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BRIEF DEFINITIVE REPORT

    Rheumatoid arthritis (RA) is a chronic infl am-
matory disease aff ecting  � 1% of the global pop-
ulation ( 1 ). RA is characterized by infi ltration 
of synovial joints by immune cells, principally 
macrophages, T cells, plasma cells, and hyper-
plasia of the synovial lining. This eventually re-
sults in the destructive phase of disease causing 
damage to cartilage and bone. It is widely ac-
cepted that cytokines and their receptors play a 
central role in the pathogenesis of RA, thus 
TNF � , IL-1, and IL-6 have been identifi ed as 
key mediators of the disease ( 2 – 4 ). The role 
played by members of the TNF receptor super-
family (TNFRSF) in pathological bone resorp-
tion has also become widely accepted, with 
RANK and RANKL acting as crucial factors in 
diff erentiation of osteoclasts ( 5 ), the primary cell 
type involved in bone degradation. 

 DR3 (TRAMP, LARD, Apo3, Wsl1, and 
TNFRSF25) is a member of the TNFRSF and 
shows closest homology to TNFR1 ( 6 ). Like 
TNFR1, DR3 contains four extracellular cys-
teine-rich repeats and is capable of signaling 
both apoptosis via caspase 8 activation and cell 
survival via the activation of NF � B ( 7 – 9 ). The 
biological function of DR3 is an area of grow-
ing interest. In the immune system, DR3 has 
been shown to aff ect negative selection during 
thymocyte development ( 10 ) and can modu-
late T cell ( 11 – 13 ) and NKT cell function ( 14 ). 
It has also been associated with infl ammatory 
diseases such as irritable bowel disease ( 15, 16 ) 
and atherosclerosis ( 17 ). Interestingly, DR3, 
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 Rheumatoid arthritis (RA) is a chronic infl ammatory disease of synovial joints that is asso-

ciated with cartilage and bone destruction. Death Receptor 3 (DR3), a tumor necrosis 

factor (TNF) receptor superfamily member, has recently been associated with the patho-

genesis of RA. We demonstrate that absence of DR3 confers resistance to the development 

of adverse bone pathology in experimental antigen-induced arthritis (AIA). DR3 ko  mice 

exhibited a reduction in all histopathological hallmarks of AIA but, in particular, failed to 

develop subchondral bone erosions and were completely protected from this characteristic 

of AIA. In contrast, TNF-like protein 1A (TL1A), the ligand for DR3, exacerbated disease in 

a dose- and DR3-dependent fashion. Analysis of osteoclast number within AIA joint re-

vealed a reduction in areas susceptible to bone erosion in DR3 ko  mice, whereas in vitro 

osteoclastogenesis assays showed that TL1A could directly promote osteoclastogenesis in 

mouse and man. Treatment with antagonistic anti-TL1A mAb protected animals in a sys-

temic model of RA disease collagen-induced arthritis. We therefore conclude that the 

DR3 – TL1A pathway regulates joint destruction in two murine models of arthritis and 

represents a potential novel target for therapeutic intervention in infl ammatory joint 

disease. 

© 2008 Bull et al. This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
.org/licenses/by-nc-sa/3.0/).
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DR3 ko  compared with DR3 wt  mice ( Fig. 1 F ). This translated 
into a signifi cant reduction in the AI ( Fig. 1 G ). 

 As a second outcome measure of structural damage to the 
joint, we assessed proteoglycan depletion from articular carti-
lage on the femoral head using Safranin O/Fast Green stain-
ing 21 d after arthritis induction. In DR3 wt  mice, cartilage 
was severely depleted, as illustrated by lack of red Safranin O 
staining resulting in an obvious tidemark ( Fig. 1 H ). DR3 ko  
mice did not display much cartilage depletion ( Fig.1 I ), re-
taining similar levels of Safranin O staining as nonarthritic 
control left knees (not depicted). Collectively, this data indi-
cate that there is considerable protection against degenerative 
AIA disease pathology in DR3 ko  mice. 

 TL1A exacerbates disease in a DR3-dependent fashion 

 To confi rm that resistance to AIA was DR3 specifi c, TL1A 
was injected with mBSA on day 0 of the AIA model at escalating 

along with its only known ligand, TNF-like protein 1A 
(TL1A) ( 18 ), has been linked with RA. Duplication of the 
DR3 gene is more prevalent in RA patients compared with 
controls ( 19 ), whereas TL1A +  mononuclear phagocytes have 
been identifi ed in rheumatoid synovium and soluble TL1A 
has been detected in synovial fl uid of patients ( 20 ). However, 
functional analysis of the in vivo role of the DR3 – TL1A 
pathway in RA has not yet been reported. 

 To address this, we have generated mice lacking the DR3 
gene (DR3 ko ) on a C57BL/6 background ( 10 ) and used a 
salient model of experimental arthritis to elucidate functional 
aspects of DR3 activity. Antigen-induced arthritis (AIA) is a 
local model of disease which displays many pathological fea-
tures of RA including cellular infi ltration, synovial hyperpla-
sia, pannus formation, cartilage depletion, and bone destruction 
( 21 ). We show that DR3 is essential for the development of 
adverse joint pathology in AIA and that anti-TL1A treatment 
can protect from the systemic model of disease, collagen-
induced arthritis (CIA). These results imply an important 
in vivo function for DR3 in the pathogenesis of infl ammatory 
arthritis and provide proof of principle that countering this 
pathway may represent a novel therapy for RA. 

  RESULTS AND DISCUSSION  

 DR3 ko  mice show reduced infl ammatory response to AIA 

compared with DR3 wt  controls 

 To investigate the in vivo role of DR3 in infl ammatory ar-
thritis, we induced AIA in DR3 ko  mice and DR3 wt  controls. 
All mice developed an infl ammatory reaction in response to 
intraarticular injection of methylated BSA, with both DR3 ko  
and DR3 wt  mice exhibiting a similar pattern of joint swell-
ing over a 21-d time course. Comparable knee joint swell-
ing measurements were noted in DR3 ko  and DR3 wt  mice 
at the peak of response, 1 d after mBSA injection. There-
after, swelling resolved in both but faster in the absence of 
DR3 ( Fig. 1 A ).  

 We next assessed whether more rapid resolution of joint 
swelling was translated to improved pathological outcome in 
DR3 ko  mice. Examination of histopathological severity was 
performed on joint sections taken during the acute infl amma-
tory phase when TNF � , IL-1 � , and IL-6 reach a peak and 
destructive pathology fi rst becomes detectable (3 d after in-
duction) and when there is maximal evidence of structural 
damage within the joint (21 d after induction) ( 21 ). The se-
verity of arthritis (arthritis index [AI]) was quantifi ed in he-
matoxylin and eosin (H & E) – stained sections by grading 
parameters as described in Materials and methods. On day 3 
after arthritis induction, DR3 wt  ( Fig. 1 B ) and DR3 ko  mice 
( Fig. 1 C ) did not diff er histopathologically. By day 21, DR3 wt  
mice had developed arthritis characterized by extensive cellu-
lar infi ltration, synovial hyperplasia, formation of a thick pan-
nus, and bone erosions ( Fig. 1 D ). In contrast, DR3 ko  mice 
displayed mild pathological features of arthritis, showing gen-
eral absence of synovial hyperplasia, lack of pannus formation, 
and no evidence of bone erosion ( Fig. 1 E ). Indeed, all scor-
ing parameters were either absent or signifi cantly milder in 

  Figure 1.     Protection against AIA in DR3 ko  mice.  (A) Joint swelling after 

intraarticular injection of mBSA. Data are mean  ±  SEM from  n  = 6 DR3 wt  

( � ) or DR3 ko  ( � ) mice. Two-way analysis of variance (ANOVA) shows signifi -

cance at P  <  0.02 (*). One representative experiment of three is shown. 

(B – E) Representative images from DR3 wt  (B) and DR3 ko  (C) mice, 3 d after 

arthritis induction, and DR3 wt  (D) and DR3 ko  (E) mice, 21 d after arthritis 

induction. Bars, 200  μ m. Infl ammatory tissue (black arrowheads) and erosions 

(blue arrowheads) are shown. (F) Breakdown of each component of the AI. *, 

P  <  0.05; **, P  <  0.01. (G) AI scores from DR3 wt  and DR3 ko  mice. **, P  <  0.01. 

Lines mark means of graphed points. (H and I) Representative images of 

collagen around knee joints from DR3 wt  (H) and DR3 ko  (I) mice. Sections 

were stained with Safranin O/Fast Green to visualize collagen in red. Tidemark 

of cartilage depletion (arrows) is shown. Bars, 50  μ m. (J) Estimated cartilage 

depletion from DR3 wt  and DR3 ko  mice. *, P  <  0.05. Each point in the sum-

mary graphs represents a single 6 DR3 wt  ( � ) or DR3 ko  ( � ) animal.   
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 DR3 ko  mice show normal myeloid infi ltration within 

joints in AIA 

 Recruitment of mononuclear cells to the subintimal synovial 
lining layer and to periarticular adipose tissue adjacent to the 
meniscus is a process characteristic of the AIA model and RA 
patient joints. Indeed, the degree of macrophage (osteoclast 
precursor) infi ltration within rheumatoid joint has been cor-
related with severity of structural damage in human disease. 
To assess whether reduction in osteoclast number was caused 
by impaired recruitment of these cells to the joint, we per-
formed immunohistochemical analysis of F4/80 expression 
in sections from DR3 ko  and DR3 wt  mice on days 3 and 21 
after arthritis induction. On day 3, some F4/80 expression 
was detected in the periarticular adipose tissue, which did not 
diff er signifi cantly between DR3 wt  and DR3 ko  mice ( Fig. 3, 
G – I ). By day 21, F4/80 staining was markedly increased with 
strong F4/80 expression visualized microscopically in both 

quantities up to 100 ng. DR3 het  mice were chosen as they 
showed intermediate AI scores compared with DR3 wt  mice 
( Figs. 1 G and 2 A ).  Consequently, exacerbation or ameliora-
tion of disease after TL1A injection could be quantifi ed, 
irrespective of the inherent variability in the model. Coad-
ministration of TL1A resulted in signifi cant dose-dependent 
exacerbation of disease in DR3 het  mice ( Fig. 2 A ). This was 
strikingly illustrated by the eff ect on size of bone erosions and 
severity of bone destruction, which increased in a dose-
dependent fashion after TL1A injection ( Fig. 2, B and C ). 
In contrast, TL1A had no signifi cant eff ect on arthritis 
progression in DR3 ko  mice over the concentration range 
studied ( Fig. 2 D ). Representative images of DR3 ko  mice re-
ceiving 1 and 100 ng TL1A show the continued absence of 
bone erosions ( Fig. 2, E and F ). TL1A therefore exacerbates 
AIA and, in particular, adverse bone pathology in a DR3-
dependent manner. 

 DR3 expression promotes osteoclastogenesis in AIA 

 Because DR3 ko  mice were protected from the development 
of subchondral bone erosions in AIA, we elected to quantify 
the number of bone-resorbing osteoclasts within the joint at 
two distinct sites of epiphyseal bone. Osteoclasts are clearly 
visualized as large red multinucleated cells with tartrate-resis-
tant acid phosphatase (TRAP). TRAP expression in DR3 wt  
and DR3 ko  mice was comparable in the femoral head ( Fig. 3, 
A – C ) and growth plate (not depicted).  However, in the peri-
osteum at areas adjacent to pannus formation, where focal 
bone erosions could be visualized at high magnifi cation, 
TRAP staining was signifi cantly greater in DR3 wt  mice than 
at equivalent areas in DR3 ko  mice ( Fig. 3, D – F ). These data 
implicate a role for DR3 in generation of osteoclasts at sites 
of bone pathology but not in infl uencing osteoclastogenesis 
in areas away from the pannus. 

  Figure 2.     TL1A promotes adverse bone pathology of AIA in a DR3-

dependent manner.  (A) AI with increasing administration of TL1A in 

DR3 het  mice. Horizontal lines mark means of graphed points. Open 

symbols represent DR3 het  mice; fi lled symbols represent DR3 ko  mice. 

(B and C) Representative images from DR3 het  mice with no (B) or 100 ng 

(C) TL1A added. Bone erosions (arrowheads) are shown. (D) AI with 

increasing administration of TL1A to DR3 ko  mice. (E and F) Representative 

images from DR3 ko  mice with 1 (E) or 100 (F) ng TL1A added. Bars, 200 

 μ m. One-way ANOVA showed signifi cance of TL1A addition to DR3 het  but 

not DR3 ko  mice. *, P  <  0.05. Each point in the summary graphs represents 

a single animal. One representative experiment of two is shown.   

  Figure 3.     TRAP and F4/80 expression in joints of DR3 wt  and DR3 ko  

mice.  Sections were stained for TRAP or F4/80 as described in Materials 

and methods. Horizontal lines mark means of graphed points. 

(A and B) Representative images of TRAP staining at day 21 after arthritic 

induction from DR3 wt  (A) and DR3 ko  (B) mice. Red TRAP +  staining (arrows) 

is shown. (C) Summary of TRAP staining in femoral head at day 21. 

(D and E) Representative images of TRAP staining around areas of bone 

erosion at day 21 after arthritic induction from DR3 wt  mice (D) and 

equivalent areas from DR3 ko  mice (E). Red TRAP +  staining (arrows) is 

shown;  js , joint space;  p , pannus;  c , cartilage. (F) DR3 ko  mice show signifi -

cantly reduced TRAP +  staining compared with DR3 wt  mice. *, P  <  0.05. 

(G and H) Representative images of F4/80 staining from DR3 wt  (G) and 

DR3 ko  (H) mice, 3 d after arthritis induction. (I) Summary of day-3 data. 

(J and K) Representative images of F4/80 staining from DR3 wt  (J) and 

DR3 ko  (K) mice, 21 d after induction of arthritis. F4/80-positive cells 

(arrows) are shown. (L) Summary of day-21 data. Each point in the 

summary graphs represents a single DR3 wt  ( � ) or DR3 ko  ( � ) animal. 

Bars, 50  μ m. One representative experiment of two is shown.   
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 The role of the DR3 – TL1A axis in driving adverse bone 

pathology in infl ammatory arthritis 

 Our fi ndings show that DR3 ko  mice are resistant to the ad-
verse joint pathology that is typical in AIA and are consistent 
with an essential role for the DR3 – TL1A pathway in devel-
opment of infl ammatory arthritis. DR3 ko  mice elicited an 
initial infl ammatory reaction in response to AIA induction, 
such that at day 3 after arthritis induction, there was no dif-
ference in histopathological scoring or level of infl ammatory 
cell infi ltrate between control and DR3 ko  mice. Resolution 
of infl ammation, however, occurred at a faster rate in DR3 ko  
mice, as indicated by reduction in joint swelling over the 
course of the study and reduction in all histopathological pa-
rameters measured at day 21 after arthritic induction. Of par-
ticular note was the absence of bone erosion and marked 
reduction in cell infi ltrate in DR3 ko  mice in later stages of 
disease. Comparable numbers of infi ltrating F4/80 +  macro-
phages were present in joints of DR3 wt  and DR3 ko  mice, de-
spite the observed diff erences in joint pathology. Therefore, 
the mechanisms involved in initiating the infl ammatory reac-
tion and in recruitment of myeloid cells into the joint appear 

DR3 ko  and DR3 wt  mice. Quantifi cation of F4/80 +  cells again 
revealed no signifi cant diff erence in expression between DR3 wt  
and DR3 ko  mice ( Fig. 3, J – L ). Overall, these data suggest that 
absence of DR3 does not impair recruitment of myeloid cells 
to the joint, nor does it aff ect overall numbers of basal mature 
osteoclasts in the femoral head. Neither hypothesis can ex-
plain the reduction in osteoclast numbers in areas of bone pa-
thology in DR3 ko  mice. 

 TL1A promotes osteoclastogenesis in vitro in a DR3-

dependent fashion 

 We therefore tested the possibility that TL1A could directly 
promote diff erentiation of osteoclasts. To achieve this, we 
used an in vitro system of osteoclastogenesis from adherent 
BM-derived cells (BMC). BM macrophages (BMM) from 
DR3 wt  mice were confi rmed to express DR3 ( Fig. 4 A ).  BMC 
from DR3 wt  and DR3 ko  mice did not diff er in their ability to 
generate osteoclasts in the presence of soluble RANK-L and 
M-CSF as measured by the formation of multinucleated TRAP +  
cells ( Fig. 4 B ). However, TL1A addition signifi cantly en-
hanced development of osteoclasts from DR3 wt  but not 
DR3 ko  BMC ( Fig. 4, B – D ). TL1A in the absence of RANK-
L and M-CSF could not generate osteoclasts ( Fig. 4 E ). The 
functional capacity of in vitro – generated osteoclasts to de-
stroy bone was visualized by toluidine blue staining of pits in 
the ivory discs ( Fig. 4 F ). This data indicates that TL1A is not 
necessary for osteoclastogenesis per se, but promotes it in the 
presence of RANK-L and M-CSF and in a DR3-dependent 
fashion. In support of our murine data and highlighting the 
signifi cance of these results for humans, TL1A signifi cantly 
promoted osteoclastogenesis from monocytes derived from 
human peripheral blood ( Fig. 4 G ). 

 Anti-TL1A neutralizing antibody ameliorates AIA and CIA 

 To test the therapeutic potential of countering the DR3 – TL1A 
pathway, we generated an antagonistic rat mAb to murine 
TL1A ( Fig. 5, A and B ) and applied it in AIA and the systemic 
model of disease.  CIA is the industry standard for testing poten-
tial therapeutic agents against RA. A single treatment of anti-
TL1A at the point of arthritic induction in AIA resulted in 
more rapid resolution of swelling that mirrored our observa-
tions in DR3 ko  mice ( Fig. 5 C ). In CIA, clinical signs of arthritis 
became apparent in control mice on day 25 ( Fig. 5 D ). Disease 
activity was assessed by assigning scores to each paw according 
to degree of redness, swelling, and joint involvement. Paw 
scores in anti-TL1A – treated mice were consistently lower than 
in control IgG2a-treated mice, reaching signifi cance on days 27 
and 28 ( Fig. 5 E ). Disease activity in control IgG2a-treated 
mice was characterized by leukocyte infi ltration of synovial tis-
sues and variable degrees of bone erosion ( Fig. 5 F ). Specimens 
from anti-TL1A – treated mice demonstrated mild changes by 
comparison ( Fig. 5 G ). The AI in anti-TL1A – treated mice was 
signifi cantly less than in IgG2a-treated controls ( Fig. 5 H ). 
These data are consistent with the protection against AIA ob-
served in DR3 ko  mice and suggest that countering the DR3 –
 TL1A pathway may be therapeutic against RA in man. 

  Figure 4.     TL1A promotes DR3-dependent in vitro osteoclastogen-

esis.  (A) RT-PCR of DR3 in BMM. In vitro osteoclastogenesis assays were 

performed as described in Materials and methods. Osteoclast numbers 

were estimated by counting multinucleated TRAP +  cells. (B) Effect of TL1A 

on proportion of osteoclasts generated in presence of RANKL and M-CSF. *, 

P = 0.0003. Each point represents a single ivory disc from experiments on 

DR3 wt  (open symbols) or DR3 ko  (fi lled symbols) mice. Four discs from four 

mice were counted for each treatment. Lines mark means of graphed 

points. One representative experiment of two is shown. (C – E) TRAP stain-

ing of BM cells from DR3 wt  mice on discs with RANK-L + M-CSF and no 

TL1A (C) or 10 ng/ml TL1A (D) and TL1A (E), but no RANKL and M-CSF. 

Bars, 50  μ m. (F) Toluidine blue staining of ivory discs showing pit-forming 

ability of osteoclasts generated in vitro. Bar, 150  μ m. (G) Effect of TL1A on 

osteoclastogenesis from adherent human peripheral blood mononuclear 

cells and proportion of osteoclasts in cultures shown with ( � ) or without 

( � ) exogenous TL1A added. **, P = 0.0013. One representative experiment 

of two is shown.   
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intact in the absence of DR3. Because of this, we chose to 
investigate diff erentiation of osteoclasts, discovering that os-
teoclast diff erentiation in vitro and bone erosion in vivo was 
exacerbated by exogenous TL1A in control but not DR3 ko  
mice. These DR3-dependent eff ects confi rm that TL1A is a 
specifi c functional ligand for DR3 and identifi es the control 
of osteoclasts as a novel function for DR3. The potential of 
countering the DR3 – TL1A pathway as a therapy was proven 
by amelioration of CIA and AIA using a neutralizing anti-
TL1A mAb. Interestingly, anti-TL1A therapy was not totally 
protective. The possibility remains that there may be second-
ary ligands for DR3 and TL1A as implicated for TL1A by re-
cent data in renal infl ammation ( 22 ), but detailed studies have 
shown no other TNFSF/TNFRSF family members that bind 
murine DR3 or murine TL1A ( 18 ), whereas human TL1A 
binds Decoy Receptor 3 ( 11 ), a mouse homologue of which 
has not been found. 

 This is the fi rst paper reporting that signaling through 
DR3 on myeloid cells promotes osteoclastogenesis, although 
it is clear from our data that it is not a prerequisite for, nor can 
it induce, this diff erentiation in the absence of RANK-L and 
M-CSF. In this respect, it mirrors functions that have been 
reported for TNF �  ( 23 ). However, a function independent of 
TNF �  is suggested by a recent paper showing that macro-
phages produce TL1A independent of TNF activity ( 20 ). 
TL1A expression, including release of active soluble forms of 
the protein, can be induced on human monocytes by Fc � R 
stimulation through soluble ( 24 ) and insoluble immune com-
plexes purifi ed from RA synovial fl uid ( 20 ). The majority of 
stromal macrophages in RA synovial tissue express TL1A, and 
in vitro stimulation of monocytes with PEG precipitates from 
RA samples results in production of nanogram quantities of 
soluble TL1A ( 20 ). This suggests very high levels in localized 
RA joint akin to the levels we used to exacerbate AIA ( Fig. 2 A ). 
The implication is that in infl ammatory arthritis, myeloid 
cells may exhibit a positive feedback loop whereby TL1A is 
triggered through ICs and can drive diff erentiation of bone-
destroying cells if the right cytokine milieu is provided. In-
triguingly, TL1A also has varied eff ects on human osteoblast 
cell lines in vitro, inhibiting diff erentiation and promoting 
quiescence at low densities but inducing death at high den-
sities ( 25 ). We therefore propose that the DR3 – TL1A path-
way may act as a switch that is capable of directly activating 
osteoclast but also inhibiting osteoblast diff erentiation and, in 
so doing, disregulate the homeostatic balance of degradation 
and formation in normal bone into the detrimental situation 
observed in destructive bone pathologies such as RA. Although 
our in vitro data supports this proposal, some caution is neces-
sary in interpreting the contribution of direct TL1A-driven 
osteoclastogenesis to arthritic bone damage in vivo, as infl am-
mation and bone erosion cannot be dissociated in AIA or CIA. 
The possibility remains that the resistance of DR3 ko  mice to 
bone erosion is secondary to DR3 – TL1A-dependent control 
of other parts of the infl ammatory process. 

 In this respect, our data also show that cartilage depletion is 
signifi cantly reduced in DR3 ko  mice ( Fig. 1 ). Cartilage depletion 

  Figure 5.     Early therapeutic intervention with anti-TL1A antibody 

arrests development of arthritis.  (A) Binding of rat anti-TL1A mAb (TAN 

2 – 2) to J558L cells transfected with plasmid encoding membrane-bound 

TL1A. Shaded histogram and dotted line represent binding of isotype con-

trol and TAN 2 – 2 to plasmid only transfected cells, respectively. Binding of 

isotype control and TAN 2 – 2 to TL1A-expressing cells is represented by a 

thin and thick line, respectively. (B) Titration of TAN 2 – 2 binding to J558L 

cells expressing membrane-bound TL1A. (C) Time course of swelling in AIA 

after anti-TL1A mAb treatment. Data are mean  ±  SEM from mice treated 

with control IgG2A ( � ) or anti-TL1A ( � ) mAb. One representative experi-

ment of two is shown. *, P  <  0.02 by two-way ANOVA. CIA was induced as 

described in Materials and methods. All data were derived from six mice 

for each treatment. (D) Arthritis incidence tabulated over 28-d time 

course. (E) Arthritis severity as a mean paw score from day 20 when dos-

ing schedule for anti-TL1A and control IgG2a was started. Data are mean  ±  

SEM. Timing of injections are shown (arrows). (F and G) Representative 

images of H & E-stained sections from control IgG2a (F) and anti-TL1A 

(G).  i , intense synovial infi ltration;  e , aggressive bone erosion. Bars, 200  μ m. 

(H) Analysis of AI of CIA in control IgG2a and anti-TL1A – treated mice. 

Dotted horizontal line depicts mean for each group. *, P  <  0.05; **, P = 

0.01; ***, P = 0.006.   

 on M
arch 12, 2014

jem
.rupress.org

D
ow

nloaded from
 

Published September 29, 2008

http://jem.rupress.org/
http://jem.rupress.org/


2462 DR3 – TL1A IN INFLAMMATORY ARTHRITIS  | Bull et al. 

expressed TL1A. To generate cells expressing membrane-anchored TL1A, 

PCR fragments encoding the entire coding sequence of mouse TL1A were 

cloned into the mammalian expression vectors pEF1/V5-His A and pcDNA3.1 

(Invitrogen), and plasmids were then transfected into J558L or 293T cells. 

Stable J558L cell lines expressing membrane-anchored TL1A were selected 

in Geneticin (400  μ g/ml)-containing media. Splenic cDNA or IMAGE clone 

30740802 was used as a template for PCR reactions to generate TL1A-en-

coding DNA fragments. Further selection of neutralizing anti-TL1A mAbs 

was based on the ability to block binding of soluble recombinant TL1A-Fc 

to anti-CD3/CD28 – stimulated T cells. 

 Anti-TL1A therapy in CIA.   CIA was induced as previously described 

( 31 ). In brief, 2 mg/ml of chicken type II collagen (CII; Sigma-Aldrich) was 

emulsifi ed with an equal volume of complete Freund ’ s adjuvant and 100  μ l 

of collagen/adjuvant mixture injected intradermally into several sites near the 

base of the tail of 7-wk-old male DBA/1J mice. A second identical booster 

was administered to each mouse 21 d after the fi rst injection. The day of the 

fi rst immunization was designated as day 0. Mice were randomly assigned to 

one of three treatment groups on day 20. Animals received nine daily 100- μ l 

injections containing either 2.5 mg/kg of anti-TL1A or LEAF purifi ed con-

trol rat IgG2a (Cambridge Biosciences) dissolved in sterile PBS or PBS alone 

administered by the i.p. route from day 20. Thereafter, arthritis incidence 

and severity was assessed daily until termination on day 28 when the disease 

severity limits were attained in IgG2a and PBS controls. The incidence of 

CIA was assessed as the percentage of mice developing arthritis among all 

mice. The severity of arthritis in each paw (paw score) was evaluated by using 

an established in-house scoring system: 0, normal; 1, mild but defi nite swell-

ing in the ankle or wrist joint or redness and swelling limited to individual 

digits regardless of the number of digits aff ected; 2, moderate swelling of an-

kle or wrist; 3, severe redness and swelling of the ankle or wrist and proximal 

phalangeal joints; and 4, maximally infl amed limb with involvement of mul-

tiple joints, no ankylosis. 

 Assessment of arthritis.   Joint swelling was assessed on days 1, 2, 3, 5, 7, 

14, and 21 after arthritis induction by measuring the diff erence between hind 

right (AIA) and hind left (control) knee joint diameters using an analogue 

micrometer. Animals were killed on day 3 or 21 for assessment of infl amma-

tory and pathological changes within the joint. Histological assessment was 

performed as previously described ( 30 ). All joints were fi xed in neutral buff -

ered formal saline and decalcifi ed with 10% formic acid for 2 wk at 4 ° C be-

fore embedding in paraffi  n wax. Serial sections of 7- μ m thickness were taken 

and stained routinely with H & E for analysis. Two blinded independent ob-

servers scored the sections for cellular infi ltration (0 – 5), cellular exudate (0 – 3), 

synovial hyperplasia (0 – 3), and bone erosion (0 – 3), with 0 representing a 

normal joint. The sum of all parameters gave the AI. Sections were addition-

ally stained with Safranin O and Fast Green to assess cartilage depletion. 

 RT-PCR.   BMM were generated as previously described ( 32 ). RNA was 

extracted from BMM cultures using RNeasy (QIAGEN) after manufacturer ’ s 

instructions, whereas cDNA was generated and RT-PCR performed ac-

cording to standard Invitrogen protocols. PCR primers were as follows:  � -actin, 

forward 5 � -CGGCCAGGTCATCACTATTG-3 �  and reverse 5 � -CTCA G-

TAACCCGCCTAG-3 �  giving a 410-bp product; and DR3, forward 

5 � -CTAAGGCTTGCACTGCTGTCT-3 �  and reverse 5 � -GAGCATCT-

CATACTGCTGGTC-3 �  giving a 457-bp product. The PCR consisted of 

33 cycles with a 59 ° C annealing temperature. 

 TRAP staining for osteoclasts.   For TRAP staining, joints were decalci-

fi ed in EDTA (7%), rehydrated, and incubated with TRAP staining solution 

containing 0.1 M acetate buff er, 0.5 M sodium tartrate, 10 mg/ml naphthol 

AS-MX phosphate, 100  μ l Triton X-100, and 0.3 mg/ml Fast Red Violet 

LB salt for 3 h at 37 ° C. Sections were then counterstained with hematoxylin 

before mounting in DPX. Images were captured using a digital camera 

(N457; Olympus), and TRAP-positive cells were analyzed using Photoshop 

CS3. 5 (Adobe). Randomly chosen selected areas were used for analysis. 

is attributed to the eff ects of matrix metalloproteinases (MMPs), 
levels of which are raised in RA joint. In vitro experiments 
on human cell lines have shown that DR3 activation can in-
duce the production of MMP-1, -9, and -13 in THP-1s ( 17 ). 
These MMPs have all been associated with RA joint pathol-
ogy ( 26 ). In addition, it is also established that TL1A plays an 
important role in T cell function. TL1A has been shown to 
costimulate IL-2 responsiveness ( 11 ) and synergize with the 
TCR and IL-12/IL-18 pathways to induce IFN �  release ( 15, 
27, 28 ). TL1A also amplifi es cytokine release by NKT cells 
( 14 ) and T cells ( 13 ) and regulates the development of proin-
fl ammatory Th17 cells ( 12, 16 ), which are reported to aid os-
teoclastogenesis in autoimmune arthritis ( 29 ). The action of 
TL1A on T cells may also be regulated by diff erential ex-
pression of splice variants of DR3 ( 27 ). The exact role of TL1A 
and DR3 on lymphocytes in infl ammatory arthritis remains 
to be elucidated, but it is interesting to note that we fi nd nor-
mal anti-mBSA Ab levels in serum, unchanged T cell prolifer-
ation to mBSA in draining lymph nodes of DR3 ko  mice after 
AIA induction, and normal in vitro generation of Th17 cells 
from DR3 ko  splenocytes (unpublished data). 

 In summary, we have induced infl ammatory arthritis in 
DR3 ko  mice and found that they exhibit strong resistance to 
the adverse pathology observed in AIA. We show DR3-de-
pendent TL1A-driven exacerbation of bone damage in vivo 
and promotion of osteoclastogenesis in vitro. We also show 
that anti-TL1A therapy ameliorates disease. Our data suggest 
that the DR3 – TL1A pathway is an important component of 
infl ammatory responses in joint disease and, as such, identifi es 
a potential therapeutic target for treatment of diseases like 
RA but with potential impact in other diseases involving dis-
rupted bone physiology. 

 MATERIALS AND METHODS 
 Animals.   The DR3 mouse colony was founded from animals supplied by 

Cancer Research UK, London. All experiments were undertaken in male 

WT (DR3 wt ), heterozygous (DR3 het ), and KO (DR3 ko ) mice, which have 

been described previously ( 10 ). DBA/1J mice were acquired from Harlan, 

UK. Animals were used at 6 – 8 wk of age. All procedures were approved by 

the Local Research Ethics Committee and performed in strict accordance 

with Home Offi  ce – approved licenses PPL 30/1999 and 30/2361. 

 Induction of murine AIA.   AIA was induced as previously described ( 30 ). 

In brief, mice were s.c. immunized on two occasions, 1 wk apart, with 1 mg/ml 

mBSA with an equal volume of CFA. An additional i.p. injection of 100  μ l 

of heat-inactivated  Bordetella pertussis  toxin was administered with the fi rst 

immunization. AIA was induced in the hind right knee joint via an intraar-

ticular injection of 10 mg/ml mBSA (6  μ l), administered 21 d after the initial 

immunization. To assess the eff ect of TL1A or anti-TL1A administration, 

AIA was induced via mBSA injection in conjunction with 1, 10, or 100 ng 

of soluble TL1A (R & D Systems) or 100 ng of anti-TL1A mAb. 

 Generation of a rat anti – mouse TL1A monoclonal antibody.   Rats 

were immunized with a soluble recombinant TL1A protein consisting of a 

human IgG1 Fc domain, with an additional hinge-like region at the C ter-

minus, linked to the extracellular domain of mouse TL1A (T77-L252). The 

protein was produced in Chinese hamster ovary cells and was purifi ed by 

immunoaffi  nity chromatography using an anti – human Fc mAb. Anti-TL1A 

mAb was generated by standard hybridoma technology and hybridoma su-

pernatants were screened for binding to recombinant soluble and membrane-
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 Immunohistochemistry for F4/80 expression.   F4/80 expression was 

detected using an anti – rat HRP-DAB staining kit (R & D Systems) according 

to the manufacturer ’ s instructions. In brief, sections were rehydrated and en-

dogenous peroxidase activity was blocked. Antigen unmasking was achieved 

by incubating the sections in 0.1% prewarmed Trypsin/EDTA in PBS for 

30 min at 37 ° C. After blocking steps, sections were incubated overnight 

with 4  μ g/ml of rat anti-F4/80 antibody (Invitrogen) or isotype control di-

luted in PBS followed by secondary antibody as per the manufacturer ’ s in-

structions. Positively labeled cells were visualized using a streptavidin-HRP 

conjugate and DAB chromogen. Sections were counterstained with he-

matoxylin, dehydrated, and mounted in DPX. Images were captured us-

ing a digital camera (N457), and F4/80 positive cells were analyzed using 

Photoshop. Randomly selected areas were used for analysis. 

 In vitro osteoclastogenesis assays.   BMC were removed from femurs of 

DR3 wt  and DR3 ko  mice by centrifugation after removal of the proximal end. 

BMC were resuspended in  � -MEM supplemented with 10% FCS, 2 mM  l-

 glutamine, and antibiotics (MEM-10) and 5  ×  10 5  cells added to ivory discs. 

After 2 h at 37  °  C, nonadherent cells were removed by transfer of ivory discs 

to new wells with fresh media supplemented with 50 ng/ml RANKL and 

25 ng/ml M-CSF with or without 10 ng/ml TL1A. All media were replen-

ished after 3 d. TRAP staining was performed according to the manufactur-

er ’ s instructions (Sigma-Aldrich) after 7 d. Six fi elds of view on each disc 

were counted for TRAP-positive multinucleated cells. For human osteoclas-

togenesis assays, peripheral blood mononuclear cells were used as a source for 

adherent cells and cultures were maintained for 21 d before TRAP staining. 

 Statistical analysis.   Readouts could not be assumed to be normally distrib-

uted as they were histological scores or percentages. Therefore, nonparamet-

ric Mann-Whitney  U  tests were used for statistical analysis. One-way unpaired 

and two-way ANOVAs were used when testing the infl uence of third pa-

rameters such as time or dose. Analyses were performed on GraphPad Prizm 

v4. P-values of  ≤ 0.05 were considered signifi cant and values of  ≤ 0.01 were 

considered highly signifi cant. 

 This work was funded by the Medical Research Council, through a Medical Research 

Council Career Establishment Grant awarded to E.C.Y. Wang (G0300180), a Medical 

Research Council Collaboration Grant (G0500617), the Wellcome Trust and two PhD 

studentships, one part-funded by the I3-Interdisciplinary Research Group, Cardiff 

University. 

 The authors have no confl icting fi nancial interests. 

Submitted:  6 November 2007 

Accepted:  2 September 2008 

 REFERENCES 
    1 .  Feldmann ,  M. ,  F.M.   Brennan , and  R.N.   Maini .  1996 .  Rheumatoid ar-

thritis.    Cell   .   85 : 307  –  310 .   
    2 .  Williams ,  R.O. ,  M.   Feldmann , and  R.N.   Maini .  1992 .  Anti-tumor ne-

crosis factor ameliorates joint disease in murine collagen-induced arthri-
tis.    Proc. Natl. Acad. Sci. USA   .   89 : 9784  –  9788 .   

    3 .  Abramson ,  S.B. , and  A.   Amin .  2002 .  Blocking the eff ects of IL-1 in 
rheumatoid arthritis protects bone and cartilage.    Rheumatology (Oxford)   .  
 41 : 972  –  980 .   

    4 .  Boe ,  A. ,  M.   Baiocchi ,  M.   Carbonatto ,  R.   Papoian , and  O.   Serlupi-
Crescenzi .  1999 .  Interleukin 6 knock-out mice are resistant to antigen-
induced experimental arthritis.    Cytokine   .   11 : 1057  –  1064 .   

    5 .  Asagiri ,  M. , and  H.   Takayanagi .  2007 .  The molecular understanding of 
osteoclast diff erentiation.    Bone   .   40 : 251  –  264 .   

    6 .  Kitson ,  J. ,  T.   Raven ,  Y.P.   Jiang ,  D.V.   Goeddel ,  K.M.   Giles ,  K.T.   Pun , 
 C.J.   Grinham ,  R.   Brown , and  S.N.   Farrow .  1996 .  A death-domain-
containing receptor that mediates apoptosis.    Nature   .   384 : 372  –  375 .   

    7 .  Bodmer ,  J.L. ,  K.   Burns ,  P.   Schneider ,  K.   Hofmann ,  V.   Steiner ,  M.  
 Thome ,  T.   Bornand ,  M.   Hahne ,  M.   Schroter ,  K.   Becker ,  et al .  1997 . 
 TRAMP, a novel apoptosis-mediating receptor with sequence ho-
mology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95).  
  Immunity   .   6 : 79  –  88 .   

 on M
arch 12, 2014

jem
.rupress.org

D
ow

nloaded from
 

Published September 29, 2008

http://jem.rupress.org/
http://jem.rupress.org/


2464 DR3 – TL1A IN INFLAMMATORY ARTHRITIS  | Bull et al. 

    26 .  Burrage ,  P.S. ,  K.S.   Mix , and  C.E.   Brinckerhoff  .  2006 .  Matrix metal-
loproteinases: role in arthritis.    Front. Biosci.    11 : 529  –  543 .   

    27 .  Bamias ,  G. ,  M.   Mishina ,  M.   Nyce ,  W.G.   Ross ,  G.   Kollias ,  J.   Rivera-
Nieves ,  T.T.   Pizarro , and  F.   Cominelli .  2006 .  Role of TL1A and its 
receptor DR3 in two models of chronic murine ileitis.    Proc. Natl. Acad. 
Sci. USA   .   103 : 8441  –  8446 .   

    28 .  Papadakis ,  K.A. ,  D.   Zhu ,  J.L.   Prehn ,  C.   Landers ,  A.   Avanesyan ,  G.  
 Lafkas , and  S.R.   Targan .  2005 .  Dominant role for TL1A/DR3 pathway 
in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood 
and mucosal CCR9+ T lymphocytes.    J. Immunol.    174 : 4985  –  4990 .  

    29 .  Sato ,  K. ,  A.   Suematsu ,  K.   Okamoto ,  A.   Yamaguchi ,  Y.   Morishita ,  Y.  
 Kadono ,  S.   Tanaka ,  T.   Kodama ,  S.   Akira ,  Y.   Iwakura ,  et al .  2006 .  Th17 

functions as an osteoclastogenic helper T cell subset that links T cell 
activation and bone destruction.    J. Exp. Med.    203 : 2673  –  2682 .   

    30 .  Williams ,  A.S. ,  M.   Mizuno ,  P.J.   Richards ,  D.S.   Holt , and  B.P.   Morgan . 
 2004 .  Deletion of the gene encoding CD59a in mice increases disease 
severity in a murine model of rheumatoid arthritis.    Arthritis Rheum.    50 :
 3035  –  3044 .   

    31 .  Campbell ,  I.K. ,  J.A.   Hamilton , and  I.P.   Wicks .  2000 .  Collagen-induced 
arthritis in C57BL/6 (H-2b) mice: new insights into an important dis-
ease model of rheumatoid arthritis.    Eur. J. Immunol.    30 : 1568  –  1575 .   

    32 .  Calder ,  C.J. ,  L.B.   Nicholson , and  A.D.   Dick .  2005 .  A selective role for the 
TNF p55 receptor in autocrine signaling following IFN-gamma stimulation 
in experimental autoimmune uveoretinitis.    J. Immunol.    175 : 6286  –  6293 .       

 on M
arch 12, 2014

jem
.rupress.org

D
ow

nloaded from
 

Published September 29, 2008

http://jem.rupress.org/
http://jem.rupress.org/

