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Solving algebraic equations in roots of unity
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Abstract. This paper is devoted to finding solutions of polynomial equations in roots of
unity. It was conjectured by S. Lang and proved by M. Laurent that all such solutions
can be described in terms of a finite number of parametric families called maximal torsion
cosets. We obtain new explicit upper bounds for the number of maximal torsion cosets
on an algebraic subvariety of the complex algebraic n-torus Gn

m. In contrast to earlier
work that gives the bounds of polynomial growth in the maximum total degree of defining
polynomials, the proofs of our results are constructive. This allows us to obtain a new
algorithm for determining maximal torsion cosets on an algebraic subvariety of Gn

m.
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1 Introduction

Let f1; : : : ; ft be polynomials in n variables defined over C. In this paper we deal
with solutions of the system 8̂<̂

:
f1.X1; : : : ; Xn/ D 0

:::

ft .X1; : : : ; Xn/ D 0

(1.1)

in roots of unity. It will be convenient to think of such solutions as torsion points
on the subvariety V.f1; : : : ; ft / of the complex algebraic torus Gn

m defined by the
system (1.1). As an affine variety, we identify Gn

m with the Zariski open subset
x1x2 � � � xn ¤ 0 of affine space An, with the usual multiplication

.x1; x2; : : : ; xn/ � .y1; y2; : : : ; yn/ D .x1y1; x2y2; : : : ; xnyn/:

By an algebraic subvariety of Gn
m we understand a Zariski closed subset. An alge-

braic subgroup of Gn
m is a Zariski closed subgroup. A subtorus of Gn

m is a geomet-
rically irreducible algebraic subgroup. A torsion coset is a coset !H , where H
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642 I. Aliev and C. Smyth

is a subtorus of Gn
m and ! D .!1; : : : ; !n/ is a torsion point. Given an algebraic

subvariety V of Gn
m, a torsion coset C is called maximal in V if C � V and it is

not properly contained in any other torsion coset in V . A maximal 0-dimensional
torsion coset will be also called an isolated torsion point.

Let Ntor.V/ denote the number of maximal torsion cosets contained in V . A fa-
mous conjecture by Lang ([17, p. 221]) proved by McQuillan [22] implies as a
special case that Ntor.V/ is finite. This special case had been settled by Ihara,
Serre and Tate (see Lang [17, p. 201]) when dim.V/ D 1, and by Laurent [18]
if dim.V/ > 1. A different proof of this result was also given by Sarnak and
Adams [26]. It follows that all solutions of the system (1.1) in roots of unity can
be described in terms of a finite number of maximal torsion cosets on the subvari-
ety V.f1; : : : ; ft /. It is then of interest to obtain an upper bound for this number.
Zhang [29] and Bombieri and Zannier [6] showed that if V is defined over a num-
ber field K, then Ntor.V/ is effectively bounded in terms of d , n, ŒK W Q� and M ,
when the defining polynomials were of total degrees at most d and heights at
most M . Schmidt [28] found an explicit upper bound for the number of maximal
torsion cosets on an algebraic subvariety of Gn

m that depends only on the dimension
n and the maximum total degree d of the defining polynomials. Indeed, let

Ntor.n; d/ D max
V
Ntor.V/;

where the maximum is taken over all subvarieties V � Gn
m defined by polynomial

equations of total degree at most d . The proof of Schmidt’s bound is based on
a result of Schlickewei [27] about the number of nondegenerate solutions of a
linear equation in roots of unity. This latter result was significantly improved by
Evertse [13], and the resulting Evertse–Schmidt bound can then be stated as

Ntor.n; d/ � .11d/
n2

 
nC d

d

!3.nCd
d /

2

: (1.2)

Applying techniques from arithmetic algebraic geometry, David and Philip-
pon [10] went even further and obtained a polynomial-in-d upper bound for the
number of isolated torsion points, with the exponent being essentially 7k , where
k is the dimension of the subvariety. This result has been since slightly improved
by Amoroso and David [2]. A polynomial bound for the number of all maximal
torsion cosets also appears in the main result of Rémond [24], with the exponent
.k C 1/3.kC1/

2

.
It should be mentioned here that the last two bounds are special cases of more

general results. David and Philippon [10] in fact study the number of algebraic
points with small height and Rémond [24] deals with subgroups of finite rank and
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Solving algebraic equations in roots of unity 643

even with the thickness of such subgroups in the sense of the height. The high
generality of the results requires applying sophisticated tools from arithmetic al-
gebraic geometry. This approach involves working with heights in the fields of al-
gebraic numbers and a delicate specialization argument (see, e.g., Proposition 6.9
in David and Philippon [11]) that allows one to transfer the results to algebraically
closed fields of characteristics 0.

In this paper we present a constructive and more elementary approach to this
problem which is based on well-known arithmetic properties of the roots of unity.
Roughly speaking, we use the Minkowski geometry of numbers to reduce the prob-
lem to a very special case and then apply an intersection/elimination argument.
This allows us to obtain a polynomial bound with the exponent 5n for the number
of maximal torsion cosets lying on a subvariety of Gn

m defined over C, and implies
an algorithm for finding all such cosets. The algorithm is presented in Section 6.

One should point out here that other algorithms for finding all the maximal
torsion cosets on a subvariety of Gn

m were proposed by Sarnak and Adams in [26]
and by Ruppert [25]. In view of its high complexity, the algorithm of Ruppert is
described in [25] only for a special choice of defining polynomials. Note also that
different algorithms implicitly follow from the papers by Mann [20], Conway and
Jones [9] and Dvornicich and Zannier [12].

1.1 The main results

We shall start with the case of hypersurfaces.

Theorem 1.1. Let f 2 CŒX1; : : : ; Xn�, n � 2, be a polynomial of total degree d
and let H D H .f / be the hypersurface in Gn

m defined by f . Then

Ntor.H / � c1.n/d
c2.n/; (1.3)

with
c1.n/ D n

3
2
.2Cn/5n

and c2.n/ D
1

16
.49 � 5n�2 � 4n � 9/:

Let f 2 CŒX1; : : : ; Xn� be a polynomial of degree di in Xi . Ruppert [25]
conjectured that the number of isolated torsion points on H .f / is bounded by
c.n/d1 � � � dn. Theorem 1.1 is a step towards proving this conjecture. Furthermore,
the results of Beukers and Smyth [3] for plane curves (see Lemma 2.2 below)
indicate that the following stronger conjecture might be true.

Conjecture. The number of isolated torsion points on the hypersurface H .f / is
bounded by c.n/voln.f /, where voln.f / is the n-volume of the Newton polytope
of the polynomial f .
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644 I. Aliev and C. Smyth

Concerning general varieties, we obtained the following result.

Theorem 1.2. For n � 2, we have

Ntor.n; d/ � c3.n/d
c4.n/; (1.4)

where

c3.n/ D n
.2Cn/2n�2

Pn�1
iD2 c2.i/

nY
iD2

c1.i/ and c4.n/ D

nX
iD2

c2.i/2
n�i
C 2n�1:

It should be pointed out that the constants ci .n/ in Theorems 1.1 and 1.2 could
be certainly improved. To simplify the presentation, we tried to avoid painstaking
estimates.

The proof of Theorem 1.1 is based on Theorem 1.3, formulated in the next
section. Theorem 1.2, in its turn, is a consequence of Theorem 1.1.

1.2 An intersection argument

For i D .i1; : : : ; in/ 2 Zn, we abbreviate X i
D X

i1
1 � � �X

in
n . Let

f .X/ D
X

i2Zn

aiX
i

be a Laurent polynomial. By the support of f we mean the set

Sf D ¹i 2 Zn W ai ¤ 0º

and by the exponent lattice of f we mean the lattice L.f / generated by the dif-
ference set D.Sf / D Sf � Sf , so that

L.f / D spanZ¹D.Sf /º:

Our next result and its proof is a generalization of that for n D 2 in Beukers and
Smyth [3].

Theorem 1.3. Let f 2 CŒX1; : : : ; Xn�, n � 2, be an irreducible polynomial with
L.f / D Zn. Then for some m with 1 � m � 2nC1 � 1 there exist m polynomials
f1; f2; : : : ; fm with the following properties:

(i) deg.fi / � 2 deg.f / for i D 1; : : : ; m.

(ii) For 1 � i � m, the polynomials f and fi have no common factor.

(iii) For any torsion cosetC lying on the hypersurface H .f / there exists some fi ,
1 � i � m, such that the coset C also lies on the hypersurface H .fi /.
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Solving algebraic equations in roots of unity 645

2 Lemmas required for the proofs

In this section we give the definitions and basic lemmas we need in the rest of
paper.

2.1 Finding the cyclotomic part of a polynomial in one variable

Let us consider the following one-variable version of the problem: given a poly-
nomial f 2 CŒX�, find all roots of unity ! that are zeroes of f . This is equivalent
to finding the factor of f consisting of the product of all distinct irreducible cy-
clotomic polynomial factors of f , which we shall call the cyclotomic part of f .
Algorithms for finding the cyclotomic part of f follow from several papers, for
instance the papers by Mann [20], Conway and Jones [9] and Dvornicich and Zan-
nier [12]. In this paper we use the approach of Bradford and Davenport [7] and
Beukers and Smyth [3], who proposed algorithms based on the following proper-
ties of roots of unity.

Lemma 2.1 (Beukers and Smyth [3, Lemma 1]). (i) If g 2 CŒX�, g.0/ ¤ 0, is
a polynomial with the property that for every zero ˛ of g, at least one of˙˛2

is also a zero, then all zeroes of g are roots of unity.

(ii) If ! is a root of unity, then it is conjugate to !p, where8̂<̂
:
p D 2k C 1; !p D �! for ! a primitive .4k/th root of unityI
p D k C 2; !p D �!2 for ! a primitive .2k/th root of unity; k oddI
p D 2; !p D !2 for ! a kth root of unity; k odd:

In the special case f 2 ZŒX�, Filaseta and Schinzel [14] constructed a deter-
ministic algorithm for finding the cyclotomic part of f that works especially well
when the number of nonzero terms is small compared to the degree of f .

2.2 Torsion points on plane curves

Let f 2 CŒX˙1; Y ˙1� be a Laurent polynomial. The problem of finding tor-
sion points on the curve C defined by the polynomial equation f .X; Y / D 0

was implicitly solved already in work of Lang [16] and Liardet [19], as well as
in the papers by Mann [20], Conway and Jones [9] and Dvornicich and Zannier
[12], already referred to. More recently, it has been also addressed in Beukers and
Smyth [3] and Ruppert [25].

The polynomial f can be written in the form

f .X; Y / D g.X; Y /
Y
i

.XaiY bi � !i /;
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646 I. Aliev and C. Smyth

where the !j are roots of unity and g is a polynomial (possibly reducible) that has
no factor of the form XaY b � !, for ! a root of unity.

Lemma 2.2 (Beukers and Smyth [3, Main Theorem]). The curve C has at most
22vol2.g/ isolated torsion points.

Hence, for f 2 CŒX; Y �, the number of isolated torsion points on the curve
C D H .f / is at most 11.deg.f //2. Furthermore, by Lemma 2.8 below, each
factor XaiY bi � !i of the polynomial f gives precisely one torsion coset. Sum-
marizing the above observations, we get the inequality

Ntor.C/ � 11.deg.f //2 C deg.f /: (2.1)

2.3 Geometry of numbers

The bijection i $ X i allows us to study polynomials by the use of the geometry
of numbers. The following technical tools will be needed.

We first recall some basic definitions. A lattice is a discrete subgroup of Rn.
Given a lattice L of rank k, any set of vectors ¹b1; : : : ;bkº that satisfies L D
spanZ¹b1; : : : ;bkº or the matrix B D .b1; : : : ;bk/ with rows bi will be called a
basis of L. The determinant of a lattice L with a basis B is defined to be

det.L/ D
q

det.B BT /:

Let Bnp with p D 1; 2;1 denote the unit n-ball with respect to the lp-norm,
and let n be the Hermite constant for dimension n – see Section 38.1 of Gruber
and Lekkerkerker [15]. For a convex body K and a lattice L, we also denote by
�i .K;L/ the i th successive minimum of K with respect to L – see Section 9.1
ibid.

Lemma 2.3. Let S be a subspace of Rn with dim.S/ D rank.S \ Zn/ D r < n.
Then there exists a basis ¹b1;b2; : : : ;bnº of the lattice Zn such that

(i) S � spanR¹b1; : : : ;bn�1º;

(ii) jbi j < 1C 1
2
.n � 1/

n�1
2

n�1 
1
2
n�r det.S \ Zn/

1
n�r , i D 1; : : : ; n.

Proof. Suppose first that r < n � 1. By Proposition 1 (ii) of Aliev, Schinzel and
Schmidt [1], there exists a subspace T � Rn with dim.T / D n � 1 such that
S � T and

det.T \ Zn/ � 
1
2
n�r det.S \ Zn/

1
n�r : (2.2)

In the case r D n � 1 we will put T D S .
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Solving algebraic equations in roots of unity 647

The subspace T can be considered as a standard .n� 1/-dimensional euclidean
space. Then by the Minkowski’s second theorem for balls (see Theorem I, Ch. VIII
of Cassels [8]) we have

n�1Y
iD1

�i .T \ B
n
2 ; T \ Zn/ � 

n�1
2

n�1 det.T \ Zn/:

Noting that 1 � �1.T \ Bn2 ; T \ Zn/ � � � � � �n�1.T \ Bn2 ; T \ Zn/, we get

�n�1.T \ B
n
2 ; T \ Zn/ � 

n�1
2

n�1 det.T \ Zn/: (2.3)

Next, by Corollary of Theorem VII, Ch. VIII of Cassels [8], there exists a basis
B D .b1; : : : ;bn�1/ of the lattice T \Zn with jbj j � max¹1; j=2º�j .T \Bn2 ; T \
Zn/, j D 1; : : : ; n � 1. Consequently,

jbi j �
n � 1

2
�n�1.T \ B

n
2 ; T \ Zn/

�
n � 1

2


n�1
2

n�1 det.T \ Zn/

�
n � 1

2


n�1
2

n�1 
1
2
n�r det.S \ Zn/

1
n�r ; i D 1; : : : ; n � 1:

Further, we need to extend B to a basis of the lattice Zn. Let a be a primitive
integer vector from span?R.T \ Zn/. Clearly, all possible vectors b such that
.b1; : : : ;bn�1;b/ is a basis of Zn form the set ¹x 2 Rn W hx; ai D ˙1º\Zn, and
this set contains a point bn with

jbnj �
1

jaj
C �.T \ Bn2 ; T \ Zn/; (2.4)

where�.� ; �/ is the inhomogeneous minimum – see Section 13.1 of Gruber–Lekker-
kerker [15]. By Jarnik’s inequality (see Theorem 1 on p. 99 ibid.),

�.T \ Bn2 ; T \ Zn/ �
1

2

n�1X
iD1

�i .T \ B
n
2 ; T \ Zn/

�
n � 1

2
�n�1.T \ B

n
2 ; T \ Zn/:

Consequently, by (2.4), (2.3) and (2.2), we have

jbnj < 1C
n � 1

2


n�1
2

n�1 
1
2
n�r det.S \ Zn/

1
n�r :
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648 I. Aliev and C. Smyth

When L is a lattice of rank n, its polar lattice L� is defined as

L� D ¹x 2 Rn W hx;yi 2 Z for all y 2 Lº:

Given a basis B D .b1; : : : ;bn/ of L, the basis of L� polar to B is the basis
B� D .b�1; : : : ;b

�
n/ with

hbi ;b
�
j i D ıij ; i; j D 1; : : : ; n;

where ıij is the Kronecker delta.

Corollary 2.4. Let S be a subspace of Rn with dim.S/ D rank.S \Zn/ D r < n.
Then there exists a basis A D .a1; a2; : : : ; an/ of the lattice Zn such that a1 2 S?

and the vectors of the polar basis A� D .a�1; a
�
2; : : : ; a

�
n/ satisfy the inequalities

ja�i j < 1C
n � 1

2


n�1
2

n�1 
1
2
n�r det.S \ Zn/

1
n�r ; i D 1; : : : ; n: (2.5)

Proof. Applying Lemma 2.3 to the subspace S we get a basis ¹b1;b2; : : : ;bnº of
Zn satisfying conditions (i)–(ii). Observe that its polar basis ¹b�1;b

�
2; : : : ;b

�
nº has

its last vector b�n in S?. Therefore, we can put a1 D b�n; a2 D b
�
2; : : : ; an�1 D

b�n�1; an D b
�
1 .

2.4 Lattices and torsion cosets

In the subsection we describe the standard bijection between lattices and algebraic
subgroups of Gn

m. By an integer lattice we understand a lattice A � Zn. An
integer lattice is called primitive if A D spanR.A/ \ Zn. For an integer lattice A,
we define the subgroup HA of Gn

m by

HA D ¹x 2 Gn
m W x

a
D 1 for all a 2 Aº:

Then, for instance, HZn is the trivial subgroup.

Lemma 2.5 (see Schmidt [28, Lemmas 1 and 2]). The map A 7! HA sets up a
bijection between integer lattices and algebraic subgroups of Gn

m. A subgroup
H D HA is irreducible if and only if the lattice A is primitive.

Let! D .!1; : : : ; !n/ be a torsion point and letC D !HA be an r-dimensional
torsion coset with r � 1. We will need the following parametric representation
of C . Let span?R.A/ denote the orthogonal complement of spanR.A/ in Rn and let
G D .gij / be an r�n integer matrix of rank r whose rows g1; : : : ;gr form a basis
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Solving algebraic equations in roots of unity 649

of the lattice span?R.A/ \ Zn. Then the coset C can be represented in the form

C D

 
!1

rY
jD1

t
gj1

j ; : : : ; !n

rY
jD1

t
gjn

j

!

with parameters t1; : : : ; tr 2 C�. We will say that G is an exponent matrix for the
coset C . If f 2 CŒX˙11 ; : : : ; X˙1n � is a Laurent polynomial and for j 2 Zr

fj .X/ D
X

i2Sf W i GTDj

aiX
i ;

then f .X/ D
P

j2Zr fj .X/ and

the coset C lies on H .f / if and only if fj .!/ D 0 for all j 2 Zr : (2.6)

Let U D .u1;u2; : : : ;un/ be a basis of the lattice Zn. We will associate with U
the new coordinates .Y1; : : : ; Yn/ in Gn

m defined by

Y1 D X
u1 ; Y2 D X

u2 ; : : : ; Yn D X
un : (2.7)

Suppose that the matrix U�1 has rows v1; v2; : : : ; vn. By the image of a Lau-
rent polynomial f 2 CŒX˙11 ; : : : ; X˙1n � in coordinates .Y1; : : : ; Yn/ we mean the
Laurent polynomial

f U.Y / D f .Y v1 ; : : : ;Y vn/:

By the image of a torsion coset C D !HA in coordinates .Y1; : : : ; Yn/ we mean
the torsion coset

CU
D .!u1 ; : : : ;!un/HB ;

where B D ¹aU�1 W a 2 Aº.

Lemma 2.6. The mapC 7! CU sets up a bijection between maximal torsion cosets
on the subvarieties V.f1; : : : ; ft / and V.f U

1 ; : : : ; f
U
t /.

Proof. It is enough to observe that the map � W Gn
m ! Gn

m defined by

�.x/ D .xu1 ; : : : ;xun/ (2.8)

is an automorphism of Gn
m (see Ch. 3 in Bombieri and Gubler [4] and Section 2 in

Schmidt [28]).

Remark. The automorphism (2.8) is called a monoidal transformation. We intro-
duced the coordinates (2.7) to make the inductive argument used in the proofs of
Theorems 1.1–1.2 more transparent.

Brought to you by | Cardiff University
Authenticated | 131.251.254.238
Download Date | 7/28/14 1:08 PM



650 I. Aliev and C. Smyth

For f 2 CŒX1; : : : ; Xn� and k � n, we will denote by T ki .f / the number
of i -dimensional maximal torsion cosets on H .f /, regarded as a hypersurface
in Gk

m. Let A � Zn be an integer lattice of rank n with det.A/ > 1 and let
A D .a1; : : : ; an/ be a basis of A.

Lemma 2.7. Suppose that the Laurent polynomials f; f � 2 CŒX˙11 ; : : : ; X˙1n �

satisfy

f D f �.Xa1 ; : : : ;Xan/: (2.9)

Then the inequalities

T ni .f
�/ � T ni .f / � det.A/T ni .f

�/; i D 0; : : : ; n � 1; (2.10)

hold.

Proof. First, for any torsion point � D .�1; : : : ; �n/ on H .f �/, we will find all tor-
sion points! on H .f /with � D .!a1 ; : : : ;!an/. Putting the matrix A into Smith
Normal Form (see Newman [23, p. 26]) yields two matrices V and W in GLn.Z/
with WAV D D, where D D diag.d1; : : : ; dn/. Therefore, by Lemma 2.6, we
may assume without loss of generality that A D diag.d1; : : : ; dn/. Let #1; : : : ; #n
be primitive d1th; d2th; : : : ; dnth roots of �1; : : : ; �n, respectively. Then as we let
#1; : : : ; #n vary over all possible such choices of these primitive roots

the torsion point � 2 H .f �/ gives precisely det.A/ torsion points
! D .#1; : : : ; #n/ on H .f / with � D .!a1 ; : : : ;!an/.

(2.11)

Let now Mf and Mf � denote the sets of all maximal torsion cosets of positive
dimension on H .f / and H .f �/ respectively. We will define a map � WMf !Mf �

as follows. Let C 2 Mf be an r-dimensional maximal torsion coset. Given any
torsion point ! D .!1; : : : ; !n/ 2 C , we can write the coset as C D !HB for
some primitive integer lattice B . Recall that C can be also represented in the form

C D

 
!1

rY
jD1

t
gj1

j ; : : : ; !n

rY
jD1

t
gjn

j

!
; (2.12)

where t1; : : : ; tr 2 C� are parameters and the vectors gj D .gj1; : : : ; gjn/, j D
1; : : : ; r , form a basis of the integer lattice span?R.B/ \ Zn. We consider M D

spanZ¹g1AT ; : : : ;grAT º and L D spanR.M/ \ Zn. Then we define

�.C / D

 
!a1

rY
kD1

t
sk1

k
; : : : ;!an

rY
kD1

t
skn

k

!
;
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Solving algebraic equations in roots of unity 651

where t1; : : : ; tr 2 C� are parameters and the vectors sk D .sk1; : : : ; skn/, k D
1; : : : ; r , form a basis of the lattice L. Let us show that � is well-defined. First,
the observation (2.6) implies that �.C / is a maximal r-dimensional torsion coset
on H .f �/. Now we have to show that �.C / does not depend on the choice of
! 2 C . Observe that any torsion point � 2 C has the form

� D

 
!1

rY
jD1

�
gj1

j ; : : : ; !n

rY
jD1

�
gjn

j

!
;

where �1; : : : ; �r are some roots of unity. Put hj D gjAT , j D 1; : : : ; r . It is
enough to show that for any roots of unity �1; : : : ; �r there exist roots of unity
�1; : : : ; �r such that

rY
jD1

�
hji

j D

rY
kD1

�
ski

k
; i D 1; : : : ; n:

Since M � L, we have hj 2 L, so that

hj D lj1s1 C � � � C ljrsr ; lj1; : : : ; ljr 2 Z:

Now we can put

�k D �
l1k

1 �
l2k

2 � � � �
lrk
r ; k D 1; : : : ; r:

Thus, the map � is well-defined. It can be also easily shown that the map � is
surjective. This observation immediately implies the left hand side inequality in
(2.10) for positive i . Moreover, by (2.11), we clearly have

T n0 .f / D det.A/T n0 .f
�/; (2.13)

so that the lemma is proved for the isolated torsion points.
Let now D D �H 0 2 M � be an r-dimensional maximal torsion coset, where

r � 1. Suppose that D D �.C / for some C 2 Mf . We will show that C D !H ,
where ! can be chosen among the det.A/ torsion points listed in (2.11). This will
immediately imply the right hand side inequality in (2.10) for positive i . We may
assume without loss of generality that H D HB and H 0 D Hspan?R.L/\Zn , with
the lattices B and L defined as above. Let �1; : : : ; �r be any roots of unity. Then
the coset D can be represented as

D D

 
�1

rY
kD1

�
sk1

k

rY
kD1

t
sk1

k
; : : : ; �n

rY
kD1

�
skn

k

rY
kD1

t
skn

k

!
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for � D .�1; : : : ; �n/. Thus, it is enough to prove the existence of roots of unity
�1; : : : ; �r with

rY
kD1

�
ski

k
D

rY
jD1

�
hji

j ; i D 1; : : : ; n:

The latticeM is a sublattice of L and rank .M/ D rank .L/. Therefore, there exist
positive integers n1; : : : ; nr such that nisi 2 M , i D 1; : : : ; r , and, consequently,
we have

nisi D mi1h1 C � � � Cmirhr ; mi1; : : : ; mir 2 Z:

Now, if the roots of unity �1; : : : ; �r satisfy �ni

i D �i , i D 1; : : : ; r , we can put

�j D �
m1j

1 �
m2j

2 � � � �
mrj

r ; j D 1; : : : ; r:

2.5 Torsion cosets of codimension 1 in Gn
m

The next lemma is an immediate consequence of the structure of torsion cosets,
explained for example in Bombieri and Gubler [4]. We give a proof here for the
sake of completeness.

Lemma 2.8. Suppose that the hypersurface H is defined by f 2 CŒX1; : : : ; Xn�
with f D

Q
i hi , where hi are irreducible polynomials. Then the .n � 1/-dimen-

sional torsion cosets on H are precisely the hypersurfaces H .hj / defined by the
factors hj of the form Xmj � !jX

nj , where !j are roots of unity.

Proof. Let ! be a root of unity and let h D Xm
� !Xn be a factor of f . Multi-

plying h by a monomial we may assume that h is a Laurent polynomial of the
form Xa

� !, where a D .a1; : : : ; an/ is a primitive integer vector, so that
gcd.a1; : : : ; an/ D 1. Let A be the integer lattice generated by the vector a,
b D .b1; : : : ; bn/ be an integer vector with hb; ai D 1, where h�; �i is the usual
inner product, and put

! D .!b1 ; : : : ; !bn/:

Now, all points of the torsion cosetC D !HA clearly satisfy the equationXa
D !.

To show that any solution x D .x1; : : : ; xn/ of this equation belongs to C we
observe that the point .x1!�b1 ; : : : ; xn!

�bn/ belongs to the subtorus HA.
Conversely, let C D !H be an .n � 1/-dimensional coset on H . Since the

exponent matrix of the coset C has rank n � 1, there exists a primitive integer
vector a such that and for all j 2 Zn�1 we have spanR.L.fj //\Zn D spanZ¹aº.
Since fj .!/ D 0, the Laurent polynomial hC D Xa

�!a will divide all fj and,
consequently, f . Multiplying by a monomial, we may assume that hC is a factor
of the desired form. Finally, noting that H D HspanZ¹aº

and applying the result of
the previous paragraph, we see that C D H .hC /.
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3 Proof of Theorem 1.3

The proof of Theorem 1.3 is divided into several cases, in the similar way to Sec-
tion 3 of Beukers and Smyth [3].

3.1 f with rational coefficients

Suppose that f 2 QŒX1; : : : ; Xn�, n � 2, is irreducible and has L.f / D Zn. We
will show that the m D 2nC1 � 1 polynomials

f .�1X1; : : : ; �nXn/; �i D ˙1; not all �i D 1; (3.1)

f .�1X
2
1 ; : : : ; �nX

2
n/; �i D ˙1; (3.2)

satisfy all the conditions of the theorem.
Condition (i) clearly holds for all polynomials (3.1)–(3.2). Suppose now that f

divides one of the polynomials (3.1). Let us consider the lattice

L2 D

²
.x1; : : : ; xn/ 2 Zn W

1 � �1

2
x1 C � � � C

1 � �n

2
xn � 0 mod 2

³
;

with the same choice of �i . Note that det.L2/ D 2 and thus L2   Zn. Then,
for some z 2 Zn, we have z C Sf � L2. Therefore, the lattice L.f / cannot
coincide with Zn, a contradiction. This argument also implies that the polyno-
mials (3.1) are pairwise coprime. Next, if f divides a polynomial f 0 from (3.2)
then, since f 0 2 QŒX21 ; : : : ; X

2
n �, we have that each of the polynomials (3.1) also

divides f 0. Hence, 2n degf � degf 0 D 2 degf , so that n D 1, a contradiction.
Consequently, the set of polynomials f1; : : : ; fm consists of all the polynomials
(3.1)–(3.2). Then condition (ii) is satisfied.

It remains only to check that condition (iii) holds. Let C D !H be a torsion
r-dimensional coset on the hypersurface H D H .f /. There is a root of unity !
such that ! D .!i1 ; : : : ; !in/, where we may assume that gcd.i1; : : : ; in/ D 1, so
that, in particular, not all of the i1; : : : ; in are even. Next, we have

f .!i1 ; : : : ; !in/ D 0

and, by part (ii) of Lemma 2.1, also at least one of the 2nC1 � 1 equalities

f .�1!
i1 ; : : : ; �n!

in/ D 0; �i D ˙1; not all �i D 1;

f .�1!
2i1 ; : : : ; �n!

2in/ D 0; �i D ˙1;

holds. Therefore, the torsion point ! lies on a hypersurface H 0 D H .f 0/, where
f 0 is one of the polynomials f1; : : : ; fm. This settles the case r D 0.
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654 I. Aliev and C. Smyth

Suppose now that r � 1. We claim that the torsion coset C lies on H 0. To see
this we observe that for all j 2 Zr we have

f 0j .!/ D fj .!
p i1 ; : : : ; !p in/ D 0;

where p is the exponent from part (ii) of Lemma 2.1. Hence, by (2.6),C lies on H 0.

3.2 f with coefficients in Qab

We now define the polynomials f1; : : : ; fm in the case of f having coefficients
lying in a cyclotomic field. Let us choose N to be the smallest integer such that,
for some roots of unity �1; : : : ; �n, the polynomial f .�1x1; : : : ; �nxn/ has all its
coefficients in K D Q.!N /, for !N a primitive N th root of unity. Since for N
odd �!N is a primitive .2N /th root of unity, we may assume either that N is odd
or a multiple of 4.

We then replace f by this polynomial. When we have found the polynomials
f1; : : : ; fm for this new f , it is easy to go back and find those for the original f .

N odd. Take � to be an automorphism of K taking !N to !2N . We keep the
polynomials fi that come from (3.1) and replace the polynomials that come from
(3.2) by

f � .�1X
2
1 ; : : : ; �nX

2
n/; �i D ˙1; not divisible by f: (3.3)

We then claim that any torsion coset of H .f / either lies on one of the 2n � 1
hypersurfaces defined by (3.1) or on one of the 2n hypersurfaces defined by one
of the polynomials (3.3). Take a torsion coset C D .!

i1
l
; : : : ; !

in
l
/H of H .f /,

with gcd.i1; : : : ; in/ D 1. If 4 − l , then we can extend � to an automorphism
of K.!l/ which takes !l to one of ˙!2

l
. Therefore, the coset C also lies on a

hypersurface defined by one of the polynomials (3.3). On the other hand, if 4 j l ,
we put 4k D lcm .l; N /. Then the automorphism, � say, of K.!l/ D Q.!4k/
mapping !4k 7! !2kC1

4k
takes !l 7! !2kC1

l
D �!l and !N 7! !2kC1N D !N .

Thus, C lies on a hypersurface defined by one of the polynomials (3.1).

4 j N . We take the same coset C as in the previous case, again put 4k D
lcm .l; N /, and use the same automorphism � . Then � takes !l 7! !2k

l
!l D ˙!l

and !N 7! !2kN !N D ˙!N . We now consider separately the four possibilities
for these signs. Firstly, from the definition of k they cannot both beC signs.

If
�.!l/ D !l ; �.!N / D �!N ;

then C also lies on H .f � /. Note that f � ¤ f , by the minimality of N , so that
they have a proper intersection.
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If
�.!l/ D �!l ; �.!N / D !N ;

then C also lies on a hypersurface defined by one of the polynomials (3.1). As
L.f / D Zn, each has proper intersection with f , as we saw in Section 3.1.

Finally, if
�.!l/ D �!l ; �.!N / D �!N ;

then C also lies on one of the hypersurfaces H .f �i /, for fi in (3.1). Suppose
that for instance f and f � .�X1; X2; : : : ; Xn/ have a common component, so that
f � .�X1; X2; : : : ; Xn/ D f .X1; X2; : : : ; Xn/. Then we have

f .!NX1; X2; : : : ; Xn/
�
D f � .�!NX1; X2; : : : ; Xn/ D f .!NX1; X2; : : : ; Xn/:

For any coefficient c of f .!NX1; X2; : : : ; Xn/, write c D a C !N b, where
a; b 2 Q.!2N /. Then c� D a � !N b D c, so that b D 0, c 2 Q.!2N /. Con-
sequently, f .!NX1; X2; : : : ; Xn/ 2 Q.!2N /ŒX1; : : : ; Xn�, contradicting the mini-
mality ofN . The same argument applies for other polynomials (3.1). Thus, C lies
on one of 2nC1 � 1 subvarieties defined by the polynomials (3.1) and the polyno-
mials

f � .�1X1; : : : ; �nXn/; �i D ˙1:

3.3 f with coefficients in C

Let K be the coefficient field of f . Suppose that K is not a subfield of Qab. With-
out loss of generality, assume that at least one coefficient of f is equal to 1 and
choose an automorphism � 2 Gal.K=Qab/ which does not fix f . Then since all
roots of unity belong to Qab, f and f � have the same torsion cosets. Further,
f and f � have no common component. Thus, in this case we can take the set of
fi to be the single polynomial f � .

4 Proof of Theorem 1.1

The lemmas of the next two subsections will allow us to assume that L.f / D Zn.

4.1 L.f / of rank less than n

Lemma 4.1. Let f 2 CŒX1; : : : ; Xn�, n � 2, be a polynomial of (total) degree d .
Suppose that L.f / has rank r less than n. Then there exists f � 2 CŒX1; : : : ; Xr �
of degree at most d such that L.f �/ also has rank r and

T ni .f / � T
r
i�nCr.f

�/; i D n � r; : : : ; n � 1: (4.1)
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656 I. Aliev and C. Smyth

Proof. Multiplying f by a monomial, we will assume without loss of generality
that Sf � L.f /. Then there exists an integer vector s D .s1; : : : ; sn/ 2 span?R.Sf /
and we may assume that sn ¤ 0. Consider the integer lattice A � Zn with the
basis

A D

0BBBBBBB@

1 0 : : : 0 s1

0 1 : : : 0 s2
:::

:::
:::

:::

0 0 : : : 1 sn�1

0 0 : : : 0 sn

1CCCCCCCA
:

Observe that
f .X1; : : : ; Xn�1; 1/ D f .X

a1 ; : : : ;Xan/;

and, by Lemma 2.7, we have

T ni .f / � T
n�1
i�1 .f .X1; : : : ; Xn�1; 1//; i D 1; : : : ; n � 1:

Applying the same procedure to the polynomial f .X1; : : : ; Xn�1; 1/ and so on,
we will remove n � r variables and get the desired polynomial f �.

4.2 L.f / of rank n, L.f /   Zn

Lemma 4.2. Let f 2 CŒX1; : : : ; Xn�, n � 2, be an irreducible polynomial of
degree d . Suppose that L.f / has rank n and L.f /   Zn. Then there exists
an irreducible polynomial f � 2 CŒX1; : : : ; Xn� of degree at most c1.n; d/ D
n2.nC 1/Šd such that L.f �/ D Zn and

T n0 .f / D det.L.f //T n0 .f
�/; (4.2)

T ni .f / � det.L.f //T ni .f
�/; i D 1; : : : ; n � 1: (4.3)

Proof. Since Sf � dBn1 , we have D.Sf / � dD.Bn1 / D 2dBn1 . Thus, multi-
plying f by a monomial, we may assume that f is a Laurent polynomial with
Sf � L.f / \ 2dB

n
1 . Let L�.f / be the polar lattice for the lattice L.f / and let

A� D .a�1; : : : ; a
�
n/ be a basis of L�.f /. Consider the map  W L.f / ! Zn

defined by
 .u/ D .hu; a�1i; : : : ; hu; a

�
ni/:

The Laurent polynomial

f �.X/ D
X

u2Sf

auX
 .u/
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has L.f �/ D Zn. Observe that we have

f D f �.Xa1 ; : : : ;Xan/: (4.4)

Therefore, the polynomial f � is irreducible and, by Lemma 2.7, the inequalities
(4.3) hold. Note also that the equality (4.2) follows from (2.13).

Let us estimate the size of Sf � . Recall that Bn1 is the polar reciprocal body of
Bn1 – see Theorem III of Ch. IV in Cassels [8]. Thus, by Theorem VI of Ch. VIII
ibid., we have

�i .B
n
1 ; L.f //�nC1�i .B

n
1; L

�.f // � nŠ:

Noting that �i .Bn1 ; L.f // � 1, we get the inequality

�n.B
n
1; L

�.f // � nŠ: (4.5)

Next, by Corollary of Theorem VII, Ch. VIII of Cassels [8], there exists a basis
A� D .a�1; : : : ; a

�
n/ of the lattice L�.f / such that

a�j 2 max¹1; j=2º�j .Bn1; L
�.f //Bn1: (4.6)

Combining the inequalities (4.5) and (4.6) we get the bound

ka�j k1 �
n � nŠ

2
:

Then, by the definition of the Laurent polynomial f �, we have

Sf � � . max
1�j�n

ka�j k1/2ndB
n
1 � n

2nŠdBn1 :

Thus, multiplying f � by a monomial, we may assume that f � 2 CŒX1; : : : ; Xn�
and

deg.f �/ � n2.nC 1/Šd D c1.n; d/:

4.3 The case L.f / D Zn

Let
T .i; n; d/ D max

f 2CŒX1;:::;Xn�
degf�d

T ni .f /; i D 0; : : : ; n � 1;

be the maximum number of maximal torsion i -dimensional cosets lying on a sub-
variety of Gn

m defined by a polynomial of degree at most d .
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Lemma 4.3. Let f 2 CŒX1; : : : ; Xn�, n � 2, be an irreducible polynomial of
degree at most d with L.f / D Zn. Then

T n0 .f / � .2
nC1
� 1/

�
T .0; n � 1; c2.n; d//

n�2X
sD1

T .s; n � 1; 2d2/

C dT .0; n � 1; 2d2/

�
;

(4.7)

T n1 .f / � .2
nC1
� 1/

�
T .1; n � 1; c2.n; d//

n�2X
sD1

T .s; n � 1; 2d2/

C T .0; n � 1; 2d2/

�
;

(4.8)

T ni .f / � .2
nC1
� 1/T .i; n � 1; c2.n; d//

n�2X
sDi�1

T .s; n � 1; 2d2/;

i D 2; : : : ; n � 2;

(4.9)

T nn�1.f / � 1; (4.10)

where c2.n; d/ D n.nC 1/d C 2.n � 1/.n2 � 1/nŠd3.

Proof. By Lemma 2.8, we immediately get the inequality (4.10). Assume now
that H .f / contains no .n � 1/-dimensional cosets. Applying Theorem 1.3 to the
polynomial f , we obtain m � 2nC1 � 1 polynomials f1; f2; : : : ; fm satisfying
conditions (i)–(iii) of this theorem. For 1 � k � m, put gk D Res.f; fk; Xn/.
By Theorem 1.3 (ii), the polynomials f and fk have no common factor and thus
gk ¤ 0. Recall also that gk lies in the elimination ideal hf; fki\CŒX1; : : : ; Xn�1�
and deg.gk/ � deg.f / deg.fk/ � 2d2.

Given a maximal i -dimensional torsion coset C on H .f /, i � n � 2, its or-
thogonal projection �.C / into the coordinate subspace corresponding to the inde-
terminates X1; : : : ; Xn�1 is a torsion coset in Gn�1

m . Note that the coset �.C / is
either i - or .i � 1/-dimensional. The proof of inequalities (4.7)–(4.9) is based on
the following observation.

Lemma 4.4. Suppose that 1 � k � m, 1 � s � n�2 and 0 � i � sC1. Then for
any maximal torsion s-dimensional coset D on the hypersurface H .gk/ of Gn�1

m ,
the number of maximal torsion i -dimensional cosets C on H .f / with �.C / � D
is at most T .i; n � 1; c2.n; d//.

Proof. LetD D !HB , whereB is a primitive sublattice of Zn�1 with rank .B/ D
n�1� s. By Corollary 2.4, applied to the subspace span?R.B/, there exists a basis
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A D .a1; : : : ; an�1/ of the lattice Zn�1 such that a1 2 B and its polar basis
A� D .a�1; : : : ; a

�
n�1/ satisfies the inequality (2.5). Let C be a maximal torsion

i -dimensional coset on H .f / with �.C / � D. Observe that the coset D and,
consequently, the coset C satisfy the equation

.X1; : : : ; Xn�1/
a1 D !; (4.11)

with the root of unity ! D !a1 . The basis A of Zn�1 can be extended to the
basis B D ..a1; 0/; : : : ; .an�1; 0/; en/ of Zn, where .ai ; 0/ denotes the vector
.ai1; : : : ; ain�1; 0/ and en D .0; : : : ; 0; 1/. Let .Y1; : : : ; Yn/ be the coordinates
associated with B. By Lemma 2.6, the coset CB is a maximal i -dimensional tor-
sion coset on H .f B/ and, by (4.11), it lies on the subvariety of H .f B/ defined by
the equation Y1 D !. Therefore, the orthogonal projection of the coset CB into the
coordinate subspace corresponding to the indeterminates Y2; : : : ; Yn is a maximal
i -dimensional torsion coset on the hypersurface H .f B.!; Y2 : : : ; Yn// of Gn�1

m .
Here the polynomial f B.!; Y2; : : : ; Yn/ is not identically zero. Otherwise the
.n� 1/-dimensional coset defined by (4.11) would lie on the hypersurface H .f /.

The .n�1�s/-dimensional subspace spanR.B/ is generated by n�1�s vectors
of the difference set D.Sgk

/ (see for instance the proof of Theorem 8 in [21] for
details). Therefore,

det.B/ � .diam.Sgk
//n�1�s < .4d2/n�1�s;

where diam.�/ denotes the diameter of the set. It is well known (see, e.g., Bombieri
and Vaaler [5, pp. 27–28]) that det.B/ D det.span?R.B/\Zn�1/. Hence, by (2.5),
we have

Sf B �

�
n max
1�j�n�1

ka�j k1

�
dBn1  

�
nd C 2n.n � 1/

n�1
2

n�1 
1
2

n�1�sd
3
�
Bn1 :

Multiplying f B by a monomial, we may assume that f B 2 CŒY1; : : : ; Yn�. Now,
observing that k=2

k
� kŠ, we get

deg.f B/ < c2.n; d/:

Therefore, we have shown that the maximal torsion coset D can contain projec-
tions of at most T n�1i .f B.!; Y2 : : : ; Yn// � T .i; n�1; c2.n; d//maximal torsion
i -dimensional cosets of H .f /.

By part (iii) of Theorem 1.3, given a maximal torsion i -dimensional coset C
on H .f /, its projection �.C / lies on H .gk/ for some 1 � k � m. If i � 2, then
the coset �.C / has positive dimension, and Lemma 4.4 implies inequality (4.9).
Suppose now that i � 1. Let C be a maximal i -dimensional coset on H .f /.
The case when �.C / lies in a torsion coset of positive dimension of one of the
hypersurfaces H .gk/ is settled by Lemma 4.4. It remains only to consider the case
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when �.C / is an isolated torsion point. The number of isolated torsion points u
on H .f / whose projection �.u/ is an isolated torsion point on H .gk/ is at most
dT n�10 .gk/ � dT .0; n � 1; 2d2/. Now, each isolated torsion point on H .gk/

is the �-projection of at most one torsion 1-dimensional coset on H .f /. These
observations together with Lemma 4.4 imply the inequalities (4.7)–(4.8).

4.4 Completion of the proof

Put T .n; d/ D
Pn�1
iD0 T .i; n; d/. We will show that for n � 2

T .n; d/ � .2nd/nC1T .n � 1; n8C4nd2/T .n � 1; n8C4nd3/: (4.12)

This inequality implies Theorem 1.1. Indeed, noting that, by (2.1), we have
T .2; d/ � 11d2 C d and Ntor.H .f // � T .n; d/, we get from (4.12) the in-
equality (1.3).

Suppose that f 2 CŒX1; : : : ; Xn� is a polynomial of degree d . The lattice
L.f / clearly has n linearly independent points in the difference set D.Sf / and
D.Sf / � dD.Bn1 / D 2dBn1 . Therefore, by Lemma 8 in Cassels [8, Ch. V], the
lattice L.f / has a basis lying in ndBn1 . Since Bn1 � Bn2 , for each irreducible
factor f 0 of f the inequality

det.L.f 0// � .nd/n

holds. Then, by Lemmas 4.1–4.3 applied to all irreducible factors of f , we have
for all 0 � i � n � 1

T ni .f / � d.2
nC1
� 1/.nd/n

� T .i; n � 1; c2.n; c1.n; d///T .n � 1; 2.c1.n; d//
2/:

(4.13)

To avoid painstaking estimates we simply observe that for n � 3 and for all d
we have n8C4nd2 > 2.c1.n; d//

2 and n8C4nd3 > c2.n; c1.n; d//. Then the
inequality (4.13) implies (4.12).

5 Proof of Theorem 1.2

Lemma 5.1. For n � 2, the inequality

Ntor.n; d/ � T .n; d/Ntor.n � 1; n
2Cnd2/ (5.1)

holds.

Proof. Let the variety V be defined by the polynomials f D f1; f2; : : : ; ft . Then
any maximal torsion coset !H on V is contained in a maximal torsion coset !H 0

on the hypersurface H .f /. Now, let C D !HA with ! D .!1; : : : ; !n/ be a
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maximal i -dimensional torsion coset on H .f / and suppose C does not lie on V .
By Corollary 2.4, applied to the subspace span?R.A/, there exists a basis A D
.a1; a2; : : : ; an/ of the lattice Zn such that a1 2 A and its polar basis A� D
.a�1; a

�
2; : : : ; a

�
n/ satisfies the inequality (2.5). Let .Y1; : : : ; Yn/ be the coordinates

associated with the basis A. By (2.7), the coset CA lies on the hypersurface of Gn
m

defined by the equation
Y1 D !; (5.2)

with ! D !a1 . Observe that for any torsion coset �HB � !HA, the lattice A is a
sublattice of the latticeB and � D .!1x1; : : : ; !nxn/ for some .x1; : : : ; xn/ 2HA.
Consequently, �HB also satisfies (5.2). Then the number of maximal torsion
cosets on V that are subcosets of C is at most the number of maximal torsion
cosets on the subvariety of Gn�1

m defined by the equations

f A
2 .!; Y2; : : : ; Yn/ D 0;

:::

f A
t .!; Y2; : : : ; Yn/ D 0:

Note that since C ª V , not all Laurent polynomials f A
i .!; Y2; : : : ; Yn/ are identi-

cally zero. The .n�i/-dimensional subspace spanR.A/ is spanned by n�i vectors
of the difference set D.Sf /. Therefore,

det.A/ � .diam.Sf //
n�i < .2d/n�i :

Note that det.A/ D det.span?R.A/ \ Zn/. Hence, by (2.5), we have

Sf A
j
� d

�
n max
1�j�n

ka�j k1

�
Bn1 ¨

�
nd C n.n � 1/

n�1
2

n�1 
1
2

n�id
2
�
Bn1

for j D 2; : : : ; t . Multiplying the Laurent polynomials f A
j by a monomial, we

may assume that f A
j 2 CŒY2; : : : ; Yn�. Noting that k=2

k
� kŠ, we get the inequal-

ities

deg.f A
j / < n.nC 1/d C .n � 1/.n

2
� 1/nŠd2; j D 2; : : : ; t:

Finally, observe that for n � 2, 1 � i � n � 1 and for all d , we have

n2Cnd2 > n.nC 1/d C .n � 1/.n2 � 1/nŠd2:

By Theorem 1.1, T .n; d/ � c1.n/d c2.n/ and, consequently,

Ntor.n; d/ � c1.n/d
c2.n/Ntor.n � 1; n

2Cnd2/:

Noting that Ntor.1; d/ D T .1; d/ D d we obtain the inequality (1.4).
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6 The algorithm

Let V be an algebraic subvariety of Gn
m. In this section we will describe a new

recursive algorithm that finds all maximal torsion cosets on V . The algorithm con-
sists of several steps that reduce the problem to finding maximal torsion cosets of
a finite number of subvarieties of Gn�1

m . When n D 2, we can apply the algorithm
of Beukers and Smyth [3].

6.1 Hypersurfaces

We first consider a hypersurface H defined by a polynomial f 2 CŒX1; : : : ; Xn�
with f D

Q
hi , where hi are irreducible polynomials. By Lemma 2.8, the .n�1/-

dimensional torsion cosets on H will precisely correspond to the factors hj of the
form Xuj � !jX

vj , where ! is a root of unity. Now we will assume without
loss of generality that f is irreducible and H contains no torsion cosets of dimen-
sion n � 1. Then we proceed as follows.

H1. The proofs of Lemmas 4.1, 4.2 and Theorem 1.3 are effective. Consequently,
applying Lemmas 4.1 and 4.2, we may assume without loss of generality that
L.f / D Zn. Next, applying Theorem 1.3, we get m < 2nC1 polynomials
f1; : : : ; fm satisfying conditions (i)–(iii) of this theorem.

H2. For 1 � k � m, calculate gk D Res.f; fk; Xn/. Find all isolated torsion
points �1; �2; : : : and all maximal torsion cosets D1;D2; : : : of positive di-
mension on the hypersurfaces H .gk/ of Gn�1

m . For each coset Di D �iHBi
,

take a primitive vector ai 2 Bi and put !i D �
ai

i .

H3. For each torsion point �i D .�i1; : : : ; �i n�1/, if f .�i1; : : : ; �i n�1; Xn/ is
identically zero, then the coset

.�i 1; : : : ; �i n�1; t /

lies on H . Otherwise, solving the polynomial equationf .�i1; : : : ; �i n�1;Xn/
in Xn, we will find all torsion points � on H with �.�/ D �i . When all
torsion cosets of positive dimension on H are found, we can easily determine
which of the torsion points � are isolated.

H4. For eachDi , extend the vector ai to a basis Bi D ..ai ; 0/; z2; : : : ; zn/ of Zn.
Find all maximal torsion cosets E1; E2; : : : on the hypersurface in Gn�1

m
defined by the polynomial f Bi .!i ; Y2; : : : ; Yn/. For each Ej D �jHPj

say with �j D .�j2; : : : ; �jn/, put !j D .!i ; �j2; : : : ; �jn/ and consider
the set Aj D ¹.z; p2; : : : ; pn/ W z 2 Z; .p2; : : : ; pn/ 2 Pj º. Now the cosets
.!jHAj

/B
�1
i are the maximal torsion cosets on H .
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6.2 General subvarieties

Suppose now that V is defined by the polynomials f1; : : : ; ft 2 CŒX1; : : : ; Xn�
when t � 2.

V1. Find all isolated torsion points �1; �2; : : : and all maximal torsion cosets
D1;D2; : : : of positive dimension on the hypersurface H .f1/. Then the points
�1; �2; : : :, if on V , are isolated torsion points on V as well.

V2. For each coset Di D �iHBi
, take a primitive vector ai 2 Bi , put !i D �

ai

i

and extend the vector ai to a basis Bi D .ai ; z2; : : : ; zn/ of Zn. Find all
maximal torsion cosets E1; E2; : : : on the subvariety of Gn�1

m defined by the
polynomials f Bi

k
.!i ; Y2; : : : ; Yn/, k D 2; : : : ; t . For each Ej D �jHPj

with
�j D .�j2; : : : ; �jn/, put !j D .!i ; �j2; : : : ; �jn/ and

Aj D ¹.z; p2; : : : ; pn/ W z 2 Z; .p2; : : : ; pn/ 2 Pj º:

Now the cosets .!jHAj
/B
�1
i , along with the isolated torsion points found in

step V1, are the maximal torsion cosets on V .

The algorithm described clearly stops after a finite number of steps and the
proofs of Theorems 1.1 and 1.2 show that the algorithm finds all maximal tor-
sion cosets on V . Furthermore, the constants ci .n; d/ give explicit bounds for the
degrees of the polynomials generated at each step.
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