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    The enormous variability of HIV is one of the 
major hurdles that must be overcome in the 
development of a successful AIDS vaccine. 
Accumulated nucleotide changes within the 
highly mutable  env  gene form the basis for clas-
sifying HIV-1 into diff erent groups (M, N, and 
O) and subtypes (clades A, B, C, D, E, F, G, and 
K). Evolutionary analysis of nucleotide sequences 
shows that  env  can vary by up to 35% among 
diff erent clades ( 1 ). Even within clades, this di-
versity can reach 20% ( 1 ). This variability is driven 
by several factors, including recombination be-
tween diff erent strains of HIV and the high rate 
of mutation associated with HIV RT ( 2 – 4 ). 

For this reason, many HIV-1 vaccine designs 
focused on inducing cell-mediated immunity 
have abandoned using Env as an immunogen 
in favor of concentrating on more conserved 
regions of the virus. However, even relatively 
minor variations in these proteins may have 
grave implications for vaccine effi  cacy, as sin-
gle-aa diff erences can negatively aff ect rec-
ognition by vaccine-induced antibodies and 
CD8 +  T cells ( 5, 6 ). To address this issue, sev-
eral strategies have been proposed to improve 
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 An effective AIDS vaccine will need to protect against globally diverse isolates of HIV. To 

address this issue in macaques, we administered a live-attenuated simian immunodefi ciency 

virus (SIV) vaccine and challenged with a highly pathogenic heterologous isolate. Vaccinees 

reduced viral replication by  � 2 logs between weeks 2 – 32 (P  ≤  0.049) postchallenge. 

Remarkably, vaccinees expressing MHC-I (MHC class I) alleles previously associated with 

viral control completely suppressed acute phase replication of the challenge virus, implicat-

ing CD8 +  T cells in this control. Furthermore, transient depletion of peripheral CD8 +  lym-

phocytes in four vaccinees during the chronic phase resulted in an increase in virus 

replication. In two of these animals, the recrudescent virus population contained only the 

vaccine strain and not the challenge virus. Alarmingly, however, we found evidence of 

recombinant viruses emerging in some of the vaccinated animals. This fi nding argues 

strongly against an attenuated virus vaccine as a solution to the AIDS epidemic. On a more 

positive note, our results suggest that MHC-I – restricted CD8 +  T cells contribute to the 

protection induced by the live-attenuated SIV vaccine and demonstrate that vaccine-

induced CD8 +  T cell responses can control replication of heterologous challenge viruses. 

© 2008 Reynolds et al. This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
.org/licenses/by-nc-sa/3.0/).
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  RESULTS  

 SIVmac239 Δ nef vaccination 

 To address the issue of whether an HIV vaccine can ameliorate 
the pathogenic eff ects of a heterologous challenge, we used a 
well-described macaque AIDS model of protective immunity. 
We induced antiviral immune responses by inoculating ten 
MHC-I – defi ned rhesus macaques with the attenuated SIV 
strain SIVmac239 Δ nef ( 24 ). We included animals expressing 
Mamu-A*01, -A*02, -A*11, -B*08, or -B*17 ( n  = 2 for 
each) because all of the SIVmac239 epitopes bound by these 
MHC-I molecules had previously been defi ned ( 25 – 31 ). Most 
animals had a peak of virus replication at 2 wk postinoculation 
(p.i.), with SIVmac239 Δ nef ranging between 3.2  ×  10 3  and 
9.4  ×  10 5  viral RNA (vRNA) copy equivalents (Eq)/ml of 
plasma (Fig. S1, available at http://www.jem.org/cgi/content/
full/jem.20081524/DC1). 8 of the 10 vaccinated animals con-
trolled SIVmac239 Δ nef plasma virus replication below 500 
vRNA copy Eq/ml between weeks 12 and 26 p.i. (Fig. S1). 

 All vaccinated macaques developed broad, but low fre-
quency, cellular immune responses. We monitored the develop-
ment of SIV-specifi c cellular immune responses using a 
combination of IFN- �  ELISPOT and MHC-I tetramer staining. 
We did not conduct such an extensive analysis in the  Mamu-
A*11 +   animals because MHC-I tetramers were unavailable. 
Throughout the vaccine phase of the study, the frequency of 
tetramer binding cells in PBMC varied from animal to animal 
and within animals from epitope to epitope (Table S1, available 
at http://www.jem.org/cgi/content/full/jem.20081524/DC1). 
In most animals, at least one tetramer-specifi c response attained 
a frequency of  > 0.3% of the circulating CD8 +  T cells. At the 
time of challenge, 26 wk p.i., the frequency of tetramer 
binding cells in the PBMC for each specifi city ranged from un-
detectable to 0.2% of the CD8 +  T cells. In IFN- �  ELISPOT 
assays, most animals had detectable cellular immune responses 
to multiple peptide pools from several SIV proteins before 
challenge (Table S2), ranging between 50 and 850 spot-
forming cells (SFC) per million PBMC (Fig. S2, available 
at http://www.jem.org/cgi/content/full/jem.20081524/DC1). 

vaccine design by including polyvalent formulations or 
immunogens based on ancestral, center of tree, or consen-
sus HIV-1 sequences ( 1, 7, 8 ). Each of these methods seeks 
to minimize diff erences between the vaccine sequence 
and circulating viruses while maximizing cross-reactive im-
mune responses. 

 Currently, most AIDS vaccine strategies include a prime/
boost component to induce antiviral immune responses. Re-
cent results from the HIV Vaccine Trial Network and Merck ’ s 
STEP trial (http://www.hvtn.org/media/pr/step111307.html) 
have clearly shown that current versions of these approaches 
fail to either protect against pathogenic infections or reduce vi-
ral replication. In contrast, immunization of rhesus macaques 
with live-attenuated simian immunodefi ciency virus (SIV) has 
consistently induced protective immunity against homologous 
pathogenic SIV challenge ( 9 – 11 ). However, characterization 
of the vaccine-induced immune responses accounting for this 
protection has proven diffi  cult. Antibodies ( 12, 13 ), CD4 +  and 
CD8 +  T cells ( 11, 13 – 15 ), NK cells ( 16, 17 ) and even viral 
interference ( 18 – 20 ) have been implicated in mediating live-
attenuated SIV-induced protection. Understanding the under-
lying mechanisms for this protection should facilitate the design 
of improved HIV vaccines ( 21 ). 

 Despite the eff ectiveness of live-attenuated SIV vaccina-
tion against homologous virus challenge, only a few small-
scale studies have addressed the ability of live-attenuated SIV 
to control heterologous SIV challenge and have had mixed 
results with regard to vaccine effi  cacy ( 9, 22, 23 ). We there-
fore sought to determine whether macaques vaccinated with 
SIVmac239 Δ nef could eff ectively control heterologous virus 
replication in a large-scale study designed to achieve statistical 
signifi cance. We included MHC-I (MHC class I) – defi ned ma-
caques to facilitate careful monitoring of CD8 +  T cell responses. 
Vaccinated animals, along with ten naive controls matched 
for the MHC-I alleles of interest, were challenged i.v. with 
the highly pathogenic heterologous  “ swarm ”  virus SIVsmE660, 
and their mean plasma virus concentrations were compared 
at diff erent time intervals. 

 Table I.    Percentage difference in amino acid sequence among different strains of immunodefi ciency viruses  

Protein Consensus Clade B a   

 versus Clade B isolates b 

SIVmac239 a   

 versus SIVsmE660 b 

Consensus Clade B a   

 versus Clade C isolates b 

 %  %  % 

Tat 12.5 26.0 30.5

Rev 12.1 25.0 35.3

Nef 17.7 21.3 35.2

Vif 6.8 17 18.1

Env 27.4 15.1 53.1

Vpr 9.8 12.0 17.3

Pol 3.2 8.3 10.0

Gag 4.4 8.0 16.4

The mean percentage difference per protein of fi ve clade B and fi ve clade C isolates in comparison to the consensus clade B amino acid sequence. The clade B and C isolates 

were obtained from the Los Alamos National Laboratory HIV sequence database.

 a Vaccine strain.

 b Challenge strain.
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virus replication in the acute phase peak, virus replication in 
the vaccinated  Mamu-B*17 +   macaques progressively increased 
during the chronic phase of infection ( Fig. 1 c ). The  Mamu-
B*08 +   and  -B*17 +   vaccinated animals no longer had signifi -
cantly diff erent (P  >  0.055) plasma virus levels in comparison 
to the naive  Mamu-B*08 +  or  -B*17 +   animals by week 12 p.c. 
( Fig. 1, c and d ). 

 Signifi cant reduction in plasma virus concentrations ob-
served in SIVmac239 Δ nef-vaccinated animals was not solely 
caused by the eff ect of  Mamu-B*08 +   and  -B*17 +   on SIVsmE660 
replication. Vaccinated  Mamu-A*01 +  ,  -A*02 +  , and - A*11 +   
macaques also showed signifi cantly reduced plasma replication 
at 3 (P = 0.004;  n  = 6), 4 (P = 0.031), 8 (P = 0.044), 16 (P = 
0.036), and 32 (P = 0.037) wk p.c. in comparison with their 
MHC-I – matched naive control counterparts ( Fig. 1, e and f ). 
However, only two of these animals (one  Mamu-A*01  +  and 
one  Mamu-A*02  + ) maintained replication below 500 copy 
Eq/ml plasma at 11 mo p.c. 

To diff erentiate CD4 +  and CD8 +  T cell responses, we per-
formed IFN- �  ELISPOT assays using total PBMC and PBMC 
depleted of CD8 +  cells. Most animals made CD4 +  T cell 
responses against multiple peptide pools derived from several 
proteins (Fig. S2). We only measured responses directed 
against Gag, Tat, Rev, Vif, and the intact portion of Nef us-
ing PBMC depleted of CD8 +  cells because of the limited 
number of available cells. The CD4 +  T cell responses that we 
did detect were primarily directed against Gag (Fig. S2). 

 Pathogenic heterologous SIV challenge 

 To assess the protective capacity of SIVmac239 Δ nef-induced 
immune responses against heterologous SIV infection, we chal-
lenged the 10 vaccinated animals, along with 10 naive controls 
matched for expression of the MHC-I of interest, i.v. with the 
highly pathogenic heterologous swarm virus SIVsmE660 at 
6 mo p.c. with SIVmac239 Δ nef. SIVsmE660 diff ers from SIV-
mac239 by  � 15% of its amino acids ( Table I ).  This diff erence 
approximates the variation between single clade – based HIV 
vaccines and circulating HIV isolates within that clade ( 1 ). 

 During acute infection, the SIVmac239 Δ nef-vaccinated an-
imals reduced plasma virus concentrations by 2 – 3 logs in com-
parison to the naive controls ( Fig. 1, a and b ).  At 2 (P = 0.011), 
3 (P  <  0.001), and 4 (P = 0.005) wk postchallenge (p.c.), the 
mean plasma virus concentrations in the vaccinated animals 
were signifi cantly lower than that of the naive controls. The 
vaccinated animals maintained a reduction in mean plasma vi-
rus concentrations through 8 mo p.c. (the point at which some 
animals began experiencing simian AIDS). Only at week 24 
p.c. did the diff erence in viral loads fall below the level of signifi -
cance (P = 0.052). Despite gradually increasing plasma virus 
levels in some of the vaccinees, the majority of the time points 
showed signifi cant diff erence between vaccines and controls 
(weeks p.c.: 6, P  <  0.001; 8, P = 0.001; 12, P = 005; 16, 
P = 0.002; 20, P = 0.049; 28, P = 0.046; and 32, P = 0.008). 

 Vaccinated macaques expressing the MHC-I alleles  Mamu-
B*08  or  Mamu-B*17 , which have previously been associated 
with spontaneous control of pathogenic SIVmac239 replica-
tion in naive macaques ( 25, 32 ), manifested highly eff ective 
control of acute infection after the heterologous challenge 
( Fig. 1, c and d ). The four animals expressing either of these 
two protective alleles had plasma virus concentrations of  < 30, 
40, 240, and 14,000 vRNA copy Eq/ml at 2 wk p.c., which 
is normally the peak of virus replication. By comparison, the 
MHC-I – matched naive controls expressing these same pro-
tective alleles had more than one million copy Eq/ml plasma. 
The high level of acute viral replication in  Mamu-B*08  +  and 
 -B*17 +   naive macaques was expected because these two alleles 
only exert their protective eff ect in the chronic phase in naive 
animals ( 25, 32 ). Diff erences in mean plasma virus replication 
between the vaccinated and naive  Mamu-B*08 +   or  -B*17 +   
macaques were signifi cant at 1 (P = 0.002;  n  = 4), 2 (P = 
0.014), 3 (P = 0.002), 4 (P  <  0.001), 6 (P = 0.002), and 8 (P = 
0.011) wk p.c. The two  Mamu-B*08  +  vaccinated macaques 
maintained control of SIV replication below 5,000 vRNA 
copy Eq/ml plasma out to 11 mo p.c. However, despite low 

  Figure 1.     Plasma virus concentrations after SIVsmE660 challenge.  

(a) Plasma virus concentrations of the ten SIVmac239 Δ nef-vaccinated 

macaques and their ten MHC-I – matched naive controls. (b) Geometric 

means for the ten vaccinated and ten naive controls. (c) Plasma virus 

concentrations of the vaccinated and naive  Mamu-B*08  +  and  -B*17  +  

macaques. (d) Geometric means for the vaccinated and naive  Mamu-

B*08  +  and  -B*17  +  macaques. (e) Plasma virus concentrations of the 

vaccinated and naive  Mamu-A*01  + ,  -A*02  + , and  -A*11  +  macaques. 

(f) Geometric means for the vaccinated and naive  Mamu-A*01  + ,  -A*02  + , 

and  -A*11  +  macaques.   
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To more closely examine the eff ect that amino acid changes 
within CD8 +  T cell epitopes have on p.c. expansion, we used 
MHC-I – restricted peptides corresponding to the minimal op-
timal epitopes in SIVmac239 Δ nef. We found that some of the 
epitopes with 1 or 2 aa diff erences between SIVmac239 Δ nef 
and SIVsmE660 stimulated responses above prechallenge 
levels ( Table II  and Fig. S3 a, available at http://www.jem
.org/cgi/content/full/jem.20081524/DC1).  Correlating with 
the IFN- �  ELISPOT assays, some of the vaccinated animals 
displayed a twofold or more expansion of at least one tetramer 
binding population during acute infection ( Fig. 4 ).  Interest-
ingly, the animals that controlled SIVsmE660 replication at 
2 wk p.c. generally had the lowest frequency of p.c. cellular 
immune responses in the PBMC. 

 The  Mamu-B*08  +  animal 02132 experienced a massive 
expansion of Mamu-B*08 – restricted CD8 +  T cells after 
SIVsmE660 challenge during acute infection. CD8 +  T cells 
against peptide pools Nef A, Vif C and D (both Vif pools 
containing the Mamu-B*08 – restricted epitope Vif 123-131 RL9), 
and Env O (containing the Mamu-B*08 – restricted epitope 
Env 573-581 KL9) were the only vaccine-induced T cell responses 
to expand after heterologous challenge (Fig. S4, available at 
http://www.jem.org/cgi/content/full/jem.20081524/DC1). 
This animal had a peak concentration of plasma virus (14,000 
vRNA Eq/ml) at 2 wk p.c. ( Fig. 1  and  Fig. 4 ), which was 
subsequently brought under control. CD4 +  T cells against two 
epitopes in Gag (pools B and C) also expanded in this animal 
(Fig. S4). Thus, in this  Mamu-B*08 +   macaque, vaccine-in-
duced Nef-, Vif-, and Env-specifi c CD8 +  T cells expanded 
during the time in which control of virus replication was 
established. Remarkably, three of the four vaccine-induced 
CD8 +  T cell responses were restricted by Mamu-B*08. 

 Interestingly, we found no evidence that vaccine-induced 
neutralizing antibodies contributed to the control of viral 
replication. We assessed the level of preexisting neutralizing 
antibodies in the plasma of two animals that controlled acute 
or chronic virus replication (01022 and 01003) and two ani-
mals that did not control virus replication p.c. (rhAO84 and 
rh2000). None of the animals had any neutralizing antibody 
activity against SIVsmE660 ( Fig. 2 ).  This indicates that cellu-
lar immune responses likely play the main role for controlling 
virus replication after heterologous virus challenge. 

 Cellular immune responses p.c. 

 Cross-reactive vaccine-primed immune responses recognizing 
the infecting virus will likely determine the effi  cacy of HIV-1 
vaccines. We therefore monitored cellular immune responses 
elicited by SIVmac239 Δ nef vaccination to determine which, 
if any, expanded after challenge with SIVsmE660. In IFN- �  
ELISPOT assays using pools of peptides spanning the entire 
SIVmac239 proteome, we observed varying degrees of ex-
pansion in cellular immune responses above prechallenge lev-
els at 2 wk p.c. ( Fig. 3 ).  Expanded responses were primarily 
directed against Gag and Pol, which are the most conserved 
proteins between SIVmac239 Δ nef and SIVsmE660 ( Table I ). 

  Figure 2.     No in vitro neutralization of SIVsmE660 by vaccine-

induced antibodies.  Percent neutralization of SIVsmE660 replication in 

rhesus macaque PBMC after 7 d in culture by plasma collected before 

challenge in SIVmac239 Δ nef vaccinees. The chimeric molecule CD4-IgG2 

was used as a positive control for neutralization and plasma collected 

from an unvaccinated animal, 84070, before challenge was used as a neg-

ative control. Percent neutralization is presented as the reduction in the 

amount of virus at the end of the assay in comparison to cells infected 

with SIVsmE660 alone. Similar negative plasma neutralization results 

were observed in a TZM-bl cell neutralization assay ( 65 ). Error bars repre-

sent SEM of experiments done in triplicate.   

  Figure 3.     Expansion of virus-specifi c cells in SIVmac239 Δ nef-

vaccinated macaques at 2 wk p.c. with SIVsmE660.  Expansion in 

vaccinated macaques of the number of SFC above prechallenge levels in 

IFN- �  ELISPOT assays at 2 wk p.c. with SIVsmE660. To determine the ex-

pansion of SFC p.c., we subtracted the number of SFC per pool before 

challenge from the number of SFC detected p.c. The sum of the expanded 

cells per protein is displayed in the graph.   
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 Table II.    Comparison of amino acid sequences of known CD8 +  T cell epitopes between SIVmac239 Δ nef, SIVsmE660, 

and circulating virus during the chronic phase of infection in the vaccinated animals  

Sequence origin Epitope sequence

 Mamu-A*01 Gag 149-157 LW9 Gag 181-189 CM9 Gag 254-262 QI9 Gag 372-379 LF8 Pol 147-156 LV10 Pol 363-372 GM10 Pol 592-600 QV9 Pol 625-633 SV9

SIVmac239 Δ nef LSPRTLNAW CTPYDINQM QNPIPVGNI LAPVPIPF LGPHYTPKIV GSPAIFQYTM QVPKFHLPV STPPLVRLV
SIVsmE660 ......... ......... ......... .R.DQL.. ...N....V. .......... E........ .........
02092 ......... .A....... ......... .R.DQL.. ...N....V. .......... E.....V.. .........
88085 ......... ......... ......... ........ .......... .......... ......... .........
 Mamu-A*01 Env 233-241 CL9 Env 622-630 TL9 Env 729-738 ST10 Tat 28-35 SL8 Vif 144-152 QA9 Vpx 8-18 II11

SIVmac239 Δ nef CAPPGYALL TVPWPNASL SSPPSYFQQT STPESANL QVPSLQYLA IPPGNSGEETI
SIVsmE660 ......... ......ET. ....A.V..I P....... ......... ...........
02092 ......... ......GT. ....A.V..I P....... ......... ...........
88085 ......... ......ET. ....A.V..I ....L... .........
 Mamu-A*02 Gag 71-79 GY9 Pol 324-332 FF9 Pol 518-526 LY9 Env 296-304 RY9 Env 317-325 KM9 Env 359-367 QY9 Env 519-528 GF10 Env 760-768 SY9

SIVmac239 Δ nef GSENLKSLY FSIPLDEEF LSQEQEGCY RTIISLNKY KTVLPVTIM QTIVKHPRY GTSRNKRGVF SSWPWQIEY
SIVsmE660 ......... ......... ......... ......... ......... E.L...... .A........ R........
01022 ......... .........
rhAO84 ......... ......... ......... ......... ...f..... E.L...... .A........ R........
 Mamu-A*02 Env 788-795 RY8 Nef 20-28 LY9 Vif 89-97 IW9 Vif 97-104 WY8 Vpr 63-71 RM9

SIVmac239 Δ nef RTLLSRVY LLRARGETY ITWYSKNFW WTDVTPNY RILQRALFM
SIVsmE660 .DW.L.T. ..Q...... .....R... ......D. ........I
01022 .........
rhAO84 .DW.L.T. ..Q...... .....R... ......D. K.......I
 Mamu-A*11 Gag 178-186 SI9 Pol 92-100 AL9 Pol 457-465 RI9 Pol 507-517 AI11 Env 495-502 GI8 Vpr 13-21 RV9

SIVmac239 Δ nef SEGCTPYDI AERKQREAL RETWTVNDI AEAEYEENKII GDYKLVEI REPWDEWVV
SIVsmE660 ......... G. – ...T. ......... ........... ........ .........
01009 ......... RK – ...T. ......... ........... ........ .........
rh2000 ......... G. – ...T. ......... ........... ........
 Mamu-B*08 Gag 263-272 YL9 Env 524-532 KF9 Env 573-581 KL9 Env 717-725 LF9 Env 868-876 RL9 Rev 12-20 KL9 Rev 44-51 RL8 Nef 8-16 RL9

SIVmac239 Δ nef YRRWIQLGL KRGVFVLGF KRQQELLRL LRQGYRPVF RRIRQGLEL KRLRLIHLL RRRWQQLL RRSRPSGDL

SIVsmE660 ......... ......... ...H..... ......... ......... .......F. .Q....I. KQC.RG.N.

02132 ......... ...G..R.. ...H..... ......... ..V...... .......F. .Q....I. KQCRRR.N.

01048 ......... ......... .S....... ......... ........ .........

 Mamu-B*08 Vif 123-131 RL9 Vif 172-179 RL8

SIVmac239 Δ nef RRAIRGEQL RRDNRRGL
SIVsmE660 .......K. G.N...s.
02132

01048 ......... .....G..
 Mamu-B*17 Pol 372-379 MF8 Pol 435-443 FW9 Pol 604-613 VW10 Env 241-251 LF11 Env 816-825 LY10 Env 830-838 FW9 Vif 44-52 HW9 Vif 66-73 HW8

SIVmac239 Δ nef MRHVLEPF FQWMGYELW VWEQWWTDYW LRCNDTNYSGF LRTELTYLQY FHEAVQAVW HFKVGWAWW HLEVQGYW
SIVsmE660 ..N..... ......... I......... .....S..... I..GIA.... .Q.....W. .H....... ........
01003 ........ ......... .......... .....S..... .......... .Y....... .H....... Q.......

01079 ..N..... ......... I......... .....S..... .......... .Y....... .H....... ........
 Mamu-B*17 Vif 135-143 CY9 cryptic RW9

SIVmac239 Δ nef CRFPRAHKY RHLAFKCLW
SIVsmE660 .K..K...N .A..S..FR
01003 .K..K...N .A..S..FR
01079 .K..K...N .A..S..FR

Periods represent conserved amino acids in comparison to SIVmac239 Δ nef. The aa sequence for each epitope corresponds to the vaccine strain SIVmac237 Δ nef. Any aa 

substitutions in these epitopes present in our stock of SIVsmE660 or in the plasma virus of our vaccinated animals during the chronic phase of infection are identifi ed with 

capital letters or lowercase letters for mixed populations. Periods represent conserved aa in comparison to SIVmac239 Δ nef.
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 Because these animals controlled virus replication to ex-
tremely low levels before CD8 +  cell depletion, we wanted 
to determine the predominant species of virus replicating 
after depletion. Using a sequence-specifi c quantitative RT-
PCR (QRT-PCR) assay, we were surprised to detect only 
SIVmac239 Δ nef replicating in two of the animals (01022 and 
01048), whereas SIVsmE660 was the primary virus replicat-
ing in the remaining two animals. These results prompted us 
to reexamine samples spanning the entire study for all of the 
vaccinated animals. After this retrospective analysis, we only 
detected the vaccine strain and not the challenge strain at any 
point p.c. in 01022 and 01048. In the remaining vaccinated 
animals, SIVsmE660 was the principal virus replicating at all 
time points measured after challenge. 

 For the animals transiently depleted of their CD8 +  cells, we 
examined the cellular immune responses by IFN- �  ELISPOT 
after the CD8 +  cells returned to the periphery, reasoning that 
these cells might be involved in reestablishing control of viral 
replication. We assessed both CD8 +  and CD4 +  T cell re-
sponses using whole PBMC and PBMC depleted of CD8 +  
cells. We detected broad responses in two of the four an-
imals using freshly isolated PBMC. Animals 01022 and 01048 
made responses against 27 and 20 peptide pools, respectively. 

 Transient depletion of circulating CD8 +  cells 

 Because neutralizing antibodies did not appear to be responsi-
ble for control of viral replication, we next investigated 
whether CD8 +  cells were important in vaccine-mediated 
control of replication. Therefore, we depleted CD8 +  cells 
in vivo at 11 mo p.c. in the four SIVmac239 Δ nef-vaccinated 
animals controlling virus replication below 5,000 vRNA copy 
Eq/ml plasma. We administered a monoclonal antibody spe-
cifi c for CD8 �  to transiently deplete CD8 +  cells, which in-
cludes both CD8 +  T cells and NK cells, from the periphery. 1 d 
after administering the antibody, CD8 +  T cells were almost 
completely absent from the PBMC in three of the animals and 
reduced by  > 50% in the fourth. During the period of CD8 +  
cell depletion, plasma virus concentrations increased by 1 – 3 
logs ( Fig. 5 a ).  Plasma virus replication peaked 7 – 10 d after 
in vivo depletion of CD8 +  cells and ranged between 2.3  ×  10 4  
and 5.5  ×  10 5  vRNA copy Eq/ml. CD8 +  cells reemerged in 
the periphery 17 – 28 d after depletion, concomitant with a 
decrease in plasma virus concentrations ( Fig. 5, b and c ). Only 
animal 01048, however, controlled virus replication at or be-
low predepletion levels by 5 mo after CD8 +  cell depletion. 
Conversely, animal 02132 never regained control of virus 
replication below 5,000 vRNA Eq/ml. 

  Figure 4.     Frequency of tetramer binding cells in the PBMC of SIVmac239 Δ nef-vaccinated macaques p.c. with SIVsmE660.  (a) The frequency 

of MHC-I tetramer binding cells in the PBMC after challenge with SIVsmE660. Frequencies of tetramer positive cells are reported as the percentage of 

CD3 + /CD8 + /tetramer +  lymphocytes. The plasma virus concentrations for each animal are displayed with the red line and symbols. * distinguishes Nef 221-229 YY9 

from Nef 159-167 YY9. (b) Comparison of amino acid sequences between SIVmac239-derived peptides and SIVsmE660. The SIVmac239 sequence is 

shown above SIVsmE660 sequence for comparison of the two viruses. Periods represent conserved amino acids, capital letters indicate amino acid substi-

tutions, and lowercase letters represent mixed populations.   
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responses ( 33 – 35 ). From animal 02132, however, we only 
detected three CD4 +  T cell responses. Although it is likely 
that some peptide pools stimulated both CD4 +  and CD8 +  
T cell responses, we were able to associate over half of the 
detectable peptide pool – specifi c responses in three of the four 
animals with CD4 +  T cells. It is diffi  cult to determine whether 
these CD4 +  T cell responses directly contributed to controlling 
virus replication or their presence is merely the result of low 
virus replication. These results do underscore, however, the 
potential importance of SIV-specifi c CD4 +  T cell responses 
in generating successful antiimmunodefi ciency virus immunity. 
Results also indicate the likelihood that SIV-specifi c CD4 +  
T cell responses are not necessarily deleterious, though some 
have speculated they would be ( 36 ). 

 Escape in SIVsmE660? 

 Most of the vaccinated macaques in our study controlled virus 
replication below 10,000 vRNA copy Eq/ml for at least 4 mo 
p.c. However, the majority of them experienced gradually 
increasing virus replication as the study progressed. We therefore 
set out to determine whether increased plasma virus replica-
tion was caused by escape in known CD8 +  T cell epitopes. 
We sequenced the virus from the plasma of six of the animals 
during the chronic phase of infection. Because of the low 
number of virions in the plasma of the animals controlling 
virus replication during the chronic phase of infection, we used 
post – CD8 +  cell depletion samples for the CD8 +  T cell escape 
analysis. We found evidence for amino acid substitutions in 
known CD8 +  T cell epitopes in the circulating viruses of these 
animals. Animal rhAO84, the only vaccinee not to control vi-
rus replication at any point p.c. and the fastest to progress to 
simian AIDS, had circulating virus at its time of death with 
changes in only one of the 13 Mamu-A*02 – restricted epi-
topes, with respect to the SIVsmE660 sequence, and a mixed 
population in a second ( Table II ). This corresponds with 
the limited expansion of epitope-specifi c responses detected 
in this animal p.c. ( Fig. 4  and Fig. S3 e). Conversely, animal 
02092 made vigorous responses against several Mamu-A*01 – 
restricted epitopes during acute infection, particularly the 
immunodominant epitope Gag 181-189 CM9 (Gag CM9;  Fig. 4  and 
Fig. S3). During the chronic phase of infection, however, we 
detected mutations in several of the Mamu-A*01 – restricted 
epitopes recognized during acute infection, including Gag 
CM9. Escape from Gag CM9 – specifi c CD8 +  T cells has pre-
viously been associated with a loss of viral control ( 37, 38 ). 

 We also investigated viral evolution in the two vaccinated 
 Mamu-B*17  +  animals. These animals controlled virus rep-
lication at two weeks p.c. below 250 vRNA copy Eq/ml 
plasma but subsequently experienced near-identical increases 
in plasma virus replication with respect to time and mag-
nitude ( Fig. 6 ).  We detected the same amino acid changes 
in the two Mamu-B*17 – restricted Env epitopes in both 
animals, Env 816-825 LY10 (Env LY10) and Env 830-838 FW9 
(Env FW9;  Table II ). Curiously, the mutations observed in 
these two epitopes were nearly identical to the sequence of 
SIVmac239 Δ nef, with only a histidine-to-tyrosine substitution 

These responses were directed against multiple viral proteins 
(Fig. S5, available at http://www.jem.org/cgi/content/full/
jem.20081524/DC1). Conversely, animals 02132 (11 pools) 
and 88085 (4 pools) had more focused responses. Of note, 
88085 consistently had high background levels of IFN- �  in the 
PBMC, which resulted in an increased threshold for positive 
responses and probably accounted for the generally low num-
ber of responses detected in this animal. 

 We also examined CD4 +  T cell responses in the CD8 +  
cell – depleted animals using a combination of fresh and frozen 
cells. Because of limitations on cell availability, we restricted 
our initial analysis of CD4 +  T cell responses with fresh PBMC 
depleted of CD8 +  cells to pools of peptides spanning Gag, Tat, 
Rev, and Vif at 4 or 5 wk after CD8 +  cell depletion. We used 
frozen cells to determine how many peptide pool – specifi c re-
sponses outside of Gag, Tat, Rev, and Vif that were identifi ed 
using whole PBMC were associated, at least in part, with 
CD4 +  cells. Remarkably, animals 88085 (10 pools), 01048 (17 
pools), and 01022 (19 pools) made broad CD4 +  T cell re-
sponses against multiple proteins (Fig. S5). The largest magni-
tude response at 4 wk after depletion in animal 01022 was a 
CD4 +  T cell response directed against a peptide pool spanning 
the fi rst 51 aa of Rev (1,965 SFC per million PBMC and 2,083 
SFC per million CD8 +  cell – depleted PBMC). This region 
of Rev is known to be the target of potent CD4 +  T cell 

  Figure 5.     Plasma virus concentrations and CD8 +  T cell and NK cell 

counts after in vivo depletion of CD8 +  cells.  (a) Plasma virus concen-

trations of the four SIVmac239 Δ nef-vaccinated macaques were tran-

siently depleted of their peripheral CD8 +  cells. (b and c) The number of 

CD8 +  T cells (CD3 + /CD8 +  lymphocytes; b) and the number of NK cells 

(CD3 - /CD8 + /CD16 + ; c) in the PBMC after in vivo CD8 depletion.   
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vaccinated animals signifi cantly reduced plasma virus replica-
tion at most time points between 2 and 32 wk p.c. (P  ≤  0.049) 
in comparison to the unvaccinated controls. Surprisingly, we 
found no evidence of SIVsmE660 replication in two of the 
vaccinated animals. We also explored the nature of the antivi-
ral immunity that provided protection in the vaccinated ani-
mals. Several lines of evidence emerged strongly implicating 
vaccine-induced MHC-I – restricted CD8 +  cell responses as 
the primary force involved in protecting SIVmac239 Δ nef-
vaccinated macaques from heterologous challenge. We dis-
covered, however, evidence of recombination between the 
vaccine and challenge strains, which likely contributed to a 
loss of immune-mediated control of virus replication. 

 We have known that live-attenuated SIV vaccines can pro-
tect macaques against pathogenic SIV challenges for almost 
20 yr. However, the underlying mechanism of this protective 
immunity has remained elusive. CD4 +  and CD8 +  T cells ( 10, 
12 – 14, 16 ), antibodies ( 9, 10 ), NK cells ( 11, 15 ), and viral 
interference ( 16 – 18 ) have been implicated in vaccine-induced 
control. In this study, we provide several lines of evidence 
showing that MHC-I – restricted CD8 +  responses are playing the 
key role in reducing virus replication after heterologous virus 
challenge in SIVmac239 Δ nef-vaccinated macaques. First, there 
is no evidence that vaccine-induced neutralizing antibodies 

in Env FW9 diff ering from the SIVmac239 Δ nef sequence in 
these animals. 

 Recombination between SIVmac239 Δ nef and SIVsmE660 

 One possible explanation for the emergence of SIVmac239-
like sequences in these two epitopes was that recombination 
had occurred between the vaccine and challenge viruses. In-
deed, bulk sequencing of the entire viral genome at 8 mo p.c. 
showed that multiple recombination events had occurred in 
the two  Mamu-B*17 +   animals. Further analysis of all of the 
vaccinated animals revealed recombination occurring in sev-
eral other animals ( Fig. 7 ).  Additionally, sequence analysis of 
animals 01022 and 01048 confi rmed that only SIVmac239 Δ nef 
was replicating in these animals. Interestingly, the virus in the 
two vaccinated  Mamu -B*17 +  macaques had similar patterns 
of recombination and replicated to a level  � 1 log higher at 
1 yr p.c. than the unvaccinated  Mamu -B*17 +  animals infected 
with SIVsmE660 alone ( Figs. 6 and 7 ). This suggests that re-
combination provided a fi tness advantage for replication in 
 Mamu -B*17 +  animals. 

 A recent study found that bulk sequencing of plasma 
vRNA might result in recombination because of PCR arti-
facts ( 39 ). Therefore, to confi rm recombination between the 
vaccine and challenge strains, we used limiting dilution PCR 
to achieve single-genome amplifi cation (SGA). We focused 
our analysis on a putative break point at the end of  env  and 
the beginning of  nef  in the vaccinated  Mamu - B*17  +  animals. 
SGA analysis corroborated the bulk sequencing results indi-
cating that recombination had indeed occurred in the two 
 Mamu -B*17 +  animals, as all 10 clones from 01003 and all 
11 clones from 01079 showed evidence of recombination 
(Fig. S6, available at http://www.jem.org/cgi/content/full/
jem.20081524/DC1). The presence of recombination in the 
vaccinees, particularly the  Mamu - B*17  +  animals, indicates 
another mechanism by which the virus can evade protective 
immunity in live-attenuated SIV-vaccinated macaques. 

  DISCUSSION  

 In this study, we examined the ability of live-attenuated SIV 
to protect macaques against heterologous virus challenge. The 

  Figure 6.     Virus replication in Mamu-B*17 +  macaques.  Plasma virus 

concentrations in SIVmac239 Δ nef vaccinated (blue) and unvaccinated 

(red)  Mamu-B*17  +  macaques for 60 wk p.c.   

  Figure 7.     Recombination events between SIVmac239 Δ nef and 

SIVsmE660.  During the chronic phase of infection or after in vivo CD8 

depletion we used bulk sequencing to detect recombination between 

SIVmac239 Δ nef and SIVsmE660. Represented are the regions that most 

closely align to either SIVmac239 Δ nef (red) or SIVsmE660 (blue). Positioning 

of putative break points and size of either SIVmac239 Δ nef or SIVsmE660 

regions are approximations based on sequencing data. Open boxes repre-

sent regions of the virus where sequences could not be obtained.    on M
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in viral replication after homologous virus challenge ( 41 – 44 ). 
There may be several reasons for this discrepancy in protective 
effi  cacy. CD8 +  T cell responses induced by SIVmac239 Δ nef 
during the vaccine phase of the study were roughly equivalent 
in frequency to those produced by prime-boost vaccine regi-
mens ( 41, 45 – 47 ). The magnitude of vaccine-induced CD8 +  
T cell responses, therefore, is likely not the reason why live-
attenuated SIV vaccines succeed at controlling virus replication 
and recombinant virus – based vaccines largely fail. Current HIV 
vaccine modalities focus the immune responses on only a few 
viral proteins. This may not generate the breadth of responses 
needed to control replication after a heterologous virus chal-
lenge. SIVmac239 Δ nef vaccination generated broad CD8 +  T 
cell responses against several viral proteins, even those which 
are often considered too variable to be included in HIV vac-
cines. Cellular immune responses directed against these rela-
tively variable proteins might have contributed to protective 
immunity in our study. Animal 02132, for example, made a 
very strong CD8 +  T cell response to an immunodominant 
Mamu-B*08 – restricted epitope in Vif, likely contributing to its 
control of virus replication after heterologous virus challenge. 
SIVmac239 Δ nef vaccination also provided consistent low-level 
antigen stimulation throughout the vaccine phase of the study. 
This contrasts with prime-boost strategies and single cycle SIV 
viruses where only limited replication of the virus/vector oc-
curs ( 48 ). Under these circumstances anamnestic responses in-
duced by prime-boost or single-cycle SIV may be incapable of 
responding fast enough to limit acute viral replication after ex-
posure to pathogenic viruses. The constant antigen exposure 
provided by SIVmac239 Δ nef, alternatively, may induce eff ec-
tor responses that rapidly react after pathogenic immunodefi -
ciency virus infection and limit virus replication. Finally, 
SIVmac239 Δ nef may have additional advantages over most 
current HIV/SIV vaccines in that it primes immune responses 
in the same tissues where the pathogenic viruses are likely to 
replicate. The discovery of recombinant viruses indicates that 
the two virus strains indeed replicated in the same cells, let 
alone the same tissues. Although we did not specifi cally sam-
ple mucosal tissues in our study, live-attenuated SIV vaccines 
are known to generate CD8 +  T cell responses in these tissues 
( 49, 50 ). Traffi  cking of antiviral immune responses to the 
mucosa maximizes the chances that these responses will encoun-
ter virally infected cells during the earliest stages of infection, 
even after i.v. inoculation. Therefore, to mimic live-attenuated 
SIV vaccines as closely as possible, improved HIV vaccines 
may need to use replicating vectors to provide constant anti-
genic stimulation to antiviral immune responses. Ideally these 
vectors will target responses to mucosal tissues and include as 
many viral proteins as possible to maximize the number of 
cross-reactive immune responses with infecting HIV viruses. 

 In spite of early control of virus replication after SIVsmE660 
challenge, particularly those animals expressing  Mamu-B*17 , 
we observed a progressive increase in plasma virus replication 
in most vaccinees. This diff ers from the durable control ob-
served in animals vaccinated with live-attenuated SIV and 
challenged with homologous viruses. We found evidence of 

contributed to controlling virus replication. Second, we 
found an association between two MHC-I alleles and near 
complete control of acute virus replication after heterologous 
challenge. Finally, transient depletion of CD8 +  cells from the 
periphery of macaques controlling SIV replication quickly led 
to a 3 – 4 log increase in plasma virus concentrations. Our results 
eliminate viral interference, CD4 +  T cells, and antibodies as sole 
providers of protective immunity in live-attenuated SIV vacci-
nated macaques because these responses are not infl uenced by 
protective MHC-I alleles and virus replication in CD8 +  cell –
 depleted animals in which SIV-specifi c antibodies were still 
present. Our results do not eliminate the possibility that helper 
CD4 +  T cells or binding antibodies, either through the develop-
ment of immune complexes or removal of infected cells via 
antibody-dependent cell-mediated cytotoxicity, play an impor-
tant supportive role in controlling virus replication. We also 
cannot rule out the possibility that NK cells contributed to the 
control of virus replication. However, a recent study demon-
strated that NK cells have a limited role in controlling primary 
SIV replication ( 40 ). But the chronic low level of replication by 
live-attenuated SIV may provide persistent stimulation and ac-
tivation to NK cells to allow them to help eliminate pathogenic 
SIV replication. Additionally, depletion of peripheral CD8 +  
cells during the chronic phase of infection indicates that these 
cells are responsible for controlling virus replication during this 
phase of infection but leaves open the possibility that additional 
factors contribute to the reduction in acute virus replication, 
particularly in the  Mamu-B*08  +  and  -B*17  +  animals. To more 
accurately assess the role of CD8 +  T cells in controlling acute 
virus replication in Mamu-B*08 +  and -B*17 +  macaques, addi-
tional animals will need to be vaccinated with SIVmac239 Δ nef 
and depleted of CD8 +  cells before SIVsmE660 challenge. 

 Throughout the course of the study, we used peptides 
corresponding to the SIVmac239 proteome to detect virus-
specifi c cellular immune responses. We feel that these pep-
tides eff ectively detected cross-reactive CD8 +  and CD4 +  T 
cell responses between the vaccine and challenge strains be-
cause these responses are likely responsible for controlling vi-
rus replication in the vaccinated animals. Nevertheless, there 
may be additional CD4 +  and CD8 +  T cell responses that con-
tribute to controlling SIV replication but cannot be detected 
using SIVmac239-specifi c peptides. The number of these un-
accounted for responses may vary from animal to animal. 

 Our inability to detect SIVsmE660 replication by QRT-
PCR or bulk sequencing in two of the vaccinated animals 
suggested that they achieved sterilizing immunity against a het-
erologous virus. These results give hope that CD8 +  T cell – based 
HIV vaccines can realize a similar level of effi  cacy. How-
ever, it is unclear why these two animals completely suppressed 
SIVsmE660 replication, whereas the remaining eight vaccinees 
did not. Also, we cannot rule out the possibility that these two 
animals harbor a small number of cells latently infected with 
SIVsmE660. 

 The protective capacity of vaccine-induced CD8 +  T cells 
elicited by live-attenuated SIV vaccines diff ers from current 
prime-boost regimens, which provide only limited reduction 
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copy Eq/ml through 4 mo p.c. However, only four of them 
maintained low levels of virus replication out to 11 mo p.c. 
These four animals have various MHC-I backgrounds, sug-
gesting that a properly designed HIV vaccine that induces 
CD8 +  T cell responses can be eff ective in diverse populations. 
The combination of the association of the  Mamu-B*08 +   and 
 -B*17 +   MHC-I alleles with near complete control of acute 
virus replication, the rapid increase in virus replication after in 
vivo depletion of CD8 +  cells in the periphery, and the inabil-
ity of neutralizing antibodies to aff ect ongoing virus replication 
strongly implicate MHC-I – restricted CD8 +  T cells as the 
major contributors to live-attenuated SIV-induced protective 
immunity. The discovery of recombination between the vac-
cine and challenge strains, however, militates strongly against 
the development of live-attenuated HIV vaccines. 

 MATERIALS AND METHODS 
 Animals and viruses.   Indian rhesus macaques ( Macaca mulatta ) from the 

Wisconsin National Primate Research Center were chosen based on ex-

pression of particular MHC-I alleles as determined by sequence-specifi c 

PCR ( 26, 57 ). All animals were housed and cared for according to the regu-

lations set forth in the  Guide for the Care and Use of Laboratory Animals  of the 

National Research Council (National Research Council. 1996. Guide for 

the care and use of laboratory animals. National Academy Press, Washington 

DC), as approved by the University of Wisconsin Institutional Animal Care 

and Use Committee. 10 macaques were inoculated i.v. with 10 ng p27 of 

SIVmac239 Δ nef, provided by R. Desrosiers (New England Primate Re-

search Center, Southborough, MA). Vaccinees and control animals were 

challenged i.v. with 100 50% tissue culture infective doses of SIVsmE660. 

 In vivo CD8 depletion.   We transiently depleted peripheral CD8 +  cells by 

administering monoclonal antibody cM-T807 (produced by Centocor and 

provided via Keith Reimann [Harvard Medical School, Boston, MA] and 

the National Institutes of Health Nonhuman Primate Reagent Resource) 

i.v. in a single dose at 50 mg/kg of body weight. 

 Viral load determination.   Levels of circulating plasma virus were deter-

mined using a previously described QRT-PCR assay ( 58 ). The challenge 

strain SIVsmE660 was diff erentiated from SIVmac239 � nef via a second 

QRT-PCR assay run on the same isolation of vRNA used for quantitating 

virus concentrations. The E660 primers Nefdel.f2 5 � -CRCTCTCTTGT-

GAGCCTCAGAA-3 �  and Nefdel.r2 5 � -TCTTGGGTGCACTGAGA-

CAC-3 �  produce a small amplicon in Nef. The Nefdel.r2 primer and the 

probe 5 � -(6-Fam)CAAGTCATCATCTTCATCATCCACATCATCCAT

(BHQ1)-3 �  bind entirely within the deleted portion of  nef  and detect full-

length virus exclusively. These primers and probe are used under the same 

cycling conditions that were described previously ( 58 ). The concentration of 

full-length virus was determined by interpolation onto a standard curve of in 

vitro – transcribed  nef  RNA standards in serial 10-fold dilutions using the 

LightCycler 480 software (version 1.2.0; Roche). 

 IFN- �  ELISPOT assays.   Fresh PBMC isolated from EDTA anticoagulated 

blood were used in ELISPOT assays for the detection of IFN- �  – secreting 

cells as previously described ( 59 ). Peptides used in these assays were obtained 

through the AIDS Research and Reference reagent program, Division of 

AIDS, National Institute of Allergy and Infectious Disease, and National 

Institutes of Health. Additionally, we examined responses by CD8  �   cells by 

depleting PBMC of CD8 +  cells using a CD8 Microbead kit for nonhuman 

primates (Miltenyi Biotec) according to the manufacturer ’ s instructions. 

 Tetramer staining.   SIV-specifi c cells were enumerated by staining PBMC 

with MHC-I ( Mamu -A*01, -A*02, or -B*17) tetrameric complexes loaded 

viral escape from CD8 +  T cell responses that likely contrib-
uted to the loss of viral containment. Although this fi nding 
further supports CD8 +  T cells as playing an important role in 
controlling virus replication after heterologous virus challenge, 
it also demonstrates the fragility of this control. The already 
reduced number of epitopes recognized in the heterologous 
challenge virus may focus selective pressure on a few regions 
of the virus and provide an avenue by which only a small 
number of key mutations can result in a loss of viral control. 
These results, therefore, also emphasize the need to limit virus 
replication to as low a level as possible. 

 We discovered that recombination had occurred between 
the vaccine and the challenge strains. This may have poten-
tially produced a more pathogenic recombinant strain. In 
vaccinated  Mamu-B*17 +   animals in particular we detected 
numerous recombination events. Surprisingly, most of these 
events were shared between the two animals. These recom-
bination events appear to contribute to the loss of contain-
ment of virus replication even after control of acute virus 
replication was achieved. Startlingly, the recombinant viruses 
eventually replicated to around 5  ×  10 6  copy Eq/ml plasma, 
approximately one log higher than the unvaccinated  Mamu-
B*17 +   controls infected with SIVsmE660 alone. Although 
the number of  Mamu-B*17 +   animals in our study is relatively 
small, our results suggest that the recombinant virus had a fi t-
ness advantage in  Mamu-B*17  +  animals. 

 In retrospect, this recombination was hardly surprising. 
Recombination between diff erent viral strains is well docu-
mented in HIV and has been noted before in the setting of 
live-attenuated SIV vaccines ( 3, 4, 51 – 54 ). However, the 
prospect of incoming HIV virions recombining with a live-
attenuated strain to produce a more pathogenic strain should 
eliminate any remaining possibility of using live-attenuated 
HIV vaccines in humans. 

 We challenged our cohort of animals i.v. because previous 
studies had shown eff ective control of homologous virus by 
live-attenuated SIV-vaccinated macaques challenged via this 
route. This challenge is comparable to transmission of HIV-1 
through contaminated needles or blood products. It is also 
the most diffi  cult route of transmission for vaccines to protect 
against because all physical barriers are bypassed and viruses 
can enter freely into the body. Worldwide, however, sexual con-
tact, and not direct blood-to-blood contact, is the primary 
route of HIV-1 transmission. Studies in macaques and recent 
studies in humans suggest that only a small population of virus 
crosses the mucosal barriers to establish infection after hetero-
sexual transmission ( 39, 55, 56 ). Subsequent localized virus 
replication during the earliest stages of infection may allow 
vaccine-induced immune responses to prevent systemic infec-
tion. Thus, it is possible that the reduction in plasma virus rep-
lication observed in our study after i.v. challenge may be even 
greater in a model of sexual transmission. 

 In conclusion, our study demonstrates that SIVmac239 Δ nef-
induced CD8 +  T cell responses can signifi cantly reduce het-
erologous AIDS virus replication. Most of the vaccinated 
animals controlled virus replication below 10,000 vRNA 
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 To determine the optimal cDNA concentration resulting in  < 30% posi-

tive reactions in PCR we used Phusion high-fi delity polymerase (Finnzymes) 

per the manufacturer ’ s instructions. PCR reactions were set up using fi rst 

round amplifi cations as template as follows: each reaction contained 4  μ l of 

5 ×  HF buff er, 0.4  μ l of 10 mM dNTP, 0.5  μ l of 20  μ M sense oligo, 0.5  μ l 

of 20  μ M antisense oligo, 2  μ l of fi rst-round PCR product, 0.2  μ l Phusion 

high-fi delity polymerase, and DEPC water to 20  μ l. Thermocycling was 

performed with the following parameters: initial denaturation at 98 ° C for 30 s, 

and then denature at 98 ° C for 5 s, anneal at 65 ° C for 10 s, and extend at 72 ° C 

for 10 s for 45 cycles. A fi nal extension was done at 72 ° C for 5 min. The oligos 

used in this reaction were E543-8858F (ACCAAAGAAGGAGAAGAAG-

GAGA) and E453-9449R (TATTGCCAATTTGTATGTCA TGG). When 

nested PCRs are complete, all reaction products were electrophoresed on a 

1% agarose gel stained with SYBR safe DNA gel stain (Invitrogen). Positive 

reactions contained a band at  � 592 bp which was cut out and from which 

DNA was isolated using the QIAquick Gel Extraction kit (QIAGEN) as per 

the manufacturer ’ s instructions. 

 Isolated DNA was sequenced as described in Sequencing of plasma 

vRNAs using the following oligos: E543-8858F (ACCAAAGAAGGAGA-

AGAAGGAGA), E453-9449R (TATTGCCAATTTGTATGTCATGG), 

E543_Frag14_F1 (GGCCTTGGCAGATAGAATATATTC), and E543_

Frag14_R (CTGAKACMCCTACYAAGTCATCATC). 

 Statistical analysis.   Statistical analyses consisted of two sample Student’s 

 t  tests of the variables studied, namely number of virions per milliliter of 

blood and viral load at diff erent time points p.c. We performed these tests 

using the TTEST procedure in SAS (version 9.1) to do the following: com-

pare the plasma virus concentrations of the SIVmac239 Δ nef-vaccinated ma-

caques ( n  = 10) with their MHC-I – matched naive controls ( n  = 10); compare 

Mamu-B*08 + /-B*17 +  macaques ( n  = 4) with their MHC-I – matched naive 

controls ( n  = 4); and compare Mamu-A*01 + /-A*02 + /-A*11 +  macaques ( n  = 6) 

with their MHC-I – matched controls ( n  = 6). 

 Before performing inferential testing, we checked key underlying as-

sumptions of the Student’s  t  tests (normality of residuals and homoscedasticity). 

The failure of the data to support these assumptions led us to transform the 

data via the natural logarithm, which improved the conformity to the as-

sumptions. Student’s  t  tests were performed under equal and unequal group 

variance assumptions via the Welch correction, in which we used the folded 

form of F test (F � ) to decide the test statistic (pooled or Satterthwaite). This 

form of F test gives the probability of a greater F value under the null 

hypothesis that group variances are equal. We also used one way nonpara-

metric analysis using an exact Wilcoxon Rank-Sum test with the continuity 

correction, which does not assume normality of residuals, to further verify 

our results. Conclusions about statistical signifi cance and direction of eff ects 

were the same across these three analytic approaches, so herein we report 

only the Student’s  t  test results. 

 Online supplemental material.   Fig. S1 shows that most SIVmac239 Δ nef 

replication was controlled below 500 copy Eq/ml plasma at the time of the 

SIVsmE660 challenge. Fig. S2 shows the prechallenge IFN- �  ELISPOT re-

sponses for each animal using whole PBMC and CD8 + -depleted PBMC. 

Fig. S3. shows the epitope-specifi c expansion of CD8+ T cell responses be-

fore challenge and p.c. for all of the animals. Fig. S4 shows prechallenge and 

p.c. peptide pool – specifi c responses from animal 02132 in IFN- �  ELISPOT 

assays. It also shows, through intracellular cytokine staining assays, that we 

can associate two of these responses with CD4 +  T cells. Fig. S5 shows pep-

tide-specifi c responses in whole PBMC and PBMC depleted of CD8 +  cells 

after the return of CD8 +  cells to the periphery. Fig. S6 shows recombination 

by single-genome analysis of virus circulating in the vaccinated  Mamu-B*17  +  

macaques during the chronic phase of infection. Table S1 displays the fre-

quency of tetramer binding cells in the PBMC during the vaccine phase of 

the study. Table S2 displays the peptide pools to which SIVmac239 Δ nef-

vaccinated animals made responses in IFN- �  ELISPOT assays using whole 

PBMC or PBMC depleted of CD8 +  cells. Online supplemental material is 

available at http://www.jem.org/cgi/content/full/jem.20081524/DC1. 

with synthetic peptides corresponding to previously identifi ed epitopes ( 26, 

28, 29, 60, 61 ). The Mamu-B*08 tetramers were refolded with either the syn-

thetic peptides corresponding to Env 573-581 KL9 ( 62 ) or the recently identifi ed 

Vif 123-131 RL9 or Vif 172-179 RL8 epitopes ( 30 ). All Mamu-B*17 tetramers and 

some Mamu-B*08 tetramers were refolded as previously outlined ( 63 ). The 

assay was performed using one million PBMC as previously described ( 41 ). 

 Neutralization assays.   Neutralization assays were performed as previously 

described ( 64 ) with the following exceptions. Rhesus PBMC was stimulated 

for 3 d with PHA and IL-2 before the addition of virus and plasma. After ad-

dition of virus and plasma, plates were incubated at 37 ° C overnight, and the 

cells were then washed four times with fresh culture medium. Half of the 

media was replaced with fresh media 3 d later. Culture supernatants were 

harvested for p27 analysis 7 d after infection. 

 Intracellular cytokine staining.   Intracellular cytokine staining was per-

formed using thawed PBMC as previously described ( 42 ). In brief, 5  ×  10 5  –

 10 6  PBMC were incubated in the presence of Brefeldin A (Sigma-Aldrich) and 

pools of 10 peptides, 15 aa in length, for 5 h. The cells were then stained with 

anti-CD8 �  PerCP (Becton Dickinson) and anti-CD4 APC (Becton Dickin-

son) for 30 min. After the incubation, the cells were washed twice with PBS, 

fi xed with 2% paraformaldehyde, and stored overnight at 4 ° C. The next day, 

the cells were washed twice with permeabilization buff er (PBS + 10% FBS + 

0.1% saponin) and stained with anti – IL-2 PE (BD Biosciences) and anti – IFN- �  

FITC (BD Biosciences) for 50 min. After washing the cells twice with perme-

abilization buff er, the cells were fi xed with paraformaldehyde and stored at 4 ° C 

until being acquired on a FACSCalibur Flow Cytometer (Becton Dickinson). 

The data were analyzed using FlowJo software (Tree Star, Inc.). 

 CD8 +  T cell and NK cell quantifi cation.   We monitored the CD8 +  cell 

depletion kinetics by staining PBMC with fl uorescently labeled antibodies 

specifi c for CD8-PE (Dako), CD16 – Pacifi c Blue (BD Biosciences), and 

CD3 – Alexa 700 (BD Biosciences). In brief, 500,000 PBMC were incubated 

with these antibodies for 30 min at room temperature. The samples were 

then washed twice, fi xed with paraformaldehyde, and run on a BD-LSR-II 

fl ow cytometer (Becton Dickinson) using FACSDiva software (BD Biosci-

ences). Data were analyzed using FlowJo software. Absolute counts were 

calculated by multiplying the frequency of CD8 +  T cells or CD3 + /CD8 + /

CD16 +  NK cells within the lymphocyte gate by the lymphocyte counts per 

microliter of blood obtained from matching complete blood counts. 

 Sequencing of plasma vRNA.   vRNA was extracted from plasma samples 

containing  > 1,000 vRNA copy Eq/ml as previously described ( 58 ). Samples 

were sequenced from 8 mo p.c., the time of death, for animals rhAO84 and 

rh2000, from 10 mo p.c. for animals 02092, 01009, 01003, and 01079, and 

2 wk after depletion for animals 88085, 01022, 02132, and 01048. For each 

vRNA sample, several overlapping amplicons spanning the open reading 

frames of SIVmac239 or SIVsmE660 were amplifi ed using the One-Step 

RT-PCR kit (QIAGEN) and pairs of sequence specifi c primers. The RT-

PCR conditions for all amplicons were as follows: 50 ° C for 30 min, 95 ° C 

for 15 min, 45 cycles of 94 ° C for 30 s, 53 ° C for 1 min, 72 ° C for 150 s, and 

68 ° C for 20 min. The amplifi ed cDNAs were purifi ed using the QIAquick 

8 PCR Purifi cation kit (QIAGEN). Sequencing reactions for each amplicon 

were set up using the DYEnamic ET Terminator Cycle Sequencing kit (GE 

Healthcare). The sequencing cycling conditions for all amplicons were as 

follows: 30 cycles of 95 ° C for 20 s, 50 ° C for 15 s, and 60 ° C for 1 min. Both 

strands of each amplicon were sequenced on a 3730 DNA Analyzer (Applied 

Biosystems). Sequences were assembled using Aligner version 2.0.6 (Codon-

Code Corporation). DNA sequences were conceptually translated and aligned 

to SIVsmE660 in MacVector 9.0 trial version (Accelrys). 

 SGA PCR.   cDNA was created from vRNA extracted from plasma using 

the MinElute kit (QIAGEN) per the manufacturer ’ s instructions. cDNAs 

were created using the Superscript III cDNA synthesis kit (Invitrogen) using 

oligo dT primers per the manufacturer ’ s instructions. 
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