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Numerical simulations were conducted to investigate the effects of surface suction and
injection on the global behaviour of linear disturbances in the rotating-disk boundary
layer. This extends earlier work, which considered the case with no mass transfer.
For disturbances in the genuine base flow, where radially inhomogeneity is retained,
mass injection at the disk surface led to behaviour that remained qualitatively similar
to that which was found when there was no mass transfer. The initial development
of disturbances within the absolutely unstable region involved temporal growth and
upstream propagation, as should be anticipated for an absolute instability. However,
this did not persist indefinitely. Just as for the case without mass transfer, the
simulation results suggested that convective behaviour would eventually dominate,
for all the Reynolds numbers investigated. In marked contrast, the results obtained
for flows with mass suction indicate a destabilization due to the effects of the base-
flow radial inhomogeneity. It was possible to identify disturbances excited within the
absolutely unstable region that grew continually, with a temporal growth rate that
increased as the disturbance evolved. The strong locally stabilizing effect of suction
on the absolute instability, which gives rise to large increases in critical Reynolds
numbers, appears to be obtainable only at the expense of introducing a new form
of global instability. Analogous forms of global behaviour can be found in impulse
solutions of the linearized complex Ginzburg–Landau equation. These solutions were
deployed to interpret and make comparisons with the numerical simulation results.
They illustrate how the long-term behaviour of a disturbance can be determined by
the precise balance between radial increases in temporal growth rates, corresponding
shifts in temporal frequencies and diffusion/dispersion effects. This balance provides
some insight into why disturbances that are absolutely unstable, for the homogenized
version of the rotating-disk boundary-layer flow, may become, in the genuine radially
inhomogeneous flow, either globally stable or globally unstable, depending on the
level of mass transfer that is applied at the disk surface.

Key words: absolute/convective instability, boundary layer stability, transition to
turbulence

1. Introduction
Mass transfer can be used to control the stability of fluid boundary layers and

their transition from a laminar to a turbulent state. It is usually the case that uniform
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suction through a bounding wall surface has the effect of stabilizing a laminar
boundary layer, while the opposite effect from injection is destabilizing and promotes
the transition to turbulence. An example of the potential benefits of suction is given
in the study made by Hall, Malik & Poll (1984), which showed that suction has a
stabilizing effect on the attachment-line boundary layer associated with the leading
edge of a swept wing. Injection can also have some technological advantages, despite
its generally destabilizing influence. For instance, it was shown by Sparrow & Gregg
(1960) to be useful in cooling turbine blades and the surfaces of high-speed aircraft.

It was first noted by Batchelor (1951) that the system of ordinary differential
equations governing the steady flow in the rotating-disk boundary layer, as derived
using von Kármán (1921) similarity variables, could be readily extended to include
mass transfer at the disk surface. Stuart (1954) then obtained the corresponding
solutions for the velocity profiles. Gregory & Walker (1960) conducted a physical
experiment to study the effects of uniform suction on the rotating-disk boundary
layer. They found that the Reynolds numbers for the onset of crossflow instability
and transition to turbulence could be raised greatly as the level of the suction was
increased.

The crossflow instability is inviscid in nature, being associated with an inflection
point in profiles of the mean velocity. It was originally discovered by Gray (1952)
in his experimental study of the flow over a swept wing. Gregory, Stuart & Walker
(1955) conducted a theoretical and experimental investigation for the rotating-disk
flow and found physical evidence for the presence of the crossflow instability, in
the form of stationary vortices which gave a readily visualized imprint in the shear
stress patterns on the disk surface. In the rotating-disk context, crossflow instability
is frequently designated as Type 1 mode of instability. Apart from this mode of
instability, there exist at least two other modes. The Type 2 mode is essentially
viscous and is destabilized by the Coriolis forces present within the rotating-disk
boundary layer. It was first discovered by Faller & Kaylor (1966) within the Ekman
layer; Malik (1986) gave evidence for its presence within the von Kármán flow. A
third mode (Type 3) was discovered by Mack (1985). Because this mode propagates
radially inwards and is spatially damped, it was not considered to be of any physical
significance until its role in promoting absolute instability was uncovered.

1.1. Absolute instability

Absolutely unstable behaviour was identified by Lingwood (1995), using the Briggs
(1964) method, which classifies the singularities in the dispersion relationship,

D(α, ω; Re, β) = 0, (1.1)

that arise when waves propagating in opposite directions coalesce to yield pinch points.
Here α, β are the radial and azimuthal wavenumbers, ω is the temporal frequency
and Re denotes the Reynolds number. Absolute instability was shown to result from
the coalescence of the Type 1 and 3 modes, with a critical Reynolds number given as
Re = 507.3 (Lingwood 1995, 1997). An inviscid form of the absolute instability was
also identified, using a complementary analysis for the high-Reynolds-number limit.

The critical Reynolds number that was computed for the absolute instability is very
close to experimentally determined values for the onset of transition to turbulence.
Taking the average onset value from a selection of previous transition experiments to
be Re = 513 ± 3 %, Lingwood was thus able to suggest that the absolute instability that
she had discovered could provide the primary mechanism for transition to turbulence
in the rotating-disk boundary layer. She provided further evidence to establish this
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claim using the results obtained from her own physical experiment (Lingwood 1996).
However, despite her experimental re-confirmation of the coincidence between the
onset of transition and the appearance of absolute instability, Lingwood was not able
to discover any strong selection of a temporal frequency that could be associated with
this. The appearance of a dominant frequency would have been anticipated if the
absolute instability had given rise to a temporally growing global mode of disturbance,
and hence to a pattern of behaviour akin, for example, to that which leads to the
presentation of a distinct shedding frequency in absolutely unstable wake flows.

Pier (2003) conducted a secondary stability analysis for the rotating-disk flow,
perturbed by the finite-amplitude crossflow vortices that he expected to develop
because of the absolute instability. He showed that this perturbed flow was itself
absolutely unstable, thus providing a possible explanation for the absence in physical
experiments of any dominant temporal frequency due to the primary absolute
instability. The secondary absolute instability could be expected to quickly overwhelm
the primary absolute instability upon which it grew, giving rise to a complex multi-
frequency transitional flow, but still leading to the kind of sharp onset of transition
that had been observed in experiments.

Lingwood (1997) extended her theoretical studies to include the effects of uniform
mass transfer through the rotating disk surface. Using the usual non-dimensional
parameter a to specify the degree of mass transfer, it was found that for a = −1
(a < 0 corresponds to uniform injection) the critical Reynolds number for absolute
instability is approximately 202, less than half that observed for the case with zero
mass transfer. Whereas for a = 1 (a > 0 corresponds to uniform suction) the critical
Reynolds number is approximately 1861, almost four times that observed for the case
with zero mass transfer. For the case a = 0.4, absolute instability was found to arise
for Re ≈ 803. This is in apparent conflict with the results that were obtained in the
earlier physical experiment conducted by Gregory & Walker (1960), where transition
to turbulence was observed to occur for Re ≈ 632 when a = 0.4. Nevertheless,
Lingwood proposed that absolute instability might still have been responsible for
the onset of transition in the experimental study, if the imperfections of the physical
apparatus had reduced the effectiveness of suction in stabilizing the flow.

It should be noted that the dispersion relation analysis that underlies the
identification of an absolute instability necessitates the use of an actual or assumed
spatial homogeneity for the basic flow. In the case of the rotating-disk boundary layer,
this requirement can only be met by enforcing an artificial form of homogenization
along the radial direction, because for the genuine base flow, the magnitudes of both
the radial and azimuthal components scale linearly with the radius. Davies, Thomas
& Carpenter (2007) discussed the impact of this radial inhomogeneity of the base
flow and highlighted its consequences for the interpretation of the temporal frequency
ω and the azimuthal wavenumber β , when both of these are non-dimensionalized
in the usual locally based fashion. For instance, careful attention must be paid
to draw out the physical significance of the single complex value of the temporal
frequency that was identified by Lingwood (1995) for the absolute instability in the
inviscid limit. The complex value that she computed actually represents temporal
frequencies and temporal growth rates that vary linearly with the radius, when a
suitable interpretation of the behaviour in the inviscid limit is made for disturbances
evolving in the genuine inhomogeneous rotating-disk boundary layer. More generally,
for the viscous case at finite Reynolds numbers, an assessment of the balance between
the appropriately measured radial variations in frequencies and growth rates is helpful
for understanding why the presence of an absolute instability may not be sufficient
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to give rise to any globally unstable forms of disturbance behaviour. (This will be
discussed and illustrated in more detail later.)

1.2. Numerical simulations

Davies & Carpenter (2003) conducted numerical simulations to study the evolution
of linearized disturbances in the genuine, radially inhomogeneous, rotating-disk flow.
The linearity of the governing equations, together with the lack of any azimuthal
variation in the basic flow, meant that the disturbances were separable with respect
to the azimuthal coordinate θ . Thus, simulations could be undertaken for modes
with a prescribed azimuthal dependence ∼ exp (inθ), where n is the integer-valued
azimuthal mode number. However, the radially varying nature of the basic flow
precludes any separability with respect to the radial coordinate. Disturbances with
a specified radial wavenumber can only be studied individually if the base flow is
artificially homogenized.

The outcomes from the simulations carried out by Davies & Carpenter (2003)
are schematically illustrated in figure 1, for the radially inhomogeneous flow with
no mass transfer. Figure 1(a) displays the wavepacket evolution for a disturbance
that is impulsively excited radially inboard from the absolutely unstable region, while
figure 1(b) displays the corresponding evolution when the disturbance is triggered
within the absolutely unstable region. In the latter configuration, the trailing edge of
the disturbance wavepacket propagates radially inwards, at least initially, in a manner
that is consistent with absolute instability and temporal growth. Nonetheless, such
behaviour does not persist indefinitely; as the trailing edge of the disturbance nears
the boundary of the region where absolute instability is anticipated, it is found to
reverse direction and propagate radially outwards. Davies & Carpenter (2003) found
that the absolute instability did not give rise to any sustained, temporally growing,
oscillations that could be associated with an unstable linear global mode that had an
amplitude dependence of the form

A ∼ exp(−iωgt), (1.2)

where ωg = ωg,r + iωg,i is the complex global frequency, and ωg,i > 0 for instability.
Instead, convective behaviour was found to dominate the disturbance response, for
all of the Reynolds numbers that were considered, even those well within the region
of absolute instability.

A recent experimental investigation by Othman & Corke (2006) supports the
results of the numerical simulation studied by Davies & Carpenter (2003). In their
carefully conducted physical experiment, Othman & Corke were able to trace the
development of disturbances with a much smaller amplitude than had been feasible
in the experiments of Lingwood (1996). They considered disturbances that were
impulsively excited radially inboard from the region of absolute instability, at a radial
position that matched that which had been chosen by Lingwood. With their much
reduced forcing amplitude, Othman & Corke (2006) could observe wavepackets that
had a trailing edge that moved radially outwards with a positive velocity at all of the
radial locations that it passed through, including those within the absolutely unstable
region. The kind of behaviour that they documented was thus in good agreement
with the numerical simulation results for linearized disturbances that are depicted in
figure 1(a). In contrast, Lingwood had found that the trailing edge of her disturbance
wavepacket seemed to asymptote towards a constant radial position at the boundary
of the absolutely unstable region of the flow; the trailing edge moved more and more
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Figure 1. Sketch of the typical spatio-temporal evolution for a wavepacket excited in the
rotating-disk boundary layer, as revealed by Davies & Carpenter (2003). It is seen later that
the same kind of behaviour is found in the numerical simulation results for cases with normal
injection applied at the disk surface. (a) Impulse excitation for re < rc; (b) impulse excitation
for re > rc , where re is the radius at which the impulse is centred and rc denotes the critical
radius/Reynolds number for the onset of absolute instability.

slowly, appearing to become stationary as it reached the radius corresponding to the
critical Reynolds number for the absolute instability.

It is the intention of the current study to extend the findings of Davies & Carpenter
(2003) to rotating-disk boundary layers with mass transfer through the disk surface.
Our initial concern will be with reporting the interconnections that hold between the
absolute instability and the global behaviour, in so far as these can be discovered by
means of linearized numerical simulations. However, perhaps more importantly, we
shall also seek to provide some theoretical explanation of the simulation results, using
the modelling approach that was first described by Davies et al. (2007) for the case with
no mass transfer. By studying the parametric dependence that arises when the degree
of mass transfer is systematically varied, we expose a broader range of possibilities,
which affords more scope for making sense of the balance that persists between local
and global behaviour. The remainder of this paper is set out as follows. The subsequent
section describes the base-flow equations and the velocity–vorticity formulation that
is used to determine the disturbance evolution, taking into account the effects of
mass transfer. In § 3 the results from the radially inhomogeneous flow simulations are
presented and discussed. In § 4 an understanding of the results is sought by making
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comparisons with impulse solutions of the linearized complex Ginzburg–Landau
equation. Some comments about possible forms of nonlinear disturbance behaviour
are made in § 5. Finally, conclusions are given in § 6.

2. Mathematical formulation
2.1. The basic flow

The disk is taken to be infinite in diameter and rotates in an incompressible fluid
with kinematic viscosity ν∗ at a constant angular velocity Λ∗ about the vertical axis
that passes through the centre of the disk. Cylindrical polar coordinates are used,
where r∗ is taken to be the radial distance from the vertical axis of rotation, θ is the
azimuthal angle and z∗ is the normal direction. The domain above the disk is taken to
be infinite, z∗ > 0. (Here an asterisk denotes dimensional quantities.) In what follows,
all quantities are defined in the frame of reference that rotates with the disk.

If U∗ =
(
U ∗

r , U ∗
θ , U ∗

z

)
denotes the dimensional velocity, the von Kármán (1921)

similarity solution is found by setting

U∗ =
(
r∗Λ∗F (z), r∗Λ∗G(z), δ∗Λ∗H (z)

)
, (2.1)

where F, G, H represent non-dimensional profiles for the radial, azimuthal and normal
base-flow velocity components, respectively. The wall-normal coordinate is z = z∗/δ∗,
where δ∗ = (ν∗/Λ∗)1/2 is the constant dimensional boundary-layer thickness that is
used to non-dimensionalize lengths. Using the circumferential speed of the rotating
disk at a reference radius r∗

a to non-dimensionalize the velocities, the base flow can
be written in the form

UB =

(
r

Re
F (z),

r

Re
G(z),

1

Re
H (z)

)
, (2.2)

with the Reynolds number defined as

Re =
(r∗

aΛ
∗)δ∗

ν∗ =
r∗
a

δ∗ = ra. (2.3)

It may be seen that the non-dimensionalization is such that the radial coordinate
corresponding to any chosen radial position is equal to the Reynolds number defined
using that position as the reference point to specify the scaling of the velocities.
For the purpose of making comparisons with the results of stability investigations
conducted using a radially homogenized approximation, the radial dependence of the
basic flow can be artificially removed by simply setting r = ra in (2.2).

On substituting the assumed form of the similarity solution (2.1) into the Navier–
Stokes equations for the fluid in the rotating frame of reference, the following system
of non-dimensional equations is obtained for the basic flow:

F 2 + F ′H − (G + 1)2 = F ′′, (2.4)

2F (G + 1) + G′H = G′′, (2.5)

2F + H ′ = 0, (2.6)

where the prime denotes differentiation with respect to the normal direction z.
Equations (2.4)–(2.6) are solved subject to the boundary conditions

F (0) = G(0) = 0, H (0) =
H ∗

0

ν∗Λ∗ = −a, (2.7)

F (z → ∞) = 0, G(z → ∞) = −1, (2.8)
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Figure 2. The base-flow velocity profiles for the radial (F ), azimuthal (G) and normal (H )
components for the von Kármán flow over a rotating disk with a = 0 (dotted lines), a = 1
(solid lines) and a = −1 (dashed lines).

where H ∗
0 is the constant dimensional velocity at the disk surface, so that a is a

positive constant for suction through the disk and is negative for mass injection.
Numerical solutions of the set of equations (2.4)–(2.8) for the velocity profiles are

plotted in figure 2, for a = −1, 0 and 1. In all three cases, the radial velocity profile
is inflectional. For the flow with injection, the magnitude of the radial velocity profile
increases, so the three-dimensionality of the boundary layer is enhanced. However,
the normal flow at infinity becomes less negative. The opposite is true for suction;
the magnitude of the radial velocity profile decreases, while the downwards flow at
infinity is more pronounced.

2.2. Velocity–vorticity formulation for perturbations

The total velocity and vorticity fields are decomposed as

U = UB + u, Ω = ΩB + ω, (2.9)

where UB and ΩB = ∇ × UB correspond to the undisturbed base flow, while the
velocity and vorticity perturbation variables may be represented as

u = (ur, uθ , uz), ω = (ωr, ωθ , ωz). (2.10)

Taking the primary vorticity and velocity variables to be the three perturbation
components {ωr, ωθ , uz}, the linearized Navier–Stokes equations are fully equivalent
to the following set of equations (Davies & Carpenter 2001):

∂ωr

∂t
+

1

r

∂Nz

∂θ
− ∂Nθ

∂z
− 2

Re

(
ωθ +

∂uz

∂r

)
=

1

Re

((
∇2 − 1

r2

)
ωr − 2

r2

∂ωθ

∂θ

)
, (2.11)

∂ωθ

∂t
+

∂Nr

∂z
− ∂Nz

∂r
+

2

Re

(
ωr − 1

r

∂uz

∂θ

)
=

1

Re

((
∇2 − 1

r2

)
ωθ +

2

r2

∂ωr

∂θ

)
, (2.12)

∇2uz =
1

r

(
∂ωr

∂θ
− ∂(rωθ )

∂r

)
, (2.13)

where

∇2f =
∂2f

∂r2
+

1

r

∂f

∂r
− n2

r2
f +

∂2f

∂z2
, (2.14)

and

N = (Nr, Nθ, Nz) = ΩB × u + ω × UB. (2.15)
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The convective quantity N can only be evaluated if the remaining perturbation
components {ur, uθ , ωz} are known. These so-called secondary variables are explicitly
defined in terms of the primary variables by a process of integration across the
boundary layer, with respect to the normal coordinate z. (More details can be found
in Davies & Carpenter 2001, 2003.)

The linearization permits the no-slip conditions and the wall-normal velocity
matching condition at the disk surface to be formulated as

ur = − r

Re
F ′(0)η, (2.16)

uθ = − r

Re
G′(0)η, (2.17)

uz =
∂η

∂t
. (2.18)

Here η is a non-dimensional vertical wall displacement that may be prescribed
to impulsively generate disturbances at the disk surface. It vanishes at all radial
locations once the impulse has been applied. The conditions stated in (2.16)–(2.18)
are all applied at z = 0. Substituting the first two of them into the definitions that are
used for the secondary variables ur and uθ gives fully equivalent integral conditions
that can be used to constrain the development of the primary variables ωθ and ωr ,
respectively. (Further details can again be found in Davies & Carpenter 2001, 2003.)
The condition stated in (2.18) is applied as a constraint on the remaining primary
variable, uz.

As remarked upon previously in the introduction, the linearity of the governing
equations and the azimuthal symmetry of the base flow enable us to consider modes
of the form

{u, ω} = {û, ω̂}einθ , (2.19)

where n is the azimuthal mode number. Because of the circumferential periodicity of
the disk, n can only take integer values. The scaled azimuthal wavenumber defined
by β = n/Re has been more usually employed by previous investigators, since for
studies of the radially homogeneous version of the linear stability problem, β can be
more conveniently taken to have a continuous set of values.

The methods adopted for discretization of the governing equations are discussed
in detail by Davies & Carpenter (2001). A fourth-order centred, compact finite-
difference scheme is used for discretization in the radial direction, whilst a Chebyshev
spectral series expansion is used in the wall-normal direction, in conjunction with
a mapping of the semi-infinite range of the wall-normal coordinate onto a finite
interval. The azimuthal variation is imposed for each decoupled azimuthal mode
number n using (2.19). A semi-implicit time advancement scheme is deployed for
the vorticity transport equations, with the wall-normal second derivatives in the
viscous term treated in an implicit fashion. Thomas (2007) documents the careful
validation that was undertaken in order to establish that the results obtained from
the numerical simulations remained valid when the effects of disk surface mass
transfer were introduced into the computer code that had been developed previously
for the rotating-disk boundary layer.

3. Numerical simulation results
In all of the simulations, we considered the development of disturbances that were

excited by an impulsive wall motion. The wall displacement η was taken to be of the
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general form

η(r, θ z) = f (r − re) g(t) einθ , (3.1)

where the function f is taken to be zero except within a small neighbourhood of
the radial position re at which the impulse is centred. The temporal variation of the
impulse was prescribed by setting

g(t) = (1 − e−σ t2 ) e−σ t2, (3.2)

where the parameter σ , which fixes the impulse duration, is chosen to be large enough
to ensure that the initial forcing incorporates a wide range of temporal frequencies.

3.1. Uniform mass injection

Figure 3 displays the temporal development, at four successive radial locations, for
a disturbance excited by an impulse centred at re = 202, with an azimuthal mode
number n = 29 and a = −1. The radial position of the forcing corresponds to the
critical Reynolds number for the onset of absolute instability, as found by Lingwood
(1997) in her stability study that employed a radial homogenization of the basic flow.
The results are from a numerical simulation that was conducted for the genuine
radially dependent base flow. The azimuthal vorticity ωθ at the disk surface is plotted
for a fixed value of θ , along with the corresponding envelopes ±|ωθ | obtained from
the complex-valued amplitude. (Similar plots are obtained when other perturbation
flow variables are chosen.) Instants of time are referenced with respect to the non-
dimensional time period of the disk rotation, T = 2πRe. For the radial positions
r = re −25, re, the disturbance decays with time, whereas for the locations r = re +25,
re + 50, there is initially a period of growth, which is followed by a relatively weak
decay. It is evident that the perturbations exhibit strong spatial growth along the
radial direction, when account is taken of the different scales used for the vertical
axis in each of the time-history plots.

Figure 4(a) displays the spatial–temporal disturbance development that was
obtained from the same simulation, while figure 4(b) displays the corresponding
wavepacket when the base flow has been radially homogenized, with the Reynolds
number chosen such that Re = re = 202. The disturbance development is plotted
using amplitude contours of the same flow variable that was considered before, namely
the azimuthal perturbation vorticity at the disk surface. The leading and trailing
edges of both disturbance wavepackets are easily identified. Each of the leading
edges propagates radially outwards with approximately the same non-zero velocity.
However, the behaviours displayed by the trailing edges are noticeably different. The
trailing edge corresponding to the homogenized-flow disturbance propagates with
a diminishing velocity, which is what would be anticipated for a case where the
Reynolds number has been set to be critical for the onset of absolute instability. In
contrast, the trailing edge of the disturbance in the genuine flow is found to propagate
radially outwards with an increasingly positive velocity.

Temporal frequencies and growth rates for the disturbance may be examined by
considering the complex-valued quantity

ω = i
1

A

∂A

∂t
, (3.3)

where A is taken to be a measure of the disturbance amplitude at any given radial
location and point in time. (The azimuthal vorticity at the disk surface was once
more chosen as the representative flow variable to specify A.) It should be noted that
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Figure 3. Time histories for ωθ at the disk surface (solid lines) with corresponding envelopes
±|ωθ | (dotted lines), for an impulsively excited disturbance for the radially inhomogeneous
base flow with mass injection a = −1. The azimuthal mode number is n = 29 and the
disturbance was centred at re = 202. The temporal development is plotted for four successive
radial locations: (a) re − 25, (b) re , (c) re + 25 and (d ) re + 50.

we have defined the quantity ω by setting ω = iρ, where ρ is the logarithmic time
derivative of the amplitude A. If ω is found not to vary too rapidly in either the
radial direction or in time, then the real and imaginary parts of ω may be interpreted
as being locally defined temporal frequencies and temporal growth rates, respectively.
Here we have assumed that the disturbance does not consist of a superposition of
a number of distinct modes with significantly different characteristics. If there were,
in fact, several discrete modes to consider, then it would not be feasible to identify
any temporal frequency or growth rate, by simply considering the real and imaginary
parts of ω.

Figure 5 displays locally defined temporal frequencies and growth rates obtained
from the homogenized flow simulation. Data are given for the radial position re = 202,
where the disturbance excitation was centred, and for three additional radial locations.
The frequency is constant at the radial position re = 202, while the frequency at all
other positions is found to asymptote towards the same constant. This behaviour is to
be expected, since in the homogenized flow all radial positions are equivalent to each
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Figure 4. Spatio-temporal development of |ωθ | at the disk surface, for disturbances in flows
with injection a = −1. The azimuthal mode number is n = 29 and the disturbances were
excited at re = 202. (a) Radially inhomogeneous base flow and (b) homogenized base flow
with Re = 202. (Contours are drawn using a logarithmic scale, with levels separated by factors
of two.)

other. A similar form of development is observed for the growth rates. For all the
selected radial positions, the growth rates also tend to a constant. The value of this
constant is approximately zero, which is consistent with the fact that the simulation
has been conducted at the critical Reynolds number for the appearance of absolute
instability.

The corresponding temporal frequencies and growth rates obtained from the
simulation for the genuine base flow are plotted in figure 6. The behaviour is
qualitatively the same as that found by Davies & Carpenter (2003). The temporal
frequencies initially evolve in the manner that is observed in the homogenized-flow
simulation. However, the frequency at each selected radial location then begins to
increase and there is no indication that any of them will asymptote towards a constant.
The associated temporal growth rates are found to decrease with time and, for all the
selected radial positions, temporal decay eventually sets in; the long-term growth rates
are negative. (We shall show in § 4 that the behaviour of the temporal frequencies
and growth rates can be comprehended by making comparisons with solutions of the
linearized Ginzburg–Landau equation.)

The numerical simulation results indicate that the disturbance evolution for the
case of the flow with mass transfer a = −1 remains very similar to that found
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Figure 5. (a) Local temporal frequencies ωrRe and (b) temporal growth rates ωiRe for a
disturbance with n = 29 developing in the radially homogenized flow with injection a = −1
and Re = 202. The impulsive excitation was centred at the radius labelled as re = 202.
(However, note that all radial positions are effectively the same in the homogenized version
of the base flow, so this labelling is only used in order to facilitate comparisons with the
behaviour found in the genuine flow.) The temporal development is plotted for four different
radial positions: re − 25, re , re + 25 and re + 50.

by Davies & Carpenter (2003) for the rotating-disk boundary layer without mass
transfer. The long-term global behaviour is consistent with convective instability and
does not provide any evidence to suggest the presence of an amplified linear global
mode with the kind of time dependency indicated by (1.2). Disturbances continue to
convect radially outwards, even when they have passed into the region of absolute
instability.

A further numerical simulation was conducted in order to check the robustness of
the behaviour that was found when the impulsive excitation was centred at a radius
matched to the critical Reynolds number for the onset of absolute instability. The
forcing was shifted radially outwards, so that the disturbance was now excited at the
radial location re = 302, for the same azimuthal mode number n = 29 as before.
This corresponds to a locally defined Reynolds number that is approximately 50 %
greater than the critical value for absolute instability. The simulation results for the
temporal frequencies and growth rates are plotted in figure 7. The additional solid
dotted lines represent the development, at the radius where the impulse was centred,
which was obtained from the corresponding homogenized-flow simulation. As before,
the frequencies and growth rates, respectively, increase and decrease with time for the
disturbance in the radially inhomogeneous base flow. Although temporal decay is not



The effects of mass transfer on the rotating-disk boundary layer 413

−8

−7

−6

−5

−4
 

–0.5

0

0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

F
re

qu
en

cy
G

ro
w

th
 r

at
e

t/T

(a)

(b)

re − 25
re = 202
re + 25
re + 50

Figure 6. (a) Local temporal frequencies ωrRe and (b) temporal growth rates ωiRe for a
disturbance with n = 29 developing in the radially inhomogeneous base flow with injection
a = −1. The impulsive excitation was centred at re = 202. The temporal development is
plotted for four different radial positions: re − 25, re , re + 25 and re + 50.

observed during the time interval considered, the plots suggest that, given sufficient
time, the growth rates will continually decrease until they become negative. Hence, it
seems reasonable to conjecture that temporal decay will eventually set in.

Longer-duration simulations, which may have confirmed this conjecture, were
extremely difficult to conduct. As in the previous study of Davies & Carpenter
(2003), numerical convergence problems were encountered with the iteration scheme
used to solve the discretized governing equations. The problems were due to the
huge spatial variation in the disturbance magnitudes that developed within the
computational domain as the disturbance wavepacket evolved. Since there is obviously
no nonlinearity in governing equations that have been deliberately linearized, there
are no nonlinear effects that could serve to saturate the growth. This means that the
maximum amplitude of the disturbance wavepacket is allowed to grow exponentially
without limit. Thus, it proved very difficult to increase the time duration of the
simulations beyond that which is displayed in the figures, even by as much as
only a quarter of a disk rotation period. However, in a number of closely related
simulations that were conducted using various alterations in the set of parameters that
specified the disturbance, the growth rates were also found to decrease. So it seems
reasonable to surmise that temporal decay is likely to be the typical behaviour that
will eventually be observed, for all radial locations, at least within the imposed linear
framework.
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Figure 7. (a) Local temporal frequencies ωrRe and (b) temporal growth rates ωiRe for a
disturbance with n = 29 developing in the radially inhomogeneous flow with injection a = −1.
The impulsive excitation was centred at re = 302. The temporal development is plotted for
four different radial positions: re − 25, re , re + 25 and re + 50. The lines labelled as P show the
development at the point of impulsive excitation for a similar disturbance in the homogenized
version of the flow with Re = 302.

3.2. Uniform mass suction

We now consider disturbances developing in a base flow where the mass transfer
parameter is a = 1. This represents a level of suction at the disk surface that
has the same strength, though oppositely directed, as the injection case that was
considered in the previous section. Figure 8 displays the temporal development, at
four successive radial positions, in the radially inhomogeneous flow for a disturbance
with an azimuthal mode number n = 194 that was excited by an impulse centred at
re = 1861. The azimuthal mode number and radial position of the impulse specify
the conditions for critical absolute instability, as determined by Lingwood (1997). For
the radial positions re − 25, re it can be seen that the disturbance initially decays, but
then appears to asymptote towards a constant amplitude. Radially outboard from the
impulse position, at the locations re + 25, re + 50, the disturbance exhibits temporal
growth that accumulates over the time interval considered, though at the first of these
two chosen locations there is also a prolonged period during which the amplitude
remains approximately constant.

The spatial–temporal development of the disturbance is displayed in figure 9(a).
At first glance, the behaviour appears to be in precise accordance with what might
reasonably be anticipated for an impulse that is centred at the radius that corresponds
to the critical Reynolds number for absolute instability; the leading edge propagates
radially outwards with a non-vanishing velocity, while the trailing edge seems to
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Figure 8. Time histories for ωθ at the disk surface (solid lines) with corresponding envelopes
±|ωθ | (dotted lines), for an impulsively excited disturbance in the radially inhomogeneous base
flow with suction a = 1. The azimuthal mode number is n = 194 and the disturbance was
excited at re = 1861. The temporal development is plotted for four different radial positions:
(a) re − 25, (b) re , (c) re + 25 and (d ) re + 50.

propagate with a near-zero velocity. However, on closer inspection, it may be seen
that the trailing edge eventually moves radially inwards with a small, but growing
velocity. This is illustrated in figure 9(b), where a more limited range of radial positions
is considered in the vicinity of the trailing edge. Thus, the long-term development
seems to be different from what was found for the case with mass injection, where
the behaviour had remained similar to that described by Davies & Carpenter (2003)
for the rotating disk flow with no mass transfer.

Figure 10 displays the temporal development of the locally defined temporal
frequencies and growth rates for the disturbance. Results are again plotted for
four separate radial positions. (The solid dotted lines, labelled as P, refer to
the corresponding homogenized-flow simulation, where the Reynolds number is
Re =1861.) The frequencies behave in a manner that is very much the same as
reported earlier, for the flow with mass injection; they increase at later times and vary
systematically with the radius. However, the temporal growth rates behave rather
differently. They are displayed over the full time interval of the numerical simulation
in figure 10(b), and for a reduced range of time in figure 10(c). At all of the selected
radial locations, the growth rates are increasing, either for the whole of the time
interval considered or during its latter part. Temporal growth is eventually observed
at every one of the chosen positions, represented by positive values of the growth
rates. It is not possible to entirely discount the prospect that the increasing trend of
the growth rates might be reversed at later times, by just considering the results of a
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Figure 9. Spatio-temporal development of |ωθ | at the disk surface for an impulsively excited
disturbance in the radially inhomogeneous flow with suction a = 1. The azimuthal mode
number is n = 194 and the disturbance was excited at re = 1861. (a) Full radial range and (b)
reduced radial range around the trailing edge.

simulation that could only be conducted over a relatively short time interval of less
than one and a half disk rotation periods. Nevertheless, the new behaviour that is
displayed in the growth rates suggests the presence of some form of global instability,
albeit without the selection of any dominant global frequency, as would usually be
anticipated.

In a further simulation, a disturbance was excited radially inwards from the location
predicted for the onset of absolute instability by a homogenized-flow analysis. The
impulse used to trigger the disturbance was now centred at re = 1811, rather than
at re = 1861, with the same azimuthal mode number, n = 194, as before. Figure 11
displays the spatial–temporal development. The trailing edge of the disturbance
wavepacket propagates radially outwards, but it moves more and more slowly as it
approaches the absolutely unstable region. The contour that represents the trailing
edge appears to turn towards being vertical in the spatial–temporal plot, as it nears
the location rc = 1861 that corresponds to critical absolute instability.

Figure 12 displays the local temporal frequencies and growth rates at the radial
locations re = 1811, re + 25, re + 50 and re + 100 for the same disturbance as
above. (The frequency and growth rate for the corresponding homogenized-flow
simulation, with Re = 1811, are also included in the figure; labelled P as before.)
It can be seen that for the innermost three of the chosen radial positions, where
r � rc = re + 50, there is a prolonged period of temporal decay. However, the
trend of the growth rates suggests that this does not persist indefinitely. There is
a good indication that the growth rates will eventually become positive at all of
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Figure 10. (a) Local temporal frequencies ωrRe and (b,c) temporal growth rates ωiRe for a
disturbance with n = 194 developing in the radially inhomogeneous flow with suction a = 1,
centred at re = 1861. The temporal development is plotted for four different radial positions:
re −25, re , re +25 and re +50. The solid dotted lines labelled with a P show the development in
the corresponding homogenized flow with Re = 1861. The temporal growth rates are displayed
over the full time interval in (b) and for a reduced range of later times in (c).
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Figure 11. Spatio-temporal development of |ωθ,w| at the disk surface for an impulsively
excited disturbance in a radially inhomogeneous flow with suction a = 1. The azimuthal mode
number is n = 194 and the disturbance was excited at re = 1811. The vertical line at rc

represents the critical radius for the onset of absolute instability.
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Figure 12. (a) Local temporal frequencies ωrRe and (b,c) growth rates ωiRe for a disturbance
with n = 194 developing in the radially inhomogeneous flow with suction a = 1. The impulse
was centred at re = 1811. The temporal development is plotted for four different radial
positions, re , re + 25, re + 50 and re + 100. The solid dotted lines labelled with a P show the
development in a homogenized flow with Re = 1811. The temporal growth rates are displayed
over a full time range in (b) and for a reduced range of later times in (c).

the radial positions displayed. However, be that as it may, it should be observed
that for r = re + 50, temporal growth is certainly in evidence after t/T = 1.4,
which is just before the end of the time interval considered. There is also temporal
growth at r = re + 100 throughout the whole duration of the simulation. A similar
exhibition of temporally growing behaviour was found for other radial locations where
r > 1861, with the locally defined growth rates becoming more pronounced as the
radius increased. Thus, even though the time allowed for the disturbance evolution
was constrained by the limitations of the numerical simulation, which meant that
the appearance of positive growth rates could not be confirmed at radial locations
where r < 1861, the overall behaviour seems to again signal the presence of a global
instability.

An additional illustration of the differences between the rotating-disk flows
with mass injection and suction can be obtained by comparing the behaviour of
disturbances that are impulsively excited at a location that is far away from the
radius that marks the boundary for the onset of absolute instability, but is still
within the region of convective instability. Figure 13(a) displays the spatial–temporal
development of a disturbance wavepacket excited at re = 712 with n = 113 in a
flow with suction of strength a = 0.5. Radially homogenized-flow analysis predicts
that the onset of absolute instability will occur at the radial location rc = 912,
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Figure 13. Spatio-temporal development of |ωθ | at the disk surface for an impulsively excited
disturbance in radially inhomogeneous flows. A dotted vertical line at the radius rc marks
the position for the onset of absolute instability that is predicted using homogenized-flow
analysis. (a) a = 0.5 for an azimuthal mode number n = 113 excited at re = 712 (rc = 912);
(b) a = −0.5 for an azimuthal mode number n = 43 excited at re = 240 (rc = 310).

for the stated azimuthal wavenumber. Figure 13(b) shows the spatial–temporal
development for an injection flow with a = −0.5. The disturbance is excited at
re = 240, whilst absolute instability sets in at rc = 310, for the chosen wavenumber
n = 43. A significant contrast between the behaviours in the two flows can be
seen immediately. The trailing edge of the disturbance wavepacket for a = 0.5
propagates with a diminishing velocity as it moves radially outwards, while for
a = −0.5 the trailing edge progresses with an increasing propagation velocity, which
should carry it beyond the radial position where absolute instability is predicted to
appear.

3.3. Comparison of temporal growth rates for flows with different mass transfer

A number of rotating-disk flows with various degrees of mass transfer were
investigated in order to systematically trace the changes in behaviour between flows
with suction and those with injection. Figure 14 provides a convenient means of
highlighting these changes. It compares the growth rates of disturbances that were
excited at the radius corresponding to the critical point for absolute instability,
for five flows with different levels of mass transfer a = −1, −0.5, 0, 0.5, 1. Initially,



420 C. Thomas and C. Davies

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

t/T

G
ro

w
th

 r
at

e

a = −1.0
a = −0.5
a = 0
a = 0.5
a = 1.0

Suction 

Injection 

Figure 14. Growth rates for a disturbance excited at the radius r = rc corresponding to the
onset of absolute instability for the rotating disk flows with various degrees of mass transfer.
Solid line, a = −1 where rc = 202, n = 29; dashed line, a = −0.5 where rc = 310, n = 43;
dash-dotted line, a = 0.0 where rc = 508, n = 67; dotted line, a = 0.5 where rc = 912, n = 113;
solid dotted line, a = 1 where re = 1861, n = 194.

–0.1

0

0.1

0.2

0.3

0.4

G
ra

di
en

t o
f 

gr
ow

th
 r

at
e

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

t/T

a = −1.0
a = −0.5
a = 0
a = 0.5
a = 1.0

Figure 15. Gradients of the growth rates in figure 14. Data lines are for the same
parameters as before.

the behaviour displayed in all five of the plots is similar; the growth rates begin
with commensurate negative values and then increase rapidly. However, after a time
interval of only t/T = 0.4, noticeable differences in the growth rates start to emerge.
The increases in the growth rates that correspond to the flows with a � 0 become
less rapid, until they are eventually reversed and replaced by a decrease. In contrast,
the growth rates for the suction flows with a > 0 continue to increase, although this
increase is far weaker than it was initially. By the end of time interval considered, the
growth rate for the case a = 1 has become positive, while the growth rate for a = 0.5
has a trend that suggests that it will also become positive, but at a slightly later time.

Figure 15 displays the gradients of the growth rates that were shown in figure 14.
The data lines are for exactly the same parameters as before. For a � 0 the gradients
diminish and eventually become negative, which corresponds to the growth rates
decreasing. For a = 0.5 the gradient remains positive for the whole of the time
period displayed. However, the gradient continues to decrease and it is not clear
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whether or not it will asymptote to a positive-valued constant. If it does, then the
long-term behaviour will be the same as that for the case a = 1 which is described
below. If the gradient for a = 0.5 does not asymptote to a positive constant, then the
corresponding growth rate can be expected to decrease until it becomes and remains
negative, even though it may be positive for a lengthy intervening time interval. Thus,
it is not possible to entirely discount the possibility of a long-term temporal decay
of the disturbance. The behaviour for a = 1 seems much clearer. The gradient of the
growth rate initially decreases, but then there is a very strong suggestion that it may
asymptote towards a positive constant, or perhaps even begin to increase again. The
trend of the gradient thus indicates that the long-term disturbance behaviour will
consist of temporal growth with an increasingly large growth rate. Such disturbance
growth signifies the presence of global instability, though the time dependence is
evidently far more complicated than that which would be associated with a global
mode of the form (1.2); there is no selection of a global temporal growth rate, in
addition to the previously noted absence of any selected global frequency.

4. Modelling using the Ginzburg–Landau equation
For the rotating-disk boundary layer with mass injection applied at the disk surface,

there would seem to be a disparity between the radially increasing strength of the
absolute instability and the absence of any obvious signs of global instability in the
numerical simulation results. It is not immediately evident how it could be possible
to resolve this apparent conflict between the local instability properties, deduced
using the approximation of a radially homogenized flow, and the global stability
that is presented in the simulations for the genuine inhomogeneous flow. An initial
impression might be given that there is something amiss in either the absolute stability
analysis or the numerical simulations. Fortunately, some insight can be gained by
considering analogous behaviour that occurs in impulse solutions of the linearized
complex Ginzburg–Landau equation (Hunt & Crighton 1991). This kind of modelling
was first utilized by Davies et al. (2007) to provide a theoretical explanation of the
numerical simulation results that were obtained by Davies & Carpenter (2003) for
the rotating disk boundary layer with no mass transfer. In this study, we consider
an extension of the same approach to cases where there is mass transfer at the
disk surface. We shall show that the model impulse solutions encompass a range of
behaviour that includes the novel form of global instability that is displayed in the
simulations with suction, as well as the global stability that is found when there is
mass injection.

4.1. Impulse solutions

The linearized Ginzburg–Landau equation may be written in the form:

∂ψ

∂t
+ U

∂ψ

∂r
= µψ + γ

∂2ψ

∂r2
, (4.1)

where ψ(r, t) is some measure of the disturbance amplitude at the radial location r and
time t . The terms multiplied by the quantities µ, U and γ (where Re(γ ) > 0) are used,
respectively, to model the effects of temporal growth/oscillation, flow convection and
diffusion/dispersion. Usually, all three of these quantities are taken to be constant,
in order to provide a model for the development of disturbances in a spatially
homogeneous flow. However, by setting µ = µ(r) we can obtain a simple, if somewhat
crude, model for disturbances that evolve in a flow that is spatially inhomogeneous.
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At any given location, the real part of the derivative dµ/dr can be interpreted as a
local measure of the radial variation in the temporal stability properties of the flow.
The imaginary part of dµ/dr quantifies the corresponding spatial dependency in the
temporal frequencies at which disturbances can be excited.

The simplest non-trivial radial variation in µ that may be considered is the case
where dµ/dr is prescribed to be a constant µ1, so that we have the linear dependency

µ = µ0 + µ1r, (4.2)

with µ0 as another constant. For this form of µ, the Green function G(r, t) solution
of the Ginzburg–Landau equation (4.1) can be shown to be (Hunt & Crighton 1991)

G(r, t) =

√
1

4πγ t
exp

(
µ0t − (r − Ut)2

4γ t
+

1

2
µ1rt +

1

12
µ2

1γ t3

)
. (4.3)

This represents the response to a localized impulse ∼ δ(t) δ(r). (For convenience,
we consider an impulse centred at r = 0. The impulse location can be translated to
r = re when comparisons are made with numerical simulation results.) Identifying the
instantaneous complex growth rate of a disturbance with the logarithmic derivative

ρ =
1

G

∂G

∂t
, (4.4)

it may easily be seen that, for large times, the impulsively excited disturbance grows
at a rate

Re(ρ) ∼ 1
4

[(
µ2

1r − µ2
1i

)
γr − 2µ1rµ1iγi

]
t2, (4.5)

where µ1r and µ1i denote the real and imaginary parts of µ1, respectively, and
similarly for γ . Using the fact that γr > 0, it may be deduced that when the measure
of the frequency variation µ1i is large enough in magnitude, there is a globally stable
response. (More precise details of the conditions necessary for global stability are
given below.) This can happen even if µ1r is positive, which would correspond to
a flow that becomes locally more and more unstable as the radius increases. Thus,
the behaviour of the impulse solution (4.3) indicates how detuning, arising from
the spatial variation of the temporal frequency of an absolute instability, may be
sufficient to globally stabilize disturbances. It provides a possible explanation of why
an absolutely unstable rotating-disk boundary-layer flow can remain globally stable.
As will be seen immediately below, the appearance of global stability depends on how
well the radial increases in growth rates are balanced by the corresponding shifts in
frequencies. A rather different type of behaviour can be anticipated if the combination
of parameters enclosed in the square brackets in (4.5) happens to be positive. It may
be surmised that a novel form of global instability will then arise, with a positive
growth rate � t2 for the impulse response at large times.

For there to be a globally stable response to an impulse, more specific conditions
can be obtained as follows. Let λ = µ1r/µ1i and Γ = γi/γr . Then, from (4.5), it may
be deduced that there will be global stability whenever

(λ − Γ )2 − (1 + Γ 2) < 0. (4.6)

Thus, globally stable behaviour prevails if

Γ −
√

1 + Γ 2 < λ < Γ +
√

1 + Γ 2. (4.7)

Therefore, the long time response is determined by the relative sizes of the quantities
µ1r and µ1i that measure the radial variation in the temporal growth rates and
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the temporal frequencies, respectively. There is also a dependence upon the ratio of
the parameters that quantify the diffusion and dispersion effects. A simplification
occurs when γ is entirely real, which represents cases where there is diffusion but no
dispersion. The inequality (4.7) then reduces to |λ| < 1, that is |µ1r | < |µ1i |. Using the
linearity relation (4.2) which is assumed for µ, this can be rewritten as∣∣∣∣dµr

dr

∣∣∣∣ <

∣∣∣∣dµi

dr

∣∣∣∣. (4.8)

For each of the rotating-disk boundary-layer simulations that we compared with
impulse solutions of the Ginzburg–Landau equation, our numerical estimates always
suggested that |dµr/dr | < |dµi/dr |. If γ were purely real, this would imply that there
could only be global stability. Hence, in order to successfully model the globally
unstable behaviour that was seen in simulations where disk surface suction was
applied, it will be necessary to allow γ to be complex. This is in addition to taking µ1

to be complex, so as to model the detuning effects due to the radial variation in the
temporal frequency of the absolute instability. In related studies, Gajjar (1996) and
Gajjar, Arebi & Sibanda (1996) examined the nonlinear development of disturbances
in three-dimensional boundary layers that included rotating-disk flows. Using a high-
Reynolds-number asymptotic analysis, they were able to derive a novel integro-partial
differential equation. For linearized disturbances, their amplitude equation does not
retain any term which corresponds to the diffusion/dispersion term that appears
in the linearized Ginzburg–Landau equation. In contrast, our modelling approach
suggests that the inclusion of a diffusion/dispersion term is necessary for capturing
the influence of the radial inhomogeneity of the base flow.

Before turning our attention to matching the numerical simulation results to
Ginzburg–Landau impulse solutions, it is worth noting that the large time behaviour
of the imaginary part of the logarithmic growth rate takes the form

Im(ρ) ∼ 1
4

[(
µ2

1r − µ2
1i

)
γi + 2µ1rµ1iγr

]
t2 . (4.9)

This implies that in general, when µ1i and γi are non-vanishing, there is no selection
of any dominant temporal frequency in the impulse response, irrespective of whether
or not there is any global instability.

4.2. Determination of the model parameters from the simulations

We will now describe how we were able to fit the impulse solutions (4.3) to the
numerical results that were obtained from the simulations for rotating-disk boundary
layers with various degrees of mass transfer. Expressions will be derived which will
allow quantities that can be determined directly from the simulation data to be
utilized in estimating the parameters that appear in the Ginzburg–Landau equation.
Throughout this section, we shall assume that a global rather than a local form of
time non-dimensionalization has been adopted. (Apart from the need to have a form
of time non-dimensionalization that can be applied in a consistent manner at different
radial positions in the inhomogeneous flow, the adoption of a global time scale helps
to keep the notation as simple as possible. The conversion between the local and
global time scales would otherwise introduce a factor of Re into various quantities,
reflecting the fact that the non-dimensionalized disk rotation period is changed from
2πRe to 2π. See Davies et al. 2007 for a detailed discussion.)
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We first note that the impulse solution (4.3) can be written in a more convenient
form as

G(r, t) =

√
1

4πγ t
exp

(
− r2

4γ t
+

1

2
µ1rt +

1

12
µ2

1γ t3

)
exp (i(α0r − ω0t))

= G∗(r, t) exp (i(α0r − ω0t)), (4.10)

where

ω0 = i

(
µ0 − U 2

4γ

)
, α0 = −i

U

2γ
. (4.11)

It may easily be verified that G∗(r, t) satisfies the simplified Ginzburg–Landau
equation

∂G∗

∂t
= (µ1r)G∗ + γ

∂2G∗

∂r2
. (4.12)

Explicit reference to the convection velocity U has been removed by the introduction
of the temporal frequency ω0 and the radial wavenumber α0, both of which will be
complex-valued in general.

As in § 3.1, we can define a local complex frequency by setting

ω = iρ = i
1

G

∂G

∂t
. (4.13)

Using (4.10) it may be seen that

ω = ω0 + i

(
− 1

2t
+

r2

4γ t2
+

1

2
µ1r +

1

4
µ2

1γ t2

)
. (4.14)

In the case of a radially homogeneous flow, for which µ1 vanishes, we have ω → ω0 as
t → ∞. Thus, ω0 is the complex frequency that characterizes the long-term temporal
behaviour of disturbances in the homogenized flow. There is absolute instability when
Im(ω0) > 0.

In a similar manner as for the frequency, a local complex wavenumber for the
radial variation of disturbances can be defined as

α = −i
1

G

∂G

∂r
. (4.15)

The expression for the Green function (4.10) then yields

α = α0 + i

(
r

2γ t
− 1

2
µ1t

)
. (4.16)

So α → α0 for t → ∞, when µ1 is zero. This means that α0 can be interpreted as being
the complex wavenumber that is associated with disturbances in the homogeneous
flow at large times.

The complex constants ω0 and α0 can be obtained from numerical simulations
conducted for a radially homogenized rotating-disk boundary layer in a
straightforward manner. They may simply be set equal to numerically determined
estimates for the large time asymptotes of ω and α, where these quantities remain
defined just as in (4.13) and (4.15), but with the Green function G(r, t) replaced by
some suitable measure of the disturbance amplitude A(r, t) that is provided as data
from the simulation. (Typically, the amplitude of the azimuthal vorticity perturbation
at the disk surface was utilized.)
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An examination of the detailed structure of the Green function (4.10), when µ1

is zero, reveals that the disturbance wavepacket that it represents has leading and
trailing edges located at r = ULt and r = UT t , respectively, where the velocities UL

and UT satisfy the following relationships:(
1

γ

)
r

= − 4α0i

UL + UT

= − 4ω0i

ULUT

. (4.17)

Hence, once a value for either α0i or ω0i has been determined, the parameter (1/γ )r
may, in principle, be estimated using values for the leading and trailing velocities
that can be obtained from an inspection of the slopes of amplitude contour plots
for the spatial–temporal development of simulated disturbance wavepackets in the
homogenized flow. However, in practice, it was frequently found that |UT | 	 |UL|,
which made it difficult to estimate UT with adequate precision using contour plots. In
fact, such a problem in the estimation of UT may be anticipated from the appearance
of the factor 1/

√
t in the impulse solution of the Ginzburg–Landau equation that

we have been considering. This algebraic decay factor means that any disturbance
amplitude contours that are located near the trailing edge can be expected to approach
lines with slope UT rather slowly, as time passes, whenever UT takes a value that
is relatively small. Therefore, in practice, the amplitude contour plots, which were
constructed using the simulation data, could often only be deployed to estimate the
value of the leading-edge velocity UL with an acceptable degree of precision. When
this was the case, the relationships stated in (4.17) were applied to determine UT , as
well as (1/γ )r , using the values given for α0i , ω0i and UL.

An estimate for the parameter γi also needs to be provided, so that γ can be
fully specified. This can be achieved by using homogenized flow simulation data for
disturbance amplitudes to compute the derivative ∂α/∂r , and then noting that, when
µ1 vanishes, we can derive the relationship

γi

γr

=
∂αr

∂r

/
∂αi

∂r
, (4.18)

using the expression (4.16) that holds for the impulse solution of the Ginzburg–
Landau equation.

Thus far we have indicated how values for the complex parameters γ , α0 and ω0

may be extracted from the results of numerical simulations conducted for impulsively
excited disturbances in the homogenized rotating disk flow. The final complex
parameter µ1, which is used to model the effects of the radial inhomogeneity in
the genuine flow, can be determined as follows. From the expression (4.14) for the
locally defined complex frequency ω, it may be seen that

∂ω

∂r
= i

(
r

2γ t2
+

1

2
µ1

)
, (4.19)

and hence, ∂ω/∂r → iµ1/2 as t → ∞. Thus, disturbance amplitude data obtained
from a numerical simulation for the inhomogeneous flow can be deployed to specify a
value for µ1, by providing an estimate for the large-time asymptotic value of the radial
derivative of the locally defined complex frequency. Alternatively, homogenized-flow
simulations conducted for slightly different values of the Reynolds number Re can be
used to determine the rate at which the asymptotic complex frequency ω0 varies with
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the Reynolds number. The parameter µ1 can then be estimated using the relation

dω0

dRe
= iµ1. (4.20)

It may be observed from (4.19) and (4.20) that, for large times, the rate at which
the complex frequency varies with the radius in the genuine inhomogeneous flow is
anticipated to be only half the rate at which it varies with the Reynolds number
amongst radially homogenized flows. However, it is only in the homogenized case
that the frequency itself, rather than its radial derivative, approaches any settled value
for large enough times.

4.3. Matching with numerical simulation results

We now present an example to illustrate the kind of matching that can be achieved
between numerical simulation results and impulse solutions of the Ginzburg–Landau
equation. In line with the procedure outlined above, there is a first step where
simulation data obtained for the radially homogenized flow are used to estimate γ ,
α0 and ω0. Simulation data for the inhomogeneous flow, or for the homogenized flow
at different Reynolds numbers, are then used to fix a value for µ1.

Note that no optimization is attempted in the procedure used to determine the
parameters that appear in the impulse solutions of the Ginzburg–Landau equation.
No doubt, the degree of quantitative agreement could be improved by increasing
the sophistication of the data fitting, for example by the introduction of some
form of least-squares minimization of any disparities with the simulation results.
However, our primary concern here is to provide a few rudimentary comparisons
with the predictions of an explanatory model that has been kept as simple as possible.
Strategies for obtaining an improvement in the data fit are of secondary importance.
If we had so desired, the numerical accuracy of the modelling could also have been
improved by increasing the underlying complexity of the Ginzburg–Landau equation.
It is not very difficult to incorporate more general forms for the radial dependency of
µ, and/or allow γ and U to become spatially dependent in various ways (see Hunt &
Crighton 1991 and Thomas 2007 for further details). However, again for simplicity,
we will not pursue such possibilities.

The particular rotating disk boundary layer that we have chosen for the purposes of
illustration has mass suction with a = 1. We were also able to successfully model the
numerical simulation results for cases with mass injection (Thomas 2007), though
the details will not be presented here. Aside from space constraints, this is because
the globally stable behaviour that was found for rotating disk boundary layers with
mass injection remains quite similar to that which occurs in the absence of any mass
transfer. Results obtained from the modelling for the case with no mass transfer have
already been described, albeit rather briefly, by Davies et al. (2007). Few details were
given there of how the parameters used to characterize the model were estimated. Nor
was there any account of the variety of global behaviour that is possible according
to the model.

In our selected example with a = 1, the impulse used to excite the disturbance
was centred at a radius corresponding to a Reynolds number Re = re = 1911, for
an azimuthal mode number n = 194. The Reynolds number that marks the onset of
absolute instability is 1861. Thus, in the radially inhomogeneous flow, the disturbance
was excited some distance outboard from the critical radius. For the homogenized
version of the flow, numerical simulation results for the temporal frequencies, growth
rates and spatio-temporal development of the disturbance are plotted in figures 16(a),
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16(c) and 16(e), respectively. The complex frequency eventually asymptotes towards
ω0Re ≈ −51.1 + i0.28. (Note that we have now reverted to using a locally based
time non-dimensionalization when specifying the frequency ω0, which leads to
the appearance of a factor Re in various quantities. Though it is only strictly
appropriate to use a local time scale for the analysis of disturbances developing in
the homogenized flow, we have retained its use here, and elsewhere in the paper,
in accordance with the practice that has been most commonly adopted by other
investigators.)

Absolutely unstable behaviour is clearly depicted in figure 16(e), since the edges
of the disturbance wavepacket are moving in opposite directions. The large-time
asymptotic value of the spatial wavenumber for the disturbance in the homogenized
flow was estimated using the simulation data to be α0 ≈ 0.34 − i0.12. The value of
the leading-edge velocity UL could be estimated by examining the gradient of the
sharp leading edge of the disturbance wavepacket that is displayed in figure 16(e).
This yielded ULRe ≈ 100. Using the relationships stated in (4.17), it was then possible
to obtain the estimate (1/γRe)r ≈ 0.005 (and also UT Re ≈ −2). From estimates
for the real and imaginary parts of the radial derivative of the wavenumber α

in (4.18), it was found that γi/γr ≈ 1.6. Hence, we have 1/γRe ≈ 0.005 − i0.008. This
confirms the necessity of including dispersion effects as well as diffusion effects in the
modelling, through the use of complex values for the parameter γ that multiplies the
second-order spatial derivative term in the Ginzburg–Landau equation.

Figures 16(b) and 16(d ) display the variation of the temporal frequencies and growth
rates predicted by the impulse solution of the Ginzburg–Landau equation that was
constructed, for the homogenized flow, using the estimated values for ω0, α0 and γ .
The spatial–temporal development of the disturbance wavepacket obtained for the
same impulse solution is shown in figure 16(f ). As in previous figures, the frequencies
and growth rates are plotted for four equally spaced radial positions. Because of the
presence of a reflective symmetry about the shifted impulse location r = 0 in (4.14)
when µ1 = 0, the curves for the radial positions re − 25 and re + 25 coincide. This
exact symmetry does not hold for the numerical simulation results. However, the
differences are easily explained after it is realized that asymmetric behaviour can be
obtained if a smeared impulse distribution is imposed, instead of point forcing, when
the appropriate solution of the Ginzburg–Landau equation is determined. (Reference
may be made to Thomas 2007 for further details.) By necessity, the impulse used in
the numerical simulations had to be spread over a finite range of radial grid positions
in order for it to be fully resolved, though this spread was kept as small as possible.

Having specified the parameters ω0, α0 and γ by utilizing simulation data for the
radially homogenized flow, a value for µ1 was found with the aid of data from
the corresponding numerical simulation for the inhomogeneous flow. The estimation
method made use of the asymptotic radial variation of the complex frequency, in
the manner described at the end of the previous subsection. An alternative estimate
for µ1 was obtained using data from homogenized-flow simulations conducted at
different Reynolds numbers, making use of (4.20). Both methods of estimation gave
quite similar results and suggested the choice of the value µ1Re ≈ 0.007 − i0.019.

The numerical simulation results for the temporal frequencies, growth rates and
spatial–temporal development of the disturbance wavepacket that were obtained for
the genuine radially dependent flow are plotted in figures 17(a), 17(c) and 17(e),
respectively. The frequencies, growth rates and disturbance wavepacket development
derived from the fitted impulse function (4.10) are shown for comparison in
figure 17(b, d, f ). It may be seen that the predicted behaviour for the frequencies
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Figure 16. Local temporal frequencies ωrRe, temporal growth rates ωiRe and disturbance
wavepacket contours for the radially homogenized flow with suction a = 1. Re = 1911
and n = 194. (a,c,e) Numerical simulation results. (b,d,f ) The corresponding results obtained
using the fitted impulse solution of the Ginzburg–Landau equation (4.10), with µ1 = 0.
The frequencies and growth rates are plotted for four equally spaced radial positions. The
wavepacket contours displayed for the simulation represent the azimuthal vorticity at the disk
surface.

and growth rates is in good qualitative agreement with the results of the numerical
simulations; for instance, they all eventually increase. The degree of quantitative
agreement is also quite strong. It may be observed that the forms taken by the
disturbance wavepacket contours are very similar to each other. Behaviour that is
indicative of global instability is displayed in both cases. It may thus be surmised
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Figure 17. Local temporal frequencies ωrRe, temporal growth rates ωiRe and disturbance
wavepacket contours for the inhomogeneous flow with suction a = 1. The impulse was excited
at re = 1911 and n = 194, as in figure 16. (a,c,e) Numerical simulation results. (b,d,f ) Results
obtained using the fitted impulse solution of the Ginzburg–Landau equation (4.10), with µ1

taken to be non-zero so as to model the radial inhomogeneity of the flow.

that the introduction of a single complex constant µ1 has allowed the differences
between the behaviour of the disturbances in the genuine flow and the artificial flow
to be successfully modelled. The changes in behaviour are captured both qualitatively
and quantitatively; the latter with a surprising degree of accuracy, given the relative
simplicity of the Ginzburg–Landau equation modelling and the unoptimized nature
of the fitting procedure that was adopted.
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5. Perspectives for nonlinear studies
Note that all of the results presented here are for the case of linearized disturbances.

Further numerical simulations for finite-amplitude disturbances would be useful in
investigating the role of nonlinearity, for a range of possible laminar–turbulent
transition routes that might be observed in rotating-disk experiments, with various
different physical configurations and initial disturbance environments.

For instance, the previously mentioned theoretical study by Pier (2003) indicates
that, for the case without mass transfer, a nonlinear global mode can be constructed,
which will itself become subject to a strong form of secondary absolute instability.
The secondary absolute instability may, in turn, be expected to trigger the transition
to a turbulent flow. However, there is an implicit assumption in Pier’s analysis that
the effects of the radial inhomogeneity of the base flow are insufficient to interfere
with the operation of the primary absolute instability that would serve to create the
nonlinear global mode. Nonlinear numerical simulation studies could be helpful in
establishing the conditions for the validity of this assumption. More generally, there is
a need for additional work to be undertaken in order to determine the consequences
of interchanging the approximations of linearity and flow homogenization in the
preliminary stages of the development of any nonlinear theory. Pier’s work can be
construed as only considering the effects of the underlying inhomogeneity of the
base flow after nonlinearity has been taken into account. Our linearized numerical
simulations, on the other hand, include the effects of radial inhomogeneity before any
account of nonlinearity is taken. The results obtained from these simulations indicate
that, for the whole class of rotating flows with mass injection, as well as for the flow
without mass transfer, absolutely unstable disturbances with a sufficiently small initial
amplitude may never be able to grow large enough for nonlinearity to come into play
in the manner that Pier presumes.

The importance of incorporating the effects of radial inhomogeneity into any
nonlinear theory can also be inferred from the results of the physical experiments
conducted by Othman & Corke (2006). For the case without mass transfer, they
found no evidence for nonlinear global modes, or any subsequent secondary absolute
instability, when the initial disturbance amplitudes were taken to be sufficiently
small. In fact, as mentioned in the introduction, laminar flow was found to persist
considerably beyond the critical Reynolds number for the onset of absolute instability.
All of this is consistent with the hypothesis that nonlinear disturbance development
may be forestalled in cases where there is a global linear stabilization associated with
the base-flow inhomogeneity. Unfortunately, Othman & Corke (2006) were unable
to fully categorize the nonlinear behaviour that ensued when they increased the
amplitude of the disturbances that were introduced into the flow; no unequivocal
evidence was obtained for the existence of an initial disturbance amplitude threshold,
above which nonlinear global modes and secondary absolute instability could arise. In
view of this, it is pertinent to mention a recent study for a related boundary-layer flow
configuration. Viaud, Serre & Chomaz (2008) report results obtained from nonlinear
numerical simulations that were conducted for flows confined between two rotating
disks. As in our linearized simulations, the base flows were inhomogeneous along
the radial direction. It was discovered that nonlinear global modes could only be
manifested in the simulations when the initial disturbance amplitude, used in seeding
the primary absolute instability, was taken to be sufficiently large.

We end this section with a few remarks that have a particular bearing on the
disturbance development when there is a global linear destabilization due to the
base-flow inhomogeneity, as was found for the rotating disk boundary layers with
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a strong enough level of suction. Theoretical analysis for spatially inhomogeneous
base flows often uses, as one of its starting points, the well-known result that
the existence of a region of absolute instability is a necessary, but not in general
sufficient, condition for there to be a linearly unstable global mode (see, for example,
the reviews by Huerre 2002 and Chomaz 2005, which list many further relevant
references). This necessary condition does not, at least at first sight, seem to fit very
well with our observations of a form of global instability that involves the propagation
of temporally growing disturbances into radially inboard regions where the flow is
known to be absolutely stable. The apparent conflict can be resolved by simply
noting that global modes are usually taken, by definition, to have a well-defined
temporal frequency, which is selected by the character of the absolute instability. No
such frequency selection occurred for the impulsively excited disturbances that we
simulated in the inhomogeneous rotating-disk boundary-layer flows. The oscillation
frequencies associated with the disturbances were found to vary over time, as well
as being dependent upon the radial location, in all of the flows that we considered.
This included the suction-flow cases where there was continual temporal growth. The
incorporation of such a previously unsuspected kind of temporal instability presents
an interesting challenge for any future theoretical approach to nonlinear disturbance
evolution. It is even conceivable that the novel nature of the unstable linearized
disturbance development may discount the possibility of any analytical approach to
nonlinearity that, in the interests of tractability, tries to postpone the inclusion of
the effects of the inhomogeneity of the base flow. The destabilizing effects of the
radial inhomogeneity may need to be accounted for from the outset of the analysis,
irrespective of the initial disturbance amplitude.

6. Conclusions
A study has been carried out concerning the effects that disk surface mass transfer

has on the global behaviour associated with the absolute instability of the rotating-
disk boundary layer. This extends the previous investigations made by Davies &
Carpenter (2003) and Davies et al. (2007), who considered the rotating-disk flow
without any mass transfer. For flows with mass injection, the results obtained from
numerical simulations were qualitatively similar to those that had been obtained
previously. The radial inhomogeneity of the genuine flow was again found to have a
stabilizing effect on the global disturbance development. No globally unstable forms
of behaviour were detected for the absolute instability.

However, it was discovered that rotating-disk flows with mass suction could be
destabilized by the effects of radial inhomogeneity. The simulations showed that for
flows with a strong enough level of suction, disturbances excited within the absolutely
unstable region could propagate radially inwards with a trailing edge which moved
away from the impulse location at a radial velocity that became increasingly negative.
These disturbances also exhibited increasingly rapid temporal growth. Such behaviour
is indicative of the presence of global instability. However, there was no selection of
any global temporal frequency, as might have been anticipated more usually for a
globally unstable flow.

The results of this study might appear to be rather counterintuitive. An analysis
of the radially homogenized version of the rotating-disk boundary layer shows that
mass suction has a strong stabilizing effect on the absolute instability, postponing its
onset to higher Reynolds numbers. However, for the genuine radially inhomogeneous
flow, the advantageous stability effects of mass suction appear to come with the risk
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of the introduction of global instability. In an oppositely directed, yet similar fashion,
it was found that the destabilizing effects of mass injection that are predicted for the
homogenized flow can be overcome to yield a global stabilization in the genuine flow.

The above results may help to explain why previous experimental
investigators (Gregory & Walker 1960) were unable to use suction to extend the
laminar flow region for the rotating-disk boundary layer as far as might have been
expected. Since the numerical simulations show that suction promotes a novel form
of globally unstable behaviour, it is possible that this may lead to a lowering
of the radius associated with the onset of transition to turbulence, reducing it
below the critical value for absolute instability that is predicted using a linear
stability analysis based upon the homogenized-flow approximation (Lingwood 1997).
However, roughness imperfections introduced into the disk surface, due to the need
to apply an approximately uniform level of suction through it, are also likely to have
reduced the radial extent of the laminar flow in the physical experiment. Thus, it is
difficult to determine, retrospectively, whether or not the globally unstable behaviour
that we have simulated could have played any significant role. There is a need
for further physical experiments to be conducted, making use of improvements in
experimental technology in order to more carefully control the effects of disk surface
roughness.

We have shown that the global behaviour of absolutely unstable disturbances
in the rotating-disk boundary layer can be modelled and explained, heuristically
at least, using impulse solutions of the linearized Ginzburg–Landau equation. The
terms included in the model can be chosen so that they measure the influences of
temporal growth and oscillation, flow convection, diffusion and dispersion. The global
characteristics of a disturbance can then be determined through an examination of the
balance that persists between the effects of radial variations in temporal growth rates,
radial variations in the temporal frequencies and the effects of diffusion and dispersion.
The form of this balance suggests how it can be possible for an absolutely unstable
rotating-disk boundary layer flow to either remain globally stable or to become
globally unstable in a manner that leads disturbances to grow at an increasingly rapid
rate. It is worth noting that the stabilizing effect of local variations in frequency on
otherwise neutrally stable disturbances, known as ‘phase-mixing’, has been familiar
to many in the astrophysical fluids research community for quite some time (see, for
example, Soward 1977, 1992 and Harris, Bassom & Soward 2000).

This work was supported by the Engineering and Physical Sciences Research
Council. The authors would like to thank Professor A. Bassom of the University of
Western Australia for his many helpful suggestions for improving this paper.
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