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Linearized Navier–Stokes equations are solved to investigate the impact on the growth
of near-wall turbulent streaks that arises from streamwise-travelling waves of spanwise
wall velocity. The percentage change in streak amplification due to the travelling
waves, over a range of wave parameters, is compared to published direct numerical
simulation (DNS) predictions of turbulent skin-friction reduction; a clear correlation
between the two is observed. Linearized simulations at a much higher Reynolds
number, more relevant to aerospace applications, produce results that show no marked
differences to those obtained at low Reynolds number. It is also observed that
there is a close correlation between DNS data of drag reduction and a very simple
characteristic of the ‘generalized’ Stokes layer generated by the streamwise-travelling
waves.
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1. Introduction
Recent studies of wall-bounded turbulence have shown that spanwise oscillations

of the surface (perpendicular to the flow) and streamwise-travelling waves of
spanwise wall velocity can bring about a substantial reduction in skin-friction drag.
It has been found that these wall-oscillation control approaches have a strongly
disruptive/inhibitive effect on the near-wall streak structures (Jung, Mangiavacchi &
Akhavan 1992; Karnidakis & Choi 2003; Ricco & Quadrio 2008). Given that it is
commonly accepted that near-wall streak structures play a major role in the turbulent
regeneration mechanism (Kline et al. 1967), it might be expected that an explanation
for the efficacy of such control methods would be readily forthcoming. However,
there is still a lack of clarity in our understanding of the physical mechanism(s)
underpinning this type of control strategy, which stands in the way of efficient
prediction and engineering application.

Choi, Xu & Sung (2002) demonstrated, experimentally, drag reduction of up
to 45 % using wall oscillations in the spanwise direction; an optimum period
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FIGURE 1. Schematic representation of streamwise-travelling waves of spanwise wall
velocity. Adapted from Quadrio et al. (2009).

of around T+ = 100–125 was shown to be independent of the wall-oscillation
amplitude (here + denotes viscous wall units). More recently, Quadrio, Ricco &
Viotti (2009) investigated, numerically, streamwise-travelling waves of spanwise wall
velocity: Vwall = A sin(κxx − ωt) where A is the velocity amplitude, κx is a streamwise
wavenumber and ω is the oscillation frequency of the wave. This form of forcing
generates waves of spanwise velocity moving (backward or forward) in the streamwise
direction with a phase speed c = ω/κ (see figure 1 for a schematic of this actuation).
This forcing represents a generalized form of spanwise-wall actuation including the
two extreme cases: spanwise oscillation (κx = 0) as investigated by Choi et al. (2002);
and stationary streamwise waves of spanwise velocity (ω = 0). Quadrio et al. (2009)
found a range of wave parameter combinations for which drag reduction was of the
order of 48 % (greater than that achievable using spanwise oscillations or standing
streamwise waves of spanwise velocity). They also found that in the κx–ω parameter
space there exists a region where drag increase can occur, corresponding to a constant
phase speed c+ ≈ 10. Auteri et al. (2010) performed experiments to confirm the
numerical results of Quadrio et al. (2009), and showed that turbulent skin-friction
reduction of up to 33 % is achievable for slow velocity forward-travelling waves in
a turbulent pipe flow. Moreover, they have also reported that there are combinations
of κx and ω for which an increase in drag can occur; all in consonance with the
numerical findings. Despite a number of interesting and thorough studies, it has yet to
be satisfactorily explained why skin-friction drag is affected, in the way that it is, by
changes in the actuation parameters κx and ω. In this paper we intend to contribute to
such an explanation.

The majority of the numerical studies on drag reduction using spanwise wall motion
have been performed using direct numerical simulation (DNS). As such, computational
limitations have restricted the studies to relatively low Reynolds numbers. In this
paper we investigate the behaviour of near-wall streaks using linearized Navier–Stokes
equations, allowing us to consider high-Reynolds-number regimes beyond the current
capabilities of DNS.

The idea of using linearized Navier–Stokes equations to predict aspects of nonlinear
turbulent flows stems from the work of Landahl (1989), who argued that near-wall
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turbulence could be effectively modelled as a linear system driven by spatially and
temporally intermittent vorticity bursts originating in the viscous sublayer. Butler &
Farrell (1993) went on to calculate optimal perturbations to a suitably prescribed
mean turbulent velocity profile. This work encouraged other approaches to using the
linearized Navier–Stokes equations to predict near-wall streaks, e.g. the generalized
optimal perturbation (GOP) method of Chernyshenko & Baig (2005) and the low-order
optimization model developed by Lockerby, Carpenter & Davies (2005). Motivated
by the achievements of these earlier studies, we will extend the use of linearized
modelling to investigate how near-wall streaks are influenced by streamwise-travelling
wave actuation.

Comparisons will be made between our predictions for the linear streak evolution,
in the controlled flow, and behaviour that has previously been reported for full DNS
studies. We will highlight some particular features for which there is a significant
level of agreement. The fact that we have been able to trace an accordance with DNS
studies supports the conjecture that our relatively simple linear simulations can be
used to shed light on the nature of the physical mechanisms that are responsible for
the observed changes in turbulent skin friction. Nevertheless, we are well aware that
many researchers have expressed serious concerns about attempts to employ linearized
models to capture significant aspects of turbulence. See, for example, the objections
that were made by Waleffe (1995) to the assignment of a key role to non-normal linear
growth mechanisms in sustaining turbulence. Counter-arguments to these objections
were later given by Henningson (1996). In a short paper such as this, it is not feasible
or desirable to rehearse all of the controversial issues involved. Instead, we will defer a
few further brief remarks until the latter part of the paper, after we have exhibited the
interest of the results that were obtained from our linearized simulations.

The paper is organized as follows: § 2 describes the mathematical and numerical
formulation used in the study. In particular, § 2.1 briefly outlines the numerical method
of solving the linearized Navier–Stokes equations. In § 2.2 we describe the choice
of the initial condition independent of the frequency and wavenumber. Section 2.3
explains the choice of the base flow for a given frequency and wavenumber. In § 3 we
present results showing how streak amplification is affected by streamwise-travelling
waves over a range of actuation parameters, and compare this to DNS data for skin-
friction drag reduction; § 4 contains a summary and some concluding remarks.

2. Mathematical and numerical formulation
We will solve numerically the initial-value problem for linearized Navier–Stokes

equations for different base profiles but with the same initial condition. The base
profiles will correspond to a two-parameter family set of travelling-wave wall motion,
parameterized with the oscillation frequency and the wavenumber. We will determine
the maximum energy amplification of the initial perturbation as a function of
the oscillation frequency and the wavenumber and compare it with the turbulent
drag reduction calculated from the full Navier–Stokes equations by other authors
for the same frequency and wavenumber. In the entire procedure only linearized
Navier–Stokes equations will be used.

2.1. Numerical method
For the present study, a velocity–vorticity formulation of the Navier–Stokes equations,
has been adopted; a brief overview of the formulation is given here, but the interested
reader is referred to Davies & Carpenter (2001) for a detailed exposition.
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The formulation assumes a known base flow solution, represented by the velocity
field Ub, with the corresponding vorticity field Ωb. The total velocity and vorticity
fields can then be decomposed as Ub + u and Ωb + ω where u = (u, v,w) and
ω = (ωx, ωy, ωz) represent perturbations from the prescribed base flow. Here u, v and
w are the velocity components in the streamwise (x), spanwise (y) and wall-normal
(z) directions. For the known base flow we adopt a combination of a turbulent mean
velocity profile in the streamwise direction (U(z)) and a generalized Stokes layer,
discussed below, in the spanwise direction representing the control, V(x, z, t).

The components of the perturbation flow fields u and ω may be divided into two
distinct sets. The components {ωx, ωy,w} are referred to as primary variables, while
the remaining components {u, v, ωz} are secondary variables. The evolution of the
three primary variables {ωx, ωy,w} is calculated using the following three equations:

∂ωx

∂t
+ ∂Nz

∂y
− ∂Ny

∂z
= 1

R
∇2ωx, (2.1)

∂ωy

∂t
+ ∂Nx

∂z
− ∂Nz

∂x
= 1

R
∇2ωy, (2.2)

∇2w= ∂ωx

∂y
− ∂ωy

∂x
, (2.3)

where R is the Reynolds number, and the convective term is N =Ωb×u+ω×Ub+ω×u.
The system of equations is linearized by omitting ω × u from the convective term,
above. By deploying integral relationships (derived from the definition of the vorticity
and its solenoidal property, together with the vanishing of the perturbations at large
distances away from the wall) it is possible to explicitly determine the secondary
variables from the primary variables, so that only the above three equations need
be considered for the evolution of the perturbations. The fluid is bound by an
impermeable wall at z= 0, where the no-slip condition is applied by enforcing integral
constraints on the vorticity.

The streamwise and wall-normal directions are discretized using a second-order
finite-difference and mapped-domain Chebyshev polynomial expansion, respectively. In
the spanwise direction we perform a Fourier decomposition, and as the equations
are linear, the individual modes can be solved independently (i.e. as separate two-
dimensional calculations). Perturbations thus have the form:

u= (ū, v̄, w̄)eiβy, ω = (ω̄x, ω̄y, ω̄z)eiβy, (2.4)

where β is the spanwise wavenumber. Here, where simulations were conducted
for streamwise-travelling waves of spanwise wall motion, it was convenient to
apply periodic boundary conditions at the upstream and downstream ends of the
computational domain, with a total domain length set equal to the streamwise
wavelength of the control wave. Ninety two Chebyshev polynomials and 100 grid
points per wavelength were found to give adequate spatial resolution (in terms of
generating grid-independent results) for the simulations presented in this paper. It
may be noted that the imposition of a streamwise periodicity that matches that of
the control wave rules out the possibility of simulating the development of spatially
detuned modes of disturbance, which might appear in a more generalized Floquet
theory. However, this is not a major drawback, since we are predominantly interested
in modelling the transient growth of streaks, rather than Floquet modes that would
grow or decay at a constant rate.
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2.2. Selection of the initial condition
Transient growth (characterized by inviscid algebraic growth followed by viscous
decay) is a mechanism whereby small perturbations can interact with a base shear
profile to create much more energetic disturbances; these disturbances can take the
form of longitudinal vortices at the start of the motion creating streamwise streaks
by the lift-up mechanism and eventually decaying with time (see, for example, Butler
& Farrell 1992, Henningson, Lundbladh & Johansson 1993 and Cossu, Pujals &
Depardon 2009). In a developed turbulent flow such initial conditions, representing
vortex structures with a large degree of spatial coherence, need not occur, of course.
The nature of the relationship between transient growth solutions and developed
turbulent flows is discussed in detail in Chernyshenko & Baig (2005).

In order to obtain an appropriate initial condition for the present study we follow
a method similar to the low-order optimization method of Lockerby et al. (2005) but
with a solution norm proposed by Chernyshenko & Baig (2005). Here, we specify
an initial condition on the perturbation field that produces a near-optimal response to
an uncontrolled steady turbulent mean profile. The mean profile that is used, U(z),
combines a Musker profile from the wall to the overlap region and a Coles wake
function for the outer part; see Nagib & Chauhan (2008) for further details.

What separates the approach that we take here from a true optimal perturbation
method is that the optimization is performed over a parameterized set of initial
conditions, making it more numerically efficient, at the expense of being, strictly
speaking, suboptimal. This is one of the reasons why we label our modelling as being
low order. The initial condition that we chose is of the form:

u(0)= 0, w(0)= z2e−bz2
eiβy, (2.5)

where the v-component is determined directly from continuity, and the parameters
b and β are found via optimization. The form of the initial condition has been
selected so as to be comparatively simple (only two parameters) while satisfying
the perturbation boundary conditions at z = 0 and z→∞. It is also similar in its
basic form to the expected optimal perturbation, namely an elongated streamwise
vortex. It may be noted that, for any given value of the parameter b, the wall-
normal velocity component of the initial condition obtains its maximum amplitude at a
distance zb = 1/

√
b away from the wall.

If we perform an optimization based on a target of maximum energy amplification
within a restricted time frame (t+ < 80, as per Butler & Farrell 1993) we obtain
an optimum spanwise wavelength λ+ = 2π/β+ = 104, having a peak u-component
velocity occurring at z+ = 18.8. This is very close to that reported by Butler & Farrell
(1993) using the optimal perturbation approach: λ+ = 110 with a peak at z+ ≈ 19. This
confirms that our low-order-optimization method, while being faster, provides a good
approximation to results that can be obtained from an exact optimization.

For the remainder of this paper, we will use a different ‘measure’ for gauging
the intensity of the streaks that develop in the uncontrolled flow. This new measure
was first employed within the GOP method developed by Chernyshenko & Baig
(2005). Optimizations based upon it have the advantage that they are known to
provide physically valid results without any requirement to specify an optimization
time frame (though, when it is more convenient in computations to do so, a choice
of time frame can still be made). The perturbation energy associated with the initial
condition is integrated over the entire volume of the flow domain and kept fixed, but
the amplification is measured by computing the perturbation energy averaged over a
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particular wall-parallel plane, given by z = zp. We thus use a planar form of measure
for the perturbation output, as opposed to a volume-based measure, which is used
for the input. This allows us to specify a wall-normal distance where the streak
characteristics need to be considered. Here, we select a near-wall (wall-parallel) plane
at z+p = 12; the motivation for making this particular choice of position is indicated
later.

The parameters that give the optimal configuration when the initial condition is
optimized in the manner that has just been described are: λ+ = 2π/β+ = 74.4 and
b+ = 0.00325, which corresponds to z+b = 17.5. The value for λ+ is very close to
the result that was obtained by Chernyshenko & Baig (2005) using a planar output
measure at the same distance from the wall. (This was for the case, as it is here, where
the energy of the initial condition was not weighted by the normal Reynolds stress.)
Note that, for the simulations that we shall report which involve streamwise-travelling
waves, we do not perform any re-optimization, i.e. the initial condition is kept the
same throughout our study of the controlled flow. The reason for doing this is that
we wish to find as simple a method as possible for assessing the impact of the
spanwise wall motion; we thus focus on the effect on the transient development for
forms of initial disturbance that would trigger streaks with the largest measure in the
uncontrolled flow.

2.3. Selection of the base flow
It has been shown by Quadrio et al. (2009) in DNS of plane channel turbulent flow,
and also experimentally by Auteri et al. (2010), that streamwise-travelling waves of
spanwise wall velocity (as depicted in figure 1) generate a thin, unsteady, streamwise-
modulated Stokes layer which can bring about both drag reduction and drag increase
depending upon the actuation parameters κx and ω (as defined earlier). This spanwise
oscillatory flow has been described as being a generalized Stokes layer by Quadrio &
Ricco (2011).

The thrust of the current study is to observe, by as simple means as possible,
the effects of the spanwise wall motion on linear streak growth. In keeping with
the aim of simplicity, we consider a base profile that consists of a prescribed
uncontrolled turbulent profile U(z) (in the streamwise direction) together with an
unsteady generalized Stokes layer V(x, z, t) in the spanwise direction. It should be
noted that the use of such superposition would be strictly correct if the turbulent
profile U(z) arose from an exact parallel flow solution of the Navier–Stokes case.
However, since this cannot in fact be the case, an approximation is implicitly being
made when the generalized Stokes layer is simply added along the spanwise direction,
orthogonal to the turbulent mean flow. (Some further brief comments about the validity
of using such a base flow model are included immediately below.)

As a preliminary step we need to derive a numerical solution for the generalized
Stokes layer with an imposed spanwise velocity at the wall of the form: Vwall =
A Re(ei(κxx−ωt)). As was noted in Quadrio & Ricco (2011), the governing Navier–Stokes
equations are simplified substantially if we assume that terms involving y-derivatives
are null (as there is no variation in the spanwise direction), and the wall-normal
pressure gradient is negligible. The y-momentum equation can then be solved
independently, to directly determine the spanwise velocity component V , given any
prescribed turbulent profile U. It reduces to the form:

∂V

∂t
+ U

∂V

∂x
= 1

R

(
∂2V

∂x2
+ ∂

2V

∂z2

)
, (2.6)
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where R is the appropriate Reynolds number. The convective term is responsible for a
one-way coupling between U and V . Introducing the variable ζ = x− ct with c= ω/κx,
and then assuming that the spanwise velocity takes the form V = A Re

(
eiκxζ V̄(z)

)
,

where V̄(z) is a complex-valued profile function, the above equation yields

((U − c)iκxR+ κ2
x )V̄(z)= V̄

′′
(z). (2.7)

This ordinary differential equation, with the conditions V̄(0) = 1 and limz→∞ V̄(z) = 0,
can be cast as a boundary-value problem and solved numerically using a finite-
difference discretization. In conjunction with the form for V defined above, this allows
us to calculate the spanwise velocity component of the base flow, V(x, z, t), at each
spatial grid point and as a function of time, for any given combination of ω and
κx. The Stokes solution thus obtained uses a laminar flow assumption, but it can be
argued that this is acceptable for turbulent flows because the dominant viscous terms
are expected to be much larger in magnitude compared to the Reynolds stress terms,
as explained in Ricco & Quadrio (2008). (Note that in the subsequent discussion, we
will drop the overbar when referring to the complex-valued profile function V̄(z).)

3. Results and discussion
We performed numerical simulations of linear streak growth in a turbulent boundary

layer flow at Reτ = 200 (a Reynolds number based on wall shear stress and channel
half-width), with control using streamwise-travelling waves over a range of κ+x and
ω+. A constant wave velocity amplitude A+ = 12 was taken, so as to match the
configuration that was studied in the DNS experiments conducted by Quadrio et al.
(2009) for a turbulent channel flow. (Note that, though we report results obtained for
a turbulent boundary layer, we were also able to model streak development for the
channel flow case using our simulation code, by making suitable amendments to the
base flow profile and taking the boundary layer edge to correspond to the channel
centreline. This gave essentially the same results, as might be expected because neither
the streaks nor the oscillatory control flow had any significant protrusion into the
outermost part of the boundary layer.)

For every point in the parametric space, the maximum (over time) of the energy
amplification of the initial condition (that is the maximum of the ratio of the energy of
the perturbation in the entire flow to its initial value) is calculated. This is compared
to the energy amplification of the initial condition without the streamwise-travelling
waves, and a percentage change, ε, is calculated. A parameter-space map of ε is
plotted in figure 2(b); for comparison, in figure 2(a), we have reproduced a map of
skin-friction drag change from the DNS of Quadrio et al. (2009). The red regions in
the map for the skin-friction indicate a drag reduction (a maximum decrease being
≈48 %, which occurs near ω+ = 0.018, κ+x = 0.0075); the blue regions indicate a
drag increase (a maximum increase being ≈20 %). There are a number of striking
similarities between the two plots. The red regions in figure 2(b), indicating maximum
streak amplification reduction, generally correlate with regions of maximum drag
reduction (the red regions in figure 2a). This similarity is both in terms of approximate
position as well as relative magnitude between different regions. The maximum
percentage change in streak growth amplification in figure 2(b) is approximately 50 %,
which is again comparable to that found in DNS for drag reduction. However, it
should be pointed out that an optimum parameter combination for the maximum
suppression of streak growth is not found within the ranges plotted in figure 2(b),
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whereas an optimum drag reduction can be identified for the DNS results shown in
figure 2(a).

There is a diagonal corridor in the actuation parameter space where instabilities
(or very large increases in the disturbance amplification, at least) were discovered in
the linearized Navier–Stokes simulations; this is illustrated in figure 3. The regions
of high growth in the disturbance energy were found to correlate closely with the
(blue) region of drag increase seen in figure 2(a). We observed that instabilities
developed more readily from initial conditions that were localized in x, but even
with the initial conditions that are considered here (which are taken to be streamwise
invariant), instabilities still became manifest after a sufficient period of time. When
we constructed the contour plot of figure 2(b), it was convenient to stop the
simulations after a fixed time period t+ = 10 had elapsed, so as to avoid having to
fully incorporate the large (and potentially unbounded) growth for parameter values
where there was highly unstable behaviour. The time interval was chosen to be long
enough to categorize the suppression of streak growth where instability was absent,
but sufficiently short to make it possible to disregard the large amplifications that
would otherwise have been found in parameter ranges where instability was known
to develop. As a result, all of the contour values that are plotted in figure 2(b)
represent streak growth suppression (there is no region of streak growth increase), with
a minimum change being approximately 10 %. Nevertheless, even though the unstable
development does not become apparent within the curtailed time frame, it is still
possible to see a vestige of the instability in the plotted contours. This occurs along an
upward diagonal, where there is relatively weak streak suppression (low ε); the slope
angle of this diagonal is similar to the angles that bound the drag-increase corridor
region in figure 2(a).

We have repeated the simulations that were presented in figure 2(b) using a
turbulent boundary layer profile for a much higher Reynolds number Reτ = 2594,
which corresponds to a displacement-thickness Reynolds number Reδ∗ = 104. The
results are shown in figure 4(a). The magnitude of the streak amplification change
generally remains within ∼5 % of that which was obtained for the lower Reynolds
number case, as can be seen by making a direct comparison between figures 2(b)
and 4(a), the contour maps are very much the same. This consistency between the
simulation results strongly suggests that the effect of the spanwise flow actuation
on the near-wall streaks is independent of the Reynolds number, when a correct
scaling is made with inner units. Of course, any such conclusion is subject to
the validity of the simplifying approximations that were made in using the linear
streak model with a prescribed mean-flow turbulent profile. Notwithstanding this,
there are positive implications for the use of the wall-motion flow control scheme
in aerospace applications, where the high Reynolds number results are more pertinent.
The linearized simulation results indicate that there may be no marked deterioration
in the possible skin-friction reduction when the Reynolds number is increased above
the relatively low values that have been considered in previous studies. However, this
optimistic expectation should be balanced by reservations regarding the potential for
there to be an increasing role for large-scale structures in the turbulent boundary layer
when the Reynolds number is higher. (See, for example, Marusic et al. 2010.) We have
not made any explicit attempt to model or identify such structures, which would be
anticipated to develop much further away from the wall than any of the streaks that we
have focused upon.

It is important to note that predictions for engineering purposes, made using the
linear model that we have described, will always require some form of empirical
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FIGURE 2. Contour plots over the actuation parameter space (ω+, κ+x ) of: (a) percentage
drag reduction as calculated by DNS, Quadrio et al. (2009); (b) percentage change in streak
amplification (ε) as calculated by the linearized Navier–Stokes equations.
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FIGURE 3. Regions of significant streak amplification increase (>50 %) occurring over long
time scales (t+ < 300) due to streamwise-travelling wave actuation. Results generated for a
localized three-dimensional initial condition considered at a range of streamwise positions.
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FIGURE 4. (a) Contour plot of amplification factor over actuation parameter space
(ω+, κ+x ), as calculated using the linearized Navier–Stokes equations with Reτ = 2594. (b)
Corresponding plot of |V ′′| for z+ = 12. The colouring of the contour levels in (a) is the same
as that of the plots in figure 2, but there is a scaling by a factor O(103) in (b).
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calibration in order to be reliable. For example, as described earlier, the initial
condition that was adopted in this study requires an optimization plane z = zp to
be specified for the GOP. Here, we have taken z+p = 12, motivated by an empirical
expectation for the likely location of dynamically significant streaks. If the height of
the plane had been chosen very much differently, the contour scales (if not the form)
of the maps plotted in figures 2(b) and 4(a) would have been altered.

The most important conclusion to be drawn from the results presented above is
that the main features of the DNS drag-reduction map shown in figure 2(a) can
be obtained by solving the linearized Navier–Stokes equations in combination with
the prescribed basic flow that we have considered. Aside from making the inference
that the mechanism which is responsible here for the drag reduction is (at least
in some part) linear, we refrain from suggesting any further physical interpretation
of the result or attempting a physical description of how the supposed underlying
linear process is constructed. However, given that the correlation does exist, it follows
that information regarding the main features of the DNS drag-reduction map might
somehow be contained within the prescribed basic flow state. To see if this is in fact
the case, we have investigated some particular properties of the oscillatory spanwise
flow that might have a significant influence on the streak development in the linear
model. One property of interest is the wall-normal second derivative of the velocity
profile V ′′ = d2V/d2z, since a term involving this derivative features directly in the
linearized equation for the streamwise vorticity transport. In figure 4(b) a contour
map of |V ′′|, evaluated at the previously selected wall-normal position z+ = 12, has
been plotted as a function of κ+x and ω+. The contour values were calculated using
an approximate analytical expression for V (see Quadrio & Ricco 2011). It may be
seen that the plot displays a striking qualitative resemblance to the drag-reduction
map of Quadrio et al. (2009), reproduced in figure 2(a), which suggests that there
is some correlation between zones of larger magnitudes of |V ′′| and turbulent drag
reduction. The light-blue corridor in the map represents |V ′′| ≈ 0 and perhaps marks
out a zone of inflectional instability, corresponding to the corridor of drag increase in
figure 2(a). The precise nature of such an instability, and the role of |V ′′| in streak
growth suppression needs to be the subject of a more in-depth study.

More generally, there is an urgent requirement for further theoretical work to
provide a stronger underpinning for the linearized modelling approach that we have
adopted in the current paper. Our relatively simple approach appears to yield results
that provide a viable starting point for the prediction of drag reduction. This is despite
the fact that only a single adjustable parameter is contained in the model, namely the
height z+p = 12 of the near-wall (wall-parallel) plane, which is chosen to measure the
sizes of the output disturbances. But even this parameter was effectively fixed by first
considering the optimization results for the case with no prescribed wall motion.

Some researchers may regard the apparent fit between the linearized simulation
results and DNS studies as merely a happy coincidence. At the time of writing, there
is no general consensus as to whether important aspects of turbulence in boundary
layers can be truly accounted for in terms of linear transient growth mechanisms,
for structures that are located principally in an inner region near the wall. Although
we would claim some success from having adopted an approach along such lines,
we also recognize that alternative models and descriptions are being advanced and
elaborated. Typically, these take nonlinear vortex–structure interactions as being key
to the sustainment of turbulence. Further references can be found in the recently
conducted review of wall-bounded turbulent flows by Marusic et al. (2010), where
it is noted that there is a current widespread dichotomy amongst the views taken
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by researchers, concerning the nature of the time-dependent interactions that can be
maintained between various possible flow structures.

4. Summary
In this paper we have used linearized Navier–Stokes equations to investigate streak

growth characteristics in the presence of streamwise-travelling waves of spanwise
wall velocity. A correlation appears to exist between skin-friction reduction seen in
DNS studies and the percentage change in streak amplification calculated from the
linearized Navier–Stokes equations. The strong implication is that a linear mechanism
plays a fundamental role in causing drag reduction via streamwise-travelling waves.
The streak growth characteristics in the actuated flow were also shown to be
effectively independent of the Reynolds number for the mean turbulent profile that
was adopted. Finally, we have shown that at least one basic property of the spanwise
velocity profile generated by streamwise-travelling waves correlates well with the DNS
prediction of skin-friction drag reduction.
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