
T
, which is defined as the displacement of the apex of a tooth M relative to the 

apex of the recess (Fig. 4.1). 

 The contact stresses are defined relative to the recess wall surface, the orientation 

of which is defined by the unit normal and tangent direction vectors ˆ (α )n  and ˆ (α)m  

respectively, as illustrated in Fig. 4.2b; α being the angular coordinate as defined in Fig. 

4.2a. Using the simplifying assumption that the contact stresses are constant over the 

height of the contact zone, these stresses -for a given cone of slope mg and crack 

opening Ur - depend upon the angle α and therefore may be denoted

nn nm

T

c c c(α) σ (α) σ (α) =  σ , with α ∈ (0, 2π) 

r 

s 
0 

ht mg 

1 

M 

U 

Tooth 

Recess 

t 

 

 

Crack plane 

Us 

Ur 

Figure 4.1. Model concepts 



79 

 

 

 

The contact surface, which defines when a tooth just touches a recess wall, is 

conveniently described in the cylindrical coordinate system ζ, ρ and α (Fig. 4.2) and the 

normal and tangential  elastic gap displacements (gne and gme respectively), upon which 

contact stresses depend, are also expressed in these coordinates (Fig. 4.2c). If the elastic 

normal and shear stiffnesses per unit area of cone wall are denoted kn and km 

respectively, then the traction vectors associated with the normal and tangential stress 

components σc nn and σc nm may be denoted tcn and tcm respectively, with the total wall 

traction vector (tc) being given by  

c cn cm n ne m mek k= + = +t t t g g           (4.1) 
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Figure 4.2. Schematic representation a) area of contact; b) contact stresses; c) gap displacements
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The stresses at the base of each conical tooth, 
 T

cn cn cn cn
rr rs rt σ σ σ   =  σ   are then 

obtained by integrating the tractions over the contact surface, transforming these forces 

to crack plane coordinates and dividing by the cone base area as follows (See Fig. 4.2a) 

cn T c
c

2πb

A1
(α) (α) dα

A α

∂
= ∫

∂
σ N t          (4.2) 

in which 
1 0 0

(α)
0 cos(α) sin(α)

 
=  
 

N , Ac(α) is the contact surface area  and Ab is the 

base area of a cone. It is also noted that tc = 0 for angles where there is no contact.  

The model accounts for the variability of the crack surface roughness by using a 

range of asperity slopes (mg) and tooth heights (ht), which is accomplished using a 

probability density function p(mg, ht) that describes the relative likelihood of an asperity 

of given slope and height occurring. Considering firstly the expression for crack plane 

stress for a discrete distribution of ht and mg values: 

c c
cnn n

c gi ti rTbi i
gi ti c gi

i 1 i 1 2πbi

A (α, m , h , U )A 1
P(m ,h ) (α) (α,m ) dα

A A α= =

∂ 
= =∑ ∑ ∫ 

∂ 

σ
σ N t

  

(4.3) 

in which  
b gi ti

gi ti

A (m ,h )
P(m ,h ) = 

A
, A is the area of the crack plane and nc = number of 

discrete pairs (mg, ht) considered. 

In continuous form, Eq. (4.3) becomes 

t maxh
c g t rT

g t c g t g
0 0 2πb g t

A (α,m ,h ,U )1
p(m ,h ) (α) (α,m ) dα dh dm

A (m ,h ) α

∞  ∂
=  ∫ ∫ ∫ ∂ 

σ N t    (4.4) 

A further assumption is that the wall of a tooth conforms to the shape of the recess 

wall during embedment i.e. the tooth deforms such that its shape conforms to the shape 

of the recess wall. Using the above assumption, the product of the terms relating to the 

side contact and base areas of the cone in Eq. (4.4) may be written as follows.  

2 2 2
g gc r

f r

b t g g

1+m 1+mA U1 1 1
1- c (U )

A α 2π h m 2π m

 ∂
= = 

∂  
     (4.5) 
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where 

2

r
f r

t

U
c (U ) 1

h

 
= − 
 

 denotes an effective contact function that accounts for the 

fact that the contact area reduces as the crack opening increases and which is equivalent 

to the effective contact ratio K of Li et al. (1989). 

Using Eq. (4.5) in (4.4) gives the following expression for the crack plane stress  

t max
2

h
g

g t f r c g t g
0 0 2πg

1+m 1
p(m ,h )c (U ) (α) (α,m )dα dh dm

m 2π

∞  
= ⋅∫ ∫ ∫ 

 
σ N t    (4.6) 

 

4.2.2. Constitutive relationships 

The tooth displacements in cylindrical coordinates are defined as follows  

ζ

ρ

u
(α) (α)

u (α)

 
= = 
  

u N U          (4.7) 

noting that uζ=ur. 

The model considers two types of inelastic behaviour, those due to (i) plastic 

embedment, which is governed by the plastic displacement vector up and (ii) frictional 

sliding which requires the stress free displacement uc.  

For a given α, ug is defined as follows  

g p= −u u u             (4.8) 

In terms of ug, the contact surface function (or interlock function) may be defined 

as follows;  

int g g g gζ gρ( , m ) m u -uΦ = ⋅u          (4.9) 

the actual surface being defined by gint gΦ ( , m ) 0=u . For a given direction α, the 

contact state is illustrated in Fig. 4.2.b,c and defined by the following condition: 

If int g g( ,m ) 0Φ ≤u  and ugζ ≤ ht   contact 
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If int g g( ,m ) 0Φ >u or ugζ > ht   open (no contact) 

By establishing the contact state for each direction, the contact area Ac of a cone is 

also determined. This comprises the integral of infinitesimal areas dAc that lie between 

the contact limits α1 and α2 (
2

1

α
c

c c
α

A
A dA dα

α

∂
= =∫ ∫

∂
) with αi being defined as the roots 

of the equation int g g( (α),m ) 0Φ =u , which are only evaluated when real roots exist i.e. 

when contact is detected (Fig. 4.2a).  

The total, normal and tangential elastic gap vectors are defined by  

e g c= −g u u                   (4.10a) 

ne d g=g Φ u                   (4.10b) 

me g c ne( )= − −g u u g                  (4.10c) 

in which 

2
g g

d 2
g g

m -m1

1+m -m 1

 
 =
 
 

Φ  noting that (4.10a) and (4.10c) may be deduced 

from vector summations illustrated in Fig. 4.2c and derivation of (4.10b) is given in 

Jefferson (2002) 

Using Eqs. (4.10b,c) in Eq. (4.1) gives the contact traction vector as follows  

( )c n d g m d g ck k ( )= + − −t Φ u I Φ u u       (4.11) 

The contact traction vector obtained in Eq. (4.11) is then introduced in Eq. (4.6) to 

give the effective stress on the crack plane σ.  

 

4.2.2.1. Crushing 

As a tooth embeds into a recess there is assumed to be some crushing of the 

material in the vicinity of the interface. The yield function, which encloses the elastic 

domain, is written in terms of the interlock function as follows: 

n g y int g m yF ( ,γ ) Φ ( ) γ= − − χ ⋅u u                   (4.12) 
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in which γy is a plastic embedment parameter given by 
y

n

σ
γ  = 

k
y  (Fig. 4.3), 

2
m g1 mχ = + and noting that Φint is negative in the contact region. The yield stress is 

taken as y cσ 0.95f=  where fc is the uniaxial compressive strength. 

It is also noted that all yield and plastic potential functions are developed in terms 

of relative displacement variables, rather than the contact stresses, since this leads to a 

more compact final algorithm. This is possible because the contact stresses are linearly 

related to the embedment displacements gne , gme, which in turn are linearly related to 

the relative displacement variables (for a given slope mg). 

It is assumed that the plastic flow is proportional to the elastic embedment ug-uc , 

which leads to the following flow rule;   

p λ= ⋅u q��          (4.13) 

where g c= −q u u           
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Figure 4.3. Plastic surfaces 
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4.2.2.2. Frictional sliding  

Similarly to the crushing yield surface, the frictional sliding yield surface is 

developed in terms of ug. However, permanent sliding is not introduced in the plastic 

embedment up but rather is controlled by the evolution of the stress free displacement 

uc. Sliding is assumed to be governed by Coulomb friction which controls the form of 

the yield surface and flow rule employed, as illustrated in Fig. 4.3. The frictional yield 

surface Fs has two parts Fs
(1)

 and Fs
(2)

 which lie either side of the wall normal function 

n g c( , ) 0Φ =u u  (see Fig. 4.3), with the active surface being governed by the value of the 

Heaviside function H(ug, uc).   

( )(1) (2)

s g c g c s g c g c s g cF ( , ) H( , ) F ( , ) 1 H( , ) F ( , )= ⋅ + − ⋅u u u u u u u u u u   (4.14) 

where 

(*) (*) (*)
s g c s g c s eF ( , ) Φ ( ) Φ ( )= − =u u u u g       (4.15) 

and 

 (*) (*)

s ζ ρΦ ( ) u + m u= ⋅u         (4.16) 

m
(*)

 denotes the slopes of the upper (1) and lower (2) sliding yield surfaces and are 

functions of the friction coefficient µ tan(φ)= , where φ is the local friction angle 

g(1)

g

g(2)

g

m -µ
m =

1+m µ

m +µ
m =

1-m µ

               (4.17a,b) 

H is the Heaviside function defined as: 

n g c

n g c

1 if Φ ( , ) 0
H

0 if Φ ( , ) 0

≥
= 

<

u u

u u
        (4.18) 

where (0)

n g c s g cΦ ( , ) Φ ( )= −u u u u  and (0)

s ζ g ρΦ ( ) u +m u= ⋅u  

Sliding is assumed to occur along the face of the wall, which leads to the 

following flow rule. 
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c s sλ= ⋅u q��          (4.19) 

where:  

(0)
n g c s g c

s

gn g c

Φ ( , ) Φ ( , )

Φ ( , )

∂
= ⋅

∂

u u u u
q

uu u
,      (4.20) 

noting that when ζu 0≤  (i.e. the crack is fully closed), further sliding in the sense of 

crack closure is prevented due to geometric constraints. 

 

4.2.2.3. Flat component 

As mentioned in section 2.1, in the region where the slope of asperities mg is 

above mg_lim, taken as 5, the surface is assumed to be (locally) flat. The contact criterion 

for this flat component is given directly by  

r

r

U 0contact if

U 0nocontact if

≤

>
  

It is furthermore assumed that when in contact (i.e. a crack is fully closed) the 

compressive deformations in a direction normal to the crack plane are elastic, i.e. 

crushing does not occur. Coulomb based frictional sliding is assumed on this surface. 

The expression of the yield function is given in Eq. (4.21): 

2 2
sf cf s cfs t cft r cfrF ( , ) (U U ) (U U ) µ(U U )= − + − − −U U      (4.21) 

An in-plane radial flow rule is assumed for the flat contact plane as follows 

sf
sf

s

sf

t

0

F
U

F
U

 
 
 
∂ =

∂ 
 ∂
 ∂ 

q          (4.22) 

The contact stresses associated with the flat component are: 

ff f cP ( )= −σ K U U         (4.23) 
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where Pf is the relative proportion of the flat component, 

nf

f m

m

k 0 0

0 k 0

0 0 k

 
 =  
  

K  and Uc 

denotes the flat surface stress free displacement.  

The normal stiffness knf is taken as 10 times the kn value used for the teeth. The 

final constitutive relationship then becomes: 

f

gmax t max

f cf

2m h
g T

g t f r c t g
0 0 2πg

P ( )

1+m 1
p(m ,h )c (U ) (α) (α)dα dh dm

m 2π

= − +

 
+ ∫ ∫ ∫ 

 

σ K U U

N t

  (4.24) 

If the angular integral in Eq. (4.24) is evaluated numerically as a weighted 

summation and a discrete distribution is used for p(mg, ht) with ng discrete probabilities 

P(mgi, hti), then σσσσ is given by: 

 
g p

i

f i

i

2
n n

g T
f cf g ti fi j c j j

i 1 j 1g

1+m
P ( ) P(m ,h )c  (α ) (α )

m
ϖ

= =

 
 = − + ⋅∑ ∑
 
 

σ K U U N t  (4.25) 

where 
gn

f gi ti
i 1

P P(m ,h ) 1
=

+ =∑ . tc(α)=is obtained from Eq. (4.11) and iϖ  is the weight for 

sample direction i, noting that here all weights are 1/np, where np is number of evenly 

spaced sample positions around a circle.  

 

4.3. Stress computation algorithm 

The model has been implemented in a constitutive driver program which uses a 

Newton-Raphson solution to calculate the unknown stress and/or relative displacement 

components for a prescribed stress and/or relative displacement path.  

A Cutting Plane plastic return algorithm (Simo and Hughes, 1998) has been 

adopted in the present work, which leads to a set of coupled equations for plastic 

multipliers of the crushing and sliding yield functions. 
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A trial value of ug for iteration r is given by 1 1tr r r

g g p

− −= + ∆ −u u u u , where ∆u is the 

change in total relative displacement from the last converged step. Defining a trial value 

of the yield function as F
tr
 =F(ug

tr
) and  assuming both surfaces are active, the plastic 

multipliers may be obtained:  

tr tr

p

g g

tr trs s s s
s p c s s

e e e e

F F
F F δλ 0

F F F F
F δ F δλ δλ 0

g
s

δ

δ

∂ ∂
− = − =

∂ ∂

∂ ∂ ∂ ∂
− − = − − =

∂ ∂ ∂ ∂

u q
u u

u u q q
g g g

         (4.26a,b) 

which may be written in matrix form, as follows: 

T

g

T T
ss s s s e

δλ0 F( )

δλ F ( )

tr

tr

   ⋅  
⋅ =    

⋅ ⋅     

p q u

p q p q g
      (4.27) 

where s
s

g e

FF
  and  

∂∂
= =

∂ ∂
p p

u g
, or  more compactly as:     

tr δ =Ξ λ F          (4.28) 

If one of the surfaces is inactive (i.e. F<0), the system in Eq. (4.27) reduces to one 

equation for the active yield surface.  The algorithm for the stress recovery calculations 

is given in Table 4.1.  
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Table 4.1. Stress recovery algorithm  

(k) (k-1)= + ∆U U U  
Update relative-displacement from previous time 

step k-1 

for i=1 to ng Loop over asperity geometric components (mgi,hti) 

for j = 1 to np Loop over sample directions (αj) 

(k) (k)

g j p(α )= ⋅ −u N U u  

j(α )d = ⋅ ∆u N U  

Evaluate ug and du for current step, component 

and direction 

If (k)

int g giΦ ( , m ) 0≤u & (k-1)

int g giΦ ( ,m ) 0>u  First contact 

(k) (k)

ρ gξ ξ gρ

ρ gi ξ(k)

c (k) (k)

ρ gξ ξ gρ

gi

ρ gi ξ

u u - u u

u -m u

u u - u u
m

u -m u

d d

d d

d d

d d

 
 
 

=  
 
  

u  Evaluate stress-free displacement at first contact 

If (k)

int g giΦ ( , m ) 0≤u and Ur
(k)

 < hti Current direction in contact 

tc ���� Table 4.2. Evaluate contact traction tc 

If (k)

int g giΦ ( , m ) 0>u or Ur
(k)

 > hti ; tc = 0 If no contact, traction is 0 for current direction 

End direction and geometric loops  

Evaluate Ucf at first contact if applicable  

If  Ur < 0 
Flat component 

σf  � Table 4.3. Evaluate stress for flat component 

Else;  σf = 0 If no contact, stress for flat component is 0 

pc
nn

T

f i fi j cj
1 j=1

P c (α )
i=

 
= + ⋅ ⋅ ⋅∑ ∑ 

 
σ σ N t  Compute stress on crack plane(Eq. 4.25) 

 (k) denotes current time step and (k-1) previous time step 
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Table 4.2. Algorithm to evaluate contact traction 

If (k)

int g giΦ ( , m ) 0≤u and Ur
(k)

 < hti 
If current direction in contact, evaluate contact 

traction 

If F(ug
(k)

, γy) > 0 or Fs(ug
(k)

, uc) > 0         Check yield condition 

Repeat until |F| <tol   Cutting plane loop   

1δ −= ⋅λ Ξ F  Evaluate plastic multiplier vector  

p p δλ= + ⋅u u q , 

(k) (k)

g g -δλ= ⋅u u q , 

c c s
+δλ

s
= ⋅u u q  

Update ug up uc 

( )(k) (k)

c n d g m d g ck k ( )= + − −t Φ u I Φ u u  
Evaluate contact traction for current direction 

(Eq. 4.11) 

 

Table 4.3. Algorithm to evaluate stresses for flat component 

If  Ur < 0 
If flat component in contact, evaluate stress 

If  Fsf(U, Ucf) > 0   Cutting plane algorithm for flat component 

Repeat until |Fsf| < tol    

sf
sf T

sf sf

F
δλ =

⋅p q
 Evaluate plastic multiplier, sf

sf

F∂
=

∂
p

U
 

cf cf sf sf
+δλ= ⋅U U q  

Update stress-free displacement for flat 

component 

( )f f f cfP= −σ K U U  Evaluate stress for flat component 

 

4.4. Model parameters 

The constitutive model proposed in this chapter requires the specification of two 

types of parameters: material properties (i.e. normal and shear interface stiffness kn, km, 

friction angle φ and uniaxial compressive strength fc) and geometrical contact 

parameters (asperity slopes mg, asperity heights ht and their relative proportions P). 

The normal interface stiffness values can be obtained from the initial response 

slope of uniaxial compressive tests. It was found that, for the size of the specimens 

considered here, kn and km are in the range E/150 to E/100 and G/150 to G/100 
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(MPa/mm) respectively, where E and G are the Young’s and shear moduli respectively. 

The angle of friction is a readily measurable material parameter and for concrete, values 

between 20° and 60° have been reported (Birkeland and Birkeland, 1966; Jensen, 1975; 

Wong et al., 2007).  

The crack surface geometry is most satisfactorily addressed by analyzing three-

dimensional surfaces of actual cracks. Methods similar to those proposed by Boussa et 

al. (2001) and Haberfield and Johnston (1994) can be employed to obtain asperity 

angles, heights and their relative proportions.    

 

4.5. Numerical results 

A number of examples illustrating the performance of the constitutive model are 

presented in this section. In examples 1-3, numerical simulations are compared with 

experimental data from direct shear tests on concrete and rock joint replica specimens.  

The material properties for each example are given in Table 4 and the contact 

parameters that characterize the crack surface are given in Figs. 4.4, 4.7 and 4.12, noting 

that the relative proportion assigned for the flat component is 0.1. 

Table 4.4. Material properties 

Parameter Example 1 Example 2 Example 3 

kn (MPa/mm) 95 310 350 

km (MPa/mm) 40 130 145 

φ (°) 35 40 35 

fc (MPa) 42 75 37.6 

 

For all three examples, discrete distributions P(mg, ht) are used. Two groups of 

asperities are considered to represent the primary and secondary asperities (Plesha, 

1987; Yang et al., 2010) which are denoted ht_p and ht_s respectively. Generally, the 

primary roughness is described by asperities with relatively larger heights and smaller 

inclinations whereas the secondary roughness is characterized by shorter and sharper 

asperities (Patton, 1966; Barton, 1973; Plesha, 1987; Yang et al. 2010). This is also 
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observed in a qualitative examination of several crack profiles (Gentier et al., 2000; 

Grasselli and Egger, 2003). 

The quantification method of Haberfield and Johnston (1994), in which the crack 

profile is idealised as a series of straight lines of variable lengths and inclinations, is 

employed for extracting the asperity angles, heights and their relative proportions in the 

examples for which crack profiles are available (i.e. Examples 1 and 2). This does 

require a degree of judgement and it is emphasised that it is possible to obtain a range of 

surface characterisations using this method.  

For the application of the model in a finite element code to the simulation of a 

specific material, for which detailed crack morphology data may not be available, the 

crack profile data could be extracted from generic statistical distributions. For example, 

Boussa et al. (2001) provides such a characterisation for concrete surfaces and Lee et al. 

(2001) for crack surfaces in granite and marble. 

 

4.5.1. Example 1. Data from Grasselli and Egger (2003) 

In this example, numerical simulations of direct shear tests carried out at various 

levels of constant compressive normal stress are presented and compared with the 

experimental data reported by Grasselli and Egger (2003). In the experimental tests, 

concrete replicas of tensile rock joints, having a shear plane of 140x140 mm
2
, were 

subjected to shear displacements of 3mm under different values of constant normal 

stress: 1.275, 2.55, 5.1 and 6.12 MPa.  

Three profiles of the crack surface extracted from the same sample are given in the 

paper, from which the crack surface roughness parameters, given in Fig. 4.4, were 

extracted in the manner described above. 
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The predictions of shear stresses are compared with experimental results in Fig. 

4.5. As no experimental data regarding the dilation was provided, no comparison could 

be made in this case. However, the numerical response is given in Fig 4.6. and it can be 

noted that the dilation, or normal separation, reduces for higher levels of compressive 

stresses which is in agreement with other experimental observations (Gentier et al., 

2000; Huang et al., 2002) 
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Figure 4.4. Example 1. Geometrical components 

Figure 4.5. Example 1. Shear stress-displacement response 
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4.5.2. Example 2. Data from Gentier et al. (2000) 

The experimental tests considered in this example were carried out on a set of 

mortar replicas of a granite sample, each of which had the same surface topography. The 

circular shear plane was 90 mm in diameter and the shear tests were performed under 

constant levels of compressive normal stresses of 7, 14 and 21 MPa. Four tests were 

carried out for each level of normal stress for four different shear directions on the 

fracture plane. 

Schematic two and three-dimensional profiles of the crack surface are provided in 

Gentier et al. (2000), however additional information is needed in order to quantify them 

completely. Nevertheless, it did prove possible to make qualitative observations from 

the data given, from which the geometrical parameters used for the numerical simulation 

given in Fig. 4.7 were obtained. 
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The comparison between numerical predictions of shear stresses and the 

experimental results is shown in Figs. 4.8-10. A comparison for dilation is also 

performed. The numerical responses generally compare well with the experimental data.  
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Figure 4.8. Example 2. Shear stress and dilation response under constant normal compression 
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4.5.3. Example 3. Data from Walraven and Reinhardt (1981) 

The data used for the third example is taken from a series of experiments carried 

out by Walraven and Reinhardt (1981). Concrete specimens with a shear plane of 

300x120 mm
2
 were initially pre-cracked in tension and then loaded in shear in a stiff 

testing frame with external restraint bars to control the opening displacement and on 

which the normal stress acting on the crack plane could be directly measured. Three 

different values of initial opening displacement –0.0, 0.2 and 0.4 mm- were applied to 

the specimens, which were then subjected to shear displacements of up to 2 mm for 

different restraint stiffness. Walraven and Reinhardt identified each test by the code 

α/β/γ where α denotes the mix number, β the initial crack opening in mm and γ the 

normal stress in MPa at an arbitrary crack width of 0.6 mm. Tests 1/0.2/0.4 and 
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Figure 4.9. Example 2. Shear stress and dilation response under constant normal compression 

of 14 MPa 

Figure 4.10. Example 2. Shear stress and dilation response under constant normal compression 

of 21 MPa 
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1/0.4/0.3 are considered here.  The normal – shear displacement paths, from the 

experiments which are used in the numerical predictions, are given in Fig. 4.11.  

 

 

No details are given of the crack surface morphology, however, a reasonable fit of 

the experimental data is obtained with the geometrical parameters in Fig. 4.12. 

Numerical predictions of the shear and normal stresses are compared with the 

experimental results in Figs. 4.13, 4.14.  

It may be seen from the experimental normal response, for the case with initial 

opening of 0.2 that the experimental data shows some normal stress at this initial crack 

opening value. For a fully formed crack, the normal stress would be expected to be zero 

until any shear is applied, and this is the case with the numerical response. 
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Figure 4.12. Example 3. Geometrical components 

Figure 4.13. Example 3. Normal and shear stress prediction; initial opening 0.2mm 

 

Figure 4.14. Example 3. Normal and shear stress prediction; initial opening 0.4mm 
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4.5.4. Example 4. Illustrative examples  

Finally a set of illustrative examples is carried out employing the model 

parameters from Walraven and Reinhardt’s simulations to illustrate certain features of 

the model, not present in the above examples. In Example 4a numerical simulations of 

shear tests under constant crack opening are performed for two different openings 0.2 

and 0.4 mm. The shear and normal stress predictions are presented in Fig 4.15. It can be 

observed that for larger crack openings the stress levels are reduced. This example 

clearly illustrates the influence of the effective contact function.  

 

 

In Example 4b, simulations of cyclic shear tests under constant normal 

compressive stress are performed for two different levels of compressive stress -5 and 

10 MPa- and the behaviour under loading and unloading conditions is explored. The 

shear stress histories and the predicted dilatancy are shown in Fig. 4.16 and 4.17 

respectively.  
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It can be noted in the loading stage that the higher the level of compression the 

higher the predicted shear stresses. For the case of lower compression (5MPa) a 

reduction in the overall shear stiffness is observed in the unloading stage (section C-D). 

This occurs due to a delay between gradual unloading of one side and the gradual 

loading of the opposite side. Increasing the level of normal compression results in a 

‘lock-in’ effect on the asperities, therefore all sample positions are in contact, with the 
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under constant normal compression 
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loading on one side being more advanced than on the opposite side. In this situation the 

transfer of stresses form one side to the other occurs with no noticeable delay. 

 

4.6. Concluding remarks 

A mechanistic constitutive model for simulating the behaviour of fully formed 

cracks in geomaterials has been proposed. The mechanisms of plastic embedment and 

frictional sliding between asperities, as well as a three-dimensional multi-asperity 

characterization of the crack morphology based on simple geometric parameters, were 

employed in order to predict the contact stresses. An effective contact function was 

derived and used in relating the contact stresses -that develop on the sides of the asperity 

teeth- to the stresses on the crack plane.  

The proposed model requires a limited number of measurable input parameters. 

These comprise geometric parameters that describe the roughness of the crack surface 

(asperity heights, inclinations and their relative proportions) and material properties 

(compressive strength, friction angle, shear and normal stiffnesses) 

Comparisons between numerical and experimental responses show good 

agreement, with the model being able to simulate key characteristics of observed 

behaviour, namely:  

• shear displacement (slip) at constant normal compressive stress causes 

dilation 

• an increase in the normal compression produces, for the same slip, a 

higher level of shear stress transferred across the crack plane and reduced dilation  

• an increase of the crack opening reduces both normal compressive stress 

and the shear stress (in displacement-controlled tests) 

• non-linear coupled shear and normal responses  
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Chapter 5  

Miscellaneous computational aspects 
 

The present chapter concentrates on several computational issues associated with 

the constitutive model presented in Chapters 2 and 3. In Section 5.1 the stability of the 

micromechanical constitutive model with embedded rough contact is considered. 

Spurious contact chatter behaviour at the constitutive level is reported and a solution 

proposed which makes use of a single smooth contact state function to replace three 

discrete existing contact state functions. In section 5.2, a study on the accuracy of the 

numerical integration methods is carried out for 2D and 3D rules. Finally, the tangent 

form of the stiffness tensor for the micromechanical model is derived in section 5.3.   

 

5.1.  Contact chatter 

An aspect of the behaviour of constitutive models for cementitious materials 

which, in the author’s opinion, has not received enough attention in the literature is the 

numerical difficulties which arise when crack closure and rough crack behaviour is 

introduced into constitutive models for concrete. It is this issue which is the primary 

subject of the present chapter. The work is in the context of a micromechanical model 

for concrete (and other cement-bound materials) but the relationships derived and the 

conclusions drawn would apply to a rough crack-plane model applied at any scale.  

As mentioned in the introduction of Chapter 2 a number of models have been 

developed in recent years which use micromechanical solutions. These include the 
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micromechanical model of Penseé et al. (2002, 2003), which incorporated crack closure 

effects and an energy-based damage criterion; an anisotropic friction-damage model 

based on the solution of an elastic body containing plane cracks by Gambarotta (2004); 

and models with both microcrack closure and frictional sliding by Zhu et al. (2008 and 

2011). These models do include crack closures effects but do not address contact issues 

associated with rough crack closure or related numerical difficulties.   

It is recalled from Chapters 2 and 3 that the micromechanics based constitutive 

model, which builds on that proposed by Jefferson and Bennett (2007, 2010), comprises 

a two phase composite formulation based on the classical Eshelby theory and Mori-

Tanaka averaging scheme, a multi-asperity rough microcrack contact component and a 

micro-damage evolution expression based on an exterior point Eshelby solution. The 

proposed exterior point Eshelby based microcrack initiation criterion along with the 

multi-component rough crack contact sub-model facilitated the use of realistic material 

properties in simulating properly cross-cracking behaviour. This model includes the 

embedded rough crack component that also plays an important role in capturing dilatant 

post-peak behaviour in compression but the author has found form the experience of its 

use that even at the constitutive level when multiple microcrack planes are active, 

stability problems can arise. It is these problems that gave rise to the study reported 

here.  

Rough crack models have been explored in the past, particularly for discrete 

crack-plane models, with the emphasis of most of the work being on reproducing 

experimentally observed behaviour. As presented in Chapter 4 these models use, to 

varying degrees, combinations of empirically based relationships and mechanistic 

models to describe the morphology of the crack surfaces and the contact expressions 

which govern the stress-displacement relationships (Patton, 1966; Bažant and 

Gambarova, 1980; Walraven and Reinhardt, 1981; Divakar et al., 1987; Plesha, 1987; 

Li et al., 1989; Bujadham and Maekawa, 1992; Haberfield and Johnston, 1994; Ali and 

White, 1999; Jefferson, 2002; Wang et al., 2003). A particular exception, with respect to 

the evaluation of the numerical performance of these models, was the work of Feenstra 

el al. (1991 a, b) who explored computational aspects of several crack-plane models 

when applied to interface elements in a finite element code.  
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The simulation of contact with implicit finite element codes presents considerable 

numerical challenges and the investigation of these problems is an area of active 

research (e.g. Wriggers, 2006).  Not-surprisingly, certain problems -which occur in 

macro-contact- also appear when contact is embedded in a constitutive model. These 

problems will be identified and further discussed in this section.  

The aim of the work presented here is to develop a solution to the contact 

difficulties, at the constitutive level, for the present micromechanical contact model. An 

additional new development, namely the application of a Gamma probability 

distribution to describe the morphology of the microcrack surface is also included. 

Although extraneous in the context of the present chapter, this alternative 

characterisation of the crack surface roughness was employed in the study of rough 

contact related numerical instabilities and therefore it is presented here.  

 

5.1.1. Crack morphology description 

In numerical simulations presented in Chapter 3 a set of discrete values were used 

for the crack surface based upon observations of crack roughness at various scales.  An 

attempt was made to characterize the roughness of the microcrack surface by statistical 

distributions. It was mentioned in Chapter 4 that a number of methods have been 

proposed (e.g. Haberfield and Johnston, 1994; Boussa et al., 2001) in order to quantify 

the crack surface morphology and to characterize it by probability density functions. 

The advantage of such an approach is appealing; the roughness is described by a 

reduced number of parameters. Nevertheless, substantial experimental data are required 

for a complete validation and whilst profiles of macro-cracks correlated with 

experimental results for crack-plane behaviour are scarce, information related to 

microcrack roughness is almost non-existent. 

For the numerical study presented in this section the roughness of the crack 

surface is represented by a Gamma probability density function (Eqs. 5.1 a,b) applied to 

two distinct height ranges associated with normalised asperity height values β (β = ht/u0) 

of 1 and 0.1 which was found to be generally consistent  with the experimental data of 

Boussa et al. (2001). Whilst it is recognised that the data of Boussa et al. (2001) is from 

a macroscopic crack, it has been assumed that the distribution of the lower height 

asperities is generally applicable to the present model. However, due to the lack of 
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comprehensive data on microcrack morphology, the Gamma distribution is proposed 

tentatively.  

The statistical distribution, given in Eq. (5.1 a,b) and Fig. 5.1 is applied as a 

summation of 5 components for β = 1 and 3 components for β = 0.1. It is noted that for 

mg > 3 the surface of the crack is assumed to be flat. 
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where tg = mg
-1

 and αg = 0.25 and βg = 6. 

 

 

It is mentioned that the Gamma distribution adopted here gives a relatively high 

proportion (approximately 25%) of very sharp contact angles ( > 65°, i.e. mg < 0.45). 

Qualitative observations of macro-crack profiles suggest that this is somewhat 

unrealistic, however reasonable uniaxial tension and uniaxial compression responses are 

predicted. Indeed, the use of statistical (continuous) distributions or discrete 

distributions with a lower proportion of sharp contact angles was found to predict rather 

weak compressive responses. The apparent necessity for sharper contact angles in the 

micromechanical constitutive model is believed to be due to the fact that friction effects 

on the side of the asperities are ignored; the use of sharper asperities artificially 

emulates the friction effects. In fact it can be noticed that in the rough crack plane 
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Figure. 5.1. Gamma distribution. αg = 0.25 and βg = 6 
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model proposed in Chapter 4 in which friction is taken into account the proportion of 

sharp asperities is considerably lower.  

 

5.1.2. Continuous contact state function  

5.1.2.1.  Contact chatter 

It is well known that contact problems in implicit finite element simulations 

present considerable numerical challenges (Wriggers, 2006). One such challenge is that 

models can predict a spurious oscillatory response, which has been termed ‘jamming’ or 

‘chatter’ (Wriggers, 2006). The present model can, under certain conditions, exhibit this 

type of behaviour- even in single point stress-strain simulations- when different contact 

conditions are active on different microcrack planes. This is illustrated for a uniaxial 

compression path in Fig. 5.2. This solution was obtained with a standard Newton 

algorithm, although exactly the same response arises with a solution which uses a secant 

Newton approach. It is recognised that such behaviour can be improved by use of line 

search algorithms (Crisfield, 1997) but these do not always resolve such difficulties in 

finite element simulations. Thus, it was decided to remove the discrete separate contact 

conditions and to develop a single smooth expression which encompassed all three 

contact states in order to minimise the potential for chatter behaviour at the constitutive 

level.  In doing this two questions were considered; 

1. Is smoothed behaviour entirely artificial? 

2. Can functions be developed which do not significantly alter apparent 

macroscopic properties such as the macroscopic tensile and compressive 

strengths? 
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5.1.2.2. Smoothed contact state function  

In order to answer question 1 above, the response from the cyclic test of Reinhardt 

(1984) is shown in Fig. 5.3. This indicates a smooth crack closure response, although it 

also shows a hysteresis behaviour which is not included in the present model. 
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Figure. 5.2. Examples of rough contact related chatter   

Figure. 5.3.  Experimental data of Reinhardt from a cyclic compressive test 
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Regarding the second question posed above, there is a balance between providing 

a sufficient degree of smoothing to achieve a stable response and unrealistically altering 

the computed stress paths which will be explored in the simulations below.  

A compound function was therefore sought which allowed both the transition 

zone between the contact states to be varied and the rate of change of local stress, with 

respect to a monotonic changing local strain, controlled. The following smoothed 

contact state function satisfies these criteria and is proposed to replace the separate 

contact relationships given in Table 2.1.  

2
L cl L cl L int L g L( , ) ( , ) 1 ( , ) ( , ) ( , )

s
g g g g gm m m m mλ λ λ = ⋅ + − ⋅ ⋅ Φ ε ε I ε ε Φ ε    (5.2) 

in which the interpolation functions L( , )gmλ∗ ε , ' int' 'cl 'or∗ = , are essentially 

modified tanh type functions given by: 
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where L( , )gmχ
∗
ε is a normalized signed distance function in local strain space that 

essentially provides a transition band around the closed and interlock surfaces: 
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where a, c, and cλ are dimensionless parameters that control the shape of the 

interpolation function λ* (Fig. 5.4) . It follows directly from Eq. (5.4) that parameter a 

governs the “width” of the transition band around the closed and interlock separating 

surfaces. Parameter c controls the slope of the interpolation function, i.e. the abruptness 

of the transition between the two contact states (Fig. 5.4a). Finally, parameter cλ 

effectively defines the position of the transition band relative to the relevant contact 

state surface (Fig. 5.4b).  
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5.1.2.3. Parametric study for a single crack-plane  

A study is now presented which shows the effects of varying the function 

parameters a, c and cλ on the predicted response for a single crack-plane, and which has 

the overall purpose of guiding the final selection of the values of these parameters. 

The study is carried out on a local crack-plane on which the strain path in Figs. 

5.5 and 5.6 is prescribed. This path opens a crack under normal strain until the damage 

parameter ω = 0.975 (phase OA) then applies a shear which results in the build up of 

normal and shear stresses (phase AB) and finally the path closes the crack (phase BC). 

Phase OA gives information on the transition between closed and open regions (C-O), 

phase AB on the open-interlock transition (O-I) and interlock-closed state transition (I-

C) is highlighted during phase BC.  

(a) (b) 

Figure. 5.4. Variation of the interpolation function with smoothing parameters: (a) c and (b) cλ 
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 The numerical predictions of the local stress with both smoothed and unsmoothed 

contact functions are compared. The simulations are carried out (i) with a single 

component contact sub-model for a range of contact slopes (mg) between 0.3 and 1.5 

and (ii) with a multi-component contact sub-model which uses the Gamma distribution 

(Eq. 5.1) to define the proportions and slopes of the contact surface.  

Three cases are considered in the parametric study as follows:  

• Case 1. Parameter a varies, c = 5 and cλ = 1 fixed.  

• Case 2. Parameter c varies, a = 10 and cλ = 1 fixed  

• Case 3. Parameter cλ varies, a = 10 and c = 5 fixed. 

 

As discussed above, there is a balance between providing a sufficient degree of 

smoothing to achieve a stable response and unrealistically altering the computed 

stresses. A particularly undesirable result would be a spurious increase in the apparent 

tensile strength. This is avoided by using a modified tensile strength parameter as 

follows 

t
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Figure. 5.5. Contact states, transition regions and prescribed strain path 
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For a single crack-plane in direct tension, the value of the relative error ηs can 

readily be calculated by considering the stationary value of the tensile stress with 

respect to the normal tensile strain. However, when the relationship is used for a 

microcrack plane in the multi-dimensional model, the solution becomes analytically 

intractable and thus numerical experimentation was used to determine a final value for 

ηs for the 2D and 3D models. 

Numerical predictions of local normal and shear stress for Cases 1, 2 and 3 

respectively are presented in Figs. 5.7-5.9. The stress components are plotted against a 

monotonically increasing variable, pseudo-time, where 1s = 1 increment of strain 

change. The variation of the prescribed local strain components with pseudo-time t is 

schematically illustrated in Fig. 5.6. For all numerical simulations the material 

properties in Table 5.1 are employed. 
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Figure. 5.6. Variation of prescribed strains with pseudo-time 
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Figure 5.7. Parametric study. Case 1  
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Figure. 5.8. Parametric study. Case 2 
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Figure. 5.9. Parametric study. Case 3 
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Table 5.1. Material properties  

Em (MPa) EΩ (MPa) υm υΩ fti (MPa) u0 (mm) dmax (mm) 

31000 55000 0.19 0.21 1.0 0.1 10 

 

Observations from the crack-plane parametric study: 

1. From the predictions of the normal component of the local stresses in phase tO-

tA it can be observed that increasing the value of parameter a -i.e. broadening 

the ‘transition band’- can dramatically alter the computed normal (tensile) 

stresses. (Fig. 5.7. a,c,e,g). The same effect is observed when parameter c is 

decreased (Fig. 5.8. a,c,e,g) or parameter cλ is increased (Fig. 5.9. a,c,e,g). This 

has a direct influence on the predicted response in uniaxial tension. 

2. The unrealistic overestimation described above is augmented for shallower 

contact angles (i.e. higher values of mg).  

3. Generally the effect is not as severe as the path crosses the O-I and I-C 

transition regions for all cases.  

4. For small mg values, shear stresses tend to be underestimated (phase tB-tC) 

when parameter a is increased (Fig. 5.7b). However the effect is not as  severe 

in comparison with the overestimation of tensile stress in phase tO-tA 

5. For all three cases, negative shear stresses can develop in phase tA-tB. This 

undesirable result is generally notable for small mg values and is particularly 

pronounced for high values of cλ. Smoothing parameters will be selected to 

avoid this occurring.  

6. Examples of the most extreme responses may be seen in Figs. 5.7d,f and 5.8d,f 

with a = 40 and c = 1 respectively, in which the predicted shear response is 

very smooth but the response is unduly altered.  

7. The multi-component formulation produces an intrinsically smoother response. 

It can also be noted that the effects of the smoothing function are considerably 

less pronounced in this case 

From these simulations and from the above observations a set of parameter values 

were selected which are given below in Table 5.2. 
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         Table 5.2. Smoothing parameters 

 a c cλ 

λint 10 5 1 

λcl 5 5 1 

 

5.1.3. Comparison between smoothed and unsmoothed response of 2D and 3D 

constitutive model for a range of micro-roughnesses   

The effect of using the single smoothed contact state function in place of the 

separate functions is now considered for 2D and 3D versions of the model.  

It was decided to use a single phase version of the 2D model in order to 

concentrate on the effect of the smoothing function. Once the conclusions from this 2D 

study were obtained, the finally proposed form of the function was tested on the full 3D 

model proposed in Chapters 2 and 3. 

 (i)    Single and multi-component contact results in 2D 

Numerical predictions of the 2D plane stress model employing the unsmoothed 

contact formulation described in Table 2.1 are compared with predictions of the smooth 

contact formulation (Eqs. 5.2-5.4) in Fig. 5.10 for uniaxial compressive and tensile 

loading cases. A single contact component formulation (i.e. one mg value and p=1 for 

each direction) and multi-component contact formulation using the Gamma distribution 

of Eq. (5.1) are considered.  
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(a) 

(c) (d) 
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(g) (h) 

(b) 

Uniaxial compression. mg = 0.3 Uniaxial tension. mg = 0.3 

Uniaxial compression. mg = 0.8 Uniaxial tension. mg = 0.8 

Uniaxial compression. mg = 1.5 Uniaxial tension. mg = 1.5 

Uniaxial compression. Multi-component Uniaxial tension. Multi-component 

Figure. 5.10. 2D uniaxial tension and compression numerical predictions with unsmoothed and 

smoothed contact                
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Observations from 2D study: 

• The proposed smoothed contact state function is efficient at removing the rough 

contact related numerical chatter  

• The smoothed contact formulation tends to overestimate the tensile strength. This 

is the direct result of the problem described in observation 1 from the crack-plane 

study. However, as mentioned before, this overestimation is corrected by using 

Eq. (5.5).  

• The relative error ηs increases with increasing mg values which is consistent with 

the observations from the crack-plane study; for mg = 0.3 the error is 

approximately 8% while for mg = 1.5 the error becomes approximately 15%. 

Noteworthy is the fact that in this case, i.e. when multiple directions are 

interacting, the errors are considerably reduced compared to the crack-plane case.  

• For multi-component contact formulation the error is further reduced  

• The compressive strength is altered insignificantly 

• The recommended value for the relative error ηs to be used for correction is 0.1. 

Fig. 5.10h shows a good correlation between the tensile stresses predicted with the 

unsmoothed formulation and the corrected tensile stresses 

Overall, it is concluded that the use of the smoothed state function with the 

selected parameters in the 2D model removes chatter but does not appreciably alter the 

response, particularly when the tensile correction is employed. 

 

 (ii)   Multiple contact component results in 3D 

The effect of the smoothing technique for a multi-component contact formulation 

is illustrated for a 3D case in Fig. 5.11. The general conclusions from the 2D study 

apply for the 3D case as well. It can be observed that in 3D the altering effect is further 

reduced in comparison with the 2D case whilst the chatter is still efficiently eliminated. 

The recommended value for the relative error ηs to be used for correction is 0.02, which 

in effect suggests that the correction is hardly needed in 3D.  
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5.2. Numerical integration rules 

A further numerical aspect explored in this study is that of convergence with 

respect to the spherical integration scheme. Whilst this issue has been investigated for 

other models which employ spherical integrals (e.g. Bažant and Oh, 1986), previous 

conclusions regarding the sufficient order of the rule may not be applicable to the 

present model in which contact plays such a key role.  

Integration rules and the optimum number of integration directions were explored 

for the microplane model by Bažant and Oh (1986). They found that 21 integration 

directions for an integration rule over a hemisphere were sufficient although with 

noticeable error. The error however was considered reasonable relative to natural 

variations in response of real concrete specimens. The accuracy of a specific integration 

rule however depends upon the type of function that is integrated (Bažant and Oh, 1986) 

and this issue is therefore explored for the present model which includes the rough 

contact component. Both 2D (plane stress) and 3D cases are investigated.   

 

5.2.1.  Plane stress (2D) case 

The convergence properties of a 2D integration rules can be explored in an 

expedient way using a rule with evenly spaced integration directions. As discussed in 

Bažant and Oh (1986), centrally symmetric arrangements of integration points i.e. 

symmetric with respect to the centre of the circle, can be reduced to semicircular 
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formulae which is a clear advantage over non-symmetric formulae. Therefore only 

centrally symmetric rules are treated in this study.  

In order to illustrate the effect of contact on the accuracy and convergence 

properties of these formulae, the study is carried out using two versions of the model; 

one that does not include the contact component and the version that includes the multi-

component (smoothed) contact sub-model. 

The numerical results for uniaxial compression obtained for the no-contact case 

are presented in Fig. 5.12 where nd denotes the number of evenly spaced integration 

directions used. The rule employing 16 evenly spaced directions is considered to be 

sufficiently converged for practical purposes but the 5% difference observed in the peak 

stress with the 12 direction rule, with respect to that of the converged response, is 

considered a little too great.  

 

 

The same simulations are next performed with the multi-component (smoothed) 

contact sub-model and the results are shown in Fig. 5.13. In this case the results 

converge for nd ≥ 24. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

x
x

-s
tr

e
ss

/
fc

xx-strain

nd = 12

nd = 16

nd = 20

nd = 24

nd = 40

nd = 8
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5.2.2. 3D case 

Three centrally symmetric integration rules are again investigated for the multi-

component smoothed contact model in 3D as follows: 

a. Bažant and Oh’s 42-point (2x21), 9
th

 degree rule (Bažant and Oh, 1986) 

b. McLaren 50-point, 11
th

 degree rule (Stroud, 1971). 

c. Bažant and Oh’s 74-point (2x21), 13
th

 degree rule (Bažant and Oh, 1986) 

Figure 5.14 presents the stress predictions for the three integration rules. The 

responses obtained with the 50-point rule and 74 point rule are considered to be 

sufficiently close for practical purposes and therefore the 74-point rule is considered to 

be converged with respect to numerical integration.  

Notwithstanding the above conclusion, it is recognised that this issue warrants 

further investigation. In particular, Bažant and Oh (1986) suggest that an additional 

condition needs to be checked in order to find the optimum integration rule, namely for 

the given function to be integrated the values of the integrals should be evaluated for all 

possible body rotations of the set of integration points, associated to the integration 

formula, about the centre of the unit sphere. The optimum rule is subsequently 

considered to be the one which gives the smallest difference between the maximum and 

minimum values of the integral. This has yet to be carried out for the present model and 

this is therefore recommended in the future work section.  
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121 

 

 

 

 

5.3.  Rate formulation. Tangent stiffness 

5.3.1. Constitutive driver 

In Chapters 2 and 3 a constitutive model for concrete that employed 

micromechanical solutions and mechanistic assumptions was presented.  The model was 

characterised by a final expression relating the average stresses to average strains (Eq. 

M8, Section 3.4). In numerical applications a Newton-Raphson based constitutive driver 

applicable for stress, strain or mixed stress and strain paths is employed and therefore 

the rate form of the model that makes use of the tangent rather than the secant stiffness 

is also required. A typical Newton-Raphson based algorithm is presented in Table 5.3.   
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Table 5.3. Newton-Raphson based constitutive driver algorithm  

• Read in title, control data (i.e. No. of increments n and stress model e.g. plane strain) and the 

material data 

Read in initial conditions σσσσinit, 

• σt = σinit, σ = σinit, ε = 0 Initialise the stress and strain 

• Read in the applied stress increment components ∆σσσσa and/or strain increment components ∆εεεεa  

• For i = 1 to n    Loop over stress/strain increments 

• 
iatt σσσσσσσσσσσσ ∆+=   Update total stresses (σt) 

• 
ia∆ = ∆σ σσ σσ σσ σ    Set initial value of out-of-balance stresses (∆σ) 

for this increment 

• For j = 1 to m  Loop over iterations 

• Compute Dt  Compute tangent stiffness (Dt) 

• 1
t
−∆ = ∆Dε σε σε σε σ   , extract ∆σσσσrc 

Compute strain increment (∆ε) from out of 

balance stress and tangent stiffness matrix and 

extract 'reaction' stress (∆σσσσrc) 

• rctt     and       σσσσσσσσσσσσεεεεεεεεεεεε ∆+=∆+=  Update strains and add reaction stress 

components to total stresses 

• Compute σσσσ from existing σσσσ, ∆εεεε   

 s= ⋅σ D ε  

Use Backward Euler stress recovery algorithm 

to update the stress  

• σσσσσσσσσσσσ −=∆ t   Compute the out of balance stress 

• 
tσσσσ

σσσσ∆
=ϖ   

Compute the relative error (ϖ ) i.e. norm of the 

out of balance stress 

• IF ϖ < tol Exit Iteration Loop If converged, exit iteration loop 

• End j Loop  

• Convergence not achieved, Stop  

• Output results for increment  

• End i Loop  

• Finish  

 

5.3.3. Tangent stiffness 

Next, the formulation for the tangent stiffness tensor is derived in matrix form for 

the case of a two-phase model incorporating micromechanics based damage evolution 

and crack closure.  
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The final constitutive relationship of the model presented in Chapters 2 and 3 can 

be written as: 

s= ⋅σ D ε          (5.6) 

For an integration rule with nd discrete directions the secant stiffness in matrix 

form has the following expression: 

1

4s T
s m cα m

1

dn

i i i i
i

w

−

Ω Ω
=

 
= + ⋅ 
  

∑D I D N C N D      (5.7) 

where wi is the weight associated with the i
th

 direction and the local added compliance 

Ccαi is given by equation (2.46) 

1

2s 2s
cα L(1 ) k fk k

k

p Hω ω

−   
 = − + − ⋅  
     

∑C I Φ I C . 

The following notation is employed: 

( )

4s T
m cα

1

21

dn

i i i i
i

s
k fk k

k

w

p Hω ω

Ω
=

= +

 
= − +  

 

∑

∑

A I D N C N

B I Φ

              (5.8a,b)  

Differentiating equation (5.6) gives: 

s
sd d d

∂ 
= ⋅ +  

∂ 

D
σ D ε ε ε

ε
       (5.9) 

Making use of the expression for the derivative of an inverse, 

1
1 1

x x

−
− −∂ ∂

= −
∂ ∂

Y Y
Y Y , Eq. (5.9) becomes: 

1 1
s md d d− −

Ω
∂ 

= ⋅ + − ⋅ ⋅ ⋅ 
∂ 

A
σ D ε A εA D ε

ε
     (5.10) 

in which: 

T 1 1
m L

1

d d
dn

i
i i i i i

i

w
− −

Ω
=

 ∂∂  
= − ⋅ ⋅  ∂ ∂  

∑
BA

ε D N B ε B C N
ε ε

    (5.11) 
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For each sample direction i = 1..nd, 
∂

∂

B

ε
is determined using the chain rule: 

L L

L L

L

L

d d d

d

fk

fkk

k

kk

H

H

ω ζ

ω ζ

∂∂ ∂∂ ∂ ∂ ∂ ∂
= ⋅ ⋅ ⋅ + ⋅ ⋅ +

∂ ∂ ∂ ∂ ∂ ∂ ∂∂

∂ ∂∂
+ ⋅ ⋅

∂ ∂ ∂

∑

∑

ε εB B B
ε ε ε

ε ε ε εε

Φ εB
ε

Φ ε ε

     (5.12) 

The derivatives that appear in Eq. (5.12) can be evaluated straightforwardly and 

their expressions are given in Table 5.4. 

It is recalled from section 2.2.3 that the embedded strain is expressed as: 

L= ⋅g Φ ε          (5.13) 

where the contact matrix Φ is given in Table 2.1.  

Differentiating Eq. (5.13) gives: 

L L L
L

d d d
 ∂

= + ⋅ 
∂ 

Φ
g ε ε Φ ε

ε
                                                               (5.14) 

It can be proven that the differential of the embedded strain for all three contact 

states is: 

Ld d= ⋅g Φ ε          (5.15) 

Hence, 
L

0
∂

=
∂

Φ

ε
and the third summation in Eq. (5.12) vanishes.  

The tangent matrix is then formed in a “column by column” manner so that dε  is 

extracted element by element as shown below. Denoting 
1

mΩ
−= ⋅ ⋅y A D ε   one can 

obtain from Eq. (5.11): 

1
1 1d d d

ε
j j j

j j j

ε ε ε
ε ε

−
− −∂ ∂ ∂

= − ⋅ ⋅ = − ⋅ ⋅ ⋅
∂ ∂∂

A A A
A y A y     (5.16) 

Column j, where j = 1, 2, ..6, of matrix Dadt is hence obtained: 
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( ) 1j
adt

jε
− ∂

= − ⋅ ⋅
∂

A
D A y         (5.17) 

Eq. (5.10) hence becomes: 

sd ( ) dadt= + ⋅σ D D ε         (5.18) 

Consequently, t s adt= +D D D  

Table 5.4. Additional derivatives 
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* for expediency the damage parameter from the last converged step is used. This 

simplifying assumption was found to have little influence on the accuracy of the 

solution. 

 

5.4.  Concluding remarks 

Chatter behaviour can occur at the constitutive level in the micromechanical 

model for concrete proposed in Chapters 2 and 3 when multiple microcrack surfaces are 

active and under different contact conditions. 

A single smoothed contact function, which replaces three separate contact state 

functions, is shown to be effective at removing chatter and smoothing the model 

response. 

The use of the single function can result in unrealistic responses if the smoothing 

parameters are not properly selected. However, based on a parametric study on a single 

crack-plane, it is concluded that a set of parameters can be selected which smooth the 

response, remove chatter and which do not unrealistically alter the predicted response. 

Uniaxial tension and compression simulations in 2D and 3D showed that, with the 

recommended parameters, the use of the smoothed state function efficiently eliminates 

chatter but does not substantially alter the response. 

For a 2D version of the model, it is concluded that a 16 direction integration rule 

is sufficiently converged for practical purposes. For a 3D version of the model, a 50 

direction integration rule is adequate for practical computation although it is 

acknowledged that in this case further work is required to fully establish the 

convergence properties of the model. 

It is possible to derive a tractable form of the consistent tangent for the model, 

which can be used when the model is implemented in a finite element program.  
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Chapter 6 

 Finite element analysis  
 

The original intention of the work described in this chapter was to assess the 

performance of the micromechanical constitutive model described in Chapters 2 and 3 

when implemented in a finite element code. However, more research time was devoted 

to exploring the formulation of a microcrack initiation criterion based on the exterior 

point Eshelby solution, investigating the morphology of the crack surface and to the 

development of a plastic-contact crack plane model -ultimately aimed to be 

implemented in the overall constitutive model- and therefore the scope of the chapter is 

more limited than the original intention. Nevertheless, a simplified 2D version of the 

constitutive model was successfully implemented in the finite element commercial code 

LUSAS and its performance is assessed here.   

A brief summary of the simplified 2D version is given in section 6.1 followed by 

implementation details in section 6.2. Section 6.3 presents an initial assessment of the 

performance of the model using three examples.  

 

6.1. Simplified 2D constitutive model 

As mentioned above, the model implemented in the finite element program is a 

simplified version in 2D of the constitutive model presented in Chapters 2 and 3. 

Concrete is simulated as an elastic single phase matrix weakened by penny-shaped 
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microcracks. In this simplified version, microcrack interaction and crack closure effects 

are not taken into account. It is recalled from Chapter 2 that the model describes a 

representative material element inside the fracture process zone ahead of a macrocrack. 

In the 2D formulation, an overall plane-stress assumption is adopted.  

The simplified model in a 2D plane-stress formulation is summarised in Table 6.1. 

The plane-stress specialization of the 3D model is achieved by only considering cracks 

that occur normal to the out-of-plane dimension, using a plane stress elasticity tensor 

and by adopting a damage function written in terms of in-plane components only. 

Implicitly, this means that microcracks only form such that their normal vectors are in-

plane. 

Table 6.1. Summary of the 2D model version  

a: ( )= −σ D ε ε                                                                     (6.1) Elastic constitutive equation 

2π
1

a

0

1 ( )
: : :

2π 1 ( )
L d

ω θ
θ

ω θ
−

 
=  
 − 

∫ε N C N σ                           (6.2) 
Added strains due to microcracking in 

the matrix.  

L ( ) ( ) :   θ θ=ε N ε                                                              (6.3) 
Local strain (used for computing 

damage variable) 

rr rr

2

2 2 2
ζ L L L

1 υ 1 υ
F ( , ) ε ε

2 2
rςζ γ ζ

 
+ −    = + + −       

 

ε   (6.4) 

Local principal stress based damage 

function, 
G

r
E

ζ
β

= , 
2

1

1 υ
β =

−
 

t

0 t

( )-ε
-5
ε -εtε( ) 1

( )
e

ζ θ

ω θ
ζ θ

= −                                                   (6.5) 

Evolution of the damage parameter, 

[ ]ω 0,1∈  

1
2π

2 1

0

( )
: : :

2π 1 ( )

s
L d

ω θ
θ

ω θ

−

−
 

= + ⋅ 
 − 

∫
D

σ I N C N D ε

        (6.6) 

Final average stress-strain relationship 

 

where σ and ε denote the macroscopic stress and strain respectively. D is the elasticity 

tensor for a plane-stress case. In matrix form 
2

1 0

1 0
1

1
0 0

2

E
υ

υ
υ

υ

 
 
 

=  
−  −

 
 

D , where E is the 

Young’s modulus and υ the Poisson’s ratio. 

In the 3D model, microcracking was taken into account by the inclusion of an 

overall added strain tensor (Eq. 2.33) obtained by summing the local added strains from 
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all possible directions. As mentioned above, in the plane-stress case, microcracks are 

assumed to form only in plane (i.e. their normal vectors r(θ) are always perpendicular to 

the normal of the plane). However, locally, these microcracks are considered to be three 

dimensional penny-shaped ellipsoids. Therefore for the plane-stress case, the local 

added strain associated with direction θi is given by Eq. (2.28) in which the out-of-plane 

shear component is neglected. Subsequently the local elastic compliance tensor becomes

1 0
1

4
0

2

L
E

υ

 
 =
 
 − 

C . Moreover, the integral over a unit sphere from Eq. (2.33) becomes 

an integral over a unit circle (Eq. 6.2).  

Microcracks are then assumed to initiate when the local principal stress associated 

with the current direction i reaches the tensile strength and their development is 

thereafter assumed strain controlled. The damage function (Eq. 6.4) is subsequently 

derived in a manner similar to that presented in section 3.2.2. Damage is still assumed to 

initiate in the coarse aggregate particle-mortar interface; however, in this simplified 

version, the two phases are no longer modelled separately and the exterior point Eshelby 

solution that provides tensile stress concentrations in the interface is therefore not 

applicable. Nevertheless, the mechanistic rationale is maintained and the ratio G/E 

between the shear and the Young’s modulus in the expression of rζ is modified to 

provide the right balance between the overall tensile and compressive strengths.  

The integration over the unit circle in Eq. 6.6 is evaluated numerically employing 

a centrally symmetric integration rule with 16 evenly spaced directions. It was shown in 

Fig. 5.12 that for this case 16 integration directions provide a converged solution. 

The exact tangent stiffness matrix is obtained following the procedure presented in 

section 5.3.3. In matrix form it reads: 

t s adt= +D D D          (6.7) 

where: 

1

3
1 1

dn
T i

s i L i i
ii

w
ω

ω

−

=

 
= + ⋅ ⋅  − 

∑D I D N C N D      (6.8) 
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and Dadt is obtained in a “column by column” manner employing the following notation,

3
1 1

dn
T i

i L i i
ii

w
ω

ω=

= + ⋅
−

∑A I D N C N and 
1−= ⋅ ⋅y A D ε : 

( ) 1

ε

j
adt

j

− ∂
= − ⋅ ⋅

∂

A
D A y         (6.9) 

where j denotes the column number, j = 1,2,3 and 

2
1

1
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dn
T L

i L i i
Li i

d d w
ω ζ

ζω=

 ∂∂ ∂ ∂
= ⋅ ⋅ ⋅ ⋅  ∂ ∂ ∂ ∂− 
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εA

ε D N ε C N
ε ε ε

   (6.10) 

 

6.2. Implementation in LUSAS 

The constitutive 2D model presented in the previous section was implemented in 

the commercial finite element program LUSAS through its material model interface. 

The finite element method is a well established subject and its theoretical formulation 

can be found in numerous textbooks (e.g. Hinton and Owen, 1977; Owen and Hinton, 

1980). For completeness, key equations are given below and a generic formulation of a 

nonlinear finite element code showing details regarding the implementation of the 

constitutive model is presented in Fig. 6.1.  

The overall force-displacement relationship reads: 

g=f K u          (6.11) 

where f denotes a general force vector that includes body forces per unit volume, surface 

loads per unit area and point loads, Kg is the global stiffness matrix of the structure and 

u represents the nodal displacement vector. The global stiffness matrix is obtained by 

assembling the stiffness matrices from each element given by 

T
s d

Ω

= Ω∫K B D B         (6.12) 

where Ds is the secant D matrix relating stresses to strains, in this case given by Eq. 6.6 

and Ω represents the element volume. B denotes the strain-displacement matrix with  
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e=ε Bu           (6.13) 

where ε denotes the strains within an element and superscript e denotes an element 

quantity. It can be shown from the principle of virtual work that the out-of-balance force 

vector, which is null when equilibrium is satisfied, is given by: 

0e T e e
d

Ω
= Ω − =∫ψ B σ f        (6.14) 

 For nonlinear problems, the stiffness varies continually and Eq. (6.14) is not 

satisfied at any stage of the computation. For each load increment ∆f
e
 the corresponding 

displacement increment is obtained by solving the following: 

e e
t∆ = ∆f K u          (6.15) 

where Kt is the tangent stiffness matrix given by: 

T
t t d

Ω

= Ω∫K B D B         (6.16) 

Convergence is achieved when the norm of the global out-of-balance force vector 

normalized by the norm of the total force vector becomes less than the chosen tolerance:  

tol≤
ψ

f
          (6.17) 
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The strain softening issue, briefly discussed in the introduction chapter of this 

thesis, is addressed in the finite element program LUSAS according to the fracture 

START 

Input data defining geometry, boundary 

conditions and material properties 

Evaluate of the equivalent nodal forces 

for pressure loading, gravity loading, 

etc 

Initialise  of accumulative arrays 

Increment of the applied load  

Set indicator to identify the type of 

solution algorithm e.g. initial stiffness, 

tangential stiffness, secant stiffness etc 

Evaluate of the element stiffness for 

elastic and nonlinear behaviour 

(Eq.6.12/6.16) 

Solve the simultaneous system of 

equations (Eq. 6.15) 

Evaluate of the out of 

balance force vector  

(Eq. 6.14) 

Evaluate of the effective 

stress level and update 

state variables, i.e. ζ 

Check if the solution process has 

converged (Eq. 6.17) 

Output results for current load increment 

END 
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User material model 
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Figure 6.1.  Generic formulation of a nonlinear finite element code showing 
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energy crack band approach proposed by Bažant and Oh (1983) in which the softening 

curve is adjusted with the characteristic element size in order to maintain the fracture 

energy.  

 

6.3. Numerical examples 

As an initial assessment of the performance of the constitutive model, three 

numerical examples are presented in this section. 8-noded quadrilateral elements with 

quadratic interpolation are used throughout. For all three analyses, the LUSAS inbuilt 

automatic step selection procedure was employed in which the load (or displacement) 

increment is adjusted according to the number of iterations required for convergence. 

 

6.3.1. Example 1. Direct fracture test 

In the first example numerical results from a plane-stress analysis of the direct 

fracture test carried out by Petersson (1981) are presented and compared to the 

experimental results. In the experimental test the un-reinforced concrete specimen 

shown in Fig. 6.2 was loaded in direct tension under displacement control. 

 

 

Due to symmetry, only half of the specimen is analysed. The mesh employed for 

the analysis and a magnified deformed mesh are presented in Fig. 6.3 and the material 

properties are given in Table 6.2. The load-displacement numerical response is 

10 

30 

10 

50 

Thickness = 30 mm 

u 

Figure 6.2. Example 1. Geometrical dimensions (mm) and test arrangement 
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compared against the experimental response in Fig 6.4. It is noted the numerical 

deformations correspond to half of the specimen and are therefore doubled in Fig 6.4. 

Plots of the strain and stress profiles at different stages: Stage A. elastic, Stage B. at 

peak stress and Stage C. softening regime, as indicated on Fig 6.4, are presented in Figs 

6.5-6.7. 

 

 

    Table 6.2. Example1. Material properties 

Material property Value 

E (N/mm
2
) 35000 

υ 0.2 

ft (N/mm
2
) 1.6 

Gf (N/mm) 0.035 

 

 

Undeformed mesh Deformed mesh (15x) 
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Figure 6.3. Finite element meshes 

Figure 6.4. Example 1. Load-displacement response 
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The numerical predictions compare well against the experimental data which 

indicates that the constitutive model performs well under tensile loading and shows that 

it is capable of predicting a reasonable tensile softening response. The strain profile at 

stage C indicates that the strains and consequently damage have localised in the band of 

elements adjacent to the line of symmetry which is consistent to the experimental 

observations reported by Petersson (1981).  
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Principal strains  

Principal stresses 

Figure 6.5. Example 1. Principal strain and stress contours at stage A  
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Principal strains  

Principal stresses  

Figure 6.6. Example 1. Principal strain and stress contours at stage B  
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Principal strains  

Principal stresses  

Figure 6.7. Example 1. Principal strain and stress contours at stage C 
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6.3.2. Example 2. Reinforced concrete beam 

The second example presents results from the analysis of a reinforced concrete 

beam. The specimen, experimentally tested by Bresler and Scordelis (1963), contained 

only longitudinal reinforcement anchored at both ends with steel plates. A three-point 

bend test was carried out under load control in which the point load was applied through 

a steel plate to avoid local crushing. The dimensions of the beam and details regarding 

the experimental arrangement are shown in Fig 6.8.  

 

 Figure 6.8. Example 2. Geometrical dimensions (mm) and test arrangement 

 

As the specimen, the supports and the load are symmetric with respect to the 

centre line, only half the beam is analysed. Plots of the mesh employed for the finite 

element analysis and of the deformed mesh are shown in Fig. 6.9. Boundary conditions 

are employed such that the support is restrained in Y direction while the nodes on the 

centre line are restrained in X direction. The material properties employed in the 

analysis are given in Table 6.3. 

  Table 6.3. Example 2. Material properties 

Material property Value 

Concrete  

E (N/mm
2
) 20000 

υ 0.2 

ft (N/mm
2
) 1.6 

Gf (N/mm) 0.02 

Reinforcement  

Es (N/mm
2
) 205000 

υs  0.3 

 

310 

556 

63.5 

63.5 

Elevation on beam Cross-Section 

230 
1829 1829 230 Load P 

2 #9 bars each layer. 
(#9 = 28.7mm diam.) 
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The numerical load-deflection response is compared with the experimental 

response in Fig 6.10. Plots of the strain contour at different stages, indicated on the load-

deflection graph, are presented in Figs 6.11-6.13.  

 

 

It can be observed from Fig 6.10 that the constitutive model captures the nonlinear 

behaviour prior to failure of a reinforced concrete beam in a three-point bend test. This 

suggests that the approach is at least reasonable for modelling a specimen subject to 

both significant shear and bending. 
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Figure 6.9. Example 2. Finite element meshes 

Figure 6.10. Example 2. Load-deflection response 
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Principal strains  

Principal stresses  

Figure 6.11. Example 2. Principal strain and stress contours at stage A 
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Principal strains 

Principal stresses 

Figure 6.12. Example 2. Principal strain and stress contours at stage B 
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Principal strains  

Principal stresses 

Figure 6.13. Example 2. Principal strain and stress contours at stage C 
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6.3.3. Example 3. L-shaped panel 

In the final example, the analysis of an un-reinforced L-shaped panel 

experimentally tested by Winkler et al. (2001) is presented. Details regarding the 

geometry and test arrangement are given in Fig 6.14. The base of the specimen was fully 

restrained and load F was applied incrementally under displacement control.  

 

 

The material properties applied in this example are given in Table 6.4. The mesh 

employed in the numerical analysis as well as a plot of the deformed mesh is shown in 

Fig 6.15.  

 

 

Finite element undeformed mesh Deformed mesh (15x) 

250  

250  

250  250  

 F, u 

Out-of-plane thickness = 100 

Figure 6.14. Example 3. Geometrical dimensions (mm) and test arrangement 

Figure 6.15. Example 3. Finite element meshes 
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    Table 6.4. Example 3. Material properties 

Material property Value 

E (N/mm
2
) 24500 

υ 0.21 

ft (N/mm
2
) 1.25 

Gf (N/mm) 0.0175 

 

The experimental and numerical load-displacement responses are compared in Fig 

6.16. and plots of the strain profile at different stages: A. elastic, B. peak load and C. 

Softening regime are presented in Figs. 6.17-6.19. The numerical prediction compares 

reasonably well with the experimental response. It can be observed from Fig 6.18 that 

around the peak load strains begin to localize which may be taken as the position of a 

macro-crack. The development of this crack follows a trajectory that is in agreement 

with crack path reported by Winkler et al. (2001).  
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Figure 6.16. Example 3. Load-displacement responses 
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Principal strains  

Principal stresses  

Figure 6.17. Example 3. Principal strain and stress contours at stage A 
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Principal strains  

Principal stresses  

Figure 6.18. Example 3. Principal strain and stress contours at stage B 
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Principal strains C 

Principal stresses C 

Figure 6.19. Example 3. Principal strain and stress contours at stage C 
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6.4. Summary and concluding remarks 

A 2D simplified version of the micromechanical constitutive model proposed in 

Chapters 2 and 3 was implemented in the finite element commercial program LUSAS 

via its material model interface.  

A set of finite element simulations of experimental tests was carried out in which 

the performance of the constitutive model was assessed under various stress states of 

tension and compression combined with shear. As mentioned in the introduction, this is 

not an in-depth study but merely constitutes an initial evaluation. Further investigation is 

required to achieve a comprehensive assessment. Nevertheless, the study presented here 

clearly demonstrates the potential of the micromechanical model in finite element 

simulations. 
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Chapter 7 

 Discussion and conclusions. Recommendations for future 

work 
 

7.1. Discussion and conclusions 

As discussed in the introduction to this thesis, despite the considerable research 

efforts of the last five decades, a universal formulation for an accurate and robust 

mathematical model for concrete, able to capture all facets of the complex behaviour of 

this material, has not yet been developed. The aim of the work presented in this thesis 

was to address this long-standing problem and to make progress towards the 

development of a reliable constitutive model based on micromechanical solutions.  

The central focus of this research was the formulation of a constitutive model for 

concrete, and other cementitious composites based on micromechanical solutions. And 

to this end, particular attention was paid to developing new mechanistic formulations for 

micro-crack initiation, evolution and post-crack rough contact.  

The approach developed assumes the existence of a representative material 

element (RME) which is simulated as a two-phase composite comprising a matrix phase 

–that models the mortar- and spherical inclusions –that represent the coarse aggregate 

particles. The elastic properties of this composite are derived using an Eshelby solution 

and the homogenisation scheme adopted is that due to Mori and Tanaka. Microcracking 

is accounted for by the addition of circular microcracks embedded in the matrix phase. 
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Finally, the model incorporates a rough microcrack contact component that accounts for 

the fact that once open, microcracks can regain contact and that shear and normal 

stresses can be transferred across the crack plane.  

The microcrack initiation criterion makes use of the tensile stress concentrations at 

the matrix-inclusion boundary captured by the exterior point Eshelby solution. 

Therefore microcracks can be assumed to initiate in the interfacial transition zone 

between coarse aggregate particles and mortar which is in agreement with experimental 

observations. In this way, the initiation of damage can be realistically modelled and 

based on a strong mechanistic rationale. Moreover, the two-phase composite approach 

enables the realistic simulation on lateral splitting cracks in uniaxial compression. This 

approach was employed in a previous version of the model proposed by Jefferson and 

Bennett (2010) however at that time somewhat unrealistic elastic properties needed to 

be employed to obtain the correct cross cracking response as microcrack initiation was 

based on the mean matrix stress. The exterior point Eshelby based microcrack initiation 

criterion facilitated the use of realistic material properties (i.e. measured elastic 

properties for the two phases and measured mortar-aggregate interface strength 

parameters) for a correct response. An important and noteworthy aspect of the overall 

model is that it requires a limited number of measurable parameters and, as shown in 

section 3.6, the model captures key features of the macroscopic behaviour, namely: 

• damage induced anisotropy  

• volumetric dilatancy under compressive stress states 

• realistic correlation between tensile and compressive strengths, i.e. realistic ft/fc 

ratio 

•  predictions of ductility consistent with experimental observations  

• realistic biaxial failure envelope  

• a more favourable prediction of triaxial behaviour than the previous model.  

This clearly shows the potential of micromechanical and, in broader terms, 

mechanistic models which, by simulating simple physical mechanisms at micro and 

meso-scales, can realistically predict a wide range of characteristic responses.  

It should be mentioned however that the formulation presented in Chapters 2 and 

3 is not definitive and requires further development. Indeed, whilst the model is capable 

of reproducing in a realistic manner uniaxial and biaxial tensile and compressive 
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characteristic responses as well as a very reasonable prediction of triaxial behaviour for 

low and moderate degrees of confinement, it cannot yet predict the response of all 

conceivable triaxial stress-strain paths.  

Nevertheless, two significant aspects are neglected in the formulation of the rough 

crack contact model which have a direct effect on the microcrack plane behaviour and 

ultimately on the overall behaviour, namely friction and crushing on the sides of the 

asperities. 

In order to address this, the multi-asperity plastic-contact crack plane model 

detailed in Chapter 4 was developed following yet again a mechanistic approach. In this 

model, a 3D characterization of the crack morphology is employed in which the crack 

surface is idealised as a series of conical teeth, and corresponding recesses, of variable 

height and slope. Based on this geometrical characterization, an effective contact 

function was derived to relate the contact stresses that develop on the sides of the teeth 

to the net stresses on a crack plane. Plastic embedment and frictional sliding are 

simulated using a local plasticity model in which the plastic surfaces are expressed in 

terms of the contact surface function in cylindrical relative displacement space. 

Additional focus in developing the crack plane model was given to the quantification of 

the crack surface roughness. A relatively straightforward quantification procedure 

proposed by Haberfield and Johnston (1994) was employed however a rigorous 

description of the surface morphology proved difficult due to the lack of comprehensive 

experimental data. Nevertheless it did prove possible to use direct measurements of 

crack surface roughness in the model to obtain close matches with the associated 

experimental mechanical test data without the need for extensive ‘parameter fitting’. 

The main characteristics of non-linear crack plane behaviour which the model can 

accurately simulate are: 

• shear displacement (slip) at constant normal compressive stress causes dilation 

• an increase in the normal compression produces, for the same slip, a higher 

level of shear stress transferred across the crack plane and reduced dilation  

• an increase of the crack opening reduces both normal compressive stress and 

the shear stress (in displacement-controlled tests) 

• non-linear coupled shear and normal responses 
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It should be emphasised that, as the model was developed with mechanistic 

components, a reduced number of parameters with physical meaning and readily 

measurable is required.  

Several computational aspects regarding the overall constitutive model proposed 

in Chapters 2 and 3 were discussed in Chapter 5. It was shown that instability problems 

or chatter behaviour can occur at the constitutive level when multiple microcrack 

surfaces are active and under various contact conditions. To address this issue, a single 

smoothed contact function that employs two tanh type interpolation functions was 

proposed to replace the three separate functions for open, interlock and closed contact 

states. The smoothed contact state function was shown to be effective at removing 

chatter and smoothing the model response with the proviso that care was required when 

selecting the smoothing parameters to ensure that unrealistic responses did not result 

from the smoothing process. A set of parameters were selected based on a parametric 

study that did not significantly alter the predicted response while being efficient in 

smoothing the response and removing chatter. 

The accuracy of the integration methods applied to the micromechanical 

constitutive model was next addressed. 2D and 3D rules were investigated and it was 

concluded that the integration rules were sufficiently converged for any practical 

numerical analysis.   

In the final part of Chapter 5, the consistent tangent stiffness was derived. The 

availability of this tangent is important for the efficient numerical performance of the 

model. The exact tangent was derived for the two phase composite model but it did 

prove necessary to introduce a slight approximation with respect to the part of the 

tangent matrix which controls the evolution of the concentrated stresses in the exterior 

point Eshelby solution. Checks however suggest that this approximation has minimal 

effect on numerical performance.   

Finally, in Chapter 6 an initial assessment of the micromechanical model when 

implemented in the commercial finite element code LUSAS was presented. In this study 

a simplified 2D version of the micromechanical model was employed in which concrete 

was simulated as an elastic matrix weakened by a dilute distribution of penny-shaped 

microcracks with various orientations. Three analyses of experimental tests were 

performed in which the performance of the model was assessed in various situations: 
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direct tension of an unreinforced specimen, tension combined with compression (i.e. 

bending) and shear in the analysis of a reinforced concrete beam and tension combined 

with shear in the analysis of an L shaped unreinforced specimen. The results showed 

that the model could predict realistic responses that compared well against the 

experimental responses. The author recognizes that more work is needed to fully 

evaluate the numerical performance of the models in finite element codes but the study 

presented undoubtedly demonstrates the potential of micromechanical mechanistic 

models. 

As a final conclusion, the work of this thesis demonstrates the potential of the 

micromechanical approach in achieving a robust and comprehensive constitutive model 

for concrete. The study presented does, in the author’s opinion, certainly demonstrate 

the capability of the models developed and represent significant progress in the use of 

micromechanical theories in the constitutive modelling of concrete. Nevertheless further 

research is required to meet the ultimate objective and, in this regard, recommendations 

are made below.  

 

7.2. Recommendations for future work 

Several aspects that require further research work have already been identified 

throughout this study and in fact it is the intention of the author to address them during a 

subsequent post-doctoral research project.   

Regarding the further development of the constitutive model, a number of 

recommendations are made as follows:  

� The investigation of several homogenization schemes that would take into 

account microcrack interaction effects. Although in the present formulation this 

aspect is believed to have little effect on the overall results  a more 

comprehensive study is considered necessary  

� The implementation of the multi-asperity plastic-contact crack-plane model in 

the overall constitutive model for a more realistic characterization of the crack-

plane behaviour. In the author’s opinion, the ability of the crack-plane model to 

realistically predict the crack-plane characteristic behaviour will have a 

significant and positive effect in obtaining a more favourable triaxial response  
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� A study on the integration rules for the full constitutive model in order to 

determine the optimum rule  

� A more rigorous geometric quantification of the crack surface morphology 

based on experimental data obtained from realistic specimens although, as 

mentioned before, this largely depends on the availability of such data. If 

profiles of macro-cracks correlated with experimental results for crack-plane 

behaviour are scarce, information related to microcrack roughness is almost 

non-existent. The situation however is not without hope as qualitative 

observations from micrographs and hypotheses based on back-analysis of 

experimental tests can be of great benefit. 

� The employment of statistical distributions to characterize the crack surface 

roughness. This was done tentatively in Chapter 5. Again experimental data is 

needed to ultimately validate the proposed probability density functions  

Regarding the implementation in a finite element program and the actual finite 

element analyses employing the constitutive model, the following actions are 

recommended and intended: 

� Implement the proposed 3D model, as well as an enhanced version of model 

that incorporates the plastic-contact crack-plane formulation, in the finite 

element code. Of special interest is the investigation of the effect of contact on 

the robustness of the code. It was shown in Chapter 5 that contact related 

instability is present, even at a constitutive level, and an interesting aspect 

would be to investigate the efficiency of the smoothed contact state function in 

a finite element context. 

� Implement the model with a more rigorous regularisation scheme than the 

crack-band approach used to date. 

� Provide a means of transition to fully formed cracks by means of coupling the 

approach to elements with embedded strong discontinuities 

Finally the author would like to mention that the above work will form part of a 

new Knowledge Transfer Partnership with the company that have sponsored this 

research (LUSAS), which should mean that the above future work becomes a reality and 

does not just remain on an indeterminate wish list. 
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Annex 1 

Direct tensor notations 
 

The notations for tensor operations followed by Voyiadjis and Kattan (2006) are 

employed in this thesis and are defined in Table A.1 in which α denotes a scalar, a and b 

represent first order tensors (i.e. vectors), A, B and C are second-order tensors and P, Q 

and R denote fourth-order tensors respectively. 

Table A.1. Direct tensor notation 

Direct tensor notation 
Notation based on Einstein summation 

convention (summation of repeated indices) 

α = ⋅a b  a bi iα =  

= ⊗A a b  A a bij i j=  

:α = A B  A Bij ijα =  

= ⋅C A B  C A Bik ij jk=  

= ⊗P A B  P A Bijkl ij kl=  

:=C P A  C P Aij ijkl kl=  

:=B A P  B A Pkl ij ijkl=  

= ⋅R P Q  R P Qijmn ijkl klmn=  
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Annex 2 

Transformation tensors 
 

Details of the stress and strain transformation between global and local coordinate 

systems are presented. It is recalled from Chapter 2 that the local coordinate system is 

associated with a family of microcracks and is defined by the unit vectors rd, sd and td 

(Fig A.1) with rd being normal to the microcrack plane and sd and td being the in-plane 

vectors.  

 

 

The local stresses associated to the i
th

 microcrack family characterized by the 

normal vector rdi are related to global stresses as follows: 

i iσ=s N σ          (A.1) 

Where the local and global stresses are given in vector form by: 

z 

x 

y 

rd 

td 

sd 

ψ 

θ 

Ωi 

Figure A.1. Local coordinate system of a microcrack family 
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[ ]
T

rr rs rtσ σ σ=s         (A.2) 

T

xx yy zz xy xz yzσ σ σ τ τ τ =  σ      (A.3) 

2 2 2
1 2 3 1 2 2 3 1 3

1 1 2 2 3 3 2 1 1 2 3 2 2 3 1 3 3 1

1 1 2 2 3 3 2 1 1 2 3 2 2 3 1 3 3 1

2 2 2d d d d d d d d d

d d d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d d d

r r r r r r r r r

r s r s r s r s r s r r r r r s r s

r t r t r t r t r t r t r t r t r t

σ

 
 

= + + + 
 + + + 

N      (A.4) 

where subscripts 1, 2 and 3 denote the x, y, z components of the unit normal vectors rd, sd 

and td respectively.  

In tensor form the transformation of both stresses and strains employ the same 

transformation tensor. However, in matrix form the strain transformation matrix differs 

from the stress transformation matrix in that it takes into account that the engineering 

shear strain components employed in matrix form are twice the tensor shear strain 

components. For clarity, the following notation is employed: N denotes the 

transformation tensor (for both stresses and strains), Nσ denotes the stress transformation 

matrix and Nε denotes the strain transformation matrix. Therefore for the transformation 

of strains the following equivalent expressions are employed where εL denotes the local 

strain and ε the global strain vector respectively:  

Li iε=ε N ε          (A.5) 

[ ]
T

L rr rs rtε γ γ=ε         (A.6) 

T

xx yy zz xy xz yzε ε ε γ γ γ =  ε       (A.7) 

2 2 2
1 2 3 1 2 2 3 1 3

1 1 2 2 3 3 2 1 1 2 3 2 2 3 1 3 3 1

1 1 2 2 3 3 2 1 1 2 3 2 2 3 1 3 3 1

2 2 2

2 2 2

d d d d d d d d d

d d d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d d d

r r r r r r r r r

r s r s r s r s r s r r r r r s r s

r t r t r t r t r t r t r t r t r t

ε

 
 

= + + + 
 + + +
 

N     (A.8) 

The general transformation of the local stresses and strains into the global 

coordinate system, in tensor form, is obtained as follows: 

1
gi i i

−=σ N s           (A.9) 
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1
gi i Li

−=ε N ε          (A.10) 

σgi and εgi represent the contributions to the global stress and strain tensors 

respectively from the current local direction. The global stresses (σ) and strains (ε) are 

obtained by summing the contributions from all possible directions. 

In matrix form Eqs. (A.9-10) read: 

T
gi i iε=σ N s          (A.11) 

T
gi i Liσ=ε N ε          (A.12) 


