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Summary 

The current understanding of anterior eye shape in humans is limited due to 

available technology and its accessibility. Accurate curvature metrics of specific 

areas of the peripheral cornea, corneo-limbal junction and anterior sclera have 

remained obscured by the limits of the palpebral aperture, since the upper and lower 

eyelids cover most of the vertical aspect. 

 

This thesis starts by comparing the ‘gold standard’ keratometry measurements to 

commonly used topographic systems.  Keratometric analogues were found to be 

significantly different and in addition provided spurious vertical anterior ocular 

surface (AOS) profiles. These findings revealed a need to establish an accurate 

model. 

 

Magnetic resonance imaging (MRI) potentially offers the best opportunity to image 

the entire AOS structure. However, preliminary studies in this thesis demonstrated 

that the use of a 3-Tesla MRI scanner was unable to obtain sufficiently resolute data 

to meet requirements. 

 

As an alternative, ocular impression taking techniques were adopted during the 

remainder of this thesis to acquire the AOS data. Eye casts from impression moulds 

were scanned using active laser triangulation and virtual 3-dimensional surfaces 

rendered. Further investigations defined the most suitable material for impression 

taking and the amount of deformation of the AOS caused by the procedure. The 

ocular impression casting and scanning process was examined for accuracy and 

reliability.  

 

This protocol was used to sample a population of normal white European eyes in 

order to establish a database and define wide-field AOS variability. Volumetric and 2-

dimensional topographic profiles were extracted from the digital 3-dimensional 

representation obtained, allowing for the analysis of point-to-point curvature 

differences. For the first time, the entire AOS shape has been defined with known 

accuracy. In addition, effects of myopic refractive error and gender are presented.  

This data is of potential importance to ophthalmic surgeons, ocularists, contact lens 
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practitioners, vision scientists and researchers, in the form of a digital archive of 

normal white European wide-field AOS topography as a reference source.
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Abbreviations 

ACS  Anterior corneal surface 

AOS   Anterior ocular surface 

ASC  Anterior sclera 

ASI  Anterior sclera inferior location 

ASIN  Anterior sclera infero-nasal location 

ASIT  Anterior sclera infero-temporal location 

ASN  Anterior sclera nasal location 

AS-OCT Anterior segment ocular coherence tomography 

ASS  Anterior sclera superior location 

ASSN  Anterior sclera supra-nasal location 

ASST  Anterior sclera supra-temporal location 

AST  Anterior sclera temporal location 

CC  Central cornea 

CEP  Cardiff eyeshape protocol 

CLT  Corneo-limbal transition 

CLTI  Corneo-limbal transition inferior location 

CLTIN  Corneo-limbal transition infero-nasal location 
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CLTT  Corneo-limbal transition temporal location 

GP  Gas permeable 

I  Inferior 

IN  Infero-nasal 

IT  Infero-temporal 

J-S  Javal-Schiötz Keratometer 

N  Nasal 

Orb  Orbscan IIz 

PAC  Paracentral cornea 

PACI  Paracentral cornea inferior location 
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PACS  Paracentral cornea superior location 
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PCN  Peripheral cornea nasal location 

PCS  Peripheral cornea superior location 

PCSN  Peripheral cornea supra-nasal location 

PCST  Peripheral cornea supra-temporal location 

PCT  Peripheral cornea temporal location 

PEC  Peripheral cornea 

Pent  Pentacam 
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SD  Standard deviation 
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ST  Supra-temporal 

T  Temporal 
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 Introduction 

This thesis aimed to determine a method of collecting and representing anterior 

ocular surface contour data, in 3-dimensions, over an area encompassing the 

cornea, limbus and anterior sclera.  A database of normal white European anterior 

ocular topography was created, from which morphometric descriptors were 

determined. 

 

Customised treatment and increasingly higher visual expectations after anterior 

ocular surgery have increased the demand on technology to provide reliable, 

repeatable and precise surface contour metrics (Wang, Hill and Swartz, 2006).  The 

optical zone of the cornea is critical in the planning and evaluation of corneal 

refractive surgery.  The zone may vary from 3-7mm in diameter and is defined as the 

central spherical zone that overlaps the entrance pupil (Liu, Yang and Zhang, 2006).  

However, the peripheral zone, 4-11mm in diameter, plays an important role in the 

centration and fitting of corneal contact lenses (Gill, 2010). In a landmark study 

(Marriott, 1966), in-vivo scleral contours were assessed in an attempt to provide 

topographic information with which to improve the design of scleral contact lenses.  

The author found considerable variation in curvature, for example, a range of radii of 

curvature from 12.09mm to 28.75mm in the temporal sector. 

 

The purpose of this work was to advance the ideas of Marriott using modern 

techniques, and to provide a topographic survey of the entire anterior ocular surface 

to a reproducibility of ±0.25D, the current industry standard (Huang, 2008).  It has 

been acknowledged that this standard may not be achievable due to differences in 

tissue structure, since while the cornea is smooth and firm, the overlying conjunctiva 

is loose and mobile, and additionally confounded by methods of wide-field data 

collection. 

 

This thesis has reviewed the current literature pertaining to the: 

 Formation, structure and function of the anterior ocular surface; 

 Modern methods of measurement, with an emphasis on those that may be 

suitable for primary surface data collection; 
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 Current methods of representing the anterior ocular surface in a clinical 

setting. 
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Chapter 1 

Current understanding of anterior ocular surface topography and 

topographic representation 

A review of the literature concerning the measurement of the anterior ocular surface 

(AOS) contour reveals a plethora of information focused mainly on the cornea.  The 

cornea is part of the sclero-corneal envelope; the outer tunic of the globe, which is 

lubricated by the tear film, covered intermittently by eyelids and the supporting 

conjunctiva, and moved and deformed by the interaction of the extrinsic ocular 

muscles.  These structures all contribute to the shape of the surface under scrutiny 

(Fig 1.1) – the red dotted line marks the position of the ora serrata - circumscribing 

the area between the muscle insertions and delineating the area of the AOS to be 

studied. 

 

 

Figure 1.1: Anatomical features of the anterior ocular surface (Bron, Tripathi and Tripathi, 

1997) a = cornea, b = iris, b1 = collarette of iris, c = pupil, d = external scleral sulcus, e = 

sclera, f = ora seratta, g = superior and inferior rectus tendons, h = medial and lateral rectus 

tendons.  The measurements of distances from the cornea to the recti insertion and width of 

the recti insertions are in millimetres. 
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1.3 Globe Formation 

1.3.1 Embryology 

During the first 3 weeks of embryogenesis of the eye, development differentiates cell 

types into endoderm, mesoderm and ectoderm.  These are organised into a neural 

tube structure.  The tube closes at both the cephalic and caudal ends.  At day 27 

(Fig 1.2), the two optic grooves within the tube have formed into vesicles and 

envaginated towards the surface ectoderm initiating the lens placode. 

 

Figure 1.2: Day 27 of human ocular embryonic development (Forrester et al., 1999). 

 

Cells from the neural crest migrate over the surface of the optic stalk and cup.  By 

week 6, the first myofibrils of the extra-ocular muscles are formed from this 

mesenchyme, which condenses and by day 44 (Fig 1.3) has differentiated to form 

the developing sclera (Barishak, 1992). The primary cornea stroma is derived from 

cells of the surface ectoderm.  Studies of chick corneas have shown migration of 

mesenchymal cells from the periphery to the primary stroma (Hay and Revel, 1969) 

with those present on the optic cup lip becoming the corneal endothelium.  These 

cells are followed by a second wave of mesenchymal cells, which become corneal 
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fibroblasts.  The exact sequence of cell migration and highly-ordered deposition of 

collagen to form the transparent corneal structure is unknown (Quantock and Young, 

2008). 

 

 

Figure 1.3: Day 44 of human ocular embryonic development (Forrester et al., 1999) 

 

Errors of differentiation, cell migration and induction during the first 8 weeks cause 

congenital anomalies of the whole eye.  Those anomalies occurring earlier in the 

process result in the most profound structural effect.  Conditions such as teratoma, 

anophthalmos, microphthalmos with cyst, and colabomatous microphthalmos 

originate prior to 8 weeks (Alex, 2003). Between week 7 and 15, anomalies such as 

anterior segment disgenesis, persistent hyperplastic primary vitreous, congenital 

glaucoma, congenital cataract, microphthalmos and deformations of lid, muscle and 

orbit have been reported (Alex, 2003). 

 

1.1.2 Growth and development 

The distance between the anterior and posterior pole, otherwise called the axial 

length, of a full term infant is typically about 17mm (Fledelius and Christensen, 1996) 

and the eye is hypermetropic (Cook and Glasscock, 1951). Infants must therefore 

accommodate to focus distant and near objects onto the retina.  With growth, the 
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focal length of the combined corneal and lens system gradually reduces, and the 

focal plane approaches the retina as the globe elongates.  This is the process of 

emmetropisation and by age 6 years the image and retinal plane ideally coincide.  

Figure 1.4 illustrates the process of emmetropisation. 

 

 

Figure 1.4: The process of emmetropisation (Marsh-Tootle and Frazier, 2006) A (top) shows 

the accommodation needed by infants to shift the image plane closer to the retina.  B 

(bottom) emmetropia at 6 years, the axial length of most eyes is perfectly matched to the 

plane of focus of the eye. 

 

The mean keratometry measurement for a newborn infant’s cornea is 55D, which is 

12D steeper than the average adult measurement (Gordon and Donzis, 1985).  The 

corneal diameter increases from about 10mm in each direction in the neonate to  

typically 10.6mm vertically and 11.7mm horizontally in the adult (Gordon and Donzis, 

1985). 

 

After year 6, growth is slower, and a number of studies suggest that the globe 

reaches its adult size and stabilises around age 15 years (Adams and McBrien, 

1992), (McBrien and Millodot, 1987) but further investigations have verified that adult 
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onset-myopia first manifests after age 18, and it is unclear whether axial growth 

never ceased in these individuals or globe elongation occurred after a period of 

globe stability (Adams, 1987). 

 

1.2 Anterior ocular surface location and structure 

 

1.2.1 Location 

Each globe is located in the anterior orbit (Fig 1.5), nearer to the roof and lateral wall 

than the other walls, occupying approximately one fifth of the orbital cavity (Bron et 

al., 1997) 

 

Figure 1.5: The location of the globe in relation to the orbit (Bron et al., 1997) 1 = superior 

rectus, 2 = reflected tendon of the superior oblique, 3 = muscle body of the superior oblique, 

4 = inferior oblique muscle, 5 = lateral rectus muscle. 

 

1.2.2 Macroscopic structure 

The eyeball is not spherical, but consists of two modified spheres fused together at 

the limbus.  The external scleral sulcus marks the transition between the two.  The 

sclera (from the Greek word scleros meaning hard) is a white opaque, resilient and 

elastic tissue, comprising 90% of the globe circumference.  It has an external radius 

of curvature of 12mm and internal radius of 11.5mm (Hogan, Alvarado and Weddell, 

1971). Overlying the sclera are the episclera and bulbar conjunctiva (Fig 1.6).  The 

episclera is a layer of loose connective tissue, which connects anteriorly to Tenon’s 
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capsule and posteriorly to the scleral stroma.  Scleral thickness varies considerably: 

at the corneoscleral limbus it is 0.53±0.14mm, decreasing to 0.39±0.17mm near the 

equator, and is at its thickest at 1.00mm near the optic nerve insertion (Olsen et al., 

1998) 

The cornea is a transparent ellipsoid, with its shortest diameter in the vertical 

position.  Typically the horizontal diameter is 11.75mm and vertical diameter is 

10.6mm (Hogan et al., 1971). The cornea is a surface described as being both toric 

and aspheric (Mandell, 1961). Toricity is the curvature difference (measured in 

Dioptres) between two meridians perpendicular to each other.  Asphericity is the 

numerical description of a curved surface that deviates from a perfect sphere.  The 

cornea central anterior radius of curvature is typically 7.8mm and its posterior radius 

is 6.5mm (Hogan et al., 1971). 

 

 

 

Figure 1.6: Location of the anterior ocular surface in relation to adnexa and internal 

structures, x5 Light microscope section (Glasgow, 2006) 1= cornea, 2 = crystalline lens, 3 = 

lower conjunctiva fornix, 4 = marginal conjunctiva, 5 = glands of Kraus, 6 = the conjunctival 

tarsus. 
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1.2.3 Microscopic and nanosopic structure of the anterior ocular surface 

The cornea collagen fibril diameters are highly regulated.  X-ray diffraction methods 

have determined that fibrils are all in the region of 31nm diameter in the central 8mm 

zone (Meek and Leonard, 1993) which then rises sharply, increasing to 

approximately 50nm diameter at the limbus (Boote et al., 2003). The collagen is 

found mainly in the stroma in lamellae, which form parallel to the tissue surface. 

The cornea is made up of 5 layers.  The epithelium, the most anterior structure, is 

covered by the pre-corneal tear film and is 6-9µm thick (Mishima, 1965) .The 

epithelium is composed of stratified squamous cells, 5 to 8 cells thick, and is 

continuous with the conjunctiva, where it losses it’s smooth regular surface (Ruskell 

and Bergmanson, 2007). Beneath the corneal epithelium lies the anterior limiting 

layer or Bowman’s layer which is not a basement membrane, but rather a cell-free 

layer of uniform thickness, of about 8-9µm (Bergmanson, 2006) which is composed 

of randomly arranged collagen fibrils.  The arrangement of these collagen fibrils is 

believed to provide anchoring filaments and plaques for the stroma below 

(Bergmanson, 2006). The stroma is a dense layer of transparent connective tissue 

and makes up to 90% of the corneal thickness.  Keratocytes are responsible for 

upkeep and repair of the collagen as there are no blood vessels present here.  The 

cornea is 76% water and regulation of this is paramount to maintain transparency.  

The endothelium is a single-celled layer of squamous cells approximately 5 µm thick 

overlying the posterior limiting lamina or Decemet’s membrane.  It is the joint 

function of the epithelium and the endothelial pump that regulates corneal hydration 

to maintain transparency (Maurice, 1972). The water content also has an effect on 

the corneal thickness, which in the adult eye is about 535 µm centrally (range 445–

600µm) and thickens by 23% peripherally (Doughty and Zaman, 2000). 

 

The structure of the sclera is predominantly collagen with some 2% elastin fibrils 

found mainly in innermost layer (Watson and Young, 2004). Resident fibroblasts are 

surrounded by an extracellular matrix of collagen, elastin, glycoproteins and 

proteoglycans.  Collagen types I, III, V and VI are found in the extracellular matrix, 

and electron microscope studies have demonstrated that collagen fibrils are present 

in a wide range of diameters, 25 – 230 nm, interwoven in an irregular and complex 

fashion (Yamamoto et al., 1997). Fibrils are grouped in bundles of 0.5–6.0µm, and 
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arranged in a regular, parallel arrangement in the outer sclera.  However, the inner 

layers contain an irregular collagen mesh of fibrils, and it is thought that this provides 

the rigid, but flexible nature of the tissue (Meller, Peters and Meller, 1997). In the 

posterior sclera, the region which has been associated with globe elongation has 

been studied and collagen fibre diameter gives rise to a trans-scleral gradient.  A 

profile of different diameters, related to depth, has been shown in the tree shrew 

(animal model), and found to change with age (McBrien, Cornell and Gentle, 2001). 
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1.3 Anterior ocular surface topography 

1.3.1 Corneal topography 

The central zone of the cornea, often referred to as the apex, is approximately 4mm 

in diameter.  There are a number of definitions used to determine the apical zone. 

The most recent is that of EN ISO 19980:2005, which relates to corneal 

topographers and states that ‘the corneal apex is the location on the corneal surface, 

where the mean of the local principal curvature is the greatest’ (BSI, 2005b). 

Similarly, Mandell defined the corneal cap as ‘the central corneal area of maximum 

and constant meridional curvature’ (Mandell, 1988). He considered the refractive 

power difference in this area to be less than 0.25D.  Ludlam et al defined an area 

around the apex where ‘the curvature varies less than 0.05mm’ (Ludlam et al., 

1967). Dingeldein and Klyce suggested that it was anatomically incorrect and 

arbitrary to divide the cornea into zones, but that it was useful for corneal refractive 

surgery and fitting contact lenses (Dingeldein and Klyce, 1989). 

 

The peripheral zone of 4-11mm in diameter flattens gradually (increases in radius of 

curvature) towards the limbus, creating asphericity. After corneal refractive surgery 

for myopia this asphericity increases (Holladay, Dudeja and Chang, 1999) and 

following procedures of hypermetropia decreases (Llorente et al., 2004). It is this 

topographic information that is required to successfully fit and centre contact lenses. 

Using a keratometer the refractive power in the central 3mm (from 4 points) can be 

measured along 2 meridians.  The curvature can be converted into dioptres using an 

assumed refractive index.  The greater power or steepest meridian is usually in the 

vertical.  The difference between the 2 meridians in the young normal population 

results in ‘with-the-rule astigmatism’ in most cases (Porter et al., 2001).  

 

There are a variety of complex methods of deriving and evaluating anterior ocular 

surface contour beyond the 3mm zone.  Topographers measure the surface 

characteristics of the cornea, each with slightly different formulae and techniques to 

derive the topographic map.  The most commonly used systems are placido imaging 

or slit-scanning systems.  From this data, a wide range of maps can be derived.  

These are frequently colour-coded for ease of interpretation.  Axial curvature maps 
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are obtained by measuring the curvature of the cornea at each point relative to a 

specific axis, predominantly the instrument axis (Fig 1.7).  Each radius is measured 

as a distance from the point to the instrument axis along the normal. The assumption 

is made that the centre of curvature for that specific point is located along the 

instrument axis.  The radius is the axial radius of curvature; this is mathematically 

acceptable for spherical surfaces only, hence it incurs significant error in the corneal 

periphery (Cohen et al., 2006) 

 

 

 

Figure 1.7: Axial radius of curvature: Showing 2 points X and Y on the same meridian of an 

asymmetric cornea.  Radii are measured perpendicular to the surface locus (Corbett, Rosen 

and O'Brart, 1999a). 

 

Axial maps do not reveal minor variations in local curvature.  For a more 

anatomically accurate topography, tangential maps are better at determining 

peripheral corneal shape. These are sometimes called local curvature or 

instantaneous curvature maps.  The axis of reference is different for each point (Fig 

1.8) and there are a smaller number of mathematical assumptions (Roberts, 1994). 

Sharp power transitions are recognised more easily, as are focal irregularities.  For 

this reason, this kind of map is used for contact lens fitting.  When assessing corneal 

curvature, tangential maps offer an interpretation of steepness, which should not be 

confused with height.  Similarly curvature metrics do not indicate a positive or 
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negative direction of cahnge the direction of change.  Elevation maps are the best 

way of depicting topography in relation to a plane. 

 

 

Figure 1.8: Tangential radius of curvature: Showing 2 points X and Y on the same meridian 

of an asymmetric cornea, C is the reference plane. Radii rc, rx and ry are radii of curvature 

irrespective of optic or reference axis. 

 

The topography of the cornea can be visualised by relating the primary data to a 

sphere that most closely resembles that specific surface (often called the ‘best fit 

sphere’).  The points that coincide with the sphere are represented as the colour 

green, higher points as warmers colours and lower points as cooler colours.  

Changing the size, shape and alignment of the reference sphere has a profound 

effect on the appearance of the map.  Some machines have fixed reference planes, 

while others can be selected by the operator (Cohen et al., 2006). Choices for the 

reference plane alignment include: floating, centred and pinned (Fig 1.9).  This 

allows corneal refractive power to be represented as changes in curvature. 
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Figure 1.9: Reference surfaces used for elevation maps (Karpecki, 2006) 

Normal corneal shape is aspheric, having a steeper radius of curvature (shorter) 

centrally, and flattening (increasing in radius of curvature) progressively towards the 

periphery (Dingeldein and Klyce, 1989). Descriptors that mathematically explain 

corneal shape are often simplified to a conic section using 2 parameters; apical 

radius and eccentricity.  Conic sections can be derived from a circular, ellipsoid, 

paraboloid and hyperboloid functions (Fig 1.10) (Lindsay, Smith and Atchison, 1998).  

A typical cornea closely approximates a prolate conic section. 

 

 

 

Figure 1.10: Diagram to illustrate different conic sections (Lindsay, Smith and Atchison, 

1998). 
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The position of the apex is important for the design and fitting of contact lenses, and 

for the planning of corneal surgery.  The apex is reported to be temporal to the 

vertical meridian in 63% of normal corneas, 21% were on the vertical meridian and 

16.3% nasal to the vertical meridian (Tomlinson and Schwartz, 1979). Relative to the 

centre of the TMS-1 video-keratoscope, the site of the corneal apex was found 

supero-temporally to the visual axis (Rabinowitz et al., 1996). 
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1.3.2 Normal variations of corneal topography 

Under normal conditions corneal topography varies with changes in the body’s 

physiological functions.  These are periodical and related to eyelid pressure, time of 

day, blinking, tear film stability and hormone levels.  Age and gender affect hormone 

levels, which have an influence on topographic variation (Goto et al., 2001). A 

number of studies have shown that the cornea shape shifts from with-the-rule to 

against-the-rule astigmatism during the ageing process (Hayashi, Hayashi and 

Hayashi, 1995) (Goto et al., 2001) (Topuz et al., 2004).  The changes may be 

caused by decreased inter-fibrilar spacing of collagen, accompanied by thickening of 

the collagen bundles (Malik et al., 1992).  This is likely to alter the elasticity and 

rigidity of the structure.  It is possible that decreased eyelid tension with age may be 

another reason for a trend towards a flattening vertical meridian (Zuguo, Yang and 

Zhang, 2006).  The surface irregularity has been found to increase with age (Goto et 

al., 2001).  However, evidence from a database of video-keratoscopic topography 

reported no significant differences in surface irregularity of subjects of different ages 

or gender.  Over half of the subjects were white European. 

 

Eyelid pressure has been shown to cause ‘with-the-rule’ astigmatism (Wilson, Bell 

and Chotai, 1982).  The changes in corneal elevation caused by blinking have been 

investigated using difference maps of before and after blink. A recent study 

measured changes in topography during blinking in different gaze positions.  It 

showed eyelid pressure is dependent on gaze, and topographic changes across the 

cornea define a characteristic wave-like pattern.  The average changes in amplitude 

are 1.4-2.4µm (Shaw et al., 2008).  Forceful eyelid rubbing is another significant 

influence on dynamic topographic changes that affect the cornea.  Firm application 

of digital forces can increase intraocular pressure up to 4 times that of the average 

open eye intraocular pressure (McMonnies and Boneham, 2007). Eyelid squeeze 

blinking over the corneal surface can increase intraocular pressure up to 110mmHg. 

These measurements were made by direct methods using 23 gauge needle 

penetrating the right globe of a conscious human subject, which was in turn 

connected to a strain gauge. The pressure recordings were made on a calibrated 

visicorder indicating a cycle of intraocular pressure changes following the voluntary 

lid squeezing action by the subject (Coleman and Trokel, 1969). 
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Topography varies with changes in tear film quality and corneal thickness.  The tear 

film forms a smooth and regular surface, but between blinking this stability is 

jeopardised if the tear film breaks-up.  As a consequence, both the surface regularity 

index and the surface asphericity index were found to significantly alter if a 

significant pause in blinking was evaluated (Németh, Erdélyi and Csákány, 2001). 

Increased corneal hydration causes swelling and overall thickness increases.  

Results of a study using video-keratoscopy to measure four stages of hydration in 

eye-bank eyes have indicated central and peripheral corneal steepening (Ousley and 

Terry, 1996). 

 

Hormone levels in females vary with the menstrual cycle.  Estrogens have an effect 

on tissue hydration, with higher levels associated with increased water retention.  

Some evidence suggests that changes in topography occur during the cycle (Kiely, 

Carney and Smith, 1983). 

 

1.3.3 Scleral topography 

The limbus is a poorly-defined junction mostly seen as a continuous aspheric curve 

joining cornea to sclera (Pullum, 2007). The mathematical relationship between the 

cornea and sclera is not well understood.  The normal scleral contour is not spherical 

and varies significantly according to quadrant and distance from the visual axis 

(Marriott, 1966). The diagrams below (Fig 1.11) show shadow photographs of ocular 

impressions in horizontal (180°) and vertical (90°) cross-sections of a normal eye.  

These show that the temporal sclera is steeper and offset temporally, whilst the 

nasal sector is the flattest.  Many scleras have been observed to be torroidal in 

shape (Pullum, 2007). 
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Figure 1.11: Shadow photographs showing anterior ocular surface contour of ocular 

impressions.  These are profiles of 180° (nasal-temporal) (left) and 90° (superior-inferior) 

(right) (Pullum, 2007). 

 

A method of measuring scleral curvature using a Marcher Scheimpflug camera 

(Case 2000 series, Marcher Diagnostics, Hereford, England) has been reported by 

the Nuffield Ophthalmology Laboratory at Oxford University.  The objective was to 

calculate the exposed surface area of an open eye for tear film studies.  The authors 

determined that the relationship between the corneal and scleral curvature was not 

constant and varied according to the profile orientation.  The exposed interpalpebral 

temporal scleral area was flatter than the mean horizontal equatorial value of 

12.5mm (Tiffany, Grande and Todd, 2004). The investigators altered the subject’s 

fixation, to ensure the maximum area of surface exposure.  Potentially this system 

could be adapted for surveying the anterior surface topography in its entirety, if an 

adequate referencing system and a protocol for curve fitting could be established. 

 

Currently there is only one imaging technique capable of representing the limbus and 

anterior scleral contour for use in the clinical environment.  This is anterior segment 

ocular coherence tomography (AS-OCT) imaging, described in detail in Chapter 2.  

AS-OCT imaging has facilitated improvements in scleral lens fitting selection and 

modifications, by in-vivo assessment of edge profiles, as well as apical and limbal 

clearance (Gemoules, 2008). In addition, valuable characterization of ocular surface 

architecture beyond the cornea has improved the prediction of soft contact lens 

fitting (Hall et al., 2011). 
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Literature reviews have revealed no system that offers a 3-dimensional 

representation of the entire AOS. 

 

1.4 Anterior ocular surface function and biomechanics 

The shape assumed by the cornea is most likely a combination of distension of the 

tissue by intraocular pressure (McMonnies and Schief, 2006) and the precise 

distribution of the structural components.  Reverse geometry contact lenses have 

been used to subtly mould the cornea (termed accelerated orthokeratology) to 

enable low myopes the benefit of temporary refractive correction during the day 

without any optical device.  Essentially this treatment changes the epithelial 

structure, flattening the cells so that the central corneal thickness reduces, peripheral 

thickness increases and the topographic profile becomes flatter in the central 6mm 

zone (Cheah et al., 2008). The cornea returns to its original shape and may be 

protecting the eye from micro volumetric changes (Johnson et al., 2007); this has 

implications for measurement of intraocular pressure. 

 

Central corneal thickness has been found to be a biomarker for the overall structural 

thickness of the globe, and thin values of central corneal thickness have been linked 

to an increased prevalence of glaucomatous damage (Pakravan et al., 2007). The 

tensile strength is very low and is unevenly distributed through the corneal thickness, 

the lamellae can easily be teased apart (Meek, 2008) and is related to corneal 

hydration.  As with the sclera, the corneal tissue is viscoelastic.  Under prolonged 

stress the tissue will creep, that is slowly change shape or permanently deform; this 

may influence the tissue’s behaviour under abnormal conditions like ectasia. 

 

The sclera has a surface area of 16.3±1.8cm2 calculated by computerised tracing 

methods, or 17.0±1.5cm2 by volume displacement (Doughty and Zaman, 2000). 

Measurement of the surface area of the cornea is 1.3cm2, or one-fourteenth of the 

total area of the globe (Maurice, 1969). The sclera has a multi-faceted role, providing 

a highly-resistant surface for the attachment of extra-ocular muscle insertions and 

protecting the intraocular structures.  Its opaque quality prevents degradation of the 

retinal image by reducing internal light scattering.  The resilience of the tissue 

enables the eye to move with only minor amounts of globe deformation or distortion.  
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It is this property that enables the regulation of intraocular pressure and helps to 

maintain the overall shape of the globe.  The sclera is a viscoelastic structure which 

exhibits a two-phase response when deformed.  Initially, a rapid but brief lengthening 

of the tissue followed by a slow stretching in the semi-fluid phase.  The sclera is less 

extensible in the anterior and equatorial regions (Meek, 2008). When pressure is 

applied to the tissue it gradually deforms, and when this pressure is removed, the 

tissue recovers, but not to its initial conformation, which may be due to scleral creep 

(Siegwart and Norton, 1999). 
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Chapter 2 

Current methods of measuring anterior ocular surface contour 

The previous chapter reviewed the area of interest and the relevance of wide-field 

topography in the current clinical setting and reasons for pursuing this line of 

investigation.  This chapter examines the currently available technologies for anterior 

ocular surface data collection and their suitability to wide-field topography. 

 

To optimise the collection of the surface data a number of requirements must be 

met: 

 The procedure should be non-invasive, to minimise the discomfort and effects 

on the ocular integrity of the subject. 

 The data collection should be fast (up to 3-5 seconds), to ensure any motion 

artefact does not obscure the image, although this cannot be completely 

eliminated due to fine ocular movements used during fixation. 

 The area of interest should encompass the entire anterior ocular surface as 

far as the extra-ocular muscle insertions. 

 The number of data points collected for the surface should be in the order of 

170,000 or more to provide sufficient data to render 3-D topographic virtual 

representations of the surface. 

 No external force should be used to distort or deform the surface in question – 

this may not be possible if the eyelids occlude the peripheral superior and 

inferior regions of interest. 

 Repeatability of 0.25D or 0.05mm, or less, in line with current technologies 

that measure corneal contour. 

 True and accurate representation of curvature – this may not be possible 

given the mathematical constraints of multiple-curved surface descriptors.  

Best-fit curve-fitting with 4th order (or higher) polynomial functions may be 

required.
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2.1 Comparison of reflections 

In a pamphlet entitled “Oculus; hoc est, fundamentum opticum ”, Christoph Scheiner 

described a system of measuring corneal curvature based on observing the image of 

a window reflected on the corneal surface and matching its size, by eye, with the 

window’s reflection in a series of convex mirrors (glass spheres).  This is thought to 

be the first documented evidence of the systematic measurement of the corneal 

shape (Scheiner, 1619). 

 

Modern day ophthalmometers use the same principle to measure the radius of 

curvature of the central cornea.  The image of an object of known size is reflected at 

a fixed viewing distance.  The image size is a function of the radius of curvature of 

the reflecting surface, the pre-corneal tear film.  Measuring the size of the image is 

achieved by doubling the image through a prism and lining the base of one image 

with the top of the other – this displacement equals exactly the height of the image 

(Esperjesi and Wolffsohn, 2007). With the height of the image now known, along with 

the viewing distance and the object size, the curvature of the reflecting surface can 

be calculated. 

 

 

 

Figure 2.1: The doubling principle: using a prism travelling along the instrument axis (from 

left to right), V’2 is the upper extremity of the doubled image.  The diagrams (a), (b) and (c) 

show the how the prism is used to align the images to and so provide a measure of the 

displacement (Rabbetts, 1998a). 
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There are two doubling systems used in modern keratometric instruments: 

 

Fixed doubling: where the amount of doubling is pre-determined and the mire is 

moved until the image produced is the pre-determined height.  An example of this 

design; the Javal-Schiötz keratometer uses a Wollaston bi-prism to achieve this. 

 

Variable doubling: where the object is set to a pre-determined size and the doubling 

system is varied until the image is displaced through its exact height.  The two 

meridians can be measured simultaneously.  This is used in the Bausch and Lomb 

(Fig 2.3), Zeiss CL110, Rodenstock and Zeiss Ophthalmometers (Rabbetts, 1998b) 

 

In measuring the anterior corneal radius of curvature, the power of the front surface 

can also be calculated; assuming the refractive index of the cornea is 1.3375.  The 

two-position instruments (e.g. Bausch and Lomb Keratometer) with circular mires 

(Fig 2.2) have the added advantage of the observer assessing changes of mire 

quality relating to corneal distortion, tear film instability and contact lens flexure (Hirji, 

Patel and Challender, 1989). 

 

 

 

Figure 2.2: Bausch and Lomb Keratometer mires. The images must be aligned in both 

meridians (Esperjesi and Wolffsohn, 2007) 
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Figure 2.3: The Bausch and Lomb Keratometer. 

 

The one-position instruments (e.g. Javal-Schiötz Keratometer) only assess corneal 

curvature in one meridian, so the instrument must be rotated to a second principal 

meridian, which may not be perpendicular if the astigmatism is not regular. The 

Javal-Schiötz mires are shown below (Fig 2.4). 

 

 

 

Figure 2.4: The Javal-Schiötz Keratometer mires: the steps on the green mire represent 1 

dioptre intervals of astigmatism. 
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Figure 2.5: The Javal-Schiötz Keratometer. 

 

Errors in keratometric measurement of the cornea include: 

 Assumptions that the area approximately 1-1.7mm from the corneal apex 

(point of maximum curvature or shortest radius), which is used to reflect the 

mires, is of the same curvature as the apex. 

 Inaccuracies of the paraxial ray theory; mainly spherical aberration 

 Inadequate calibration and alignment 

 Errors of focusing 

 Proximal accommodation of the observer 

 Poor reflected image quality caused by corneal distortion, disrupted tear film 

or poor patient fixation. 
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Keratometry is widely used as a method of providing a curvature to initiate the fitting 

of contact lenses and to assist in the power calculation for intraocular lens choice.  

However, this is a poor guide to any area beyond the central 3.0-3.5mm of the 

cornea.  This is because the reflection observed when using a keratometer is the first 

Purkinje image, which is formed behind the cornea.  The slope of the surface is 

measured at 2 separate perpendicular pairs of points along each meridian.  The 

slope cannot be converted into height without further measurements (Corbett et al., 

1999a). 

 

 

 

Figure 2.6: The keratometer’s view of the cornea.  U and V are the central points on the 

inner edge of the mires.  The incident and reflected ray paths from U and V lie in a horizontal 

plane containing the points of incidence YL and YR (Bennett and Rabbetts, 1991). 

 

Keratometry measurements are highly accurate and reproducible for regular sphero-

cylindrical surfaces, such as the 2.6-3.7mm annulus centred on the corneal apex 

(Sunderraj, 1992). However, for irregular corneal shapes, 4 slope reference points 
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provide insufficient information for the planning of surgical procedures or design of 

close fitting contact lenses. 

 

Some keratometers have been re-designed to measure peripheral as well as central 

corneal curvature.  Conventional instruments can be fitted with attachments for 

topographic use. For example, a modified Bausch and Lomb Keratometer mire has 

been used to increase the zone of measurement to 6mm and to calculate the corneal 

asphericity (Douthwaite and Sheridan, 1989). 

 

2.2 Keratoscopy and Video-keratoscopy 

In its simplest form, keratoscopy is a technique used to investigate the regularity of 

corneal contour by visual inspection of a reflected image over the central 4-6mm.  

The Placido disc, introduced in 1880 (Fig 2.7), consists of a series of concentric 

black and white rings on a flat paddle held in front of the subject.  A light was placed 

above the subject’s head, which shone onto the disc and corneal reflections of the 

black and white rings were observed through a central aperture, with or without a 

magnifying lens (Horner, Salmon and Soni, 2006). 

 

 

 

Figure 2.7: Placido’s Disc 

 

This technique provides a gross assessment of the corneal shape when viewed 

directly.  By photographing these reflected images, mathematical analysis can 
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determine the curvature of the cornea at different points across its surface, thus 

providing a topographic map.  This is a challenging mathematical problem which is 

rarely carried out manually, therefore until the mid-1970’s, corneal shape analysis 

was principally carried out using the keratometer for precise central measurement, or 

by Placido disc subjective observation for gross assessment. 

 

Photo-keratoscopy used polaroid photographs of the reflected corneal rings and the 

radius of curvature was identified from the resultant image using a comparator to 

magnify this image to equal a known standard set of rings.  The amount of 

magnification required to match the standard ring set was directly related to the 

radius of curvature (Rowsey, Reynolds and Brown, 1981). With advances in 

electronics and computing, the possibility of reconstructing a virtual corneal surface 

became more plausible.  The keratoscope rings were recorded electronically, and 

programmed mathematical algorithms extrapolated the measurements and 

processed the data to provide graphical representations.  The images could be 

analysed automatically and quickly in a clinical environment.  This technique was 

referred to as video-keratography, and the new devices known as video-

keratoscopes.  One of the first such instruments to be available commercially was 

the Wesley-Jessen Photo-Electronic Keratoscope (PEK) (Bibby, 1976). 

 

The video-keratoscopy system works by capturing a video image of the reflected 

rings and measuring the angular size of a series of points on the rings.  A polar co-

ordinate system is imposed on the video image and each point is specified by both 

its distance from the instrument axis and its meridian.  The image is reconstructed 

point-by-point and each point is assigned a curvature value (Clark, 1973). 
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The images in Figure 2.8 show the locations of the surface data collected using 

keratometric methods and the positioning of the target mires for the photo- and 

video-keratoscopes. 

 

 

 

Figure 2.8: Diagram to show the location of corneal measurements using keratometer mires, 

photo-keratoscope (12 rings) and computer-assisted video-keratoscope (25 rings) (Corbett, 

Rosen and O'Brart, 1999d) 

 

Marked astigmatism causes the rings to appear elliptical, while structural 

abnormalities of the cornea cause distorted or asymmetrical reflections. 

 

a)       b)    

 

Figure 2.9: Distortions to the reflected video-keratoscopy mires caused by (a) severe corneal 

ectasia, and (b) pterigium (Corbett, Rosen and O'Brart, 1999b) 
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There are currently a number of systems that are commercially available that have 

similar benefits and limitations.  In 1995, the Orbscan (Orbtek, Bausch and Lomb 

Inc, NY) became available.  This instrument used a novel technique of a scanning-

slit; a parallelepiped beam to image the anterior and posterior corneal surfaces, and 

the anterior surface of the lens and the iris.  The system first detects the anterior 

edge of each slit.  Triangulation is then required to map complex surfaces like the 

anterior eye and this is achieved by direct methods, in which a ray intersects with the 

calibrated outer surface of the slit beam providing vector co-ordinates x, y and z.  

The short focal length camera (169.55mm), when aligned, is focused most sharply at 

a plane 1mm behind the corneal apex when collecting the images of the slit scans 

(Cairns and McGhee, 2005). This represents a large potential source of error in 

measuring surgical or pathologically altered corneas. 

 

In 1999, the Orbscan II (Orbtek, Bausch and Lomb Inc, NY) was released, which 

incorporated a placido disc system in addition to the slit-scan technology (Fig 2.10).  

The placido disc is used to calculate the surface curvature of the cornea and the slit-

scanning technique is used to measure anterior segment surface geometry, and so 

provide the absolute surface elevation of the optical surfaces. 

 

During image acquisition the placido disc is illuminated and the reflected concentric 

mires stored as a black and white image.  Then images of the 40 slits, 12.50mm high 

and 0.3mm wide, are collected from a light source projected onto the cornea at an 

angle of 45°, 20 slits from the right and 20 from the left.  The back-scattered light is 

captured by a digital video camera, which records 2-dimensional images.  The image 

of the placido disc is found behind the camera plane, in the posterior cornea 

(Applegate and Howland, 1995a). 
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Figure 2.10: The Orbscan IIz (Orbtek Inc, Salt Lake City, UT) 

 

Analysing the placido disc reflection provides a normal to the anterior surface using 

the visual axis as reference.  Tangential topography can be extracted by adjacent 

data providing local curvature change.  A refractive index of 1.376 is used for 

calculating the local dioptric power of the cornea.  Displays of differences in height 

between the anterior surface and a floating best-fit sphere (BFS) are presented as 

colour coded maps (Fig 2.11), allowing small changes in surface shape to become 

more obvious to the observer.  The anterior ocular surface is described using best-fit 

polynomial functions described in a 3-dimensional Cartesian co-ordinate system 

(Cairns, Collins and McGhee, 2003).  The graphical representation on the top left of 

the captured display shows the tangential anterior topography related to the 

reference sphere.  A database of normal human corneal ‘patterns’ (Rabinowitz et al., 

1996) is used to provide normal surface elevation patterns and establish a baseline 

for comparative studies involving abnormal ocular conditions. 
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Figure 2.11: Diagram to illustrate the layout of the graphical representation (Quad map) of 

the anterior ocular surface, as depicted by Orbscan IIz technology. 

 

Using specially-designed test surfaces, the Orbscan II had been found to be 

extremely accurate (Cairns et al., 2002). However, this accuracy does not easily 

translate to the human cornea.  Indeed, no system that adequately models the optic 

section of the cornea has been discovered (Cairns et al., 2002). If the inherent 

inaccuracies of the placido-based systems are taken into consideration, then large 

(up to 200µm), but repeatable, errors (±10µm) in measurements are noted, which 

become more variable towards the periphery.  Paraxial assumptions, that ray 

bundles (beyond the central 3mm zone) are always incident normally to the surface, 

increasingly fail, and the likelihood of the true surface being represented by relative 

elevation maps is doubtful. 

 

A study comparing Javal-Schiötz keratometry measurements with Orbscan II 

simulated keratometry measurements on a group of 15 normal subjects found the 

mean keratometry measurements to be steeper by 0.16mm than the Orbscan 

results.  This difference was statistically significant (p<0.001) (Leyland, 2004).  

Hence, in the absence of a ‘gold standard’ to define true anterior ocular surface 
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topography, clinically direct comparison methods of quantitative curvature 

differences are the only robust usage of the Orbscan IIz system to study anterior 

corneal topography.  However, investigation of AOS topography is limited by the 

need for a good reflection from the smooth and transparent cornea, and is so 

confined to the central 8-9mm, meaning that it cannot be extended to beyond the 

corneo-limbal transition. 

 

The most recent advances in video-keratoscopy are seen in three-dimensional 

stereo-topography.  The AstraMax (LaserSight Technologies Inc., Winter Park, FL) is 

a multi-dimensional corneal imaging system.  The technology utilises a highly-

detailed re-designed placido disc with three cameras, rather than the one used in 

conventional video-keratoscopy systems (Wang, Hill and Swartz, 2006). The 

advantages are: 

 Overlay of reflective grid and 3 cameras creates a true 3-D image 

 35,000 data points are collected in a single shot 

 Data acquisition time is as little as 0.2 seconds 

 Data is captured simultaneously by all 3 cameras 

 

This system, however, only provides data for the central 8mm of the cornea, and the 

technology has limited use for the assessment of wide-field topography due to its 

reliance on smooth, transparent media for reflective imaging. 

 

2.3 Intra-operative raster photogrammetry 

Aerial photography used for mapping the earth’s surface uses a well-documented 

system called photogrammetry.  Images are taken from two or more different 

positions and common points on each image are identified.  Mathematical 

triangulation then provides 3-dimensional co-ordinates for each point.  This 

technique has been adapted to measure the corneal surface and was used in the 

mid-1990s, when planned refractive surgery required an accurate guide to the true 

contours of the anterior corneal surface to help predict the outcome of the 

procedures. 
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The PAR corneal topography system (CTS) (Par Microsystems Corporation, New 

Hartford, NY) was a computer-driven imaging system that used close-range photo-

grammetry (raster-photo-grammetry) by projecting a grid onto the cornea to produce 

a topographic map of the surface.  The system could be adapted to measure across 

a 12mm diameter area of the anterior ocular surface, which allowed measurement 

beyond the corneo-limbal junction.  It was initially developed in 1988 (Warnicki et al., 

1988) using a 2-dimensional grid with a point density spacing of 0.22mm, providing 

approximately 1700 data points on the cornea.  The system did not require a smooth 

reflective surface or precise spatial alignment, and to enhance the quality of the grid 

image, the tear film was stained using topical fluorescein.  The grid was then 

projected through a cobalt blue excitation filter and viewed through a yellow barrier 

filter to improve visibility. 

 

The topographic maps were presented in the same way as standard video-

keratoscopy using colour contours (Fig 2.12) and including the relative elevation 

derived from best-fit spheres. 

 

 

 

Figure 2.12: An elevation map from the now obsolete PAR CT system (Swartz et al., 2006) 
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The measurement of the central 8mm zone of the cornea was repeatable to within 

±0.07D (Belin et al., 1992) but the standard error of the measurements was 

significantly more than the competing placido disc based systems and so the PAR 

CTS was discontinued.  The Orbscan II was able to provide a multitude of 

descriptors, including corneal thickness and posterior corneal curvature, which was 

viewed by industry as having better potential.  So while this system has the potential 

for providing non-invasive, fast, wide-field anterior ocular surface topography to meet 

the requirements of this work, the technology is unfortunately not available. 

2.4 Other projection-based systems 

These systems measure the anterior ocular surface in terms of elevation or height 

above a reference plane using images projected onto the cornea.  A number of 

systems have been reported in the literature including holographic interferometry and 

Moiré interferometry, but which are no longer commercially available. 

 

In contrast to systems using ring reflections, these 2 technologies use reflected 

interference patterns generated on the corneal surface by 2 parallel sine-wave 

gratings (Moire interference), or 2 coherent beams or wave-fronts (laser 

interference).  A large number of data points can be collected from analysis of the 

interference pattern.  This can only be carried out on transparent corneas.  The 

contours on the corneal maps are lines of equal height, rather than equal slope.  Due 

to the complexity of the normal corneal shape, measurements of height will map its 

true shape.  This technology can even map the entire cornea and limbus to 

resolutions in the order of 2-5µm (Corbett et al., 1999a). The reconstruction of the 

surface is not biased by alignment with the visual axis or corneal apex, therefore the 

accuracy of shape is uniform across the whole surface. 

 

It could be speculated that, as this technology was tested and developed in the early 

to mid-1990s, the limiting factor for making it commercially viable then was the 

available computer processing power.  A large amount of data is generated from 

each image and instantaneous topography is a requirement for the clinical setting.  

This may be revisited in light of the more recent developments in wave-front 

aberration analysis and the desire to understand pathology of the eye in-vivo. 
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2.5 Scheimpflug Photography 

Theodor Scheimpflug was an aerial photographer who found that photographs taken 

from a hot air balloon or kite suffered from areas of defocus due to the camera plane 

not coinciding with the image plane.  Subsequently, he filed a patent with the British 

Patent Office in 1904 describing an instrument for the correction of perspective 

distortion in aerial photographs.  Aerial images from a balloon or a satellite have a 

great commonality with images of the cornea.  The objects for both are curved and 

3-dimensional, and they need to be depicted without distortion. 

 

The image captured by a camera is focussed by adjusting the lens or lens system to 

focus on the object of interest.  Flat or planar objects are easily imaged as the 

camera and image plane can be adjusted to coincide.  The photograph provides a 2-

dimensional representation (Fig 2.13).  A 3-dimensional object is a more complex 

challenge: to image the object sharply depends on the depth of focus of the system.  

This is controlled by the aperture size and the focal length of the lens or lens system 

used.  The aperture that is used for Scheimpflug imaging is a slit-beam, and the lens 

system is aligned according to the perspective correction technique described by 

Scheimpflug (Fig 2.14). 

 

 

 

Figure 2.13: Image and object planes align when collecting images with conventional 

photographic methods. 
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The lens focusing the image must be placed on the line of intersection (Scheimpflug 

Line) to artificially extend the depth of focus and ensure the image of the curved 

surface is focused simultaneously. 

 

 

 

Figure 2.14: The Scheimpflug principle. The lens must be placed at the line of intersection to 

increase the depth of focus. 

 

The principle has been used in ophthalmic imaging for many years in the Nidek EAS-

1000 and Topcon SL-45.  However, a more recent commercially available model is 

the Pentacam (Oculus Optiikgeräte GmbH, Wetzlar, Germany), which has been 

specifically designed to image the anterior segment of the eye (Fig 2.15).  The 

instrument rotates about the visual axis providing up to 50 images in 2-3 seconds, 

while illuminating the eye using a monochromatic slit-light source (blue LED at 

475nm) to produce an optic section.  Each image has 500 elevation data points, so 

generating up to 25,000 point for each surface.  The system is able to make 

appropriate adjustments to correct unwanted eye movements using a second 

camera, however the exact mechanism for this remains unclear (Swartz, Marten and 

Wang, 2007). 
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Figure 2.15: Pentacam (Oculus Optiikgerate GmbH, Wetzar Germany) 

 

Elevation-based topography has been modernised for the Pentacam using the 

principles applied to the topographic output of the PAR CTS described above (Belin 

et al., 1995). The anterior surface data is used to construct a 3-dimensional 

representation, which can be compared to a series of reference surfaces: 

 Best-fit sphere 

 Best-fit ellipsoid 

 Best-fit toric ellipsoid 

 

It is an assumption that the reference surface, the regular shape that is chosen by 

the operator, is a sensible approximation of the normal cornea.  The reference 

surface provides a method of representing subtle changes in elevation.  In the past, 

investigators have attempted to compare individual corneas to an average normal 

shape (Belin et al., 1992). However, there is a large variation in corneal shape and 

this average was not thought to present a clinically useful reference surface.  In 

practice, the positioning and alignment of the best-fit sphere (BFS) is influenced by 

any surface distortion of the cornea. 
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The software for the Pentacam (Belin/Ambrosio Enhanced Ectasia option) is 

designed to increase the sensitivity to ectatic changes by finding the 4mm optic zone 

centred on the thinnest portion of the cornea and exclude this from the reference 

shape calculation.  In this way, the radius of curvature of the BFS is not affected by 

any protrusion (i.e. not reduced).  This enhanced BFS uses all the data in the 8mm 

central area of the cornea, excluding the 4mm zone.  Using this enhanced BFS, the 

normal corneal elevation differences are minimally affected, however any protrusions 

or cones are more pronounced. 

 

The default Pentacam display shows standard BFS anterior surface elevation maps, 

giving the radius of curvature for both anterior and posterior corneal surfaces, and 

the position relative to the float.  The maps on the middle of the display are exclusion 

maps, showing elevation differences using enhanced BFS, and finally the lower 

maps are the difference between the standard and enhanced BSF elevation (Belin 

and Khachikian, 2008). 

 

The Pentacam system can also be used to image the anterior chamber and the 

density and dimensions of the crystalline lens.  The system incorporates an optical 

correction factor to provide accurate topographic information.  The precise 

mechanism for this has not been published.  A recent study reports the anterior 

surface repeatability of ±0.28D in a group of 35 normal volunteers (Shankar et al., 

2008) 

 

2.6 Very-high definition ultrasonography 

Ultrasound technology is more familiarly used in the medical field for antenatal care, 

but it is also important for ocular imaging of the globe.  The ultrasonic systems used 

rely on high frequency sonic pulses generated by piezoelectric crystals that assess 

the time taken between the emission of an acoustic signal from the crystal and its 

return to the crystal, when reflected from ocular tissues of differing sonic refractive 

indices, to build up a picture of the ocular structures (Wolffsohn, 2008). Accurate 

anatomical dimensions and locations are required when planning surgery, as well as 

investigating ocular pathology. 
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In 2002, a very-high-frequency (VHF) digital B-scan system became available from 

Ultralink (LLC Florida, USA).  This arc scanner uses sterile normal saline at 33˚C as 

the acoustic coupling medium between the eye and the transducer.  The patient’s 

head is placed on a chin-rest with their torso bent at a 45° angle, and the test eye 

fitted with an eyecup that seals the saline-filled scanning compartment.  A broad-

band 50MHz VHF US lithium niobate transducer (bandwidth 10-60MHz) sweeps in a 

reverse arc, high-precision mechanism to collect the images.  The scan sweep is 

designed to follow the contours of the cornea and proprietary software transforms 

the data with a digital signal-to-noise ratio optimiser.  The images collected can be 

displayed on screen as a profile as shown in Figure 2.16. 

 

 

 

Figure 2.16: B-Scan anterior segment profile from Artemis 2 VHF ultrasound system (Pinero, 

Belen Plaza and Alio, 2008). 

 

Studies are still underway to determine the accuracy of the surface reproducibility 

and the accuracy of anterior ocular surface contour (Reinstein et al., 2006). It is 

possible that the trajectory of the ultrasonic beam, if not perpendicular to the surface, 

could produce distortion and warpage in the refraction of the beam, and thus in the 

image collected.  The angle of incidence is reported to be kept at a maximum of ±10° 

of the surface by virtue of the arc scan motion (Reinstein et al., 2006).  The system is 

designed to ensure that the refractive index of the acoustic coupling medium is as 

close to that of the cornea as possible (n=1.307), however it is likely that this small 
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difference may also cause inaccuracies of curvature, which would exclude it from 

feasible use in this study. 

2.7 Anterior segment ocular coherence tomography 

Ocular coherence tomography (OCT) is used as standard clinical practice for the 

investigation and monitoring of retinal pathology and abnormality.  Ultra-high 

resolution imaging offers in-vivo real-time imaging of 3-dimensional transverse 

sections of the retina.  The resolution is good enough to observe individual cell 

structure and function (Drexler and Fujimoto, 2008). 

 

OCT is an extension of low-coherence reflectometry, and the heart of the system is a 

fibre-optic Michaelson interferometer, which is illuminated by low-coherence light 

from a super-luminescent diode.  Sample reflections are combined with reflections 

from a reference mirror.  The amplitude and delays of the signal caused by changes 

in the tissue density and boundary reflectivity are measured by scanning the 

reference mirror position and recording the amplitude of the interferometric signal at 

the same time.  The longitudinal delay of sample reflections can be determined to 

high resolution (Huang et al., 1991). 

 

OCT technology was used to scan the anterior segment by investigators as early as 

2000 using the available retinal scanners (Bechmann et al., 2001). However, these 

instruments had several design flaws; retinal scanners were too slow to map the 

cornea (400 axial scans per second), motion artefacts distorted the surface contour, 

and the laser wavelength (roughly 830nm) scattered heavily in the opaque scleral 

tissue.  By using longer wavelengths of 1310nm in the AS-OCT Visante™, the 

intensity could be increased without exceeding the safety eye exposure limits, and 

hence the scanning could be 20 times faster (ANSI, 2000). A speed of 4000 axial 

scans per second was demonstrated (Radhakrishnan et al., 2001). The final hurdle 

was to decide on scan geometry (Fig 2.17), which was found to offer the best quality 

image if it was carried out in a rectangular fashion (Huang and Izatt, 2008). 
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Figure 2.17: Diagram to show different scan geometries (Huang, Li and Tang, 2008). 

 

Using this method of scanning, a bright specular reflection offers a central landmark 

for registration (the highest point of corneal elevation when aligning the visual axis 

with the target).  With the standard software, the resolution is approximately 18µm 

axially and 60µm transversely (Baïkoff, 2006). There is a certain amount of curvature 

distortion that occurs due to the refraction of the A-scan at the air-tear interface and 

subsequent increase in refractive index of the cornea.  The image below (Fig 2.18) 

shows the screen representation of the cornea. 

 

 

 

Figure 2.18: Transverse section through the cornea using AS-OCT Visante scanning. 
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Huang et al have developed a ‘de-warping’ algorithm using Fermat’s principle, to 

correct the beam deflection and transform the optical path length to the physical path 

length using accepted corneal refractive indices.  Curvature representation by the 

AS-OCT Visante™ has been further investigated by the Ophthalmic Research Unit 

at Aston University using spheres of known diameters.  A curvature correction factor 

has been calculated and applied to the central 10mm zone of the cornea (Dunne, 

Davies and Wolffsohn, 2007). 

 

The developers of the AS-OCT Visante™ system have combined OCT and placido 

disk technologies (in the Visante® Omni) in order to provide corneal topographic 

presentation and corneal power calculations.  Future work continues to increase the 

speed of the scanning to up to 115,000 axial scans per second (Oh et al., 2005) so 

that this can be done.  Scan depth would also need to be increased from the 3mm 

currently used for retinal imaging to 4mm for corneal mapping. 

 

The AS-OCT Visante ™ (Fig 2.19) has a 16mm by 6mm scan that can be single, 

dual or quad-line scans.  The scan orientation for quad scans can be altered in 5° 

intervals.  Each scan is centred around the specular reflection from the highest point 

of elevation, whilst aligning the visual axis with the fixation target.  The reproducibility 

of the anterior surface curvature is reported to be 0.75D or 0.15mm (Huang et al., 

2008) 

 

This technology provides a significant improvement to the currently available non-

invasive systems of anterior surface data collection.  It may be possible to use this 

system to collect anterior ocular surface data for this study, but some doubt has 

been cast over the reproducibility and accurate depiction of the corneal contour, 

related to current design limitations of the AS-OCT system. 
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Figure 2.19: AS-OCT Visante™ (Carl Zeiss, Meditec Inc., Dublin, CA) 

 

2.8 Nuclear Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) offers the opportunity to obtain 3-dimensional 

anatomical and volumetric information of the eye.  MRI also offers the possibility of 

capturing anterior ocular surface topography in a non-invasive manner with minimal 

risk to the subject (John, 2000). For ocular and orbital imaging, refinements have 

been made to improve the definition of the images collected (Obata et al., 2006), 

(Georgouli et al., 2008). The improvements, the use of specialised surface coils and 

systems to reduce motion artefacts, have enabled ophthalmologists and scientists to 

visualise fine structures within the eye, including the crystalline lens and its zonules 

(Georgouli et al., 2008) and to identify the containment structures of the globe, the 

corneo-scleral envelope (Detorakis et al., 2003) and the internal vitreous cavity 

(Singh, Logan and Gilmartin, 2006). 

 

The imaging process involves a strong magnetic field that aligns the nuclei of the 

hydrogen atoms found in the water of the body’s tissues.  Radio frequency (RF) 

fields are used to alter the alignment of these magnetised fields and cause the 

hydrogen nuclei to produce a rotating magnetic field detectable by the scanner.  
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Specially designed surface coils for emitting RF near to the eye enable high-

resolution images to be obtained (Schueler et al., 2003). 

 

 

 

Figure 2.20: Discovery MR750 3.0T (GE Healthcare, Buckinghamshire, UK) 

 

Separate slices of the eye and orbit are taken and these images can be re-

constructed into cross-sections or regions of anatomical interest.  Obata et al were 

able to obtain images using a synchronised blinking sequence of 1mm slices of the 

globe in axial section.  Profile sampling by collecting data from the edge of each slice 

and in between is limited by the resolution, how distinct the edges appear and the 

number of slices obtained. 

 

Images of normal tissues depend on the proton density of the structure, with high 

proton density producing intense signals, and by the power of the nuclear shield of 

the protons.  T1 and T2 are different types of image resulting from inherent tissue 

characteristics in response to different magnetic and RF fields applied.  Fat has 

loosely-bound water molecules that act as a weak shield, so in T1-weighted images 

fatty tissue has high signal intensity and characteristically is displayed as white (Fig 

2.21).  In T2-weighted images (Fig 2.22), high signal intensity is associated with free 

water, and this enables excellent discrimination of corneal oedema and the vitreous 



[Type text]  [Type text]  71 

 

in ocular images (Wirtschafter, Berman and McDonald, 1992), (Singh et al., 2006) 

T1-weighted images can be acquired with high-speed scanning and are best suited 

to delineating the anterior ocular surface contour (Georgouli et al., 2008). 

 

 

 

Figure 2.21: T1-weighed MRI image: using a protocol designed by Professor Krish Singh 

(CUBRIC, Cardiff University) showing the anatomical detail on a 3mm slice of the authors 

eye. 

 

Figure 2.22: T2-weighed Image of the two globes: Showing internal free water in the vitreous 

cavity (white is water), (courtesy of Professor Krish Singh (CUBRIC, Cardiff University)). 
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There are no studies yet that examine reproducibility of measurement of the anterior 

surface, although measurements of crystalline lens thickness using T1-weighted 

images showed excellent intersession repeatability for 2 subjects, mean lens 

thickness of 3.75 ±0.02mm [SEM] and 4.45 ±0.04mm [SEM] for 3 different scanning 

sessions with no significant difference between measurements (p< 0.001 for both 

subjects) (Koretz et al., 2004). 

 

The MRI representation of the eye is free of optical distortion and thus has the 

potential to permit visualisation of the entire anterior ocular surface in-situ, a unique 

advantage over other methods of data collection.  Surface accuracy can be 

enhanced using standard model phantom systems (Phillips, Medical Systems, Best, 

The Netherlands) (Obata et al., 2006). These provide a 3-dimensional intensity 

distribution to correct contrast distortion caused by variations in the surface coil 

sensitivity, because the effect of the radio frequency emitted from the coil is not 

uniform across the surface.  The speed of data collection may also be a confounding 

factor.  T1-weighed images may take up to 10 minutes to collect a series of slices 

depending on the scan protocol.  Subjects are expected to maintain steady fixation 

and remain still throughout the collection process.  Imaging of the anterior ocular 

surface is explored further in Chapter 4. 

 

2.9 Ocular impression taking 

Matching the shape of the ocular surface has been paramount to the successful 

manufacture and wearing of corneal and scleral contact lenses since they were first 

introduced in the late 1890s.  However, the origin of the concept for ocular 

impression extends further back than that to JFW Herschel in 1845, who suggested 

that ‘...an actual mould of the cornea might be taken and impressed on some 

transparent medium’.  In 1888, Adolf Eugen Fick was experimenting with rabbit eyes 

by making moulds of the cornea and constructing glass shells to fit these (Fick, 

1888). In the early 1900s, Carl Zeiss of Jena was also making glass contact lenses 

to correct vision using a grinding process, although the success of the system was 

limited by the short period of time patients could tolerate wearing these devices 

(Lamb and Sabell, 2007). 
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Josef Dallos, a physician at the Eye Clinic of the Royal Hungarian Peter Pazmany 

University investigated a number of materials for impression-taking in the early 

1930s.  He used a material called Negocoll (derived from seaweed) on a cadaver 

face and noted that the corneal surface was reproduced in a smooth and uniform 

fashion.  He used a wax-like material to prepare a positive cast and was convinced 

that this method was suitable for ophthalmic impressions (Lamb and Sabell, 2007). 

Later, Theodore Obrig also used Negocoll to produce corneal impressions using 

funnel-shaped blown glass shells.  These had a hollow handle, which he filled with 

cotton wool to stop the Negocoll liquid escaping.  The shells were marked on the 

surface with spots to distinguish right from left (red for right and blue for left).  These 

marks also indicated the location of the nasal canthus on an otherwise spherical 

shell.  The shells were further modified to include multiple perforations in the tray and 

the shape formed into an oval based on his observations of a large number of casts 

(Obrig, 1938). Modern impression trays are still designed in a similar fashion and are 

moulded from acrylic with perforations, hollow handles, and red and blue 

demarcations, although these now mark the 12 o’clock position (Fig 2.23).  The trays 

are oval and available in set of 6, 3 pairs of small, medium and large (Cantor and 

Nissel, Northamptonshire, UK). 

 

 

 

Figure 2.23: Modern acrylic impression trays in a set of six. 

 

Moulding of the anterior ocular surface contour is still used by a small number of 

practitioners to design and fit fluid-filled, sealed and fenestrated scleral lenses.  
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These lenses are indicated for virtually any complexity of corneo-scleral contour 

(Pullum, Whiting and Buckley, 2005). However, they are often considered the last 

resort when all other contact lens rehabilitation options fail (Segal et al., 2003). The 

process involves a skill rarely taught, but occasionally demonstrated, on 

undergraduate BSc Optometry courses.  The practice is therefore confined to 

hospital optometry and ophthalmology departments and a handful of specialist 

community practitioners. 

 

 

 

Figure 2.24: Modern ocular impression taking technique: The impression tray with material is 

shown in contact with the anterior ocular surface. 

 

The modern methods of impression-taking involve the use of addition-polymerising 

polyvinylsiloxane (Pullum, 2007) to form the shape of the complete surface including 

that covered by the eyelids by direct contact (Fig 2.24).  The effect of the bulk of the 

material and the tray on the surface contour is unknown.  The method is limited by its 

invasive nature, psychological barrier to the subject and the small range of 

impression trays available for use.  Chapter 6 describes the development of an 

improved system of impression topography data collection and a novel method of 

scanning the resultant cast to render a virtual 3-dimensional surface. 
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Summary Table: Potential methods for measuring wide-field anterior ocular surface contour 

 

Instrument or 
Technique 

Year Method of 
data collection

Area Accuracy 
 

Repeatability Advantages Limitations Data 
sampling 

Javal-Schiötz 
Keratometer 

1880 Reflection and 
image 
displacement 

Central 
cornea 
Up to 
3.5mm 
zone 

0.051mm 0.074mm or 
0.37DS 
vertically and 
horizontally 

Considered  
‘gold 
standard’ 
Non-invasive 

No peripheral 
measurements 
without 
excessive time 
usage 
No elevation 
 

4 per 
surface 

Orbscan IIz 1999 Placido disc 
reflections 
and slit-
scanning 
beam 

Up to 
5mm with 
slit-scan 
Up to 
9mm with 
placido 
disc 

0.20mm centrally 
(3.5mm zone) 
and 0.70mm 
peripherally 
compared to test 
surfaces 

0.05mm or 
0.25D 

Well 
established 
Fast (2 
seconds) 
Non-invasive 
 

No peripheral 
measurements
More accurate 
in central 3.5-
5.0mm zone 
 

9600 per 
surface 

AstraMax Prototype 
2007 

Modified 
placido disc 
grid and 
photographic 
triangulation 

10.00mm 
central 
zone 
Not yet 
published 

Not published Not 
published 

Very fast (0.2 
seconds) 
Large number 
of data points 
Non-invasive 

No peripheral 
measurements
No 
commercially 
available 
instrument 
 

35,000 per 
surface 
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Instrument or 
Technique 

Year Method of 
data collection

Area Accuracy 
 

Repeatability  Advantages Limitations Data 

sampling 

PAR Corneal 
topography 
system 
(PAR CTS) 

1988 2-dimensional 
grid reflection 
and 
fluorescein 
dye 
enhancement 
Raster-
stereography 

Up to 
12mm 
- just 
beyond 
the limbus

0.004mm ±0.07D or 
0.014mm 
(central 8mm 
zone)  
 

Does not 
require 
smooth 
reflective 
surface or 
precise 
spatial 
alignment 

No 
commercially 
available 
instrument 
Measurements 
limited to 
exposed eye 
surface 
Invasive – 
needs 
fluorescein to 
enhance 
image 
 

1700 per 
surface 

Maastricht 
Topographer 
 

1979 Moiré contour 
fringes 
observed 
when 2 
gratings 
superimposed 
on to 
fluorescein-
coated tear 
film 

Up to 
20mm in 
horizontal 
meridian 

0.0006mm 
centrally (10mm 
zone) 
0.023 mm 
peripherally (14-
19 mm zone) 

0.00003 mm 
centre and 
0.003 mm 
peripherally 

Fourier 
transform-
based 
reconstruction 
algorithm, not 
reliant on 
ocular 
alignment 

Measurements 
limited to 
exposed eye 
surface 
Invasive – 
needs 
fluorescein to 
enhance 
image 

170,000 
per 
surface 
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Instrument or 
Technique 

Year Method of 
data collection

Area Accuracy 
 

Repeatability  Advantages Limitations Data 
sampling 

Pentacam 2003 Scheimpflug 
photography, 
rotating slit-
beam 

Up to the 
limbus 
(approx 
10-11mm)

Not published ±0.14D or 
0.028mm 

Fast 
Can hold up 
eyelids 

Image 
distortion 
compensation 
(undisclosed) 
Sclera causes 
hyper-
reflectivity  
 

25,000 per 
surface for 
50 slit-
scan 
images 

Artemis 2  2002 Very high 
frequency 
digital 
ultrasound arc 
scanner 

Potentially 
beyond 
the limbus 
approx 
12mm 

Not published 
(0.005mm for 
thickness 
measurements) 

Not published Unknown Invasive, may 
deform the 
AOS 
No correction 
factor for 
acoustic 
distortion 
  

Not 
available  

AS-OCT 
Visante™ 

2005 Interference of 
coherent light 
(laser) 

Maximum 
16mm 

Approx  
0.018mm axially 

0.79D or 
0.158mm 
 

Fast (1-2 
seconds) 
Medium wide 
field 

Motion artefact 
(design 
limitation) 
Curvature 
correction 
factor 
No anatomical 
validation  
 

Not 
available 
but 
AutoCAD 
sampling 
from 40 
profiles  
100,000 
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Instrument or 
Technique 

Year Method of 
data collection

Area Accuracy 
 

Repeatability  Advantages Limitations Data 
sampling 

Discovery 
MR750 3.0T 
MRI scanner 

2003 Magnetic field 
and radio 
frequency 
field alignment

Complete 
globe, 
entire 
AOS 

Not published Approx 
0.018mm 
transversally 
on crystalline 
lens  

Non-invasive 
Provides 
complete 
AOS data 

Motion 
artefacts due 
to blinking 
Limited 
number of 
slices 
? Resolution 
Expensive 
 

Not 
available 
but 
AutoCAD 
sampling 
from 20 
profiles 
50,000 

Ocular 
impressions 
and cast 
scanning 
using Hyscan 
45c 
(CEP) 
 

2008 AOS 
impression, 
cast and 
scanning by 
active laser 
triangulation 

Entire 
AOS 

±0.001mm 
 

+0.008mm 
±0.02  
centrally 

Complete 
AOS 
Excellent data 
sampling 
source  

Compound 
error from 
multiple 
procedures 
±Compression 
Very labour 
intensive 
Invasive 
 

200,000+ 
per 
surface 
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This chapter has reviewed potential methods of acquiring morphometric data of the 

AOS aiming to establish a system of accurate and reliable data acquisition for the 

entire topographic profile in-vivo, represented as a virtual 3-dimensional model (see 

Summary Table). The following investigation will compare two common ocular 

topographic technologies with traditional keratometry. 
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Chapter 3 

Comparison of the Javal-Schiötz keratometer, Orbscan IIz and 

Pentacam to evaluate corneal topography 

 

Following on from the review of methods available for evaluation of the anterior 

ocular surface contour in Chapter 2, the next investigation explores the assumptions 

and compromises made by three instrument manufacturers in the absence of a 

definitive or anatomically accurate 3-dimensional reference surface. 

 

Ocular surface topography by specular reflection techniques and Scheimpflug 

imaging is commonly used in clinical practice to provide accurate and reliable 

measurements of the anterior corneal shape (ACS).  The challenge for modern 

instrument manufacturers is to design system algorithms that are able to convert the 

captured digital images into a keratometric analogue that compares favourably to the 

‘gold standard’, non-automated keratometry measurements.  Each company has 

derived its own algorithms based on several assumptions. The resulting topographic 

representations of the ACS are affected by the extent to which each manufacturer 

relies on each assumption and so the derived result may not provide an accurate 

description of the ‘true’ shape.  It also follows that the different instruments may also 

produce slightly different results in comparison to each other. 

 

Comparison of these methods has been undertaken previously by other authors 

investigating corneal thickness variation in which ACS is a vital component of the 

measurements (Buehl et al., 2006a). Results have shown that while central corneal 

thickness measurements are similar enough to be interchangeable (Bourges et al., 

2009), (Amano et al., 2006), (Kim et al., 2007), peripheral thickness measurements 

recorded at only a few positions (4 points, 1.5mm from the instrument axis) revealed 

differences of -2.7 to 7.5µm, along with poorer repeatability of the scan in the 

paracentral cornea (Buehl et al., 2006b).  It has been suggested that these 

differences could be attributed to acquisition or image processing analysis (Bourges 

et al., 2009). 
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A longitudinal study carried out using the Orbscan IIz and Pentacam to evaluate 

posterior corneal surface changes following refractive surgery found that the 

correlation between the machines was poor and variable (Kim et al., 2009), 

suggesting that representation of the ACS and image processing methodology could 

be improved. 

 

To date no studies have evaluated the relationship between ‘traditional’ keratometry 

and the ACS variability according to location of these two methods.  This is of value 

to pre-operative planning procedures prior to cataract and refractive surgery, fitting of 

contact lenses and monitoring topographic changes caused by ocular disease and 

trauma, which all require accurate and reliable morphometrics beyond the 

paracentral cornea. 

 

The main aim of this thesis is to investigate anterior ocular surface shape, and while 

these techniques are limited to the cornea surface due to their method of imaging 

(Chapter 2), the more advanced methods that will be used in the later chapters 

(Chapters 5-8) are not available to the common practitioner.  The first step must 

therefore be to investigate how two readily-available instruments compare, in order 

to establish a possible precedent for the later studies. 

 

3.2 Aims and Objectives 

This study aimed to compare the measurement of anterior corneal topography using 

three different instruments: Javal-Schiötz keratometer (OM-4, Topcon Instruments 

Ltd, Tokyo, Japan), Orbscan IIz (Bausch & Lomb, Orbtek Inc., Salt Lake City, UT) 

and Pentacam (Oculus Optiikgeneräte GmbH Wetzler, Germany) on a large normal 

population. 

 

The hypotheses proposed were: 

 Keratometry and keratometric analogues show excellent agreement between 

all 3 instruments within the central 3mm zone of the cornea. 
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 Axial curvature measurements compared between Orbscan IIz and Pentacam 

are significantly different and clinicians will need to be aware of such 

differences and alter their practice accordingly. 

 

3.3 Method 

3.3.1 Subjects 

Measurements from the right eyes only of 124 subjects were included in the study, 

(78 ♀ and 46 ♂), mean age of the cohort was 24.71±6.61 years [SD] (range 17.61 to 

42.55).  Ethical approval was obtained from the Cardiff University School of 

Optometry and Vision Sciences Ethics Committee.  All subjects were treated in 

accordance with the Tenets of the Declaration of Helsinki and each provided 

informed, written consent.  Volunteers were recruited from the staff and students of 

Cardiff University and subjects were excluded if they were pregnant or breastfeeding, 

had any ocular or systemic condition known to affect the structure or characteristics 

of the anterior ocular surface, were taking any medication known to affect the ocular 

surface, had worn rigid contact lenses in the preceding 6 weeks or soft lenses in the 

preceding 2 weeks and were not white European.  This ethnic bias was chosen 

because it has been shown that ethnicity affects ocular surface morphometrics 

(Matsuda et al., 1992). 

 

3.3.2 Experimental procedure 

All measurements were carried out during a single session by the same investigator.  

Measurements were carried out in the following order: 

1. Central keratometry using the Javal-Schiötz Topcon OM-4 keratometer (J-S); 

three readings were taken of each right eye and a mean value recorded. 

2. Corneal topography using the Pentacam (Pent);  The 3-D scan mode was 

used to record 25 images per second, with the system set to automatic 

release enabling automatic image acquisition.  Unreliable measurements 

were repeated until three satisfactory readings were recorded (see Chapter 

2). 
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3. Corneal topography using the Orbscan IIz (Orb);  This instrument uses slit-

scanning technology to project 40, 12.5 x 0.30 mm slit beams, 20 from the 

right and 20 from the left onto the corneal surface at a 45° to the instrument 

axis.  The operator triggered the acquisition sequence after appropriate 

alignment of the instrument mires clearly on the ACS (see Chapter 2). Three 

images of the right eye were taken and a mean value assigned. 

 

3.3.2.1 Measurements recorded for keratometry and keratometric analogues 

The Orb produces Sim-K values for the maximum and minimum curvature values 

along the principal meridians of the cornea at a diameter of 3.0 to 3.2 mm from the 

instrument axis (Srivannaboon et al., 2007).  Orb Sim-K values were recorded from 

the ‘quad-map’ output screen (Fig 3.1), with values designated in the same fashion 

as previously described. 

 

  

 

 

 

 

 

 

Figure 3.1: Sim-K (radius of curvature) values provided by the Orbscan II quad map display 

output screen 

 

Similarly, the Pentacam displays a Rh value for the horizontal radius of curvature 

and Rv for the vertical radius of curvature, with meridians determined on the 3mm 

‘ring’ of the cornea and with the two major meridians lying, by definition, at 90° to 

each other (Fig 3.2). 
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Figure 3.2: K-Values (radius of curvature) provided by the Pentacam overview display output 

screen. 

 

Readings of the J-S non-automated keratometer were taken for the principal 

meridians and designated either horizontal or vertical according to the rule that axes 

up to 45° either side of 180° were assigned to the horizontal analysis, and axes up to 

45° either side of 90° were assigned to the vertical analysis. 

 

Axial (sagittal) topographic profiles of Orb and Pent were sampled from the output 

screen at 0.5mm intervals using an overlay reference grid. The radii of curvature 

were analyzed in the horizontal and vertical meridians. The profiles were aligned 

according to the instrument axis (designated ‘Apex’) and divided into annuli or zones, 

units of 1mm from the apex (Fig 3.3). The cumulative mean radii of each zone were 

compared to the J-S keratometry value (used to describe the standard 3mm central 

corneal curvature) in an attempt to compare differences in region curvature variation. 
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Figure 3.3: Diagram to show the area of profile included in each zone of cumulative mean 

radius of curvature. 

 

 

3.3.2.2 Axial radius of curvature – profiles and zones 

The ‘traditional’ Javal-Schiötz keratometer measures the axial radius of curvature 

(Bennett and Rabbetts, 1991), which has been verified on aspheric surfaces with 

conic sections approximating the ACS (Douthwaite and Burek, 1995).  Therefore 

axial curvature was used for visual representation comparisons. 

 

Profiles of the axial topographic output across the corneal surface, in the horizontal 

and vertical meridians, were sampled from the Orbscan (Fig 3.4) and Pentacam 

display screens (Fig 3.5). 
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Figure 3.4: Orbscan IIz; Axial power keratometric output display (Scale bar set to radius of 

curvature). 

 

 

 

Figure 3.5: Pentacam; Sagittal curvature (Front) display output. 
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Hovering the cursor over a specific point on the screen, prompted a display of the 

corneal radius of curvature of that location.  Starting at the central point and moving 

either horizontally or vertically in 0.5mm steps, the axial radius of curvature profile 

was obtained.  To optimize the accuracy of cursor positioning, a transparent overlay 

was used, centred on the horizontal and vertical axis origin (0°H/0°V, designated 

‘Apex’).  This ensured precise and comparable (x,y) co-ordinates on each output-

display.  Data was collected for the complete display output, that is, up to 12mm in 

the horizontal and vertical meridians.  The limit of the profile was determined by the 

available data for each subject, which was limited by the reflective properties of the 

pre-ocular tear film and by the extremities of the vertical palpebral aperture. 

 

The data from the profiles was then aligned according to the instrument axis and 

divided into a series of annuli of 1mm steps from the apex (Fig 3.3).  A cumulative 

mean radius of curvature was calculated for each zone. 

 

3.3.3 Statistical analysis 

All data was collated with Excel 2007 (Microsoft®, Redmond, DC), and analyzed 

within SPSS v13 (SPSS Inc, Armonk, NY). Tests for normality were carried out and 

mean K-readings from the non-automated J-S keratometer were compared to Orb 

Sim-Ks and Pent K-values in the principal meridians, using analysis of variance 

(ANOVA) to examine the differences between methods. 

 

The Bland and Altman method (Bland and Altman, 1986) was used to assess the 

between-instrument agreement: J-S versus Orb, J-S versus Pent and Orb versus 

Pent.  This provided a more sophisticated method of comparison than correlation 

analysis as the plot provides a means with which to assess the magnitude of 

disagreement (error and bias), and reveals outliers and trends. 

 

For the cumulative mean radii of curvature calculated for each section of the 2-

dimensional ASC profile, the data was compared using a two-way between groups 

ANOVA with Bonferroni post-hoc testing.  The area of analysis was limited to 8mm 

horizontally and 4mm vertically, due to interference from the eyelids and eyelashes. 
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3.4 Results 

Horizontal profile 

Table 3.1 compares the mean radii of curvature values for conventional keratometry 

measurements in the horizontal meridian: J-S, Orb (‘Sim-K’) and Pent (‘K-Values’) 

and cumulative mean radii values for sections of corneal profile according to 

location. 

 

Table 3.1: Comparison of radius of curvature (mm) measures in the horizontal meridian: for 

keratometric analogues (second row), instrument axis (designated apex) and mean regional 

curvature allocated as zones up to 8mm using J-S, Orb and Pent. 

 

When comparing the keratometry measures between instruments, the Orb ‘Sim-K’ 

presents slightly steeper radii of curvature, 7.80 ±0.31mm [SD] than the J-S, 7.82 

±0.29mm [SD], although this was not statistically significant (p=0.072).  The Pent ‘K-

values’ were significantly flatter than the J-S and Orb, 7.86 ±0.29mm compared to 

Area of interest 

 
Mean radius of curvature (mm±SD) for N=124 

 

J-S ORB PENT 
J-S vs 
ORB 

J-S vs 
PENT 

ORB vs 
PENT 

Mean 
Keratometry  

7.82±0.23 7.80±0.31  
(‘Sim-K’) 

7.86±0.29 
(‘K values’) 

p=0.072 p<0.001 p<0.001 

Apex  7.72±0.32 7.78±0.29 p=0.010 p=0.409 p<0.001 

1mm zone  7.73±0.32 7.80±0.30 p=0.025 p=1.000 p<0.001 

2mm zone  7.74±0.31 7.81±0.30 p=0.046 p=1.000 p<0.001 

3mm zone  7.75±0.31 7.81±0.30 p=0.080 p=1.000 p<0.001 

4mm zone  7.75±0.32 7.81±0.30 p=0.143 p=1.000 p<0.001 

5mm zone  7.77±0.32 7.82±0.30 p=0.303 p=1.000 p<0.001 

6mm zone  7.78±0.32 7.84±0.30 p=0.694 p=1.000 p<0.001 

7mm zone  7.80±0.32 7.86±0.30 p=1.000 p=0.857 p<0.001 

8mm zone  7.82±0.32 7.89±0.30 p=1.000 p=0.195 p<0.001 
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7.82 ±0.29mm (J-S) and 7.80±0.31mm (Orb); both these comparisons were highly 

significant (p<0.001). 

 

The cumulative radii of curvature means for the series of zones that originated from 

the instrument axis (designated apex) along the horizontal profile are shown in Table 

3.1.  Each zone represented a section of the profile equidistant from the apex, i.e. 

the 2mm zone extended 1mm either side of the apex (Fig 3.5).  The Orb 

measurements flatten on average 0.05 ±0.04mm [SD] when comparing the apex 

zone radius to each of the other 8 zones (cumulative mean values increasing from 

7.72 to 7.82 ±0.32mm).  These measurements were significantly different to the 

spherical profile of the J-S instrument at the apex through to the 2mm zone (apex 

p=0.010, 1mm zone p=0.025, 2mm zone p= 0.046) but lacked statistical significance 

from zones 3 to 8mm (0.080<p<1.000) The Orb radii across each zone were 

significantly steeper than the Pent measurements across the entire profile (Zones 1 

to 8, all p<0.001).  The significance values decrease for J-S vs Orb from apex to 

8mm zone from p=0.010 to 1.000.  This trend is not mirrored in the J-S versus Pent 

results, with the majority highly insignificant (p=0.857 to 1.000) in zones 1 to 7, but 

closer to significance at the apex (p=0.409) and zone 8 (p=0.195). 
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Vertical Profile 

 

 

Table 3.2: Table to show comparison of radius of curvature (mm) measures in the vertical 

meridian: keratometric analogues (second row), instrument axis (designated apex) and 

mean regional curvature allocated as zones up to 8mm for J-S, Orb and Pent. 

 

Table 3.2 shows the mean radius of curvature values for conventional keratometry 

measurements in the vertical meridian:  J-S, Orb (‘Sim-K’) and Pent (‘K-Values’).  

The mean Orb value of 7.64± 0.31mm [SD] was significantly steeper than both J-S 

7.67± 0.29mm [SD] (p<0.005) and Pent 7.70± 0.29mm [SD] (p<0.001).  The Orb 

versus Pent comparison showed a trend of steeper radii values for the Orb, highly 

significant across the entire profile (Zones 1 to 4, p<0.001). 

 

Comparisons of the cumulative mean radii showed a surprising steepening in radius 

of curvature along the 2 and 3mm zones of the Orb profile (2mm Zone; 6.27±0.51 

and 3mm Zone; 6.67±0.42) these findings were statistically significant (both zones 

p<0.001).  The Pent values steepen from apex to 4mm zone (Zones 1 to 4; 

7.74±0.29 to 7.73±0.29), contrary to expectations, however these differences in radii 

were not statistically significant (0.116<p<0.231). The Pent measurements were 

found to be consistently flatter than Orb across the entire profile, differences 

between radii measurements were highly significant (0.001<p<0.005). 

Area of 
Interest 

 
Mean radius of curvature (mm± [SD]) for N=124 

 

J-S ORB PENT 
J-S vs 

ORB 

J-S vs 

PENT 

ORB vs 

PENT 

Mean 
Keratometry 

7.67±0.29 7.64±0.31 
(‘Sim-K’) 

7.70±0.29 
(‘K-values’)  

p<0.005 p<0.001 p<0.001 

Apex  7.72±0.32 7.77±0.29 p=0.543 p=0.010 p<0.001 

1mm zone  7.70±0.31 7.74±0.29 p=1.000 p=0.116 p<0.005 

2mm zone  6.27±0.51 7.73±0.29 p<0.001 p=0.201 p<0.001 

3mm zone  6.67±0.42 7.73±0.29 p<0.001 p=0.231 p<0.001 

4mm zone  7.68±0.31 7.73±0.29 p=1.000 p=0.195 p<0.001 
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The between instrument agreement is illustrated in Figures 3.6 to 3.8. 

 

Figure 3.6: Bland-Altman plot showing the limits of agreement (95% Upper limit of 

agreement (ULA) ,95% Lower limit of agreement (LLA) and Mean difference (MD)) of mean 

keratometry measurements between J-S and Orb (J-S – Orb). 

 

Figure 3.7: Bland-Altman plot showing the limits of agreement (95% Upper limit of 

agreement (ULA) ,95% Lower limit of agreement (LLA) and Mean difference (MD)) of mean 

keratometry measurements between J-S and Pent (J-S – Pent). 
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Figure 3.8: Bland-Altman plot showing the limits of agreement (95% Upper limit of 

agreement (ULA) ,95% Lower limit of agreement (LLA) and Mean difference (MD)) of mean 

keratometry measurements between Pent and Orb (Pent – Orb). 

 

The majority of data collected fell within the 95% limits of agreement (LoA) 

designated by the Bland-Altman method. The LoA for Orb compared to J-S and Pent 

were found to be ±0.12mm and ±0.09mm for J-S compared to Pent, showing close 

inter-instrument agreement for keratometric analogue measures. There was a 

negative bias (tendancy to measure flatter) of -0.03 mm in radii data measured using 

Pent compared to J-S, a positive bias (tendancy to measure steeper) of 0.06 mm in 

radii data measured with Orb compared to Pent and 0.03 mm in radii data measured 

with Orb compared to J-S.  

 

The graphs in Figures 3.9 and 3.10 show a visual comparison of curvature profiles 

for J-S, Orb and Pent in the horizontal and vertical meridians.  The J-S keratometry 

represented as an arc of the mean keratometric radius of curvature of the particular 

profile, the x and y axes were scaled at a ratio of 1:1. 
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Figure 3.9: A comparison of axial curvature profiles of J-S, Orb and Pent in the horizontal meridian. The solid black line indicates a spherical 

profile that represents a theoretical 2-D J-S profile interpolated from the mean keratometry value of the group. The grey shaded area shows the 

location of central cornea within which keratometry measurements are estimated to have been taken using J-S instrumentation (Error bars 

signify 1 SD either side of the mean value)  
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The horizontal profile provided by the axial radius of curvature output from Orb and 

Pent was similar to the J-S arc in the region 0.5mm either side of the instrument axis 

(apex).  The temporal profile of Pent was a similar shape to Orb, with the Orb profile 

consistently slightly steeper. The nasal profile showed increased flattening of the 

Pent profile widening the curvature difference in the corneal periphery compared to 

Orb. 
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Figure 3.10: A comparison of axial curvature profiles of J-S, Orb and Pent in the vertical meridian. The solid black line indicates a spherical 

profile that represents a theoretical 2-D J-S profile interpolated from the mean keratometry value of the group. The grey shaded area shows the 

location of central cornea within which keratometry measurements are estimated to have been taken using J-S instrumentation. Error bars 

signify 1 SD either side of the mean value.  
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In the vertical meridian there was a negative curvature inflection (dip) observed in 

the central profiles of Orb and Pent, incongruous with the J-S arc representation.  

Both Orb and Pent profiles met the J-S arc at 1mm from the instrument axis and then 

flattened in an identical pattern in both superior and inferior directions.  The Orb data 

curve was seen to maintain a consistent slightly steeper profile than the Pent curve. 

 

3.4 Summary 

3.4.1 Keratometric analogues 

 Horizontal meridian; Pent was flatter than J-S and Orb (Pent>J-S>Orb) 

 Vertical meridian; Orb was steeper than J-S along the paracentral cornea 

section (zones 2-3mm), Pent was consistently flatter than Orb. 

 95% LoA; ± 0.12mm between Orb and J-S, Orb and Pent. Closest agreement 

± 0.09mm between J-S and Pent 

 Bias; Orb tended to read steeper than J-S (0.03mm) and Pent (0.06mm) 

Pent tended to read flatter than J-S (-0.03mm)  

3.4.2 Mean regional curvature variability 

 Horizontal meridian; Orb was steeper than J-S near to the apex (up to 2mm 

zone), Pent was consistently flatter than Orb. 

 Vertical meridian; Orb was steeper than J-S along the paracentral cornea 

section (zones 2-3mm), Pent was consistently flatter than Orb. 

3.4.3 Visual profile comparison 

 Horizontal profile; Orb and Pent were similar to J-S in central 1mm zone, Orb 

consistently steeper in periphery, Pent increasingly flatter in nasal periphery. 

 Vertical profile; Orb and Pent central ‘dip’. Orb consistently steeper than Pent 

in periphery. 
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3.5 Discussion 

In the absence of a standardized anatomical model for central corneal curvature the 

interpretation of results collected throughout this study are limited to the relationships 

between these three devices. The comparisons made during the course of this 

investigation suggest that axial radii measurements vary and this has implications 

both clinically and for the remainder of this thesis. 

 

3.5.1 Clinical implications 

A curvature correction factor would be required for keratometric analogue 

‘translation’ between Orb and Pent.  Pent measures exhibit a positive bias +0.06mm 

when compared to Orb.  This is unlikely to affect soft contact lens fitting choice, but it 

may be important when selecting a rigid gas permeable trial lens, where the clinically 

significant difference is 0.05mm (specified by back optic zone radius).  A similar 

magnitude of bias (-0.05mm) has been reported in comparisons between the Grand 

Seiko Auto Ref/Keratometer WAM-5500 (Japan) and J-S (Sheppard and Davies, 

2010), although the method of calculating radius of curvature was not stated.  The 

bias reported between the IOLMaster (Zeiss Instruments, Germany) and J-S for 

mean corneal curvature values was -0.03mm (Santodomingo - Rubido et al., 2002). 

For intraocular lens calculations, the 0.3D difference in corneal power calculated 

from the positive bias between Orb and Pent keratometric analogues would not be 

considered clinically significant in refractive terms since the limits of agreement for 

subjective refraction are reported to be ±0.42D (Smith, 2006).  This compares with 

the accuracy of calculating intraocular lens power using keratometric analogues from 

either the Galilei™ dual Scheimpflug analyser (Ziemer Ophthalmic Systems AG, 

Switzerland) or Keratron placido-disk topographer (Opticon 2000, Italy), mean errors 

were found to be 0.21± 0.18D [SD] and 0.23± 0.22D [SD]  respectively (Savini et al., 

2011). 

 

By implication the keratometric analogues provided by Orb, Pent and traditional J-S 

keratometry measurements are interchangeable when considering intraocular lens 

power selection prior to cataract surgery, but require interpretation with caution for 

contact lens fitting. The peripheral interpretation of corneal curvature (values appear 

flatter than expected) may influence practitioners to chose a steeper than optimal 
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initial fitting lens in particular, when fitting larger diameter (10-16mm) designs of gas 

permeable contact lenses. 

 

3.5.2 Thesis implications 

However undesirable, keratometric analogues recorded using Orb and Pent were 

found to be significantly different to those provided by the ‘traditional’ J-S 

keratometer. Factors influencing these differences can be attributed to; 

 

Instrument repeatability;  J-S repeatability has been reported to be ±0.051mm, with a 

correction factor required of 0.044-0.053mm (depending on curvature magnitude), 

caused by mire image raypaths suffering from oblique astigmatism (Bennett and 

Rabbetts, 1991). Excellent instrument repeatability has been reported for anterior 

curvature for Orb 0.0002±0.0007mm (SD) centrally on test surfaces (Cairns and 

McGhee, 2005) and  for Pent 0.0000±0.0300mm (SD) from a average of 3 readings 

(Chen and Lam, 2009). This suggested that the lack of uniform precision of the J-S 

measurements contributed to the variability observed between keratometry values 

compared to Orb and Pent.  

Vertical profile ‘dip’; It appears improbable that the central corneal curvature profile 

exhibits ‘dip’ observed only in vertical meridian centred at the apex (Fig 3.11).  

 

 

 

Figure 3.11: Diagram to show the representation of the corneal apex vertical profile 

according to measurements made using J-S, Orb and Pent (n=124) 

 



[Type text]  [Type text]  99 

 

A mean difference of -0.05±0.15mm was recorded at the lowest point of inflection 

with the mean J-S apical measure 7.67± 0.29mm [SD] (range 7.15 to 8.75) 

compared to Orb  7.72± 0.32mm [SD] (range 7.10 to 8.60). This zone is reported to 

have the tear film thickness of 3-10.4µm (King-Smith et al., 2000) The influence of 

blinking on this region is negligible, with differences in instantaneous power found to 

be insignificant  (p>0.05)  (Buehren et al., 2001). Changes in topography between 

1.4 -2.4µm are attributed to eyelid pressure (Shaw et al., 2008). Therefore, this 

50µm concave ‘indentation’ may, in part be attributed to an artefact caused by 

algorithmic interpolation of an area not sampled by reflection due the positioning of 

the Orb camera, compounded by the vertical slit-image missing the apex location 

and the use of low order polynomial functions or smoothing splines (Cairns, Collins 

and McGhee, 2003) to interpolate intermediate data points. In a precision study 

investigating Orb assessment of ACS, the central 2.5mm internal diameter data was 

rejected due to lack of precision based on placido-disk methodology (Applegate and 

Howland, 1995b). The small size of the reflected rings imaged at the apex exhibit 

very small changes in size where the ACS has been found to be most regular and 

therefore ilicit less detectable differences when compared to the test reference grid. 

Larger rings provide improved precision (Douthwaite and Parkinson, 2009). The 

exact influence of each of these contributing factors remains unknown. 

  

Similarly Pent relies on a camera positioned on the instrument axis for image capture 

and must interpolate missing data. Additionally in both cases this may be an 

unwanted effect caused by mathematical manipulation of curvature data to provide 

keratometry analogues which match traditional keratometry values. Given the 

proprietary nature of the topographic algorithms used it is not possible to determine 

the weight that each set of assumptions has on the output. However the data from 

both sources provides a visually similar ACS representation over the central 4mm in 

the vertical meridian. 

 

When comparing corneal power values measured with standard keratometry 

methods and small-mire keratometry, a statistically significant difference in the 

representation of changes in values was observed in early corneal morphometric 

experiments (Mandell, 1963). In improving the accuracy of keratometry 
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measurements of the periphery, it was noticed that the ACS profile topography was 

markedly different (Fig 3.12). In other words, if assumptions used with J-S 

keratometry about the central ACS 3.3-3.5mm (Lehmann, 1967) are applied to the 

entire profile, this will inevitably result in inaccuracies in the periphery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Difference in power values using small-mire and standard keratometry 

(Topogometer) to measure the periphery of a typical cornea (Mandell, 1963) 

 

This supports the argument that manipulating the ACS to provide equivalent 

keratometric analogues distorts the profile representation. As Orb and Pent 

measurements were significantly different, this suggests that the methods of 

mathematical modelling of the two instruments were incompatible.  In essence, both 

approaches have reached a compromise in order to accommodate a multi-use 

platform 

 

Randomising measurements: Test randomisation was not carried out during the 

course of this study. In order to minimise carry over effects from either operator or 

instrument, keratometry measurements required a randomised sequence during data 

collection. These effects may have contributed to significant differences found and 

require further evaluation.  

. 
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3.6 Conclusions 

 When carrying out biometry prior to cataract surgery, central keratometry 

measurements from J-S, Orb (‘Sim-K’) and Pent (‘K-Values’) are 

interchangeable.  

 Clinically significant differences were found between Orb ‘Sim-K’ and Pent ‘K-

Values’. Pent axial curvature measurements were found to be consistently 

flatter than Orb across both horizontal and vertical profiles. Therefore, 

topographic data from Pent cannot be used in conjunction with Orb Fitscan 

RGP fitting software. 

 A negative curvature inflection or ‘dip’ was observed in the vertical profiles of 

Orb and Pent. This does not concur with direct observations of the central 

cornea made with slit-lamp bio-microscope or contact lenses. Ostensibly this 

represents an artefact caused by proprietary algorithmic interpolation, 

resulting from the manipulation of the curvature data to provide ‘traditional’ 

keratometry analogues. This was compounded by limitations of image 

collection methodology as discussed earlier. The precise influence of each of 

these factors remains unknown 

 

Current understanding of the corneal shape relies on central sphericity and this has 

been exploited in the design of the J-S Keratometer. The more sophisticated 

technology available in Orb and Pent instrumentation, has extended the reaches of 

AOS profile measurement without accurate anatomical reference. The next step for 

this thesis was to investigate the best method of defining a ‘true’ representation of 

the anterior ocular surface shape, which will satisfy the needs of Ophthalmic 

surgeons, the contact lens industry, and researchers. 
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Chapter 4 

Investigating anterior ocular surface morphometrics using 3- Tesla 

Magnetic Resonance Imaging 

 

The previous chapter highlighted the issues associated with determining the 

morphometric descriptors of the ACS in the absence of a definitive representation of 

the surface in question, combined with the influence of the historic development of 

measurement techniques which had formed the accepted fundamental interpretation 

of corneal topography.  The aim of this thesis is to establish a ‘gold standard’ wide-

field morphometric 3-D profile of the entire AOS.  Having considered all available 

technologies with which to carry out this task (Chapter 2), magnetic resonance 

imaging (MRI) offered the most promising opportunity to optimise surface data 

collection using non-invasive, non-contact, 3-dimensional reconstruction techniques.  

This chapter outlines preliminary investigations carried out to confirm the suitability of 

this technique for wide-field anterior ocular surface data acquisition. 

 

4.1 Introduction 

MRI is a method of generating cross-sectional images of internal body structures in-

vivo based on the physical phenomena of nuclear magnetic resonance.  Body 

tissues, such as the globe and associated structures, contain abundant hydrogen 

nuclei, which can be aligned using a strong external magnetic field.  If a highly 

specific radio frequency pulse is applied during the alignment, the energy state of the 

hydrogen protons increases for the pulse duration and then drops to its prior state, 

emitting electromagnetic waves.  These signals are picked up by the scanner and a 

brightness intensity profile attributed to individual pixels, which are composed into 

picture elements and formed into images reconstructed using mathematical 

algorithms (Wichmann, 2002).  Using localiser images, regions of interest can be 

isolated and a series of 2-D contiguous images acquired in the same plane through 

the tissue, building a picture of the anatomical presentation and topographic 

structure (Koretz et al., 2004). The strength of the magnetic field used varies with the 
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make and model of MRI scanner, the investigation of ocular tissues as been carried 

out using 1.5, 3 and 7 Tesla magnets (Richdale et al., 2009) 

 

MRI has been used to identify orbital disease and retro-bulbar masses (Moseley, 

Brant-Zawadski and Mills, 1983), to study functional anatomy of the extra-ocular 

muscles and their relation to the orbital connective tissues (Detorakis et al., 2003), to 

characterise the 2- and 3-dimensional shape of internal globe structure in myopia 

(Cheng et al., 1992,  Atchison, Jones and Schmid, 2004, Singh et al., 2006), to study 

changes in anterior segment anatomy caused by presbyopia (Koretz et al., 

2004),(Strenk, Strenk and Guo, 2006), and to quantify the axial misalignment 

between the crystalline lens and cornea (Chang, Wu and Lin, 2007).  MRI has been 

used to reveal parts of the globe in-vivo normally obscured by overlying structure, for 

example peripheral parts of the crystalline lens usually screened by the iris (Strenk et 

al., 1999) and the ciliary body hidden by the sclera (McCaffery et al., 2002).  Since a 

significant proportion of the AOS under scrutiny is covered by the upper and lower 

eyelid tissue, MRI offers a potentially viable method of imaging the entire AOS in an 

undisturbed state.  Given that the average vertical palpebral aperture in the white 

European population is reported to be 9.67mm (Read et al., 2006b), this may expose 

a further 17mm in the vertical meridian for topographic evaluation without relying on 

speculi or lid manipulation.  In addition, images can be taken in the subject’s primary 

position of gaze to limit any changes in topography caused by extreme ocular 

excursions. 

 

There are 2 types of image acquired during MR scanning, which are differentiated by 

the radio frequency pulse signal decay.  The first is the signal decay of the sum 

vector parallel to the strong external magnetic field – named T1 relaxation.  This type 

of MRI protocol encourages protons bound to macromolecules to fast relaxation, 

transferring excess energy to the environment (Wirtschafter et al., 1992).  These 

images (Fig 4.1), showing structures containing healthy fat as bright white or hyper-

intense, can be obtained with high-speed scanning protocols, which are effective at 

reducing motion artefacts encountered during eye scanning (Detorakis et al., 2003), 

(Berkowitz et al., 2001), (Schueler et al., 2003), (McCaffery et al., 2002), (Lemke et 

al., 2001), (Patz et al., 2007). 
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Figure 4.1: T1-weighted MR image of the right open eye of a 42 year old subject using a 

customised eye imaging radio frequency coil and 1.5 Tesla external magnetic field (Koretz et 

al., 2004). 

 

The second type, T2 or transverse relaxation, is the signal decay of the sum vector 

perpendicular to the external magnetic field.  This causes a slow loss of coherence 

out-of-phase, resulting in energy exchange with adjacent small molecules 

(Wirtschafter et al., 1992).  The imaging protocols are slow, prone to motion artefacts 

and depict free-water found in high concentration in the anterior chamber and 

vitreous as white or hyper intense (Fig 4.2).  This imaging protocol has been used to 

measure axial length (Akduman et al., 2008) and aqueous-vitreous volume as a 

surrogate for 3-D globe surface representation in myopia (Singh et al., 2006).  

Attempts have been made to improve image resolution using a rhythmic blink 

sequence synchronised to the optimised T2 imaging protocol (Obata et al., 2006), 

and, in addition, polyurethane head moulds have been constructed to minimise body 

movement (Berkowitz et al., 2001). Also, addition and re-alignment techniques have 

been used during image processing (Obata et al., 2006). 
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Figure 4.2: T2-weighted MR image using a microscopic imaging radio frequency coil, blink 

synchronisation, re-slicing and re-alignment image processing with 1.5 Tesla external 

magnetic field (Obata et al., 2006) 

 

Measurement of the fine structures of the human eye in-vivo using a 1.5 Tesla 

external magnetic field did not produce successful differentiation of the central or 

peripheral cornea with either T1 or T2 imaging sequences (Patz et al., 2007).  The 

MR scanning system available for use at Cardiff University Brain Imaging Research 

centre (CUBRIC) provides a 3-Tesla external magnetic field, this offers hope of 

further improvement in resolution.  However, this occurs at the expense of increased 

sensitivity to the motion artefact. 

 

In-plane resolution of MR images using a 1.5 Tesla scanner has been reported to 

have improved from 0.40mm to 0.10mm using small custom surface radio frequency 

coils (Richdale et al., 2009). One millimeter slice scanning, at thickest, is required for 

adequate 3-D reconstruction (Obata et al., 2006).  This study demands topographic 

accuracy to at least within tolerances for contact lens manufacture ±0.05mm (BSI, 

2006), to ensure adequate alignment to ocular surface contours and minimise 

mechanical insult to the sensitive tissues.  It is the requirement of this investigation to 
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seek to optimise scanning protocols to further improve 2-dimensional image 

resolution. 

 

The characteristics of the ‘ideal’ topographic data set include: 

 Minimal deleterious effects on the AOS or any body tissues; no permanent or 

damaging effects caused by exposure to the external magnetic field or radio 

frequency waves. 

 No lasting discomfort, during or preceding the procedure; for MRI examination 

the entire subject must be brought into a narrow shaft of the equipment to 

ensure that their position is central to the magnetic field and offers optimal 

homogeneity. This can cause anxiety to claustrophobic subjects.  Internal 

trauma may be caused by metallic-ferromagnetic foreign bodies or implants, 

e.g. pacemakers or aneurism clips moving when exposed to the high external 

magnetic field.  For these reasons, extreme care was taken to carefully select 

subjects and strict adherence to safety protocols was observed. 

 High accuracy; this investigation seeks to establish a ‘gold standard’ 

topographic representation of the AOS, in the absence of previous data, and 

therefore scanning needs to be to the highest standard. 

 Excellent differentiation of the external cornea and scleral architecture to 

ensure a detailed and anatomically authentic contour of the AOS can be 

extracted in 2-D and reconstructed into a 3-D digital model. 

 Imaging protocols that enable <1mm slices to be taken during contiguous 

image acquisition allowing sufficient data between images to reconstruct a 3-

D surface representation. 

 Short image acquisition times to optimise motion artefacts incurred by 

movements of the globe, eyelids and head. 

 Compatible image scaling in all planes and dimensions to provide accurate 

AOS reconstruction. 
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4.2 Aims and Objectives 

This study used a 3-Tesla MR imaging system; Discovery MR750 3.0T (General 

Electric Medical Systems, Waukesha, WI) to collect a 3-dimensional data set with 

which to reconstruct an accurate representation of the AOS in-vivo. 

 

The hypotheses proposed are: 

 3 Tesla MR imaging can provide accurate morphometric data of the AOS 

without deformation or invasive intervention. 

 A series of 3 Tesla 2-D MR images of axial sections through the globe can 

procure sufficiently resolute data with which to differentiate the AOS and 

reconstruct digital 3-D representations. 

 

4.3 Materials and Methods 

4.3.1 Experimental procedure 

Four subjects were included in this preliminary study, (2 ♀ and 2 ♂), mean age of the 

group was 37.85 ±4.28 years [SD] (range 31.51 to 40.14).  Volunteers were recruited 

from the staff and students of Cardiff University, and subjects were excluded if they 

were pregnant or breastfeeding; had any ocular or systemic condition known to 

affect the structure or characteristics of the anterior ocular surface; were taking any 

medication known to affect the ocular surface; had worn rigid lenses in the preceding 

6 weeks or soft lenses in the preceding 2 weeks; did not contain any metallic-

ferromagnetic implants or foreign objects; and were not known to be claustrophobic.  

All subjects were treated in accordance with the tenets of the Declaration of Helsinki 

(2004) and institutional guidelines. 

 

The subjects attended for 2 sessions of 1.5 hours duration.  Each participant was 

scanned in a whole-body MRI scanner 3 Tesla, Discovery MR750 3.0T(General 

Electric Medical Systems, Waukesha, WI).  MR images were collected with an eight-

channel phased array head coil, which is able to rapidly scan both eyes 

simultaneously with high signal-to-noise ratio.  A T1-weighed spin-echo pulse 

sequence was selected first to differentiate muscle and soft tissue from the AOS.  
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Initially, a series of localiser images were acquired so that subsequent axial slices 

were aligned perpendicular to the corneal apex.  Seven contiguous slices were 

simultaneously acquired with a 3mm slice thickness with a 4cm field of view resulting 

in 0.25mm in-plane resolution.  Following this, T2-weighed fast spin echo sequences 

were carried out resulting in 30, 1mm thickness slices with a 10cm field of view.  The 

subjects were asked to fixate during both types of sequence on a distant object with 

both eyes open, viewed through a mirror mounted on the head coil. 

 

4.3.2 Optimising T1-weighted MR imaging sequences 

Further measures were taken to optimise in-plane image resolution: 

 Application of Lacri-lube® (Allergan Ltd, Bucks, UK) containing wool and 

mineral oils in a thick ocular ointment, to the right eye prior to MR imaging. 

T1-weighted sequences have been shown to image proton bound 

macromolecules eg fat and lipids as hyperintense or white structures. It was 

hoped that a layer of Lacri-lube® would enhance the contrast of the AOS and 

improve the surface delineation.  

 A custom-designed blink artefact reduction system was used during imaging.  

The subject was provided with an electronic switch inside the MR scanner, 

which enabled the user to temporarily pause the pulse sequence when 

blinking was necessary. 

 Previous studies had not combined blink artefact reduction and enhanced 

surface delineation 

 

4.3.3 Optimising T2-weighted MR imaging sequences 

These longer sequences required periods of up to 10 minutes acquisition time.  

Further measures used to minimise motion artefacts were: 

 Applying a large diameter thick bandage contact lens; it was hoped that a thin 

layer of hydrogel-bound water would improve contrast at the air-surface 

interface and enhance AOS delineation. 

 Imaging both eyes simultaneously. 
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 Using the custom-designed blink artefact reduction system described in the 

previous section. 
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4.4 Results 

4.4.1 T1-weighted images 

 

 

 

Figure 4.3: T1-weighted MR image for subject JT showing the best resolved differentiation of 

the AOS, slice thickness at minimum 3mm. 

 

This method of MR imaging provided the quickest scan time 6.5 minutes, with 

optimal in-plane resolution of 0.25mm.  The application of Lacri-lube® did not offer 

further improvement in AOS differentiation. 
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4.4.2 T2-weighted images 

 

 

 

Figure 4.4: T2-weighed MR image of both eyes of subject JT using optimised pulse 

sequence protocol and blink artefact reduction technique. 

 

This imaging technique was  not able to differentiate the AOS using available 

optimisation of motion artefacts and pulse sequence protocol.  The application of 

large thick contact lenses to the AOS did not improve the differentiation further. 

 

4.5 Discussion 

This study found that T1-weighed images using 3 Tesla MR protocols could not 

provide sufficient in-plane resolution to meet the requirements of the application; to 

provide the accuracy necessary to design and manufacture contact lenses.  Two 

factors limited the standard of data collected: 

 

 Open eyelids during MR imaging sequences create an air-cornea magnetic 

field in-homogeneity from magnetic susceptibility differences. These 

imperfections distort the surface geometry and cause signal loss (Bert et al., 

2006).  The addition of radio frequency coils positioned directly around the 
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eye has been found to improve the signal to noise ratio up to 16 times over 

the standard orbital scan (Koretz et al., 2004) and offer a chance of further 

improved surface differentiation. However these were not available for the 

study. 

 Compromises made during the pulse sequence protocol optimisation 

necessitated the use of multi-slice 2-dimensional sequences with slice 

thickness at a minimum of 3mm and scan times of greater than 5 minutes.  

These compromises cause gaps in the 2-D slice acquisition and partial 

volume errors from large slice thicknesses (Richdale et al., 2009).  The 

resolution was also hindered by involuntary micro-saccades during fixation 

that occur a number of times per second (Rolfs, 2009). 

 

T2-weighed images showed more promise in the likelihood of collecting 1mm or 

thinner slices, however surface differentiation was compromised.  This again may be 

improved with the use of additional surface radio frequency coils positioned near the 

eye.  T2 protocols using 3 Tesla MR fields have been optimised for measurements of 

globe volume (Singh et al., 2006), but these do not detect smaller ocular structures 

including the cornea.  Since this study was carried out, further work has been carried 

out using a 7 Tesla external magnetic field to determine whether higher field strength 

can allow improved resolution (Fig 4.5) and reduced scan time.  The results showed 

that using an optimised T1 pulse sequence, imaging scan durations could be 

reduced to 30-40 seconds and slice thickness reduced to 0.10 to 0.50mm (Richdale 

et al., 2009). 
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Figure 4.5: T1-weighed 7 Tesla MR image using an optimised scanning and image 

processing protocol (Richdale et al., 2009). 

 

4.5 Conclusion 

Optimised protocols for T1- and T2-weighed MR imaging using a 3-Tesla external 

magnetic field were unable to provide sufficient data to adequately reconstruct an 

accurate representation of the AOS.  Further work using additional eye surface radio 

frequency coils and a 7-Tesla external magnetic field offers the best opportunity to 

achieving this goal. 
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Chapter 5 

Ocular impression-taking – which material is best? 

 

Chapter 2 described the technologies currently available to provide morphometric 

descriptors of the AOS.  It has been shown that there are inherent challenges 

associated with each method of measurement.  Given that this work aims to provide 

a ‘gold standard’, wide-field morphometric analysis of the AOS, it is a pre-requisite 

that the chosen method of data collection be optimised.  

 

5.1 Introduction 

The purpose of taking an impression of any surface is to mould the negative 

dimensions of the structure and make a model of the ‘positive’ physical properties 

which provides an accurate representation of the shape, parameters and spatial 

relationships.  The acceptable magnitude of error implicit in the impression taking 

process is determined by its application, for example manufacturing gas permeable 

contact lenses requires high accuracy:  in the region of ±0.05mm, commensurate 

with the manufacturing tolerances of British Standards 18369-2 (BSI, 2006).  In this 

study, the accuracy of the model or cast in comparison to the ocular surface in-vivo 

will be scrutinised in Chapter 7.  This chapter reports on an investigation to evaluate 

the clinical validity of modern impression materials. 

 

The characteristics of the ‘ideal’ impression material include: 

 Minimal deleterious effects on the AOS; no permanent or damaging effects 

caused by the material covering and setting on any tissues of the exposed 

ocular adnexa. 

 No lasting discomfort during or after the procedure; topical anaesthetic is used 

to block the highly sensitive corneal innervation. 

 High accuracy; this investigation seeks to establish a ‘gold standard’ 

topographic representation of the AOS, of the highest quality. 
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 Excellent dimensional stability; to ensure that the material is not deformed by 

plaster pouring, or degraded by environmental conditions or physical 

manipulation. 

 Good flow characteristics, and reasonable in-eye working time; allowing 

sufficient time for material to be applied to the impression tray and inserted 

without setting. 

 Rapid curing or setting time; to reduce the amount of time required by the 

subject to remain fixated with the contralateral eye, reducing artefacts 

incurred by random eye movements. 

 Excellent compatibility with gypsum dental stone; some impression materials 

are known to cause chemical degradation of the gypsum cast surface. 

 Unaffected by temperature and environmental conditions. 

 

Cold irreversible hydrocolloids or alginates (eg Orthoprint), which have been used for 

ocular impressions since the introduction of Ophthalmic Moldite (Obrig, 1943), 

exhibit poor dimensional stability and poor tear strengths, leading to inaccurate casts 

and the need for multiple impression-taking procedures (Storey, 1987), (Imbery et 

al., 2010).  The impressions formed are affected by the level of air flow around the 

impression, which causes evaporation of water from the gel resulting in shrinkage; 

(1) by water, which causes the gel to expand by imbibition and absorption; (2) by 

high relative humidity, which induces syneresis and shrinkage; and (3) by in-organic 

salts, which affect the gel and cause physical changes that are dependent on their 

osmotic potential (O'Brien, 2002). 

 

As dental impression materials evolved, the possibility of improved accuracy and 

biocompatibility encouraged experimentation with polysulphide rubber for eye 

impressions (Storey and Vale, 1970).  However, this material was abandoned after 

human test subjects experienced prolonged discomfort following the impression and 

required anaesthetic ointment (5% Lignocaine HCl) to counteract the eyelid pain 

during the procedure, which caused distortion of the gypsum cast (Storey, 1972).  

Much later, encouraged by clinical safety and success in the ocular prosthetics field, 

further investigations were carried out on another group of materials 

(polyvinylsiloxanes), which contained silicone-addition reaction elastomers (Storey, 
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1987).  Panasil C (Kettenbach GmbH, Germany) was adopted by a number of 

ophthalmic practitioners in the United Kingdom and it provided the means for 

significant progress in the manufacture of impression-moulded gas permeable, 

scleral lenses (Pullum, 1987).  Following the withdrawal of this product in 1993, 

several alternatives have been used, including Panasil light body (Kettenbach 

GmbH, Germany) (Brammar et al., 1995) and Tresident (Shütz Dental Group GmbH, 

Germany) (Pullum, 2002). 

  

It is well known that polyvinylsiloxane reproduces the greatest detail of all dental 

impression materials (Chee and Donovan, 1992).  Indeed, the material provides 

sufficient detail to identify individuals by fingerprint analysis (Parthasaradhi et al., 

2005). This level of accuracy is defined by the British Standards Institute BS 4823 

which requires that all Type 3, light-bodied elastomeric materials to be able to 

reproduce a line 0.020mm in width (BSI, 2001).  In addition, these materials have 

been found to have very low shrinkage, 0.05-0.1%, during the polymerising process 

(Williams and Craig, 1988) and they are well-matched to the setting expansion of 

Type IV gypsum plaster, which is used to cast the impression (Ragain et al., 2000).  

Polyvinylsiloxane materials, which have been found to have excellent long-term 

dimensional stability, are not susceptible to changes in humidity and do not undergo 

further chemical reactions or release by-products (Chee and Donovan, 1992).  Tests 

carried out on intact rabbit skin concluded that the primary skin irritation of 

polyvinylsiloxane can be considered negligible (Mazzanti et al., 2005).  For these 

reasons it is considered a superior alternative to the irreversible hydrocolloids. 

However the effects of the material on the tear film and adnexa, although considered 

clinically acceptable, have not been the subject of scientific rigour. 

5.2 Aims and Objectives 

This study used a single–blind, randomised control trial to assess the efficacy and 

clinical validity of a polyvinylsiloxane (Tresident) compared to an irreversible 

hydrocolloid (Orthoprint) for ocular impression taking. 
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The hypotheses proposed are that: 

 Tresident (Shütz Dental Group GmbH, Germany) offers a quicker, more 

effective and clinically viable method of obtaining ocular impression 

topography compared to the traditional Orthoprint (Zhermack SpA, Italy). 

 Orthoprint causes significantly more superficial punctuate staining of the 

corneal epithelium than Tresident. 

 

5.3 Method 

5.3.1 Materials 

5.3.1.1 Orthoprint (Zhermack SpA, Italy) 

Orthoprint is a yellow, dust-free, alginate, irreversible hydrocolloid impression 

material, which conforms to specifications BS 4269-2 (BSI, 1991).  It is mixed at a 

ratio of 9g of powder to 18ml of sterile water at 23°C to form a solution, which has a 

working time of 1 min 5 secs and a setting time of 1 min 50 secs.  This permits 45 

secs for stable contact with the ocular surface.  Colder water retards setting and 

warmer water speeds up setting.  If the plaster mould is not poured straight away, 

the impression can be placed in a hermetically-sealed bag at room temperature 

(23°C) and gypsum pouring deferred for 48 hours.  Plaster Types 3 and 4, according 

to BS 6873 (BSI, 2000), are recommended for use by the manufacturers (Zhermack 

SpA, Italy). 
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Figure 5.1: Orthoprint packaging (Zhermack SpA, Italy) 

 

The aqueous reaction occurs between calcium sulphate dehydrate and an alginate 

salt composed of alternating and homopolymeric sequences of D-mannuronate and 

L-guluronate units, derived from seaweed (Cook, 1986).  Commercial alginate 

impression materials are known to contain: (1) a filler, usually diatomaceous earth, to 

increase rigidity and aid mixing, (2) a reaction retarder, such as tetra-sodium 

pyrophosphate, (3) a pH modifier, such as magnesium oxide; and a setting aid, in 

this case potassium fluorotitanate. 

 

The material provides good surface detail (Hansson and Eklund, 1984), is easy to 

use and mix, is cheap and has a long shelf-life, numbered in years (O'Brien, 2002).  

The setting time can be controlled with water temperature and, as a gel, it is non-

toxic and non-irritant (Powers and Sakaguchi, 2006).  However, it has relatively poor 

dimensional stability, compared with elastomers, and a low tear energy (Nallamuthu, 

Branden and Patel, 2006).  It is incompatible with Type 1 and 2 gypsum plaster 

(Morrow et al., 1971), reacts to humidity, and has a very short on-eye setting time 

(45 secs).  The mixing process is messy and dependent on operator handling.  

Automated mechanical mixing has been shown to increase speed and quality of 

alginate sol, eliminating casting imperfections (Craig, 1988).  For these reasons, the 
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use of alginate for ocular impression-taking has been superseded by silicone rubber 

based materials. 

 

5.2.1.2 Tresident (Shütz Dental Group GmbH, Germany) 

Tresident is a low viscocity, addition-polymerising, polyvinylsiloxane precision 

impression material with hydrophilic properties, which conforms to BS 4823 (BSI, 

2001).  It is supplied in an auto-mix dual cartridge, which requires a dispensing gun 

to advance equal quantities of each siloxane-based component through a purpose-

designed mixing canula (Fig 5.2). 

 

Figure 5.2: Injector DS 50 (Dreve Otoplastik GmbH, Germany), with a Tresident dual 

cartridge and mixing canula. 

 

Tresident is automatically mixed to a predetermined amount and provides a working 

time of 1 min 15 secs, with a setting time of 2 mins 45 secs, giving a total setting 

time of 4 mins.  During this time, the impression tray and material must be held 

against the ocular surface under gentle pressure. 

 

Moulds can be poured from 1 hr to 14 days after the procedure.  Impressions may be 

re-poured to produce casts, which are as accurate as the original, for up to 7 days 

(Lewinstein and Craig, 1990) but to do so the impression material must be kept in a 

dry place at 18-25°C.  Re-heating the impression to 37°C before pouring the plaster 
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has been demonstrated to improve accuracy of casting.  However it is doubtful if this 

is clinically significant (Chew, Chee and Donovan, 1993). 

 

The two components of the material are a polymethyl hydrogen siloxane copolymer 

of moderately low molecular mass, which contains silane terminal groups, and an 

accelerator material of a similar molecular weight, which contains vinyl-terminated 

polydimethyl siloxane.  When mixed, the silane and vinyl groups react, catalysed by 

chloroplatinic acid (a homogenous metal complex catalyst).  The cross-linking that 

occurs during the polymerisation process (Fig 5.3) causes minimal dimensional 

change and there are no by-products (Mandikos, 1998). 

 

 

 

Figure 5.3: The accelerator polymer is terminated with vinyl groups which cross-link to the 

silane terminal groups on the base polymer when activated by a platinum salt catalyst.  This 

is an addition reaction and there are no by-products (Mandikos, 1998). 
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Both pastes contain fillers, amorphous silica and a low molecular weight retarder to 

delay the onset of polymerisation.  Additionally, the base paste has an emulsifying 

surfactant that improves the wettability of the impression.  Colouring agents are 

added to distinguish between the two pastes and aid the evaluation of mixing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Tresident packaging (Shütz Dental Group GmbH, Germany) 

The following table 5.1 compares the properties and characteristics of Orthoprint and 

Tresident, current ocular impression materials 
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 Tresident Orthoprint 
Material type Silicone elastomer Alginate 
Reaction type Addition polymerisation  Irreversible hydrocolloid 
Components Base paste: silicone 

polymer dispersion and 
reactive species, filler and 
surfactant to increase 
hydrophilic properties. 
Catalyst paste: silicone 
polymer dispersion and 
reactive species, catalyst, 
hydrogen scavenging 
agent, filler and pigments 
(Mandikos, 1998). 

Soluble alginate reacts with 
calcium sulphate to produce 
insoluble calcium alginate 
gel, potassium fluotitanate to 
counteract interaction with 
gypsum setting, filler, 
retarder, pH modifier and 
glycol to reduce dust 
(McCaffery et al., 2002). 

Smell None Vanilla odour and flavour 
Detail reproduction Reproduce lines 

<0.020mm. 
Unknown effect of pH 
 

Reproduce lines <0.75mm 
Improved in alkaline pH 
(Anastassiadou, Dolopoulou 
and Kaloyannides, 1995) 

Linear dimensional 
change 

<1.5% Variable with temperature 
and humidity 

Elastic recovery >99% 97.3% 
Deformation 1.3-5.6% 11% 
Tear strength High 1640-5260 g/cm Low 380-700 g/cm 
Clinical history First used in Britain 1977: 

Ann Arnold-Silk (Storey, 
1987) 

First used by in America 
1943: Theodore Obrig (Lamb 
and Sabell, 2007) 

Mixing technique Dual chamber cartridge 
using proprietary mixing 
canula and dispensing gun 

By hand using rubber bowl 
and metal spatula. De-ionised 
water added to powder. 

Quantities Quantities of each paste 
predetermined by means of 
cartridge and dispensing 
system 

9g powder to 18ml water 

Working time 1 min 15 secs 1 min 5 secs 
On-eye time 2 mins 45 secs 45 secs 
Setting time 4 mins 1 min 50 secs 
Gypsum die pouring After 1 hr up to 14 days 

with no special conditions 
 

Immediately or up to 48 hrs 
later if stored in hermetically 
sealed bag at 23°C 

Number of casts Up to 7 1 
Environmental 
effects 

0.2 – 1% shrinkage after 
24 hrs. Higher temperature 
reduces setting time, 
unaffected by humidity. 

Cold water retards setting 
time, shrinks up to 1.28% 
after 24 hrs if not stored at 
high humidity (Miller, 1975). 

Cost £32.47 for 100ml £9.95 for 500g of powder 
 

Table 5.1: Comparison of ocular impression material properties; Tresident and Orthoprint. 
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5.2.2 Experimental procedure 

Twenty subjects were included in the study, (13 ♀ and 7 ♂), mean age of the cohort 

was 31.10 ±4.62 years [SD] (range 25.77 to 39.73).  The volunteers were recruited 

from the staff and students of Cardiff University, and subjects were excluded if they 

were pregnant or breastfeeding; had any ocular or systemic condition known to 

affect the structure or characteristics of the anterior ocular surface; were taking any 

medication known to affect the ocular surface; had worn rigid contact lenses in the 

preceding 6 weeks or soft contact lenses in the preceding 2 weeks; and were not 

white European.  This ethnic bias was chosen because it has been shown that 

ethnicity affects ocular surface morphometrics (Matsuda et al., 1992), (Leite et al., 

2010).  Ethical approval was sought in accordance with the Tenets of the Declaration 

of Helsinki (2004) from the Cardiff School of Optometry and Vision Sciences Ethics 

Committee. 

 

The subjects attended for 2 sessions, each of 1 hour duration.  Each session was 

scheduled at the same time on each day.  Two experienced practitioners carried out 

the study, one to carry out the ocular impression procedures (Investigator 1, JT) and 

the other to observe and assess the clinical signs (Investigator 2, DM).  The 

practitioners carried out their investigations in separate rooms without any 

knowledge of the others results. A randomly generated list of subjects was provided 

by an external administrator who had no knowledge of the study protocol.  

 

5.2.2.1 Session 1 

The subject arrived and was assessed by Investigator 2 for baseline measurements, 

these included LogMar visual acuity, tear break-up assessment using Tearscope 

Plus™ (Keeler Ltd, Windsor, UK), phenol red threads (Menicon Co Ltd, Japan), and 

grading of clinical signs using the CCLRU grading scales.  Fluorescein sodium dye 

(Fluoret strips, Chauvin, France) was used to provide an assessment of ocular 

surface integrity using a slit-lamp bio-microscope.  Measurements were carried out in 

the following order: 

1. Best-corrected LogMAR acuity using Bailey-Lovie LogMAR distance acuity 

chart (Sussex Vision International Ltd, West Sussex, UK) at 3m direct 

viewing.  Recommended luminance 160 cd/m2. 
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2. Tear volume with Phenol red threads, Zone-Quick™ (Menicon Ltd, Japan). 

3. Instillation of fluorescein, using Fluoret strips (each strip impregnated with 

approximately 1 mg of fluorescein sodium BP) moistened with 0.9% 

physiological saline. 

4. Tear break-up time using Tearscope Plus™ (Keeler Ltd, Windsor, UK), with 

fine grid insert. 

5. Assessment of ocular integrity using CCLRU grading scales, interpolated 

to 0.1 unit increments: bulbar redness; limbal redness; lid redness; lid 

roughness; type, extend and depth of corneal staining. 

6. Ocular impression; in a separate room, the ocular surface of both eyes was 

anaesthetised by Investigator 1 using two drops of 0.5% Proxymetacaine HCL 

Minims  (Chauvin Pharmaceuticals Ltd., Kingston-Upon-Thames, UK), who 

then carried out an impression procedure (see Section 5.2.3.1) to one ocular 

surface (randomly assigned) using one of the 2 materials.  After impression 

taking, the ocular fornices were irrigated with 0.9% saline and the subject 

returned to the room of Investigator 2 who repeated the battery of tests 

detailed above. 

 

5.2.2.2 Session 2 

When the subject arrived, Investigator 2 repeated the battery of clinical tests carried 

out the day before, followed by Investigator 1 taking an ocular impression with the 

alternative material.  Investigator 2 repeated the battery of clinical tests following a 

saline wash-out post-impression procedure. 

 

5.2.3 Clinical techniques 

5.2.3.1 Ocular impression procedure 

Each subject was positioned sitting upright and facing forward.  A distant target was 

provided to align the visual axes, using the contralateral eye for fixation.  Both eyes 

were anaesthetised with 0.5% Proxymetacaine HCL eye drops and the procedure 

carefully explained to the subject.  An impression tray was chosen from the set of 3 

sizes, of maximum internal shell diameters of 23, 24 and 25mm (Cantor and Nissel 

Ltd, Brackley, UK).  These trays were moulded from acrylic with hollow stems, 32mm 
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in length, marked with red circular indentations providing an anatomical registration 

in the 12 o’clock position (in relation to the cornea).  The tray was selected by 

offering the 3 sizes up to the closed eye and choosing the largest in relation to the 

aperture and the global contour.  Impression material was dispensed onto the 

internal surface of the shell covering the entire surface with 1.5 – 2.5mm (Eames et 

al., 1979) of Tresident or Orthoprint. 

 

 

 

Figure 5.5: Photograph of 25mm diameter impression tray holding Tresident material prior to 

insertion. 

 

The subject was instructed to ‘look down’ whilst remaining in the head upright 

position.  The tray was inserted quickly under the top eyelid, the subject was asked 

to ‘look up’ in order for the lower lid to be freed and the shell held between both 

eyelids.  The tray was carefully positioned to locate the cornea at the centre of the 

shell;  the investigator supported the stem and ensured that the subject maintained 

composure and optimal fixation. 
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Figure 5.6: Photograph to show the position of tray and Tresident during impression 

procedure. 

 

After setting of the material, the tray and impression was removed by freeing the 

lashes of the upper lid and removing the material from the eye surface in one piece.  

Any material remnants were collected and the fornices irrigated with 0.9% 

physiological saline.  The impression trays were disinfected immediately after use; 

rinsed in saline for 30 seconds, cleaned with liquid detergent, rinsed again for 30 

seconds and disinfected in sodium hypochorite 10,000ppm for 10 mins.  Further 

saline rinses were carried out before the trays were stored dry for the next subject 

(Buckley, 2010). 

 

5.2.3.2 LogMAR visual acuity measurement 

Best-corrected visual acuity was measured using a Bailey-Lovie visual acuity chart at 

3m direct viewing.  Subjects were asked to read the letters on the chart starting with 

the largest and were permitted to stop when 3 or more of the 5 letters was missed or 

incorrect.  Visual acuity score was obtained by assigning 0.02 LogMAR units to each 

letter.
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5.2.3.3 Measurement of tear quantity using Phenol red threads 

A two-ply cotton thread (0.2mm) impregnated with phenol red dye was used to 

assess tear quantity.  The bent end was placed in the inferior fornix on the temporal 

side and remained in position for 15 seconds.  On removal, the length of thread that 

had undergone a colour change from red to yellow was measured, and recorded in 

mm. 

 

 

 

Figure 5.7: Photograph to show the position of phenol red thread in the lateral portion of the 

lower fornix Zone-Quick™ (Menicon, 2010). 

 

5.2.3.4 Invasive tear break-up assessment using Tearscope PlusTM 

Invasive tear break-up time was assessed with the use of fluorescein dye.  The 

subject was asked to blink and then hold their eye open as long as possible.  The 

measurement was taken in seconds between the blink and the first appearance of a 

discontinuity in tear film coverage.  Three values were recorded for each eye and the 

median used for comparison. 
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5.2.3.5 Quantifying clinical signs using CCLRU grading scale 

 

 

Figure 5.8: CCLRU grading scales – front (Cornea and Contact Lens Research Unit, School 

of Optometry, University of New South Wales). 
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Figure 5.9: CCLRU grading scales - back (Cornea and Contact Lens Research Unit, School 

of Optometry, University of New South Wales). 
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The CCLRU grading scale provides a set of photographs and illustrations to enable 

the quantification of changes to ocular surface and palpebral conjunctiva.  The ocular 

surface was assessed using a slit-lamp bio-microscope (10x magnification) under 

diffuse, white illumination and numerical values assigned to bulbar redness, limbal 

redness, lid redness, lid roughness, and corneal staining, in increments of 0.1 (Bailey 

et al., 1991). 

5.2.4 Statistical analysis 

All data was collated with Excel 2007 (Microsoft, Redmond, Washington, USA), and 

analysed within SPSS v13 (SPSS Inc, Armonk, NY, USA).  The data distribution was 

evaluated for normality using the Kolmogorov-Smirnov statistic.  Comparisons were 

made of clinical signs assessed before and after each impression procedure, and 

paired t-tests used to determine statistical significance at the 95% level. 

 

5.3 Results 

5.3.1 LogMAR Acuity: 

This was found to be slightly reduced by 0.5 letters, on average, following impression 

using either material, but this was not statistically significant. 

 

 

 

Figure 5.10: Change in best-corrected visual acuity following impression taking using 

Tresident and Orthoprint. 
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Clinical 
Outcome 

Mean differences in 
measurements pre- and 
post-impression 
procedure (unit±SD) 

Statistical significance 

 
Tresident Orthoprint 

Tresident      
T-test 

Orthoprint 
T-test 

Tresident vs 
Orthoprint 

LogMAR 
acuity 
(Log Units) 

-0.01±0.13 -0.01±0.21 p=0.414 p=0.082 p=0.593 

 

Table 5.2: Best-corrected visual acuity scores pre- and post-impression taking with Tresident 

and Orthoprint, mean difference in measurements for the cohort and statistical significance. 

 

5.3.2 Tear volume (Phenol red test) 

Following the impression procedure with both materials, the length of thread found to 

change colour increased, and this was clinically significant after Orthoprint was used. 

 

 

 

Figure 5.11: Difference in length of colour change recorded for Phenol red threads (mean 

±SD) pre- and post-impression taking using Tresident and Orthoprint. 
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Clinical 
Outcome 

Mean differences in 
measurements pre- and 

post-impression 
procedure (unit±SD) 

Statistical significance 

 
Tresident Orthoprint 

Tresident     
T-test 

Orthoprint 
T-test 

Tresident vs 
Orthoprint 

Phenol red 
test (mm) 

5.06±6.22 5.76±5.81 p=0.308 p<0.05 p=0.829 

 

Table 5.3: Differences in length of colour change recorded using Phenol red threads pre- 

and post- impression taking with Tresident and Orthoprint, mean difference (±SD) in 

measurements for the cohort and statistical significance. 

 

An additional +5.76±5.81 mm [SD] length of yellow cotton was measured following 

the use of Orthoprint, which was statistically significant (p<0.05).  Tear volume after 

Tresident use increased an additional +5.06±6.22 mm [SD], but this was not 

statistically significant (p=0.308). 

  



[Type text]  [Type text]  133 

 

5.3.3 TBUT 

This was found to be reduced following impression-taking with both materials, but 

was not clinically significant: 

 

 

Figure 5.12: Differences (mean ± SD) in TBUT pre- and post-impression taking using 

Tresident and Orthoprint. 

 

Clinical 
Outcome 

Mean differences in 
measurements pre- and 

post-impression 
procedure (unit±SD) 

Statistical significance 

 
Tresident Orthoprint 

Tresident     
T-test 

Orthoprint 
T-test 

Tresident vs 
Orthoprint 

TBUT 
(secs) 

-0.87±2.61 -1.28±2.03 p=0.383 p=0.094 p=0.265 

 

Table 5.4: TBUT pre- and post-impression taking with Tresident and Orthoprint, mean 

difference in measurements (±SD) for the cohort and statistical significance. 

 

Mean TBUT was 7.16±1.40 secs pre- and 6.68±1.27 secs post-Tresident 

impression, with a difference of -0.87±2.61 secs, which was not statistically 

significant (p=0.383).  Mean TBUT was 7.42±1.55 secs pre- and 6.61±1.33 secs 
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post-Orthoprint impression, giving a larger difference of -1.28±2.03 secs, but which 

did not reach statistical significance (p=0.094). 

 

5.3.4 Ocular redness 

 

 

 

Figure 5.13: CCLRU grading scales for bulbar, limbal and lid redness (Cornea and Contact 

Lens Research Unit, School of Optometry, University of New South Wales). 

 

Ocular redness was found to increase following impression taking with both 

impression materials.  A statistical difference was found between the numerical 

values assigned to bulbar redness after Orthoprint compared to Tresident 

(p=0.0231). 
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Figure 5.14: Differences (mean ±SD) in the clinical grading of bulbar, limbal and lid redness, 

pre- and post - impression taking using Tresident and Orthoprint. 

 

Clinical 
Outcome 

Mean differences in 
measurements pre- and 

post-impression 
procedure (unit±SD) 

Statistical significance 

 
Tresident Orthoprint 

Tresident     
T-test 

Orthoprint 
T-test 

Tresident vs 
Orthoprint 

Bulbar 
Redness 
(CCLRU 

units) 

0.64±0.58 1.12±0.42 p<0.001 p<0.001 p<0.05 

Limbal 
Redness 
(CCLRU 

units) 

0.70±0.31 1.05±0.28 p<0.005 p<0.005 p=0.072 

Lid 
Redness 
(CCLRU 

units) 

0.17±0.32 0.07±0.35 p<0.05 p=0.157 p=0.487 

 

Table 5.5: Clinical grading of ocular redness pre- and post-impression taking with Tresident 

and Orthoprint, mean difference in measurements (±SD) for the cohort and statistical 

significance. 
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Bulbar redness increased following impression taking with Tresident +0.64 ±0.58 

units (p<0.001), with a substantially greater change in redness following the use of 

Orthoprint +1.12 ±0.42 units (p<0.001).  The mean difference in bulbar redness 

between the two materials was statistically significant (p<0.05).  Similarly, limbal 

redness increased following impression taking, +0.70 ±0.31 units (p<0.005) after 

Tresident use and +1.05 ±0.28 units (p<0.005) after Orthoprint, however the mean 

difference between changes in bulbar redness when comparing the two materials 

was not statistically significant (p=0.072). 

 

There was a small change in lid redness recorded after impression-taking.  For 

Tresident this was 0.17 ±0.32units, which was statistically significant (p<0.05).  

However, the change was smaller after Orthoprint use ( 0.07 ±0.35 units) and was 

not statistically significant (p=0.487). 

 

 

5.3.5 Lid roughness 

 

 

 

Figure 5.15: CCLRU grading scale for lid roughness (Cornea and Contact Lens Research 

Unit, School of Optometry, University of New South Wales). 

 

The clinical grading of lid roughness was found to increase following impression 

taking with Tresident (0.03 ±0.25 CCLRU units), but this was not statistically 

significant (p=0.459).  Orthoprint had no detectable effect on lid roughness. 
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Figure 5.16: Differences (mean ±SD) in the clinical grading of lid roughness following 

impression taking using Tresident and Orthoprint. 

 

Clinical 
Outcome 

Mean differences in 
measurements pre- and 

post-impression 
procedure (unit±SD) 

Statistical significance 

 
Tresident Orthoprint 

Tresident    
T-test 

Orthoprint 
T-test 

Tresident vs 
Orthoprint 

Lid 
Roughness 

(CCLRU 
units) 

0.03±0.25 0.00±0.40 p=0.459 p=1.00 p=0.506 

 

Table 5.6: Clinical grading of lid roughness pre- and post-impression taking with Tresident 

and Orthoprint, mean difference (±SD) between measurements for the cohort and statistical 

significance. 
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5.3.6 Corneal staining 

 

 

 

Figure 5.17: CCLRU grading scales for corneal staining (Cornea and Contact Lens 

Research Unit, School of Optometry, University of New South Wales). 
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The clinical grading of corneal staining following impression-taking increased for both 

materials, although a statistically significant comparison was confined to Orthoprint. 

 

 

 

Figure 5.18: Differences (mean ± SD) in clinical grading of corneal integrity following 

impression taking using Tresident and Orthoprint. 
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Clinical 

Outcome 

Mean differences in 
measurements pre- and 

post-impression 
procedure (unit±SD) 

Statistical significance 

 
Tresident Orthoprint 

Tresident     
T-test 

Orthoprint 
T-test 

Tresident vs 
Orthoprint 

Type of 
corneal 
staining 
(CCLRU 

units) 

0.53±0.41 0.13±0.34 p=0.167 p=0.341 p=0.176 

Extent of 
corneal 
staining 
(CCLRU 

units) 

0.49±0.65 2.33±0.46 p=0.209 p<0.001 p<0.005 

Depth of 
corneal 
staining 
(CCLRU 

units) 

0.37±0.47 0.31±0.40 p=0.219 p<0.05 p=0.566 

 

Table 5.7: Clinical grading of corneal staining pre- and post-impression taking with Tresident 

and Orthoprint, mean difference (±SD) between measurements for the cohort and statistical 

significance. 

 

Corneal staining with fluorescein was recorded following impression-taking with both 

materials.  Staining type was micro-puncate and superficial after Orthoprint; 0.13 

±0.34 units (p=0.341), but was macro-punctate after Tresident; 0.53 ±0.41 units 

(p=0.167).  However, these changes were not statistically significant.  The extent of 

staining was found to increase substantially after Orthoprint impression to 2.33 ±0.46 

units (p<0.001).  These measurements indicate that, on average, 22% of the corneal 

surface (range 15-45%) was covered by staining.  The recorded increase in extent of 

staining after Tresident was small (0.49 ±0.65 units), which was not statistically 

significant (p=0.209) and the surface area stained was, on average, 10% (range 1-

22%).  Changes in the depth of staining were found to be small (0.31±0.40 units after 

Orthoprint, 0.37±0.47 after Tresident) changes which were statistically significant 

after Orthoprint, p<0.05, but not after Tresident (p=0.219). 
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5.4 Clinical summary 

 Visual acuity was unaffected by either material (clinically significant criterion 

Test-retest ± >2.4 letters (Raasch, Bailey and Bullimore, 1998)). 

 Tear volume increased with Orthoprint, but this was not clinically significant 

(clinically significant criterion >7 mm (Golding and Brennan, 1993)). 

 TBUT was marginally disrupted by both materials, but was not clinically 

significant (clinically significant criterion ± >3 secs (Johnson and Murphy, 

2005)). 

 Ocular redness increased with both materials; 

 Bulbar redness , - Orthoprint induced an abnormal hyperaemic response in 

over half of the cohort (clinically significant criterion CCLRU grading > 2.6 

units (Murphy et al., 2007) (Pult, 2008)).  Tresident increased bulbar redness 

within clinically acceptable limits (>0.4 units difference, <2.6 units post-

impression). 

 Limbal redness – Both materials increased limbal redness, Orthoprint greater 

than Tresident, but within normal limits (<2.4) (clinically significant criterion > 

2.4 units (Pult, 2008)). 

 Lid redness – Increased slightly following use of both Orthoprint and 

Tresident, Orthoprint had less effect (unknown clinically significant criterion). 

 Corneal staining was significantly greater after Orthoprint impression 

(clinically significant criterion > 0.5 units (Dundas, Walker and Woods, 2001)); 

Orthoprint – 15-45% of the cornea, micropunctate, fluorescein penetrated 

superficial epithelium 

Tresident – 1-22% of the cornea, macropunctate, fluorescein penetrated 

superficial epithelium. 

 

5.5 Discussion 

This study has provided evidence to support the use of Tresident (Shütz Dental 

Group GmbH, Germany) as the impression material of choice, with less preparation 

time, combined with a more effective and clinically viable method of carrying out 

ocular impression-taking, compared to the traditional Orthoprint (Zhermack SpA, 

Italy).  It has been shown that Orthoprint causes a clinically significant superficial 
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micro-punctate staining of the corneal epithelium, leading to a prolonged red eye 

response.  Following the use of Tresident, ocular signs were within normal limits, 

with minimal corneal staining.  This leads to several clinical implications: 

 

5.5.1 Increased hyperaemia 

This cohort appeared to represent a typical example of the young normal population, 

concurrent with findings of other studies measuring normal bulbar and limbal 

hyperaemia (Murphy et al., 2007), (Pult, 2008), (Gill, 2010). 

 

Study No of Subjects 
CCLRU Bulbar 

hyperaemia 
CCLRU Limbal 

hyperaemia 
(Murphy et al., 
2007) 

N=121 1.93±0.39 Not measured 

(Pult, 2008) N=120 1.82±0.39 1.62±0.46 
(Gill, 2010) N=47 1.70±0.21 1.51±0.30 
This study N=20 1.72±0.41 1.42±0.28 
 

Table 5.8: Comparison of normal clinical signs of bulbar and limbal hyperaemia graded using 

CCLRU scales. 

 

Bulbar and limbal hyperaemia are collectively associated with what is commonly 

referred to as a ‘red eye’.  Increased ocular hyperaemia is a warning of hypoxia, 

inflammation, infection, hypersensitivity and trauma (Leibowitz, 2000).  In this case, 

the most likely cause of hyperaemia was contact with the AOS.  Therefore it is not 

surprising to find that the conjunctiva responds to this invasive procedure by 

increasing its blood supply.  This is most likely due to a combination of mechanical 

and physiological factors.  After the use of Orthoprint, 7 subjects reported a foreign 

body sensation accompanied by a slightly red eye, which persisted for up to 24 hrs 

after the procedure.  These subjects were monitored carefully, provided with ocular 

lubricants and all symptoms resolved spontaneously.  Inflammatory signs were not 

observed on the tarsal conjunctiva or the dermis of the lids, both areas where in 

contact with Orthoprint.  A red eye caused by superficial trauma and resulting in no 

loss of tissue integrity will resolve after a few minutes.  This suggests that there may 
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be a chemical reaction occurring at the ocular surface interface, which could be 

attributed to: 

 Mixing: Poor mixing of the alginate, resulting in one or a combination of the 

chemical constituents causing damage to epithelial cell integrity. Potassium 

fluorotitanate (chemical modifier) is listed as a hazardous component on the 

Orthoprint data safety sheet according to Dir.2001/58/EEC.  1-3% of the 

composition is made up of this chemical, and if in contact with eyes, it advises 

to wash immediately with water for at least 10 mins. 

 Unknown contaminant: A faulty or contaminated batch of alginate. 

 Residual chemical complex: A chemical residue left on the ocular surface 

after the gel is formed, which was not removed by copious irrigation with 0.9% 

physiological saline. 

 Increased permeability of the cornea: Removal of multiple epithelial cells 

caused by physical contact with a setting alginate medium, allowing chemical 

contamination of the deeper layers of the epithelium. In addition anaesthetic 

instillation can cause reduced corneal sensitivity, reduced blink frequency and 

can precipitate abnormal drying of the AOS (Lyle and Page, 1975), 

encouraging adherence of the impression material to the epithelium. Toxic 

interactions between anaesthetic and corneal epithelial cells have been found 

to cause loss or damage to surface microvilli and deposition onto the cell 

membranes (Boljika, Kolar and Vidensek, 1994). 

 Combination: All or some of the factors above. 

 

Average bulbar redness using CCLRU scales in the normal population is reported to 

be 1.93 units, with scores of 2.6 units considered abnormal (Murphy et al., 2007).  

Eleven subjects had scores greater than this following the use of Orthoprint for 

ocular impression, which had an average score of 3.14±0.37 units (range 2.7 to 3.8 

units).  This constitutes an abnormal bulbar hyperaemic response in over half the 

cohort after an ocular impression using Orthoprint.  In contrast, 6 subjects had 

scores above normal, with an average of 3.31±0.41 units (range 2.8 – 3.8 units) after 

the procedure using Tresident. 
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The irritation of ocular tissues by irreversible hydrocolloids has been studied on white 

adult New Zealand rabbit eyes (Moergeli et al., 1985) and clinical observations in 

human eyes found a range of responses to the material, ranging from slight 

dehydration and irritation of the tissues to transient corneal abrasions (Storey, 1987).  

Ocularists described capillary dilation, tissue oedema and prolific tearing.  The study 

concluded that the impression material, similar in formulation to Orthoprint, elicited a 

significant acute inflammatory response in the rabbit conjunctiva on histological 

examination.  The authors attributed the tissue insult to the granular alginate material 

rubbing against the corneal and conjunctival tissue interface, concurrent with blinking 

and eye movement.  Additionally they speculated, as in this study, that the chemical 

setting aids, bimetallic fluorides may have had a toxic effect on the ocular tissues.  

The effects of the inflammatory response lasted 24 to 72 hours, leaving no 

permanent tissue damage (Moergeli et al., 1985). 

 

5.5.2 Increased corneal staining 

The measurements of baseline or pre-impression corneal staining were reported to 

be almost twice the average score found in a study carried out to establish 

background staining in normal eyes (Dundas et al., 2001).  This study also suggests 

that a score of >0.5 should be considered unusual, the findings in this study may be 

influenced by a relatively small sample size and an older median age found to have 

more staining (Norn, 1970). 

 

Study No of Subjects 
Median age 

(yrs) 
CCLRU Corneal 

Staining 
(Dundas et al., 
2001) 

N=102 22 0.33±0.23 

(Pult, 2008) N=33 - 0.13±0.36 
(Gill, 2010) N=47 26 0.23±0.39 
This study N=20 33 0.66±0.55 

 

Table 5.9: Comparison of normal clinical signs of corneal staining graded using CCLRU 

scales. 
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It is commonly accepted that fluorescein staining of the cornea represents 

compromised epithelial integrity (Morgan and Maldonado-Codina, 2009).  A red eye, 

accompanied by corneal staining, is intuitively taken as an unhealthy ocular situation 

and good practice advocates monitoring for signs of deterioration and treatment if 

necessary. 

A number of factors may have contributed to the extensive superficial staining 

observed on the cornea following the use of Orthoprint for impression taking: 

 Anaesthetic use: 0.5% Proxymetacaine HCl has been associated with 

increased corneal permeability to fluorescein (Green and Tonjum, 1971).  The 

use of anaesthetic prior to ocular impression-taking may contribute to the 

corneal staining, however this effect may be considered minor given that the 

eyes following Tresident use were significantly less stained. 

 Removal of epithelial cells: Impression cytology uses the adherent properties 

of the epithelial cells of the cornea and conjunctiva to study the changes to 

cell morphology that occur in ocular surface disease (Murube and Rivas, 

2003).  Cellulose acetate filter material  is cut into strips and pressed against 

the cornea and conjunctiva to harvest cells for investigation (Nelson, 1982).  

The corneal macro-punctate staining pattern following the use of Tresident 

suggests that a number of cells may have been removed in a similar fashion, 

adhering to the polyvinylsiloxane material.  This may offer cytologists a novel 

collection technique. 

 Toxicity: The mechanism for observing corneal staining is typically to use 

surface fluorescein pooling or ingress around epithelial cells (Morgan and 

Maldonado-Codina, 2009).  However, surface toxicity cannot be adequately 

explained in this manner.  If Orthoprint does indeed cause a chemical 

interaction with tear mucins or membranes of the corneal and conjunctival 

epithelial cells, then fluorescein may be staining the affected cell complexes.  

Thus the increased sensitivity reported by subjects after Orthoprint may be a 

result of the ‘toxic’ interaction that remains until the surface cells are sloughed 

off.  The initial increased cell permeability by proxymetacaine anaesthesia 

may encourage the acute inflammatory response and increase subsequent 

corneal staining observed. 
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 Damage to corneal integrity caused by one or a multitude of factors during 

ocular impression-taking requires careful monitoring and consideration given 

that any denudation of epithelium increases the risk of infection (Keay et al., 

2006). 
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5.6 Conclusion 

The use of Orthoprint during ocular impression-taking caused an abnormal 

hyperaemic response to the bulbar conjunctiva, accompanied by significant 

superficial corneal staining.  This may be attributed to a toxic reaction between the 

material and the eye surface, exacerbated by mechanical abrasion caused by eyelid 

movement and granular material apposition.  However, further investigation would be 

necessary to establish the exact nature of this interaction. 

 

Tresident was found to be the impression material of choice. This study found less 

redness and clinically insignificant staining following impression-taking with fewer 

clinical complications. 

 

To manage any clinical complications from using Tresident, the following advice is 

given: 

 Provide lubricating drops post–impression. 

 Review the ocular surface integrity 24 hrs later. 

 Exclude dry eye patients and those with a comprised ocular surface, where 

possible. 

 Consider prophylactic chloramphenicol treatment for patients with damaged or 

impaired ocular surface function. 

 

This, combined with the favourable handling and excellent physical properties, 

makes Tresident a superior material for taking ocular impressions.  For the first time 

using clinical grading scales, the effects of Orthoprint and Tresident have been 

evaluated to determine the ocular tissue complications following ocular impression 

procedures, providing comparative evidence and allowing practitioners to make an 

informed choice when deciding which material to use.  The incidental adherent 

properties of polyvinylsiloxane materials to cells of the AOS may offer a novel 

collection technique to study cytology. 
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Chapter 6 

The Cardiff Eyeshape Protocol – converting the ocular impression 

to a digital representation of the anterior ocular surface 

The most favourable impression material for rendering an accurate and highly 

detailed structural representation of the AOS was examined in Chapter 5.  The 

chosen material, an addition-polymerising, polyvinylsiloxane with hydrophilic 

properties, provided excellent elastic recovery and minimal linear dimensional 

change enabling the investigator to remove the material from the delicate anterior 

ocular surface (AOS) without damage, thus maintaining optimal feature 

representation and dynamic stability.  The Cardiff Eyeshape Protocol (CEP) was 

developed to provide anatomical registration of the AOS impression and deliver a 

precise and repeatable model of the AOS that could then be scanned using active 

laser triangulation methods. 

 

6.1 Introduction 

The first plaster casts from human cadaver eyes to be employed were used by glass 

blowers to make pioneering scleral contact lenses (Fick, 1888): the plaster of Paris 

surface was used to mould trial glass lenses.  Ocular impressions were later used to 

make a brass mould, which were used similarly to make glass scleral shells (Dallos, 

1936).  Fig 6.1 illustrates the method of production.  The protocol described in Fig 

6.1 does not include a description of any method of registration or orientation other 

than practitioner visualisation based on experience. 
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Figure 6.1: Schematic showing the lens making sequence; (a.) An impression is taken of the 

eye,(a1.) From which a cast is taken of that, (a2.) which is then set on a block. (b.) A female 

mould is taken from the cast in a low melting point material. (c.) A spigot is attached. (d.) The 

complete cast is enclosed in moulding material. (e.) The moulding material is removed to 

create a funnel and the whole mould is heated to remove the low melting point material.  (f.) 

A small quantity of hot brass is placed within the funnel, (f1) The lid of the moulding device is 

closed.  With added heat and pressure, the hot brass is drawn into the mould. (g.) The brass 

mould is removed from the casting apparatus (Bowden, 2009). 

 

Modern casting methods used a modified version of this protocol in the production of 

gas permeable scleral contact lenses.  Small quantities of gypsum plaster are 

poured into the ocular impression, which is housed in an impression tray supported 

by a narrow-necked bottle.  This primary cast is marked with a graphite pencil to 

locate the position of the vertical meridian (12 o’clock position), most commonly in 

line with markings on the impression tray, which are aligned with the correct 

anatomical location whilst in contact with the AOS (Pullum, 2007).  The base of the 

primary cast is added later to provide adequate support during the polymerisation 

process when constructing the rough polymer scleral lens blanks (illustrated in Fig 

6.2) 
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Figure 6.2: Construction of the mould required for rough rigid gas permeable scleral blanks 

(Pullum, 1987). 

 

The remainder of this chapter describes the development of the Cardiff Eyeshape 

Protocol (CEP) and investigates a method of transferring the anatomical registration 

to the cast representation which was principally achieved by holding the resulting 

model in a bench vice for stability during the laser scanning process. 

 

6.2 CEP Design and manufacture 

6.2.1 Casting support and landmark registration device 

An ocular impression casting tray (Cantor and Nissel Ltd, Brackley, 

Northamptonshire) was scanned using a touch-trigger probe installed on a co-

ordinate measurement machine (CMM) Mitutoyo CMM machine – CRA Apex C 

Model (2005) (Mitutoyo (UK) Ltd, Andover, Hampshire).  The digitised complex 

surface data was exported to CopyCAD 2010 (Autodesk, San Rafael, CA) and a 

casting support device designed to lock the impression tray position. The following 

series of diagrams (Fig 6.3-6.7) illustrate the design process undertaken which 

resulted in production of a casting support and landmark registration device. 

.
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Step 1: 

 

 

Figure 6.3: A non-uniform rational B-spline (NURBS) solid model of the locking mechanism 

used to position the impression tray (courtesy of Dr Hieu Le Chi, University of Greenwich). 

 

 

Step 2: 

 

 

Figure 6.4: A NURBS solid model showing the position of the impression tray in the 

surrounding support structure (courtesy of Dr Hieu Le Chi, University of Greenwich) 
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Step 3: 

 

Figure 6.5: The mechanism to align the registration of the AOS was designed to be clamped 

into the bench vice positioned beneath the scanner.  The arrows indicated the vertical 

meridian, which became an integral part of the AOS model as soon as the gypsum plaster 

had set and adhered to the polyamide material of the landmark device. 

 

Step 4: 

 

Figure 6.6: The landmark registration device was aligned with the impression tray 

registration dot(s), held in place by the locking mechanism. 
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Step 5: 

 

 

Figure 6.7: The final design was manufactured using selective laser sintering (SLS). 
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6.2.2 Prototype manufacture and testing 

 

 

 

          

Figure 6.8: The final version of the casting support device (top) with an impression tray and 

ocular impression held in place, the landmark registration device (below) showing bottom 

(left) and top (right). 

 

Extra-hard white plaster, Novadur (Ultima, Seiches-sur-Loir, France), a Type 4 

Gypsum plaster, which conforms to BS 6873 (BSI, 2000), was identified as a suitable 

compound to be used in conjunction with Tresident (Shütz Dental Group GmbH, 

Germany).  This product was found to have excellent adhesion to the polyamide 

powder used in the SLS process.  The prototype was tested using the methods 

described in Chapter 8 (Section 8.3.2). 
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6.2.3 Model AOS 

 

 

 

Figure 6.9: A model AOS with integral landmark registration device was tested using the 

bench vice for stabilisation and planar alignment (scanning laser showing as red line). 

 

6.3 Investigating repeatability, reproducibility and stability of the 

model AOS 

6.3.1 Aim 

The aim was to validate the Cardiff Eyeshape Protocol, and to provide evidence that 

supports the use of the protocol for wide-field topographic data collection from the 

human anterior ocular surface in-vivo, to a standard acceptable to current industry 

and clinical requirements. 

  

6.3.2 Introduction 

A non-contact active laser triangulation system HYSCAN 45c, (Hymarc Ltd, Ontario, 

Canada) was selected for data acquisition from the model AOS.  The advantages of 

this method where: 

 No physical contact with the AOS model interface 

 Fast digitising of substantial volumes 

 Good accuracy and resolution for most common applications 
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 Excellent ability to scan highly detailed objects, where mechanical probes 

may be too large to access small intricacies 

 

While this system was known to be less accurate than point-to-point sensing with 

touch-trigger probes, early experiments using the model prototypes suggested that 

the combined system error of using active laser triangulation amounted to 

±0.065mm, which was comparable to repeatability of the modern methods of 

measuring the ocular surface reviewed in Chapter 2 and close to the manufacturing 

tolerance for contact lenses (in the region of ± 0.050mm British Standards 18369-2 

(BSI, 2006)). 

 

The published expansion of Novadur (Ultima, Seiches-sûr-Loir, France) was found to 

be 0.15% after 2 hours, but no data was available for stability during any period 

longer than this.  It was envisaged that the model AOS casts might require storage 

for up to one month to allow data acquisition and analysis to be carried out. 

 

6.3.3 Hypotheses 

 Extra hard white plaster, Novadur (Ultima, Seiches-sûr-Loir, France), a Type 4 

Gypsum plaster, which conforms to BS 6873 (BSI, 2000), can be used to cast 

a precise and reproducible model of the AOS that is stable and can be stored 

for an extended period of time. 

 The accuracy of the Cardiff Eyeshape Protocol was within ±0.065mm. 

 

6.3.4 Methods 

6.3.4.1 Experimental procedure 

A single 22mm steel ball-bearing was cast as a surrogate AOS using the procedure 

described in Chapter 8 (Section 8.3.2).  The ball-bearing was supported to achieve a 

similar spatial orientation to the AOS in an upright individual.  The model AOS was 

cast using the casting support and landmark registration device designed for the 

CEP.  The model AOS was scanned using a touch-trigger probe installed on a co-

ordinate measurement machine (CMM) Mitutoyo CMM machine – CRA Apex C 
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Model (2005) (Mitutoyo (UK) Ltd, Andover, Hampshire) to ensure the highest 

accuracy of measurements (±0.001mm) (Pham and Le Chi, 2008). 

 

Repeatability 

A single model AOS prototype (221_1) was measured at 3 different locations (z-1 to 

-3) with 3 different measurement set-ups. 

 

Reproducibility 

12 model AOS prototypes were measured once and compared at one location (z-4) 

to a reference prototype 221_1. 

 

Stability 

12 model AOS prototypes were measured at one location (z-4) twice, one month 

apart. 

 

6.3.4.2 Data acquisition 

The registration point or datum was set at the top of the cast of the 22mm steel ball 

bearing and located at the centre of a circle at sagittal depth of 1mm (z=-1mm).  The 

circle was measured and located using 16 sampled points to define the location in 

order to ensure that the datum was located at the highest point at the centre of the 

circle (z=-1mm).  The CMM software was prepared to automatically set up the datum 

and measuring the circumscribed locations at z=-1 to -5.  The datum point and 

measurement locations were illustrated in Figure 6.10. 
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Figure 6.10: Diagram to show the measurement locations made by CMM and the datum 

point (courtesy of Dr Hieu Le Chi, University of Greenwich). 

 

6.3.4.3 Data presentation and analysis 

Measurements for the locations were presented as radial plots, using the least 

squares method, which determined the circle that makes the sum of the squares of 

the deviation between that circle and the measurement data a minimum.  These 

plots were colour-coded to provide visualisation of hot colours (light green to red) as 

positive error and cold colours (dark green to dark blue) as negative error. 
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6.3.5 Results 

6.3.5.1 Repeatability 

 

Figure 6.11: Comparison of the first and second measurement of prototype 221_1 at location 

z=-1 (100x magnification). 

 

Figure 6.12: Comparison of the first and third measurement of prototype 221_1 at location 

z=-1 (100x magnification). 
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Figure 6.13: Comparison of the first and second measurements of prototype 221_1 at 

location z=-2 (200x magnification) 

 

 

Figure 6.14: Comparison of the first and third measurement of prototype 221_1 at location 

z=-2 (200x magnification). 
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Figure 6.15: Comparison of the first and second measurements of prototype 221_1 at 

location z=-3 (300x magnification). 

 

Figure 6.16: Comparison of the first and third measurements of prototype 221_1 at location 

z=-3 (300x magnification). 
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Measurements of prototype 221_1 were most accurate at z=-3 at 300x magnification, 

range +0.007 to -0.006mm (magnification here refers to the size and scale of the 

radial graph) The average value for differences between curvature measurements 

the 3 locations was +0.008mm ±0.021 [SD]. 
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6.3.5.2 Reproducibility 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17: Comparison of measurements taken at location z-4 for prototypes 221_ 2 to 

221_12, using prototype 221_1 as the reference; a) prototype 221 _1 minus prototype 

221_2, b) prototype 221_1 minus prototype 221_3. 

a) 

b) 
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Figure 6.18: Comparison of measurements taken at location z-4 for prototypes 221_ 2 to 

221_12, using prototype 221_1 as the reference; c) prototype 221 _1 minus prototype 

221_4, d) prototype 221_1 minus prototype 221_5. 

 

c) 

d) 
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Figure 6.19: Comparison of measurements taken at location z-4 for prototypes 221_ 2 to 

221_12, using prototype 221_1 as the reference; e) prototype 221 _1 minus prototype 

221_6, f) prototype 221_1 minus prototype 221_7. 

 

e) 

f) 
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Figure 6.20: Comparison of measurements taken at location z-4 for prototypes 221_ 2 to 

221_12, using prototype 221_1 as the reference; g) prototype 221 _1 minus prototype 

221_8, h) prototype 221_1 minus prototype 221_9. 

 

g) 

h) 



[Type text]  [Type text]  167 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: Comparison of measurements taken at location z-4 for prototypes 221_ 2 to 

221_12, using prototype 221_1 as the reference; i) prototype 221 _1 minus prototype 

221_10, j) prototype 221_1 minus prototype 221_11. 

 

i) 

j) 
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Figure 6.22: Comparison of measurements taken at location z-4 for prototypes 221_ 2 to 

221_12, using prototype 221_1 as the reference; k) prototype 221 _1 minus prototype 

221_12. 

 

When comparing measurements of z=-4 for each of 11 prototypes, the reproduced 

22mm ball surface was found to be smaller than prototype 1, on average -

0.0019±0.073 mm (range 0.033 to -0.071). 

k) 
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6.3.5.3 Stability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Radial graphs showing comparison of measurements for prototypes 221_1 to 

221 _12 at location z-4 at a one month interval apart: a) prototype 221_1, b) prototype 

221_2.  

a) 

b) 
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Figure 6.18: Radial graphs showing comparison of measurements for prototypes 221_1 to 

221 _12 at location z-4 at a one month interval apart: c) prototype 221_3, d) prototype 

221_4. 

c) 

d) 
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Figure 6.18: Radial graphs showing comparison of measurements for prototypes 221_1 to 

221 _12 at location z-4 at a one month interval apart: e) prototype 221_5, f) prototype 221_6 

 

e) 

f) 
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Figure 6.18: Radial graphs showing comparison of measurements for prototypes 221_1 to 

221 _12 at location z-4 at a one month interval apart: g) prototype 221_7, h) prototype 

221_8 

 

g) 

h) 
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Figure 6.18: Radial graphs showing comparison of measurements for prototypes 221_1 to 

221 _12 at location z-4 at a one month interval apart: i) prototype 221_9, j) prototype 221_10 

 

i) 

j) 
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Figure 6.23: Radial graphs showing comparison of measurements for prototypes 221_1 to 

221 _12 at location z-4 at a one month interval apart: k) prototype 221_11, l) prototype 

221_12 

 

 

k) 

l) 
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Measurements for all 12 prototypes were found to be larger, when measured on the 

second occasion; at a one month interval.  The z-4 location was on average flatter 

0.027mm ±0.020 [SD]. 

 

6.3.6 Discussion 

This investigation has provided evidence to validate the combined use of ocular 

impression taking and CEP to provide a reliable system for collecting topographic 

data for a surrogate AOS (22mm ball bearing). Repeated measurements of a 

spherical 22mm diameter ball bearing cast according to the CEP, in the region 1-

3mm below the datum were observed to be highly repeatable; +0.008mm ±0.021 

[SD] . 12 castings of the same surrogate impression were also found to be 

reproducible to a high level of accuracy, the surface measurements were slightly 

smaller on average than the reference cast; -0.0019±0.073 (range 0.033 to -0.071). 

The AOS type IV gypsum casts were found to expand over a one month period by 

0.027mm ±0.020 [SD], and allowances were made for any casts that required 

storage. 

 

Further studies would be necessary to establish repeatability of anatomically 

accurate AOS surface models. 

 

6.3.7 Conclusions 

The Cardiff Eyeshape Protocol was found to meet all the requirements of a modern 

topographic data collection system: 

 Repeatability: +0.008mm ±0.021 [SD] 

 Reproducibility: -0.0019±0.073 (range 0.033 to -0.071) 

 Stability: Extra-hard white plaster, Novadur (Ultima, Seiches-sûr-Loir, France) 

was found to expand by 0.027mm ±0.020 [SD] over a one month period.
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Chapter 7 

Does ocular impression taking cause distortion of the anterior 

ocular surface? 

The previous chapter outlined the modernisation of the ocular impression taking 

procedure using the Cardiff Eyeshape Protocol. This protocol established a casting 

and scanning system that enabled the spatial registration of the AOS according to 

anatomical orientation and the creation of a stable platform to allow the accurate 

collection of up to 200,000 sample points per surface using non-contact active laser 

triangulation. The reliability of this protocol is assessed in the following series of 

experiments, which sought to identify whether the ocular surface topography is 

compromised by the invasive nature of the impression procedure. 

 

The precise details of the technique used for the purposes of ocular impression 

taking were described previously (see Chapter 5: section 5.2.3.1). With the subject 

seated in an upright position, a silicone-based material was applied to an eye-

shaped impression tray, which covered the AOS and was positioned beneath both 

upper and lower eyelids. The investigator supported the impression tray manually 

during the 2 mins 45 seconds required for the material to cure. During this 

procedure, there is an assumed amount of transient deformation of the AOS caused 

by the consistent contact of the material and tray, but the presence and extent of this 

deformation has not been previously reported or quantified. 

 

7.1 Aims and Hypotheses 

 The ocular impression technique used in the Cardiff Eyeshape Protocol does 

not deform the AOS to a clinically significant level. 

 This system can be used to provide valid and reliable measurements of wide-

field AOS morphometrics. 
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7.2 Study 1: To investigate the effect of ocular impression taking on 

the central cornea 

7.2.1 Aims and Hypotheses 

This study aimed to determine the topographic effect of modern ocular impression 

taking on the ACS, 10 minutes after the procedure. 

 

The hypotheses proposed are: 

 There is no significant lasting topographic deformation of the ACS in the 

principal meridians (horizontal and vertical) elicited by modern ocular 

impression taking. 

 Orbscan IIz is a suitable instrument with which to image the ACS for 

comparison purposes. 

 

7.2.2 Subjects 

Measurements from the right eye only of 104 subjects were included in the study, 

(69 ♀ and 35 ♂). The mean age of the cohort was 24.65 ±6.64 years [SD] (range 

17.61 to 42.55).  Ethical approval for the study was obtained from the Cardiff School 

of Optometry and Vision Sciences Human Ethics Committee.  All subjects were 

treated in accordance with the Tenets of the Declaration of Helsinki, and each 

provided informed, written consent. Volunteers were recruited from the staff and 

students of Cardiff University, and subjects were excluded if they were pregnant or 

breastfeeding, had any ocular or systemic condition known to affect the structure or 

characteristics of the anterior ocular surface, were taking any medication known to 

affect the ocular surface, had worn rigid lenses in the preceding 6 weeks or soft 

lenses in the preceding 2 weeks, and were not white European. This ethnic bias was 

chosen because it has been shown that ethnicity affects ocular surface 

morphometrics (Matsuda et al., 1992). 
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7.2.3 Experimental procedure 

The right eye of each individual was scanned on two occasions using the Orbscan 

IIz (Bausch & Lomb, Orbtek Inc., Salt Lake City, UT) slit-scanning video-keratoscope 

(Fig 7.1), immediately before and then 10 minutes after impression taking.  A 

previous study that compared the repeatability of axial radius of curvature for a 

single meridian using Orbscan IIz (Orb) technology found an insignificant difference 

in variability between 3 and 5 measures (Douthwaite and Parkinson, 2009). 

Ttherefore each scan was repeated 3 times and a mean value obtained.  The 

subjects were instructed to blink twice and stare wide-eyed before each image 

acquisition.  Measurements were made following the instructions from the Orbscan 

user manual, and subjects with poor tear break-up times were excluded from the 

study to minimise the influence of tear film variability on the reflected image quality. 

 

   

 

Figure 7.1: Orbscan IIz (Bausch & Lomb, Orbtek Inc., Salt Lake City, UT) 
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7.2.4 Analysis 

Mean axial curvature maps were sampled from the output screen (Fig 7.2) using an 

overlay grid with 0.5mm between each point. The transparent overlay was used to 

maximise the accuracy of cursor positioning.  The radii of curvature were recorded 

along the extent of the vertical and horizontal meridians. The limit of the profile was 

determined by the available data for each subject, which was restricted by the 

reflective properties of the pre-ocular tear film and the extremities of the vertical 

palpebral aperture. 

 

 

 

Figure 7.2: Orbscan IIz; Axial power keratometric output display (Scale bar set to radius of 

curvature). 
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7.2.5 Statistical analysis 

All data was collated with Excel 2007 (Microsoft®, Redmond, DC), and analysed 

within SPSS v13 (SPSS Inc, Armonk, NY).  Comparisons were made pre- and post-

impression in the horizontal and vertical meridians.  The profiles were aligned 

according to the instrument axis (designated ‘Apex’) and divided into annuli (Fig 7.3).  

A mean radius of curvature was calculated for each zone, with the length of each 

chord increasing in 1mm steps.  After establishing a normal distribution of 

differences using the Kolmorogov-Smirnov test, paired sample t-tests were used to 

examine the variability between measurements. 

  

 

Figure 7.3: Diagram to show the area of profile included in each zone of cumulative mean 

radius of curvature. 

 

The area of analysis was limited to 7mm horizontally and 4mm vertically, by the 

interference of the eyelids and eyelashes. 
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7.2.6 Results 

7.2.6.2 Horizontal meridian 

 

Table 7.1: Mean axial radius of curvature values measured using slit-scanning 

videokeratoscopy of the ACS, pre- and 10 minutes post-impression procedure in the 

horizontal meridian. 

 

 

Figure 7.4: Comparison of corneal topography measured using Orb pre- and post-ocular 

impression procedure in the horizontal meridian (error bars indicate ± 1SD). 
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In the horizontal meridian (seen in Table 7.1 and Fig 7.4), small, but not statistically 

significant, increases in axial radii (overall flattening) occur post impression 

procedure. The flattening was found to be at a minimum at the apex 0.010± 0.28mm 

[SD] and maximum at 2.5-3.0mm either side of the apex at 0.024± 0.26mm.[SD]  

The mean difference for the complete data set horizontally was 0.018± 0.25mm [SD] 

was not statistically significance (0.335<p<0.713). 
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7.2.6.3 Vertical meridian 

 

 

Table 7.2: Mean axial radius of curvature values measured using slit-scanning 

videokeratoscopy of the ACS, pre- and 10 minutes post-impression procedure in the vertical 

meridian. 

 

Figure 7.5: Comparison of corneal topography measured using Orb pre- and post-ocular 

impression procedure in the vertical meridian (error bar indicate ±1SD). 

 

Similarly (as seen in Table 7.2 and Fig 7.5) in the vertical meridian, small, but not 

statistically significant, increases in axial radii (overall flattening) occurred post 

impression procedure. For example, at the apex the axial radius increased 

(flattened) by only 0.003± 0.14mm [SD].  The mean difference for the complete data 

set horizontally was 0.013± 0.11mm [SD], which was not statistically significance 

(0.209<p<0.809). 
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7.2.7 Discussion 

This study examined the effect that ocular impression taking had on the ACS, 10 

minutes after the procedure. The factors that affected the quality of scans were 

related to: 

 

7.2.7.1 Instrument design 

The Orbscan combines the advantages of placido-based curvature topography 

(Smolek and Klyce, 1997) and slit-scanning elevation triangulation (Snook, 1995).  

However, placido disc technology fundamentally suffers from image degradation 

when the surface measured deviates from spherical or aspheric curvature.  It has 

been shown possible to create large, repeatable errors in the region of 200µm 

(Cairns and McGhee, 2005).  Given that these errors affect the fidelity of the surface 

representation, the additional 40 Tyndall images collected as the Scheimpflug slit-

beam strikes the reference plane, provide additional triangulated data which is 

faithful to complex surfaces (Cairns et al., 2003). In essence, the placido disc system 

provides the curvature data and the slit-scanning system provides the missing 

elevation data, at a total of 8,000 points per surface (Douthwaite, 2006).  However, 

the Orbscan IIz software has no exact method of determining the ACS 

measurements at the site of light entering and leaving via slit-illumination (Cairns et 

al., 2003) and instead relies on low-order polynomial interpolation between slit slices 

(Douthwaite, 2006). 

7.2.7.2 Technique 

Errors in improper focusing or misalignment during image capture were found to be 

the most significant from the clinical standpoint using video-keratoscopy techniques 

(Mandell, 1992).  However, since the introduction of slit-scanning with a Scheimpflug 

projection system in combination with videokeratoscopy, this issue has not been 

revisited.  The reason for this may be the significant complexities brought about by 

combining the two systems.  For example, the short focal length camera, which is 

used to image the s-shaped corneal optic sections of the cornea that joins at the 

centre of the placido disc reflected image (Fig 7.6), is optimally focused at a plane 

1.0mm behind the corneal surface (Cairns and McGhee, 2005). 
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Figure 7.6: Correct alignment of the Orbscan IIz device with 2 half-slits converging at the 

centre of the placid disc image (Cairns and McGhee, 2005) 

 

The image of the placido disc has been shown to be significantly posterior to this 

focusing plane (Applegate and Howland, 1995a), which leads to the question: how 

can both systems be focused adequately simultaneously, given that the relationship 

between the two planes of focus is dependent on the curvature of the corneal 

surface?  This error may be partially responsible for the wide range of limits of 

agreement found when investigating Orbscan IIz intra-examiner repeatability for 

apical radius (+2.26 to -2.49D), and inter-examiner reproducibility (+3.72 to -3.39) 

(Cho et al., 2002). Given these limitations care was taken during this investigation to 

optimise the results by having a single experienced operator, who carried out all 

measurements. 

7.2.7.3 Mechanical Effects 

The results show that the action of applying polyvinylsiloxane to the ACS tear-film 

interface has a small, overall flattening effect, which increases with distance from the 

apex. This may be attributed to the pressure-release valve theory (Fig 7.7). The 

pressure exerted by the liquid silicone impression material applied to the ACS was 

reduced by the displacement of the material along the hollow stem of the impression 

tray, but the release holes in the tray cup were unable to function with equal 
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efficiency since the lids offered opposing tension. This caused a movement of 

silicone towards the tray periphery, which combined with the pressure of the eyelids 

over the impression tray, caused an increasing compressive force over the 

measured ACS, and resulted in flattening curvature values. 

 

Figure 7.7: Position of the impression tray and fluid silicone impression material in contact 

with the AOS.  Within the initial seconds of contact, the silicone near the apex is released via 

the hollow stem of the tray, while the silicone in the area adjacent to ACS is forced towards 

the eyelid fornices by the tension of the lid against the tray (adapted from (Pullum, 2007)). 

 

7.2.7.4 Tear film stability 

Rinsing the fornices with saline following the impression procedure, combined with 

the hydrophilic properties of the polyvinyl siloxane, may have caused disruption to 

the tear film structure, resulting in a loss of integrity and a reduction in thickness.  

Tear break-up time was assessed during this study and was found to be significantly 

reduced (p<0.05) by, on average, -6.65 ±3.25 seconds post-impression procedure. 

Further investigation would be necessary to determine the exact nature of the 

silicone-tear film interaction during ocular impression taking. 

 

Polyvinylsiloxane impression 
material in fluid state 

Impression tray 
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7.2.7.5 Repeatability 

Excellent instrument repeatability was reported for anterior curvature for the Orbscan 

0.0002±0.0007mm (SD) centrally on test surfaces (Cairns and McGhee, 2005).  

These measurements were taken across the central 3.5mm of inanimate test 

objects, and the values increased in the periphery (beyond 3.5mm) to 

0.0007±0.0008mm (SD).  Given that these values are significantly smaller than the 

axial radii of curvature differences recorded over the ACS, the observed differences 

are unlikely to be attributed to instrument variability. 

7.2.7.6 Clinical implications 

The Orbscan has been demonstrated to provide precise (Douthwaite and Parkinson, 

2009) and highly accurate measurements of anterior surface elevation (Cairns et al., 

2002).  However, the fidelity of axial corneal topographic representation has been 

brought into question (Chapter 3).  The method of representing corneal topography 

to date has been to use simplified, mathematical models based on experimental 

data.  Assumptions have been made about the symmetry and rate of curvature 

change of the ACS, which have, no doubt, been reflected in the proprietary 

algorithms used in Orbscan IIz design. These factors render the Orbscan an 

exemplary machine with which to carry out comparative studies of the central 7mm 

of the human cornea. 
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7.2.8 Conclusion 

There was no significant change to the topographic representation of the ACS 

recorded using Orbscan IIz technology in horizontal meridian, up to an annulus of 

7mm or in the vertical meridian up to an annulus of 4mm, 10 minutes after the ocular 

impression procedure. The observed differences in radii of curvature found in this 

study fell within tolerances for contact lens fitting (0.05mm).  Further investigation 

would be necessary to establish inter-examiner and intra-examiner variability. 
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7.3 Study 2: Comparison of the impression cast and the ocular 

surface in-vivo using AS-OCT Visante™ 

7.3.1 Introduction 

Having examined the effects of the ocular impression taking procedure on the central 

cornea, the next step was to consider any effects on the peripheral topography and 

the corneo-limbal transition zone.  The AS-OCT Visante™ (Carl Zeiss, Meditec Inc., 

Dublin, CA) utilises a 1310nm super luminescent LED laser source to provide 

anatomical location and anterior segment metrics.  The scan dimensions are 16 x 

6mm (transverse x axial), providing AOS surface profiles that span the entire cornea, 

corneo-limbal junction and a sector of the anterior sclera. The device has been used 

to scan inanimate objects, such as scleral contact lenses (Gemoules, 2008), teeth 

(Daniel et al., 2002) and bone surface (Pau et al., 2008). In this study, the device 

was used to examine the AOS in-vivo and compare it to the reflected light image of 

the positive cast made from an ocular impression of the same eye. 

7.3.2 Aims and Objectives 

This study aimed to determine the topographic effect of modern ocular impression 

taking on the shape of the AOS, by examining the eye surface in-vivo and comparing 

it to the cast made from an impression of the same. 

 

The hypotheses proposed are: 

 There is no significant difference between the curvature profiles sampled from 

AS-OCT Visante™ images in the principal meridians of the AOS in-vivo 

compared with that of its representative cast. 

 AS-OCT Visante™ is a suitable instrument with which to image the AOS and 

representative cast surface for comparison purposes. 

7.3.3 Subjects 

Measurements from the right eyes only of 12 subjects were included in the study, (7 

♀ and 5 ♂), mean age of the group was 29.93±4.08 years [SD] (range 22.32 to 

37.73).  Ethical approval for the study was obtained from the Cardiff School of 

Optometry and Vision Sciences Human Ethics Committee.  All subjects were treated 
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in accordance with the Tenets of the Declaration of Helsinki, and each subject 

provided informed, written consent. Volunteers were recruited from the staff and 

students of Cardiff University, and subjects were excluded according to the same 

criteria used in Study 1. 

 

The subject group (Table 7.3) was chosen to represent the range of corneal radii of 

curvature of the white European sample population (n=124), (obtained from the 

cohort sampled in Chapter 8), as measured using the ‘traditional’ Javal-Schiötz 

keratometer.  The mean radius of curvature was found to be 7.75 ±0.28mm (Range 

7.28-8.80) 

 

Group 
Mean Javal-Schiötz 
Keratometry (mm) 

Number of 
individuals 

Selection criterion 

Steep 7.47 4 Mean + 1 Stdev 
Average 7.75 4 Mean 
Flat 8.03 4 Mean – 1 Stdev 

 

Table 7.3: Selection criterion of individuals chosen for comparison of the impression cast 

with the ocular surface in-vivo. 
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7.3.4 Experimental Procedure 

Repeated A-scans of the right eye were taken of the subject group using the AS-

OCT VisanteTM (Carl Zeiss, Meditec Inc., Dublin, CA) (Fig 7.8). 

 

 

Figure 7 8: AS-OCT Visante™ (Carl Zeiss, Meditec Inc., Dublin, CA) 

 

Three quad-scan sequences were collected of the eye in-vivo, followed by three 

quad-scan sequences of the impression cast.  The cast was aligned with the 

instrument axis using an aluminium support bracket, which enabled the positioning 

and focusing systems of the machine to function in accordance with in-vivo scanning 

protocol (Fig 7.9). Cast centralisation was optimised visually. 
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Figure 7.9: Position of the subject’s right eye on the chin rest of the AS-OCT Visante™ (left), 

and the corresponding cast aligned for scanning using the aluminium support bracket (right). 

 

Profiles from the horizontal and vertical meridians were extracted from the eye (Fig 

7.10) and cast (Fig 7.11) quad-scan sequence, and the proprietary curvature 

correction software disabled (software version 1.0.12.1896). 

 

Figure 7.10: An example of an AS-OCT Visante™ image of an eye (1017PSJT) in-vivo, in 

the horizontal meridian. 



[Type text]  [Type text]  193 

 

 

Figure 7.11: An example of an AS-OCT Visante™ image of a cast (1017PSJT) in the 

horizontal meridian 
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Eye and cast profiles were aligned using Adobe Photoshop v7 (Adobe Systems Inc., 

San Jose, CA).  Merged profiles were sampled using a Liberty BASIC 4.0 (Shoptalk 

Systems, Framingham, MA) program developed to measure co-ordinates of the 

cornea to sub-pixel precision (Dunne et al., 2007).  A screen overlay grid was used 

to sample surface co-ordinates (x,y) in units of 0.43mm (Fig 7.12) 

 

 

Figure 7.12: Screen shot to show the grid overlay used in conjunction with the custom-

designed Liberty BASIC 4.0 curvature sampling program (Dunne et al., 2007). 

 

7.3.5 Analysis 

Comparative profiles were graphed using Excel 2007 (Microsoft®, Redmond, WA) 

and assigned 4th order polynomial functions as surface descriptors.  These were 

used to calculate the area under each curve using GraphFunc (on-line java applet 

available at: www.seriesmathstudy.com).  Areas under the curves were compared at 

a depth of 2mm from the highest point of elevation horizontally and 1mm vertically, to 

ensure that each profile could be compared in a controlled fashion. The smaller 

vertical areas (1mm depth) reflect the limited access to the surface curvature 

afforded by the eyelid  position.   Paired sample t-tests were carried out to examine 

the variability. 
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7.3.6 Results 

7.3.6.1 Horizontal meridian 

Cross-sectional profiles of mean eye and cast imaged using AS-OCT were 

represented in the horizontal meridian, both shown with error bars of ±1SD (Fig 

7.13).  The relative height differences (elevation) between the mean eye and cast 

surfaces are shown in the figure below. 
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Figure 7.13: Horizontal 2-D profile comparison plots using AS-OCT Visante™ imaging to show the average eye in-vivo and its representative 

cast (top), with relative elevation differences between eye and cast shown below.  Graphs have been scaled to match on the horizontal axis. 
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The mean difference in elevation found when comparing the average AOS in-vivo 

with its representative cast in the horizontal meridian was +0.018mm ±0.03 [SD] 

(range 0.125 to -0.015).  The polynomial function shown in Fig 7.13 can be broken 

down into 3 distinct areas of interest: 

 Temporal peripheral cornea to anterior sclera: region 3.87 to 7.31mm 

temporal to the designated apex.  The cast became increasingly flatter than 

the eye contour moving from the nasal to temporal aspect.  0.001 – 0.125mm 

differences in elevation were found between the eye and cast, and the rate of 

change was optimally described by the 2nd order polynomial function: 

y = 0.0013x2 - 0.0301x + 0.1595, R² = 0.9925. 

 Apex to central temporal cornea: region 0.86 nasal to 3.87mm temporal to the 

designated apex.  The cast curvature was seen to dip, with the lowest point of 

inflection at 1.72mm from the apex.  The differences in elevation were -0.001 

to -0.015mm, and the curvature inflection trend was optimally described using 

the 4th order polynomial function: 

y = -0.00001x4 + 0.0003x3 - 0.0021x2 + 0.0042x - 0.0142, R² = 0.8429 

 Central nasal cornea to nasal anterior sclera: region 0.86mm to 6.88mm nasal 

to the designated apex.  The cast became increasingly flatter than the eye 

contour from temporal to nasal aspect, with a slower rate of change than 

measured on the temporal side.  The differences in elevation were between 

0.004 to 0.035mm, and the rate of change was optimally described using the 

4th order polynomial function: 

y = -0.000001x4 + 0.00003x3 - 0.0002x2 + 0.0025x + 0.0028, R² = 0.9449 
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Figure 7.14: Comparison of the areas under the curve for the eye in-vivo and representative 

cast at 2mm below the corneal apex (highest point of elevation), measured from sampled 

horizontal AS-OCT Visante™ images for each subject. 

 

The mean area under the curve in the horizontal meridian, measured 2mm from the 

designated corneal apex of the cast image group, was found to be marginally larger 

than the corresponding eye image group; difference 0.26mm ±0.33mm2 [SD] (range -

0.13 to 0.81mm2).  However, this difference between groups was not statistically 

significant (p=0.138). 
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7.3.6.2 Vertical meridian 

Cross-sectional profiles of mean eye and cast imaged using AS-OCT were 

represented in the vertical meridian, both shown with error bars of ±1SD (Fig 7.15). 

The relative height differences (elevation) between the eye and cast surface are 

shown in the figure overleaf. 
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Figure 7.15: Vertical 2-D profile comparison plots using AS-OCT Visante™ imaging to show the average eye in-vivo and its representative cast 

(top), with relative elevation differences between eye and cast shown below, graphs have been scaled to match on the horizontal axis. 
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The mean difference in elevation found when comparing the average AOS in-vivo 

with its representative cast in the vertical  meridian was +0.005 ±0.01mm [SD] (range 

0.028 to -0.002).  The data trend was best represented by a reverse-sigmoid curve 

with its inflection 0.86mm inferior to the designated corneal apex: 

y = 0.00002x3 - 0.0006x2 + 0.0053x - 0.0004, R² = 0.8971 

 

Superior to the inflection, the average cast becomes increasingly flatter than the eye 

contour.  Differences of 0.001 to 0.015mm in elevation were found between the 

average eye and cast contours, and on the inferior aspect the differences were -

0.004 to -0.020mm, with the cast contour becoming increasingly steeper than the 

average eye.  These elevation differences are smaller than those found in the 

horizontal meridian by a 10-fold order of magnitude. 
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Figure 7.16: Comparison of the areas under the curve for the eye in-vivo and representative 

cast at 1mm below the corneal apex (highest point of elevation), measured from sampled 

vertical AS-OCT Visante™ images for each subject. 

 

The mean area under the curve in the vertical meridian, measured 1mm from the 

designated corneal apex of the cast image group, was found to be almost identical to 

the corresponding eye image group; difference 0.00 ±0.010mm2 [SD] (range -0.11 to 

0.01mm2). The variability between groups was not statistically significant (p=0.911). 
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7.3.7 Discussion 

To our knowledge, this study is the first attempt to compare a group of eyes imaged 

in-vivo with their representative casts, using AS-OCT Visante™ technology. The 

results show surprisingly little deformation of the AOS measured, this is a positive 

result and indicates that the impression/scanning method is reliable and able to 

produce a true representation of the anterior ocular surface.  However, the 

methodology used in this study is limited by a number of complex control 

parameters, including a lack of anatomical registration and identical instrument 

alignment. 

 

7.3.7.1 Errors of alignment 

When imaging the AOS in-vivo, the scan should be centred on the corneal vertex 

reflex, which is seen on the AS-OCT instrument screen as a bright vertical flare line 

traversing the corneal profile (Fig 7.17). It has been suggested that it could be used 

as a reference for optical measurements (Huang and Izatt, 2008). 

 

 

 

Figure 7.17: AS-OCT Visante™ corneal profile image illustrating the corneal vertex reflex. 

 

However, the lack of transparency apparent in the gypsum plaster of the cast (Fig 

7.14) meant that this vertical flare was not replicated, and this limited the comparison 

of the images to geometric visualisation.  Furthermore, the lack of anatomical 

landmarks on the cast surface and the surface reflectivity may have facilitated further 

inaccuracies in the alignment process prior to quad-scan capture. 
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7.3.7.2 Repeatability of AS-OCT Visante™ 

Instrument repeatability for a small group (n=32) for the AOS was found to be poor 

0.158mm (Huang et al., 2008) in comparison to other commercial topographic 

systems. The manufacturer states transverse accuracy is 0.217mm, it may be 

speculated that this is most likely to be the affect of a slow scan speed.  Even at 

2000 axial-scans per second, eye movement during the scans produces a noticeable 

error in the surface topography and subsequent corneal power measurements 

(Huang et al., 2008). Random motion artefacts may have been a contributing factor 

in the differences seen between the moving eye in-vivo and the stationary cast. 

7.3.7.3 Averaging images 

There was no available averaging facility for individual corneal profiles from the AS-

OCT Visante™ quad-scan sequence. Three repeated scans were carried out for 

each subject; both eye and cast. The images which appeared to be the best 

resolution from each sequence where chosen for comparison purposes. 
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7.3.7.4 Clinical implications 

The elevation comparisons taken during this study show that the cast profile 

increasingly flattened in the horizontal meridian from the nasal to temporal aspect 

across the peripheral cornea, traversing the limbus and on to the anterior sclera (Fig 

7.18).  

 

 

 

Figure 7.18: Diagram to show the features of the AOS and the areas imaged using AS-OCT 

Visante™ and Orbscan IIz (adapted from (Apt, 1980)).  The green dotted line marks the 

position of the edge of the impression tray during impression taking, and the small white box, 

the area of possible compression. 

 

This presents two questions: why does compression occur in this region only and 

does it have any clinical significance?  Supporting evidence from scleral thickness 

studies shows that the sclera is thinnest  temporally 4mm from the limbus, 

measuring in the region of 450µm thick (Norman et al.).  When this is combined with 

the 6.3mm distance from the limbus to the lateral rectus insertion (Apt, 1980), the 

Limits of the area 
imaged by AS-OCT 
Visante™ 

Limits of the area 
imaged by Orbscan 
IIz 

Area of 
compression 

Demarcation of AOS 
contact with 
impression tray edge 
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reduced physiological strength of the lateral rectus compared to the opposing medial 

rectus may render this region vulnerable to compression (Meredith and Goldberg, 

1986).  Thus the flattening of the cast surface may have been caused by: 

 Localised pressure from the impression tray edge on the lateral rectus 

insertion causing the muscle to relax and release tension on the AOS (Vawda, 

Ranatunga and Geeves, 1995). 

 Asymmetric impression tray design caused an uneven spread of silicone 

impression material, and the increased bulk of material was inclined to flatten 

the area where it collected. 

 

The acceptable magnitude of error implicit in the cast production process is 

determined by its application. For example, the manufacturing of rigid gas permeable 

contact lenses requires high accuracy, in the region of ±0.05mm commensurate with 

the manufacturing tolerances of British Standards 18369-2 (BSI, 2006). However, 

this presents a problem, since, so far, the differences between AOS and cast have 

been described in terms of vertical height differences, but for application in contact 

lens manufacture however, radii of curvature are more appropriate.  The tangential 

radius of curvature, sometimes referred to as local or instantaneous radius of 

curvature, is the curvature at each point on the surface with respect to neighbouring 

points (Corbett et al., 1999a).  Methods of measurement are described in BS 19980 

(BSI, 2005a). Tangential radii of curvature were therefore calculated for the average 

eye and cast surfaces for the group, and compared graphically in a similar fashion as 

described for the elevation comparison (Fig 7.19). 
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Figure 7.19: Comparison of tangential curvature values determined from AS-OCT Visante™ images of the average (n=12) AOS in-vivo and 

representative cast. 
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Focusing again on the peripheral cornea to anterior sclera (temporal aspect), all of 

the instantaneous radii measurements here were found to be within 100µm; that is ±  

0.05mm (range 13.46 to 94.08µm), suggesting that the impression/scanning method 

would therefore be considered within clinically significant limits for rigid gas 

permeable contact lens manufacture. 

7.3.8 Summary of results 

 

 

Figure 7.20: Diagram to show the instantaneous curvature differences (mm) between the 

ocular surface in-vivo and a representative cast (n=12) using AS-OCT Visante™ to image 

the surfaces. The position of the corneo-limbal junction is indicated, in addition regions of 

specific interest to refractive surgeons (5-8mm annulus). 
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The summary diagram highlights the suitability of the ocular impression/casting 

procedure for refractive surgical planning and as a model surface for designing 

contact lenses. 

7.3.9 Conclusion 

 There were minimal differences between the curvature profiles sampled from 

the AS-OCT Visante™ images in the principal meridians of the average AOS 

in-vivo compared with that of its representative cast.  

 The region from the peripheral cornea to the anterior sclera in the horizontal 

meridian was flattened during ocular impression taking, but this was found to 

be within clinically significant limits and tolerance for rigid gas permeable 

contact lens manufacture.  Further work is necessary to establish regional 3-

dimensional topographic variation in representative cast contours, which may 

offer greater understanding of the interaction between AOS and the 

modernised ocular impression procedure. 

 The AS-OCT Visante™ was found to be a suitable instrument with which to 

image the AOS and representative cast surface for comparison purposes, 

within the 16mm x 6mm (transverse x axial) scan limits. 
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7.4 Study 3: Comparison of the impression cast using laser 

triangulation and AS-OCT Visante™ imaging 

7.4.1 Introduction 

In the previous study in this series, the accuracy of the topographic representation of 

the cast surface using AS-OCT Visante™ imaging was brought into question. Motion 

artefacts caused by insufficient scan speed and proprietary ‘de-warping’ algorithms 

based on Fermat’s principle (Huang et al., 2008) are likely contributing factors. If the 

suspected distortion of the cast surface contour caused by AS-OCT Visante™ 

imaging affected the output in an uneven distribution, this may partially explain the 

differences in elevation and tangential curvature seen in Study 2.  The fidelity of the 

cast surface representation provided by the AS-OCT Visante™ requires further 

investigation.  Chapter 6 outlined the Cardiff Eyeshape Protocol, which was 

designed to provide a wide-field morphometric data sampling system using a non-

contact active laser triangulation system HYSCAN 45c (Hymarc Ltd, Ontario, 

Canada) capable of scanning more than 200,000 point per cast surface to a 

accuracy of 0.060 ±0.025mm [SD] unpublished (Le Chi, 2008).  The casts used in 

Study 2 were sampled using the scanning system and the anterior surfaces 

compared to the AS-OCT Visante™ images. 

 

7.4.2 Aims and objectives 

This study aimed to establish the fidelity of AOS representation by AS-OCT 

Visante™ imaging by comparing the 2-D digital output to images sampled from 

scanning the cast using non-contact laser triangulation. The cast surface 

representation provided by the laser triangulation was used as the reference surface. 

 

The hypotheses proposed are: 

 Images of the cast moulded from modern ocular impression taking, and 

captured using AS-OCT Visante™ technology, are not a true representation 

of the surface profile. 
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 The differences found between digital images acquired of the cast surface 

using AS-OCT Visante™ and Hyscan 45c Laser triangulation are not clinically 

significant. 

 The differences found between digital images acquired of the cast surface 

using AS-OCT Visante™ and Hyscan 45c Laser triangulation are not 

consistent across the surface profile or orientation. 

7.4.3 Subjects 

The same subjects were used for this investigation as described in Study 2. 

7.4.4 Experimental procedure 

The AS-OCT Visante™ scans of the 12 casts were retrieved from the quad-scan 

sequences imaged using the procedure described in Study 2.  The casts were 

imaged using the Hyscan 45c scanning protocol outlined in Chapter 6. 

7.4.5 Sampling 

The AS-OCT Visante™ images of the cast were extracted from the quad scan 

sequences using proprietary software. Horizontal and vertical profiles were 

annotated using digital callipers provided (software version 1.0.12.1896) and 

converted to bitmap image format (Fig 7.21). 

 

 

 

Figure 7.21: A processed AS-OCT Visante™ image of the cast in horizontal profile showing 

dimensions provided by proprietary digital callipers. 
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2-dimensional profiles, captured using laser triangulation, were extracted from the 3-

dimensional surface plots using a purpose-designed OPTOMRC Visual Basic 6.0 

(Microsoft®, Redmond, WA) program imbedded in AutoCAD 2010 (Autodesk®, St 

Rafael, CA).  2-dimensional drawing outputs were annotated with linear dimension 

bars (Fig 7.22). 

 

 

Figure 7.22: A processed Hyscan 45c image of the cast in horizontal profile showing 

dimensions annotated using AutoCAD linear dimension bars. 

7.4.6 Analysis 

The images from each system were scaled to match and visually aligned using 

Adobe Photoshop v7 (Adobe Systems Inc., San Jose, CA).  Profiles were graphed 

and analysed using the techniques described in Study 2. 
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7.4.7 Results 

7.4.7.1 Horizontal meridian 
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Figure 7.23: Horizontal 2-dimensional profile comparison plots of the representative cast of the average AOS using AS-OCT Visante™ imaging 

and Hyscan 45c laser scanning technology, with relative elevation differences between aligned digital profiles shown below.  The graphs have 

been scaled to match on the horizontal axis. 
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The mean difference in elevation found when comparing the average AOS 

representative cast scanned by AS-OCT Visante™ and Hyscan 45c laser technology 

in the horizontal meridian was +0.033 ±0.03mm [SD] (range 0.090 to -0.052) with the 

laser representation as the reference (Fig 7.23). The data trend was best 

represented by a double hump curve with its central dip 0.86mm temporal to the 

designated corneal apex: 

y = 0.00000004x5 – 0.000006x4 + 0.0003x3 - 0.0062x2 + 0.0464x - 0.0362, 

R² = 0.8658 

On the temporal aspect the AS-OCT representation becomes increasing flatter 

reaching a maximum of 0.090mm at 5.90mm from the apex, (range of values from 

0.090 to -0.007). This is reflected in a similar fashion on the nasal aspect reaching a 

maximum of 0.070mm flatter than the Hyscan 45c radii measurements at 4.73mm 

from the apex. The AS-OCT image was steeper by -0.052mm at the furthest nasal 

sample location. 
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Figure 7.24: The areas under the curve at 2mm below the corneal apex (highest point of 

elevation) were measured from sampled horizontal AS-OCT Visante™ and Hyscan 45c laser 

scanned images for each subject; comparing cast surface representation between the 2 

techniques. 
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The mean area under the curve in the horizontal meridian (Fig 7.24), measured 2mm 

from the designated corneal apex of the AS-OCT image group, was found to be 

slightly larger than the corresponding Hyscan 45c image group; 0.390 ±0.84mm [SD] 

(range -1.15 to 1.08mm). The variability between groups was not statistically 

significant (p=0.062). 

 

7.4.7.2 Vertical meridian 
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Figure 7.25: Vertical 2-dimensional profile comparison plots of the representative cast of the average AOS using AS-OCT Visante™ imaging 

and Hyscan 45c laser scanning technology, with relative elevation differences between aligned digital profiles shown below.  Graphs have been 

scaled to match on the horizontal axis. 
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The mean difference in elevation found when comparing the average AOS 

representative cast scanned by AS-OCT Visante™ and Hyscan 45c laser technology 

in the vertical meridian was +0.045 ±0.05mm [SD] (range 0.101 to -0.144) with the 

laser representation as the reference (Fig 7.25). The data trend was best 

represented by a double hump curve (as with the horizontal data) with its central dip 

0.86mm inferior to the designated corneal apex: 

y = 0.00000002x5 – 0.000004x4 + 0.0003x3 - 0.0083x2 + 0.0863x - 0.2051, 

R² = 0.9166 

On the superior aspect the AS-OCT representation becomes increasing flatter 

reaching a maximum of 0.101mm at 5.59mm from the apex, (range of values from 

0.100 to -0.144). This is reflected in a similar fashion on the inferior aspect reaching 

a maximum of 0.086mm flatter than the Hyscan 45c radii measurements at 6.45mm 

from the apex. The AS-OCT image was steeper by -0.144mm at the furthest superior 

sample location. 
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Figure 7.26: Areas under the curve at 2mm below the corneal apex (highest point of 

elevation) were measured from sampled vertical AS-OCT Visante™ and Hyscan 45c laser 

scanned images for each subject; comparing cast surface representation between the 2 

techniques. 
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The mean area under the curve in the vertical meridian, measured 2mm from the 

designated corneal apex of the AS-OCT image group (Fig 7.26), was found to be 

slightly larger than the corresponding Hyscan 45c image group; 0.160 ±0.76mm [SD] 

(range -0.99 to 0.98mm). The variability between groups was not statistically 

significant (p=0.343). 

 

7.4.8 Discussion 

During the course of this investigation the Hyscan 45c laser scanned image was 

presented as the gold standard representation of the ocular cast surface. These 

images were compared to those scanned using AS-OCT Visante™ technology to 

determine whether the changes in curvature observed in Study 2 were influenced by 

proprietary curvature correction factors. It has been demonstrated that there were 

clinically significant differences between the two methods in some areas (>0.050mm 

for contact lens fitting and >0.100mm tolerance for contact lens manufacture) found 

along both horizontal and vertical meridians. As in study 2, limitations of the 

investigation were: 

 

7.4.8.1 Errors in alignment 

The Hyscan 45c images were obtained initially in 3-dimensional format. The corneal 

apex was identified using the methods stipulated by BS EN ISO 19980 (BSI, 2005b). 

The AS-OCT Visante™ apex registration relied on lining up the cast apex with the 

machine instrument axis, due to lack of transparency of the gypsum plaster this 

relied on the operator visualising this alignment and further refinement of registration 

during image overlaying. The success of this process was influenced by the 

asymmetric nature of the 2-dimensional profile, however the exact influence of this 

parameter requires further investigation. 

7.4.8.2 Repeatability of AS-OCT Visante™ 

 This has been discussed in Study 2. 
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7.4.8.3 Repeatability of Hyscan 45c 

Chapter 6 outlined a study that provided for a small group (n=12) of 22mm ball 

bearing casts (AOS surrogates) using the active laser triangulation system (±0.008 

±0.021mm [SD]). 

7.4.8.4 Averaging images 

Each cast was scanned once using the Hyscan 45c laser device, the profiles 

extracted were compared to the best quality AS-OCT image profile from a series of 

3. There were no available systems for averaging for either technology. Further 

investigation would be required here to optimise accuracy of both scans. 

7.4.8.5 Contact lens fitting with AS-OCT Visante™  

AS-OCT Visante™ has been used as part of a novel scleral lens fitting system 

(Gemoules, 2008), the practitioner calculated fitting base curve values using AS-

OCT images and concluded that they were, on average, -0.110mm steeper than the 

base-curve values measured using a radiuscope. This concurs with the findings of 

this study that the AS-OCT representation is flatter than the ‘true’ surface shape 

hence the scleral lens that will align best with the surface shape will be steeper than 

the calculated measurements from the AS-OCT images. Using AS-OCT sagittal and 

chord measurements from the AOS, combined with corneal topography from another 

instrument, the accuracy and efficiency of scleral contact lens fitting has been 

improved. 

7.4.8.6 Correcting the curvature 

A study assessing the accuracy of the AS-OCT Visante™ for corneal and lens 

biometry using a model eye, found that the AS-OCT overestimates anterior corneal 

surface radii within clinically acceptable limits over the central 6mm annulus (region) 

by +0.020mm (Dunne et al., 2007).  However the authors observed that the x-

coordinate error increased towards the periphery (Fig 7.27)  
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Figure 7.27: AS-OCT Visante™ representation of the AOS (top) using built-in software 

(indicated as dotted line) compared to improved computing scheme (indicated as thick line 

with large circles) adapted from (Dunne et al., 2007). 

 

This finding agrees with the present study and offers a possible solution to improving 

the fidelity of AS-OCT AOS representation. However the model eye anterior surface 

curvature radii used in Dunne’s study were simplified monocurve or bicurve designs 

which may not provide the most accurate solution in light of the ‘true’ surface 

asymmetry observed in human eyes. Further work is required to factor out this 

parameter. 

Anterior ocular 
surface 

Transverse distance (mm) 

Axial distance 
(mm) 
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7.4.8.7 Summary of Results 

 Study 1 Study 2 Study 3 
Question Does impression 

taking deform the 
cornea, 10 mins 
after the 
procedure? 

Is the cast scan 
as good as the 
eye scan? 

Is the AS-OCT 
providing an 
accurate cast 
representation? 

Instruments Orbscan IIz  
 

AS-OCT 
Visante™ 
 

AS-OCT 
Visante™ and 
Hyscan 45C laser 

Horizontal 
meridian (180˚) 

No significant 
change up to 
7mm annulus – 
limited by 
reflective surface 

No - peripheral 
cornea to the 
anterior sclera 
was flattened 
during ocular 
impression taking 
influenced by AS-
OCT AOS 
infidelity. 

No, pattern of 
increasing 
flattening up to 
corneo-limbal 
transition 

Vertical 
meridian (90˚) 

No significant 
change up to a 4 
mm annulus – 
limited by eyelids 

Yes – but access 
to AOS limited by 
eyelids 

No pattern of 
increasing 
flattening of lower 
magnitude than 
horizontal profile 

Area under the 
curve 

Not done Not significantly 
different 

Not significantly 
different 

 

7.4.9 Conclusions 

Images of the AOS cast moulded from modern ocular impression taking, and 

captured using AS-OCT Visante™ technology, are not a true representation of the 

surface profile. Refinement of curvature correction algorithms may improve the 

fidelity, and  further investigation is required to establish the optimal approach. 

The differences found between digital images acquired of the cast surface using AS-

OCT Visante™ and Hyscan 45c Laser triangulation are clinically significant at one 

point sampled on the horizontal profile.  Further work is required to improve sample 

density and location to clarify these initial findings since curvature variation trend was 

not found to be consistent across the sampled surface profiles. 
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7.5 General Conclusions 

 The AS-OCT Visante™ can be used to image ocular casts poured from 

Novadur Type IV Gypsum plaster.  

 Ocular impression/casting procedures used for these studies flatten the 

peripheral cornea, corneo-limbal transition and anterior sclera located on the 

temporal aspect of the horizontal meridian, this surface alteration was found 

to be within tolerance for gas permeable lens manufacture.  

 The changes observed are influenced to some extent by the inaccurate 

representation of the AOS by AS-OCT Visante™ and the expansion of the 

Novadur type IV gypsum plaster (Chapter 6). Nevertheless this system of 

quantification and representation of the human AOS in-vivo is suitable and 

satisfies the requirements of wide-field AOS exploration for this study in the 

absence of any less invasive method.



[Type text]  [Type text]  226 

 

Chapter 8 

Defining the entire anterior ocular surface shape using ocular 

impression techniques 

 

‘The eye, being an anatomical structure, is so complex that it can only be quantified 

if certain assumptions are made about its anatomy.  This simplifies the construction 

of the model, but reduces the exactness.’ 

(Saunders, 1982) 

 

8.1 Introduction 

During the course of investigations for this thesis, the ocular impression-taking 

technique used primarily in modern clinical practice for the fabrication of scleral and 

cosmetic lens shells has been modernised and undergone rigorous scrutiny.  

Chapter 7 has provided evidence to support the use of this procedure in the absence 

of any other less invasive method to explore the uncharted topographic regions of 

the human AOS in-vivo, those areas of interest which are ordinarily covered by the 

eyelids and beyond the peripheral cornea, and thus inaccessible to optical imaging 

techniques. 

 

The Cardiff Eyeshape protocol, outlined in Chapter 6, has extended the ocular 

impression technique by including a system of casting that provides an anatomical 

reference, along with platform stability, to facilitate the collection of a digital 3-D 

representation of the AOS by non-contact active laser triangulation.  A database of 

ocular impressions was compiled that is thought to be representative of the white 

European population.  For the first time wide-field AOS morphometric descriptors 

were assigned to anatomical regions previously only viewed by shadow photography 

of impression casts (Marriott, 1966), (Pullum, 2007) or measured ex-vivo (Apt, 1980) 

in a physiologically compromised state.  Using this database, this chapter outlines 

the topographic characteristics of the human AOS in-vivo in relation to anatomical 

location, refractive error and gender. 
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8.2 Background 

Customised treatments and increasingly higher patient expectations after anterior 

ocular surgical procedures have intensified the demand on technology to provide 

reliable, repeatable and highly accurate ocular surface contour measurements 

(Wang et al., 2006).  The advent of femtosecond laser-assisted refractive surgery 

has enabled flaps of corneal tissue to be cut as thin as 0.09mm (Soong and Malta, 

2009), with an accuracy of 0.001mm (Jonas and Vossmerbäumer, 2004).  These 

procedures are reliant on measurements that preserve topographic fidelity of the 

AOS, as also are the designs for comfortable, clinically viable contact lenses used 

for optical or cosmetic rehabilitation.  Chapter 3 presented the problem that arises 

from an increasingly uncertain reliability of AOS representation beyond the 3mm 

apical region using slit-scanning placido disk technology and Schiempflug 

photographic methods. Yet both systems are currently used to provide topographic 

data for refractive surgical planning.  It follows then that a gold standard topographic 

representation of the human AOS in-vivo would offer invaluable insights, for the 

implementation of improved curvature correction algorithms for current technologies, 

extended topographic profiles with which to design contact lenses with optimal 

apposition to AOS contour, particularly those with larger diameters, and baseline 

data with which to study structural AOS abnormality and pathological change.  This 

data could be used to provide further accuracy to finite element analysis of the AOS, 

modelling physical changes and predicting behaviour of the structures.  Stresses in 

the cornea due to posterior pressure have also been found to be dependent on 

topography (Elsheikh, 2010), which has implications for studies relating to the 

measurement of raised intraocular pressure and treatment of glaucoma. 

 

The topography of the ACS has previously been studied using a two-part 

polyvinylsiloxane material to assess ablation rates, profiles and volumetry when 

Er:YAG laser was used to photoablate the cornea of rabbits (Bachmann et al., 1992) 

and human subjects (Bachmann et al., 1993).  The authors reported a cast accuracy 

of less than 1µm and that the silicone did not appear to interfere with the wound 

healing mechanisms of the corneal epithelium.  These studies support the choice of 

ocular impression material used here and the suitability of the modern ocular 
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impression-taking procedure for evaluation of a detailed, accurate representation of 

the AOS. 

 

8.3 Aims and Objectives 

This study used a modernised ocular impression procedure and the Cardiff 

Eyeshape protocol to obtain topographic data from the cornea, limbus and anterior 

sclera of human subjects’ in-vivo.  The hypotheses proposed were: 

 AOS data collected by scanning casts of ocular impressions can be used to 

describe changes in the surface profile related to: 

1. Anatomical location 

2. Refractive error in myopia 

3. Gender 

 This process may be presented as the ‘gold standard’ for wide-field 

topographic validation of the AOS surface characteristics in human in-vivo 

subjects. 

 

8.4 Methods 

8.4.1 Subjects 

Ocular impressions were carried out on 124 white European subjects recruited for 

the investigation.  Subsequently 5 casts were excluded due to unacceptable surface 

irregularities, and therefore 119 were included in the final analysis (76 ♀ and 42 ♂), 

mean age of the cohort was 25.43±5.34 years [SD] (range 17.61 to 42.55).  Ethical 

approval for the study was obtained from the Cardiff School of Optometry and Vision 

Sciences Human Ethics Committee.  All subjects were treated in accordance with 

the Tenets of the Declaration of Helsinki, and each provided informed, written 

consent.  Volunteers were recruited from the staff and students of Cardiff University, 

and were excluded if they were pregnant or breastfeeding, had any ocular or 

systemic condition known to affect the structure or characteristics of the anterior 

ocular surface, were taking any medication known to affect the ocular surface, had 

worn rigid gas permeable lenses in the preceding 6 weeks or soft lenses in the 

preceding 2 weeks, and were not white European.  This ethnic bias was chosen 
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because it has been shown that ethnicity affects ocular surface morphometrics 

(Matsuda et al., 1992), (Ip et al., 2007), (Logan et al., 2004). 

 

8.4.2 Experimental procedure 

The method used to obtain an ocular impression of the AOS has been described in 

detail in Chapter 5 (Section 5.2.2).  The cast was poured using extra-hard white 

plaster, Novadur (Ultima, Seiches-sûr-Loir, France), a Type 4 Gypsum plaster which 

conforms to BS 6873 (BSI, 2000).  The impression tray and material were placed 

into the casting support device (Fig 8.1) lined up with the cut-out slot and locked in 

place. 

 

 

 

 

Figure 8.1: Cross-sectional view of the casting support device showing the position of the 

impression tray and the mechanism used to lock the tray in place (courtesy of Dr Hieu Le 

Chi, University of Greenwich). 

 

A PVC ring (die cavity) was positioned to align the opening with the registration 

marks on the casting support device, and temporarily secured using adhesive tape 

(Fig 8.2). 
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Figure 8.2: Casting support device photographed from above, showing the PVC ring 

positioned within the impression tray, and the impression material in-situ in preparation for 

casting. 

 

The PVC ring was removed and Tresident were introduced to the device around the 

edge of the acrylic tray to support and stabilise the impression.  Thereafter, the PVC 

ring was repositioned and left for 5 minutes to ensure the silicone had cured.  Then 

37.5cc of tap water was added to 150g of Novadur and mixed using a metal spatula 

in a rubber plaster bowl.  The mixture was poured uniformally into the die cavity and 

tapped to remove any air trapped in the plaster body (Fig 8.3). 
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Figure 8.3: Photograph showing wet plaster being poured into the die cavity (courtesy of 

Benjamin Jones). 

 

The working time for the material was 5-6 mins, and within this time a landmark 

registration disc was floated onto the wet plaster, lining up with the slots in the 

casting support device (Fig 8.4). 
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Figure 8.4: Photograph showing the landmark registration disc positioned and floated onto 

the wet plaster (courtesy of Benjamin Jones). 

 

The plaster was set after 11-15 mins, but, following manufacturer’s instructions, the 

cast was not removed for 45 mins.  The excess plaster was removed using a paring-

off scalpel and the combined cast and registration disc stored with a duplicate cast to 

be transported to the scanning facility. 

 

The cast was scanned using a non-contact, active, laser triangulation system 

HYSCAN 45c, (Hymarc Ltd, Ontario, Canada).  A 25μm infra-red laser beam 

collected the surface data at up to 2000 points per second (Fig 8.5).  The cast was 

connected, via optoisolator electronics, to the DEA IOTA 1102 scales (CMM 

Technology Inc, CA, USA), allowing synchronisation of cast movement with the laser 

beam to determine XYZ coordinates and intensity data.  A dedicated ethernet link 

was used to transmit the points to a Windows NT Workstation computer running 

XhyscanNT (Hymarc Ltd, Ontario, Canada). 
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Figure 8.5: Photograph to show the cast held in the scanner vice, with the laser beam shown 

as a red line crossing the surface collecting co-ordinate data in digital format. 

 

The data collected by the scanner was processed by isolating the surface of interest, 

establishing registration in the x, y and z planes, smoothing, and finally producing a 

NURBS model (non-uniform rational B-splines), which is a 3-D representation that 

was used for analysis (Fig 8.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6: A NURBS 3-D model of the anterior ocular surface topography from ocular 

impression cast (Courtesy of Dr Hieu Le Chi, Greenwich University) 
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8.4.3 Data extraction 

This section describes the methods that were used to locate and separate the 

specific data subsets from the 200,000 point cloud obtained by scanning the eye 

cast with a laser system. 

8.4.3.1 2-dimensional contour profiles 

Data clouds from the NURBS 3-dimensional array were allocated an stl 

(stereolithography) file format generated by the proprietary computer-aided design 

(CAD) software system XhyscanNT.  These files described the surface geometry of 

the cast without any other CAD attributes; for example, texture and colour.  These 

files were transcoded to text file format of x,y,z co-ordinates and 2-dimensional 

profiles, sampled using a custom-designed Visual Basic for applications (VBA) 

module (Microsoft®, WA, USA).  The module OPTOMRC  (Fig 8.7) was embedded 

in AutoCAD 2010 (Autodesk® Inc, CA, USA) enabling profiles to be sampled every 5 

degrees, and the output stored as a text file containing sagittal radius of curvature 

measurements at 800 points along the profile and the associated x,y co-ordinates to 

locate the positions. 
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Figure 8.7: Screen grab to show the Visual Basic for Applications module (OPTOMRC) 

interface with AutoCAD 2010. 

 

The profile orientation was standardised in Cartesian convention, from positive to 

negative.  The arrangement of profiles is seen in Fig 8.8 (below). 
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Figure 8.8: The arrangement of 2-dimensional AOS profiles from P1 to P36; angle between 

consecutive profiles was 5° (Courtesy of Dr Hieu Le Chi, Greenwich University). 

 

2-dimensional data sets were exported to macro-enabled Excel 2007 spreadsheets 

(Microsoft®, WA, USA), within which the 800 point profiles were sampled at 0.25mm 

and 0.50mm intervals (linear grid measurements), from the highest point of elevation 

or designated apex.  These profiles were plotted for initial visualisation and 

anatomical locations assigned.  These locations were determined, in part, by 

examining the AS-OCT Visante™ images of a number of individuals from the studies 

carried out in Chapter 7. 

P1 (0o) 

P7 (30o) 

P13 (60o) 

P19 (90o) 

P25 (120o) 

P31 (150o) 

 

P36 (175o) 
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8.4.3.2 Cast volume 

3-dimensional volume measurements from cast surface plots were extracted from 

the XhyscanNT files viewed in AutoCAD 2010.  Using 1:1 scalar representation, the 

z-plane 4mm below the corneal apex of the cast was identified and the volume 

calculated (Fig 8.9) 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9: Screen grabs of the cast surface plots in AutoCAD 2010, showing delineation of 

the z-plane (4mm below corneal apex), and preparation for volume tool quantification 

(courtesy of Dr Hieu Le Chi, Greenwich University). 
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8.4.4 Data management 

This section provides definitions of the topographic descriptors, along with the 

system adopted to optimise the nomenclature of orientation and location used during 

this investigation and which outlines categorisation of the cohort by means of 

refractive error group.  The method of cleansing unreliable central corneal data 

clustered at the apex is reported. 

8.4.4.1 Definition of axial (sagittal) curvature 

 

a) Corneal apex (C) 

The location on the cast surface, where the mean of the local principal curvature 

is greatest. 

 

b) Instrument axis (I) 

The line perpendicular to the plane of tangency to the designated corneal apex of 

the cast surface. 

 

c) Axial (sagittal) radius of curvature (ra) 

The distance in mm from a point (B) on the cast surface to the instrument axis, 

along the anterior ocular surface meridian normal at the point (Fig 8.10). 
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Figure 8.10: Illustration of the axial radius of curvature (ra) showing the instrument axis and 

corneal apex. 

 

8.4.4.2 Meridional profile descriptors 

Using the standard optometric axis notation to ascertain orientation, 2-dimensional 

meridional topographic profiles were extracted and assigned anatomical regions of 

interest (Fig 8.11).  The sampled sections were horizontal (180°), positive oblique 

(45°), vertical (90°) and negative oblique (135°). 

 

 

Figure 8.11: Diagram to illustrate the anatomical descriptors assigned to the 2-dimensional 

AOS profiles. 

 

The majority of studies of corneal topography have investigated the central 6mm, a 

diameter limited by the method of data collection (Read et al., 2006a).  In the earlier 

studies, morphometrics of the central cornea, often described as the corneal ‘cap’, 
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were found to be affected by an artefact of the measurement methods (Mandell, 

1992), principally that the criterion for the diameter of the central area was given an 

arbitrary value of 3-4 mm.  For comparison, this study chose to represent the central 

cornea as a 3mm chord centred on the apex value, but the mean values of all radii of 

curvature along each profile section were instead calculated following removal of 

spurious radii values calculated by OPTOMRC VBA data extraction module close to 

the instrument axis.  (If more than 40 sample points (>1mm of the profile contour) 

were removed from the data string, the curvature values were interpolated using a 

4th order polynomial function).  In this way, the measurement accuracy of the 

‘central cap’ was improved. 
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The table below (Table 8.1) illustrates the working methods used to establish this 

precedent, all measurements in millimetres. 

 

Method 

Mean 
axial 

radius of 
curvature 

n=119 

Standard 
deviation 

[SD] 
Comment 

CC Raw 38.38 ±359.57 Spurious numbers 

CC Outliers removed 7.59 ±0.51  

CC Apical zone removed 7.80 ±0.32 Flatter than expected 

CC Removal <40 pts and 
interpolate >40 pts 7.23 ±0.44 Steeper than expected 

CC Interpolated n=50 7.24 ±0.43 15 mins per subject 

CC J-S Vertical 7.67 ±0.29 2 sample points 

CC J-S Vertical (Daily 
and Coe, 1962) 7.51  

Steepest vertical K’s in the 
literature 

CC Vertical Orbscan 7.68 ±0.29 Central dips causes flatter values

CC Vertical Pentacam 7.77 ±0.29 Same dip 

 

Table 8.1: Table documenting the approach to data cleansing of central corneal (CC) radii. 

 

Sampled central corneal (CC) radii using the OPTOMRC VBA calculation yielded 

unexpected results clustered around the apex.  The raw data (Table 8.1) gave a 

value of 38.38±359.57mm [SD] as the mean for the cohort.  Removing the outliers by 

visual inspection (CC Outliers removed) produced a mean of 7.59 ±0.51mm [SD].  

Going a further step (CC Apical zone removed) and removing 80 sampled radii 

centred on the apex, the figure was flatter than anticipated at 7.80±0.32mm [SD].  In 

comparison, the J-S keratometry in the near vertical meridian was 7.67±0.29mm 

[SD], indicating that the ‘CC Apical zone removed’ method was too much. 
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Given that this measurement (CC Apical zone removed) was, in effect, the recorded 

value of the slope at a linear distance of 1.5-1.75mm from the apex, and that the 

gradient was expected to increase further, the predicted mean radii will be steeper 

than the value recorded.  Therefore, a systematic approach was adopted to remove 

or interpolate data dependant on the number of rogue values (CC Removal <40 pts 

and interpolate >40 pts).  If more than 40 sequential data points (>1mm profile 

curvature or 0.5% of the data string) required removal, a 4th order polynomial curve 

function was used to interpolate the missing data.  If less than 40 rogue values were 

identified in the data string these were removed.  To check the validity of this 

method, a sample of 50 individuals underwent CC interpolation (CC Interpolated 

n=50) to quantify the effect of the lack of interpolation, and the difference in 

cumulative mean radius of curvature between the two methods was found to be only 

0.019 mm, which was considered as being not clinically significant.  As a result, the 

CC removal or interpolated technique was used for all data sets. 

 

8.4.4.3 Anatomical regions of interest 

The areas of interest beyond the central cornea are shown in the diagram Fig 8.12; 

paracentral cornea (PAC) from 3-6mm chord, peripheral cornea (PEC) from 6-10mm 

chord, corneo-limbal transition (CLT) from 10-15mm (Van der Worp, Graf and 

Caroline, 2010), and anterior sclera (ASC) from 15-20mm. 

 

These anatomical descriptors were extended to encompass annuli (regions of 

interest) centring on the corneal apex, each defined by the two diameters equal to 

the chords used in Fig 8.11. 
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Figure 8.12: Diagram of the anterior aspect of the eye, to show the anatomical regions of 

interest used during analysis of the AOS (right eye), indicating the sampled meridians. 

 

8.4.4.4 Refractive error groups 

The data was categorised according to the mean spherical equivalent (MSE), and 

any individuals with astigmatism greater than ±1.75DC or hypermetropia greater 

than +2.00DS were excluded. 
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Group Mean spherical 
equivalent 

Number of 
individuals 

GP1 Plano to +2.00DS 20 
GP2 -0.25DS to -2.00DS 26 
GP3 -2.25DS to -4.00DS 21 
GP4 -4.25DS to -6.00DS 26 
GP5 -6.25DS to -8.00DS 21 
 Total 114 

 

Table 8.2: Numbers of subjects within each refractive error sub-group. 

 

8.4.5 Data analysis 

Statistical analysis was performed using SPSSv13 (SPSS Inc., IL, USA).  Average 

values were derived for radii found along the designated profile locations (meridians) 

in the regions of interest (annuli).  Variation in the mean axial radius of curvature 

measurements were compared across 4 meridians; 180°, 45°, 90° and 135° with 

respect to location, refractive error and gender.  Kolmorogorov-Smirnov tests were 

carried out to assess the normality of the data.  One-way, between-groups ANOVA 

was used to examine regional variations in axial curvature, in addition further 

comparisons were made between a reference group (GP1; Plano to +2.00DS) and 

the myopic refractive error groups (GP2 to GP5).  A mixed-between, within-subjects 

ANOVA was used to test for effects of gender and refractive error groups on regional 

variations. P-values were reported following post hoc test using Bonferroni 

adjustment. 

 

Further one-way, between-groups ANOVA investigated the effect of myopic 

refractive error on volumetric measures of the AOS, comparing a reference group 

(GP1: Plano to +2.00DS) and the myopic refractive error groups (GP2 to GP5), and 

a mixed between-within-subjects ANOVA was used to test for effects of gender and 

refractive error groups on volume. P-values were reported following post hoc test 

using Bonferroni adjustment. 
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Visual comparisons were made of cast topography compared to data collected from 

the Javal-Schiötz Keratometer, Orbscan IIz and Pentacam in the horizontal and 

vertical meridians (Chapter 3) and symmetry of radii within the area of interest  

 

8.5 Results 

8.5.1 Regional curvature map of the entire anterior ocular surface 

 

Figure 8.13: Diagram of the anterior ocular surface anatomy, adapted from (Hogan et al., 

1971), showing the regions of anatomical interest and mean axial radii of curvature by 

location (each specified radius represents a mean of the curvature measurements taken 

along the section of meridian at the particular location). 

Temporal Nasal
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a) Central cornea 

This map (Fig 8.13) was used to describe the variation of mean axial radii of 

curvature values that correspond to particular anatomical location – a section of the 

2-dimensional meridional profile.  Average radii values within the 3mm annulus of the 

central cornea (CC) were 7.30±0.46mm [SD].  There was no statistically significant 

difference found between the curvatures of the eight profile sections in this region 

(1.00>p>0.336). 

 

b) Paracentral cornea 

The paracentral cornea (PAC) was found to have curvature values ranging from 7.53 

to 7.85, with a mean of 7.69±0.37mm [SD].  The steepest values were found at the 

IT and T locations (IT 7.60±0.35mm [SD], T 7.63±0.37mm [SD]).  These locations 

were statistically steeper than the flattest locations in the region S (7.78±0.36mm 

[SD], p=0.03) and ST (7.79±0.36mm [SD], p=0.020).  The paracentral cornea had a 

regular mean curvature across all profiles in the nasal aspect. 

 

c) Peripheral cornea 

The peripheral cornea (PEC) was found to have a wider range of variation in 

curvature than PAC, 7.94 to 8.26, mean of 8.10±0.45mm [SD], and flatter values in 

the superior aspect (SN 8.12±0.49mm [SD], S 8.24m±0.49mm [SD], ST 

8.26±0.46mm [SD]), compared to the inferior aspect (IT 7.94±0.41mm [SD], I 

7.99±0.38mm [SD], IN 8.04±0.38mm [SD]).  The superior aspect of the peripheral 

cornea was found to be significantly flatter than the inferior aspect (SN-IT p=0.04, S-I 

p=0.00, ST-IN p=0.006).  The horizontal meridian was the only profile to demonstrate 

symmetry in this region (N 8.11±0.45mm [SD], T 8.11±0.46mm [SD], p=1.00). 

 

d) Corneo-limbal transition 

The range of values found in the corneo-limbal transition (CLT) region was 9.92 to 

10.50, mean of 10.22±0.97mm [SD].  This region was shown to be symmetrical with 

no statistical difference between locations (1.00>p>0.061). 
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e) Anterior sclera 

The flattest region corresponding to the anterior sclera (ASC) provided the widest 

range of values 12.84 to 14.14, mean of 13.36±0.93mm [SD].  Steeper radii were 

found on the superior aspect (ST 12.90±1.03mm [SD], S 12.79±0.93mm [SD], SN 

12.96±0.96mm [SD]) compared to the inferior aspect (IT 13.59±1.25mm [SD], I 

13.58±1.10mm [SD], IN 14.14±1.22mm [SD]).  The superior aspect of the ASC was 

steeper than the inferior aspect and this was statistically significant (SN-IT p=0.00, S-

I p=0.00, ST-IN p=0.00).  This region demonstrated the greatest asymmetry, the 

flattest radius of curvature was found in the infero-nasal location under the lower lid 

(IN 14.14±1.22mm [SD]), and the steepest under the upper eyelid in the superior 

location (S 12.84± 0.92mm [SD]). 
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8.5.2 Symmetry of surface curvature within regions of interest (annuli) 

 

Figure 8.14: Graph to show the changes in curvature of the AOS by anatomical region of interest, showing each meridional location. 
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Further quantification of regional variation was shown in graphical form (Fig 8.14).  

The change in curvature values can be seen to be similar across locations for the 

PEC and PAC annuli, exhibiting identical profile contours.  The ASC region, 

however, was shown to alter radically from this, with steeper radii in the superior 

aspects and flatter radii inferiorly. 

 

Section summary: 8.5.1 and 8.5.2 
 

Region 
Mean axial radius 
of curvature (mm 

[SD]) 

Range of 
radius of 
curvature 

values (mm) 

Symmetry 

Central cornea 7.30 ±0.46 7.37-7.71 Yes 
Paracentral 
cornea (PAC) 

7.68 ±0.37 7.53-7.85 No, regular 
curvature on the 
nasal aspect, 
steepest and 
flattest values on 
temporal aspect 

Peripheral 
cornea (PEC) 

8.10 ±0.45 7.86-8.35 No, flatter on the 
superior aspect 
than corresponding 
locations on the 
inferior aspect 

Corneo-limbal 
transition (CLT) 

10.22 ±0.97 9.92-10.50 Yes 

Anterior sclera 
(ASC) 

13.34 ±1.19 12.62-14.34 No, greatest 
asymmetry of all 
regions, superior 
aspect steeper 
than corresponding 
locations on 
inferior aspect 
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8.5.3 Profile descriptors 

8.5.3.1 Horizontal (180˚) meridian 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.15: Horizontal profile of the average eye (n=119) with mean axial radius of 

curvature values for each location along the profile (top), the degree of dispersion of the 

values for each location (below) shown by median value, the interquartile range (Q1-Q3), 

and maximum and minimum radius values 
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The data distribution for the anatomical locations chosen along each profile showed 

a considerable amount of variation at CC (Fig 8.15).  This was found to be at a 

minimum along the horizontal profile interquartile range (IQR) of 0.61mm, (minimum 

6.44 and maximum 8.71mm), with a median value of 7.29mm.  The range of mean 

radius of curvature for this region, within 95% confidence interval (CI), was 7.30 to 

7.46mm. 

 

The data distribution for the PAC and PEC regions was found to be significantly 

narrower: PACN IQR 0.41mm (minimum 6.62 and maximum 8.55), PACT IQR 

0.40mm (minimum 6.64 and maximum 8.76mm) and PCN IQR 0.52mm (minimum 

6.67 and maximum 9.20), PCT IQR 0.53mm (minimum 7.30 and maximum 9.35mm).  

The range of mean radius of curvature for PACN was 7.55 to 7.68 (95% CI) steeper 

than the corresponding PACT 7.50 to 7.70 (95% CI). 

 

Radii measured in the CLT region of the profile were similar in both aspects with a 

wider IQR than CC, PAC or PEC (CLTN IQR 0.69mm (minimum 9.30 and maximum 

11.61mm) and CLTT IQR 0.74mm (minimum 9.17 and maximum 12.41mm)).  The 

range of mean radius of curvature CLTN was 10.24 to 10.43 (95% CI) compared to 

CLTT 10.12 to 10.35 (95% CI). 

 

The ASC region was found to have the greatest variation curvature and data 

distribution; ASN range of mean radius of curvature 13.44 to 13.81 (95%CI), IQR 

1.20mm (minimum 11.62 and maximum 18.41mm) and AST range of mean radius of 

curvature 13.04 to 13.44 (95%CI), IQR 1.10mm (minimum 10.34 and maximum 

19.65mm) 
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8.5.3.2 Positive oblique (45˚) meridian 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.16: Positive oblique profile of the average eye (n=119) with mean axial radius of 

curvature values for each location along the profile (top), the degree of dispersion of the 

values for each location (below) shown by median value, the interquartile range (Q3-Q1) and 

maximum and minimum radius values. 

 

Along the positive oblique profile (Fig 8.16), CC measurements were found to 

steepen and the data distribution increased compared to the horizontal profile; CC45 

range of mean radius of curvature 7.18 to 7.36 (95%CI), IQR 0.67mm (minimum 

5.59 and maximum 8.49mm) and CC180 range of mean radius of curvature 7.30 to 

7.46 (95%CI), IQR 0.61mm (minimum 6.44 and maximum 8.71mm). 
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The radii measured in the PAC, PEC and CLT regions of the positive oblique profile 

exhibited an identical trend to the horizontal profile with respect to curvature values 

and data distribution. 

 

For the anterior scleral region, ASIT was found to be flatter than AST, and ASSN 

steeper than ASN; range of mean radius of curvature ASIT 13.42 to 13.80 (95% CI) 

compared to AST 13.04 to 13.44 (95% CI) and ASSN 12.80 to 13.14 (95% CI) 

compared to AST 13.44 to 13.81 (95% CI). 
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8.5.3.3 Vertical (90˚) meridian 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.17: Vertical profile of the average eye (n=119) with mean axial radius of curvature 

values for each location along the profile (top), the degree of dispersion of the values for 

each location (below) shown by median value, the interquartile range (Q3-Q1) and maximum 

and minimum radius values. 

 

The vertical profile was found to have the steepest CC values (Fig 8.17), compared 

to the other 3 profiles; range of mean radius of curvature CC90 7.02 to 7.28mm 

(95% CI) compared to CC180 7.30 to 7.46mm (95% CI), CC45 7.14 to 7.36mm (95% 

CI) and CC135 7.12 to 7.39mm (95% CI). 
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This profile exhibited a flatter range of values for radii in the remaining superior 

corneal and transition regions when compared to the same locations on the inferior 

aspect of the profile; PACS 7.69 to 7.82mm (95% CI), PCS 8.15 to 8.30mm (95% 

CI), CLTS 10.12 to 10.35mm (95% CI) compared to PACI 7.60 to 7.74mm (95% CI), 

PCI 7.90 to 8.05mm (95% CI), CLTI 9.94 to 10.14mm (95% CI). 

 

The steepest scleral radii on the sampled AOS were found along the superior aspect 

of the vertical profile; ASS 12.67 to 12.97mm (95% CI).  However, the corresponding 

location on the inferior aspect was not symmetrical; ASI 13.40 to 13.71mm (95% CI). 

 

The data distribution along the vertical profile was most variable at the CC location; 

CC90 IQR 0.86mm (minimum 5.58 and maximum 8.35mm), with the majority of 

values within the 25th percentile, curvature less than 7.30mm, but greater than 

6.23mm, compared to CC135 IQR 0.77mm (minimum 5.61 and maximum 8.80mm), 

CC45 IQR 0.67mm (minimum 5.59 and maximum 8.49mm), and CC180 IQR 

0.61mm (minimum 6.44 and maximum 8.71mm). 

 

The distribution trend across the locations was similar to that of the previous 

horizontal and positive oblique profiles, with PAC and PEC values for the whole 

cohort characterised by small IQR values; PACS IQR 0.35mm (minimum 6.31 and 

maximum 8.75mm), PACI IQR 0.42mm (minimum 6.90 and maximum 8.98mm), and 

PCS IQR 0.47mm (minimum 7.19 and maximum 9.70mm), PCI IQR 0.48mm 

(minimum 7.23 and maximum 9.32mm). 
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8.5.3.4 Negative oblique (135˚) meridian 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.18: Negative oblique profile of the average eye (n=119) with mean axial radius of 

curvature values for each location along the profile (top), the degree of dispersion of the 

values for each location (below) shown by median value, the interquartile range (Q3-Q1) and 

maximum and minimum radius values. 

 

The PAC and PEC regions of the negative oblique profile (Fig 8.18) were found to 

have a flatter range of radii of curvature when compared to the corresponding 

locations on the positive oblique profile; PACST 7.71 to 7.84mm (95% CI), PACIN 

7.60 to 7.76 mm (95% CI) compared to PACSN 7.57 to 7.72mm (95% CI), PACIT 

7.52 to 7.65mm (95% CI) and PCST 8.16 to 8.30mm (95% CI), PCIN 7.97 to 

8.11mm (95% CI) compared to PCSN 8.02 to 8.17mm (95% CI), PCIT 7.85 to 

8.00mm (95% CI). 
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The flattest location of anterior scleral curvature on the sampled AOS was found to 

be the infero-nasal aspect of the negative oblique profile; ASIN 13.96 to 14.33mm 

(95% CI), the corresponding ASST was not symmetrical; ASST 12.74 to 13.08mm 

(95% CI) and considerably steeper. 

 

The data distribution trend across locations was found to reflect a similar pattern as 

the previous horizontal, vertical and positive oblique profiles. 
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Section summary: 8.5.3 

Region 

Steepest 
radius of 
curvature 
(mm) 

Flattest radius 
of curvature 
(mm) 

Data distribution Comments 

Central 
cornea 
(3mm 
chord) 

Vertical profile 
7.02-7.28 

Horizontal profile 
7.30-7.46 

Vertical>negative 
oblique>positive 
oblique>horizontal 
profile 
IQR 0.66-0.86 

Similar range 
of radii found 
along positive 
and negative 
oblique profiles

Paracentral 
cornea (3-
6mm 
chord) 

Nasal location 
7.63 

Supero-temporal 
location 
7.79 

Least variable of all 
regions 
IQR 0.35-0.45 

Asymmetric 
Most robust 
metric 

Peripheral 
cornea (6-
10mm 
chord) 

Infero-
temporal 
location 
7.94 

Supero-temporal 
location 
8.26 

Tight distribution 
IQR 0.45-0.53 

Asymmetric 

Corneo-
limbal 
transition 
(10-16mm 
chord) 

Infero-
temporal 
location 
10.04 

Supero-temporal 
location 
10.31 

IQR 0.67-0.84  

Anterior 
sclera (16-
20mm 
chord) 

Superior 
location 
12.84 

Infero-nasal 
location 14.14 

IQR 0.87 – 1.46 
Most variable of all 
regions 

Most 
asymmetric of 
all regions 
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8.5.4 Comparison with other topographic devices; Orbscan IIz and Pentacam 

8.5.4.1 Horizontal profile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.19: Comparison of the shape of the 180˚ meridian of the right eye (n=119) using a Javal-Schiötz Keratometer, Orbscan IIz, Pentacam 

and ocular impression methods 
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Data sampled for the investigation in Chapter 3 was used to provide a visual 

comparison of the AOS topography of the white European cohort (n=119) using slit-

scanning technology (Orbscan IIz), Scheimpflug photography (Pentacam), and the 

ocular impression-taking methods (Fig 8.19).  The topographic profiles were aligned 

using the instrument axis for the 2 commercial instruments and the designated apex 

(described in 8.4.4.1). 

 

The horizontal profiles are shown scaled at 1:1 ratio.  The mean axial radii values 

were found to have no statistical difference compared to the gold standard Javal-

Schiötz measurements (Chapter 3, Section 3.4) for the CC (Orb p=0.080, Pent 

p=1.000). The findings for impression topography indicated notably steeper values 

CC180 7.38±0.04mm [SD], compared to the Orb CC180 7.75±0.31mm [SD] and 

Pent CC180 7.81±0.30mm [SD].  These radii were steeper than the Orb and Pent 

profile on both the nasal and temporal aspects of the profile until the 8mm chord, at 

which point the impression profile was found to intercept and rapidly steepen in both 

aspects of the CLT region. 
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8.5.4.2 Vertical profile 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.20: Comparison of the shape of the 90˚ meridian of the right eye (n=119) using a Javal-Schiötz Keratometer, Orbscan IIz, Pentacam 

and ocular impression methods 
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The vertical profiles are shown scaled at 1:1 ratio.  The mean axial radii values were 

found to have a statistical difference compared to the gold standard Javal-Schiötz 

measurements (Chapter 3, Section 3.4) for the CC90 Orb (p<0.001). but not for the 

Pent (p=0.231).  The findings for impression topography indicated notably flatter 

values CC90 7.15mm ±0.07 [SD], compared to the Orb CC90 6.67±0.42mm [SD] 

and steeper than the Pent CC90 7.73±0.29mm [SD]. 

 

The impression profile curvature was not found to follow the negative curvature 

inflection (dip) seen for Orb and Pent, centred on the apex (Fig 8.20).  The three 

profiles were found to be similar beyond this region until the 6mm chord, at which 

point the impression profile can be seen to intercept the Pent profile and rapidly 

steepen in the inferior aspect.  Along the superior aspect the impression profile was 

marginally steeper, but mimicked the curvature variation of the Pent profile. 
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8.5.5 The effect of increasing myopic refractive error on AOS shape 

8.5.5.1 Comparison by meridional profile 

 

a) Horizontal (180˚) Meridian 

 

 

 

Figure 8.21: Comparison of mean regional radius of curavture changes related to myopic 

refractive error: horizontal (180˚) profile 
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Table 8.3: Comparison of mean regional curvature with increasing refractive error group; 

horizontal (180˚) profile 

 

Statistically significant differences in the regional radii of curvature across the 

refractive error groups along the horizontal profile were found between: 

 PAC:  GP1 - GP2; -0.26±0.09mm [SEM]  (p=0.034) flatter 

 PEC:  GP1 - GP2; -0.30±0.10mm [SEM]  (p=0.021) flatter 

 CLT:  GP1 – GP3; 0.42±0.13mm [SEM]  (p=0.015) steeper 

 ASC:  GP1 – GP3; 0.67±0.21mm [SEM]  (p=0.012) steeper 

 ASC:  GP1 – GP4; 0.66±0.20mm [SEM]  (p=0.009) steeper 
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b) Positive oblique (45) Meridian 

 

 

 

Figure 8.22: Comparison of mean regional radius of curvature changes related to myopic 

refractive error: positive oblique (45˚) profile 
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Table 8.4: Comparison of mean regional curvature with increasing refractive error group; 

positive oblique (45˚) profile 

 

Statistically significant differences in regional radii of curvature across refractive error 

groups were only found between: 

 PAC: GP1 - GP2; -0.26±0.08mm [SEM] (p=0.020) flatter 
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c) Vertical (90˚) Meridian 

 

 

 

Figure 8.23: Comparison of mean regional radius of curvature changes related to myopic 

refractive error: vertical (90˚) profile. 
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Table 8.5: Comparison of mean regional curvature with increasing refractive error group; 

vertical (90˚) profile  

 

No statistically significant differences in regional cumulative radii of curvature across 

refractive error groups were found for the vertical profile. 
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d) Negative oblique (135˚) meridian 

 

 

 

Figure 8.24: Comparison of mean regional radius of curvature changes related to myopic 

refractive error: negative oblique (135˚) profile. 
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Table 8.6: Comparison of mean regional curvature with increasing refractive error group; 

negative oblique (135˚) profile.  

 

Statistically significant differences in regional radii of curvature across refractive error 

groups were only found between: 

 PAC: GP1 - GP2; -0.27±0.09mm [SEM] (p=0.026) flatter 
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Section summary: 8.5.5.1 

The majority of changes in regional curvature between refractive error groups were 

observed along the horizontal profile, when compared to the average refractive error 

group (GP1) radii were: 

 At PAC and PEC: flatter in low myopes (up to -2.00DS) 

 At CLT and ASC: steeper in moderate myopes (-2.25 to -4.00DS) 

 At ASC: steeper in moderate myopes (-4.25 to -6.00DS) 

 PAC was found to be flattened along the positive and negative oblique 

meridians (GP1-GP2). 

 No significant changes were found along the vertical profile. 
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The following section maps these changes in relation to location (taking into 

consideration profile aspect) and refractive error group. 

 

8.5.5.2 Anatomical location comparison 

 

The influence of increasing myopic refractive error on AOS curvature, comparison 

with GP1 (Plano to +2.00DS). 

 

a) Low Myopes (-0.25DS to -2.00DS) 

GP1 compared to low myopes (-0.25DS to -2.00DS); GP1 minus GP2. 
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Figure 8.25: Comparison map of AOS curvature between GP1 and GP2 (GP1 minus low 

myopes), the numerical values displayed in each box are the  difference in mean radii of 

curvature ± [SEM], the small coloured circles indicate statistical significances found.  
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Significant flattening of the radii of curvature in low myopes was observed at 

locations: 

 PACT (-0.26mm ±0.09 ,p=0.05) and PACIT (-0.28mm ±0.10, p=0.03) 

 PCST (-0.30mm ±0.11,p=0.05) and PCT (-0.33mm ±0.11, p=0.02) 
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b) Moderate myopes (-2.25DS to -4.00DS)  

GP1 compared to moderate myopes (-2.25DS to -4.00DS): GP1 minus GP3 

 

Figure 8.26: Comparison map of AOS curvature between GP1 and GP3 (GP1 minus 

moderate myopes), the numerical values displayed in each box are the  difference in mean 

radii of curvature ± [SEM], the small coloured circles indicate statistical significances found.  

 

Significant steepening of the radii of curvature in moderate myopes (-2.25 to -

4.00DS) was observed at locations: 

 CLTT (0.66mm ±0.17 ,p=0.002) and CLTIT (0.54mm ±0.18, p=0.02) 
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c) Moderate myopes (-4.25DS to -6.00DS)  

GP1 compared to moderate myopes (-4.25DS to -6.00DS) ; GP1 minus GP4 

 

Figure 8.27: Comparison map of AOS curvature between GP1 and GP4 (GP1 minus 

moderate myopes), the numerical values displayed in each box are the  difference in mean 

radii of curvature ± [SEM], the small coloured circle indicates statistical significance found.  

 

Significant steepening of the radii of curvature in moderate myopes (-4.25 to -

6.00DS) was observed at location: 

 CLTT (0.55mm ±0.16 ,p=0.01)  
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d) High myopes (-6.25DS to -8.00DS)  

GP1 compared to high myopes (-6.25DS to -8.00DS) ;GP1 minus GP5 

 

 

Figure 8.28: Comparison map of AOS curvature between GP1 and GP5 (GP1 minus high 

myopes), the numerical values displayed in each box are the  difference in mean radii of 

curvature ± [SEM], there were no statistical significances found.  

 

No curvature changes were found comparing GP1 to high myopes (-6.25 to -

8.00DS). 
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e) The effect of increasing myopia group on overall AOS profile 

 

 

Figure 8 29: Graph to show the average profile for each refractive error group. 

 

Regional profiles with respect to refractive error group were compared for visual 

comparison (Fig 8.23). GP2 (low myopes) were observed to have flatter corneal radii 

than the average refractive error group, GP1. GP3 (moderate myopes -4.25 to -

6.00DS) were observed to have the steepest CLT radii of all the groups. 
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Section Summary: 8.5.5.2 

Changes in mean radii of curvature along specific profile locations were observed 

when comparing GP1 to groups of increasingly myopic individuals following post hoc 

testing, specifically: 

1. Low myopes (up to -2.00DS) flattening to the cornea:  

PACT (-0.26mm ±0.09 ,p=0.05) and PACIT (-0.28mm ±0.10, p=0.03) 

PCST (-0.30mm ±0.11,p=0.05) and PCT (-0.33mm ±0.11, p=0.02) 

Flattest changes in radii to the peripheral cornea. 

2. Moderate myopes (-2.25 to -4.00DS) steepening to the corneo-limbal 

transition: 

CLTT (0.66mm ±0.17 ,p=0.002) and CLTIT (0.54mm ±0.18, p=0.02) 

3. Moderate myopes (-4.25 to -6.00DS) steepening to corneo-limbal 

transition: 

CLTT (0.55mm ±0.16 ,p=0.01)  

4. High myopes (-6.25 to -8.00DS) no changes to AOS curvature 

observed. 
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8.6 Discussion 

8.6.1 Description of the AOS – profile variation and symmetry 

8.6.1.1 Central corneal enigma 

Horizontal 
Keratometry 
(mm) 

Vertical 
Keratometry 
(mm) 

Range Measurement 
method 

Reference 

7.40 ± 0.22 
[SD] 

7.22 ± 0.68 
[SD] 

5.62 to 7.70 
Impression 
topography 

This study 

7.91 ± 0.26 
[SD] 

7.76 ± 0.26 
[SD] 

7.30 to 8.55 Javal-Schiötz This study 

7.86 Not reported 7.30 to 8.40 Javal-Schiötz 
(Gullstrand, 
1924) 

7.78 ± 0.29 
[SD] 

7.63 ± 0.29 
[SD] 

7.28 to 8.80 Javal-Schiötz This study 

7.80 Not reported 7.12 to 8.49 Javal-Schiötz 
(Gullstrand, 
1924) 

7.82 ± 0.29 
[SD]  

7.67 ± 0.30 
[SD] 

7.28 to 8.80 Javal-Schiötz This study 

7.86 Not reported 7.00 to 8.65 Javal-Schiötz 
(Stenström, 
1948) 

7.65 7.51 Not reported Javal-Schiötz 
(Daily and 
Coe, 1962) 

7.80 Not reported 7.20 to 8.40 Javal-Schiötz (Ruben, 1975) 
7.69 ± 0.26 
[SD] 

Not reported 7.10 to 8.55 Javal-Schiötz 
(Davies et al., 
2003) 

 

Table 8.7: Central corneal curvature measurements and comparisons (blue shading 

indicates male gender, pink shading indicates female gender, no shading indicates mixed 

gender). 

 

This study has shown that the paracentral cornea locations had the least variable 

morphometric examined across the 5 anatomical regions described and had  

average radii 7.67±0.03mm [SEM] (range 6.31 to 8.66).  This finding supports the 

current use of keratometry to evaluate the central corneal curvature.  The Javal-

Schiötz keratometer has been designed to measure the spherical curvature of a 

reflected surface at a distance close to 1.47 mm either side of the instrument axis (in 

this case the line of fixation) (Bennett and Rabbetts, 1991).  This positions the mires 

on opposite sides of the corneal apex and so even if one aspect is steeper than the 
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other, it results in an average value of the two sides (Smith, 1977).  However, this is 

unlikely to happen, since impression topography has revealed that this cohort 

exhibits a degree of asymmetry throughout this region, with the greatest curvature 

variation between the superior and inferior aspects and supra-temporal and infero-

nasal aspects, questioning the accuracy of the vertical keratometry metric. 

 

The Javal-Schiötz design assumes that the corneal apex was centred on the 

instrument axis, but studies have shown that the apex positions are seldom found 

coincident with the line of fixation, with no directional trend (Mandell, 1969).  Angular 

misalignment greater than 2-3° of the corneal surface has been found to 

underestimate the 3rd and 4th order corneal surface aberrations (Salmon and 

Thibos, 2002) affecting the outcome of corneal refractive surgery.  Crucially, these 

procedures require an accurate representation of the central cornea within 6-7 mm of 

the apex, enabling tissue restructuring to influence refractive error. However, the 

conclusions drawn in Chapter 3 provide evidence to suggest that the algorithms 

employed by the Orbscan IIz and Pentacam topographic systems (often used during 

surgical planning) have been influenced by traditional keratometric corneal values, 

which, although longstanding and accepted by the ophthalmic and optometric 

community, appear to compromise the fidelity of the AOS contour representation. 

 

This conclusion finds support from a small mire keratometry study of 26 individual 

corneal profiles, found to be accurate and repeatable (± 0.25mm), and which 

postulated that every corneal was ‘as unique as a fingerprint’ (Mandell, 1992) (Fig 

8.30). Furthermore, Fig 8.31 exemplifies the use of wave front aberrometry, showing 

the highly individual nature of each AOS. 
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Figure 8.30: Central corneal profiles (n=26) along the horizontal meridian measured using 

small mire keratometry (Mandell, 1992). 
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Figure 8.31: Diagram to show the higher-order, wave-front aberration contour plots of the 

AOS of 4 individuals (Salmon and Thibos, 2002). 

 

However, while the Cardiff Eyeshape protocol avoids this error, the central corneal 

morphometric provided by impression methods was affected by a lack of precise 

apical registration, and by errors inherent in the mathematical function used as 

angles become small close to the instrument axis (approaching zero).  The values 

seen in Table 8.7 reflect the steeper radii found in the vertical meridian 7.22±0.68mm 

[SD] compared with 7.40±0.22mm [SD] in the horizontal meridian as previously 

measured.  These were steeper than the traditional keratometry values due the 

nature of the unique surface topography and mean radii method used to establish 

them. 

 

The mean J-S keratometry values for the cohort 7.75±0.28mm [SD] compared 

favourably with those in a similar university population in the United Kingdom 

(n=198) aged 16-60, 7.69±0.26mm [SD], although ethnicity was not stated and may 

account for the slightly steeper value (Davies et al., 2003). 

 

Comparative measurements of J-S between genders were shown to be similar to 

values taken during early usage of the J-S keratometer (ophthalmometer) 

(Gullstrand, 1924).  This suggested that the central corneal keratometry 
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measurements for the white European population have not altered significantly 

during the last 87 years; females were found to have steeper than average 

keratometry measurements than the males by 0.13±0.23mm [SD].  This difference 

undoubtedly has clinical implications for both contact lens fitting and refractive 

surgery. 

 

The PAC and PEC regions of the cornea were shown to maintain asymmetric 

integrity and the least variability across the regions for the cohort investigated.  

These regions were characterised by the area of highest predictability and regularity, 

which may attribute to the success and stability of gas permeable contact lenses 

covering up to a 10mm diameter (5mm either side of the apex) (Worp et al., 2002), 

(Gill, 2010) 
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8.6.1.2 Wider horizons 

Anterior scleral 
radius of curvature 
(mm) 

Measurement method Reference 

About 12mm Anatomical callipers (Hogan et al., 1971) 

Temporal curves 
14-18mm (57%) 

Shadow photography 
asymmetry observed 
 

(Marriott, 1966) Nasal curves 
Over 40 mm 
Vertical curves 
15.30 to conical 
11-12 mm 
assuming globe is 
spherical 

Scleral lens fitting (Watson et al., 2004) 

12.40mm (range 
10.10 to 16.60) 

Best fit sphere using 
AS-OCT Visante™ 
images 

(Worp, Graf and 

Caroline, 2010) 

14 to 19 mm Moiré interferometry (Jongsma et al., 1998) 

Steepest superior 
aspect 12.84mm, 
flattest inferonasal 
aspect 14.14mm, 
wide variation 
(range 10.34 to 
18.41) 

Non-contact active 
laser triangulation of 
ocular impression cast 
surface 

This study 

 

Table 8.8: Anterior scleral curvature review 

 

Studies using the Eye surface shape profiler prototype (Meye Optics, Eindhoven, 

Netherlands) have been able to measure the AOS of the open eye up to 18mm (Fig 

8.32) in the horizontal meridian in a similar point-to-point curvature evaluation 

method (Fig 8.33) (Worp et al., 2010). 
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Figure 8.32: Photograph of the anterior eye indicating the area measured using Moiré 

interference techniques employed by the Eye surface shape profiler (Snepvangers, 2010). 

 

 

 

Figure 8.33: A 2-dimensional plot of corneal contour displaying areas of equal elevation by 

false colour representation measurements obtained by Moiré interferometry (Corbett, Rosen 

and O'Brart, 1999c). 

A study using Moiré interferometry as a source of AOS morphometrics to aid contact 

lens fitting showed that the optimisation of rigid lens fitting required further data 

relating to the mid-peripheral (or PEC) region in 88% of cases (Worp et al., 2002).  

Improvements in scleral lens fitting have been described using AS-OCT techniques 

(Gemoules, 2008), although these were also limited by accessibility to anatomical 
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regions particularly in the vertical meridian.  It therefore follows that larger diameter 

semi-limbal and scleral contact lens fitting processes would benefit from enhanced 

AOS metrics provided by this study. 

 

This investigation has extended the limit of AOS morphometrics to encompass 

regions covered by both eyelids and is presented here as the new ‘gold standard’ for 

wide-field AOS topographic representation.  For the first time, the quantification of 

surface characteristics of the entire anterior scleral region have been demonstrated, 

and these locations were found to display significant asymmetry and regional 

variability.  The steepest radii were found in the vertical meridian beneath the upper 

lid and flattest in the infero-nasal aspect beneath the lower lid. 
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8.6.1.3 The influence of myopic refractive error on AOS topography 

a) Low myopes (Up to -2.00DS) 

The AOS was found to be flatter at the temporal PAC and PEC (along the horizontal 

meridian) and at the supra-temporal PEC and infero-temporal PAC.  All changes 

were found in the temporal aspect, suggesting some resistance to deformation on 

the opposing nasal side.  These changes may be attributed to: 

 Corneal thickness; found to be thinnest in the temporal aspect (Liu, Huang 

and Pflugfelder, 1999). 

 Tensile differences within the lamellar structure; preferential orientation of 

stromal lamellae (Fig 8.34) provides mechanical stiffness highest in preferred 

directions of lamellae (Boote et al., 2006).  This produces areas of structural 

vulnerability to localised change, i.e. flattening during an active global 

expansion process  

 

 

Figure 8.34: Idealised theoretical model showing directions of preferential alignment, 

reinforcing collagen fibrils in cornea, limbus and adjacent sclera of the right eye (Boote et al., 

2006). 
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 Tensile differences in a secondary tension ring; afforded by the extraocular 

muscle insertions; shorter distance to nasal medial rectus insertion (5.50mm) 

than the temporal lateral rectus insertion (6.90mm), together with stronger 

muscle action than opposing lateral rectus (Hogan et al., 1971), providing 

increased tension to the nasal aspect limiting expansion deformability.  

Resistance to indentation was found to be lowest at the supra-temporal 

aspect of the anterior sclera (Patel et al., 2011). 

 

Flattening of the peripheral cornea has been reported with increasing myopia using 

TMS-1 computerised video-keratoscopy, this is associated with increasing vitreous 

chamber depths and axial elongation (Carney, Mainstone and Henderson, 1997).  

The present study found that this only occurred in the low myope group.  It is 

possible that deformation of the AOS by impression techniques had obscured this 

observation, and further investigation is necessary to evaluate the precise effect in 

order to factor it out. 

 

b) Moderate myopes (-2.25 to -6.00DS) 

The AOS was found to be steeper in the temporal and infero-temporal aspects of the 

CLT.  This may be due to: 

 Compression of the apex by ocular impression taking; regional pressure at the 

apex combined with unloading behaviour of the cornea (Elsheikh, 2010) 

resulting in ‘bulging’ at the CLT. 

 Vulnerability to localised deformation during global expansion; as discussed 

for low myopes. 

 A different target tissue for the expansion mechanism: higher levels of retinal 

defocus may drive changes to different areas of the globe, hence no corneal 

changes measured for this group compared to GP1 

 A combination of some or all of the above. 
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c) High Myopes (-6.25 to -8.00DS) 

There were no significant differences found in AOS locations comparing high 

myopes to GP1. This suggested that: 

 The target tissue for global expansion mechanism during myopic progression 

in high myopia may be situated beyond the AOS investigated in this study. 

 High myopes have AOS topography similar to GP1 

 

Type 1 statistical errors: 128 statistical comparisons have been made across 4 

merdians, to ensure against type 1 statistical errors, p-values of less than 0.008 

should only be considered significant. According to these criteria, only one of the 

curvature comparisons made between locations for increasing myopic refractive 

error groups are significant (p=0.002) 

 

8.6.1.4 The influence of Gender on AOS topography 

This study found that the volume of the AOS measured in females was significantly 

larger than males, yet this decrease in volume was not observed to effect uniform 

changes in surface curvature. Volumes of the AOS (4mm below the origin) were 

found to be larger in the male group, on average 10.55± 3.87mm3 [SEM] (F=0.152 

t=-2.724), this was found to be statistically significant p<0.01. 

 As expected, the curvature steepened, but only to significant levels in the vertical 

and negative oblique meridians (p=0.026 and p=0.032).  This may be explained by 

an asymmetric growth pattern favouring the near horizontal meridian (12.5°) along 

the palpebral aperture as the ‘path of least resistance’, which, on further expansion 

to reach male dimensions, has flattened in the near vertical meridian accordingly.  

 

8.7 Conclusions 

 Impression techniques can be used to provide wide-field topographic point-to-

point curvature morphometrics of some areas of the AOS which have not 

previously been quantified.  This technique is presented as the new ‘gold 

standard’. 
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 Changes to the AOS with increasing myopia have been documented 

revealing flattening of the paracentral and peripheral cornea in low myopes, 

steepening of the corneo-limbal transition in moderate myopes, and no 

changes in high myopes. 

 Females have been found to have smaller ocular volume measurements than 

males, although smaller eyes are not uniformly symmetrical, vertical and 

negative oblique meridians were found to be steeper, suggesting an 

asymmetric growth pattern favouring the near horizontal meridian. 

 Impression topography has the potential to provide improved AOS fidelity to 

customise refractive surgery protocols, improve contact lens and scleral shell 

design stability and comfort, and establish a baseline for the further 

understanding of AOS abnormality. It is acknowledged that for measurement 

of areas of the AOS accessible by reasonable adjustments of fixation, non-

invasive techniques such as AS-OCT imaging should be considered 

preferable. Further work would be necessary to provide a robust statistical 

sample size of wide-field AOS topography and additional age-related white 

European population data.    And this is the only sentence  
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Chapter 9 

Overall Summary 

The quality of optical, surgical or mechanical rehabilitation of a compromised AOS 

depends, to a significant extent, on the anatomical accuracy of the model used to 

represent it. Access to the in-vivo surface is limited by the size of the palpebral 

aperture, since the upper and lower eyelids cover most of the vertical aspect, and 

also by the micro-saccadic eye movements which characterise fixation. Nonetheless, 

recent developments to improve the outcome of such treatments have driven the 

need to provide reliable and highly accurate morphometrics of the AOS. 

 

The overall aim of this thesis was: 

 To review the current knowledge of the AOS topography and its limitations 

 To establish a system of accurate and reliable data acquisition for the entire 

topographic profile of the human AOS in-vivo, represented as a virtual 3-

dimensional model. 

 To ensure that the methods used were optimised to maintain minimal 

discomfort and inconvenience to the patient. 

 To provide an acceptable descriptor of the AOS topography with which to 

communicate curvature variability to professionals working within the field. 

 

Therefore, with a view to improving patient care, this series of investigations 

attempted to find a non-invasive method of collecting fast, accurate, reliable and 

easily interpreted data for the entire AOS. 

 

The aim of the comparison study in Chapter 3 was to establish the influence of 

‘traditional’ keratometry on the design of 2 modern instruments that provide 

topographic data beyond the central cornea. It was found that the 3 devices can be 

used interchangeably to provide biometry for intraocular lens replacement 

procedures; however Pentacam topographic measurements were significantly flatter 

than Orbscan, excluding the use of Pentacam data with the Orbscan Fitscan RGP 

fitting software. The fidelity of the vertical AOS representation by Orbscan and 
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Pentacam appears to have been compromised by interpolation and image collection 

methodology, revealing that the corneal ‘dip’is an artefact. 

 

In Chapter 2, the available technologies for data collection were reviewed and 

magnetic resonance imaging identified as the most likely system to fit the study 

requirements. However, after experimentation with different T-1 and T-2 weighted 

spin-echo sequence protocols, using a 3-Tesla MRI scanner with a blink artefact 

reduction device (Chapter 4), the optimal protocol yielded too few axial sections 

through the globe to procure sufficiently resolute data with which to differentiate the 

AOS and reconstruct digital 3-D representations. Further work using additional eye 

surface radio frequency coils and a 7-Tesla external magnetic field offers the best 

opportunity to achieving this goal. 

 

In the absence of any less invasive technique, ocular impression taking was revisited 

as the next most viable opportunity, during the course of this study, to collect data for 

the entire AOS. Chapter 5 outlines a study to determine the clinical safety of 2 

available impression taking materials. Few studies have been carried out to 

ascertain the effects of polyvinylsiloxane on the AOS, although it has been adopted 

by Optometrists and Ocularists as the industry standard. This randomised control 

trial found that the alginate, Orthoprint, caused an abnormal hyperaemic response to 

the bulbar conjunctiva, accompanied by significant superficial corneal staining.  This 

may be attributed to a toxic reaction between the material and the eye surface, 

exacerbated by mechanical abrasion caused by eyelid movement and granular 

material apposition. Tresident, the polyvinylsiloxane, was considered the material of 

choice with fewer clinical complications and more stable, convenient handling 

properties. Clinical advice was offered here regarding management of patients 

having ocular impressions with Tresident. The incidental adherent properties of 

polyvinylsiloxane materials to cells of the AOS may offer a novel collection technique 

to study cytology. 

 

Modernisation of the ocular impression procedure and casting protocol (CEP) was 

outlined in Chapter 6. The opportunity to design and manufacture using reverse 

engineering facilities allowed for the development of a system of casting support and 
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registration. Devices for anatomical registration and scanning stabilisation of the eye-

shaped cast enabled an active laser triangulation technique to be validated for the 

collection of 200,000 data points in a digital 3-dimensional format. The CEP was 

found to be repeatable (±0.008 ±0.021mm [SD]), reproducible (-0.0019 ±0.073mm) 

and the casts were stable for storage for up to a month (expanded by 0.027mm 

±0.020 [SD]). 

 

The modernised impression taking/casting procedure was scrutinised in Chapter 7 in 

a series of experiments with the aim of identifying whether the ocular surface 

topography is compromised by the invasive nature of the procedure. The Orbscan IIz 

and AS-OCT Visante™ were used to image the AOS and provide comparative 

topographic data. AS-OCT Visante™ was used to image the eye-shaped cast, which 

was compared to the AOS in-vivo, and identified a region from the peripheral cornea 

to the anterior sclera in the horizontal meridian which was flattened during ocular 

impression taking. This was found to be within clinically significant limits for contact 

lens fitting and within tolerance for lens manufacture. However, the imaging 

techniques were limited to the exposed AOS within the palpebral aperture, and 

further work would be required to expand the locations that were analysed and 

increase the sample size.  This would provide a full 3-dimensional difference map. 

 

Once the impression/casting process had been designated fit for purpose, a 

database of normal white European eyeshape was established (n=119). Individuals 

aged 18-40 years had ocular impressions taken and 3-dimensional virtual 

representations of the cast were obtained. Volumetric and 2-dimensional topographic 

profiles were extracted allowing for the analysis of point-to-point curvature 

morphometrics of some areas of the AOS which have not previously been quantified. 

Changes to the AOS with increasing myopia, in comparison to an emmetropic 

reference group, were documented, revealing flattening of the paracentral and 

peripheral cornea in low myopes, steepening of the corneo-limbal transition in 

moderate myopes, and no changes in high myopes. Females were found to have 

smaller ocular volume measurements than males, although smaller eyes are not 

uniformly symmetrical, the vertical and negative oblique meridians were found to be 

steeper, suggesting an asymmetric growth pattern favouring the horizontal meridian. 
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The new ocular impression/casting technique has been presented here as the ‘gold 

standard’ for wide-field anterior ocular surface data collection. The improved AOS 

fidelity can be used to provide enhanced morphometrics (Fig 9.1) to ophthalmic 

surgeons, ocularists, contact lens practitioners, vision scientists and researchers. 

 

Figure 9.1: Diagram of the anterior ocular surface anatomy, adapted from (Hogan et al., 

1971), showing the regions of anatomical interest and mean axial radii of curvature by 

location. 

 

These have the potential to be used to: 

 Refine planning for refractive surgical procedures (Feng et al., 2012), (Chan, 

Hodge and Sutton, 2010), (Dupps Jr and Wilson, 2006), (Smolek and Klyce, 

2005) 
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 Design custom-made optical and cosmetic scleral shells (Pullum, Parker and 

Hobley, 1989), (Bowden, 2009),(Ezekiel, 1983) 

 Improve the design characteristics of larger diameter (10-16mm) corneal 

contact lenses (Worp et al., 2002), (Eggink, Beekhuis and Nuijts, 2001) 

 Add missing topographic parameters to finite element models of the AOS 

used to study intraocular pressure (Elsheikh, 2010)  

 Improve curvature correction algorithms used by modern topographic data 

imaging systems (Dunne et al., 2007), (Cairns and McGhee, 2005) 

 Provide baseline wide-field topography to understand fundamental changes 

that occur to the AOS due to abnormality (Saad and Gatinel, 2010), 

(McMonnies and Boneham, 2007) . 

 

Each of the professions working with AOS morphometrics has varying requirements 

and tolerances on accuracy needed to fulfil the task criteria. For example, ophthalmic 

surgeons use femtosecond laser systems to cut corneal flaps to an accuracy of 

±0.001mm (Soong and Malta, 2009). This precision is crucial because very small 

changes to the cornea surface shape affect the refractive outcome which requires 

surgical planning accuracy in the region of ±0.20mm (Cairns and McGhee, 2005) or 

less than 0.42D (Smith, 2006). Similarly, contact lens designers work to a 

manufacturing tolerance of ±0.05mm (BS 18369-2, (BSI, 2006)) and those fitting 

them are able to discern a clinical difference of 0.05mm (back optic zone radius) 

(Gill, 2010) for corneal gas permeable contact lenses. Practitioners making and 

fitting scleral shells are the most forgiving, since this requires artistic skills and 

experience to work iteratively towards a comfortable, visually acceptable and 

cosmetically pleasing end-point. Finally, as in this study, researchers often do not 

know how accurate their requirements will be or need to be until the necessary 

preliminary studies have been carried out and the intended application identified. 

Finite mathematical modelling of the AOS used in glaucoma research, requires all 

aspects of the surface in question to be available to assess the interactive nature of 

the components as a system and their hierarchy (Elsheikh, 2010). 

But not only have clinicians and researchers exacting demands, the outcome 

expectations for patients is also high; they would like to see clearly without 

spectacles, wear comfortable contact lenses all day, maintain a healthy optic disc 
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throughout their life, and have prosthetic shells that look identical to the other eye. 

Until now assumptions about the sphericity and symmetry of the AOS have defined 

the success and reliability of any intervention using topographic measurements as 

the predominant data source. 

This thesis has quantified the historic observations of glass blowers (Bowden, 2009) 

and scleral lens makers (Marriott, 1966) and expanded the scope of topographic 

knowledge of the anterior ocular surface to the hidden extremities. It has 

demonstrated the influence of accepted methods of examining AOS curvature 

variation over the design of modern ocular surface imaging devices and subsequent 

interpretation of the output. 
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Future Work 

 Revisiting magnetic resonance imaging as a non-invasive method of data 

collection for the entire AOS. 

 Compare AOS data obtained by ocular impression/casting with reconstruction 

from magnetic resonance imaging to obtain a 3-dimensional difference map of 

the entire surface.  

 Optimising the profile sampling of the AOS using Orbscan and Pentacam to 

provide a 3-dimensional difference map. 

 Carrying out biochemical analysis of the interaction between the AOS and 

Orthoprint. 

 Investigating the optimal quantity of Tresident required producing the most 

accurate ocular impression. 

 Reverse engineering the mean AOS to provide an anatomically accurate 

surface with which to further validate the CEP. 

 Increasing the sample size of the cohort for the comparison of human AOS in-

vivo and it’s representative cast  

 Developing a method of 3-dimensional mapping of the compression caused 

by ocular impression taking. 

 Improving the design of ocular impression trays. 

 Using curvature correction to factor out systematic flattening of the AOS 

caused by AS-OCT Visante™ 

 Increasing the sample size of database of white European eyeshape by a 

factor of 10, to provide an adequate population sample. 

 Creating 3-dimensional difference maps to analyse the regional curvature 

variation between genders and groups with increasing myopic refractive error. 

 Considering other methods of analysing complex curvature variation over a 3-

dimensional surface. 
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Appendix  

Poster and Oral Presentations 
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Turner J M, Le Chi H, Murphy P J, Nakajima T, Choppinet P, and Purslow C (2008) What shape is the front of the eye?  Ocular 

impressions and casting. In: Speaking of Science. Cardiff University
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Which material is best? – A clinical comparison of two materials used for eye 

impressions. 
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Since the early 1930s optical practitioners have been reproducing anterior ocular 

surface curvature to aid the design of contact lenses required for therapeutic 

purposes and visual rehabilitation. Ocular impression taking is still the method of 

choice for patients who have significant structural ocular anomalies for which 

custom-made contact lenses are required.  

 

This talk will present the results of a recent randomised, masked study that was 

carried out to compare the materials used in the current practice of impression 

taking. Clinical conclusions about materials and the efficacy of the procedure will be 

presented. 
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