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Abstract 

This review deals with directed and regioselective lithiation of various quinazoline derivatives by 

the use of alkyllithiums in anhydrous THF at low temperature. Reactions of the lithium reagents 

obtained from the lithiation reactions with a range of electrophiles give the corresponding 

substituted derivatives in high yields. The procedures are simple, efficient and general to provide 

derivatives which might be difficult to produce by other means. In some cases nucleophilic 

addition of alkyllithiums takes place to produce the corresponding addition products via 1,2- and 

3,4-additions. In other cases nucleophilic substitution or halogen-lithium exchange reactions 

occur. 
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1. Introduction 

Regioselective synthesis of ortho-disubstituted aromatics is one of the classical problems in 

synthetic chemistry. Simple electrophilic substitution usually takes place under forcing 

conditions in the presence of a catalyst and often leads to various isomers and polysubstituted 

aromatics.
1,2

 A number of alternative approaches have therefore been developed for 

regioselective ortho-disubstitution, and lithiation followed by electrophilic substitution is one of 

the most recognized and efficient.
3-16

 

 Directed lithiation of aromatic compounds 1 comprises deprotonation of a site ortho to a 

substituent that possesses a heteroatom (e.g. oxygen, nitrogen or sulfur) by use of a base.
17-44

 

Such a substituent is known as a directing metallation group (DMG). The base, normally an 

alkyllithium reagent, leads to an ortho-lithiated species 3 (Scheme 1). Treatment of 3 with 

electrophilic reagents produces ortho-disubstituted products 4.
45-55

 Apparently, complexation 

occurs between the substituent group (DMG) and the lithium reagent prior to lithiation to give 2, 

and this serves to bring the lithium reagent into closer proximity with the ortho proton, which is 

then selectively removed.
56
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Scheme 1. Directed lithiation and substitution of aromatic compounds 1. 
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 For a successful deprotonation to occur, the DMG must possess the somewhat contrary 

properties of being a good coordinating site for the lithium reagent and a poor electrophilic site 

for attack by the lithium reagent. The rate and regioselectivity of ortho-lithiation seems to be 

controlled not only by coordination between the lithium reagent and the heteroatom of the DMG 

but also by the acidity of the proton at the ortho-position.
12

 It is not clear which factor has the 

driving force in ortho-lithiation. However, both of them could play a role for lithiation to be 

successful. For example, strong activators (DMG) tend to have a mixture of the basic 

requirements for good coordination to lithium reagent and the electron-withdrawing properties 

required to cause the ortho-protons to become acidic enough to encourage deprotonation 

efficiently and rapidly. 

 Groups that encourage such ortho-lithiation include: strong activators, SO2NR2, NHCOR, 

CONR2, CSNHR, CONHR, OCONR2, CO2R, CH2NHCOR, CH2NHR, OCH2OMe; moderate 

activators, OR, NR2, SR, CF3, F; and weak activators, CH2OH, CH(OR)2.
12-16

 The rapid 

expansion of the list of functionalities capable of directing lithiation has made this approach an 

important strategy for the synthesis of various regiospecifically substituted benzenes and 

heterocycles.
57-64

  

 The addition of organolithium reagents to the imine bond of pyridine and related nitrogen 

heterocycles is a well-established reaction.
65-67

 In particular, pyridine and quinoline undergo 

1,2-addition on reaction with alkyllithiums.
68

 Also, some fluoroquinolines undergo exclusive 

addition with butyllithium (BuLi), but in the cases of 2-fluoro- and 7-fluoroquinolines 

competitive lithiation takes place at the 3 and 8-positions, respectively.
69

 However, these 

reactions become completely chemoselective for lithiation by the use of lithium 

diisopropylamide (LDA) at low temperature. The high reactivity of diazines towards 

nucleophiles makes the lithiation of such compounds even more difficult than that of most 

heterocycles. However, successful lithiation of diazines has been achieved by the use of less 

nucleophilic lithium reagents such as LDA or lithium 2,2,6,6-tetramethylpiperidine (LTMP).
56,70

 

 The synthesis of quinazoline derivatives has attracted the attention of chemists and has 

extensive importance in medicinal chemistry because of the pharmacological applications for 

this heterocyclic ring system.
71-81

 Also, quinazoline derivatives are important intermediates in the 

synthesis of a variety of valuable heterocyclic compounds.
82-86

 Therefore, methods for the 

syntheses and/or modification of this ring system are always of interest. As part of our 

continuing interest in quinazolines chemistry
87-101

 and in lithiation chemistry,
102-113

 we have 

previously reported on the modification of the quinazoline ring system via lithiation and the 

organolithium reagents obtained from such reactions are very useful intermediates for the 

synthesis of substituted quinazoline derivatives that might be difficult to prepare by other 

means.
114

 This review will concentrate on the work published on the general area of directed and 

regioselective ring-lithiation of various quinazoline derivatives. Also, it will discuss the lateral 

lithiation of various 2-n-alkylquinaolines and their thione derivatives as well as the nucleophilic 

addition of alkyllithiums at the imine bonds of such ring systems. 

 



4 

2. Directed lithiation of 3H-quinazolin-4-ones 

Directed lithiation of 3H-quinazolin-4-one derivatives, containing a DMG at the 3-position (see 

sub-sections below), has been investigated by the use of more hindered lithium reagents such as 

LDA at low temperature in anhydrous tetrahydrofuran (THF).
115-118

 Lithiation is regioselective at 

the 2-position to produce the corresponding lithium reagents that on reactions with electrophiles 

give the corresponding 2-substituted derivatives in high yields. Also, directed lithiation of some 

substituted 3H-quinazolin-4-ones takes place on the benzenoid ring next to chloro, methoxy, 

tert-butylsulfinyl or phenylsulfinyl groups.
119-122

 

 

2.1. Directed lithiation of 3-acylamino-3H-quinazolin-4-ones 

Directed lithiation of 3-acylamino-3H-quinazolin-4-ones 5 was achieved by the use of LDA in 

anhydrous THF at –78 C for 1 h under nitrogen and the lithiation reaction was regioselective at 

the 2-position (Scheme 2).
115

 Two molar equivalents of LDA were used, the first to remove the 

NH proton to give the monolithium reagents 6 as yellowish solutions and the second one to 

remove the hydrogen from the 2-position to form the dilithium reagents 7 as yellowish brown 

solutions (Scheme 2). Reactions of the dilithium reagents 7 with various electrophiles in THF at 

-78 C for 4 h afforded the corresponding 2-substituted 3-acylamino-3H-quinazolin-4-ones 8-19 

in very good yields (Table 1).
115
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Scheme 2. Directed lithiation and substitution of 5. 

 

 No deprotonation of the methyl group occurred for the case of compound 5b (R = Me) 

despite the acidic character of the methyl protons.
123,124

 Such side reactions took place with 

simple acetanilides and account for the preferred use of the pivaloylamino group in directed 

lithiation reactions.
17-20

  

 Reactions with excess iodomethane resulted in excellent yields of 2-alkylated products, 

but as mixtures of 2-methyl-, 2-ethyl-, and 2-(1-methylethyl)-3H-quinazolin-4-ones.
115

 The 

authors believed that the 2-methyl-3H-quinazolin-4-ones 8 and 14 initially produced underwent 

lithiation by the excess LDA present in the reaction mixture and were then methylated to give the 
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2-ethyl derivatives 20 and 22, respectively. These in turn reacted further to give the 

2-(1-methylethyl) derivatives 21 and 23, respectively.
115

 The authors have not attempted to 

optimize the yield of any individual product from these reactions, but it is likely that control of 

the total amount of LDA and/or iodomethane would allow the production of 2-methyl derivatives 

8 and 14 without formation of any other alkylated products 20-23 (Figure 1). 

 

20 R = Et (16%)
21 R = i-Pr (6%)

N

N

O

NHCOtBu

R

22 R = Et (28%)
23 R = i-Pr (5%)

N

N

O

NHCOMe

R

 

Figure 1. Structures of compounds 20-23. 

 

Table 1. Synthesis of 2-substituted 3H-quinazolin-4-ones 8-19 according to Scheme 2.
115

 

Product R Electrophile E Yield (%)
a
 

8 t-Bu MeI Me 67
b
 

9 t-Bu D2O D 88 

10 t-Bu Ph2CO Ph2C(OH) 85 

11 t-Bu PhCOMe PhC(OH)(Me) 85 

12 t-Bu (CH2)5CO (CH2)5C(OH) 87 

13 t-Bu PhNCO PhNHCO 76 

14 Me MeI Me 59
c
 

15 Me D2O D 79 

16 Me Ph2CO Ph2C(OH) 80 

17 Me PhCOMe PhC(OH)(Me) 80 

18 Me (CH2)5CO (CH2)5C(OH) 81 

19 Me PhNCO PhNHCO 80 

a

 Yield of isolated product after crystallization from ethyl acetate.  
b
 2-Ethyl-3-pivaloylamino-3H-quinazolin-4-one 20 and 2-(1-methylethyl)-3-pivaloylamino-3H-

quinazolin-4-one 21 (Figure 1) were produced as side products in 16 and 6% yield, respectively. 
c
 3-Acetylamino-2-ethyl-3H-quinazolin-4-one 22 and 3-acetylamino-2-(1-methylethyl)-3H-

quinazolin-4-one 23 (Figure 1) were produced as side products in 28 and 5% yield, respectively.  

 

 Reactions of the dilthium reagents 7, obtained from lithiation of 5, with iodine took place 

in a different manner involving oxidative dimerisation. 6,13-Dipivaloyl-1,2,4,5-tetrazino[3,2-

b:6,5-bʹ]bisquinazolin-7,14(6aH,13aH)-dione 24 and 6,13-diacetyl-1,2,4,5-tetrazino[3,2-b:6,5-

bʹ]bisquinazolin-7,14(6aH,13aH)-dione 25 were obtained in 67 and 66% yields, respectively 

(Scheme 3) instead of 2-iodo-3H-quinazolin-4-ones.
115
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1, 2.2 LDA, THF, -78 °C, 1 h

2, I2, -78 °C, 4 h

3, aq NH4Cl
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Scheme 3. Directed lithiation of 5 followed by reactions with iodine. 

 

 Directed lithiation of 5a with three molar equivalents of LDA in THF at –78 C for 1 h 

followed by reaction with carbon monoxide at 0 °C for 2 h gave a 77% isolated yield of a 

mixture of azetidinone derivative 26 and indole derivative 27 (Scheme 4).
116

 Both products 

involved the incorporation of a diisopropylamide unit from the LDA used for lithiation as well as 

carbon monoxide. Compound 26 was obtained due to reaction of the lithium intermediate 

obtained with one molar equivalent of carbon monoxide. While compound 27 involved uptake of 

two molar equivalents of carbon monoxide. The mechanism of the formation of 26 and 27 has 

not been investigated. 

 

N

N

O
NHCOtBu

1, 3.3 LDA, -78 °C, 1 h

2, CO, 0 °C, 2 h

3, aq NH4Cl
NH

5a

CONHNHCOtBu

N

O

iPrMe

Me

26 (43%)

+

CONHNHCOtBu

27 (34%)

NH

CONiPr2
HO

 

Scheme 4. Directed lithiation and carbonylation of 5a. 

 

2.2. Directed lithiation of 3-aryl-3H-quinazolin-4-ones 

Lithiation of 3-(2-(diphenylphosphino)-4,6-dimethylphenyl)-3H-quinazolin-4-one 28 took place 

rapidly with one molar equivalent of LDA in THF at -78 C under argon to give the 

corresponding 2-lithium reagent 29 as a yellow solution (Scheme 5), which was found to be 

unstable at temperature above -20 C.
117

 Reaction of 29 with chlorodiphenylphosphine (PPh2Cl), 

solid sulfur (S8), and dimethyl disulfide (MeSSMe) in THF at -78 C for 1 h gave 2-substituted 

derivatives 30-32 in 84-88% yield (Scheme 5).
117
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30 E = PPh2 (88%)
31 E = SH (84%)
32 E = SMe (88%)  

Scheme 5. Directed lithiation and substitution of 28. 

 

 Lithiation of methyl 2-(4-oxo-4H-quinazolin-3-yl)benzoate 33 with LDA (1.5 molar 

equivalents) in THF at -78 C for 2 h gave the corresponding 2-lithium derivative 34 as a reddish 

solution.
118

 The lithium reagent 34 underwent intramolecular cyclisation at room temperature to 

give indolo[2,1-b]quinazoline-6,12-dione 35 in 81% yield (Scheme 6).
118

 

 

N

N

O

33

CO2Me
N

N

O

34

CO2Me
Li N

N

O

1.5 LDA,THF

-78 °C, 2 h

1, 20 °C, 2 h

2, aq NH4Cl

O35 (81%)  

Scheme 6. Directed lithiation of 33 with LDA followed by intramolecular cyclisation. 

 

2.3. Directed lithiation of chloro- and methoxy-3H-quinazolin-4-ones 

Various attempts have been made to lithiate 6,8-dichloro-3H-quinazolin-4-one.
119

 However, 

none of the conditions tried was successful; instead starting material or a degraded product was 

obtained.
119

 On the other hand, lithiation of 7-chloro- and 6,7-dimethoxyquinazolines 36 took 

place at the 8-position by the use of a mixture of n-BuLi (one molar equivalent) and LTMP (four 

molar equivalents) for 1 h at -78 °C to give dilithium derivative 37 (Scheme 7).
119

 Reactions of 

37 with acetaldehyde and benzaldehyde gave 8-substituted products 38-41 (Scheme 7) in 50-

95% yield (Table 2) along with a small quantity of starting material 36.
119

 The yields were high 

for 7-chloro-3H-quinazolin-4-one 36 (R
1
 = H, R

2
 = Cl) and moderate for 6,7-dimethoxy-3H-

quinazolin-4-one 36 (R
1
 = R

2
 = OMe). 

 

N

NH

1, 1.1 n-BuLi, THF

-78 °C, 15 min

2, 4.1 LTMP, THF

-78 °C, 1-2 h

1, Electrophile,

-78 °C, 0.5-2.0 h

2, 35% HCl

O

36

N

N

OLi

37
Li

N

NH

O

E

R1 R1 R1

38-41

R2R2R2

 

Scheme 7. Directed lithiation and substitution of 36. 
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Table 2. Synthesis of 8-substituted 3H-quinazolin-4-ones 38-41 according to Scheme 7.
119

 

Product R
1
 R

2
 Electrophile E Yield (%)

a
 

38 H Cl MeCHO MeCH(OH) 73 

39 H Cl PhCHO PhCH(OH) 95 

40 OMe OMe MeCHO MeCH(OH) 50 

41 OMe OMe PhCHO PhCH(OH) 50 

a
 Yield of isolated product after column chromatography. 

 

2.4. Directed lithiation of tert-butylsulfinyl-2-tert-butyl-3H-quinazolin-4-one 

The position of a tert-butylsulfinyl group on the 3H-quinazolin-4-one ring system was found to 

have an effect on the position of lithiation. For example, lithiation of 5-tert-butylsulfinyl-2-tert-

butyl-3H-quinazolin-4-one was not successful using excess LTMP at -78 C and starting 

material along with tarry material were recovered.
120

 On the other hand, lithiation of 8-tert-

butylsulfinyl-2-tert-butyl-3H-quinazolin-4-one 42 with LTMP at -78 C in THF was 

regioselective at the 7-position to give dilithium intermediate 43, which on reactions with DCl 

and 4-anisaldehyde gave 7-substituted derivatives 44 and 45 in 91 and 88% yields, respectively 

(Scheme 8).
120

  

 

N

NH 2.1 or 3.1 LTMP

THF, -78 °C, 2 h

1, Electrophile,

-78 °C, 5 min - 1 h

2, H2O

O

42

N

N

OLi

43

N

NH

O

tBu tButBu

SOtBu SOtBu SOtBu

Li E

44 E = D (91%)
45 E = 4-MeOC6H4CH(OH) (88%)  

Scheme 8. Directed lithiation and substitution of 42. 

 

2.5. Directed lithiation of 2-substituted 3H-quinazolin-4-ones 

Lithiation of 2-tert-butyl-3H-quinazolin-4-one 46 was regioselective at the 5-position to give the 

dilithium intermediate 47 by the use of four molar equivalents of s-BuLi in the presence of 

tetramethylethylenediamine (TMEDA) at -20 C in THF (Scheme 9).
125

 Reactions of 47 with a 

range of electrophiles at -78 C gave the corresponding 5-substituted derivatives 48-53 in 

17-94% yields (Table 3).
125
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N

NH 4.0 s-BuLi, TMDA

THF, -20 °C, 1 h

1, Electrophile,

-78 °C, 1 h

2, H2O

O

46

N

N

OLi

47

N

NH

O

48-53

E

tBu tButBu

Li

 

Scheme 9. Lithiation and substitution of 46. 

 

Table 3. Synthesis of 5-substituted 3H-quinazolin-4-ones 48-53 according to Scheme 9.
125

 

Product Electrophile E Yield (%)
a
 

48 MeCHO MeCH(OH) 94 

49 PhCHO PhCH(OH) 92 

50 PhSSPh PhS 17 

51 Bu3SnCl Bu3Sn 50 

52 I2 I 37 

53 (
i
PrO)3B B(OH)2 68

b
 

a
 Yield of isolated product after column chromatography.  

b
 Reaction was carried out at -78 C to room temperature for 15 h. 

 

 Lithiation of 2-(quinolin-2-yl)-3H-quinazolin-4-one 54 with two molar equivalents of 

mesityllithium (MesLi) in THF at -78 C for 30 min gave the dilithium reagent 55 as a deep 

brown solution.
126

 Reaction of 55 with formaldehyde in THF at -20 C gave alcohol 56 in 86% 

yield (Scheme 10).
126

  

 

N

NH 2.2 MesLi, -78 °C

30 min

1, HCHO, -20 °C

20 min

2, aq NH4Cl

O

54

N

N

N

OLi

55

N

Li

N

NH

O

56 (86%)

N

OH

 

Scheme 10. Lithiation of 54 followed by reaction with formaldehyde. 

 

3. Directed lithiation of quinazoline derivatives 

Directed lithiation and substitution of various quinazoline derivatives (see sub-sections below) 

has been achieved by the use of alkyllithiums followed by reactions with electrophiles to produce 

the corresponding substituted derivatives.
120,121

 

 



10 

3.1. Directed lithiation of 5-phenylsulfinyl-2-tert-butylquinazoline 

Directed lithiation of 5-phenylsulfinyl-2-tert-butylquinazoline 57 with excess LTMP (two molar 

equivalents) took place at the 6-position to give the 6-lithium intermediate 58 which on reaction 

with DCl gave 59 in 86% yield (Scheme 11).
120

  

 

N

N 2.1 LTMP, THF

-78 °C, 5 min

1, DCl, -78 °C, 5 min

2, H2O

57

N

N

58

N

N

SOPh

tBu tButBu

SOPhSOPh

Li D

59 (86%)  

Scheme 11. Directed lithiation of 57 followed by reaction with DCl. 

 

 When the reaction was carried out with trimethylsilyl chloride (TMSCl) as the 

electrophile under conditions similar to those used in Scheme 11, 2-tert-butyl-5-(phenylsulfinyl)-

6-(trimethylsilyl)quinazoline 60 and a cyclized product 61 (Figure 2) were obtained in 37% yield 

each.
120

 Compound 61 was obtained as a result of a second ortho-directed lithiation on the ortho-

position of the phenyl ring followed by a nucleophilic addition of the lithium derivative at the 

4-position of the quinazoline ring and finally aromatization by air oxidation.
120

 

 

N

N

S

tBu

Me3Si

O

N

N

SOPh

tBu

Me3Si

60 (37%) 61 (37%)  

Figure 2. Structures of compounds 60 and 61. 

 

3.2. Directed lithiation of chloroquinazolines 

Lithiation of 4-substituted 6-chloroquinazoline 62a (Scheme 12; X = Cl, Y = H; R = OMe, 

O(CH2)2OMe, NEt2) with LTMP (2.2 molar equivalents) in THF at -78 C for 0.5 h gave the 

corresponding lithium derivative 63a in which lithiation took place at the 8-position.
121

 

Reactions of 63a with a range of electrophiles at -78 C for 0.5-2.0 h gave the corresponding 

8-substituted quinazolines 64-69 in low to moderate yields (Table 4).
121
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N

N 2.2 LTMP, THF

-78 °C, 0.5 h

1, Electrophile,

-78 °C, 0.5-2.0 h

2, 35% HCl

R

Y

X

N

N

R

Y

X

Li

N

N

R

Y

X

E

62 64-6963

a: X = Cl, Y = H
b: X = H, Y = Cl

 

Scheme 12. Directed lithiation and substitution of 62. 

 

 Similarly, lithiation of 7-chloro-4-methoxyquinazoline 62b (Scheme 12; X = H, Y = Cl, 

R = OMe) with LTMP in THF at -78 C for 0.5 h gave the corresponding lithium derivative 63b 

that on reactions with various electrophiles gave the corresponding 8-substituted quinazolines 

70-74 in 32-85% yields (Table 4).
121

 Starting material was recovered from reactions that gave 

low yields. 

 

Table 4. Synthesis of 8-substituted quinazolines 64-74 according to Scheme12.
121

 

Product X Y R Electrophile E Yield (%)
a
 

64 Cl H OMe MeCHO MeCH(OH) 50 

65 Cl H OMe PhCHO PhCH(OH) 19 

66 Cl H OMe I2 I 25
b
 

67 Cl H OMe Me3SiCl Me3Si 35
b,c

 

68 Cl H O(CH2)2OMe MeCHO MeCH(OH) 29 

69 Cl H NEt2 MeCHO MeCH(OH) 55 

70 H Cl OMe MeCHO MeCH(OH) 85 

71 H Cl OMe PhCHO PhCH(OH) 73 

72 H Cl OMe MeI Me 40
d,e

 

73 H Cl OMe I2 I 32
b,e,f

 

74 H Cl OMe Me3SiCl Me3Si 40
c,e

 

a

 Yield of isolated product after column chromatography.  
b
 Yield after purification by column chromatography and sublimation.  

c
 Obtained with the in-situ trapping technique in which 62a and trimethylsilyl chloride were 

simultaneously added to the LTMP solution.  
d
 7-Chloro-8-ethyl-4-methoxyquinazoline 75 (Figure 4) was obtained as a side product in 8% 

yield due to lithiation and methylation of methylated product 72.  
e
 Starting material 62b was recovered (31-55%).  

f
 Reaction was carried out with 1.3 molar equivalents LTMP.  
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N

N

OMe

Cl

Et

75 (8%)  
Figure 3. Structure of compound 75. 

 

 Lithiation of 6,8-dichloro-4-methoxyquinazoline 76 with 2.2 molar equivalents of LTMP 

in THF at -78 C for 2.5 h gave 7-lithio derivative 77 (Scheme 13) that on reactions with various 

electrophiles gave 7-substituted quinazolines 78-83 in 88-93% yield (Table 5).
121

  

 

N

N 2.2 LTMP, THF

-78 °C, 2.5 h

1, Electrophile,

-78 °C, 0.3-2.0 h

2, 35% HCl

OMe

Cl

N

N

OMe

Cl

Cl

N

N

OMe

Cl

ClCl

Li E

76 77 78-83  
Scheme 13. Directed lithiation and substitution of 76. 

 

Table 5. Synthesis of 7-substituted quinazolines 78-83 according to Scheme 13.
121

 

Product Electrophile E Yield (%)
a
 

78 MeCHO MeCH(OH) 93 

79 PhCHO PhCH(OH) 92 

80 I2 I 90 

81 Me3SiCl Me3Si 88
b
 

82 MeI Me 93 

83 EtOD/DCl D 88 

a
 Yield of isolated product after column chromatography.  

b
 Obtained with the in-situ trapping technique in which 76 and Me3SiCl were simultaneously 

added to the LTMP solution.  

 

Lithiation of 8-chloro-2,4,6,7-tetramethoxyquinazoline 84 with LTMP was not successful 

under different reaction conditions.
121

 However, use of n-BuLi (two molar equivalents) at -78 C 

for 40 minutes followed by reaction with acetaldehyde for 30 minutes gave a mixture of 85 and 

86 in 64 and 26% yields, respectively (Scheme 14).
121
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N

N

1, 2.2 n-BuLi, -78 °C, 40 min

2, MeCHO, -78 °C, 30 min

3, 35% HCl

OMe

MeO

Cl

84

MeO OMe N

N

OMe

MeO

Cl

85 (64%)

MeO nBu N

N
MeO

Cl

86 (26%)

MeO nBu

Me

OH
nPr

+

 

Scheme 14. Reaction of 84 with n-BuLi followed by reaction with acetaldehyde. 

 

 Compound 85 was obtained as a result of replacement of the methoxy group at the 

2-position by a butyl group from n-BuLi. While compound 86 was obtained due to replacement 

of the two methoxy groups at the 2- and 4-positions by two butyl groups from n-BuLi followed 

by lithiation at the -position of the butyl group at the 4-position and finally reaction of the 

lithium reagent obtained with acetaldehyde. 

 On the other hand, treatment of 84 with t-BuLi (two molar equivalents) followed by 

reaction with acetaldehyde under conditions similar to those used in Scheme 14 gave a mixture 

of 87 and 88 in 32 and 39% yields, respectively (Scheme 15).
121

  

 

N

N

1, 2.2 t -BuLi, -78 °C, 40 min

2, MeCHO, -78 °C, 30 min

3, 35% HCl

OMe

MeO

Cl

84

MeO OMe N

N

tBu

MeO

Cl

87 (32%)

MeO tBu N

N

OMe

MeO

88 (39%)

MeO tBu

+

HO Me

 

Scheme 15. Reaction of 84 with t-BuLi in THF followed by reaction with acetaldehyde. 

 

 Compound 87 was obtained due to replacement of the two methoxy groups at the 2- and 

4-positions by two tert-butyl groups from t-BuLi. While compound 88 was obtained due to 

replacement of the methoxy group at the 2-position by a tert-butyl group from t-BuLi followed 

by chlorine-lithium exchange to produce the corresponding 8-lithium derivative that reacted with 

acetaldehyde.
121

  

 

3.3. Directed lithiation of methoxyquinazolines 

Lithiation of 2,4,6,7-tetramethoxyquinazoline 89 with two molar equivalents of n-BuLi at -78 C 

took place at the 8-position to give the 8-lithium intermediate 90 (Scheme 16).
121

 Reactions of 90 

with various electrophiles afforded the corresponding 8-substituted derivatives 91-96 in 51-97% 

yields (Table 6).
121
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N

N 2.2 n-BuLi, THF

-78 °C, 10-20 min

1, Electrophile,

-78 °C, 0.3-2.0 h

2, 35% HCl

OMe

89

N

N

OMe

90
Li

N

N

OMe

E

MeO MeO MeO

91-96

OMe OMe OMeMeOMeOMeO

 

Scheme 16. Directed lithiation and substitution of 89. 

 

Table 6. Synthesis of 8-substituted quinazolines 91-96 according to Scheme 16.
121

 

Product Electrophile E Yield (%)
a
 

91 MeCHO MeCH(OH) 97 

92 PhCHO PhCH(OH) 99 

93 MeI Me 51
b
 

94 EtOD/DCl D 96 

95 I2 I 89 

96 C2Cl6 Cl 90 

a
 Yield of isolated product after column chromatography.  

b
 Starting material 89 was recovered. 

 

 Treatment of 6,7-dimethoxy-4-phenylaminoquinazoline 97 with LTMP (5 molar 

equivalents) at -78 °C for 2 h gave the corresponding 8-lithium derivative 98 which on reactions 

with acetaldehyde and benzaldehyde afforded 8-substituted derivatives 99 and 100 in 91 and 

85% yields, respectively (Scheme 17).
119

  

 

N

N 5.1 LTMP, THF

-78 °C, 2 h

1, Electrophile,

-78 °C, 1-2 h

2, 35% HCl

NHPh

97

N

N

N

98
Li

N

N

NHPh

E

MeO MeO MeO

MeOMeOMeO

99 E = MeCH(OH) (91%)
100 E = PhCH(OH) (85%)

Li Ph

 

Scheme 17. Directed lithiation and substitution of 97. 

 

 Similarly, lithiation of 4-aryl-6,7-dimethoxyquinazolines 101 with LTMP (four molar 

equivalents) at -78 C gave the corresponding 8-lithio intermediates 102 which on reactions with 

iodine gave 8-iodoquinazolines 103 and 104 in 66 and 84% yields, respectively (Scheme 18).
122

  

 



15 

N

N 4.0 LTMP, THF

-78 °C, 1 h

1, I2, -78 °C, 2 h

2, 35% HCl

Ar

101

N

N

Ar

102
Li

N

N

Ar

I

MeO MeO MeO

MeOMeOMeO

103 Ar = 4-CF3C6H4 (66%)
104 Ar = 4-MeOC6H4 (84%)  

Scheme 18. Directed lithiation of 101 followed by reactions with iodine. 

 

 Lithiation of 4-methoxyquinazoline 105 with four molar equivalents of LTMP in THF at 

-78 C for 30 min followed by reaction with acetaldehyde gave a mixture of alcohols 106 and 

107 in 66 and 35% yields, respectively (Scheme 19).
121

 Clearly, a competitive lithiation took 

place at C-2 and C-8. 

 

N

N

1, 4.0 LTMP, -78 °C, 30 min

2, MeCHO, -78 °C, 30 min

3, 35% HCl

OMe

105

N

N

OMe

106 (66%)

N

N

OMe

107 (35%)

+

HO Me

OH

Me

 

Scheme 19. Lithiation of 105 followed by reaction with acetaldehyde. 

 

 Lithiation of 4-methoxy-2-phenylquinazoline 108 with excess LTMP (two molar 

equivalents) in THF at 0 C was regioselective at C-8 to give the 8-lithium intermediate 109 

(Scheme 20).
121

 Reactions of 109 with acetaldehyde and trimethylsilyl chloride gave the 

corresponding 8-substituted derivatives 110 and 111 in 56 and 94% yields, respectively.
121

 

 

N

N 4.0 LTMP, THF

0 °C, 2 h

1, Electrophile,

0 °C, 0.5-2.0 h

2, 35% HCl

OMe

108

Ph N

N

OMe

109

Ph

Li

N

N

OMe

Ph

E

110 E = MeCH(OH) (56%)
111 E = SiMe3 (94%)  

Scheme 20. Lithiation of 108 followed by reactions with electrophiles. 

 

 Similarly, lithiation of 4,6-dimethoxyquinazoline 112 with 2.2 molar equivalents of 

LTMP in THF at -78 C gave 8-lithium intermediate 113 that reacted with acetaldehyde to give 

alcohol 114 in 54% yield (Scheme 21).
121
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N

N 2.2 LTMP, THF

-78 °C, 30 min

1, MeCHO,

-78 °C, 30 min

2, 35% HCl

OMe

112

N

N

OMe

113

Li

N

N

OMe

MeO MeO MeO

HO Me
114 (54%)  

Scheme 21. Lithiation of 112 followed by reaction with acetaldehyde. 

 

4. Lateral lithiation of 2-n-alkylquinazoline derivatives 

Lateral lithiation of various 2-n-alkyl-3H-quinazolin-4-ones containing different groups at the 

3-position, such as acylamino, methylamino, amino, aryl and a hydrogen, have been attempted 

by the use of BuLi or LDA at low temperature. The lithiation took place at the benzylic position 

of the n-alkyl group. These procedures provide efficient syntheses of more complex 2-substituted 

derivatives in high yields. Similar procedures have been applied to 3-unsubstituted 2-n-alkyl-3H-

quinazolin-4-ones, their thiones and 4-substituted quinazolines. 

 

4.1. Lateral lithiation of 3-acylamino-2-n-alkyl-3H-quinazolin-4-ones 

Lateral lithiation of various 3-acylamino-2-n-alkyl-3H-quinazolin-4-ones 115 was achieved by 

the use of 2.2 molar equivalents of n-BuLi (for R
1
 = Me) or LDA (for R

1
 = Et and n-Pr) in 

anhydrous THF at -78 C (Scheme 22).
115,127,128

 Lithiation was regioselective at the carbon  to 

the 2-position of the 3H-quinazolin-4-one moiety. Addition of the first equivalent of the 

alkyllithium produced the monolithium reagents 116, which were converted to the dilithium 

reagents 117 on addition of the second equivalent of alkyllithium (Scheme 22).
115,127,128

 

Reactions of 117 with a variety of electrophiles afforded the corresponding 2-substituted 3H-

quinazolin-4-ones 20-23 and 118-163 (Scheme 22) in high yields (Tables 7-10). On the other 

hand, lithiation of 2-(1-methylethyl)-3H-quinazolin-4-ones 21 and 23 and 3-diacylamino-2-n-

alkyl-3H-quinazolin-4-ones were not successful under similar reaction conditions.
115
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N

N

O

NHCOR2

N

N

O

N

OLi

R2

CHR1N

N

O

N

OLi

R2

N

N

O

NHCOR2

CHR1

n-BuLi or LDA

THF, -78 °C

1, Electrophile, -78 °C

2, aq NH4Cl

CH2R
1 CH2R

1

E

n-BuLi or LDA

THF, -78 °C

Li115 116 117

20-23 and 118-163

R1 = H, Me, Et

R2 = Me, t-Bu, CHMe(OPh), CHMe(1-naphthyl),

CHEt(OPh), CHEt(Ph), CH2Et
 

Scheme 22. Lateral lithiation and substitution of 115 

 

Table 7. Lithiation and substitution of 115 (R
1
 = H; R

2
 = Me, t-Bu) using n-BuLi as the lithium 

reagent according to Scheme 22.
127

 

Product R
2
 Electrophile E Yield (%)

a,b
 

20 t-Bu MeI Me 89 

118 t-Bu Ph2CO Ph2C(OH) 83 

119 t-Bu PhCOMe PhC(OH)(Me) 81 

120 t-Bu (CH2)5CO (CH2)5C(OH) 80 

121 t-Bu PhNCO PhNHCO 84 

122 t-Bu D2O D 88 

22 Me MeI Me 75 

123 Me Ph2CO Ph2C(OH) 80 

124 Me PhCOMe PhC(OH)(Me) 84 

125 Me (CH2)5CO (CH2)5C(OH) 79 

126 Me PhNCO PhNHCO 83 

127 Me D2O D 74 

a

 Yield of isolated product after crystallization from ethyl acetate.  

 

 The NMR spectra for compounds reported in Table 7 except for cases where the 

electrophile was D2O (i.e. products 122 and 127) showed that the two hydrogen atoms of the 

CH2 group at the 2-position occurred as independent, coupled signals, suggesting they are 

diastereotopic due to the barrier to rotation around the N-N bond. The crystal structure of 

compound 118 showed that the plane of the aromatic ring is orthogonal to the plane of the 

Bu
t
CONH group. This renders the N-N bond as a chiral axis. Orthogonal conformations are 

known to be significantly more stable than their co-planar counterparts for 

N,N'-diacylhydrazines, which has resulted in measured barriers to rotation about the N-N 

bond.
129,130

 Barriers to rotation have been reported for di- and tetraacylhydrazines, where both 

nitrogen atoms are of amide type,
131-134

 hydrazines,
135

 triazines
136

 and tetrazines.
137

 Also, 
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hindrance to rotation about the N-N bond in 3-acylamino- and 3-diacylamino-3H-quinazolin-4-

ones was found to be as high as for hydrazine derivatives (14.7-20.6 Kcal mol
-1

).
138,139

  

 

Table 8. Lithiation and substitution of 115 (R
1
 = Me, Et; R

2
 = t-Bu) using LDA as the lithium 

reagent according to Scheme 22.
115

 

Product R
1
 Electrophile E Yield (%)

a
 

21 Me MeI Me 92 

128 Me Ph2CO Ph2C(OH) 90 

129 Me PhCOMe PhC(OH)(Me) 81 

130 Me (CH2)5CO (CH2)5C(OH) 82 

131 Me (CH2)4CO (CH2)4C(OH) 84 

132 Me I2 I 70 

133 Me D2O D 88 

134 Et MeI Me 90 

135 Et Ph2CO Ph2C(OH) 92 

136 Et (CH2)5CO (CH2)5C(OH) 88 

a

 Yield of isolated product after crystallization from ethyl acetate. 

 

Table 9. Lithiation and substitution of 115 (R
1
 = Me, Et; R

2
 = Me) using LDA as the lithium 

reagent according to Scheme 22.
115

 

Product R
1
 Electrophile E Yield (%)

a
 

23 Me MeI Me 84 

137 Me Ph2CO Ph2C(OH) 80
b
 

138 Me PhCOMe PhC(OH)(Me) 77 

139 Me (CH2)5CO (CH2)5C(OH) 82
c
 

140 Me (CH2)4CO (CH2)4C(OH) 80 

141 Me I2 I 70 

142 Me D2O D 81 

143 Et MeI Me 86 

144 Et Ph2CO Ph2C(OH) 87 

145 Et (CH2)5CO (CH2)5C(OH) 85
d
 

a

 Yield of isolated product after crystallization from ethyl acetate.  
b-d

 Compounds 146-148 (Figure 4) were obtained as by products in 3-5% yields. Such 

compounds were produced due to lithiation and substitution on the methyl group of the 

acetylamino unit at the 3-position. 

 

 It was possible to remove the acyl group from products reported in Tables 7-9 under hot 

basic or acidic conditions to produce 2-n-alkyl-3-amino-3H-quinazolin-4-ones.
115,127

 For 
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example, hydrolysis of compounds 20-23 with hydrochloric acid or aqueous sodium hydroxide 

in methanol under reflux removed the acyl group to give the corresponding 3-amino- derivatives 

in 75% yields.
115

 However, such forcing conditions for removal of the acylamino group were not 

always appropriate for some of the more complicated substituents at the 2-position. 

 

Table 10. Lithiation and substitution of 115 (R
1
 = Me, Et; R

2
 = CHMe(OPh), 

CHMe(1-naphthyl), CHEt(OPh), CHEt(Ph) using LDA according to Scheme 22.
128

 

Product R
1
 R

2
 Electrophile E Yield (%)

a
 

149 Me CHMe(OPh) Ph2CO Ph2C(OH) 80 

150 Me CHMe(OPh) PhCOMe PhC(OH)(Me) 78 

151 Me CHMe(OPh) PhCHO PhCH(OH) 82 

152 Me CHMe(1-naphthyl) Ph2CO Ph2C(OH) 79 

153 Me CHEt(OPh) Ph2CO Ph2C(OH) 76 

154 Me CHEt(OPh) PhCOMe PhC(OH)(Me) 79 

155 Me CHEt(OPh) PhCHO PhCH(OH) 80 

156 Me CHEt(Ph) Ph2CO Ph2C(OH) 77 

157 Me CHEt(Ph) Et(Me)CO EtC(OH)Me 75 

158 Et CHMe(OPh) Ph2CO Ph2C(OH) 88 

159 Et CHMe(OPh) PhCOMe PhC(OH)(Me) 80 

160 Et CHMe(OPh) PhCHO PhCH(OH) 76 

161 Et CHEt(OPh) Ph2CO Ph2C(OH) 90 

162 Et CHEt(OPh) PhCOMe PhC(OH)(Me) 78 

163 Et CHEt(OPh) PhCHO PhCH(OH) 80 

a

 Yield of isolated product after crystallization from ethyl acetate.  

 

 The NMR spectra of products 149-163 (Table 10) showed the expected diastereotopic 

feature for all the CH2 groups and provided evidence for long-range asymmetric induction at the 

newly created asymmetric centre(s). This opens up possibilities for novel synthetic approaches to 

certain types of chiral compounds.
128 

N

N

O

NHCOCH2C(OH)Ph2

CHC(OH)Ph2

147 R1 = Me (4%)

148 R1 = Et (5%)

Me

146 (3%)

N

N

O
NHCOCH2

CHR1

OH

OH

 
Figure 4. Structures of compounds 146-148. 
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4.2. Lateral lithiation of 2-n-alkyl-3-amino-3H-quinazolin-4-ones 

Lateral lithiation of 2-n-alkyl-3-amino- and 2-n-alkyl-3-methylamino-3H-quinazolin-4-ones 164 

took place by the use 2.2 molar equivalents of alkyllithium (Scheme 23; n-BuLi for R
1
 = H and 

LDA for R
1
 = Me, Et) at -78 °C in THF to give dilithium reagents 165 as a deep red solution.

140
 

Reactions of the dilithium reagents 165 with various electrophiles at -78 or 0 °C in THF gave the 

corresponding 2-substituted derivatives 166-194 in high yields (Tables 11 and 12).
140

 

 

R1 = H, Me, Et; R2 = H, Me

N

N

O

NHR2

N

N

O

NR2

CHR1 N

N

O

NHR2

CHR1

n-BuLi or LDA

THF, -78 °C

1, Electrophile

THF, -78 °C

2, aq NH4Cl
CH2R

1

ELi164 165 166-194

Li

 

Scheme 23. Lateral lithiation and substitution of 164. 

 

Table 11. Lithiation and substitution of 164 (R
1
 = H, Me, Et; R

2
 = H) using n-BuLi or LDA 

according to Scheme 23.
140

 

Product R
1
 Electrophile E Yield (%)

a
 

166 H Ph2CO Ph2C(OH) 86 

167 H PhCOMe PhC(OH)(Me) 86 

168 H (CH2)5CO (CH2)5C(OH) 84 

169 H (CH2)4CO (CH2)4C(OH) 89 

170 H PhCHO PhCH(OH) 77 

171 H [
i
Pr2NC(S)S]2 

i
Pr2NC(S)S 75 

172 H D2O D 88 

173 Me Ph2CO Ph2C(OH) 84 

174 Me PhCOMe PhC(OH)(Me) 80 

175 Me EtCOMe EtC(OH)Me 88 

176 Me 
n
BuCOMe 

n
BuC(OH)Me 71 

177 Me 
n
BuCOEt 

n
BuC(OH)Et 83 

178 Me (CH2)5CO (CH2)5C(OH) 90 

179 Me (CH2)4CO (CH2)4C(OH) 90 

180 Me PhCHO PhCH(OH) 80 

181 Me D2O D 92 

182 Et Ph2CO Ph2C(OH) 90 

183 Et PhCOMe PhC(OH)(Me) 87 

184 Et EtCOMe EtC(OH)Me 92 

a

 Yield of isolated product after crystallization, usually from diethyl ether.  
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 The ambient temperature 
1
H NMR spectra of compounds 182-184 (Table 11) and 194 

(Table 12) showed that the two hydrogens of the CH2 group adjacent to the newly created 

asymmetric center are diastereotopic, indicating a significant barrier to rotation around the N-N 

bond even at room temperature.
140

  

 

Table 12. Lithiation and substitution of 164 (R
1
 = H, Me, Et; R

2
 = Me) using n-BuLi or LDA 

according to Scheme 23.
140

 

Product R
1
 Electrophile E Yield (%)

a
 

185 H Ph2CO Ph2C(OH) 83 

186 H EtCOMe EtC(OH)Me 84 

187 H PhCHO PhCH(OH) 70 

188 H PhNCO PhNHCO 72 

189 H D2O D 90 

190 Me Ph2CO Ph2C(OH) 82 

191 Me (CH2)4CO (CH2)4C(OH) 80 

192 Me PhNCO PhNHCO 66 

193 Me D2O D 82 

194 Et Ph2CO Ph2C(OH) 80 

a

 Yield of isolated product after crystallization, usually from diethyl ether.  

 

 Clearly the process represented in Scheme 23 was general, high yielding and 

accommodated various complex substituents at the -carbon at the 2-position.  

 Lateral lithiation of 164 with a lithium reagent (Scheme 24; n-BuLi for R
1
 = H or LDA 

for R
1
 = Me, Et) at -78 °C followed by reactions with two molar equivalents of iodomethane or 

phenyl isocycanate at -78 or 0 °C gave the corresponding disubstituted derivatives 195-201 in 

high yields (Table 13).
140

 Clearly, substitution at both the -carbon at the 2-position and the 

nitrogen attached to the 3-position had taken place. 

 

R1 = H, Me, Et; R2 = H, Me

N

N

O

NHR2

N

N

O

N(E)R2

CHR1

1, n-BuLi or LDA, THF, -78 °C

2, MeI or PhNCO, 0 or -78 °C

3, aq NH4Cl
CH2R

1

E
164 195-201  

Scheme 24. Lateral lithiation and double substitution of 164. 
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Table 13. Lithiation and double substitution of 164 according to Scheme 24
140

 

Product R
1
 R

2
 Electrophile E Yield (%)

a
 

195 H H MeI Me 89 

196 H H PhNCO PhNCO 75 

197 H Me MeI Me 80 

198 Me H MeI Me 86 

199 Me Me MeI Me 88 

200 Me H PhNCO PhNCO 70 

201 Et Me MeI Me 79 

a

 Yield of isolated product after crystallization, usually from diethyl ether.  

 

 Reaction of the dilithium reagent obtained in-situ from lithiation of 3-amino-2-ethyl-3H-

quinazolin-4-one 164a with tetraisopropylthiuram disulfide (TITD) gave compound 202 in 71% 

yield, in which deamination had taken place (Scheme 25).
140

 Lithiation of 3-dimethylamino-2-

ethyl-3H-quinazolin-4-one under similar reaction conditions was not successful.
140

 

 

N

N

O

NH2

N

NH

O

CHSCNiPr2

1, 2.2 LDA, THF, -78 °C

2, TITD, THF, -78 °C

3, aq NH4Cl
CH2Me

Me
164a 202 (71%)

S

 

Scheme 25. Synthesis of 2-[1-(diisopropyldithiocarbamoyl)ethyl]-3H-quinazolin-4-one 202. 

 

4.3. Lateral lithiation of 3-substituted 2-methyl-3H-quinazolin-4-ones 

Lithiation of 3-substituted 2-methyl-3H-quinazolin-4-ones 203 with LDA in THF-hexane 

mixture at 0 C gave the corresponding lithium intermediates 204 (Scheme 26) as deep red 

solutions.
141

 Reactions of 204 with various electrophiles afforded the corresponding 

2,3-disubstituted derivatives 205-215 (Scheme 26) in 22-92% yields (Table 14).
141

 

 

R = Me, 2-tolyl

N

N

O

R

N

N

O

R

CH2Li N

N

O

R

CH2E

LDA, 0 °C

THF-hexane

1, Electrophile

0 °C

2, 1 M HCl
Me

203 204 205-215  

Scheme 26. Lateral lithiation and substitution of 203. 
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Table 14. Lithiation and substitution of 203 according to Scheme 26.
141

 

Product R Electrophile E Yield (%)
a
 

205 Me PhCHO PhCH(OH) 73 

206 Me Ph2CO Ph2C(OH) 69 

207 Me Me2CO Me2C(OH) 41 

208 2-tolyl PhCHO PhCH(OH) 51
b
 

209 2-tolyl (CH2)5CO (CH2)5C(OH) 22
c
 

210 2-tolyl (PhS)2 PhS 53
d
 

211 2-tolyl MeI Me 53 

212 2-tolyl EtI Et 25
e
 

213 2-tolyl CH=CHCH2Br CH=CHCH2 60 

214 2-tolyl PhI Ph 34
f,g

 

215 2-tolyl D2O D 92 

a

 Yield of isolated product after crystallization or column chromatography.  
b
 A traces of 2-styryl derivative was obtained as a side-product due to dehydration of 208 along 

with starting material 203 (8%).  
c
 Starting material 203 (56%) was recovered.  

d
 2-(Bis(phenylthio)methyl)-3-(2-tolyl)-3H-quinazolin-4-one 216 (Figure 5) was obtained in 17% 

yield as a side-product due to lithiation and substitution of 210 along with 203 (29%).  
e
 2-(Pentan-3-yl)-3-(2-tolyl)-3H-quinazolin-4-one 217 (Figure 5) was obtained in 5% yield due 

to further lithiation and substitution of 212 along with 203 (42%).  
f
 2-Benzhydryl-3-(2-tolyl)-3H-quinazolin-4-one 218 (Figure 5; 1%) was obtained due to 

lithiation and substitution of 214 along with 203 (41%). 
g
 Obtained from the corresponding 2-potassiomethyl derivative. 

 

N

N

O

CHPh2

218

Me

N

N

O

CH(SPh)2

216 (17%)

Me

N

N

O

CHEt2

217 (5%)

Me

 

Figure 5. Structures of compounds 216-218. 

 

 Lithiation of (S)-3-2-(diphenylphosphino)-6-methylphenyl)-2-methyl-3H-quinazolin-4-

one 219 with 1.2 molar equivalents of n-BuLi in anhydrous THF at -78 °C followed by reaction 

with picolinaldehyde gave (E)-3-(2-(diphenylphosphino)-6-methylphenyl)-2-(2-(pyridin-2-

yl)vinyl)-3H-quinazolin-4-one 220 in 78% yield (Scheme 27).
142

 Compound 220 was obtained as 

a results of dehydration of the substituted product initially produced. 
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N

N

O
1, 1.2 n-BuLi, -78 °C, THF

2, picolinaldehyde

3, H2O
Me

219

PPh2

Me

N

N

O

220 (78%)

PPh2

Me

N

 

Scheme 27. Lateral lithiation, substitution and dehydration of 219. 

 

4.4. Lateral lithiation of 2-n-alkyl-3H-quinazolin-4-ones 

Lateral lithiation of various 2-n-alkyl-3H-quinazolin-4-ones 221 has been achieved by the use of 

2.2 molar equivalents of n-BuLi (for R = H) or LDA (for R = Me and Et) in anhydrous THF at 0 

or -78 C (Scheme 28).
143-145

 Lithiation was regioselective at the carbon  to the 2-position of the 

3H-quinazolin-4-one moiety to give the dilithium reagents 222 (Scheme 28).
143-145

 Reactions of 

222 with various electrophiles gave the corresponding 2-substituted derivatives 223-252 

(Scheme 28) in good yields (Tables 15 and 16).
143-145

  

 

R = H, Me, Et

N

NH

O

N

N

OLi

CHR N

NH

O

CHR

n-BuLi or LDA

THF, 0 or -78 °C

1, Electrophile

THF, 0 or -78 °C

2, aq NH4Cl

or HCl
CH2R

ELi221 222 223-252  

Scheme 28. Lateral lithiation and substitution of 221. 

 

 No N-substitution was observed even when excess iodomethane (3 molar equivalents) 

was used. The NMR spectra of products 227 (Table 15), 242, 244, 248 and 250 (Table 16) 

indicated the presence of two diastereoisomers. 
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Table 15. Lithiation and substitution of 221 (R = H) according to Scheme 28.
143-145

 

Product Electrophile E Yield (%)
a
 

223 Ph2CO Ph2C(OH) 79 

224 PhCOMe PhC(OH)Me 63 

225 EtCOMe EtC(OH)Me 80 

226 (CH2)4CO (CH2)4C(OH) 81 

 

227 

O

 

HO

 

 

82 

228 PhCHO PhCH(OH) 77 

229 4-MeOC6H4CHO 4-MeOC6H4CH(OH) 58 

230 4-Me2NC6H4CHO 4-Me2NC6H4CH(OH) 56 

231 4-Me2NC6H4CH=CHCHO 4-Me2NC6H4CH=CHCH(OH) 50 

232 nicotinaldehyde pyridin-3-ylmethanol 55 

233 isonicotinaldehyde pyridin-4-ylmethanol 64 

234 biphenyl-4-carbaldehyde biphenyl-4-ylmethanol 81 

235 1-naphthaldehyde naphthalen-1-ylmethanol 72 

236 2-naphthaldehyde naphthalen-2-ylmethanol 73 

237 PhNCO PhNHCO 80 

238 MeI Me 89 

239 EtBr Et 57 

240 PhCH2Cl PhCH2Cl 58 

241 D2O D 90 

a

 Yield of isolated product after crystallization. 

 

Table 16. Lithiation and substitution of 221 (R = Me, Et) according to Scheme 28.
143

 

Product R Electrophile E Yield (%)
a
 

242 Me PhCHO PhCH(OH) 73 

243 Me Ph2CO Ph2C(OH) 78 

244 Me PhCOMe PhC(OH)Me 70 

245 Me PhNCO PhNHCO 62 

246 Me MeI Me 82 

247 Me D2O D 87 

248 Et PhCHO PhCH(OH) 79 

249 Et Ph2CO Ph2C(OH) 88 

250 Et PhCOMe PhC(OH)Me 77 

251 Et MeI Me 79 

252 Et D2O D 77 

a

 Yield of isolated product after crystallization.  
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 Reaction of the dilithium reagent, obtained in-situ from lithiation of 2-methyl-3H-

quinazolin-4-one 221a, with acetonitrile gave 2-(2-iminopropylidene)-1,2-dihydro-3H-quiazolin-

4-one 253 in 72% yield (Scheme 29) instead of the simple 2-substituted derivative.
143

 The 

stability of 253 could be due to the intramolecular hydrogen bond. 

 

N

NH

O 1, n-BuLi, THF, -78 °C

2, MeCN, THF, -78 °C

3, aq. NH4Cl
Me

221a

N
H

NH

O

253 (72%)

NH

Me

 

Scheme 29. Synthesis of 2-(2-iminopropylidene)-1,2-dihydro-3H-quiazolin-4-one 253. 

 

 Reaction of the dilithium reagent, obtained in-situ from lithiation of 2-ethyl-3H-

quinazolin-4-one 221b, with iodine took place in different manner. Instead of 2-iodo derivative 

being formed oxidative dimerization took place to give 2,2ʹ-(2,3-butanediyl)bis-3H-quinazolin-4-

one 254 in 60% yield (Scheme 30) after purification.
143
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2, I2, THF, -78 °C

3, aq. NH4Cl
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N
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N
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O
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Scheme 30. Synthesis of 2,2ʹ-(2,3-butanediyl)bis-3H-quinazolin-4-one 254. 

 

4.5. Lateral lithiation of 2-n-alkyl-3H-quinazolin-4-thiones 

Lateral lithiation of 2-n-alkyl-3H-quinazolin-4-thiones 255 occurred smoothly and rapidly with 

2.2 molar equivalents of n-BuLi at -78 °C in THF with no nucleophilic attack at either the thione 

or the imine group of the quinazolinethione ring to produce dilithium reagent 256 (Scheme 31) 

as a purple solution.
146

 Reactions of 256 with various electrophiles afforded the corresponding 

2-substituted 3H-quinazoline-4-thiones 257-275 (Scheme 31) in excellent yields (Table 17).
146

 

 

R = H, Me, Et

N

NH

S

N

N

SLi

CHR N

NH

S

CHR

2.2 n-BuLi

THF, -78 °C

1, Electrophile

THF, -78 °C

2, aq NH4Cl
CH2R

Li
255 256 257-275

E

 

Scheme 31. Lateral lithiation and substitution of 255. 
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Table 17. Lithiation and substitution of 255 according to Scheme 31.
146

 

Product R Electrophile E Yield (%)
a
 

257 H PhCHO PhCH(OH) 87 

258 H 4-MeOC6H4CHO 4-MeOC6H4CH(OH) 89 

259 H Ph2CO Ph2C(OH) 92 

260 H BuCOMe BuC(OH)Me 90 

261 H (CH2)5CO (CH2)5C(OH) 91 

262 H PhNCO PhNHCO 84 

263 H (i-Pr2NCSS)2 i-Pr2NCSS 90 

264 H MeI Me 92 

265 H EtI Et 90 

266 H D2O D 95 

267 Me PhCHO PhCH(OH) 89 

268 Me Ph2CO Ph2C(OH) 88 

269 Me BuBr Bu 90 

270 Me MeI Me 95 

271 Me D2O D 95 

272 Et 4-MeOC6H4CHO 4-MeOC6H4CH(OH) 90 

273 Et Ph2CO Ph2C(OH) 95 

274 Et BuBr BuBr 87 

275 Et D2O D 93 

a

 Yield of isolated product after crystallization from methanol.  

 

 
1
H NMR spectra of compounds 257, 260, 269 and 272-274 showed that the two hydrogen 

atoms of the CH2 group at the 2-position occurred as independent, coupled signals, suggesting 

that they are diastereotopic. For compound 263, the two isopropyl methyl protons appear as two 

broad signals and two separated doublets in its 
1
H NMR spectra recorded at room temperature 

and 100 °C, respectively. The 
1
H NMR spectrum of 263 recorded at 150 °C showed significant 

line-broadening indicative of the onset of equilibration via rotation about the C-N and C-S 

bonds, thereby confirming the origin of the non-equivalence of the two isopropyl methyl protons. 

The NMR spectra of compounds 267 and 272 show the expected presence of two racemic 

diastereoisomers. 

 

4.6. Lateral lithiation of 4-substituted 2-n-alkylquinazolines 

Lateral lithiation of 2-n-alkylquinazolines 276, substituted in the 4-position by a methoxy or 

methanethiyl group, have been achieved by the use of 1.1 molar equivalents of n-BuLi at -78 °C 

in anhydrous THF under nitrogen to produce the corresponding lithium reagents 277 (Scheme 



28 

32) as purple solutions.
147

 Reactions of 277 with various electrophiles afforded the 

corresponding 2-substituted derivatives 278-308 (Scheme 32) in high yields (Tables 18 and 

19).
147

  

 

X = O, S; R = H, Me, Et

N

N

XMe

N

N

XMe

CHR N

N

XMe

CHR

1.1 n-BuLi

THF, -78 °C

1, Electrophile

THF, -78 °C

2, aq NH4Cl
CH2R

Li
276 277 278-308

E

 

Scheme 32. Lateral lithiation and substitution of 276. 

 

In some cases, a nucleophilic addition of n-BuLi took place at the C=N bond via 1,2- or 

3,4-addition to give side products 309-311 and 313 (Figure 6).
147

 Side product 312 (Figure 6) 

was formed due to 1,2-addition of n-BuLi followed by methylation at N-1 with iodomethane. 

Side product 314 (Figure 6) was obtained as a result of addition of n-BuLi at the imine bond at 

position 4, followed by elimination of the methoxy group and further addition of n-BuLi. 

 

Table 18. Lithiation and substitution of 276 (X = S) according to Scheme 32.
147

 

Product R Electrophile E Yield (%)
a
 

278 H PhCHO PhCH(OH) 83 

279 H 4-MeOC6H4CHO 4-MeOC6H4CH(OH) 86 

280 H PhCOMe PhC(OH)Me 85 

281 H BuCOMe BuC(OH)Me 84 

282 H Ph2CO Ph2C(OH) 90 

283 H (CH2)5CO (CH2)5C(OH) 85 

284 H MeI Me 91 

285 H EtI Et 88 

286 H D2O D 89 

287 Me PhCHO PhCH(OH) 80
b
 

288 Me Ph2CO Ph2C(OH) 81
b
 

289 Me MeI Me 82
b
 

290 Me D2O D 85
b
 

291 Et 4-MeOC6H4CHO 4-MeOC6H4CH(OH) 78
c
 

292 Et (CH2)5CO (CH2)5C(OH) 79
c
 

293 Et D2O D 82
c
 

a

 Yield of isolated product after purification by column chromatography.  
b
 Compound 309 (Figure 6) was obtained in 3–5% yield. 

c
 Compound 310 (Figure 6) was obtained in 4–7% yield. 
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Table 19. Lithiation and substitution of 276 (X = O) according to Scheme 32.
147

 

Product R Electrophile E Yield (%)
a
 

294 H PhCHO PhCH(OH) 80 

295 H 4-MeOC6H4CHO 4-MeOC6H4CH(OH) 82 

296 H PhCOMe PhC(OH)Me 85 

297 H BuCOMe BuC(OH)Me 73 

298 H Ph2CO Ph2C(OH) 81 

299 H (CH2)5CO (CH2)5C(OH) 75 

300 H MeI Me 90 

301 H EtI Et 87 

302 H D2O D 86 

303 Me 4-MeOC6H4CHO 4-MeOC6H4CH(OH) 71
b
 

304 Me Ph2CO Ph2C(OH) 73
b
 

305 Me MeI Me 67
b,c

 

306 Me D2O D 76
b
 

307 Et Ph2CO Ph2C(OH) 71
d,e

 

308 Et D2O D 79
d,e

 

a

 Yield of isolated product after purification by column chromatography. 
b
 Compound 311 (Figure 6) was obtained in 2–3% yield.  

c
 Compound 312 (Figure 6) was obtained in 3% yield.  

d
 Compound 313 (Figure 6) was obtained in 3% yield. 

e
 Compound 314 (Figure 6) was obtained in 1–2%. 

 

N
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N
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N
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N

OMe
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R

311 R = Et, R1 = H

312 R = Et, R1 = Me

313 R = n-Pr, R1 = H

R1

BunnBu

314

 

Figure 6. Structures of compounds 309-314. 

 

 The 
1
H NMR spectra of compounds 278-281 and 294-297 showed that the two hydrogen 

atoms of the CH2 group at position 2 occurred as independent, coupled signals, verifying that 

they are diastereotopic.
147

 The NMR spectra of compounds 287, 291 and 303 showed the 

expected presence of two racemic diastereoisomers. In the cases of compounds 287 and 303 the 

two diastereoisomers were separated by column chromatography.
147
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5. Bromine-lithium exchange of 6-bromo-3H-quinazolin-4-one 

Bromine-lithium exchange (Scheme 33) has features that make it extremely valuable for the 

synthesis of organolithium compounds.  

 

R-Br + R1-Li R-Li + R1-Br  

Scheme 33. Bromine-lithium exchange of bromo compounds using alkyllithium 

 

 The equilibrium lies towards the side having the organolithium compound with the 

organic group better able to accommodate partial carbanionic character, and it is thus particularly 

useful for the preparation of aryllithiums by reaction of butyllithium with aryl bromides.
14

 

Because bromine-lithium exchange takes place rapidly under mild conditions, potential side-

products such as alkylation of the organolithium by the organic halide are not usually 

troublesome. However, when the desired organolithium reagent is warmed for subsequent 

reaction it can couple with the alkyl bromide, producing a coupled product (R-R
1
).

14
 If alkylation 

is a problem, it can be minimised by use of two mole equivalents of t-BuLi as alkyllithium. In 

this case, bromine-lithium exchange is achieved by the first mole equivalent and the second 

reacts with the t-BuBr formed to produce isobutane and isobutene. 

 Bromine-lithium exchange may involve single electron transfer and radical intermediates 

(Scheme 34) or proceed through nucleophilic substitution at the bromine via ate complex 

formation (Scheme 35).
12

 It is believed that alkyl bromides react with alkyllithiums via the 

radical mechanism, while aryl bromides react via ate complexes as intermediates.
12,56
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Scheme 34. Bromine-lithium exchange of alkyl bromide via radical intermediate 
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Scheme 35. Bromine-lithium exchange of aryl bromide via ate complex intermediate 

 

 Bromine-lithium exchange of 6-bromo-3H-quinazolin-4-one 315 was successful by the 

use of MeLi and t-BuLi at -78 C in anhydrous THF.
148

 Treatment of 315 with MeLi (1.1 molar 

equivalents) for 5 minutes gave the monolithium reagent 316 by removing the NH proton, 

followed by bromine-lithium exchange using t-BuLi (2.2 molar equivalents) to give the dilithium 
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reagent 317 (Scheme 36) as a yellow solution. Reactions of 317 with a range of electrophiles at 

-78 C for 2 h gave the corresponding 6-substituted derivatives 318-326 (Scheme 36) in 81-91% 

yields (Table 20).
148
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318-326

N

NH

O

N

N

OLi

N

N

OLi

N

NH
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1, Electrophile, -78 °C

2, aq NH4Cl
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Scheme 36. Bromine-lithium exchange of 315 followed by reactions with electrophiles. 

 

Table 20. Synthesis of 6-substituted 3H-quinazolin-4-ones 318-326 according to Scheme 36.
148

 

Product Electrophile E Yield (%)
a
 

318 H2O H 91 

319 EtI Et 84 

320 PhCHO PhCH(OH) 81 

321 4-MeOC6H4CHO 4-MeOC6H4CH(OH) 83 

322 Ph2CO Ph2C(OH) 88 

323 MeCOBu MeC(OH)Bu 88 

324 (CH2)5CO CH2)5C(OH) 85 

325 PhNCS PhNHCS 82 

326 [
i
Pr2NC(S)S]2 

i
Pr2NC(S)S 81 

a

 Yield of isolated product after crystallization from methanol or ethyl acetate.  

 

 No N-substitution was observed, even when excess iodoethane (2 molar equivalents) as 

electrophile was used.
148

 The 
1
H NMR spectrum of 326 should that the methyl and CH protons 

of the iso-propyl groups appeared as broad signals at room temperature and as doublet and heptet 

signals, respectively at 80 C.
148

 This confirms the restricted hindered to rotation about the C-S 

and C-N bonds at room temperature.  

 Reaction of the dilithium reagent obtained in-situ from the bromine lithium exchange of 

315 with 1,3-dibromopropane (0.55 mole equivalents) at -78 C gave 6,6'-(propane-1,3-diyl)bis-

3H-quinazoline 327 in 71% yield (Scheme 37).
148
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O
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1, MeLi, -78 °C, THF

2, t-BuLi, -78 °C, THF

3, Br(CH2)3Br, -78 °C
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N
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O
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N
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Scheme 37. Bromine-lithium exchange of 315 followed by reaction with 1,3-dibromopropane. 

 

6. Addition of alkyllithiums to substituted quinazoline derivatives 

Nucleophilic addition of alkyllithiums takes place at the imine bond of the quinazoline moiety to 

produce either 1,2- or 3,4-additon products. However, regioselective lithiation can take place by 

the use of less nucleophilic lithium reagents. 

 

6.1. Addition of alkyllithiums to 3-acylamino-3H-quinazolin-4-ones 

It was found that reactions of 3-acylamino-3H-quinazolin-4-ones 5 with one molar equivalent of 

alkyllithiums in THF at -78 C were very fast and completed within 5 minutes to give 

3-acylamino-2-alkyl-1,2-dihydro-3H-quinazolin-4-ones 329-334 (Scheme 38) in high yields 

(Table 21).
115
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Scheme 38. Addition of alkyllithiums to 3-acylamino-3H-quinazolin-4-ones 5. 

 

Table 21. Synthesis of 3-acylamino-2-alkyl-1,2-dihydro-3H-quinazolin-4-ones 329-334 

according to Scheme 38 via 1,2-addition.
115

 

Product R R
1
 Yield (%)

a
 

329 t-Bu n-Bu 96 

330 t-Bu t-Bu 98 

331 t-Bu Me 90 

332 Me n-Bu 82 

333 Me t-Bu 84 

334 Me Me 70 

a

 Yield of isolated product after crystallization from ethyl acetate.  
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Clearly nucleophilic addition of alkyllithiums at the imine bond of the quinazoline moiety 

took place to give the corresponding 1,2-addition intermediates 328. Directed lithiation of 

3-acylamino-3H-quinazolin-4-ones 5, at the 2-position, was achieved by the use of LDA as 

described in Section 2.1.
115

  

 

6.2. Addition of alkyllithiums to 6-substituted 3H-quinazolin-4-ones 

Regioselective lithiation of 6-methyl-3H-quinazolin-4-ones 335 using alkyllithiums was not 

successful.
148

 Instead, nucleophilic addition took place at the imine bond to give the 

corresponding 1,2-addition products. Reactions of 335 with alkyllithiums (one molar equivalent) 

in THF at -78 C took place within 15 minutes to give 2-alkyl-6-methyl-1,2-dihydro-3H-

quinazolin-4-ones 337-339 in high yields via lithium intermediate 336 (Scheme 39).
148

 Lithiation 

of 335 with a less nucleophilic reagent such as LDA did not take place and only starting material 

was recovered, indicating that no reaction took place under the conditions tried. 
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Scheme 39. Addition of alkyllithiums to 6-methyl-3H-quinazolin-4-ones 335. 

 

 Reactions of 6-bromo-3H-quinazolin-4-ones 315 with butyllithiums in THF at -78 C 

followed by reactions with a number of electrophiles (iodoethane, benzaldehyde, H2O) produced 

low yields of 6-substituted products along with 2-butyl-1,2-dihydro-3H-quinazolin-4-ones.
148

 

However, if four molar equivalents of n-BuLi or t-BuLi were used in THF at -78 C for 30 

minutes, 341 and 342 were obtained in 88 and 79% yields, respectively (Scheme 40).
148

 The 

author believed that compound 340 was formed as an intermediate. Compound 315 was 

successfully converted into the 6-lithio derivative using a combination of MeLi and t-BuLi in 

THF at -78 C (Section 5).
148
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Scheme 40. Addition of butyllithiums to 6-bromo-3H-quinazolin-4-ones 315. 
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6.3. Addition of alkyllithiums to 3H-quinazolin-4-thiones 

Reactions of 3H-quinazolin-4-thione 343 with two molar equivalents of alkyllithiums in THF at 

-78 C for 1 h gave the corresponding 2-alkyl-1,2-dihydro-3H-quinazoline-4-thiones 345-347 in 

high yields (Scheme 41).
149

 It is believed that such reactions took place through the formation of 

dilithium reagents 344. 
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Scheme 41. Addition of alkyllithiums to 3H-quinazolin-4-thione 343. 

 

 This result contrasts sharply with the situation of 3H-quinazolin-4-one, which does not 

react at all with alkyllithiums (n-BuLi, t-BuLi and MeLi) under similar conditions, which is an 

indication of the important role played by the sulfur atom in this reaction.
149

 The authors 

believed that the reason for this difference could be due to the thiolate anion in 344 being less 

effective at donating negative charge to the ring than its oxygen counterpart. The acquisition of 

negative charge by the ring would be expected to deactivate the ring towards nucleophilic attack 

by alkyllithiums.
149

 

6.4. Addition of alkyllithiums to substituted quinazolines 

Reactions of alkyllithiums with various quinazoline derivatives to produce addition products 

have been reported.
121,149-151

 For example, reactions of 4-substituted quinazolines 105 and 348 

with 1.2 molar equivalents of alkyllithiums took place smoothly and cleanly at -78 C in 

anhydrous THF for 1 h.
149

 The lithium reagent reagents 349 were presumably obtained as 

intermediates and after quenching with aqueous ammonium chloride solution gave the 

corresponding 4-substituted 2-alkyl-1,2-dihydroquinazolines 350-357 (Scheme 42) in high yields 

(Table 22).
149

 Lithiation of 348 with LDA under similar reaction conditions was not 

successful.
149
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Scheme 42. Addition of alkyllithiums to 4-substituted quinazolines 105 and 348. 
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Table 22. Synthesis of 4-substituted 2-alkyl-1,2-dihydroquinazolines 350-357 according to 

Scheme 42.
149

 

Product X R R
1
 Yield (%)

a
 

350 S Me n-Bu 90 

351 S Me t-Bu 88 

352 S Me Me 89 

353 S Et n-Bu 91 

354 S Et t-Bu 89 

355 O Me n-Bu 89 

356 O Me t-Bu 89 

357 O Me Me 94 

a

 Yield of isolated product after column chromatography.  

 

 Reaction of 4-methoxyquinazoline 105 with excess t-BuLi gave a mixture of 2-tert-butyl-

4-methoxy-1,2-dihydroquinazoline 356 and 2-tert-butyl-1,2-dihydro-3H-quinazoline-4-one 358 

(Scheme 43) in proportions that depended on the molar equivalents of t-BuLi used (Table 23).
149

 

Compound 358 was the very product that might have been expected from the reaction of 

3H-quinazolin-4-one with t-BuLi, but, of course, this direct reaction of 3H-quinazolin-4-one with 

t-BuLi did not occur.
149

 Compound 358 was obtained due to nucleophilic addition of t-BuLi at 

the 2-position of 105 followed by a C=O formation at the 4-postion. 
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Scheme 43. Reaction of 4-methoxyquinazoline 105 with excess t-BuLi. 

 

Table 23. Yields of 356 and 358 from reaction of 105 with t-BuLi according to Scheme 43.
149

 

t-BuLi (molar equiv.) Yield (%)
a
 

356 358 

1.2 89  

1.4 76 6 

2.0 66 15 

2.4 50 27 

3.0 37 42 

a

 Yield of isolated product after column chromatography.  
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 Reactions of 4-substituted 2-phenylquinazoline 359 with one molar equivalent of 

alkyllithiums (n-BuLi and MeLi) at -78 C in anhydrous THF for 1 h gave 4,4-dialkyl-3,4-

dihydro-2-phenylquinazolines in moderate yields along with significant quantities of starting 

material 359.
149

 Use of 2.2 molar equivalents of alkyllithium (n-BuLi, t-BuLi and MeLi) at 

-78 C in THF for 1 h gave 360-362 (Scheme 44) in high yields (Table 24).
121,149

 Products 360-

362 were obtained via 3,4-nucleophilic addition of alkyllithiums followed by displacement of the 

substituent (SMe, OMe or O(CH2)2OMe) anion and further addition of alkyllithium. Reaction of 

359 with t-BuLi gave only a modest yield of product 362 due to formation of by-products which 

were not identified.
149
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Scheme 44. Addition of alkyllithiums to 4-substituted 2-phenylquinazoline 359. 

 

Table 23. Synthesis of 4,4-dialkyl-3,4-dihydro-2-phenylquinazolines 360-362 according to 

Scheme 44.
121,149

 

Product X RLi (molar equiv.) R Yield (%)
a
 

360 S 1.1 n-Bu 49 

360 S 2.2 n-Bu 96 

360 O 1.1 n-Bu 46 

360 O 2.2 n-Bu 88 

360 O(CH2)2OMe 2.2 n-Bu 50 

361 S 1.1 Me 40 

361 S 2.2 Me 81 

361 O 2.2 Me 83 

362 S 2.2 t-Bu 49 

362 O 2.2 t-Bu 49 

a

 Yield of isolated product after column chromatography.  

 

 Reactions of 2,4-diphenylquinazoline 363 with MeLi in dry Et2O gave 4-methyl-2,4-

diphenyl-3,4-dihydroquinazoline 364 in 55% yield (Scheme 45) in which methyllithium was 

added at the imine bond at the 3-position.
150
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Scheme 45. Synthesis of 4-methyl-2,4-diphenyl-3,4-dihydroquinazoline 364. 

 

7. Conclusions 

Directed ortho-lithiation of 3-acylamino-3H-quinazolin-4-ones with LDA at -78 C in anhydrous 

THF are regiospecific and reactions of the lithium regents obtained with various electrophiles 

provided access to a broad variety of 2-substituted derivatives in high yields. Similar procedures 

have been developed for directed lithiation and substitution of 3-aryl-, tert-butylsulfinyl-3H-

quinazolin-4-ones, phenylsulfinyl-, chloro- and methoxyquinazolines. Such procedure provided 

derivatives previously unavailable or that might be difficult to prepare by other means.  

Lateral lithiation of 3-acylamino-2-n-alkyl-3H-quinazolin-4-ones, at the benzylic position 

of the n-alkyl group, has been achieved by use of n-BuLi or LDA at low temperature. Also, 

lithiation of 3-amino- and 3-methylamino-2-n-alkyl-3H-quinazolin-4-ones at low temperature in 

THF followed by reactions with several electrophiles provides various 2-substituted derivatives 

in high yields. The procedure is particularly useful in that there is no protecting group to be 

removed in another step from the amino function. A similar procedure has been developed for 

the side-chain lithiation and substitution for 3-aryl- and 3-unsubstituted 2-n-alkyl-3H-quinazolin-

4-ones and their thione derivatives.  

 A simple and convenient method for the side-chain substitution of 4-substituted 

2-n-alkylquinazolines, with a methoxy or methylthio group at position 4, has been reported and 

allows synthesis of various 2-substituted derivatives in high yields. Also, lithiation and 

substitution of several other quinazoline derivatives have been achieved to provide a range of 

substituted derivatives.  

 Bromine-lithium exchange of 6-bromo-3H-quinazolin-4-one has been achieved by the 

use of MeLi and t-BuLi at -78 C in THF. Reactions of the dilithium reagent thus obtained with 

electrophiles give the corresponding 6-substituted 3H-quinazolin-4-ones in high yields. 

 Nucleophilic addition of alkyllithiums to 3-acylamino-3H-quinazolin-4-ones, 

3H-quinazoline-4-thione and various quinazoline derivatives containing an alkylthio or a 

methoxy group at position 4 and a phenyl group or a hydrogen at position 2 take place at low 

temperature. The method provides high yields of various 2-alkyl-1,2-dhiydroquinazolines, via 

1,2-addition of alkyllithiums, and 4,4-dialkyl-3,4-dihydro-2-phenylquinazolines via 3,4-additon 

followed by displacement of the substituent (SMe or OMe) at position 4. 
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