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ABSTRACT

An opportunistic network is an infrastructure-less peer to peer network, created between devices

that are mobile and wireless enabled. The links between devices are dynamic and often short-lived.

Therefore, disseminating data from a source to recipients with a quality of service guarantee and

efficiency is a very challenging problem. Furthermore, the interactions between devices are based

on opportunity and are dependent on the devices mobility, which have extreme diverse patterns.

The aim of this thesis is to investigate dissemination of data in opportunistic networks. In

particular two conflicting objectives are studied: minimising the overhead costs and maximising

the information coverage over time. We also take into account the effects of mobility. Extensive

computer simulation is developed to explore models for information dissemination and mobility.

On top of existing mobility models (i.e. Random Walk, Random, Waypoint and Gauss Markov)

a hybrid model is derived from the Random Waypoint and Gauss Markov mobility models. The

effect on mobility model on dissemination performance is found to be highly significant. This is

based on sensitivity analysis on mobility and node density.

We first consider different baseline push techniques for data dissemination. We propose four

different push techniques, namely Pure Push, Greedy, L-Push and Spray and Relay to analyse the

impact of different push techniques to the information dissemination performances. The results

present different trade-offs between objectives. As a strategy to manage overheads, we consider

controlling to which nodes information is pushed to by establishing a social network between

devices. A logical social network can be built between mobile devices if they repeatedly see each

other, and can be defined in different ways. This is important because it shows how content may

potentially flow to devices. We explore the effects of mobility for different definitions of the social

network. This shows how different local criteria for defining links in a social network lead to

different social structures. Finally we consider the effect of combining the social structure and

intelligent push techniques to further improve the data dissemination performance in opportunistic

networks. We discover that prioritising pushing over a social network is able to minimise the
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overhead costs but it introduces a dissemination delay.
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Chapter 1

INTRODUCTION

1.1 Introduction

Inexpensive portable wireless devices now permeate our daily lives. In many case, these

devices can directly communicate with each other using communication standards that

operate in the unlicensed spectrum band. These make sharing, exchanging, and publishing

information directly between wireless devices more easy to perform and this is likely to

improve using developments such as opportunistic networks. An opportunistic network is

an infrastructure-less peer to peer network, created between devices that are mobile and

wireless enabled. This development of technology motivates ways in which information

can be efficiently disseminated to recipients. Methods of forwarding information need to

minimize consumption of resources as these are limited.

This thesis is devoted to understanding the behavior of information spreading through

interaction between portable wireless devices and investigating how to minimize overhead

costs, both to avoid unnecessary pushing of content and unnecessary querying of content.

An important issue is the mobility of devices. Through different mobility patterns par-

ticular pairs of devices may see each other more frequently than others. This means that

invisible social structures can naturally exist that we cannot see without monitoring. As

in human life these social structures can possibly be used to efficiently convey information.

The work in this thesis investigates whether this can be exploited for efficient spreading

of information between wireless enabled devices in opportunistic networks.

Because opportunistic networks are infrastructure less, very dynamic in topology, have

spontaneous interactions, and have very short live connections, forwarding information

from a source to recipients with a quality of service guarantee is very challenging. Fur-
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Section 1.2. Opportunistic Networking (OPNET) 3

thermore, the interactions between devices are based on opportunity and are dependent

on the devices mobility, which may have very diverse patterns. Therefore, to assist this

research investigation, we conduct our studies taking into account the effects of different

mobility models on information spreading.

Pushing and querying are two major tasks that devices can perform in dissemination.

In this work, pushing concerns sending content to a recipient without them requesting

it. Querying is requesting information from another device. A device that has not yet

discovered information, a query is used for seeking new information. For devices that have

information, a query is used for seeking updated information. The updated information is

identified based on the age of information. In this thesis, we are focusing on homogenous

information only. Both pushing and querying contribute to consumption of resources in

mobile communications. However, these tasks are the key to the spreading of information

in opportunistic networks and the way they are used affects how quickly information is

spread. So, we investigate the processes of push and query and also social structure

to understand deeply its effects on information spreading and overhead costs. We aim

to understand how the trade-off between performance (information spreading and speed

relative to flooding) and overhead costs (resource usage) is affected by push, query and

social structure.

1.2 Opportunistic Networking (OPNET)

An OPNET is a disconnected mobile network which has intermittent network connections.

The devices communicate directly with each other under the unlicensed spectrum band

i.e 802.11g and bluetooth. The communication between nodes occurs on an opportunistic

basis. At a single point at time, an end to end path between sender and receiver may

not exist. Pairs of nodes may temporarily set up connections between themselves and

forward data. Later, the receiver can forward to other nodes in the same way. In the case

that the node is disconnected from others, the information that needs to be forwarded is

buffered. The information can be forwarded when a potential or the target recipient is

within a node’s direct contact. Figure 1.1 shows information forwarding in opportunistic

networks. At the beginning where t=0, only node a has information. At t=1, both nodes
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a and b are in direct contact. Because node a has information, information is forwarded

to node b. Now both nodes a and b are the information forwarder. At t=2, we can see

that all nodes have discovered information as node a is in contact with node c and node

b is in contact with node d. As we can see from figure 1.1, even though no simultenous

connections between node a and node d existed, but through opportunistic information

forwarding, node a able to pass information to node d.

Figure 1.1. Opportunistic Networks

An OPNET is a type of mobile ad hoc network (MANET). Both networks have dynamic

reconfiguration of wireless network links. The nodes act both as hosts as well as routers.

However in an OPNET a compete path between destination and source is not necessarily

available. The nodes utilize the direct contact interaction to choose the best next hop to

bring the information close to the recipient. However in MANET, protocols such as AODV

[36] and DSR [17] need to establish first a complete route between source and destination

before the actual data is forwarded. This is why most of the routing and dissemination

protocol of MANETs cannot be used in OPNETs without adjustment.

1.3 Information Provision

Broadcast is the basic way of communication in many systems [38]. A node simply sends

data or information to all known neighbours. This approach is used to disseminate infor-
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mation in the situation where no knowledge about network topology is available. Because

all nodes are involved in forwarding information, this approach suffers from the broadcast

storm problem [33]. Multicast is a type of communication which forwards information

simultaneously to a group of nodes (members) only. Multicast is more structured than

broadcast. Another type of communication is Unicast which sends information to a single

node or host in the network.

In this thesis our concern is Broadcast. In OPNET, the most simplest approach to

achieve broadcast is a Flooding approach. For example a node simply sends information

to all its known neighbours. Because of this, flooding suffers from high information du-

plications and uses many resources. Nevertheless, Flooding is still a useful technique to

disseminate information because it is simple.

Besides Flooding, Epidemic approaches can be used in OPNET to deliver information.

The Epidemic approach was introduced by D.Agrawal [2] to maintain replicated data in

a transaction database between servers. This technique is reused by [48] to reduce the

duplication problem in the Flooding technique. Instead of forwarding information to all

neighbors, the Epidemic selects a neighbour to forward information on a probabilistic

basis. The Epidemic approach is a gossip protocol, because gossip spreads information

similar to the spread of a virus in a biological community [50].

The Epidemic approach has been used by number of researchers in information pro-

vision in opportunistic networks. For example Beaufour [4] and his colleauge use this

approach to exchange messages in sensor networks, Juang [19] used epidemic approach

in ZebRaNet project to explore the wireless protocols from a power-efficient persepec-

tive. Glance [10] used the epidemic approach to disseminate information by harnessing

the movements of people.

Context aware routing is also another stream of information provision in OPNET which

exploits the user or node information to assist information spreading. HiBOP [5] and CAR

[32] are examples of context aware techniques which use device information to route for

unicasting. This approach requires a node to maintain a local database to be able to

forward information to the next hop. This approach is more complex than the Epidemic

approach as it involves many considerations before forwarding information.
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Generally, all techniques that are used in wireless communication for information provi-

sion have two common basic attributes which are Push and Query. Pushing enables a node

to forward information from one node to another. Querying enables a node to send request

information to another nodes. To the best of our knowledge, there is no published work

that investigates specifically on the effect of Push and Query on information spreading in

OPNET. This is the research focus of this thesis. Thus, we establish this research mainly

to answer the research question to what extent a Query and a Push technique can mini-

mize the overhead costs and maximize the information spreading delivery in opportunistic

networks. In addition, we also investigate to what extent a social structure between de-

vices is useful in disseminating information in OPNET. In general, a relationship between

nodes can be made from different interdependencies, such as friendship, knowledge, belief

and other elements that make nodes share or exchange things. The social structure has

received much attention initiated from the six degrees separation works by Jhon Guare

[12] and implemented in small world experiment by Stanley Millgram [31].

1.4 Research purpose and scope

This thesis concentrates on exploring different ways of pushing and querying with a view

to manage information duplications (overhead costs) while trying not to decrease the in-

formation dissemination performance (information coverage over time). Therefore we are

seeking to minimize the overhead costs and maximize the speed of information spreading

relatively close to flooding performance in opportunistic networks. This involves investi-

gating the trade-off in performance verses resource usage.

The research starts by investigating the effects of different mobility models on infor-

mation spreading. Understanding different mobility models is important because different

mobility represent different pattern of nodes mobility. The nodes mobility affect the nodes

interaction frequency. Therefore, analyzing the mobility model is necessary in order to fur-

ther study the information spreading behavior in mobile networks.

The research proceeds by analyzing the effect of push and query on the information

spreading. First, we develop a number of different types of simple interaction protocols

which have push and query attributes. Then, we test each of the protocols on different
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mobility models. Furthermore, we also measure the performances on information spreading

and overhead costs for each individual protocol.

Chapter 3 and chapter 4 provide a detailed study of the behavior of information spread-

ing in opportunistic networks through the query and push mechanisms. We further modify

the push attributes to discover the effect on performance. We apply this techniques using

a social structure based on familiarity between nodes. The purpose of introducing the new

approaches is to explore whether they can generate high performance trade-off between

objectives ( resources verses coverage).

1.5 Thesis Organization

After this chapter (introduction), the contributions are outlined as follows:

In Chapter 2: related literature to data dissemination in opportunistic networks is

discussed. We begin with understanding mobile peer to peer networks and opportunistic

networks characteristics as these two concepts are similar. We also present different types

of opportunistic network applications that are related to data dissemination. Then we

review different techniques for information dissemination in opportunistic networks. At

the end of the body of literature, we describe how our research differs from the research

that reviewed in the literature.

In Chapter 3: The effect of different mobility model on data dissemination is analyzed.

We initially compare three different existing mobility models; Random Walk, Random

Waypoint and Gauss Markov. However, realizing that Random Waypoint and Gauss

Markov possess potential attributes that are useful to represent closely the human mobility,

we introduced a new model which called the D-GM mobility model. This mobility model

is a new hybrid model from both (Random Waypoint & Gauss Markov) mobility models.

With the different mobility models, we develop three Key Performance Indicators (KPIs).

These are information coverage profile, age profile and update profile. Different mobility

models show different effect on the data dissemination behavior.

In Chapter 4: The effect of query and push mechanisms on the data dissemination

is analyzed. Using the mobility model proposed in chapter 3, chapter 4 focuses on un-

derstanding the behavior of information dissemination with different ways of acquiring
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information through query and push mechanism. This thesis considers Pure Push tech-

niques using existing flooding algorithms. We also introduce three new different basic

forwarding techniques based on push and query. They are Greedy, L-Push and Spray

and Relay. Each technique has different way of implementing push and query. These are

assessed using the KPI in chapter 3.

In chapter 5: This chapter investigates formation of a social network based on the

nodes interactions. We introduce three ways in which the nodes interact to form a social

structure. The techniques that we use to form a social structure are Average Interaction

based, Periodic Interaction based and Sliding Window based. In addition we visualize the

pattern of social structure for each technique.

In Chapter 6: we test the use of a social structure with different flooding techniques.

This is carried out using a social structure that formed from frequency of interaction. The

social structure is used to choose which nodes to interact with. As we want to investigate

the effects of different combinations between social structures and push mechanism on

information spreading, we develop and apply a comprehensive set of experiments .

In chapter 7: we provide a discussion of our research and its contribution to the

study. We also provide how this work can be extended in the future.



Chapter 2

LITERATURE

2.1 Introduction

This chapter discusses the basic concept of opportunistic networks (in section 2.2) and

their applications (in section 2.3). The basic information forwarding techniques that allow

devices to exchange information are also discussed in section 2.4. This chapter begins by

explaining mobile peer to peer networks and opportunistic networks as these two concepts

are inter-related to each other. Before we focus on the most important issue in oppor-

tunistic networks (i.e message forwarding ), we provide a summary on how opportunistic

networks may be implemented in the real world. Then we discuss different ways of for-

warding information in opportunistic networks. Lastly, we present how our research is

differ from the existing forwarding information techniques in section 2.5.

2.2 Mobile Peer to Peer and Opportunistic Networks

The concept of mobile peer to peer networks (MP2P) and opportunistic networks are very

similar but explained in different terms. The next subsections provide a general concept

of both types of network and summary of works that are related.

2.2.1 Mobile Peer to Peer

Mobile peer to peer networking (MP2P) is a generalisation of Mobile Ad-Hoc Networking

(MANET). It can be defined as the interaction between pairs of peer mobile devices for

sharing information. MP2P exhibits dynamic network topology, therefore it is hard to

maintain end to end connectivity between peers. To facilitate the connection between

9
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devices, MP2P may use short range technologies such as Bluetooth, IEEE 802.11g and

ZigBee. Routing is less of a priority as compared to a MANET because the primary

purpose is pair wise connectivity for sharing. In a MANET, to route data, information

is needed about the destination in order to complete the routing task and this can be

gained from the end-to-end network structure. Consequently maintaining this end-to-end

connectivity is important. In contrast with MP2P, there is no end-to-end connectivity

so gaining information to help routing is challenging. However a type of routing for

information can be enabled in MP2P by the concept of store, carry, forward (SCF) [34].

The SCF technique allows nodes to store content to be forwarded later to a target recipient

or population.

In general, we can classify the research in mobile peer to peer into two classes. The first

class is using cellular technology for extending the existing wired peer to peer networks to

mobile devices. The second class is using short range communication technology such as

WiFi, Zigbee and Bluetooth in peer to peer communication.

The cellular peer to peer communication focuses on providing a solution to adapt the

existing P2P network infrastructures to the peculiarities of mobile environment which

are limited in resources, bandwidth and frequently have disrupted connections. Overlay

networks is one of the solutions that are used to extend P2P networks to mobile networks.

Dynamo [51] is an example of project that uses proximity information to produce an overlay

network structure that similar to the underlying physical network topology. MobiGrid [8]

is another project that enables mobile devices to communicate peer to peer with P-Grid

[1], where P-Grid is a wired peer-to-peer network. Projects such as Peer-to-Peer Content

Sharing Application [30], Mobile Chedar [23] and MOBY [15] use the same concept as

Dynamo and MobiGrid project.

In cellular peer to peer communications, a new communication protocol is required to

enable a smooth integration between the P2P wired networks and the cellular networks.

The main objective of introducing a new protocol is to address how to route information or

signaling messages efficiently in a dynamic mobile network topology. Projects like JXTA

[20], MPP [41], Generic Engine [13] and JMobipeer [28] are examples of works that propose

new protocols to enable communication between mobile devices and wired networks in a
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peer to peer manner. These protocols enable any mobile devices that are connected to a

network to exchange messages independently. MPP, Generic Engine and JMobieer projects

not only address the connectivity, they also have proposed an efficient message routing

protocol to route information effectively in a dynamic network topology.

Under the second category, the research focuses on the pair wise mobile to mobile

communications. The communication is mostly used for collaboration between co-located

mobile devices. Data is exchanged based on carry-store-forward mechanism. The carry-

store-forward mechanism is where data is carried by a mobile node when a recipient is

not in communication range. The challenge to implement this mechanism is to determine

an efficient technique for sharing information among mobile devices and to identify which

mobile devices can forward or carry information efficiently. Peer2Me [49] provides a set

of frameworks for mobile devices to collaborate and to exchange information effectively.

It uses the Bluetooth technology as a communication medium for peer-to-peer commu-

nication. Because development is focussed on mobile devices, J2ME (Java 2 Platform,

Micro Edition) technology is used for application development. This is because J2ME

provides a general execution platform for devices that are limited in resources such as

mobile phone and PDAs. Peer2Me has similarity with Proem [22] and JMobiPeer [28] in

terms of providing a channel for allowing mobile nodes to collaborate in P2P manner.

2.2.2 Opportunistic networks

An opportunistic network has the same attributes as a mobile peer to peer network but it

has evolved from a different community. Whereas MP2P has arisen from content sharing

and peer-to-peer overlays for file sharing, opportunistic networking has been developed

by the networking community as an evolution of delay tolerant networking. Instead of

end-to-end connectivity being available at a single point in time, connections may be in-

termittent and so the path of links between source and recipient is spread over a period of

time, maybe with no complete path ever existing between sender and receiver [34]. There-

fore, in this situation the nodes have to apply store carry forward techniques in order to

deliver the information. Similar to MP2P networks, to minimize the delay, exploiting in-

formation from direct interactions is necessary to forward information effectively. Because



12 Literature Chapter 2

the concept has evolved from the networking community the assumptions are that routing

content to individuals is the primary method to satisfy information requirements.

With the advancement of the communication technology, mobile devices are bundled

with multiple services which encourage mobile devices to share resources and services for

better utilization. [29] envisages that opportunistic networks will lead to opportunistic

computing, where more resources can be shared and exploited. This evolution is mainly

driven by the capability of mobile devices to exchange and share heterogeneous (rich

resources) services.

Realizing the existence of a wide range of scenarios in mobile opportunistic networks,

Chul and Do Young [24] investigate the effect of the heterogeneity of mobile nodes’ dy-

namic contact on forwarding performance in opportunistic networks. The approach used

in the paper is based on probabilistic forwarding technique. The challenge of deploying

this technique is to determine the optimal probabilistic value for a relay node because

this will affects the message delivery time performance. To the best of my knowledge, the

latest development on routing in opportunistic network is presented in paper [37] where

message delivery is guided using three different forwarding metrics. The forwarding met-

rics are Group Forwarding Metric (GFM), Probabilistic Forwarding Metric (PFG) and

Distance Forwarding Metric (DFM). These forwarding metrics are determined based on

the historical node counter information. The challenge to deploy this technique is to select

which groups should a mobile device subscribe to in order to receive useful information

from other mobile nodes. In [14], an architecture is used to support effective message

dissemination in proximity mobile social networks (PMSNs). Through this architecture,

users can share information and interact with other users in ad-hoc manner. The archi-

tecture also has a database which used by the transmission controller to delete an expired

messages to reduce the processing overhead. Not only that, it also decreases the message

propagation delay time.

2.3 Opportunistic network applications

Originally, the concept of opportunistic networks was designed to assist military commu-

nications and it has now successfully been deployed in a few civil environment where users
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are more interested to know information that is pertinent to their interests. Opportunistic

networks provide an alternative way of communication in areas (for example in a rural

area, in a deep forest and in the ocean) where installing network infrastructure is not

feasible.

2.3.1 Monitoring animal in sparse environment

Currently there are relatively few applications that have been deployed. The Opportunis-

tic networking idea has been used to facilitate connectivity in order to monitor animal

movements using sensor technology through peer to peer communication. SWIM [42] and

ZebRaNet [19] are the examples of works that use opportunistic networking concepts to

monitor the animal behaviors. The purpose of these works is to study the behaviors of

animals mobility through the collection of data and to investigate the behavior of animals.

In SWIM, an infostation model and the peer to peer mobile ad hoc communication

concept are combined to study the whales mobility so that the biologists have an idea to

preserve them. Whales are equipped with wireless devices to allow information exchange

between sensors when they are in contact. The wireless devices on whales are also able to

offload information to the infostations which are placed on buoys (floating in the water)

when they are in range. Once information is uploaded, the wireless devices memory is

cleared. The information from each infostation is sent to terrestrial network or directly

to a satellite for further use. Opportunistic forwarding enables the wireless devices to

exchange information even though no network infrastructure is available. Determining the

best location for placing an infostation is a challenge for data collection and monitoring

process.

In the ZebRaNet [19] project, sensors are deployed on zebras which are used as a

medium to disseminate information back to the base station. Flooding and history-based

protocols are used to exchange information when the wireless sensors on zebras are in

range. In the flooding protocol used, a sensor on a zebra floods data to all neighbors when

they are discovered. In the history-based protocol used, the devices intelligently select

others nodes (zebras) to send information based on prior movement patterns. Each sensor

on zebra maintains a level of a hierarchy which is increased when the nodes discover the
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base station. The hierarchy is used as a metric to guide nodes in selecting which node has a

high potential to discover the base station. This work shows that peer to peer networking

can be deployed to monitor wildlife without a proper network infrastructure.

2.3.2 As a medium of communication in rural area

Opportunistic networks also have been used in rural areas as a medium of communication,

for example in the DarkNet [35] and Saami Nomadic Community (SNC) [9] projects. In

the SNC [9] project, opportunistic networks are used to provide basic Internet access to

the SNC. Because the SNC always moves from one place to another, mostly in spring and

autumn, satellite and wireless communications are used as a medium of communication.

However, at the northern regions where the SNC stay, the TCP protocol cannot be used

as the nature of data link communication is frequently disconnected. So, bundle protocol

is introduced to enable the communication. Bundle protocol [39] is a series of contiguous

data blocks that is enough semantic information to equip the application to process data

even though there is an individual block may not be ready. Example of applications than

can be used to share and distribute information in situation where the communication

frequently disrupted are electronic mail, file transfer, and web caching.

In the DarkNet [35] project, the opportunistic networks concept is deployed to enable

a small village outside of New Delhi to access Internet services. To enable digital connec-

tivity, data is transmitted over short point-to-point links between a kiosk and portable

devices, mounted on buses, motorcycles and bicycles. The approach automatically syn-

chronizes the data from all rural areas when in range with the kiosk using the point-to-point

link connections. Through this project, we observe that it is possible to connect people

even though continuous connection is not available.

2.3.3 Facilitating connectivity in sparse environments

Opportunistic networks have also been used in facilitating connectivity between nodes

in sparse environments. Sparse environments refer to situations where mobile nodes are

sparsely distributed and the connections between them are only significant for certain

periods of time. Information is disseminated from one node to another through the store-
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carry-forward system. Because it is not cost effective to install network infrastructures

in sparse environments, a three tier architecture is proposed in Data MULEs [40] as a

useful model of communication. The top tier is composed of access points which upload

the data from MULEs (mobile entities) to a WAN (wide area network). This tier provides

reliable connections to central databases which enables the system to synchronize the data

that has been collected by MULEs. A MULE is mobile agent that carries and distributes

information. The middle tier consists of mobile transport agents which function as bridges

to provide connectivity to all tiers. The mobile agents have a large capacity of storage

(relative to sensors) and renewable power. The bottom tier consists of wireless sensors

which collect information according to their functionality. The sensors communicate with

MULEs using short-range radio communication. The key of this architecture is the MULE

which provides the overall flexibility and scalability. The same concept is also presented

in [53], [54] and [55] in which mobile agents visit the nodes in the sparse networks and

distribute information among them.

In forwarding information in sparse networks, the movement of mobile entities are

important to facilitate connectivity and to ensure efficiency and reliability of information

delivery. A Message Ferry (MF) is a special mobile node that facilitates the connectivity

where the nodes are sparsely deployed . Tariq et al [46] propose a predetermined route

to improve the reliability of delivery. The predetermined routes consist of two steps. In

the first step, the number of stop points and waiting time for each destination are identi-

fied. The waiting time is determined based on the probability of MF meeting frequency

with nodes. In the second step, all the predetermined points are arranged to find the

minimum length to traverse the points. The MF uses the minimum length to traverse the

predetermined points.

2.4 Routing in Opportunistic Networks

In opportunistic networks, information exchange protocols between nodes have played an

important role for routing in unicast based communication. Unicast based communication

[47] is point to point communication or direct communication. Therefore, to establish links

between nodes, a dedicated line must be reserved for such connection. Because the nature
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of opportunistic networks where no communication links can be established between the

sender and the receiver (final destination). So, to enable the information to travel over the

network using unicast communication based, the nodes have to utilize their interactions

with others to enables nodes to identify whether to forward the current information or not.

What makes this problem more challenging is that the information exchange protocol

should minimize the consumption of resources by maximizing the information delivery

time. A number of researchers suggest different solutions to address this issue. From the

literature, we categorize the existing routing techniques into three main categories. There

are Flooding Based, Epidemic Based and Context Based Routing techniques. The following

subsections discuss further each of this category.

2.4.1 Flooding Based Routing

The flooding technique is the simplest forwarding approach possible. It is a broadcast

communication approach which forwards a received message or information to all known

neighbors whenever possible. When a node encounters other nodes, it simply passes the

received information without any considerations. In high density scenarios, a broadcast

storm [33] is likely happen when too many nodes are repeatedly sending the same infor-

mation.

Using flooding to disseminate information is effective when a route from one destina-

tion to another is unknown and the network topology is always changing. Under flooding

dissemination, at every meeting, nodes exchange information without considering any is-

sues (i.e information duplication). Therefore nodes will discover information very quickly,

but when routes are known and predictable, other forwarding techniques are more effi-

cient to reduce the duplication problem and helps in minimizing the unnecessary overhead

processing.

In this thesis, we use flooding performance as the benchmark for our study. We compare

flooding performance with our forwarding techniques which are introduced in chapter 4

and 5.
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2.4.2 Epidemic Based Routing

Epidemic Routing introduced in [48], is an improvement of flooding based techniques. This

is a good example of how flooding can be improved to reduce the amount of information

duplication. Instead of passing information to all known neighbors [48], it exchanges

information index (summary vector) to avoid sending the same information to same nodes.

The summary vector contains information that has been seen by the sender. The nodes

exchange a summary vector when they are connected in directly. After this exchange, each

node is able to determine which information has not been previously seen. This guides a

node to request information from another. However, the frequency of information exchange

or spread is subject to the size of node’s memory. The process of information spread in the

epidemic approach is similar to how diseases are spread. First, an infected node that has

the information is a carrier to spread the disease. When the carrier encounters other nodes

that are not infected (i.e. not received information), it passes the disease to the uninfected

node. The nodes stop sending information (spreading disease) when information reaches

the destination.

To implement epidemic routing, it is necessary that each message has a unique ID

besides the source and destination information. This is to help nodes determine whether

the message has been previously seen or not. A number of hops is also useful to control

information duplication in networks. For example, when the number of hops allowed is

equal to one then the message can only be delivered to its final destination.

Beside the size of memory limitation, nodes have to exchange information and update

local information at every meeting. The nodes will be involved in many information

exchanges and updates where the frequency of meeting with other nodes is very high.

However, the frequent updates can be reduced by avoiding exchange information to the

same nodes. This is can be achieved by looking at the history of the nodes interactions.

The epidemic routing technique has been used by number of researchers to disseminate

information in the opportunistic networks domain. For example Beaufour [4] and his

colleague use this approach in sensor networks, Juang [19] uses the epidemic approach to

collect data from sensors though zebra interactions, and Glance [10] uses the epidemic

approach to disseminate information by using people as a medium of communication.
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2.4.2.1 Probabilistic Routing

Probabilistic Routing, introduced in [27], extends the epidemic routing approach. Each

node calculates the delivery predictability of encountered nodes. This probability reflects

whether the encountered node is a good forwarder or not. As in epidemic routing, when

two nodes are connected, both nodes exchange a summary vector but in probabilistic

routing the summary vector contains a delivery predictability value. So, assume that node

a and node b are connected and node a wants to forward information to node b. Node a

checks whether the delivery predictability value of node b is higher than node a. If this is

so, then node a forwards the buffered information to node b.

In probabilistic routing [27], each node established a probabilistic metric called delivery

predictability, P(a,b) ∈ [0, 1], at every node a for each known destination b. The calculation

of delivery predictability has three parts; the frequency of node encounter, the age of node

encounter, and the transitive property. From the delivery predictability, a node will be

able to know the likely probability of message to be delivered to the destination.

2.4.2.2 Spray and Wait Routing

Spray and Wait is a variation of epidemic based routing. It is designed to achieve low

delivery delays and energy-efficient in forwarding information in OPNETs. The experi-

mental results in [43] shows that the Spray and Wait approach outperforms the single-copy

[45] and multiple-copy [44] routing protocols in terms of total number of transmission and

average delivery delay under different traffic loads. A single-copy approach forwards mes-

sage only to the final recipient, thus, it suffers from high delay delivery time because only

a single message is produced for a single destination. For multiple-copy routing, multiple

copies of the same message are produced. Moreover, the messages also can be routed

independently. This is increases the robustness of the message dissemination to reach the

destination.

Spray and Wait routing consists of spray and wait phases. At the spray phase, the

message is injected from a source to a number distinct nodes (relays). The message spread

between nodes is initially based on epidemic routing. The number of copies L of message

permitted. This controls the overhead by controlling the number of copies of the message.



Section 2.4. Routing in Opportunistic Networks 19

In Spray and Wait, determining the number of messages injected to the network L

is an open issue because it depends on the network size. For the binary spray and wait

implementation, a node gives a half of its quota of injected messages to its encountered

node, thus the number of messages that can be injected by the sender has is L = L/2.

When the number of injecting message is equal to one (L=1), a node is only allowed to

deliver the message directly to the final destination.

With respect to our work, we have used this popular method as a basis for comparison,

integrating the Spray and Wait protocol with query and push mechanisms. In fact, the

Spray and Wait approach inspired us to investigate whether using push and query combi-

nations can be used to reduce the overhead costs of flooding while trying to maintain the

information delivery effectiveness as close to flooding technique performance.

2.4.3 Context-Based Routing

Context Based routing exploits user information for routing purposes. Information such

as user address, location, and preferences are the examples of information that can be

exploited. CAR [32], HiBOP [5] are techniques that are classified under this category. This

technique requires a memory space to store information and states of other encountered

nodes. This is important for a node to update and to recalculate the potential of its

neighbors when forwarding information to other nodes.

In HiBOp [5], a collection of information that describes which community a node is

belongs to and its history of social interaction is used to assist information forwarding.

This information is exchanged with other nodes during contacts which helps a node to

understand its context environment. The current context is useful for evaluating the

suitability of node to become a good forwarder. This is critical in the HiBOp approach,

therefore each node maintains a History Table (HT) which records the current context

and Identify Table (IT) which contain the personal information on a user. This technique

is used in chapter 5 to capture the social structure based on the nodes interactions.
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2.5 Relevance to our investigation

Our focus in this thesis is the investigation of efficiency and performance for broadcast

scenarios. As such, from Section 2.4, the most relevant work to our approach is the

epidemic approach. Our work has the same objective as the epidemic approach which is

to maximize the delivery performance and minimize the use of resources [48]. However the

works does not explicitly address the effects of push and query, nor does it use the social

structure in data dissemination. Push is passing information from one node to another

node directly. Query is a message send from node to another to discover new information.

In the original epidemic approach, when nodes are in range, a vector (containing the

index of all information kept in the node’s memory) is pushed. On receiving the vector,

the nodes compare it with the local vector information. Then the nodes acknowledge

the vector message by sending the missing index information that is found during the

comparison process. Upon receiving the acknowledgment, the sender sends the missing

information as a reply to the acknowledgment. This is a very specific protocol that uses

push and query of high level information in a very specific manner.

In our investigation, we address query and push in a generalised manner, dealing with

homogeneous information. A single type of information allows us to focus only on query

and push overheads. Our work is also inspired by the flooding technique, which acts as a

benchmark to consider performance. It is a very simple technique that allows maximum

spreading of data but at high cost. It has massive utilization of resources which is not

efficient for opportunistic networks as device resources are limited. Based on the literature,

it is only the Spray and Wait [43], [45], [44] approaches that use purely push techniques in

disseminating information. These techniques limit the number of messages to be pushed as

to control information duplication. In comparison to this thesis, a social network structure

is used to avoid duplication to particular nodes through a logical structure that defined

based on nodes mobility patterns. Within the work, we develop an understanding of the

different push techniques, how they can be combined with querying others for data and

how they impact upon performance. This contribution is valuable as it has to the best of

our knowledge not been previously carried out.

In our investigation, no acknowledgement is used because we are only dealing with
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homogeneous information, so indexing different types of information is no longer needed

because all nodes are only interested in a single type of information. We use different

techniques of push and query mechanism to spread information and investigate the input

of these. We investigate the range of push size (which in the Spray and Wait approach

is limited based on the number of nodes) to observe its effect on data dissemination

performance. Moreover, we also introduce a quota concept which clarifies in the Spray

and Wait [43] approach regarding controlling the number of messages that can be injected

on the network by a node. We named this approach as Spray and Relay as presented in

chapter 4.

Exploring the impact of push and query combinations without any intelligent assistance

is vital research because it helps us to understand the impact of push and query techniques

behavior on data dissemination. Further more, it also paves the way to improve the push

technique and motivates the design of an intelligent dissemination based approach. In [27],

[11], [16], and [18], the past contact history has been used to help nodes to disseminate

information effectively. Recently, nodes history of interactions has also been used in [5]

to form a social structure. The goal of the social structure is to help nodes to forward

information effectively to the right nodes at maximum performance. In relation to our

work, we define clearly the concept of the social structure constructed from the nodes

history interactions (i.e. the frequency of nodes seeing each other in a given period of

time). Moreover, we also investigate different ways of constructing social structures in

chapter 5.

From chapter 4, we observe that push protocols have great impact on information

spreading performance in opportunistic networks. This motivates us to further investigate

the possibility of achieving the best information dissemination performance by just using

the push protocol. As a result, we present different push techniques where the goal is

to maximize the delivery time and minimize the duplication problem. Not only that, we

also integrate our push techniques with the social structure using a construction that we

develop in chapter 5. As far as we can see, this research is the first investigation that

attempts to address the push and social structure combinations to maximize the delivery

time performance and minimize the overhead costs in opportunistic networks.



Chapter 3

MOBILITY MODEL AND DATA

DISSEMINATION

3.1 Introduction

Mobility is important in our work because it is through mobility that nodes gain the

opportunity to disseminate data to other peers. It is often the case that authors use a

single mobility model. This is not good because the choice of mobility model affects the

results. Therefore, this research deploys different mobility models to study the sensitivity

of different mobility models on data dissemination performance in opportunistic networks.

The purpose of this chapter is to understand the data dissemination behaviour over

time of various levels of mobile node density and different types of common mobility

models. We use four different mobile models. Three mobility models are taken from

[7] i.e. Random Walk, Random Waypoint, and Gauss Markov and we develop another

mobility model which is a combination of Random Waypoint model and Gauss Markov

model. We named the model is a Directed Gauss Markov (D-GM) mobility model. The rest

of the chapter is organized into five subsequent sections. In section 3.2, we briefly discuss

the motivation underpinning this chapter. Because the result here is based on computer

simulation, we have described our simulation model in Section 3.3. The experiments and

results are presented in Section 3.4. Section 3.5, provides discussion with regard to this

chapter’s objective.

22



Section 3.2. Motivation 23

3.2 Motivation

The characteristics of opportunistic or Mobile Peer to Peer (MP2P) make simulation mod-

elling a very useful tool for understanding the behaviour of these networks. For example,

MP2P networks has dynamic topology. So, in order to understand MP2P networks, we

need to monitor each of the nodes communication which is very complex and time con-

suming. However, through simulation, repeatable scenarios with different settings can be

evaluated very fast. Moreover, via refinement of settings, it helps to deepen understanding

of how changes (parameters) impact upon the MP2P networks.

The movement patterns of mobile node play a vital role in data dissemination in mobile

peer to peer (MP2P) networking. For example, a user’s mobility behaviour affects the

number of peers discovered which in turn increases the opportunity for exchange messages

(artifacts). The more frequently nodes are discovered, the higher the chance of spreading

messages quickly.

Besides the movement patterns, the density of users also plays an important role in

understanding data dissemination. For example, in a very busy city, the opportunity of

meeting other users is high. Thus, the chance of exchanging messages between users is

also high. This is contributes to make data disseminate quickly.

Using different mobility movements and different levels of node density are thus essen-

tial input for our simulation and the investigation of the data dissemination behaviour.

We include two random models (Random Walk and Random Waypoint) [7] in order to

simulate a commonly used mobility pattern. The Random Walk model simulates a situ-

ation where a person who randomly walk around in a mall. A Random Waypoint model

simulates human movement similar to Random Walk but stop at particular location before

continue to move to other location in a mall.

Another model included in our simulation is the Gauss Markov [7] movement model.

This movement is categorized as dependent movement, where the calculation of next move-

ment is based on the previous direction and speed. Interestingly, this movement overcomes

the sharp turning issue present in the Random model. Sharp turning is when a node is

stopped and turns to the different direction. This model simulates a human movement
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pattern that has a particular destination and no straight path exists. So, to reach the

destination, alternative routes which actually deviate from the straight path is used.

Under the Gauss Markov model, a general direction is determined by mean direction

(d̄). The initial value of d̄ for each node is determined depends on the located of a node in

the simulation area. For example if the node is located at location x=5 and y=5, then the

initial direction is 45 degree. This is to force nodes move to the center of the simulation

area.

In order to understand the effect of the number of nodes in particular place on in-

formation dissemination, we model nodes that have location and movement based on the

defined mobility models. We also increase the number of nodes by 15 for every simulation

by taking into consideration the existing nodes in each simulation. The aim is to simulate

how the different levels of density actually influence the data dissemination behaviour.

3.3 Model

For purposes of just understanding mobility, the simulation is developed to simulate the

data exchange between mobile nodes which appear in a given range (e.g: 30m). The data

exchange occurs only if a new artifact is discovered between peers. The peer discovery

process is opportunistic, in that the mobile node has no knowledge who (mobile nodes),

what (kind of artifact) and when (in which particular time) it will discover another peer. To

simplify the simulation, we used a single data (artifact) type for all nodes which originated

from one source (info-station). The artifact has an age which indicates how long the artifact

has been in the network. The age of artifact is incremental by one following the simulation

step. This is important because it is through the age we can identify the update frequency

information in the networks. The artifact that originates from the information source

always considered as a fresh information ( i.e. age =0). The following subsections explain

in detail the simulation components.

3.3.1 Transmission

We assume that the transmission technology applied has basic characteristics for personal

area networking (e.g. Bluetooth). The parameters used for this experiment are given
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Table 3.1. Global Parameters
Parameters Setting
Channel Bit Rate 10 Kbps
Discover Success rate 0.95
Transmission Success rate 0.95
Channel setup time 0.5
Meta-data size 0.1kb
Artifact size 3kb
Transmission range 30 meters
Simulation time step 0.1 seconds
Simulation duration 15 Minutes
Region size 500m x 500m

in Table 3.1. The parameters are chosen to have a clear and systematic experimental

investigation. We assume a message size of 3 kb, allowing a text message of around

1,500 to 3,000 characters (depending on encoding). Since we only have to transmit 3.1 kb

data (artifact and meta data) over the channel, 10 kbps is sufficient for the data transfer

between nodes. The connection is based on peer to peer communication so the nodes are

only allowed to have one connection at time, hence we assume a data rate transmission

success of 95%. We also assume that the success rate of discovering other nodes is 95%.

To setup a communication channel requires a small period of time; for our experiment

we give a conservative estimate of 0.5 seconds for this purpose. Random selection of the

discovered partner node is assumed and each node only maintains one link at a time.

3.3.2 Information exchange protocol

We apply a fully opportunistic protocol for artifact exchange. The protocol is greedy in

the sense that when a node is not engaged in peer-to-peer interaction, it is engaged in

peer discovery. Note that this is not a resource efficient protocol and it is unlikely to be

appropriate in practice but appropriate to model a specific protocol. We are modelling it

here merely to scope the possible performance in terms of data dissemination quality that

could be achieved using different mobility models.

Once a connection has been established and channel set-up is completed, the pair of

nodes exchange meta-data which describes the age of their current artifact or the absence

of an artifact. At this point, each node can determine whether it is required to transmit

or receive an update of the artifact. In the case of a node is engaged with an information
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station (i.e. information source), the node artifact is updated directly after connection

is established without performing the meta-data exchange process. An artifact update

between nodes occurs if either

1. One of the nodes has no artifact, in which case a copy of the artifact is transmitted

2. Both nodes have artifacts of different ages, in which case the older artifact is updated.

The communication between peers is bi-directional. However, no acknowledgment is

performed and a 95% transmission success rate is assumed for both data and meta-data,

as long as the nodes are in range for the required data transmission.

3.3.3 Simulation components

Figure 3.1. 2D plane simulation

Figure 3.1 shows the plane and entities in the simulation. The following outline the

entities used in the simulation:

• Mobile node (MN)- MN is a portable device (Pda, Mobile Phone, Laptop) which is

embedded with wireless communication such as Bluetooth, zigbee, or Wi-Fi. It is

capable of exchanging messages with its peer. Moreover, it also operates as a carrier

to spread the artifact.

• Information source (IS) - Information source is a device which is embedded with

wireless communication such as Bluetooth, Zigbee, or Wi-Fi and sensor, that is
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situated in a particular place. It only produces the latest information and sends

information but not receive information from its peers.

• Simulation region - Simulation region represents the size of an area (in square meters)

in which the node can be positioned, moved or discovered. It is also used to limit

the nodes’ movement, i.e. the node that moves beyond the simulation region area

will bounce off depending on which mobility models are in used. Each point in the

simulation region is referenced using x and y coordinates.

• Time steps - A time step is measured in seconds. In every time step, each node

moves to a new location, based on the mobility model.

• Mobility model - Mobility model dictates the node’s movements according to the

models that already described. The movement to a new location is calculated at a

time step, based on the speed and the direction.

• Artifact -Artifact is a piece of information that travels between nodes. It consists of

time (when it was produce)and ID.

• Assumptions about artifact storage - Each mobile node has the capability of storing

an artifact.

We use a discrete time-step model for the simulation. At each time step the following

elements are updated:

• Node location - location (x, y) for each node

• Neighbour information - the latest information of the closest neighbour is updated

for every node

• Artifact age - This is increased using time steps. Age of artifact is increased by one

for every time step. The latest artifact will overwrite the old artifact.

3.3.4 The mobility model movement

Nodes in the simulation model move according to Random Walk, Random Waypoint and

Gauss Markov mobility models as previously mentioned. Random Walk and Random
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Waypoint are categorized as movement independent, which means next movement is not

influenced by its previous attributes. In contrast with Gauss Markov movement, the

next location is calculated based on the previous speed and direction. The nodes are

placed randomly at the beginning of the simulation. For all models, when the nodes hit

the boundary, they will bounce back towards center of the simulation area. The following

subsections describe the four movements used in the simulation including their parameters.

3.3.4.1 Random Walk

Initially, each mobile node is given two random parameters, direction and speed. The

node travels along the trajectory for a fix time interval. Before the node moves to a new

location, a new random direction and speed is given. The speed is uniformly distributed

between [4 km/h, 8 km/h]. In our simulation, we assumed that nodes changed direction

and speed every 30 seconds as to mimic the randomness of the human who walks randomly

in open space. We called this time value an interval. For each interval, a new direction

and speed will be assigned randomly. Note that, because the Random Walk model selects

direction randomly, there is a possibility that a node heading to its previous position.

Therefore, with a small time interval, a node is expected to be moving in a small area of

coverage, even more restricted than other mobility models.

3.3.4.2 Random Waypoint

Random waypoint is an extension of Random walk. This model introduces a pause time

at each interval time, where nodes stay at a location for a certain time (pause). Before

the node moves to a new location, a new random direction or destination is given at a

speed uniformly distributed between [minSpeed, maxSpeed]. In the simulation, the

speed range is chosen between [4 km/h, 8 km/h] which suits the pedestrians’ walking

speed. Furthermore, we used 30 seconds as the waiting time at each destination to force

the nodes to stop at the particular location. Note that, the waiting time here is not fixed

and be changed.
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3.3.4.3 Gauss Markov

Initially, each mobile node is assigned a random speed and direction. At fix interval time

n, new value of speed and direction is calculated based on the following formula [7].

sn = αsn−1 + (1− α)s̄+
√

(1− α2)sxn−1 (3.3.1)

dn = αdn−1 + (1− α)d̄+
√

(1− α2)dxn−1 (3.3.2)

Here sn , dn is the new speed and direction at time interval n. α ,where 0 ≤ α ≤

1, is the tuning parameter used to vary the randomness. s̄ and d̄ are constant values

representing the mean value of speed and direction. The sx and dx are the value taken

from Gaussian Distribution with the mean equal to zero and standard deviation is equal

to one. The d̄ is changed over time depending to the edge proximity of the node current

location.

At each time interval the next location is calculated based on the equation 3.3.3 and

3.3.4.

xn = xn−1 + sn−1 cos(dn−1) (3.3.3)

yn = yn−1 + sn−1 sin(dn−1) (3.3.4)

where (xn,yn) is the new location at interval n and (xn−1,yn−1) is the previous location

at interval n− 1. The (sn−1,dn−1) are the previous speed and direction before moving to

the interval n.

To ensure the nodes remain in the simulation area, the mean (d̄) of nodes is changed

based on the nodes location as shown in figure 3.2 which taken from [7]. For example if

a node near to the left edge of the simulation area, the d̄ is set to 0 degree. This forces a

node to move towards the center. A node is considered near to the edge when the distance

between the node and the edge is 20 meters.
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Figure 3.2. Change of Mean Angle Near to Edge (in degree)

3.3.4.4 Directed Gauss Markov (D-GM)

A D-GM is a combination of two mobile models i.e. Random Waypoint model and Gauss

Markov. The movement of a node is based on Gauss Markov mobility model. Each node

has predefined stops which depends on a node’s group. A D-GM takes a Random Waypoint

stop attribute where nodes stop at every predefined stop. Each stop has its own predefined

stop duration which is defined at the beginning of the simulation.

Under the Gauss Markov model, mean direction (d̄) of a node is determine based on

which simulation boundary a node is near to. The d̄ is determine the general direction of

which a node is heading to. However in D-GM a node’s general direction is set based on a

node’s group. Each group has predefined list of destinations to be visited and each group

has different priority value for different places.

The mean direction of a node is depends on the list of destination. Once a node has

selects it’s general direction, the Gauss Markov mobility model is used to calculate the

next location. Once a node reaches at the target destination, a node has to stop based on

the location’s pause time for certain destination. The algorithm of this model movement
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is presented in Algorithm 1. Figure 3.3 shows the destinations that used in the D-GM

model.

Algorithm 1 D-GM mobility model for 9000 simulation steps for a single node
initial mean direction (according to a node’s group)
initial mean speed
initial current direction
initial current speed
update the node location
pauseT ime = 30
for simulationstep = 1 to 9000 do

if the node has reached its predefined destination then
if pauseT ime > 0 then

decrease pauseT ime by 1
else

select new destination
pauseT ime = 30 time steps

end if
else

update the node’s new location
calculate the node’s new direction
calculate the node’s new speed

end if
end for

Figure 3.3. Destination coordinates for D-GM model
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Table 3.2. Priority sets for each group of nodes
Group x=50,y=50 x=250,y=250 x=400,y=50 x=50,y=400 x=400,y=400
Group 1 0.2 0.2 0.2 0.2 0.2
Group 2 0.4 0.2 0.1 0.2 0.1
Group 3 0.2 0.3 0.1 0.4 0.1

3.3.5 Test problem scenario

We adopt a 500m x 500m region, which is sufficiently large to represent a large store, small

shopping mall or city plaza. We assume that there is a single information source that has

a fixed location in the middle of the region, with the same transmission range as mobile

nodes (30 meters). We vary the density of mobile nodes in this region using 10, 25, 50, 75

and 100 mobile nodes. Random starting positions are allocated such that, if Si denotes

the starting positions of the test set of i nodes then:

S10 ⊂ S25 ⊂ S50 ⊂ S75 ⊂ S100 (3.3.5)

For all experiments performed, we consider the behaviour of node movement and informa-

tion acquisition based on 100 random trials. Each trial represents 15 minutes of system

operation with the artifact only being held by the source node at the start of each trial.

For the D-GM model, we divide the nodes into three groups. The first group consists

of node ID from 1 until 33, the second group from 34 until 66 and the third group from

67 until 100. For each group we have three sets of probabilities to determine the next

destination of the nodes. Table 3.2 shows the priority sets that are used for the respective

groups.

3.3.6 Performance metrics

In order to assess the quality of information that peers can maintain, we define a range

of metrics or Key Performance Indicators (KPI’s) that helps us to understand system

behaviour. The metrics outline is as follows:

• Artifact distribution

This metric assesses how quickly the information spreads to all nodes over the sim-
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ulation period. Rapid dissemination is preferred.

• Profile of artifact age

This metric assesses the age of an artifact throughout all the simulation steps. Only

artifact that produce by the information source has age = 0. The age of artifact is

increased by 1 at every time steps. A distribution which is positively skewed towards

a smaller artifact age is preferred.

• Number of updates

This metric measures the number of updates. An updates is replacing an old artifact

with an updated artifact which was been discovered through nodes interactions.

Frequent updating is preferred but this also requires a high level of resources.

• Total update profile

This metric measures the average of different level of degrees where degree is defined

as a frequency of artifact update between nodes. Involving all nodes to participate

at every interaction is preferred.

• Spatial Node Distribution

This metric is used to examine the distribution of nodes in the simulation region

within 15 minutes. The size of simulation region is 500 x 500 square meters. The

simulation region is divided into a number of smaller areas which we call cells, each

of which is 20 meters x 20 meters.

3.4 Experiments and Results

The experiments conducted in this section are organized based on five different KPI’s as

mentioned in Section 3.3.6. The main purpose of the experiments is to examine the effect

of different mobility models and node density on the data dissemination behaviours. The

duration of simulation for every experiment is 9000 simulation time steps (15 minutes)

and each simulation is repeated 100 times (trials) with different random seed generation

(to avoid bias in the result).
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3.4.1 Artifact Distribution

In this section, we present the result of artifact distribution behaviour over time using

various levels of node density and different types of mobility models.

Figure 3.4. Average of mobile nodes received an artifact using Random Walk over 100
trials

Figure 3.5. Average of mobile nodes received an artifact using Random Waypoint

Figures (3.4, 3.5, 3.6, 3.7) show the average number of mobile nodes received an artifact

within 15 minutes of the simulation time using Random Walk, Random Waypoint, Gauss

Markov and D-GM mobility models. Each line indicates the levels of density results for
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Figure 3.6. Average of mobile nodes received an artifact using Gauss Markov Model

Figure 3.7. Average of mobile nodes received an artifact using D-GM Model

10, 25, 50, 75 and 100 nodes respectively. The statistics of the graphs are given in Table

3.3, 3.4, 3.5 and 3.6.

From Tables 3.3, 3.4, 3.5, and 3.6, it can be observed that the artifact distribution is

sensitive to the node density. Increasing the node density also increases the opportunity

for nodes to discover an artifact very quickly. This is because more nodes are potentially

involved in forwarding an artifact.

Mobility model also affects an artifact distribution performances. For example, Gauss
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Markov mobility model distributes an artifact very quickly compared to Random Walk and

Random Waypoint mobility models. This is can be seen from Figure 3.6. This is because

mobility model determines the frequency of meeting with different nodes. The higher the

meeting frequency with different nodes, the higher the chance of nodes discovering an

artifact. Looking at the artifact distribution specifically in Figure 3.5, the line with node

density = 10 nodes (which is the lowest line in the graph), only has 21.3 % nodes that

have an artifact after 15 minutes simulation time. Whereas with the same node density

and the same simulation time, Gauss Markov mobility model has achieved 100 percents

nodes that have received an artifact. This is because Gauss Markov model creates more

chances for nodes to discover an artifact at the center after moving to the edge of the

simulation. Moreover, the information source that located at the center, makes easier for

nodes to discover an artifact very quickly.

Under Random Walk model, nodes move randomly (i.e., unpredictable) and because

of that there is possibility that the nodes move back towards its previous location. This

is reduces the chances of node to meet different nodes which indirectly limits the chances

of node to discover an artifact. As we expected, Random Walk model takes longer period

of time to discover an artifact compared to Gauss Markov model. This is can be observed

by comparing the number of nodes received an artifact in percentile for both Tables 3.3

and 3.5.

Random Waypoint model is also random based movement. This model forces the

nodes to pause for a 30 seconds at the particular point (destination). This limits the

nodes movement and also confine the opportunity of nodes to be updated by other nodes.

Thus, there are a high number of nodes without artifact found under this model. This

is can seen from the Figure 3.5 where the average of nodes that received an artifact over

the time is increases slowly. This is indicates not many nodes discover artifact under this

model.

D-GM model gives better performance compared to Random Walk and Random Way-

point models in terms of interactions and artifact discovery. This is because D-GM creates

a high chance for nodes to discover each other in one of the destination list. Moreover, be-

cause of the movement of nodes are based on the destination list, there is a high potential
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Table 3.3. Number of nodes received an artifact using Random Walk
Node density

number of node received an artifact in percentile Average (mean)
Standard Deviation

25 50 75 100

10 8.20 23.50 42.50 60.7 25.57 19.22

25 24.48 68.20 92.20 98.44 58.38 34.66

50 75.20 99.30 100 100 81.35 30.17

75 90.55 99.97 100 100 85.29 28.52

100 97.77 100 100 100 88.65 25.49

Table 3.4. Number of nodes received an artifact using Random Waypoint
Node density

number of node received an artifact in percentile Average (mean)
Standard Deviation

25 50 75 100

10 1.80 5.30 10.80 21.30 6.93 6.09

25 10.12 31.28 58.84 78.48 34.493 25.74

50 32.34 74.44 92.86 97.92 63.07 32.12

75 50.81 93.11 98.89 99.64 74.11 32.12

100 74.19 98.76 99.89 99.97 81.55 29.22

for a node to interact with different nodes. As compared to the GM mobility model, the

D-GM mobility model has lower performance. This is because of the nodes that using the

D-GM mobility model pause when they reach at destination point. This limits the chance

of nodes discovering each other and disseminate information. In contrast, nodes under

the GM mobility model keep moving until the end of the simulation. This continues the

dissemination of artifacts through the simulation.
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Table 3.5. Number of nodes received an artifact using Gauss Markov
Node density

number of node received an artifact in percentile Average (mean)
Standard Deviation

25 50 75 100

10 77.70 98.50 99.40 100 96.28 15.43

25 96.96 98.88 99.68 100 97.51 13.34

50 97.96 99.42 99.90 100 98.27 10.74

75 98.86 99.68 99.92 100 98.57 9.96

100 99.29 99.95 100 100 98.89 8.92

Table 3.6. Number of nodes received an artifact using D-GM
Node density

number of node received an artifact in percentile Average (mean)
Standard Deviation

25 50 75 100

10 85.90 90.60 92.90 94.70 85.18 16.22

25 94.20 96.20 97.52 98.20 92.65 14.02

50 98.26 99.20 99.48 99.60 96.88 11.00

75 99.08 99.56 99.76 99.87 97.77 10.12

100 99.26 99.77 99.90 99.94 98.22 9.32

3.4.2 Artifact Age Profile

The age of an artifact can be used as to represent the interaction frequency of a node.

A low value of an artifact age indicates high frequent update. So, this section presents

experimental results on the average of an artifact age. We assume that artifact i leaves

the infostation at time step x. The age of an artifact i at time step t is therefore t− x.

We are concerned with the age of all artifacts at the last time step of a simulation. We

create a profile of ages of artifact at last time step that include all the simulation trials that

we have conducted ( Figures 3.8 - 3.13). The statistics of each experiment can be found in

Table 3.7, 3.8 and 3.9. The skewness value is used to estimate the distribution of artifact

ages. A skewness characterized the degree of asymmetry of a distribution relative to mean.

A positive skewness indicates a distribution of artifacts with an asymmetric tail extending

toward more positive values, whereas a negative skewness indicates a distribution with an

asymmetric tail extending toward more negative values.

Increasing the node density also increases the chance of nodes meeting with different

nodes. This cause more fresh artifacts can be found in a high node density. This is because

an artifact has high chances to be updated through a frequent interaction between nodes.

This is can be further observed by looking at the statistics in Tables 3.7, 3.8, 3.9 and 3.10

where the lower node density (node density =10) has a high value skewness compared

to the high node density (node density =100). This is indicates that there are many old
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Table 3.7. Profile of artifact age using Random Walk model

Node density
Artifact Age

Mean Skewness Standard Deviation Median

10 25.57 82.04 64.57 26.7

25 68.60 50.54 121.39 35.12

50 115.65 20.81 218.38 17.98

75 162.39 11.45 347.52 11.99

100 210.92 7.85 509.90 8.99

Table 3.8. Profile of artifact age using Random Waypoint model

Node density
Artifact Age

Mean Skewness Standard Deviation Median

10 6.93 92.61 54.51 6.00

25 37.27 82.35 119.99 29.34

50 81.70 57.16 195.39 24.52

75 128.57 36.65 304.78 17.99

100 177.99 23.44 446.86 14.23

Table 3.9. Profile of artifact age using Gauss Markov model

Node density
Artifact Age

Mean Skewness Standard Deviation Median

10 96.28 32.11 619.67 0.10

25 136.02 20.67 1102.73 0.04

50 166.29 17.00 1767.55 0.02

75 209.43 18.08 2723.49 0.013

100 255.95 19.91 3847.10 0.01

Table 3.10. Profile of artifact age using D-GM model

Node density
Artifact Age

Mean Skewness Standard Deviation Median

10 8.52 49.60 16.14 4.96

25 23.17 33.84 48.51 10.315

50 71.74 28.02 186.38 27.29

75 145.10 23.94 439.16 49.02

100 243.32 20.92 837.52 75.49
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Figure 3.8. Age Profile Frequency using Random Walk Model with age range[0,10]

Figure 3.9. Age Profile Frequency using Random Walk Model with age range[0,9000]

artifacts (not updated) in the lower node density. This is not helping for information

dissemination.

From the mobility models perspective, Gauss Markov outperforms the other mobility

models in keeping an artifact frequently updated. This is can be observed by looking at

Table 3.9 where there are large number of low age artifact (age median=0.01) found within

15 minutes simulation. This is because Gauss Markov model directs the nodes to move

to the center when they are close to the edge of simulation. This creates opportunity for
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Figure 3.10. Age Profile Frequency using Random Waypoint Model with age range[0,10]

Figure 3.11. Age Profile Frequency using Random Waypoint Model with age
range[0,9000]

nodes to interact with different nodes which also helps the nodes to discover an updated

artifact. Moreover, the information source that located at the center also keeps the nodes’

artifact always updated.

For the D-GM model, the profile of age is close to the Gauss Markov’s model profile

age. As the density of node increases the number of low age artifact increased. This is

due to the fact that more potential forwarders information are available in a high density



42 Mobility Model and Data Dissemination Chapter 3

Figure 3.12. Age Profile Frequency using Gauss Markov Model with age range [0,10]

Figure 3.13. Age Profile Frequency using Gauss Markov Model with age range[0,250]

node. Because the nodes are moving towards specified destination in D-GM model, the

possibility of meeting other nodes are very high. Moreover, one of the stop of nodes is at

the center where the information source is located. Therefore it is reasonable that D-GM

has more low age artifact compared to Random Walk and Random Waypoint model as

shown in Figure 3.15.

As we expected, Random Walk model has more older artifact age compare to Gauss

Markov model. This is because not many nodes have a chance to received a fresh artifact
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Figure 3.14. Age Profile Frequency using D-GM Model with age range [0,10]

Figure 3.15. Age Profile Frequency using D-GM Model with age range[0,500]

from the infostation. In the case there is a node received a fresh information from the

center, as this node travel to the edge of simulation, the artifact is getting older. This

situation causes more old artifact found under the Random Walk model. This case is sim-

ilar to Random Waypoint model. However, with the pause attribute, Random Waypoint

has the capability to keep longer the fresh artifact when the nodes are pause in the center

area. This is why in the Figure 3.10 Random Waypoint has more fresh artifact compared

to Random Walk model (Figure 3.8) when node density is set to 100 even though the
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Table 3.11. Number of updates using Random Walk

Node density
Frequency update in percentile

Average of frequency update
25 50 75 100

10 1.1 2.5 3.5 5.0 2.29
25 5.0 10.44 12.04 15.08 8.57
50 17.52 23.66 24.56 26.78 19.96
75 33.29 38.48 39.16 41.59 33.10
100 50.18 54.15 54.76 57.07 47.70

Random Waypoint has limited movement compared to Random Walk model.

3.4.3 Number of updates

A high number of updates is likely contribute to rapid data dissemination. But, more

updates will produce high overheads. Hence, in this section we investigate the effect of

different node density and different mobility models on the number of artifact updates

between nodes. Figure 3.18, 3.16 and 3.17 show the update activity for different mobility

models. From the figures, we can see that jitter appear on each graph. This is because,

at each time step there is quite large variations in the number of updates that may occur.

Figure 3.16. Number of updates profile using Random Walk model

From Figures 3.16, 3.17, 3.18 and 3.19 we can observe that the number of updates

increased over the simulation time except for the D-GM model. This is because the

opportunity of meeting different nodes is different at every time step. So, there is no

guarantee that the number of updates at every step is the same. From the figures, we
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Table 3.12. Number of updates using Random Waypoint

Node density
Frequency update in percentile

Average of frequency update
25 50 75 100

10 0.4 1.0 1.6 3.5 0.98
25 2.48 5.76 11.08 14.84 6.53
50 8.74 18.18 24.66 28.12 16.70
75 19.33 34.4 39.77 43.23 29.16
100 34.25 51.52 55.5 58.23 43.32

Table 3.13. Number of updates using Gauss Markov

Node density
Frequency update in percentile

Average of frequency update
25 50 75 100

10 13.6 14.3 14.8 17.4 13.87
25 28.28 28.84 29.32 31.16 28.19
50 42.7 43.04 43.52 45.32 42.36
75 58.72 59.08 59.44 60.92 58.16
100 74.66 75.03 75.37 76.73 73.99

Table 3.14. Number of updates using D-GM

Node density
Frequency update in percentile

Average of frequency update
25 50 75 100

10 0.16 0.21 0.29 0.9 0.24
25 0.78 0.98 1.49 4.01 1.24
50 3.27 4.1 5.92 14.77 4.99
75 9.05 10.88 14.91 33.74 12.77
100 18.48 22.39 29.08 61.02 25.26
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Figure 3.17. Number of updates profile using Random Walk model

Figure 3.18. Number of updates profile using Gauss Markov model

can see also when the node density is increased, the number of updates is also increased.

This is due to the fact that more nodes are involved in updating an artifact (in high node

density).

Besides the node density, the mobility models also affect the number of updates. As

we can see from Table 3.11, 3.12, 3.13 and 3.14 different mobility models have different

average number of updates. Comparing all the mobility models, we found that Gauss

Markov model has a high number of updates i.e 73.99 % in 100 node density. This is
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Figure 3.19. Number of updates profile using D-GM model

Figure 3.20. A comparison of number of updates profile using different mobility models
for 100 nodes density

because Gauss Markov model creates a high chance for nodes to meet each other at the

center of the simulation. Moreover, the nodes that travel via the center also have a high

chance to receive an artifact from the infostation.

From Figure 3.20, it can be seen that the Gauss Markov model has a stable average

number of updates compared to the Random Walk model, Random Waypoint model and

D-GM model. This is because the next location of a node in Gauss Markov model is
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estimated based on the node current location. Therefore, the possibility of a node main-

taining its current connection when moving to the new location is higher as compared to

Random Walk and Random Waypoint model. The Random Walk and Random Waypoint

are using random assignment to determine the next location of a node. So, to maintain the

current connection in the location is very hard. The D-GM model has a different pattern

of number of updates from other mobility models. The number of updates drops as the

simulation time increases. This is because the nodes can be disconnected from others as

they have different direction of destination. Moreover different destinations have different

pause times which also contributes to the drop in the number of updates.

3.4.4 Total updates profile

This KPI is useful to understand how the nodes participated in the interactions. The ideal

situation for this KPI is to have an equal frequency of interactions for all nodes.

The interactions between nodes are recorded throughout the simulation time. From

the interactions information, we classified them into different categories of interaction

frequency [0, 2000] which identified as degree . A degree equal to 0 shows that there are

nodes that are never involved in any interactions.

Figures 3.21, 3.22, 3.23 and 3.24 show the degree of the nodes total updates using

different mobility models. As we can see from the figures, different mobility models have

different degree of nodes total updates. This is because different models have different

possibility of meeting with different nodes. Looking at the degree of interactions using

Random Waypoint in Figure 3.22, the degree of total updates is more dispersed compared

to the degree of total updates using the Gauss Markov (Figure 3.23) and the D-GM (Figure

3.24). This shows that the Gauss Markov and D-GM are better in terms of providing a

chance for all nodes to be involved in any interactions as compared to Random Waypoint.

This is because the Gauss Markov and the D-GM model have high total updates with

a low degree of interactions. Whereas the Random Waypoint has number of high degree

total updates which indicates there are many nodes not frequently involved in interactions.

The statistics of the figures are tabulated in Table 3.15.
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Figure 3.21. Degree of total updates profile using Random Walk Model

Figure 3.22. Degree of total updates profile using Random Waypoint Model

Table 3.15. Degree of total updates profile
mobility Model Mean Median Standard Deviation Skewness

Random Walk 0.43 0.000 3.14 10.53
Random Waypoint 0.26 0.00 1.41 7.81
Gauss Markov 1.1 0.00 10.91 11.82
D-GM 0.92 0.00 9.73 13.83

3.4.5 Spatial Node Distribution

Visualizing the density of nodes through simulation gives a clearer picture of how nodes

are distributed over the simulation period. Moreover, it also presents a different node
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Figure 3.23. Degree of total updates profile using Gauss Markov model

Figure 3.24. Degree of total updates profile using D-GM model

distribution pattern of different mobility models. Figure 3.25, 3.26, 3.27 and 3.28 show

the spatial node distribution considering a 9000 step (15 minutes in real time) simulation.

We divided the entire simulation area (500m x 500m) into square cells of size 20m x 20m.

For each step, the number of nodes that reside in particular cell is counted and added to

the respective cells total. The statistics of each figure is presented in Table 3.16. The mean

value measure the average of node frequency visiting a cell throughout the simulation.

From Figures 3.25 and 3.26, we can observe both Random Walk and Random Waypoint
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Figure 3.25. Average of spatial node distribution for 100 nodes using Random Walk

Figure 3.26. Average of spatial node distribution for 100 nodes using Random Waypoint

Table 3.16. Average of Node Distributions using different mobility models with 100 nodes
and 9000 simulation steps

Random Walk Random Waypoint Gauss Markov D-GM

Mean 510.84 516.75 969.40 619.05
Standard Deviation 471.85 33.21 2759.14 1508.74
Median 251 14.62 4 251
Mode 127 14.69 0 0
Minimum 0 0 0 0
Maximum 7558 16888 62950 31649

have a random pattern of node distributions. This is because the selection of the next

movement is totally based on a random selection. For the Gauss Markov model, we can
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Figure 3.27. Average of spatial node distribution for 100 nodes using Gauss Markov

Figure 3.28. Average of spatial node distribution for 100 nodes using D-GM

see from Figure 3.27 the nodes are concentrated in the middle of the simulation space.

This is because after a node visits the simulation boundary, a node changes its direction

towards the center. The D-GM model has different node concentration distributions (as

seen in Figure 3.28) because nodes are moving towards the destination list.

From the statistics in table 3.16, we observe that the Gauss Markov model has a higher

maximum value of node visiting a particular cells. This is indicates that more frequent

nodes are visiting the same cell (place). This is good for the information dissemination
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purposes. The second highest maximum value is D-GM model. This is because the D-GM

model has set the number of destinations that the nodes might be visiting, so the chance

of nodes visiting the same place are very high.

3.5 Conclusion

In this chapter, we have considered the effects of different mobility models with different

levels of density. Four mobility models have been evaluated, Random Walk, Random

Waypoint Gauss Markov and D-GM. These mobility models have different effect on data

dissemination behaviour.

The Gauss Markov outperforms others mobility models in terms of the information

dissemination performance. This is because it creates more opportunity of nodes to in-

teract with different nodes. Moreover the movement procedure that forces the direction

of nodes to move to the center when they are close to the simulation boundary, ensuring

that every nodes has a chance to discover information from the information source.

The Random Walk mobility model disseminates data more quicker than Random Way-

point model. The random assignment of speeds and directions which repeatedly change

every 30 seconds creates more opportunities for a node to discover different nodes. This

leads to efficient data dissemination. In contrast, even though Random Waypoint has the

same characteristics as Random Walk, it has a low data dissemination performance be-

cause of the pause attributes. The pause attribute limits a node’s opportunity to interact

with different nodes as it has to stay in a particular location for a period of time (30

seconds).

In terms of the artifact age, the Gauss Markov has a high number of low age artifact

compared to the other models. This is because the nodes change their general direction

towards the center when they are appear close to the edge of the simulation boundary.

Hence, most of the nodes will have a chance to interact with the information source (that

situated at the center of the simulation plane) which enable the nodes to have a fresh

artifact from the information source.

In terms of the number of updates, the four models show a positive reaction as the

density of node is increased. Gauss Markov generates a high number of updates at the early
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stage. This is because the nodes are force to move towards the center after visiting the

simulation boundary. This creates a high opportunity for nodes to be frequently updated

by the nodes that already have a fresh from the infostation which located in the middle

of the simulation.

Because this works is based on a computer simulation, the results here are not fully

realistic for all types of human mobility. However, it is appropriate approach to understand

the behaviour of data dissemination for different possible scenarios because it has the

flexibility on examining different effects of different settings in effective way (i.e. fast,less

cost). Moreover, there is no unique way to model the human’s mobility.

In conclusion, the data dissemination behaviour is sensitive to the mobility model and

the node density. These two factors are important to be included when investigating the in-

formation dissemination behaviour in opportunistic networks. In this chapter, only single

data dissemination protocol is used (i.e flooding). This protocol only pushes information

blindly to its direct neighbours. We believe that using different ways of information ex-

change protocol will affect the information dissemination behaviours or performance. So,

in the next chapter (Chapter 4) we investigate further the effect of different ways of acquir-

ing information (i.e push and query) on information dissemination behaviour. Because of

the findings in this chapter we will continue to use all four mobility models in the thesis.



Chapter 4

BASELINE APPROACHES FOR

DISSEMINATION

4.1 Introduction

The purpose of this chapter is to introduce four new baseline data dissemination techniques

in mobile peer to peer communication. We call these are Pure Push, Greedy, L-Push

and Spray and Relay. These techniques are simple with limited intelligence. Simplicity

is important because this well-suite the time and resource constrained environment. In

this chapter these techniques are formed to investigate the effect of data dissemination

using different ways of spreading information. We purposely designed these dissemination

techniques to focus on the Query and Push processes, which are the key components that

need to be controlled to spread information with less overheads in mobile peer to peer

networks. One of our techniques (Spray and Relay) is a modified version of the Spray and

Wait technique [43]. Our technique modified the Spray and Wait technique in terms of

Push and Query, quota and its usage. These will underpin future comparison in our study.

4.2 Dissemination Techniques

Push and Query processes are functions that can occur at a node when two nodes are

in direct transmission range. It is assumed that information is homogenous and equally

wanted by all nodes. What we are interested is to find out how simple Push and Query

processes affect information spreading. A Query is a message that is used to ask for new

(or updated) information. It is a simple way for a node to quickly know its peers pref-

55
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erence at a particular point of time. However, it needs a proper mechanism to control

the query to avoid a query storm, where saturation of Query messages used excessive re-

sources and bandwidth. Push is the process of forwarding information to another node.

It can occur directly or indirectly in response to a query. A push also can be issued re-

gardless to response to any query. Similarly to a query, Push has to be carefully used to

avoid duplication of forwarding content to the same nodes. Therefore the dissemination

techniques introduced in this chapter are designed to understand and later (in chapter 5)

to utilize the advantages of Push and Query process to disseminate or spread informa-

tion effectively in an opportunistic network. Table 4.1 summarize the four dissemination

techniques introduced in this chapter.

Definition 1. (Query) Let a and b be nodes and assume a and b are in range and a does

not have information. Query is a message sent from a in which it requests information

from b.

Definition 2. (Push) Assume that a and b are nodes that are in range. A push from a

to b is when node a forwards information to b.

Definition 3. (Query Quota) Let a be a node. Query Quota is the number of queries

that a is allowed to issue. The Query Quota is decreased by one for every query issued by

node a.

Definition 4. (Renew interval time) Let t be a time step and a is a node. Assume that

a has just renewed its query quota at time ti. a can only renew its query quota at time

step ti + tj , where tj time is called renew interval time. At every renew interval, all nodes

have renew their query quota .

Table 4.1. Data dissemination techniques attribute (Push and Query)
Dissemination techniques Push Query

No Quota With Renew Quota With Relay quota Required query to execute push No quota With quota

Pure Push X × × × × ×

Greedy X X × X × X

L-Push × X × X X ×

Spray-Relay × × X × × ×

From Table 4.1, there are number of ways in which different combinations of Query

and Push can be implemented. Push can be implemented in four different ways.
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1. Push with no quota - This option allows a node to push information to its current

peer at any time. It can push information freely.

2. Push with renew quota - This type of Push limits the number of times information

can be pushed within the particular time interval (definition 4). The Push process

only executed when a node has a quota to push.

3. Push with relay quota - The size of push quota (L) is decided at the beginning of

the simulation. This quota is not renewable as in Push with renew quota. Remaining

quota is also transferable to other nodes when information is pushed. For example,

in the Spray and Wait [43] dissemination approach, half of push quota of a source

node is transferred to a relay node.

4. Push when there is a query - The Push function will be executed when a node

received a query.

As for the Push mechanism, Query also can be implemented in two different ways,

without quota and with quota. Query without quota permits a node to send a query to

its encountered peer without limit. The Query with quota has a renewable quota within

the particular time interval. The Query is also used based on the basis of first come first

serve. The following section explains the detail of how the dissemination approaches work.

The term current peer used in the following algorithms refers to the node that is involved

in the interaction. The algorithms are executed whenever there is an interaction between

nodes.

4.2.1 Pure push Approach

Pure Push is a technique that forwards information whenever it is possible without consid-

ering the status (has information or not) of its current peer. Nodes with information are

the nodes that are pushing information and nodes without information will be listening

and wait to receive information. Eventually, all nodes will tend towards being infected

(have information) and active to forward information. At this stage, this information has

been flooded across the network which causes high push overheads (i.e. possible message

duplication). Algorithm 2 shows the detail of how this technique works.
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Algorithm 2 Pure Push (Flood)
1: if the node has an artifact then
2: Push the artifact to the current peer
3: end if

4.2.2 Greedy Approach

The Greedy technique focuses on query attributes. A node has to receive a query before

pushing information. When a node receives a query from its current peer, it will respond

(pushing information) if the node has information that matches the query. Otherwise, the

node ignores the query. In addition, the query also has a quota which limits the number

of queries that a node can issue at the particular time interval. This quota called query

quota: it is renewable after a certain time interval. The definition of query quota is given

in Definition 3. The duration of the renew time interval is between the beginning of a

renew quota and the next renew quota. The definition of renew time interval is defined in

Definition 4. The detail of how the Greedy technique works is shown in Algorithm 3.
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Algorithm 3 Greedy
1: if the node has an artifact then
2: if the node received a Query then
3: Push artifact to the current peer
4: end if
5: else
6: if the node has a query quota then
7: Send query to the current peer
8: queryquota - 1
9: update queryqouta

10: end if
11: end if

In terms of dissemination, the Greedy approach has less overheads compared to the

Pure Push approach. This is because the information is forwarded from the source to its

destination only when there is a query received by the source nodes. The query issued

depends on the query quota of a node. The more the query quota is, the higher the

chance that a node will discover information. On the other hand, increasing the query

quota will also increase the query overheads. So, the renew interval quota is an important

parameter to help to understand the performance of data dissemination. The shorter the

renew interval quota the more chance for the node to discover information. This is because

nodes will only have a short time to regain its query quota.

4.2.3 L-Push

L-push is a kind of Greedy technique which has query and push capability. However L-

Push has no quota on the query (contrast with Greedy) but it has a quota on the Push.

Through this technique, we can examine the effect of the Push on the data dissemination

performance. The Push quota works in a similar way to the Query quota in the Greedy

technique, where it is renewable. Algorithm 4 shows the process of how this technique

performs.

L-Push has advantages in terms of discovering information because it does not have

a quota on the query. This helps nodes easily to discover information in a short while.

Since the query is unlimited, the Query message overheads and message duplication will

be higher as Push information in Pure Push. The data dissemination rate is dependent on

the Push quota because even if a node receives a query, no information will be forwarded
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Algorithm 4 L-Push
1: if the node has an artifact then
2: No Query issued
3: if the node received a Query then
4: if the node has push quota then
5: Push the artifact to the current peer
6: push quota - 1
7: update the push quota
8: end if
9: end if

10: else
11: Send Query to the current peer
12: end if

unless a node has a push quota to push information. Therefore the Push quota is a strong

factor that influence the data dissemination performance of L-Push technique.

4.2.4 Spray and Relay

Spray and Relay is a modification of the Spray and Wait technique [43]. The Spray

and Relay attributes are similar to L-Push. However, instead of the Push quota being

renewed at every time interval, the quota in Spray and Relay is relayed to nodes with the

information that being pushed. The quota that is passed to the next node is a half of the

nodes’ quota. When a node’s quota becomes zero, a node stops forwarding information.

The following are our assumptions on the Spray and Relay based on our perspective:

1. L is quota for forwarding (i.e. pushing).

2. Information source only forwards quota to a node when it first makes contact with

it. After that, the information source will not issue any information.

3. Nodes can forward a proportion of quota when pushing.

4. A node stops forwarding information when L = 0.

5. The quota is not renewable and is only issued once by the information source.

The Spray and Wait technique that is discussed in [43] has the ambiguity of how a

node knows that its peer already has information. So, we introduce a Query concept to
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make this issue clear. Further more, we also explicitly used ideas of Push, Query and

Quota to resolve this problem. Algorithm 5 shows the Spray and Relay process in detail.

Algorithm 5 Spray and Relay
1: if the node has an artifact then
2: if the node receives a query then
3: if L >= 1 then
4: if L = 1 then
5: Push artifact with quota L = 1 to the current peer
6: Set current Node quota L = 0
7: else
8: Push the artifact with quota L = L/2 to the current peer
9: Set Node quota L = L/2

10: end if
11: end if
12: end if
13: else
14: Send a query to the current peer
15: end if

Using the Spray and Relay approach, we can evaluate exactly the effect of Push quota

on the data dissemination performance. Note that the Push quota is not renewable but

transferable from one node to other node and therefore the amount of pushing can be

controlled. In the case L/2 is odd, the value of L will be rounded down. However, this

approach suffers from a large number of queries because nodes without information will

always issue a Query. In addition, determining the best Push quota is a challenge to use

this approach and this affects the dissemination performance.

4.3 Key Performance Indicator (KPI)

The KPI in this chapter is focused on data dissemination performance and overheads.

These KPIs are used to identify which techniques perform better in different scenarios.

4.3.1 Average number of nodes with an artifact at time t

This KPI measures how quickly the information is spread in a given test problem. The

information (artifact) is time independent which means that once a node receives an arti-

fact, that artifact will be valid though the simulation time. At each time step, the number

of nodes that have an artifact is counted and recorded. This step is performed for every
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trial. At the end of the number of trials, the numbers of nodes that have an artifact at

every time step are summated and then divided by the number of trials. Equation 4.3.1

shows the average number of nodes that have an artifact at time t is measured.

ANt =

∑TR

n=1
ANn,t

TR
(4.3.1)

where TR is the number of trials, ANt is the average number of nodes that have the

artifact at time step t and ANt,n is the number of nodes that have an artifact at time t in

trial n.

4.3.2 Average of Coverage of an Artifact

This KPI measures the average number of nodes that discover an artifact over TR sim-

ulation trials. For every trial, the number of nodes that have an artifact is counted and

recorded for each time step of the trial. These values are totaled per trial and averaged

over all trials. Equation 4.3.2 shows the average of coverage of an artifact is measured.

AC =

∑TR

n=1

∑ST

t=0
ANn,t

TR
(4.3.2)

where TR is the number of trials, ST is the length of the simulation.

4.3.3 Average Push Overhead

Push overhead measures how many pushes were involved in the process of disseminating

information to all nodes. The greater the number of pushes involved, the more energy

will be consumed within the system as a whole. Therefore, this KPI helps us to identify

the performance concerned with the number of pushes for different scenarios. To measure

this KPI, we recorded every interaction in every time step across the simulation. Then

we average the push with the number of simulation trials. The following shows how the

average of overhead interactions is calculated in our simulation.

APt =

∑TR

n=1
Pt,n

TR
(4.3.3)
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where TR is the number of trials, APt is the average number of Pushes at time step t and

Pt,n is the number of Pushes at time t with n trial.

4.3.4 Average Query Overhead

This KPI measures the number of Query overheads involved in the dissemination tech-

niques. The higher the query overheads, the more energy will be consumed. Therefore,

using this KPI, we are able to identify the best Query quota setting for different scenarios

(i.e. with low average Query overheads). We recorded every Query generated in every

time step. Then, we average the number of Query used across the each of simulation

trials. The following Equation 4.3.4 is used to calculate the average of Query overheads.

AQt =

∑TR

n=1
Qt,n

TR
(4.3.4)

where TR is the number of trials, AQt is the average number of queries at time step t

and Qt,n is the number of Query at time t with trial n.

4.4 Experimentation

The organization of the experiments in this section is based on the dissemination tech-

niques (i.e. Pure Push, Greedy, L-Push and Spray and Relay) that are introduced in

this chapter. The main purpose of the experiments is to examine the best combination

of parameters for each approach in order to achieve the best individual performance in

spreading information while minimizing the usage of resources (i.e. number of queries and

pushes). The following sections are laid out with different parameters (according to the

approach attributes) to investigate the highest performance combinations. The duration

of simulation for every experiment section is 9000 simulation time steps (15 minutes in real

time) and each simulation is repeated 50 times (i.e. 50 trials) and at every trial we using

different seed to have unbias experimental results. The same seed are used for all mobility

models. The test scenario considers 100 nodes randomly place in 500 square meters. The

information source is placed in the middle of the simulation plan at coordinates x: 250

and y: 250. We use the four different types of mobility models: Random Walk, Random
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Waypoint, Gauss Markov and D-GM model.

Throughout the results, we accumulate cost of overhead (in units) to measure the

overheads for each technique. The cost consists of two elements, Push overhead and

Query overhead. We assume Push and Query rate as follows to calculate the cost.

• 1 push = 1 unit used of resources

• 1 query = 0.5 units used of resources

we note that other alternatives could be used and this assumes relatively small payloads

are used.

Up to the best of our knowledge, the approach that we introduce in this chapter

have not been addressed by other researchers. Therefore, there is no best parameters

setting to conduct experiments for each approach, we varied our push and query quota

between maximum and minimum levels. We choose the maximum level to be 100 because

the number of mobile nodes in our experiment is 100. So, if in every time step nodes

meet different nodes in the simulation, all nodes will discover an artifact within 100 time

steps. This would give the fastest artifact discovery when several nodes are pushing at

the same time. The minimum level of quota is 2. We choose 2 as a minimum level of

quota because we assume that the first quota might be not effective, so by giving the

second chance quota will increase the chances of discovering and pushing information.

For the interval time between nodes renewing their quota, we set the range between 5

and 200 seconds. This is because we want to see how the small interval values influence

the information dissemination. The maximum level of interval time is 200 for Pure Push

protocol experiment. The reason why we choose 200 time interval is because with 200

interval time we can make sure less than 45 times each node has opportunity to renew its

push or query quota. This value is not the best but we use it as to make our experiments

more manageable and can be changed in the future.

4.4.1 Results-Pure Push

Pure Push is an approach that pushes information whenever it is possible without any

limit. No Query is included in this approach. This approach sends information to a
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single direct peer once the channel between pair is set up. This is slightly different to

broadcasting where all peers that are in range receive the message.

The main purpose of this experiment is to examine the effect of Push mechanism on

data dissemination performance. The results of this experiment is used as a benchmark to

evaluate the performance of the other approaches (Greedy, L-Push and Spray and Relay).

The results of the experiments are tabulated in Table 4.2.

Table 4.2. Statistics for Pure Push Approach.
Mobility Model Average of

coverage at
each time step

Standard Er-
ror

Standard De-
viation

Push Cost
Overhead
(units)

Random Walk 88.489 0.268 25.449 417978.48

Random Waypoint 81.495 0.307 29.158 391267.04

Gauss Markov 98.870 0.096 9.145 548023.12

D-GM 98.329 0.098 9.321 212320.1

From Figure 4.1 we can observe that:

• Gauss Markov outperforms other mobility models in spreading information. This is

due to the fact that all nodes that move close to the boundary of the simulation,

change direction towards the center. Therefore, the chances of nodes meeting (at the

center) and discovering new information from other nodes are very high. Random

Waypoint has the slowest performance in information dissemination. This is because

nodes are forced to stop at certain places for a period of time before moving to

another place. Therefore, this limits the opportunity of nodes to discover more

nodes which potentially increases the information dissemination performance.

• In terms of performance information availability, Gauss Markov model achieved com-

plete dissemination in less than 50 seconds. A complete dissemination stage is where

all nodes have information. This is followed by Random Walk, D-GM and Random

Waypoint which respectively reach the completed information dissemination in less

than 400, 500 and 600 seconds. The high frequency of node interactions in the Gauss

Markov model helps the information spread quickly. Further more, the information

source that is located in the middle of the simulation is also contributes to the ac-

celeration of the information dissemination because the Gauss Markov model forces



66 Baseline Approaches For Dissemination Chapter 4

all the nodes to move to the center of the simulation area when the nodes are closed

to any the simulation boundaries.

• From Table 4.2, D-GM has the lowest Push overhead costs. This is because some

nodes are not involved in pushing artifacts as they are not in range of other nodes.

This reduces duplicate messages in the D-GM model compared to other models.

Comparing the GM and D-GM model, they have only 0.541 difference in the average

level of coverage. This shows that the D-GM is able to disseminate information with

lower overhead cost with a reasonable performance relative to the Gauss Markov

model.

Figure 4.1. Average number of nodes with artifact using Pure Push approach

4.4.2 Result-Greedy

In the Greedy approach, nodes are limited by quota in sending a Query but unlimited

in pushing when they receive a query. There are two parameters that can vary the per-

formance of this approach. They are Query quota and Interval time which controls the

number of query and the renewal of query quota respectively. The following subsections

specifically examine the effects of these parameters on the information spreading perfor-

mance.
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4.4.2.1 The effect of Query quota on information spreading.

The purpose of this experiment is to find out the effect of Query quota in Greedy approach

on information spreading performance. We set the Query quota per node at various

settings between the interval [2-100] and renewed for every 200 time steps (time intervals).

Different mobility model also used in this experiments. The results are tabulated in Table

4.3. Note that the pushes in Table 4.3 does not include pushes from information source.

Table 4.3. Statistics for different Query quota with different Mobility Model using Greedy
Approach.

Mobility Model
Query
Quota

Average
artifact
coverage

Standard
Error

Standard
Deviation

Accumulative Cost of overheads

Push Query

Random Walk

2 83.787 0.324 30.773 95.16 648.14

5 84.433 0.317 30.105 95.54 2961.16

7 84.854 0.313 29.682 95.8 3975.86

9 85.247 0.309 29.205 96.02 4930.4

40 87.623 0.277 26.312 97.32 16482.14

70 88.377 0.269 25.586 97.56 23171.26

100 88.489 0.2683 25.449 97.6 25092.76

Random Waypoint

2 72.842 0.362 34.211 95.5 1984.38

5 74.525 0.353 33.528 95.72 4499.32

7 75.193 0.349 33.133 95.86 6058.14

9 75.902 0.346 32.789 95.98 7507.4

40 80.208 0.318 330.123 97.5 24937.94

70 81.297 0.309 29.292 97.6 35962.4

100 81.494 0.307 29.159 97.6 39399.92

Gauss Markov

2 96.751 0.160 15.168 78.26 399.42

5 97.408 0.147 13.938 82.76 751.78

7 97.581 0.144 13.671 84.0 959.58

9 97.724 0.142 13.440 85.12 1146.22

40 98.672 0.100 9.530 95.92 2807.8

70 98.868 0.096 9.146 97.2 2957.66

100 98.870 0.096 9.145 97.2 2961.74

Directed-Gauss Markov(D-GM)

2 95.548 0.149 14.159 70.2 371.24

5 96.088 0.142 13.437 76.06 734.56

7 96.379 0.139 13.155 78.14 947.02

9 96.656 0.136 12.931 79.62 1141.54

40 96.143 0.142 13.483 95.26 2780.32

70 96.131 0.140 13.313 96.52 2983.06

100 96.132 0.140 13.307 96.54 2988.44

Figures 4.2, 4.3, 4.4 and 4.5 show the effect of different Quota on information spreading.

From the figures we observed that:



68 Baseline Approaches For Dissemination Chapter 4

Figure 4.2. Average number of nodes with artifact using Greedy Approach with Random
Walk while varying query quota

Figure 4.3. Average number of nodes with artifact using Greedy Approach with Random
Waypoint while varying query quota

• For every mobility model, when the Query quota is increased, the number of nodes

with information is also increased. This is due to the fact that increasing Query quota

creates more opportunity for nodes to discover new information through sending

multiple queries. Based on Figure 4.2 and 4.3, there is a small change in the number

of nodes with information when the Query quota is set between 2 to 9. However

when the Query quota is set into 40, it creates a large gap. This is because the Query
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Figure 4.4. Average number of nodes with artifact using Greedy Approach with Gauss
Markov while varying query quota

Figure 4.5. Average number of nodes with artifact using Greedy Approach with Directed
Gauss Markov while varying query quota

quota at 40, has a massive number of queries issued compared to the Query quota

between 2 and 9. This is shown in Table 4.3 in the Query column (last column). For

example, looking at the Random Walk row in Table 4.3, the query cost when the

Query quota is equal to 9 is 4930.4 and the query cost is 16482.14 when the Query

quota is equal to 40. Note that there is a large difference in the number of queries

issued between them and this causes the big increase in artifact dissemination as
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seen in Figure 4.2. This is the same case for Random Waypoint, as shown in Figure

4.3. For the Gauss Markov and D-GM, the change of Query quota is not showing

any significant differences. However, increasing the Query quota is still increases the

number of nodes with artifact. Note that Figures 4.4 and 4.5 are scaled across 2000

steps rather than 9000 steps.

• In terms of information availability, Guass Markov spreads information very fast at

an early stage and reaches its optimum in less than 50 seconds as shown in Figure

4.5. D-GM has the same pattern as Guass Markov but reaches its optimum at

nearly 100 seconds. Random Walk and Random Waypoint consistently increase the

dissemination of information.

• In terms of overhead costs, Random Waypoint is the highest. Followed by Random

Walk, D-GM and Gauss Markov. From Table 4.3, even though the Random Way-

point generates more queries but it still has the lowest average of artifact coverage.

This tells us that there is a high duplication (unnecessary queries issued) in Random

walk because Guass Markov has the lowest overhead cost is able to reach a higher

number of nodes with an artifact which up to 98.87 percent.

4.4.2.2 The effect of Interval Time on information spreading.

Interval time is the duration where the node will renew its Query quota. This parameter

is important to be examined because it influences the ability performance of a node to

discover information. We use 100 nodes with 50 time trials and using four different mobility

models for this experiment. In addition, we varied the interval time so that we can identify

the best performance interval time to spread information using the Greedy approach. We

choose Query quota = 5 for every experiment because we found from the experiments in

4.4.2.1 that is gives a reasonable artifact coverage with a small of overheads.

Figures 4.6, 4.7, 4.8 and 4.9 show the effect of interval time on information spreading.

From the figures we observed that:

• Gauss Mobility model outperforms other models in terms of information spreading

time. Based on Figure 4.8, it takes less than 250 seconds to disseminate information
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Table 4.4. Statistics for different Interval Time with different Mobility Models using
Greedy Approach.

Mobility Model
Interval
Time

Average
artifact
coverage

*Standard
Error

Standard
Deviation

Accumulative Cost of overheads

Push Query

Random Walk

5 87.42 0.283 26.841 97.16 7312.44

10 86.068 0.299 28.379 96.62 4604.66

20 84.433 0.317 30.105 95.54 2961.16

30 82.909 0.329 31.174 94.86 2350.3

60 78.314 0.357 33.855 92.56 1648.64

90 72.251 0.380 36.036 90.28 1464.68

120 67.354 0.386 36.657 88.94 1322.98

Random Waypoint

5 80.236 0.317 30.045 97.26 10991.86

10 78.10132 0.331 31.423 96.84 6816.14

20 74.525 0.353 33.528 95.72 4499.32

30 71.664 0.363 34.392 95.32 3605.14

60 66.504 0.375 35.564 94.12 2397.16

90 60.655 0.379 35.953 91.98 1970.44

120 55.407 0.374 35.479 89.64 1726.44

Gauss Markov

5 98.457 0.114 10.835 95.22 1406.94

10 98.088 0.127 12.058 90.66 994.26

20 97.408 0.147 13.938 82.76 751.78

30 96.484 0.168 15.974 76.28 705.82

60 94.273 0.207 19.614 63.06 626.16

90 92.514 0.227 21.553 51.92 584.46

120 91.043 0.239 22.638 44.34 556.64

Directed Gauss Markov

5 97.794 0.113 10.733 93.54 1366.82

10 97.318 0.123 11.708 87.1 965.22

20 96.088 0.142 13.437 76.06 734.56

30 94.799 0.156 14.757 65.56 650.68

60 91.022 0.178 16.923 51.16 586.68

90 91.022 0.1783 16.924 51.16 586.68

120 87.091 0.192 18.173 36.58 540.12

to all nodes, whereas Random Walk (Figure 4.6) and Random Waypoint (Figure 4.7)

required more than 900 seconds to complete the dissemination. This is indicates that

Gauss Markov is less affected when the interval time is varied compared to other

mobility models.

• In term of performance, when the interval time is increased, the information spread-

ing is decelerated. This is due to the fact that a short interval time increase the capa-

bility of nodes to send a query as it can renew it Query quota more frequently. There-
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Figure 4.6. Average number of nodes with an artifact using different Interval times and
the Greedy Approach with Random Walk

Figure 4.7. Average number of nodes with an artifact using different interval times and
the Greedy Approach with Random Waypoint

fore, a node has a large opportunity to discover information very quickly. Whereas,

if the interval time is big, it holds the opportunity of nodes to send more query as it

needs to wait for a long period of time until it regain its Query quota.

• From Table 4.4, the accumulative overhead costs for all mobility models are decreased

when the interval time is increased. This is because Query and Push is constrained

by the Interval time. For example, in Gauss Markov model, when the interval time
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Figure 4.8. Average number of nodes with an artifact using different interval times and
the Greedy Approach with Gauss Markov

Figure 4.9. Average number of nodes with an artifact using different interval times and
the Greedy Approach with Directed Gauss Markov

is set at 5 seconds the number of queries issued is 1406.94 units and when the

Interval time is increased up to 30 seconds, the number of query issue is dropped

to 705.82 units. This tells us that controlling the number of query will slow down

the information dissemination as it limits the nodes interactions. Further more, we

learned that controlling the frequency of Push and Query can reduce the overhead

costs.
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From the results presented in Section 4.4.2.2, we can observe the best combination

settings for Query quota and Interval time to have a high performance using the Greedy

approach. We select the average artifact coverage and accumulative cost of overheads

from Table 4.4 and 4.3 to identify the best combination. The selection is focused on

Gauss Markov and D-GM mobility models. From Table 4.3, the selection is based on a

trade-off between minimizing the query quota and maximizing the performance. We pick

the query quota equal to 5 and the interval time equal to 20 seconds because

this combination has better average artifact coverage performance with a small number of

query quota.

4.4.3 Results L-Push

L-Push has a Push quota but has unlimited Query quota. Push process is only triggered

when there is a query from other node. There are two attributes that can vary the

performance of this approach. They are the size of Push quota and the Interval time. We

use experiments to investigate the effect of the different setting on information spreading.

The first experiment investigates the effect of Push quota on information spreading. The

second experiment is focused on examining the effect of Interval time on information

spreading. Table 4.5 shows the range parameter settings for this experiments.

Table 4.5. L-Push experiment Parameter Settings
Parameters Settings

Mobility Model Random Walk, Random Waypoint, Gauss Markov and Directed Gauss Markov

Number of nodes 100

Number of trials 50

Push quota 2,5,7, and 9

Interval Time 20 seconds (200 time steps)

4.4.3.1 The effect of Push quota on information spreading

Push is required for information dissemination. However it needs to managed properly,

otherwise many unnecessary messages will be in the network. Therefore it is vital to

know exactly what is the best Push quota that is needed to spread information effectively.

Knowing the best performance Push quota also will reduce the total overhead costs. The

results of this experiment are tabulated in Table 4.6.
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Table 4.6. Statistics for different Push quota with different Mobility Models using L-Push
Approach.

Mobility Model
Push
Quota

Average
of artifact
coverage

Standard
Error

Standard
Deviation

Accumulative Cost of overheads

Push Query

Random Walk

2 88.459 0.269 25.494 97.6 112.74

5 88.489 0.268 25.449 97.6 97.6

7 88.489 0.2683 25.449 97.6 97.6

9 88.489 0.268 25.449 97.6 97.6

40 88.489 0.268 25.449 97.6 97.6

70 88.489 0.268 25.449 97.6 97.6

100 88.489 0.268 25.449 97.6 97.6

Random Waypoint

2 81.493 0.307 29.161 97.6 102.7

5 81.495 0.307 29.158 97.6 97.6

7 81.495 0.307 29.158 97.6 97.6

9 81.495 0.307 29.158 97.6 97.6

40 81.495 0.307 29.158 97.6 97.6

70 81.495 0.307 29.158 97.6 97.6

100 81.495 0.307 29.158 97.6 97.6

Gauss Markov

2 98.749 0.100 9.532 96.98 261.54

5 98.866 0.0965 9.151 97.2 104.0

7 98.870 0.096 9.146 97.2 97.38

9 98.870 0.096 9.145 97.2 97.2

40 98.870 0.096 9.145 97.2 97.2

70 98.870 0.096 9.145 97.2 97.2

100 98.870 0.096 9.145 97.2 97.2

Directed Gauss Markov

2 97.895 0.105 9.976 96.34 378.06

5 98.285 0.099 9.368 96.54 119.76

7 98.319 0.098 9.325 96.54 99.52

9 98.329 0.098 9.321 96.54 97.0

40 98.329 0.098 9.321 96.54 96.54

70 98.329 0.099 9.321 96.54 96.54

100 98.329 0.098 9.321 96.54 96.54

Figures 4.10, 4.11, 4.12 and 4.13 indicate the effects of Push quota on the information

spreading. From the figures we can observe that:

• In general, different mobility models have different effects on information spreading.

Mobility models determine the possible interactions between nodes. The higher the

interaction is the higher the possibility of nodes able to discover new information.
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Figure 4.10. Average number of nodes with an artifact in using L-Push Approach with
Random Walk while varying push quota

Figure 4.11. Average number of nodes with an artifact using L-Push Approach with
Random Waypoint varying push quota

The order of the best mobility model is Gauss Markov, Directed Gauss Markov

(D-GM), Random Walk and Random Waypoint.

• From the Figures 4.10 and 4.11, there is no obvious change for Random Walk and

Random Waypoint in the number of nodes with information when varying the push

quota at different levels. This is because the L-Push approach only uses its push

quota when it is necessary. Since the L-Push has unlimited Query quota, a node
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Figure 4.12. Average number of nodes with an artifact using L-Push Approach with
Gauss Markov varying push quota

Figure 4.13. Average number of nodes with an artifact using L-Push Approach with
Directed Gauss Markov varying push quota

has a higher chance of discovering information from other nodes. The nodes without

information will keep querying until they discover the information. Therefore, the

Push quota is only being used when a node that received a query has information. A

small Push quota is sufficient to disseminate information effectively. This is shown

in Table 4.6 where the average of final coverage values for all mobility models are

the same even though the Push quota is increased.
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• From Table 4.6, the highest overhead costs for the L-Push approach is 474.4 units

which comes from D-GM model when Push quota is equal to 2. The lower overhead

cost is 193.08 units which also comes from D-GM model when the Push quota is equal

to 40. When the Push quota is set to a smaller number, for example Push quota is

equal to 2, the number of Query generated is increased. This is because there are

less nodes that discover information through the first query. So they keep generating

queries until they find the information. Another interesting issue from this experi-

ment is with the small number of Push quota, Information is disseminated equally

as Push quota that is set to 100. This is due to the fact that within the interval

time (20 seconds), the interactions between nodes are still going on. The interaction

here means nodes keep sending queries to discover information. Therefore, within

the interval time (20 seconds), the nodes still interact with each other until the next

interval time, unless all nodes that are in range already have the information. This

process make the L-Push different to the Greedy approach. In the Greedy approach,

within the interval time the nodes stop interacting with each other when their Query

quota is finished. That is why in Figure 4.2, 4.3, 4.4, and 4.5 we can see that the

graph is not smooth as the query quota is increased.

4.4.3.2 The effect of Interval Time on Information spreading

Interval time is the duration of a node to renew its Push quota. For example if the

Interval time is 20 seconds, then the push quota of a node will be reset to the original size

of Push quota at every 20 seconds. This parameter is important to investigate because it

determines the capability of a node to pass information to other nodes. We used 100 nodes

with 50 time trials using four different mobility models for this experiment. In addition,

we varied the Interval time so that we can determine the best performance Interval time

to spread information. Table 4.7 shows result of the experiments.

Figures 4.14, 4.15, 4.16 and 4.17 show the effects of different Interval time on informa-

tion spreading. From the figures, we can observe that:

• Different mobility models have different effect on information spreading. This is be-

cause the mobility models determine the possibility of node interactions which is a
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Table 4.7. Statistics for different interval times with different Mobility Models using
L-Push Approach.

Mobility Model
Interval
Time

Average
of final
coverage

Standard
Error

Standard
Deviation

Accumulative Cost of overheads

Push Query

Random Walk

5 88.489 0.268 25.449 97.6 97.6

10 88.489 0.2682 25.449 97.6 97.6

20 88.489 0.2683 25.449 97.6 97.6

30 88.489 0.268 25.449 97.6 97.6

60 88.489 0.2683 25.449 97.6 97.6

90 88.487 0.268 25.450 97.6 101.28

120 88.480 0.268 25.461 97.6 127.82

Random Waypoint

5 81.495 0.307 29.158 97.6 97.6

10 81.495 0.307 29.158 97.6 97.6

20 81.495 0.307 29.158 97.6 97.6

30 81.495 0.307 29.158 97.6 97.6

60 81.495 0.307 29.158 97.6 97.6

90 81.493 0.307 29.16 97.6 100.38

120 81.492 0.307 29.162 97.6 109.14

Gauss Markov

5 98.870 0.096 9.145 97.2 97.2

10 98.870 0.096 9.147 97.2 97.2

20 98.870 0.0964 9.147 97.2 104.0

30 98.866 0.096 9.151 97.2 106.0

60 98.866 0.096 9.151 97.2 106.04

90 98.866 0.096 9.151 97.2 106.04

120 98.866 0.096 9.151 97.2 106.04

Directed Gauss Markov

5 98.329 0.098 9.320 96.54 96.64

10 98.328 0.098 9.325 96.54 97.88

20 98.285 0.099 9.3677 96.54 119.76

30 98.243 0.099 9.367 96.54 133.96

60 98.241 0.099 9.368 96.54 137.9

90 98.241 0.099 9.3675 96.54 137.9

120 98.241 0.0987 9.367 96.54 138.22

compulsory requirement to have information dissemination. As we can see from Fig-

ures 4.14, 4.15,4.16 and 4.17, they show different rates of information dissemination.

Guass Markov outperforms other mobility models and followed in order by D-GM,

Random Walk and Random Waypoint.

• When increasing the interval time, there is no big change in the average number of

nodes that receive information. This is due to the fact that the nodes are still inter-

acting with each other until they discover the information. This happens because in
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Figure 4.14. Average number of nodes having an artifact with different interval time
using L-Push Approach and Random Walk while varying time interval

Figure 4.15. Average number of nodes having an artifact with different interval time
using L-Push Approach with Random Waypoint while varying time interval

the L-Push a node has an unlimited Query quota in generating queries. Therefore,

making the Interval time longer will not affect the number of nodes that have a

Query quota as mention before that the nodes that looking for information are send-

ing as much as they can do until they finds the information. What we learn from

this approach is that the interval time is not affecting the information spreading.

• The overhead cost, Table 4.7 shows that the number of cost overheads is increasing
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Figure 4.16. Average number of nodes having an artifact with different interval time
using L-Push Approach with Gauss Markov while varying time interval

Figure 4.17. Average number of nodes having an artifact with different interval time
using L-Push Approach with Directed Gauss Markov while varying time interval

when the interval time is increased. For example when using D-GM at 5 seconds

Intervals, the overhead costs is 193.08 units. When the Interval time is increased

to 120 seconds the overhead costs increases up to 234.76 units. This is due to the

fact that the longer the Interval time the higher the possibility of nodes( that are

looking for information) sending multiple queries to discover information. That is

why the different overhead costs in the column accumulative cost of overheads is



82 Baseline Approaches For Dissemination Chapter 4

actually varied depending on the query overhead.

Based on the results presented in Section 4.4.3, we observed that to achieve a high

performance, combinations of Push quota and Interval time for the L-Push

approach is achieved when the Push quota is equal to 5 and the Interval time

is equal to 5 seconds using D-GM mobility model. This selection is based on the

amount of final coverage divide by the accumulative cost of overheads from Table 4.6 and

4.7. A high value from the division shows a high performance of L-Push approach.

4.4.4 Results-Spray and Relay

Spray and Relay works like the L-push approach but instead of renewing a quota in every

time interval, the Push quota is fixed throughout the simulation and given at the beginning

of simulation. The Push quota is not renewable but can be passed to other nodes. The

size of the Push quota is the only factor that can varied the Spay and Relay performance

besides the mobility models. In order to find the best performance of Push quota within

500 meters square to the 100 mobile nodes, we varied the size of quota for each experiment.

We chose the spray quota between 5 to 100 using different mobility models. The results

of each experiment are taken after 50 time trials of execution. Table 4.8 shows the results

of the experiments.

Figure 4.18. Average number of nodes have an artifact with different spray quota using
Spray and Relay approach and Random Walk
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Table 4.8. Statistics for different spray size with different Mobility Models using Spray
and Relay approach.

Mobility Model
L size Average

of final
coverage

Standard
Error

Standard
Deviation

Accumulative Cost of overheads

Push Query

Random Walk

5 4.932 0.003 0.323 4.0 21547.22

10 9.661 0.012 1.160 9.0 39398.42

20 18.703 0.036 3.405 19.0 65613.26

40 35.540 0.094 8.911 39.0 91434.36

60 50.643 0.158 14.992 59.0 89578.64

80 62.987 0.218 20.715 78.6 68332.7

100 71.560 0.260 24.694 93.16 44846.32

Random Waypoint

5 4.906 0.004 0.358 9.0 36906.44

10 9.478 0.014 1.341 9.0 36906.44

20 17.860 0.043 4.041 19.0 57981.2

40 31.808 0.109 10.334 38.94 71388.12

60 42.371 0.173 16.415 57.84 60809.46

80 49.209 0.214 20.333 71.38 50299.16

100 53.453 0.239 22.667 71.38 42662.58

Gauss Markov

5 4.988 0.002 0.147 9.0 51705.54

10 9.953 0.005 0.485 9.0 51705.54

20 19.851 0.014 1.352 19.0 91278.06

40 39.556 0.0359 3.401 39.0 136191.86

60 59.131 0.061 5.754 59.0 135487.28

80 78.474 0.088 8.392 79.0 91043.94

100 97.016 0.120 11.430 98.98 6601.6

Directed Gauss Markov

5 4.992 0.001 0.129 9.0 21732.7

10 9.967 0.004 0.410 9.0 21732.7

20 19.874 0.013 1.194 19.0 37347.74

40 39.565 0.034 3.203 39.0 53670.14

60 58.967 0.059 5.584 58.98 51849.5

80 77.481 0.087 8.256 78.44 32495.16

100 91.936 0.114 10.842 95.18 7507.92

Figures 4.18, 4.19, 4.20 and 4.21 present the effect of spray quota on the information

spreading when the spray is increased. From the figures we observe that:

• Different mobility models have different effect on the information dissemination.

Gauss Markov and D-GM model have spread information rapidly at early stage

before they achieve their optimum level respectively. This is can be observed from

Figures 4.20 and 4.21. For Random walk and Random Waypoint as shown in Figure

4.18 and 4.19, the number of nodes with information are increased consistently as
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Figure 4.19. Average number of nodes have an artifact with different spray quota using
Spray and Relay approach with Random Waypoint

Figure 4.20. Average number of nodes have an artifact with different spray quota using
Spray and Relay approach with Gauss Markov

the spray quota is increased. This is due to the fact that the more quota is assigned

to a node, the more chances other nodes received information.

• Generally, when the spray (quota) size is increased the number of nodes that receive

information are also increased. The size of spray is actually represents the capability

of nodes to do push function. Therefore, a large size of spray quota increases the

number of possible nodes that receive the information. Looking at Figures 4.20 and
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Figure 4.21. Average number of nodes have an artifact with different spray quota using
Spray and Relay approach with Directed Gauss Markov

4.21, the size of spray represents the optimum number of nodes that actually will

receive information.

From Table 4.8, Spray and Relay approach achieved its highest performance when the

spray quota is 100 using the Gauss Markov mobility model. The average of final coverage

nodes with artifact is approximately 97 percent with the accumulative cost of overheads

at 6700.58 units.

4.5 Comparison of the best of each approach

In Table 4.9, we compiled the best combination of each approach from the experiment

results best on the average of coverage and the accumulative overheads. We pick the lowest

accumulative overheads with a reasonable performance for each dissemination approach

respectively form Tables 4.2, 4.3, 4.6, 4.8.

Table 4.9. The best combination of each approach
Dissemination Approach Mobility Model Average of coverage at each time step Standard Error Standard Deviation 95 % C.I Total accumulative Cost of Overheads (units)

Pure Push D-GM 98.329 0.098 9.321 ±0.192 212320.1

Greedy Guass Markov 97.794 0.113 10.733 ±0.222 1459.54

L-Push D-GM 98.329 0.098 9.321 ±0.193 193.18

Spray and Relay Gauss Markov 97.016 0.120 11.430 ±0.236 6700.58

From the Table 4.9, we observe that L-Push is the best approach because it has the
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lowest of total cost of overheads. More importantly it has the same average of final coverage

as the Pure Push. Pure Push is the basic approach and it used as a benchmark approach

or our dissemination approach.

Table 4.10 shows the best performance of each mobility model through out the ex-

perimentation results. We observe that the Gauss Markov and D-GM have very close

performance in term of average of final coverage. In term of total accumulative overheads

cost, D-GM has less cost compared to Gauss Markov. These facts indicate that both

mobility models have very high nodes interactions.

Table 4.10. The best performance of each mobility model
Mobility Model Push Approach Push Quota Average of final Coverage Total accumulative Cost of Overheads (units)

Random Walk L-Push 5 88.489 195.2

Random Waypoint L-Push 5 81.494 195.2

Gauss Markov L-Push 9 98.870 195.4

D-GM L-Push 40 98.329 193.1

Figure 4.22. The best performance of each mobility model

From Figure 4.22, we can see that the D-GM and Gauss Markov disseminate informa-

tion rapidly at the early stage (the line is overlapped each other). This is due to the fact

that most of the nodes have high frequency interactions at early stage (0 - 50 seconds).

For the Random Walk and Random Waypoint the data dissemination are increase steadily

over the time as the movement of the nodes are determine randomly.
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4.6 Conclusion

In this chapter we have presented four baseline data dissemination approaches (Pure Push,

Greedy, L-Push, Spray and Relay). Experiments have been conducted with different sets

of parameters to measure the performance of each approach on the information spreading.

The performance is evaluated based on the overhead cost and the number of nodes that

have information after the simulation time is finished.

Through the number of experiments in this chapter, we found out the push, query,

quota and mobility model are all affecting the information spreading. The following has

been identified as key points:

• Querying can be used effectively to locate an information. Asking every peer that is

in range is the most effective way to discover information quickly. Of course at the

early stage, most of the query is wasted, but as soon as the message spreads in the

networks, the query is become more effective way to discover message. This is why

L-Push has outperforms other approaches.

• Push is a fundamental part of information sharing. It is the most effective way

to disseminate information but it causes a high duplication when push information

blindly. Therefore, it needs to be controlled. We have learnt that query can be used

to control the push mechanism. More importantly, with a good Push and Query

combinations it can produce a good spreading information performance.

• Quota is a basic way of controlling the message duplication in push and query mech-

anism. However, it is very difficult to determine the optimum size of quota in order

to achieve a good performance. The higher the quota the more chances of message

spread quickly over the networks. However it always come with a higher push and

query overheads.

• Different mobility models have different affect on the information spreading. The

mobility model that encourages nodes to move actively to different locations diffuse

message quickly. This is why Gauss Markov and D-GM models outperforms Random

Walk and Random Waypoint mobility models in information spreading.
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We have measured and presented the results in detailed of each approaches. We have

shown the effect of query quota, push quota and interval time on the information spreading

individually. Even though our approaches are simple(i.e. based on push, query and quota),

we have shown that there is a potential to improve flooding effectiveness on information

spreading. The following brief recap about dissemination approaches that used in this

chapter.

• Pure push approach is the most basic dissemination approach. It only has a push

functionality. A node that has information will always push information when in

range with other nodes regardless whether the nodes have or does not have informa-

tion. Because of that, Pure push is very efficient in information spreading but it has

very high information duplication.

• Greedy approach is derived from Pure Push approach. Instead of just push the

information to its peer as in Pure Push, Greedy approach push information (provided

that node has information) if and only if there is query received. Therefore, we can

adjust the information discover information rate by controlling the query frequency

(query quota) for each node. The information spreading frequency is much dependent

on the way the query is controlled.

• L-Push is the opposite of Greedy approach. Instead of limit the querying, it leaves the

query open. It means that nodes can query every at any time. Further more, it also

has limited push which control the information to be passed to it preferred peer.

However, because of the information is homogenous and all nodes have the same

interest in this chapter, the functionality of push is limited to the push information

when is there is query. Consequently, adjusting the push size will not have the same

effect as the node are freely to query to discover information.

• Spray and Relay is an idea that inspired from Spray and Wait protocol. The in-

formation in injected once in the network and leave the information spread through

the nodes interactions. The unique of this approach is not only the information is

pass but the number of quota is also being passed together with the information.

The quota determines how many that the receiver is allowed to forward the infor-
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mation. This is actually indicates the potential number of node that will receive the

information.

• The best approach in term of information dissemination is L-Push technique. The

performance of L-Push is varies by using different mobility models. This is because

the mobility model influence the frequency of nodes interactions. So, a combination

of mobility model and push techniques is important key to achieve a high information

dissemination performance.

The work in this chapter has built on the work of Chapter 3 which focuses on interaction

between nodes in Mobile Peer to Peer networks. The work in Chapter 3 and this chapter

tackle the foundation of data dissemination behavior in MP2P networks. However, it does

not address any intelligent elements relating to the choice of who to prefer in terms of

pushing information to or querying. This is a structural issue that we now consider. The

next chapter focusing on proposing a social structure formation to guide the information

dissemination over the P2P networks based on social relationship.

From this chapter also we can conclude that Push itself can achieve a high coverage

performance with minimum query. The is based on the L-Push performance where even

though it has a small number of Push quota, it has a high performance coverage. We will

investigate further this concept in chapter 6 together with the social structure formation

that is introduced in chapter 5.



Chapter 5

DIFFERENT TYPES OF SOCIAL

STRUCTURE FORMATION

5.1 Introduction

In this chapter we look at the underlying structure that may emerge from repeated inter-

action between nodes caused by mobility models. By social structure formation we mean

that nodes will come in range of each other on number of occasions. Depending on the

mobility model certain nodes may more frequently see each other, and this can be modeled

by a link in a graph, which when repeated across all nodes provides a social structure. A

social structure has potential to be used for efficient information dissemination because it

shows where data may be more likely to flow with reliability.

In the general literature, a social structure can represent many relationships between

nodes (people, devices, organization) in social networks. The relationships between nodes

can be made from different interdependencies, such as friendship, knowledge, beliefs and

other elements that make nodes share or exchange things. According to Jhon Guare [12],

people are actually separated by “six degrees of freedom”, which means that on average

short paths connect any pair of people. This was originated by Millgram’s [31] experiment

where people in United States are separated by about six people on average, which is

referred to as a “small world”. Both studies show there are links connecting people in

this world which they may not be aware of. It is based on this work, that we are inspired

to examine if there are any social structures that can be formed using different mobility

models based on how often nodes are in vicinity of each other.

In the previous works [6], [26], [52], mobility is used to form a social structure for

90
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data transfer. Here social links are represented by “utility functions” that are associated

to the data objects and how frequently they group together. To the best of our knowl-

edge, there is no work that has made a comparison on the usefulness of different mobility

models for different approaches of social structure formation (links between nodes). This

is an important contribution because examining the different ways in constructing social

structures provides a clear picture of how social structure can be used to provide paths for

data dissemination in opportunistic networks. With regards to social structure patterns,

multiple paths in the graphs offer different routes for data to flow. However this introduces

overhead. The other extreme is a tree structure, with minimal connectivity. We form a

social structure based on a node’s frequency of interactions for different mobility models.

The social structure is constructed based on a node’s current interactions which is updated

locally by an individual node in different possible ways.

The purpose of investigating the social structure formation is to examine: (i) the dif-

ference between mobility models in terms of social structure produced; (ii) the effect of

methods of forming links on the social structure observed. The social structure formation

that we explore is based on the past interaction history as has been used in [11], [16], [27]

[18] to form a social network. We introduce three different methods of constructing the

social structure based on the nodes’ past interactions. The methods are Social structure

based on average frequency interactions (in Section 5.2.1), Social Structure based on Pe-

riodicity Frequency Interactions (in Section 5.2.2) and Social Structure based on Sliding

Window (in Section 5.2.3).

5.2 Social Structure Formation Approaches

In this section we introduce three different approaches that we use to investigate the

formation of social structure across different mobility models. The following are the terms

that will be used in our approach:

• Period - assume n is a length of a period and t is the beginning of a new period.

Therefore a period is t+ n.

• Slot - is a unit of time step in a period.
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The following sub sections provide a detail of each approach that is used to form a

social structure in this chapter.

5.2.1 Social structure based on Average Frequency Interactions (AFI)

This approach uses the frequency of interactions to form a social structure. The “frequency

interaction” measures how many times the same pair of nodes are co-located and interact

throughout the simulation time. Each node records the interaction frequency with other

nodes throughout the simulation. The average interactions frequency between node i

and node j is determined by summing the number of times node i interacts with node

j in all trials. The total value is divided by the number of trials to get the average

interaction frequency between node i and j. A threshold is used to examine the frequency

of interactions occurring between nodes. A Threshold is a minimum value of frequency

interaction for which a link is defined between two nodes. For example if a threshold is x

value, to establish a link between nodes, the nodes must interact more than or equal to x

value over the duration of the simulation.

5.2.2 Social Structure based on Periodicity Frequency Interactions (PFI)

The formation of social structure using this approach is based on the interactions frequency

that occur in a given period of time. For example, let the size of period be 5 minutes and

x and y are mobile nodes. At the first period (0-5 minutes), assume that nodes x and

y have managed to establish links between them. But, in the next period of time (5-

10 minutes), no interaction is found between both nodes. Therefore, a link cannot be

established between the nodes in the second period of time. This example shows that the

nodes frequency interactions for different period affect the formation of social structure.

Therefore, it is significant to investigate the impact of different period sizes on the social

structure formation. Equation 5.2.1 is used to determine the percentage of a node that

interact in a given period of time.

poeij =
fi

nos
∗ 100% (5.2.1)
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where poeij is percentage of times node i interacts with node j in a given period, where

fi is the total connections that exist between node i and j in the period and nos is the

number slots in the period. The percentage of existence is used to determine the formation

of links (social structure). In the experiment results, a threshold (in percentage) is used

as a minimum percentage of existence for a particular node in a given period of time in

order to form a social structures (links). For example a link between nodes is formed when

a node’s poe is higher that the threshold value. Based on Figure 5.1, let say node A has

detected node B 300 times in period 1. So, the poe of node B is 10%. If the threshold is

set to 10%, then a link from node A to B is establish at period 1. This link is only valid

at period 1 and it will change depending on nodes A and B frequency interactions in the

next period.

Figure 5.1. Number of periods for 3000 slots for 9000 simulation time.

5.2.3 Social Structure based on a Sliding Window Frequency Interaction

(SWFI)

This approach uses a Sliding Window to determine a node interaction frequencies to form

a social structure. Sliding Window (SW) is a frame that subdivided into number of slots.

Each slot holds an ID of other nodes that interact with the node. The ID in each slot is

shifted by one slot per time step. So, the contents of a frame changed over time. In our

experiments, each node maintains its own SW locally. Each node records an ID of each

node that it has established an interaction with. By compiling all information in SW, we

can have a frequency of interaction for a particular node at the specific time.

The following definition are the terms that are used:
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• Social Structure List (SSL) - records the nodes that are in a particular node’s social

structure.

• Social Structure Quota (SSQ) - is a maximum number of nodes that can be listed

in SSL.

• Threshold - is a minimum frequency of a node found in a SW in order to be included

in SSL.

• Link - is an edge between two nodes that are co-located more the threshold value.

Through this approach, we are able to capture nodes interaction frequency at a specific

time. Figure 5.2 illustrates the SW mechanism. Based on the figure, the content of the

slot is changed when a new input (node 6) is added into a frame. All contents are shifted

by one at every time step. The last element in a frame will be dropped.

Figure 5.2. Sliding Window

The SW is updated at every time step. Assume that the current time step is 28 and

the size of SW is 5. The observed steps within the SW are 27, 26, 25, 24 and 23. The

nodes that listed in a SW are potentially to be included in a node Social Structure List

(SSL).

A link is formed when a particular node is found in the SW greater or equal to the

threshold value. For example, let the size of SW be 40 and suppose node A has discovered

node B 20 times in its SW. If the threshold is set equal to 10, then a social link is
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established between node A and B. However, the link between node A and B will be

changed depending of the content of the Sliding Window after it has been shifted.

5.3 Experimentation

The organization of the experiments in this section is based on the social structure for-

mation approaches as mentioned in Sections 5.2.1, 5.2.2, and 5.2.3. The main purpose

of the experiments is to examine: (i) the different between mobility models in term of

social structure produced (ii) the effect of methods of forming links on the social structure

observed. The following sections are laid out with different parameters (according to the

approach attributes) to examine different social structure pattern. The duration of simu-

lation for every experiment is 9000 simulation time steps (15 minutes) and each simulation

is repeated 50 times (i.e. trials) with different random seed generation (to avoid bias in

the results). The test scenario considers 100 nodes randomly placed in a 500 meters x 500

meters region.

5.4 Key Performance Indicators (KPI’s)

In social network analysis, there many metrics used to analyzed and understanding the

roles of actors in social networks. In paper [3], different centrality measurements are

presented that can be used to analyze social networks. In this chapter, we use the closeness

centrality metric to evaluate our social structure. The closeness centrality measures how

close a particular node is to all other nodes using the average shortest distance. According

to [21], since closeness considers all pairs of nodes, it reflects the global connectivity of the

social network structure.

Closeness centrality is designed to work on symmetric data, where each edge has no

direction, as shown in Figure 5.3(a). Closeness centrality for symmetric data uses a single

measurement to represent in and out degree of a node connections. However, in non-

symmetric data, an edge between nodes has a direction as shown in Figure 5.3(b). A

single measurement cannot represent a node connection to other nodes. This is because

each link has a direction which shows the direction of the relationship between nodes. For

example, node B can reach node C via node A but node C cannot reach node B because
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(a) Symmetric (b) Non-Symmetric

Figure 5.3. Symmetric and non-symmetric relationship between nodes

there is no edge from node C to other nodes. Therefore, to measure the closeness for

non-symmetric data, Out Closeness and In Closeness is used.

outCCi =

(
N − 1∑N
j=1 dij

)
(5.4.1)

“Out closeness (outCCi)” measures how close (in terms of distance) node i to other

nodes. The outCCi can be calculated using Equation 5.4.1, where i 6= j and dij is the

length of the shortest path from node i to reach node j in a given network. In the case

there is no path between node i and j, the distance between node i and j is set to the

maximum distance i.e. the number of nodes that are found in the graph. A larger outCCi

value indicates that nodes are very close to each other as the value of dij is smaller. So, a

node that has a large outCCi value has a greater potential to disseminate data quickly.

inCCi =

(
N − 1∑N
j=1 dji

)
(5.4.2)

“In closeness (inCCi)” measures how close (in term of distance) from all nodes back

to node i. Equation 5.4.1 is used to calculate the inCCi value for a particular node i,

where i 6= j and dji is the length of the shortest path from node j to reach node i in

the networks. This metric measures how close other node to a particular node. A larger

inCCi value indicates that a node has potential to receive information very quickly from

other nodes.

Our data is non-symmetric since an edge has direction. The direction of an edge shows
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the flow of information. For example if node a forwards data to node b, then the edge

direction is from node a to node b. If node b forwards data to node a, then the edge

direction is from node b to node a. So, to measure both cases closeness centrality, we

deploy outCCi and inCCi measurements in all our social structure results.

5.5 Result- Social structure based on Average Frequency Interactions (AFI)

This section presents the results of a social structure formation using the average frequency

interactions (AFI) approach that has been explained in Section 5.2.1. Table 5.1 provides

parameter settings that are used for the experiments. The following results discussion are

organized based on the mobility models.

Table 5.1. Parameters Setting for API approach
Parameters Setting
Number of nodes 100 nodes
Number of trials 50 times
Threshold 20,40,60,80,100,120,140
Mobility Model Random Walk, Random Waypoint, Gauss Markov and D-GM

5.5.1 AFI social structure formation using Random Walk

Based on Figure 5.4, we can observe that varying the threshold value changes the social

structure patterns. This is because the threshold affects the formation of social structure.

It is also very rare to have nodes that can maintain a high number of interactions frequency

between the same nodes, especially in the mobile environment. Therefore, as the threshold

increases, the social structure density is become less dense. For example when threshold

is set between 20 to 60 (Figure 5.4(a), 5.4(b) and 5.4(c)), no significant changes in the

social structure density can be seen. This is because most of the nodes are seeing each

other averagely 60 times. So, setting the threshold less than 60 will results in a smaller

differences in social structures density. However, when the threshold is set to 80 and above,

the density of the social structure is less as shown in Figure 5.4(d), 5.4(e) and 5.4(f).

Table 5.2 shows the in and out closeness centrality. As we can see, a lower threshold

value has an average a high closeness centrality value which means nodes are close to other

in the network. This gives us a clue that it is useful to dissemination information with a
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(a) Threshold >=20 (b) Threshold >=40 (c) Threshold >=60

(d) Threshold >=80 (e) Threshold >=100 (f) Threshold >=120

Figure 5.4. AFI Social Structure using Random Walk Model with Different Thresholds

Table 5.2. Closeness Centrality of AFI Social Structure using Random Walk

Threshold
Average of Closeness centrality
In Closeness Out Closeness

20 1.594 8.129
40 1.594 8.129
60 1.594 8.129
80 3.100 4.014
100 1.043 1.046
120 1.008 1.008
140 1.008 1.008

lower threshold value. Note that, the unusual values of In Closeness and Out Closeness

for threshold=80 cannot be explained.

5.5.2 AFI Social Structure Formation using Random Waypoint

Using the Random Waypoint mobility model, we observe that nodes are co-located more

frequently. Even the threshold value is bigger, the social structure density is better as

compared to the Random Walk.

In Figure 5.5, the pattern of social structures in figures 5.5(a), 5.5(b) and 5.5(c) remain

the same even though the threshold value is increased. This indicates that the nodes co-
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located between 20 to 80 times.

As the threshold is further increased, the number of links between nodes is decreased.

This is can be seen from Figure 5.5(e) where only a few nodes are connected compared to

5.5(a). As the threshold is further increased (Figure 5.5(g)), the links between nodes are

clearly disconnected. This is because it is hard for nodes to be co-located with the same

node frequently at the same time.

Looking at the statistics given in Table 5.3, the number of links (in degree and out

degree) and the closeness centrality values are better when the threshold value is small.

This is because it is easy to form a relationship among the nodes with a small number

encounter frequency between nodes. This indirectly implies that less restriction in forming

social structures improves the performance of dissemination in the network.

(a) Threshold >=20 (b) Threshold >=40 (c) Threshold >=60

(d) Threshold >=80 (e) Threshold >=100 (f) Threshold >=120

(g) Threshold >=140

Figure 5.5. AFI Social Structure using Random Waypoint with Different Thresholds
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Table 5.3. Closeness Centrality of AFI Social Structure using Random Waypoint

Threshold
Average of Closeness centrality
In Closeness Out Closeness

20 1.375 4.176
40 1.375 4.176
60 1.375 4.176
80 1.373 3.655
100 1.318 1.642
120 1.070 1.080
140 1.041 1.045

5.5.3 AFI Social Structure Formation using Gauss Markov

The Gauss Markov mobility model offers a high frequency of nodes interaction compared

to Random Walk and Random Waypoint. Focusing on Figure 5.6, when the threshold is

increased from 20 to 60, there are no significant changes found in the social structure as

shown in Figures 5.6(a), 5.6(b) and 5.6(c). However, when the threshold is set to 100,

only a few social structures are found as shown in Figure 5.6(e). This means that Gauss

Markov mobility model potentially can give a better data dissemination performance when

the threshold is less than 100.

From the statistics given in Table 5.4, we observe that with a lower threshold value,

nodes averagely have a high closeness centrality value. This is shows that there are number

of short paths in order to reach other nodes in the network. This scenario shows that we

can disseminate data very quickly by using a small threshold value.

Table 5.4. Closeness Centrality of AFI Social Structure based on using Gauss Markov

Threshold
Average of Closeness centrality
In Closeness Out Closeness

20 1.603 10.678
40 1.603 10.678
60 1.603 10.678
80 1.002 1.002
100 1.000 1.000
120 1.000 1.000
140 1.041 1.045
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(a) Threshold >=20 (b) Threshold >=40 (c) Threshold >=60

(d) Threshold >=80 (e) Threshold >=100 (f) Threshold >=120

Figure 5.6. AFI Social Structure using Gauss Markov Model with Different Thresholds

5.5.4 AFI Social Structure Formation using D-GM

As expected, the social structure of a node using D-GM mobility model is better when a

small threshold is used.

As we can see from Figure 5.7, increasing the threshold value from 20 to 40 changes the

social structure density drastically. This is because not many nodes are able to maintain

co-location for a long period of time with the same nodes. Moreover, the D-GM mobility

model prevents nodes to move to the previous nodes’ position. Therefore, the chance of

meeting the same nodes is very low.

Looking at the statistics given in Table 5.5, the average value of closeness centrality

is better when a threshold is set to a lower value. This means that there are number

of shortest links between nodes which potential can be used to disseminate information

quickly to all nodes in the network.
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(a) Threshold >=20 (b) Threshold >=40 (c) Threshold >=60

Figure 5.7. AFI Social Structure using D-GM with Different Thresholds

Table 5.5. Closeness Centrality of AFI Social Structure based on using D-GM

Threshold
Average of Closeness centrality
In Closeness Out Closeness

20 1.494 3.104
40 1.002 1.002
60 1.000 1.000

5.6 Result- Social Structure Based on Periodicity of Frequency Interactions

(PFI)

In this section, we explore the construction of social structures using a the periodicity of

frequency interactions approach which described in Section 5.2.2. We use three different

size of periodicity i.e. 300 seconds, 600 seconds and 3000 seconds. Each size of periodicity

is examined using different mobility models to analyze the impact on the social structure

formation. Figure 5.6 provides the parameter settings that are used for the experiments.

The threshold is used as lower bound of the percentage of nodes that interact in a give

period. A link between nodes will be established when the interaction percentage is above

the threshold.

Table 5.6. Parameters Setting for PFI approach
Parameters Setting
Number of nodes 100 nodes
Threshold 10% and 25%
Periodicity 300s, 600s and 3000s
Mobility Model Random Walk, Random Waypoint, Gauss Markov and D-GM
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5.6.1 PFI social Structure Formation using Random Walk

From Figure 5.8, we cannot see any social structures are formed at 300 seconds. This is

because 300 seconds is too short for a node to discover other nodes and establish rela-

tionships. Increasing the period size gives more time and opportunity for a node to be

co-located and develop a social structure. This can be seen in Figures 5.10(a) where more

links are found between nodes when the periodicity size is increased.

From the statistics in Table 5.7, we can see that the average value of closeness centrality

is increased when the size of period is increased from 600 seconds to 3000 seconds. This is

gives nodes more chance to be co-located and discover each other within the same period.

This indirectly provides more ways to reach other nodes in the network.

(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.8. PFI Social Structure for Random Walk with periodicity = 300 seconds

(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.9. PFI Social Structure for Random Walk with periodicity = 600 seconds

5.6.2 PFI Social Structure Formation using Random Waypoint

From Figure 5.11, a social structure is easily formed when the threshold is small. This is

because the formation of relationship between nodes is less strict, i.e. the nodes only have
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(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.10. PFI Social Structure for Random Walk with periodicity = 3000 seconds

Table 5.7. Closeness Centrality of PFI Social Structure using Random Walk

Period Threshold (%)
Average of Closeness centrality
In Closeness Out Closeness

300
10 0.000 0.000
25 0.000 0.000

600
10 1.004 1.004
25 1.011 1.476

3000
10 1.600 9.970
25 1.028 1.029

to be co-located for a short time only.

Comparing the number of links found in Figure 5.11 and Figure 5.12 the increased

periodicity in Figure 5.12 gives more links and is more dense. This is because the nodes

have a long period of time which gives a chance for nodes to establish relationships with

other nodes. So, as we expected, with periodicity at 3000 more links can be formed as

shown in Figure 5.13.

The statistics in Table 5.8 shows the average value of closeness centrality is improved

when the periodicity size is increased. This is due to the fact that it is easy to maintain

a relationship among the nodes in a long period of time which leads to the establishment

of many links between different nodes. This makes the nodes closer to each other.

Table 5.8. Closeness Centrality of PFI Social Structure using Random Waypoint

Period Threshold (%)
Average of Closeness centrality
In Closeness Out Closeness

300
10 1.015 1.017
25 0.000 0.000

600
10 1.058 1.072
25 1.002 1.002

3000
10 1.220 2.973
25 1.055 1.060
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(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.11. PFI Social Structure for Random Waypoint with periodicity = 300 seconds

(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.12. PFI Social Structure for Random Waypoint with periodicity = 600 seconds

(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.13. PFI Social Structure for Random Waypoint with periodicity = 3000 seconds

5.6.3 PFI Social Structure Formation using Gauss Markov

A social structure generated using the Gauss Markov mobility model has better charac-

teristics than the Random Walk and Random Waypoint mobility models. Figure 5.14(a)

shows that even though the period of time used very small, a social structure can still be

traced. This is because the Guass Markov mobility model determines the next location

of a node based on the current node’s position not randomly as in Random Walk and
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Random Waypoint mobility model. This appears to increase the chance of co-location.

As in the Random Walk and Random Waypoint mobility model experiments, increasing

the threshold value effects the formation of social structure. This is because the threshold

value determines the social formation of links between nodes.

Looking at the statistics in Table 5.9 the centrality closeness nodes is identical for

both thresholds. It is then faster to disseminate information to other nodes in the network

because nodes have different links to reach to different nodes.

(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.14. PFI Social Structure for Gauss Markov with periodicity = 300 seconds

(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.15. PFI Social Structure for Gauss Markov with periodicity = 600 seconds

Table 5.9. Closeness Centrality of PFI Social Structure using Gauss Markov

Period Threshold (%)
Average of Closeness centrality
In Closeness Out Closeness

300
10 1.485 3.297
25 1.485 3.297

600
10 1.535 3.910
25 1.535 3.910

3000
10 1.610 14.236
25 1.610 14.236
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(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.16. PFI Social Structure for Gauss Markov with periodicity = 3000 seconds

5.6.4 PFI Social Structure Formation using D-GM

From Figure 5.17(a) we observe that the structure between nodes is very weak. It is

notable that the D-GM mobility model reduces the possibility discovering each other.

However, when the time period is increased to 600 seconds, the number of links between

nodes is increased. Figure 5.18(a) shows a social structure formation when using a lower

threshold value. When the threshold is further increased, nodes do not manage to maintain

a link to other nodes because it is hard for a node to be co-located with the same nodes

more frequently.

Generally, increasing the size of periodicity gives sufficient time for a node to establish

social relationships with other nodes. This is shown in Figure 5.19 which has more links

as compared to Figure 5.17 and 5.18

Based on the statistics given in Table 5.10, we can observe that the average value of

closeness centrality increases when the period size is increased. This is because in a long

period of time, nodes manage to established many relationship with other nodes and link

density increases.

Table 5.10. Closeness Centrality of PFI Social Structure using D-GM

Period Threshold (%)
Average of Closeness centrality
In Closeness Out Closeness

300
10 1.000 1.000
25 0.000 0.000

600
10 1.048 1.052
25 0.000 0.000

3000
10 1.222 1.282
25 1.222 1.282
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(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.17. PFI Social Structure for D-GM with periodicity = 300 seconds

(a) Threshold >=10 % (b) Threshold >=25 %

Figure 5.18. PFI Social Structure for D-GM with periodicity = 600 seconds

(a) Threshold >=10 %

Figure 5.19. PFI Social Structure for D-GM with periodicity = 3000 seconds

5.7 Result-Social Structure Based on Sliding Window Frequency Interactions

(SWFI)

The results presented in this section are constructed based on Sliding Window Frequency

Interaction (SWFI) approach as explained in Section 5.2.3. Table 5.11 provides parameters

that use for the simulations.
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Table 5.11. Parameters Setting for SWFI approach
Parameters Setting
Number of nodes 100 nodes
Number of trials 50 times
Social structure quota 10 members
Sliding Window Size 40
Threshold 2,3,10,20,30,40

5.7.1 SWFI Social Structure using Random Walk

From Figure 5.20, we can observe that the number of links between nodes decreases when

the threshold value is increased. This is because it is difficult for a node to be co-located

with the same nodes within in a short period of time. As can be seen in Figure 5.20(f),

when threshold increases, the social structure between nodes degrades. This is because it

is hard for a node be co-located frequently with the same nodes in a short period of time.

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 5.20. SWFI Social Structure formation after 500 time steps simulation time using
Random Walk

Increasing the period of time from 500 to 1000 time steps change the nodes’ social

structure. This is mainly because nodes have more opportunity or time to meet other

nodes which indirectly enrich the density of social relations between nodes. This is can be

observed when we compare the social structure in Figure 5.20(a) and Figure 5.21(f) which
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respectively using 500 and 1000 time steps.

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 5.21. SWFI Nodes Structure after 1000 time steps using Random Walk

Looking at the statistics in Table 5.12 we found that the closeness centrality value

increases when the social structure is captured after 1000 time steps. From a data dissem-

ination perspective, this is shows that it is faster to diffuse information after 1000 steps

rather than after 500 time steps.

Table 5.12. Closeness Centrality of SWFI Social Structure using Random Walk
time steps Threshold (%)

Average of Closeness centrality
In Closeness Out Closeness

500
2 1.041 1.048
5 1.031 1.035
10 1.011 1.012
20 1.005 1.005
30 1.001 1.001
40 1.001 1.001

1000
2 1.408 2.960
5 1.385 2.712
10 1.306 1.818
20 1.186 1.359
30 1.056 1.074
40 1.011 1.011
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5.7.2 SWFI Social Structure using Random Waypoint

Random Waypoint mobility is variation of Random Walk mobility model. It moves ran-

domly and stop at certain location for a period of time before move to the next destination.

Thus, it limits the nodes interact with different nodes. Based on Figure 5.22, increasing

the threshold value decreases the number of links. This is because it is difficult for nodes to

maintain a relationship with the same nodes as both of them must be in range frequently.

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 5.22. Nodes Social Structure after 500 time steps using Random Waypoint

As in the previous experiments, capturing a social structure after 1000 time steps

simulation has a different pattern as compared to social structure pattern after 500 seconds.

A greater number of links are found after 1000 time steps. This is due to the fact that

nodes have more time to discover different nodes in a long period of time. Figure 5.23

shows the social structure that capture after 1000 time steps.

Looking at Table 5.13, the average closeness centrality value between nodes are not

much different and the closeness centrality value is very small. This implies that dis-

seminating information under the Random Waypoint mobility model is not particularly

effective.
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(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 5.23. SWFI Social Structure after 1000 steps using Random Waypoint

Table 5.13. Closeness Centrality of SWFI Social Structure using Random Waypoint
time steps Threshold (%)

Average of Closeness centrality
In Closeness Out Closeness

500
2 1.050 1.063
5 1.043 1.053
10 1.028 1.032
20 1.013 1.014
30 1.004 1.004
40 1.001 1.001

1000
2 1.408 2.960
5 1.098 1.145
10 1.095 1.139
20 1.051 1.064
30 1.022 1.025
40 1.007 1.008

5.7.3 Social Structure using Gauss Markov

The Gauss Markov mobility model determines the next node’s position based on the

current node’s location. This mechanism helps nodes to discover the same nodes more

frequently as compared to random assignment that implemented in Random Walk and

Random Waypoint mobility model.

In Figure 5.24, we can see many links are formed between nodes when the threshold

is small. This is because it is easy for nodes to be part of another nodes social network,
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since a node only needs to be co-located with same node twice or more within the same

Sliding Window.

In Figure 5.25, we can see that all nodes are connected to the network when the

threshold is small. This actually increases the accessibility to reach other nodes very

quickly. As we can see in Table 5.14, the average value of closeness centrality is very high

which shows that there is strong links between nodes. Therefore, disseminating information

from one node to another can be done very quickly when a structure is defined with a small

threshold.

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 5.24. SWFI Social Structure after 500 steps using Gauss markov

Table 5.14. Closeness Centrality of SWFI Social Structure using Gauss Markov
time steps Threshold (%)

Average of Closeness centrality
In Closeness Out Closeness

500
2 1.617 15.907
5 1.616 15.543
10 1.318 1.869
20 1.013 1.014
30 1.004 1.004
40 1.001 1.001

1000
2 1.620 18.249
5 1.620 18.249
10 1.616 15.685
20 1.005 1.005
30 0.000 0.000
40 0.000 0.000
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(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 5.25. SWFI Social Structure after 1000 steps using Gauss markov

5.7.4 Social Structure using D-GM

In D-GM mobility model, determining the next location for a node is the same as in Guass

Markov model. However, instead of a node moving continuously, a node has to stop at

certain location. This process indirectly affect the formation of nodes’ social structures.

In Figure 5.26 we can observe that all nodes in the network are almost connected

with small threshold. This is because nodes have more opportunity to be co-located more

frequently. However, when using a big threshold value, it hard for the same nodes to be

co-located more frequently in the given sliding window.

A pattern of social structure after 1000 time steps is different than the social structure

after 500 time steps. This indicates that the social structure using the SWFI approach

captures different social structures based on the current nodes interactions. This is shown

in Figures 5.26 and 5.27.

Looking at the statistics in Table 5.15, the average value of closeness centrality is very

high. This means that nodes are very close to each other. However, when using a big

threshold value, only a few nodes have relationship between them. This indicates that
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from the D-GM mobility model a close distance between nodes is achieved when using a

small threshold value.

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 5.26. SWFI Social Structure after 500 steps using DGM

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 5.27. SWFI Social Structure after 1000 steps using DGM
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Table 5.15. Closeness Centrality of SWFI Social Structure using D-GM
time steps Threshold (%)

Average of Closeness centrality
In Closeness Out Closeness

500
2 1.620 18.174
5 1.619 17.619
10 1.597 8.053
20 1.022 1.026
30 1.004 1.005
40 1.001 1.001

1000
2 1.619 17.630
5 1.618 16.483
10 1.615 14.737
20 1.034 1.037
30 0.000 0.000
40 0.000 0.000

5.8 Conclusion

In this chapter three possible ways of forming social structure through the frequency of in-

teraction between nodes has been investigated. The approaches are social structure based

on average frequency interactions (section 5.2.1), social structure based on periodicity fre-

quency interactions (section 5.2.2) and social structure based on Sliding Window (section

5.2.3). These represent different ways in which nodes can be configured to define their

neighbors.

In general, different mobility models affect the construction of social structures. This

is due to the fact that mobility models determine the movement of nodes which indirectly

affect the node frequency interactions. Therefore it is essential to chose an appropriate

mobility model to have a better social structure.

The average frequency interaction approach captures a general social structure of nodes

where the social structure is formulated based on the nodes average interactions. This

approach is useful for predicting a general social structure between nodes. From the

experiment results, the best social structure score for out closeness centrality measurement

is 10 %. This score indicates that this approach is not a good enough to be used as a

guidance for neighbor selection in opportunistic networks.

The periodicity interaction frequency approach is focus on capturing the social rela-

tionships between nodes in a given period of time. This approach is more focus than

the first approach where it able to capture a social structure for a small period of time.

Moreover, this approach also provides a flexibility to capture a social structure of a node
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by simply varying the size of the period of time. Based on the experiment results, the

best social structures is achieved under the Gauss Markov mobility model. The best score

in terms of out closeness centrality is 14.236 %. This approach is better than the average

interaction frequency approach.

The sliding window approach captures a current social relationship between nodes.

This approach is more focus than the two approaches in terms of capturing the current

node’s social structure. As compared to periodicity interaction frequency approach, this

approach is more accurate in recording the current nodes’ relationships with other nodes

because it able to capture social structures of nodes at any given time. Moreover, with the

sliding window approach a dynamic change of nodes interactions can be monitored closely.

From this chapter perspective, sliding window approach is the most suitable approach

to be deployed to capture the social relationships among mobile nodes in opportunistic

networks. This approach is also surpasses other two approaches that presented in this

chapter in terms of out closeness centrality. Based on the results, the best score of this

approach for out closeness centrality is 18.249 %.

From this chapter we learnt that different mobility models and social structure forma-

tion technique produce different formation of social structures. This finding is useful for

our research because we will use the best social structure approach as neighbour selection

to assist information dissemination. We would expect a better performance when social

structure captures the dynamic nature of the mobility and interactions. This appears to

be supported by the results, since the best social structure formation technique that we

discovered uses a Sliding Window (SW) technique. This technique gives a better picture

of the nodes social relationship compared to other techniques in terms of relative distance

between nodes in the network. Not only that, using this techniques we can capture the

node relationship social structure at all points in time. Hence, we use this as the basis for

further development in chapter 6.



Chapter 6

INFORMATION SPREADING

USING PUSH TECHNIQUES AND

SOCIAL STRUCTURE

6.1 Introduction

The purpose of this chapter is to introduce different push techniques and investigate their

information dissemination performance and overhead cost. The push techniques that

developed here are explained in Section 6.4. We have discovered in chapter 5 that social

structures can be defined for various mobility models. We now want to investigate whether

these social structures are useful for disseminating information effectively.

In this chapter, we use the mobility models that were introduced in Chapter 4 for

investigation. The experimentation results for each push technique with each mobility

model is presented in Section 6.6. The performance of each technique is evaluated based

on the key performance indicators (KPI) that are described in Section 6.3.

6.2 Using Social Structure

In this section we consider using a social structure to make information dissemination

more efficient. Our aim is to investigate the impact of prioritising dissemination through

a social structure on information spread performance (i.e, time to receive an artifact). We

define a social structure taking into account how frequently nodes interact. Our approach

uses a local interaction history to form relationships (i.e edges) between nodes.

118
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For this chapter, we use a sliding window interaction frequency (SWFI) approach

which was introduced Chapter 5 in Section 5.2.3. This approach uses a sliding window to

determine a node interactions frequency to form a social structure.

6.2.1 Definition of Terms

The following are the terms used in relation to the Social Structure concept.

• Social Structure List (SSL) - is a list of other nodes that are identified as those that

are frequently seen by a particular node.

• Social Structure Quota (SSQ) - the maximum number of nodes permitted in (SSL).

• Threshold - the minimum frequency of a node found in SW to be included in SSL.

• Link - is an edge between nodes and represents nodes meeting each other more than

the threshold value.

• Total Meeting Frequency (TMF) - is the total number of a particular node detected

in a sliding window.

• Interaction History List (IHL) - this is a record that shows a list of nodes that have

received information from the current node.

6.2.2 Information Forwarding using Social Structure

We experiment in using the social structure defined in 6.2 and assume that nodes always

forward content to a node with whom they have a social link. Node selection is needed

when a node has to decide who to push to. In the basic flooding algorithm, information

is pushed at every meeting. This scenario contributes to significant overhead costs. With

a social structure approach information can be channeled through a population i.e. using

relationships between the nodes that frequently meet. For example, let S be a set of nodes

that are in range with node p and let Q be a set of nodes that are listed in p’s SSL. For

example, let us take

S = {a, b, c, d, e, f, g}

Q = {a, e, g}
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From the SSL, node p is able to direct information to nodes that it has established a

relationship with either a,e or g. In turn, these nodes can forward to a node in their SSL.

In this way flooding is controlled.

In our approach, at every time step, the SSL of a node is updated. Algorithm 6 shows

the SSL update process. Noted that, the SSL is modified when a new node is found in the

SW that has TMF bigger than the threshold value.

Algorithm 6 SSL update process
1: Update the SW
2: Scan the SW and calculate the TMF for each individual node that is detected in the

current SW.
3: for i = 1 to size of SW do
4: curNode = slot[i]
5: if curNode found in SSL then
6: get the curNode TMF
7: if curNode′s TMF < threshold then
8: remove curNode from SSL
9: end if

10: else
11: get the curNode TMF
12: if curNode′s TMF > threshold then
13: if SSL is not full then
14: Add curNode into SSL
15: end if
16: end if
17: end if
18: end for

6.2.3 General Assumptions on Social Structure

The following assumptions are used in our study.

• The information is homogenous and all nodes want the same information.

• The information originates at the information source and can be relayed by any node.

• Each node has a fixed SSQ and SW.

• A link is removed when the frequency of a node found in the SW is less than the

threshold value.

• A connection needs to be established prior to push an artifact.
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• In the case that more than one node that is in range is in a node’s SSL, a random

selection between them is performed when choosing who to push or interact with.

6.3 Key Performance Indicators

In order to measure the performance of dissemination across a social structure, we in-

troduce two metrics. They are Information Profile and Average Overhead Push Cost.

Information Profile is used to measure the speed of information dissemination. This is

can be observed through the shape of information distribution that is how many node

have received an artifact at a particular time. The Average Overhead Push Cost is used

to measure how many individual forwarding processes occur to spread information to all

nodes.

6.3.1 Information profile

The number of nodes that have received information are recorded at every time step

cumulatively. At the end of the simulation, the average over a number of runs of the accu-

mulative number of nodes that possess information is calculated. This graph is plotted to

investigate the information profile. The purpose of this KPI is to measure how quickly the

information (from a single source) is disseminated to all nodes. We also provide addition

analysis using Marginal Information Profile (MIP) of time. This analysis investigates the

percentage of nodes with the artifact for every unit of time. Equation 6.3.1 shows how the

MIP of time is measured.

MIPt = PNAt − PNAt−1 (6.3.1)

In Equation 6.3.1, PNAt is the percentage of nodes with the artifact at time t which

measures the number of nodes that discover artifact at the given time t. The change in

PNA can be discovered through Equation 6.3.1.
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6.3.2 Average Push Overhead costs

Push cost is the number of pushes a node produces. A push is when node X forwards

information to node Y . This cost is measured cumulatively. At the end of the simulation,

the average of total number of costs for each trial is calculated. This metric indicates how

many pushes involved in each experiment. Furthermore, we provide an additional analysis

on Marginal Overhead Cost (MOC) of time. This analysis investigates the rate of change

of push overhead costs when one unit of simulation time is increased. Equation 6.3.2 shows

how the MOC is measured.

MOCt = TOCt − TOCt−1 (6.3.2)

In Equation 6.3.2 TOCt is the Total of overhead cost at time t. We use the minimal

MOC which is denoted as TMOC . If MOCt < TMOC , then the new value of TMOC is

MOCt otherwise the TMOC remains the same.

6.4 Different types of Push Techniques

In this section we provide details of each push technique that is use in this chapter. In

general, we can classify the push approaches into two groups: a push technique with social

structure and a push technique without structure. The push techniques with structure use

a social structure to select which node to interact with, whereas the other technique (push

without structure) chooses its peer randomly. The social structure represents those nodes

with which familiarity is maintained. There are five different push techniques introduced

in the following sections. These are; Push with Structure (Section 6.4.1); Push Probability

with Structure (Section 6.4.2); Push Probability without Structure (Section 6.4.3); Push

Once without Structure (Section 6.4.4), and Push Once with Structure (Section 6.4.5). All

of these push techniques are triggered when there is an interaction between nodes.

6.4.1 Push with Structure (PWS)

The Push with Structure approach is the same as the basic flooding technique. But instead

of pushing information to any arbitrary node, a node only pushes to nodes that is listed
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in the node’s SSL. Therefore even though a node is in range of other nodes, no interaction

is initiated if none of them are listed in SSL of a current node. Algorithm 7 describes the

Push with Structure processes.

Algorithm 7 Push with Structure for node x
1: if node y is in SSL of node x then
2: if node x has information then
3: x push information to node y
4: end if
5: end if

6.4.2 Push Probability with Structure (PPWS)

We assume that each node has the same probability default value for pushing information

to others. So, when both nodes are in range and if uniform a random selection value is

higher that the default probability, then the node pushes information to its peer. Algorithm

8 shows the Push probability with structure algorithm.

Algorithm 8 Push Probability with Structure for node x
1: if node y is in SSL of node x then
2: rndNum := Random number in [0,1]
3: if node x has information then
4: if rndNum < push probability then
5: node x push information to node y
6: end if
7: end if
8: end if

6.4.3 Push Probability without Structure (PPWOS)

Push Probability without Structure is derived from Algorithm 2 (Pure Push) in chapter

4. In this algorithm the Push Probability without Structure pushes information based on

the probability. A node does not simply push information to any nodes but it works based

on a probabilistic manner. Algorithm 9 presents the detail of Push Probability without

Structure processes.
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Algorithm 9 Push Probability without Structure for node x
1: rndNum := Random number in [0,1]
2: if node x has information then
3: if rndNum < push probability then
4: node x push information to node y
5: end if
6: end if

6.4.4 Push Once without Structure (POWOS)

Push Once without Structure is a slightly more intelligent push approach. A node only

pushes information to nodes that it has not pushed to before. This approach assumes that

each node has enough memory space to keep records of past pushing events. The records

is important because it helps a node to decide to push information or not. The records are

maintained in a Interaction History List (IHL). Algorithm 10 shows the process of Push

Once without Structure approach.

Algorithm 10 Push Once without Structure for node x
1: if node x has information then
2: if node y is not in IHL of node x then
3: node x push information to node y
4: add node y into IHL of node x
5: end if
6: end if

6.4.5 Push Once with Structure (POWS)

The Push Once with Structure algorithm uses a social structure to push information. The

social structure is used to identify nodes to interact with, whereas the Push Once without

Structure chooses node randomly. Algorithm 11 shows the processes of Push Once with

Structure.

Algorithm 11 Push Once with Structure for node x
1: if node x has information then
2: if node y is in SSL of node x then
3: if node y is not in IHL of node x then
4: node x push information to node y
5: add node y into IHL of node x
6: end if
7: end if
8: end if
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6.4.6 Overheads

Besides the push and query overheads, all the techniques that use the social structure

approach to disseminate information incur extra overheads. These overheads are caused

by the process of storing, maintaining and updating the following elements:

• Interaction History List (IHL)

• Social Structure List (SSL)

• Social Structure Quota (SSQ)

• Total Meeting List (TMF)

Note that, these processes are performed locally, so we consider these as internal overheads,

and they are not addressed in this thesis.

6.5 Experimentation

The aim of the experiments is to investigate whether is it possible to minimize the overhead

costs in information spreading while trying to maintain the performance as close as possible

to the flooding technique which is best performing due to is greedy nature. Table 6.1

displays the experimental parameter settings that are used in this chapter.

Table 6.1. Parameters Setting
Parameters Setting
Mobility Models Random Walk, Random Waypoint,

Gauss Markov, D-GM
Size of nodes 100 nodes
Number of information source 1
Information Source coordinate x = 250m , y = 250m
Size of simulation plane 500m x 500m
Simulation duration 15 minutes (9000 time steps)
Number of trials 50 times
Social structure quota 10 members
Window Size 40

Because different mobility models have different impact on information spreading [25],

we have also used different mobility models for each push technique introduced in this

chapter. The following results are organized based on different push techniques.
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6.6 Results

To recap, there are five different push approaches introduced in this chapter. There are

Push with structure, Push probability with structure, Push probability with-

out structure, Push Once with structure and Push Once without Structure.

Each of this approach is analyzed with different mobility models (Random Walk, Ran-

dom Waypoint, Gauss Markov, and D-GM). The following results are organized based on

different push approaches.

6.6.1 Result - Push with Structure

6.6.1.1 Push with Structure using Random Walk

In this section, a threshold value is a minimum frequency that a particular node found in

SW to be included in SSL (Social Structure List). In Figure 6.1, we observe that increasing

the threshold value reduces the number of nodes that receive an artifact over time. This is

due to the fact that with a high threshold value, there is more constraint on establishing an

interaction. This affects the number of nodes that can be included in SSL. Therefore, the

opportunity of nodes pushing information is decreases as the threshold value is increased.

This is why in Figure 6.1, the social structure with threshold=40 takes a longer time to

make the information available to all nodes in the networks.

In addition, the marginal analysis in Figure 6.2 confirms that lesser constraints make

the information dissemination accelerate at the early stage. This is due to the fact that

the node has an opportunity to push information to different nodes at the early stage as

nodes easy to establish relationship with other nodes (i.e threshold=2). However, with a

high constraint ( i.e threshold=40) the marginal information profile of time shows a small

change in the percentage of nodes with an artifact when a unit of time is increased. This is

indicates that a node needs more time in order to establish more relationships with other

nodes. Consequently, it delays the information dissemination to all nodes in the networks.

As we can observe from the Table 6.2 and Figure 6.3, the threshold influences the

frequency of interaction and the formation of social structure. Note that the links of the

social structure in Figure 6.3 is a snapshot of 1000 time steps simulation. We can see
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Figure 6.1. Information Profile for Push with structure with different Threshold value
using Random Walk

Figure 6.2. Marginal Information profile of time using Random Walk

that with a small value of threshold, more links is formed as it is easy to maintain a small

interaction frequency between nodes. This helps to boost the information dissemination

performance. With a strictness (high threshold value) of social structure formation, it will

limit the opportunity of node to push information to other nodes. As a result, information

spreads very slowly when more constraint (high threshold) is imposed.

The overhead cost (number of pushes) is dependent on the frequency of interaction.
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Table 6.2. Average node interaction using Random Walk
Threshold Average interactions per node

2 26.762
3 26.555
4 26.361
5 26.166
10 25.163
20 22.526
30 16.252
40 10.611

The more chance of node to interact with other nodes, the more likely the overhead cost

is increased. Looking at the overhead costs in Figure 6.4, increasing the threshold value

reduces the overhead costs. This is because not many nodes are involved in pushing

information as nodes are restricted to push to a particular node only (i.e. in node’s SSL).

Looking at the marginal overhead cost in Figure 6.5, the overhead cost increases ac-

cording to the threshold value setting. When the threshold value is small, the change of

overhead costs over time increases rapidly. This is because more nodes find it easy to

establish a connection with other nodes as the number of nodes with the artifact increases

rapidly over the time.

Figure 6.6 shows the relationship between the overhead costs and the percentage of

information dissemination. As we can see from the figure, increasing the overhead cost

also increases the percentage of nodes with the information artifact. This indicates that

information dissemination has direct impact on the cost. Note that no time reference

is considered in Figure 6.6. Looking at Figure 6.6, at 70% to 100% of nodes with an

artifact, the overhead costs in the social structure approach is far better than flooding.

Further more, the high constraint (i.e threshold = 40) shows a better combination between

overhead cost and number of nodes with an artifact. This is due to the fact that the social

structure approach with a high threshold has a better cost utilization but it has high delay

on disseminating information to all nodes in the network.

6.6.1.2 Push with Structure using Random Waypoint

The result in Figure 6.7 has the same trend as Figure 6.1. The information dissemination

performance is decreasing when the threshold value is increased. The threshold value is
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(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 6.3. Push with structure technique using Random Walk with different Threshold

Figure 6.4. Average Push Overhead Costs for Push with structure technique using
Random Walk

the minimum number of frequency of a particular nodes found in SW to be included in

SSL. This is due to the fact that, increasing the threshold value also means increasing the

strictness of social structure link formation. The performance in Figure 6.1 is better than

Figure 6.7 because in the Random Walk Mobility model, the nodes have more chance to

meet different nodes as compared to Random Waypoint mobility model.
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Figure 6.5. Marginal Overhead Costs of time for Push with structure using Random
Walk

Figure 6.6. Overhead Cost vs Node with artifact for Push with structure using Random
Walk

From Figure 6.8, the change in percentage of nodes with an artifact when one more

unit of time increases is very small. This is because using the Random Waypoint mobility

model, nodes have to stop at certain locations for a period of time before they can move

to another location. The stopping attribute reduces the interaction of nodes. This results

in a small change in the marginal information profile in Figure 6.8.

The overhead costs in using the Random Waypoint mobility model increases when more
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Figure 6.7. Information Profile for Push with structure with different Threshold value
using Random Waypoint

Figure 6.8. Marginal Information profile of time using Random Waypoint

nodes are actively involved in interactions. This is shown in Figure 6.9. This happens

because the number of nodes that have an artifact is increased over time, which also

increases the number of nodes involved in pushing information. Looking at the marginal

overhead costs in Figure 6.10, the change of overhead costs accelerate quickly at the early

stage (i.e before t=4000). This is because more nodes are starting to be involved in pushing

information. Note that the different acceleration rates in the early stages is because of the

strictness of link formation as shown in Figure 6.11.
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Figure 6.9. Average Push Overhead Costs for Push with structure using Random Way-
point

Figure 6.10. Marginal Overhead Costs of time using Random Waypoint

From Table 6.3, we can observe that a high constraint (threshold=40) has a lower

average interaction per node. This is because it is difficult to form a social structure with

a high constraint as nodes have to be co-located overall for a long consecutive periods of

time. As a result, the number of nodes that involved in interactions are decreased when

the threshold is increased.

Figure 6.11 shows the social structure links between nodes with different threshold
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Table 6.3. Average node interaction using Random Waypoint
Threshold Average interactions per node

2 27.269
3 27.109
4 26.940
5 26.772
10 25.920
20 23.090
30 16.3112
40 10.760

values. From the figure, we can observe that the density of links decreases as the threshold

value is increased. This is because a threshold represent the strictness of links formation.

It means that, if the threshold is small (i.e. threshold=2), a link can be formed easily

between nodes because the nodes just have to be co-located two times in a SW. However,

when the threshold is increased, nodes have to be co-located more frequently (threshold

=40) within SW in order to establish a link.

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 6.11. Push with structure using Random Waypoint with Differen Threshold

Figure 6.12 shows the relationship between overhead costs and percentage of nodes

with artifact. Looking at the figure, as we can expect, flooding has more overhead costs

compared to the social structure approach. This is because, in flooding every node is
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pushing information at every opportunity. Alternatively, in the social structure approach,

the information pushing is controlled by the links between nodes. The nodes in social

structure only push information when a link between them are available. In another

perspective, flooding utilizes any meeting opportunity to maximize the information dis-

semination whereas social structure approach utilizes social links to minimize the overhead

costs.

Figure 6.12. Overhead Cost vs Node with artifact using Random Waypoint

6.6.1.3 Push with Structure using Gauss Markov

From Figure 6.13, we can observe that with a small threshold (i.e. between 2-10), the

number of nodes which possess an artifact using the social structure approach is close to the

number of nodes with an artifact using the flooding approach. However, when the threshold

value is further increased, the numbers of nodes that have information are decreased

dramatically over the time. This is because with a high threshold it is hard for nodes

to be co-located with their social neighbors that are listed in the nodes’ social structure.

Besides that, nodes moving using the Gauss Markov mobility model changes their direction

at every time step, so it is hard for the same nodes to be co-located continuously.

Analyzing the change of number of nodes with the artifact when one unit of time is

increased, we observe that the social structure with high threshold value (threshold=40)

has very small changes in the number of nodes with the artifact and remain level under
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Figure 6.13. Information Profile for Push with structure with different Threshold value
using Gauss Markov

0.2% Marginal Information Profile (MIP). This is shows that no further interactions will

manage to improve the number of nodes that posses an artifact. But with a small threshold

value, as we can see from Figure 6.14, the percentage of nodes that have information

increases very quickly over time in the early stage. This is because with a low threshold

it is easy for nodes to establish a relationship which results in more received information.

Figure 6.14. Marginal Information profile of time using Gauss Markov

As in the Random Walk and the Random Waypoint results, the overhead costs reduce
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as the threshold value is increased (Figure 6.15). This is because with a high threshold

(i.e. threshold=40), it is difficult to form social links between nodes. This is limiting

the number of nodes involved in information pushing, which reduces the overhead costs

significantly. Note that this reduction of cost is not cost effective as it has a very low

number of nodes with the artifact (refer to Figure 6.13).

Figure 6.15. Average Push Overhead Costs for Push with structure using Guass Markov

Looking at Figure 6.16, the overhead costs accelerate very quickly in the early stage

with the social structure approaches that have small threshold values. This is because

a large percentage of nodes received information very quickly at the beginning of the

simulation. As more nodes are involved in information pushing which contributes to a

large change in overhead costs when a unit of time is changed. The marginal change of

overhead cost is reduced as the threshold value is increased. This is due to the fact that

not many nodes are able to maintain a link as the nodes have to be co-located frequently.

As we can see from Table 6.4, there is a huge gap in average interaction between

a low threshold (threshold=2) and high threshold (threshold=40). This is because the

formation of links in the social structure depends on how strict the link formation is.

When the threshold is high (threshold=40), it means that nodes have to be co-located

continuously within 40 time steps in order to establish a link. With the Gauss Markov

mobility model, it is very rare to have the same nodes co-located consecutively for a long

period of time because the Gauss Markov mobility model assign different directions at
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Figure 6.16. Marginal Overhead Costs of time using Gauss Markov

Table 6.4. Average node interaction using Gauss Markov
Threshold Average interactions per node

2 29.479
3 27.846
4 25.628
5 23.413
10 14.804
20 4.901
30 1.052
40 0.112

every time step.

Besides that, nodes moving using the Gauss Markov mobility model changes its direc-

tion at every time step, so it is hard for the same nodes to be co-located continuously.

Figure 6.17 shows the number of links between nodes with a different threshold setting

value. Using Gauss Markov Mobility model, there is a high interaction at a lower threshold

(between 2- 10). This shows that more nodes in average are co-located consecutively

in less that 10 time steps. In addition, this also explains why the average number of

interactions (Table 6.4) with the lower threshold is very high. In Table 6.4 and Figure

6.17, we found that no nodes were able to establish connections when the constraint is

higher (threshold=40). This is because it is difficult for a node to be co-located with the



138 Information spreading using Push techniques and Social Structure Chapter 6

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 6.17. Push with structure using Gauss Markov with Different Threshold

same node.

Figure 6.18. Overhead Cost vs Node with artifact using Gauss Markov

Looking at Figure 6.18, effective dissemination of information appears to have a con-

sequence of high overhead costs. The approach with lower overhead costs (threshold=40)

results in a very small percentage of nodes with artifact. This is because not many nodes

are involved in interactions and consequently a link between them is hard to establish.
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Conversely, with the small threshold, it is easy for nodes to establish a link. Therefore

there is a lot of interaction overhead costs involved which create a chance for nodes to

received an artifact. Note that the figure does not consider time or how quickly the infor-

mation is available to all nodes. However, this figure is important for understanding the

effect of overhead costs on the percentage of nodes with artifact when time is not part of

the performance consideration.

6.6.1.4 Push with Structure using D-GM

From Figure 6.19, we can see that the performance of information dissemination of push

with structure approach is close to the flooding performance when a threshold is small

(i.e. threshold between 2-5). This is because it is easy for nodes to form a social link with

each other. As a result, more nodes are infected (possess information) very quickly. As

we expected, when the threshold is increased the information dissemination performance

is decreased over the time. This is because it is difficult to establish a social link between

different nodes.

Figure 6.19. Information Profile for Push with structure with different Threshold value
using DGM

Looking at the marginal information profile of time, the changes of the number of

nodes with an artifact increases drastically over a short time when the threshold is small.

This shows that interactions at the early stage helps to discover nodes with the artifact.
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Figure 6.20. Marginal Information profile of time using D-GM

But, with the high threshold, there are very small changes in the information profile when

the simulation time is increased by a unit. This is because, at that time many nodes have

not discovered an artifact. That Marginal Information Profile is constant throughout the

simulation shows that nodes have difficulty in establishing links with different nodes. This

decreases the opportunity of information dissemination performance.

Table 6.5. Average node interaction using D-GM
Threshold Average interactions per node

2 11.642
3 11.152
4 10.626
5 10.101
10 7.815
20 4.550
30 2.317
40 0.818

In Table 6.5, the average interaction per node is decreased as the threshold value is

increased. This is because the constraint of forming a link between nodes is strict as the

threshold is increased. In the social structure approach, nodes can only push information

(interact) with the nodes that have been co-located more than or equal to the threshold

value. This is why a lower threshold in the social structure approach has a high average

interaction per node because it is easy for nodes to be co-located consecutively twice rather
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than forty times.

(a) Threshold =2 (b) Threshold =3 (c) Threshold =10

(d) Threshold =20 (e) Threshold =30 (f) Threshold =40

Figure 6.21. Push with structure using D-GM with Different Threshold

From Figure 6.21 we can observe that there is a high possibility of nodes to interact

with each other. This situation helps the information spread to different nodes very

quickly. A result of this is that more nodes discover information at the early stage as

shown in Figure 6.19. When the threshold is increased the density of links between nodes

is significantly reduced. This is because it is difficult to identify neighbors to forward

information. Therefore, fewer nodes possess information at the early stage with the high

threshold.

Based on the Figure 6.22, there is a big gap in overhead costs between the social

structure and flooding approaches. This is because nodes in flooding push information at

every opportunity and do not have any restriction in order to push information. However,

in the social structure approach, forwarding information is subject to how many links that

a node has. As a result, a very small number of nodes involved in forwarding information

when a threshold=40 is used. With fewer interactions, the overhead cost also reduced

because the overhead cost is actually measures how many forwarding processes occur

through out the simulation.
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Figure 6.22. Average Push Overhead Costs for Push with structure using D-GM

Figure 6.23. Marginal Overhead Costs of time using D-GM

Looking at Figure 6.23, the overhead costs accelerate very quickly at the early stage

with the social structure approaches that have small threshold values. This is because a

large percentage of nodes receive information very quickly at that time (refer to Figure

6.19). So, more nodes are involved in information pushing which causes the high change in

overhead costs when a unit of simulation time is increased. The marginal overhead costs

change accordingly with the threshold. This is because the link formation is subject to the

threshold strictness. For example the marginal overhead costs for threshold=40 is near to
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zero. This shows that not many nodes are able to forward information as it is difficult to

form a social structure.

Figure 6.24. Overhead Cost vs Node with artifact using D-GM

From Figure 6.24, we can observe that the approach with a low overhead cost (e.g

threshold ≥ 40) has a smaller percentage of nodes with an artifact. This is because an

interaction between nodes are limited as they have to be co-located more that 40 times

consecutively. With the small threshold, it is easy for nodes to establish a link. Therefore

more frequent interactions are involved, which helps to disseminate information to all

nodes. This condition boosts the overhead costs as more nodes are involved in forwarding

information. Note that the figure does not consider the time or how quickly the information

is available to all nodes. However, in this figure it is important to understand the effect

of overhead costs on the percentage of nodes with artifact when time is not part of the

performance consideration.

6.6.2 Results - Push Probability with Structure

The social structure presented hereafter uses a small threshold value (threshold = 2) as

the basis for forming the links between nodes. This addition information is added as part

of the parameter settings listed in Table 6.1. We use a single threshold value because we

want to focus on investigating the impact of push probability with a social structure when

different values of probability are applied. Furthermore, we also need to keep the number of
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experimentation variables are manageable since both push probability and social structure

have a large number of parameters.

6.6.2.1 Push Probability with Structure (PPWS) using Random Walk

Figure 6.25. Information Profile for Push Probability with Structure using Random
Walk

From Figure 6.25, we observe that varying the push probability affects the information

dissemination performance. We test a range of different push probability values i.e 0.9,

0.5 and 0.1.

Figure 6.26. Marginal Information profile of time for PPWS using Random walk
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Looking at Figure 6.26, the performance increases very quickly when one unit of time

is increased at the early stage. This is because not many nodes discover information at

the early stage, so the number of nodes that are infected with information has a dramatic

effect at the early stage. In the early stage, the MIP is constant for a certain period of time

and this happens because of the probability behavior. We can see that the probability

with push probability of 0.9 outperforms the lower probability (i.e. 0.1).

Figure 6.27. Average Push Overhead Costs for PPWS using Random Walk

The overhead costs of the PPWS approach presented in Figure 6.27 shows that the

high probability (i.e. probability = 0.9) incurs a high overhead cost. The big gap at a high

number of time steps for the PPWS approach is because of the difference in the number

of nodes that become involved in pushing the information when different probability value

is used. The higher the probability value, the more chance of nodes pushing information

to others.

From Figure 6.28, the marginal overhead costs accelerate very quickly at the early

stage. This shows that more nodes are actively involved in pushing information when

a unit of simulation time is increased. The big gap in marginal overhead cost between

flooding and the PPWS with push probability 0.9 is because the PPWS uses a social

structure to guide the push process which reduces the number of pushes among nodes.

In flooding nodes push information at every meeting which causes the overhead costs to

increase.
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Figure 6.28. Marginal Overhead Costs of time for PPWS using Random Walk

Figure 6.29. Overhead Costs vs Node with artifact for PPWS using Random Walk

Looking at Figure 6.29, the PPWS with probability=0.1 has the lowest overhead costs

as compared to other approaches in the graph. However, this does not mean that PPWS

with probability=0.1 is the best approach because it takes a longer period of time to

disseminate information to all nodes in the network (refer Figure 6.25).
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6.6.2.2 Push Probability with Structure using Random Waypoint

The information profiles in Figure 6.30 have the same pattern as in Figure 6.25. A high

push probability creates more opportunity for nodes to push information to other nodes. It

also shows that different values of push probabilities result in different information profile.

This is because the push probability determines the capability of a node to disseminate

information to other nodes. Even though a node has information to push, no interactions

will be initiated unless the probability value permits.

Figure 6.30. Information Profile for PPWS using Random Waypoint

Figure 6.31. Marginal Information profile of time for PPWS using Random Waypoint
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Figure 6.31 shows the change of performance (number of nodes with artifact) when

one additional unit of time is increased. As can be seen from the figure, the PPWS

with push probability=0.5 has marginal information profile higher than flooding after

1500 time steps. This does not mean that PPWS with push probability = 0.5 has better

performance than flooding, it actually indicates that the change in the performance of

PPWS with probability=0.5 at 1500 time steps is higher than flooding when one unit of

simulation time is increased.

For the overheads, we can observe that different push probability values result in

different costs. This is because different push probabilities influence the chance of nodes

to push information to other nodes. The higher the probability is, the higher the chance

of nodes pushing information to other nodes which also incurs high overhead costs. Figure

6.32 shows the overhead cost profile which has the same pattern as the information profile

in Figure 6.27.

Figure 6.32. Average Push Overhead Costs for Push Probability with Structure using
Random Waypoint

Looking at Figure 6.33, the marginal overhead costs increase very quickly when a unit

of simulation time is increased at the early stage. This is because more nodes are involved

in pushing information as the number of nodes with a artifact accelerate when one unit

of time is increased. The big gap of marginal overhead costs between flooding and PPWS

with 0.9 is because PPWS uses social structure to guide the push process which reduces
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Figure 6.33. Marginal Overhead Costs of time for PPWS using Random Waypoint

the number of pushes among nodes.

Figure 6.34. Overhead Costs vs Node with artifact for PPWS using Random Waypoint

Based on Figure 6.34, we can observe that the PPWS with probability=0.1 has the

lowest overhead costs as compared to the other approaches in the graph. This is because

PPWS with probability=0.1 has a small amount of overhead cost. However, because time

is not considered in this figure, it does not mean that PPWS with probability=0.1 is

the best approach. It has low overhead costs but it has a long delay period in making

information available to all nodes in the network (refer Figure 6.30).
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6.6.2.3 Push Probability with Structure using Gauss Markov

In Figure 6.35, we observe that there are very small changes in information performance

(i.e. number of nodes with artifact) when different push probability is used. This is because

the meeting frequency between different nodes is very high in the Gauss Markov mobility

model. Therefore, there are more chances for nodes to discover and push information to

different nodes even though different push probabilities values are used.

Figure 6.35. Information Profile for Push Probability with Structure using Gauss Markov

Figure 6.36. Marginal Information profile of time for PPWS using Gauss Markov
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Figure 6.36 shows the change in performance (number of nodes with an artifact) when

a unit of simulation time is increased. As can be seen from the figure, the performance

accelerates very quickly at the very early stage. The higher the push probability is, the

faster the information is available to all nodes. This is because with a high probability

the nodes have a high opportunity to forward information. The social structure does not

confine the nodes to forwarding information because nodes have a big opportunity to meet

many different nodes. Therefore it is easy for nodes to form a social structure which

consists of different nodes.

In contrast, even though the different push probability values have a small effect on

the information profile there is a significant gap in overhead costs. This is because the

probability value determines the ability of nodes to push information. Thus, the PPWS

with high probability has high overhead costs compared to the PPWS with low probability.

The overhead cost is presented in Figure 6.37.

Figure 6.37. Average Push Overhead Costs for Push Probability with Structure using
Gauss Markov

Based on Figure 6.38, the overhead costs increase very quickly at the early stage when

one unit of simulation time is increased. This is because more nodes are involved in

forwarding information as the number of nodes with artifacts increases drastically at that

period of time. The big gap between flooding and the PPWS with probability=0.9 in

marginal overhead costs is because in flooding nodes greedily pushes information at every
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Figure 6.38. Marginal Overhead Costs of time for PPWS using Gauss Markov

opportunity whereas in PPWS the pushing process is controlled by the social structure

and the push probability.

Figure 6.39. Overhead Costs vs Node with artifact for PPWS using Gauss Markov

Based on Figure 6.39, we can observe that when the overhead costs increase the per-

centage of nodes with an artifact is also increased. Using the Gauss Markov mobility

model a smaller amount of overhead is incurred in disseminating the artifact to all nodes

in comparison with other mobility models (i.e. Random Walk and Random Waypoint).

For example looking at the flooding approach, Gauss Markov results in approximately
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20,000 overhead costs to reach 100% performance where Random Walk results in more

than 100,000 overhead costs (refer figure 6.34). This is because the Gauss Markov mo-

bility model offers a better chance for nodes to meet different nodes at the early stage of

simulation. Therefore, a small amount of resources is enough to spread information very

quickly to all nodes.

6.6.2.4 Push Probability with Structure using D-GM

Figure 6.40. Information Profile for Push Probability with Structure using D-GM

As in PPWS with D-GM, increasing the push probability has a small impact on the

information profile. This is because D-GM mobility model offers a better chance for nodes

to meet different nodes at an early stage. However when the performance is above 80%

(Figure 6.40), the performance of PPWS with probability=0.1 is decreased. This is because

a node has a small chance to push information when it is in range with other nodes that

have not yet possessed information. In comparison to PPWS with high probability, the

chance of pushing information at every meeting is high.

Looking at Figure 6.41, we can see that the performance accelerates very quickly when

one unit of time is increased. This shows that more nodes discover information at the

early stage. This is due to the fact that the D-GM mobility model creates more chances

for the nodes to discover different nodes at different time steps. This helps to spread the

information quickly to all nodes in the network. The different level in marginal information
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Figure 6.41. Marginal Information profile of time for PPWS using Gauss Markov

profile is shown in Figure 6.41 because of the push probability behavior.

In Figure 6.42, the overhead costs increase over time. This is because more nodes

are involved in pushing information as more nodes possess information over time. Even

though the different push probability values have a small effect on the information profile

performance, it has significant impact on overhead costs. This is because with a high push

probability, more resources are needed as more nodes are involved in pushing information

over the time.

Figure 6.42. Average Push Overhead Costs for Push Probability with Structure using
D-GM
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Figure 6.43. Marginal Overhead Costs of time for PPWS using D-GM

In Figure 6.43, the overhead costs accelerate very quickly at the early stage. This

shows that nodes are involved in forwarding information as the number of nodes with an

artifact increases drastically at that period of time. The gap between flooding and the

PPWS with push probability=0.9 is because in flooding nodes are not restricted by any

rules to push information. However in PPWS, nodes are confined by the social structure

and the push probability. Thus, less resources is required in PPWS when the probability

is low.

Figure 6.44. Overhead Costs vs Node with artifact for PPWS using D-GM
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As can be seen in Figure 6.44, the push probability of 0.1 performs better that others.

However because of the time that an artifact is available to all nodes are not considered

here, we cannot state that the push probability=0.1 with a lower overhead costs is the

best approach.

6.6.3 Results-Push probability without structure

6.6.3.1 Push probability without structure (PPWOS) using Random Walk

The performance of information spreading using PPWOS is determined by different push

probability values. As we can see in Figure 6.45, a high push probability value has similar

performance as flooding. This is because the nodes with a high possibility almost have

push capability the same as flooding where nodes can push information at every meeting

opportunity. Therefore, more nodes discover information very early. However, limiting

the push frequency slows down the performance of information spreading because nodes

have fewer chances to push information at a meeting opportunity.

Figure 6.45. Information Profile for Push Probability without Structure using Random
Walk

Looking at the marginal information profile of time (Figure 6.46), we can observe

that there are different rates of acceleration for PPWOS approach at the early stage.
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Figure 6.46. Marginal Information profile of time for PPWOS using Random Walk

The PPWOS with high probability (probability =0.9) provides a greater of number of

nodes with an artifact when one unit of time is increased as compared to other PPWOS

approaches. This is because different push probabilities determine the chances of nodes

forwarding information. PPWOS with a low probability has a static marginal information

profile at the beginning of the simulation (i.e before 1000 time steps) because at that

period of time not many nodes are involved in pushing information.

Figure 6.47 shows the total overhead costs that used by the nodes over time. The

usage of resources which is counted as overhead costs are influenced by the number of

nodes that are involved in information pushing. As we can observe from the figure, all

approaches have lower total overhead costs before 2000 time steps. This is because at that

period of time, not many nodes discover information, which prevents them from forwarding

information. The overhead costs increase steadily after 2000 time steps. This is because

at this point many nodes have discovered information and have started to be involved in

pushing information. The gap between the approaches in Figure 6.47 is because of the

differences in the ability (chance) to push information.

Based on Figure 6.48, the marginal overhead costs accelerate when one unit of time is

increased at the early stage (i.e. before 2000 time steps). This shows the number of nodes

discovering information and that are involved in forwarding information effectively at the
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Figure 6.47. Average Push Overhead Costs for Push Probability without Structure using
Random Walk

Figure 6.48. Marginal Overhead Costs of time for PPWOS using Random Walk

early stage. The rate of change in cost depends on the ability of nodes to push information

to each other. For example, the PPWOS with low push probability (probability = 0.1)

has the lowest overhead costs in Figure 6.48 and it has very limited possibilities to push

information.

Figure 6.49 shows the relationship between overhead costs and the percentage of nodes
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Figure 6.49. Overhead Costs vs Node with artifact for PPWS using Random Walk

with an artifact. Note that the graph is plotted without considering how quickly the

information is available to the nodes. The figure investigates the effect of the overhead

costs to the percentage of nodes with an artifact. As can be seen, with small overhead costs,

it is possible to disseminate information to all nodes in the network. But it requires an

amount of delay to accomplish that task. Flooding disseminates information very quickly

but suffers from a massive overhead cost. From the figure we can see that the flooding

approximately required to push 30,000 times to have 80% nodes with an artifact and

PPWOS with push probability=0.9 only needs about 15,000 times pushing information.

This explains that there is a possibility of reducing the cost in flooding while maintaining

the performance because the performance of PPWOS with probability=0.9 is very close

to flooding performance (see Figure 6.45).

6.6.3.2 Push probability without structure using Random Waypoint

In Figures 6.50 and Figure 6.45 show the similar effect on the information dissemination

performance when different push probabilities are applied. Looking at Figure 6.50, the gap

between flooding and PPWOS with push probability=0.9 can be compared as in Figure

6.45. In the Random Waypoint mobility model nodes have to stop at a certain location

for a period of time before they can move to the next destination. This affects the meeting

frequency between nodes. Therefore, the chance of pushing information to different nodes



160 Information spreading using Push techniques and Social Structure Chapter 6

also affected. As a result, the information distribution using Random Waypoint is slightly

slow as compared to Random Walk mobility model.

Figure 6.50. Information Profile for Push Probability without Structure using Random
Waypoint

Figure 6.51. Marginal Information profile of time for PPWOS using Random Walk

Figure 6.51 shows the change on performance (i.e. the percentage of nodes with an

artifact) when one unit of time is increased. As can be seen from the figure, the PP-

WOS with probability=0.9 and probability=0.5 have marginal information profiles that
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are higher than flooding at the early stage. This is does not mean that PPWOS with

probability=0.9 and probability=0.5 are better than flooding, but this indicates that the

there is a change in the performance for PPWOS approach at the time which is better

than flooding. This is because flooding has constant marginal information profile.

Figure 6.52. Average Push Overhead Costs for Push Probability without Structure using
Random Waypoint

Figure 6.52 shows the overhead costs for different PPWOS using the Random Waypoint

mobility model. Here the total overhead costs increases as simulation time is increased.

This is because the number of nodes with an artifact increases over time. Therefore, more

nodes are involved in forwarding information which causes the total overhead costs to also

increase over time. The total overhead costs gap among the PPWOS approaches indicates

that each of the approaches has different frequency of pushing. The high probability has

the most total overhead costs as the probability of pushing information is very high.

Looking at the 6.53, the marginal overhead cost increases quickly when a unit of

simulation time is increased. This is because the number of nodes involved in pushing

information increases over time. The gap between the approaches is because each approach

has its own predefined pushing frequency which determines the capability of nodes to push

at every unit of time. Therefore, as expected the PPWOS with high probability will have
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Figure 6.53. Marginal Overhead Costs of time for PPWOS using Random Waypoint

a high marginal cost at the early stage as information is available more quickly to the

nodes.

Figure 6.54. Overhead Costs vs Node with artifact for PPWOS using Random Waypoint

Figure 6.54 shows the relationship between overhead costs and the percentage of nodes

with artifact. Note that the graph is plotted without considering how quickly the informa-

tion is available to the nodes. This figure is mainly to investigate what is the effect of the

overhead costs to the percentage of nodes with artifact using Random Waypoint. As can

be seen from the figure, it is possible to disseminate information to all nodes in the net-
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work with small overhead costs. But it requires amount of delay to accomplish that task as

with the PPWOS with probability=0.1. Flooding disseminates information very quickly

however it suffers from very high overhead costs. From the figure we can see that flooding

uses approximately 80,000 in costs to reach 80% of nodes with an artifact but PPWOS

with probability=0.9 only needs about 20,000 in costs. To have a high data dissemination

performance, cost is always a constrain however it can be reduced by controlling the push

mechanism.

6.6.3.3 Push probability without structure using Guass Markov

Figure 6.55. Information Profile for Push Probability without Structure using Guass
Markov

As can be seen from Figure 6.55 varying the push probability value has small effect on

information spreading performance when using the Gauss Markov model. This is due to

the fact that the Guass Markov mobility model creates more chances for nodes to meet

different nodes at the early stage. Therefore, the chance of information being available

very quickly to all nodes is very high even though the push probability is very small (i.e.

probability=0.1). Looking at the small scale graph in 6.55, using a small push probability

still has impact on the information dissemination performance. This is because different

push probabilities determine the push frequency. So, with the high push probability more
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nodes discover information at the early stage (i.e. within 200 time steps).

Figure 6.56. Marginal Information profile of time for PPWOS using Gauss Markov

Figure 6.56 shows the change in performance ( i.e. the percentage of nodes with

artifact) when one unit of time is increased. As can be seen from the figure, the marginal

performance accelerates very quickly at the early stage and there is little to distinguish

different push probability. The gap between approach in the Figure 6.56 shows the impact

of different setting of push probability.

In contrast, even though the different push probability values have a small effect on

the information profile there is a significant gap in overhead costs. This is because nodes

with a high probability have a big chance to push more frequently which results in more

costs. Thus, this explains how the PPWOS with high probability has high overhead costs

compared to the PPWOS with low probability as shown in Figure 6.57.

Based on Figure 6.58, the overhead costs increase very quickly at the early stage when

one unit of time is increased. The figure also shows that in all cases a constant increase is

achieved beyond the very early stage. The big gap between flooding and the PPWOS with

probability=0.9 is because in flooding nodes greedily push information at ever opportunity

whereas in PPWOS the information pushing is confined by the push probability.

Based on Figure 6.59, we can observe that the percentage of nodes with an artifact

increases quickly even though a small amount of overhead cost is used. This is because the
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Figure 6.57. Average Push Overhead Costs for Push Probability without Structure using
Gauss Markov

Figure 6.58. Marginal Overhead Costs of time for PPWOS using Gauss Markov

Gauss Markov mobility model creates more opportunity for nodes to discover information

at the early stage. For example, looking at the flooding approach, Guass Markov uses

approximately 20,000 units of overhead costs to achieve 100% performance (i.e percentage

of nodes with an artifact) whereas Random Walk needs more than 80,000 units of overhead

costs (Figure 6.49) to achieve the same information dissemination.
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Figure 6.59. Overhead Costs vs Node with artifact for PPWOS using Gauss Markov

6.6.3.4 Push probability without structure using D-GM

Figure 6.60. Information Profile for Push Probability without Structure using D-GM

In Figure 6.60, a high value of push probability brings the information spreading per-

formance close to flooding performance. Because of more opportunity for nodes in seeing

each other frequently using D-GM mobility model, setting the Push Probability further

close to zero has a small impact on information spreading performance at the early stage.
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This is can be seen in the small scale graph in Figure 6.60. The gap between PPWOS

approaches that shows in the small scale graph is because the nodes are confined by the

push probability value which results in the PPWOS with low push probability having

slightly more delay in making the information available to all nodes.

Figure 6.61. Marginal Information profile of time for PPWOS using DGM

Looking at Figure 6.61, we can see that the performance accelerates very quickly when

a unit simulation time is increased. This shows that more nodes discover information at

the early stage. This is due to the fact that D-GM mobility model creates more chance

for nodes to discover information by meeting different nodes. This helps the information

spreads quickly to all nodes in the network. The different level in marginal information

profile between different PPWOS profile is because of the different push probability values.

In Figure 6.61, the marginal performance of PPWOS with probability = 0.9 is slightly

higher than flooding. This shows that PPWOS approach has greater number of nodes

that discover an artifact at the early stage when a unit of time is increased as compared

to the Flooding approach .

Figure 6.62 shows the overhead costs for different PPWOS using D-GM mobility model.

As can be seen from the figure, the total overhead cost is increases as the time is increased.

This is because the percentage of nodes with artifacts increase over time. Consequently,

more nodes are involved in forwarding information which eventually increasing the total

overhead costs over time. The total overhead costs gap among the PPWOS approaches
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Figure 6.62. Average Push Overhead Costs for Push Probability without Structure using
D-GM

is because each of the approaches has a different frequency of pushing. Therefore, as we

expected the PPWOS with a high probability has the highest total overhead cost as it has

more opportunity to forwards information.

Figure 6.63. Marginal Overhead Costs of time for PPWOS using D-GM

Based on Figure 6.63, the overhead costs increase very quickly at the early stage when

one unit of time is increased. This is because more nodes are involved in forwarding
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information as the number of nodes with artifacts increase drastically at the early stage.

The big gap between flooding and the PPWOS with probability=0.9 is because in flooding

nodes greedily push information at every opportunity whereas in PPWOS the information

pushing is controlled by the push probability setting. Therefore at every time step PPWOS

uses less pushing than flooding uses.

Figure 6.64. Overhead Costs vs Node with artifact for PPWOS using D-GM

Based on Figure 6.64, we can observe that the percentage of nodes with an artifact

increases quickly even though a small amount of overhead cost is used. This is because

in D-GM mobility model creates more opportunity for nodes to discover information at

the early stage. For example looking at the flooding approach, D-GM needs less than

20,000 overhead costs to achieve 100% performance (i.e percentage of nodes with an arti-

fact) whereas Random Walk needs more than 80,000 overhead costs (refer to Figure 6.49).

This shows that the number of pushes is directly influence the performance of informa-

tion dissemination. Overhead cost is a trade-off in order to achieve a better information

dissemination.
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Figure 6.65. Information Profile for Push Once without Structure using Random Walk

6.6.4 Results-Push Once without structure

6.6.4.1 Push Once without structure (POWOS) using Random Walk

In the Push Once approach, a node only pushes information to the nodes that it has not

pushed information to before. The advantage of this technique is able to avoid sending

information to the same nodes repeatedly. To execute this approach, it is assumed that

every node has enough memory space to remember the nodes that have been already

pushed. So there is an added requirement for the nodes. Looking at the percentage

of node with artifact in Figure 6.65, POWOS has the same performance as flooding.

This is because POWOS and flooding discover the same nodes at every simulation steps.

POWOS forwards information selectively whereas flooding just forwards information at

any opportunities. So, POWOS has similarity with flooding in terms of data dissemination

performance but it has better management in reducing the information duplication.

In Figure 6.66, POWOS has the same marginal information profile of time as with

flooding. This is because POWOS forwards information the same as flooding in which

results in the same percentage of nodes with artifact at every time steps.

Because the POWOS approach only pushes to the nodes that are not in the list,
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Figure 6.66. Marginal Information profile of time for POWOS using Random Walk

Figure 6.67. Average Push Overhead Costs for Push Once without Structure using
Random Walk

therefore the number of pushes involved at every time step reduces over time. This is

because the same nodes might be in range within certain periods of time in which flooding is

pushing activities still continue even though the nodes already have the information. This

causes unnecessary overhead costs in flooding. In the POWOS approach, the unnecessary

push in flooding activity is avoided through the interaction history. Therefore, as we
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expected, the overhead cost of push is far better than flooding. Figure 6.67 shows the

total overhead cost for flooding and POWOS.

Figure 6.68. Marginal Overhead Costs of time for POWOS using Random Walk

In Figure 6.68 we can observe that there is big gap in marginal overhead costs between

POWOS and flooding. This is because in POWOS not many nodes are involved in pushing

information as nodes are only pushing information to nodes that it never seen before.

Therefore, the change in overhead costs when one unit of time is increased is very small.

Figure 6.69. Overhead Costs vs Node with artifact for POWOS using Random Walk

Looking at Figure 6.69, we can observe that the there is a big gap in overhead costs and
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percentage of nodes with artifact between flooding and POWOS. Because both of them

have the same performance as shown in Figure 6.65, we can say that POWOS is better

that flooding in terms of disseminating information with lower overhead costs.

6.6.4.2 Push Once without structure using Random Waypoint

Figure 6.70. Information Profile for Push Once without Structure using Random Way-
point

Figure 6.70 shows that POWOS spreads information similarly to flooding in terms

of performance. This is because POWOS has the same forwarding system as flooding.

Moreover, POWOS more intelligently pushes information to different nodes that it has

never seen before. The information dissemination performance in Figure 6.70 is reduced

slightly because Random Walk offers nodes a better interaction frequency compared to

the Random Waypoint mobility model.

Figure 6.71 shows the change in percentage of nodes with an artifact when one unit

of time is increased. From the figure, obviously we can see that POWOS has the same

marginal performance as flooding. This is indicates that POWOS has exactly the same

performance as flooding.

In Figure 6.72, we can see that the overhead cost of POWOS is far better than flooding.
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Figure 6.71. Marginal Information profile of time for POWOS using Random Waypoint

Figure 6.72. Average Push Overhead Costs for Push Once without Structure using
Random Waypoint

This is because nodes in POWOS only push information to the nodes that they have never

seen before. So, even though the same nodes are in range frequently, a single push is enough

to disseminate information. However, in flooding the nodes will push information to each

other at every unit of time step.

Based on Figure 6.73, we can observe that there is a big gap in marginal overhead costs
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Figure 6.73. Marginal Overhead Costs of time for POWOS using Random Waypoint

between POWOS and flooding. This is because in POWOS not many nodes are involved

in pushing information. Therefore, the change in overhead costs when one unit of time is

increased is very small. For flooding, the acceleration of marginal cost at the beginning is

because many nodes are started to be involved in pushing information.

Figure 6.74. Overhead Costs vs Node with artifact for POWOS using Random Waypoint

Looking at Figure 6.74, we can observe that there is a big gap in overhead costs and

the percentage of nodes with an artifact between flooding and POWOS. This is because

both of the approaches have different ways of pushing information. From the figure, we
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can say that POWOS is better that flooding because it has a good performance close to

flooding and also it has very small overhead costs compared to flooding.

6.6.4.3 Push Once without structure using Guass Markov

Figure 6.75. Information Profile for Push Once without Structure using Gauss Markov

Using Gauss Markov mobility model, POWOS spreads information to all nodes as

quick as flooding. This can be seen from Figure 6.75 where the graph lines are overlapping

each other. This is because POWOS forwards information as efficient as flooding where

the nodes with an artifact send information to nodes that it has never seen before. So

by doing this, POWOS is actually forwarding information similarly to flooding but it is

forward information more intelligently.

In Figure 6.76, we see that the chance in percentage of nodes with artifact when one

unit of time is increased in both approach (POWOS and flooding). As we expected that

POWOS has the same marginal performance as flooding. This is because both of them

has the same percentage of nodes with artifact at every time steps.

Because POWOS has system to avoid pushing information to the same nodes, it has

small overhead costs in comparison to the flooding approach. This is can be observed

from Figure 6.77. The big gap in overhead costs between POWOS and flooding is because
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Figure 6.76. Marginal Information profile of time for POWOS using Gauss Markov

Figure 6.77. Average Push Overhead Costs for Push Once without Structure using Gauss
Markov

POWOS only pushes information to nodes that it has never pushed to before. Therefore

when the same nodes come in range again, no push of information is occurring. This

is different in flooding, where nodes push blindly at every time steps which increase the

overhead costs in flooding.

Looking at Figure 6.78, there is a big gap in marginal overhead costs between POWOS
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Figure 6.78. Marginal Overhead Costs of time for POWOS using Gauss Markov

and flooding. This is because in POWOS not many nodes are involved in pushing infor-

mation as nodes are only limited to pushing only to nodes that they never have pushed

before. Therefore, the change in marginal overhead cost over time is very small. This is

can be seen from the small scale graph in Figure 6.78. However in flooding the marginal

overhead costs accelerate at the beginning because of more nodes are become started to

actively forward information as the percentage of nodes with an artifact increases over

time quickly.

Figure 6.79. Overhead Costs vs Node with artifact for POWOS using GM
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Based on Figure 6.79, we can see that there is a big gap in overhead costs and percent-

age of node with artifact between flooding and POWOS. This is because POWOS uses a

very small amount of overhead costs to make the information available quickly as flooding.

We can say that POWOS is far more efficient than flooding in managing the cost over-

head. Besides the push mechanism, the acceleration of availability of information is also

influenced by the use of different mobility models. This is because different mobility model

creates different pattern of nodes interactions. The Guass Markov mobility model creates

more chance for nodes to interact at the early stage as compared to Random Waypoint.

Therefore, the acceleration of cost and percentage of nodes with artifact in Figure 6.79

(Gauss Markov) is different to that in Figure 6.74 (Random Waypoint).

6.6.4.4 Push Once without structure using D-GM

Figure 6.80. Information Profile for Push Once without Structure using D-GM

Figure 6.80 indicates that the POWOS has the same information spreading perfor-

mance as in the flooding approach. This is because POWOS forwards information the

same as flooding but it omits the push duplication in flooding. The duplication is avoided

by forwarding information only to the nodes that have never pushed to before. Through

this mechanism, POWOS manage reduces the number of pushes involved at ever steps and
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also able to maintain the percentage of nodes that discover information performance as in

the flooding approach.

Figure 6.81. Marginal Information profile of time for POWOS using D-GM

Figure 6.81 shows the percentage of nodes with an artifact when a unit of simulation

time is increased in both approaches (POWOS and flooding). As we expected POWOS

has the same marginal performance as flooding.

Figure 6.82. Average Push Overhead Costs for Push Once without Structure using
D-GM
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As in the Gauss Markov mobility model, POWOS with D-GM mobility model has

small overhead costs in comparison to flooding. This is can be observed from Figure 6.82

where there is a big gap between flooding and POWOS. In terms of overhead cost, this

is because POWOS only pushes information to the nodes that have not pushed to before

while in flooding the information is pushed at any meeting opportunity. Therefore more

overhead costs incur in flooding approach.

Figure 6.83. Marginal Overhead Costs of time for POWOS using D-GM

Looking at Figure 6.83, the big gap in marginal overhead costs between POWOS and

flooding is because in POWOS, not many nodes are involved in pushing information at

every time step. This is because nodes that use POWOS only push information to nodes

that it has never pushed to before. Therefore, the change of the marginal overhead costs

in time is very small. However in the flooding approach the marginal overhead costs

accelerates at the beginning because the number of nodes that discover an artifact is

increased over time. This situation also increasing the number of nodes that forwarding

information over the time.

Based on Figure 6.84, we can see that there is big gap between flooding and POWOS

when looking at the change in cost over the performance. Because POWOS and flooding

have the same performance, in terms of structure we can say that POWOS is more effi-

cient than flooding in disseminating information in this situation. Beside the efficiency of

POWOS, the acceleration of information availability is also influenced by the use of dif-
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Figure 6.84. Overhead Costs vs Node with artifact for POWOS using D-GM

ferent mobility models. This is because different mobility model creates different pattern

of nodes interactions. From our observation, Gauss Markov is better than D-GM mobility

model in terms of providing nodes interaction frequency.

6.6.5 Results-Push Once with structure

6.6.5.1 Push Once with structure (POWS) using Random Walk

The differences between POWOS and POWS is the way a peer is selected for forwarding.

POWS uses a social structure to guide nodes and to choose its peers. Therefore, in com-

paring POWS with flooding performance, POWS has a slightly lower performance than

flooding. This is because it is required to discover peers that has established a relationship

with before more frequently. So, this slightly impedes the information availability perfor-

mance in POWS. Figure 6.85 shows the performance of POWS in comparison to flooding.

The POWS has slightly lower performance compared to flooding because the ability of

POWS to push information is subject to the social structure identification.

In Figure 6.86, the POWS marginal costs accelerates close to flooding at the very early

unit of time. However after 500 time steps, the marginal gap between POWS and flooding

becomes obvious. This is because not many nodes are involved in pushing information

as they are constrained by the social structure relationship. So, even though the nodes
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Figure 6.85. Information Profile for Push Once with Structure using Random Walk

Figure 6.86. Marginal Information profile of time for POWS using Random Walk

that are in range have data to push, a social structure is required to channel effort for

pushing of content. This process holds back the performance in POWS as compared to

flooding. This is explains why after 500 time steps the marginal information profile of

time is decreases when one unit of time is increased.

In Figure 6.87, the total overhead cost in POWS is very small compared to the flooding
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Figure 6.87. Average Push Overhead Costs for POWS using Random Walk

in total overhead costs. This is due to the fact that nodes in POWS only push when co-

located with nodes that are listed in the social structure and they have not pushed to

before. This mechanism limits push activity in POWS in which minimize the amount of

overhead costs in POWS.

Figure 6.88. Marginal Overhead Costs of time for POWS using Random Walk

From Figure 6.88 we can observe that there is big gap in marginal overhead costs
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between POWS and flooding. This is because not many nodes in POWS are involved in

pushing information as nodes only pushes information to a node that it has never forwarded

information to before. In addition, the nodes must be listed in the nodes social structure,

otherwise no further forwarding of information is takes place.

Figure 6.89. Overhead Costs vs Node with artifact for POWS using Random Walk

Looking at Figure 6.89, we can observe that there is a big gap in overhead costs over the

percentage of nodes with an artifact between flooding and POWS. This shows that POWS

has the ability to control overhead costs that are introduced by flooding. However it still

suffers from a delay in making the information available to all nodes as in flooding. Apart

from the POWS mechanism, a Random Walk mobility model also effects the information

spreading performance and overhead costs that are presented in Figure 6.89. This is

because the Random Walk model influences frequency of interactions between nodes.

6.6.5.2 Push Once with structure using Random Waypoint

As we can observe from Figure 6.90, POWS has a slightly lower performance than flooding.

This is because the POWS forwarding system is constrained by the social structure rela-

tionship. From the POWOS experimentation results, POWOS has a better performance

as compared to flooding approach. However, when Push Once is combine with a social

structure (POWS), the performance is slightly decreased as more constraints are applied

in pushing information to the peers. Therefore, more time is needed to make information
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Figure 6.90. Information Profile for Push Once with Structure using Random Waypoint

available to all nodes in the network.

Figure 6.91. Marginal Information profile of time for POWS using Random Waypoint

In Figure 6.91, the POWS marginal information profile over time accelerates at the

very early stage. At this stage the nodes in the Random Waypoint model move similar

to the Random Walk model, thus the rate of nodes discovering information is similar to

the Random Walk model. However after 300 time steps, we observe that the marginal
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information profile is constant. This shows that the change in number of nodes that are

discovering information becomes linearly increasing.

Figure 6.92. Average Push Overhead Costs for Push Once with Structure using Random
Waypoint

In terms of overhead cost, POWS has a small amount of overhead costs as not much

push activity is involved. In POWS, besides the nodes have to push to the nodes that

they never push to before, the nodes also need to make sure that the nodes are listed in

social structure relationship. Therefore, there is a very small amount of overhead costs

found using POWS.

From Figure 6.93 we can observe that there is a big difference in the marginal overhead

costs between POWS and flooding. This is because not many nodes in POWS are involved

in pushing information as nodes only push information to the nodes that it has never

forwarded information to before. In addition, the nodes also must be in listed in a node’s

social structure before information can be forwarded. These rules minimize the amount of

overhead costs in POWS.

Looking at Figure 6.94, we can observe that there is big gap in overhead costs over

percentage of node with artifact between flooding and POWS. POWS has a small overhead

costs compared to flooding, however it has an amount of delay in making the information
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Figure 6.93. Marginal Overhead Costs of time for POWS using Random Waypoint

Figure 6.94. Overhead Costs vs Node with artifact for POWS using Random Walk

available to all nodes as compared to flooding. Apart from the POWS mechanism, the

Random Waypoint mobility model also influences the information spreading performance

and overhead costs as shown in Figure 6.89. This is because Random Waypoint affects the

formation of the social structure which determines the frequency of interactions between

nodes.
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Figure 6.95. Information Profile for Push Once with Structure using Gauss Markov

6.6.5.3 Push Once with structure using Guass Markov

Information spreads very quickly in POWS using the Gauss Markov mobility model as

compared to other mobility models. This is due to the fact that the Gauss Markov mobility

model creates more chances for nodes to meet different nodes more frequently. From Figure

6.95 we can observe that the POWS is slightly lower that flooding information spreading

performance. This is because the push in POWS is dependent on social links. Thus, even

though the Gauss Markov offers more frequency of node interactions it has to form the

social structure which slows down the POWS information dissemination performance.

Figure 6.96 shows the change in the percentage of nodes with an artifact when one unit

of time is increased for both approaches (POWS and flooding). The marginal information

profile of time for both approaches accelerate very quickly at the early stage. Looking at

the figure, there is a big gap between POWS and flooding. This is due to the fact that the

frequency of interaction in POWS are controlled by the social structure apart from the

Push Once concept. These factors affect the number of nodes that discover information

when one additional unit of time is increased.

In Figure 6.97, the total overhead cost in POWS is very small compared to the flooding
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Figure 6.96. Marginal Information profile of time for POWS using GM

Figure 6.97. Average Push Overhead Costs for Push Once with Structure using Gauss
Markov

approach. This is because nodes in POWS only use push resources when nodes are in range

with other nodes that is listed in social structure and have not discover an artifact before.

Therefore, as we expect there are a small amount of overhead costs in POWS as nodes

have more restriction on resource usage.

From Figure 6.98 we can observe that there is big gap in marginal overhead costs
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Figure 6.98. Marginal Overhead Costs of time for POWS using Gauss Markov

between POWS and flooding. This is because not many nodes in POWS are involved

in pushing information as nodes only push information once. In addition, the nodes also

must be in listed in a node’s social structure before forwarding information proceeds. These

constraints control the push mechanism which results in a small amount of overhead costs

being incurred in POWS.

Figure 6.99. Overhead Costs vs Node with artifact for POWS using Random Walk

In Figure 6.99, we can observe that there is big gap in overhead costs with artifacts

between flooding and POWS. POWS has a small amount of overhead costs compared to
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flooding, but it needs more time to disseminate information to all nodes as compared to

flooding. Apart from the POWS mechanism, Guass Markov mobility model also plays

an important role in shaping the information profile and overhead costs as presented in

Figure 6.89.

6.6.5.4 Push Once with structure using D-GM

Figure 6.100. Information Profile for Push Once with Structure using D-GM

Using the D-GM mobility model, information spreads quicker than Random Walk but

slower than Gauss Markov. This is due to the fact that in the D-GM mobility model nodes

have to stop in a particular location before nodes can move to the next location. This

mechanism slows down the information spreading process. However, as soon as they are

moving, nodes can discover information very quickly. Apart from the mobility model, the

information dissemination performance is also influenced by POWS itself. This is because

POWS uses a social structure before decided to push information to other nodes. This

condition decreases the information dissemination performance as shown in Figure 6.100

relative to flooding.

Based on Figure 6.101 the marginal information profile over time for both approaches

accelerates very quickly at the early time stage. This shows that more additional nodes
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Figure 6.101. Marginal Information profile of time for POWS using D-GM

discover information when a unit of simulation time is increased. From the figure, the

gap between POWS and flooding is because of the frequency of interactions in POWS and

flooding being different. In POWS the interaction is restricted by the social structure.

Figure 6.102. Average Push Overhead Costs for Push Once with Structure using D-GM

Looking at the Figure 6.102, the total overhead cost in POWS is very small compared

to the flooding total overhead costs. This is due to the fact that nodes in POWS only



194 Information spreading using Push techniques and Social Structure Chapter 6

use the push resource when nodes that are co-located are listed in social structure and

have not been forwarded information before. So, this limits the push activity in POWS in

which minimize the amount of overhead costs in POWS.

Figure 6.103. Marginal Overhead Costs of time for POWS using D-GM

In Figure 6.103 we can observe that there is big gap in marginal overhead costs between

POWS and flooding. In POWS nodes are permitted only to push information to the nodes

that it never been push information before. On top of that, the nodes must also listed in

nodes SSL.

Figure 6.104. Overhead Costs vs Node with artifact for POWS using D-GM
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Looking at Figure 6.104, we can observe that there is big gap in overhead costs over

percentage of node with artifact between flooding and POWS. This shows that POWS

has better management in overhead cost as compared to flooding. However it has delay

in making the information available to all nodes. Apart from that, D-GM mobility model

also plays an important role in determining the information spreading performance and

overhead costs as presented in Figure 6.104.

6.7 Comparison Push Techniques

From the experimentation results, we found that different Push techniques have different

impacts on information spreading performance. Pushing is a key process in information

spreading. Therefore, modifying the way of pushing information will affect the behavior of

information spreading. The statistics in Table 6.6 - 6.10 are taken from Section 6.6.4 and

Section 6.6.5 respectively. From the statistics tabulated in the Tables, we observe that,

the Gauss Markov mobility model performs better with different push techniques. This is

because of Gauss Markov offers more chance for node to meet different nodes at the center

of simulation.

Figures 6.105 - 6.108 show different push techniques which are grouped under different

mobility models. From the figures, we can see that different push techniques have different

information dissemination performance and costs when using different mobility models.

This is because mobility models influence a node interaction frequency which indirectly

affects the information dissemination coverage and number of push consumed by the node.

From the figures , we can also observe that POWS has the lowest total cost and it has

data dissemination performance that close to flooding technique (benchmark performance).

This is because POWS manages to overcome the duplication problem in flooding technique

through recording the nodes past interactions. Because POWS only pushes information to

nodes that it has never met before and are listed in a social structure list, POWS manages

to use its push effectively (i.e. it only push information when is really required).
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Figure 6.105. Relationship between coverage and costs of each Push technique using
Random Walk mobility model

Figure 6.106. Relationship between coverage and costs of each Push technique using
Random Waypoint mobility model
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Figure 6.107. Relationship between coverage and costs of each Push technique using
Gauss Markov mobility model

Figure 6.108. Relationship between coverage and costs of each Push technique using
D-GM mobility model
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Table 6.6. Information Profile for different Mobility Models Using Push Once without
structure

Percentile
Number of node received an artifact in percentile

Random Walk Random Waypoint Gauss Markov D-GM
5 16.83 12.05 99.84 98.23
15 72.20 37.05 100.00 98.98
25 97.23 71.26 100.00 99.38
50 100.00 98.43 100.00 99.65
75 100.00 100.00 100.00 99.80
100 100.00 100.00 100.00 100.00

Table 6.7. Information Profile for different Mobility Models Using Push Once with
structure

Percentile
Number of node received an artifact in percentile

Random Walk Random Waypoint Gauss Markov D-GM
5 11.00 7.83 99.8 96.575
15 58.85 26.85 100.00 98.35
25 93.55 56.65 100.00 99.00
50 100.00 96.70 100.00 99.45
75 100.00 99.48 100.00 99.70
100 100.00 100.00 100.00 100.00

Table 6.8. Information Profile for different Mobility Models Using Probability Flood-
ing with structure (Probability=0.9)

Percentile
Number of node received an artifact in percentile

Random Walk Random Waypoint Gauss Markov D-GM
5 7.65 6.00 99.33 89.28
15 46.63 23.58 100.00 97.25
25 90.58 50.15 100.00 98.10
50 99.95 95.10 100.00 99.00
75 100.00 99.18 100.00 99.40
100 100.00 100.00 100.00 100.00

Table 6.9. Information Profile for different Mobility Models Using Push Probability
without structure (Probability= 0.9)

Percentile
Number of node received an artifact in percentile

Random Walk Random Waypoint Gauss Markov D-GM
5 17.03 12.00 99.83 98.175
15 72.55 37.08 100.00 99.03
25 97.33 70.70 100.00 99.36
50 100.00 98.43 100.00 99.73
75 100.00 99.88 100.00 99.88
100 100.00 100.00 100.00 100.00
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Table 6.10. Information Profile for different Mobility Models Using Push with struc-
ture

Percentile
Number of node received an artifact in percentile

Random Walk Random Waypoint Gauss Markov D-GM
5 11.00 7.83 99.80 96.58
15 58.85 26.85 100.00 98.35
25 93.55 56.65 100.00 99.00
50 100.00 96.7 100.00 99.45
75 100.00 99.48 100.00 99.70
100 100.00 100.00 100.00 100.00
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6.8 Conclusion

To recap, the aim of this chapter is to investigate the effect of different push techniques on

information spreading performance and its overhead costs. In chapter 4, query and push

was investigated and we learnt that it is possible to achieve efficient information dissemi-

nation by only focusing on the push mechanism. This is because queries are basically used

to guide node to discover information. Furthermore, by omitting query, it also helps to

reduce the overhead costs. Chapter 5 showed that social structures can be built up from

interactions between nodes. This chapter (chapter 6) has attempted to use these social

structures when disseminating information to others, so that overheads are controlled.

From the results presented in this chapter, we found that different ways of pushing

information affects the behavior of information dissemination performance. This is because

the push mechanism is the key to spreading information. In comparison to Push, Query

is only use to discover information. There are three attributes that we have tested with

push in this chapter. These are social structure (structure), probability and Push Once

(push wisely).

The Push with social structure approach limits the capability of spreading information

quickly. This is because node only pushes information to the node that is listed in its social

structure (structure list). So, even though nodes are in range with other nodes (that is not

in the social structure), no information is transferred (pushing) between nodes. This is

also indicates that a strictness of social structure formulation can decrease the information

dissemination as it limits the interactions between nodes that are used for information

dissemination. Despite this limitation, it helps in other ways to reduce the number of

pushes involved between nodes. This is because, with a social structure, nodes have to

push only to nodes that are listed in its social structure.

The Push with probability approach is designed to investigate the effect of different levels

of push probability on information dissemination performance. We found that increasing

the probability level results in high information dissemination performance. This is because

when the probability is close to 1, a push occurs at almost every meeting opportunity. So,

information easily spreads amongst nodes. However, a high push probability has significant
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amount of overhead costs.

The Push only Once approach is a push approach that uses history of interaction to

forward (push) information. From the experimental results, this approach outperforms

other push approaches that are introduced in this chapter. This is because it actually

performs similar to the flooding technique but avoids pushing information to the same

node repeatedly, assisted by the interaction history. Because push information only pushes

to nodes that have never been seen before, it has very low overhead costs compared to

flooding.

In term of the mobility model, different mobility models have different effects on infor-

mation dissemination performance. The Gauss Markov model offers better performance

compared to other mobility models used in this chapter. This is because Gauss Markov cre-

ates more opportunity for nodes to discover each other more frequently. This is indicates

that mobility models are important in opportunistic networking and affect information

dissemination.

Overall, from this chapter we have investigated the goal of this thesis which is to min-

imize the overhead costs and at the same time to maintain the information performance

as close as possible to flooding technique performance. Using Social Structure as a mean

of disseminating information opportunistic networks is useful in situations where the ob-

jective of information spreading is minimizing the use of resources rather than the speed

of information availability. However, if the speed of information dissemination is the main

concern, then the social structure is not a good approach to be deployed.



Chapter 7

CONCLUSIONS

A key objective of this thesis is to minimize the overhead costs while maintaining the in-

formation spreading performance relatively close to flooding performance in opportunistic

networks. To achieve the objective we have subdivided the research as follows:

• Investigate the mobility model sensitivity on information dissemination quality through

the simulation.

• Design and analyse basic peer to peer interaction protocols.

• Improve the basic peer to peer interaction protocol with intelligent attributes, based

around peers building a social structure, which is used to control flooding.

The chapters in this thesis explore these issues. The contributions of each chapter are

summarized in section 7.1. The lessons learnt is presented in section 7.2. The potential

extension of this research is presented in section 7.3.

7.1 Thesis Contributions

Besides the introduction, literature and conclusion chapters, the following chapters outline

the main contributions of this thesis.

• In chapter 3: the sensitivity of different mobility models with different node

density on information dissemination quality are investigated via the sim-

ulation. Four different mobility models (Random Walk, Random Waypoint, Gauss

Markov and D-GM) are tested and analyzed. Furthermore the effect of different

node density is also analyzed with different mobility models. We discovered that

202
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information dissemination in mobile peer to peer interactions is sensitive to the mo-

bility model and the node density used. We also discover that because of limited

controls on dissemination, more unnecessary duplications occur. This inspired us to

investigate and design the mobile peer to peer interaction protocol in opportunistic

networks.

• In chapter 4: the baseline data dissemination for mobile peer to peer inter-

action protocol is designed and tested. Four protocols have been introduced

in this chapter, there are called Pure Push, Greedy, L-Push and Spray and Relay.

We found that push and query aggressively incur a high consumption of resources.

However, the optimal number of pushes per node is difficult to determine because it

is subject to the density of the nodes in a particular area. This observation inspired

us to investigate whether a social structure method can help to push information

efficiently among nodes, by controlled flooding of information.

• In chapter 5: we proposed three different approaches to investigate whether

it is possible to form a social structure through a node interaction with

others. We have designed three approaches to form nodes social structure. These

are social structures based on average frequency of interactions, periodicity of in-

teractions and a sliding window. We found that social structure based on a sliding

window is the most suitable to be used in a mobile peer to peer scenario, based on

the mobility models that we have employed. This is because the construction of

the social structure is constructed dynamically according to current nodes interac-

tions. This social structure method is used in Chapter 6 to investigate application

of dissemination technique for chapter 4.

• In chapter 6: we designed different ways of pushing information and ana-

lyzed its impact on the overhead cost and the information dissemination

performance. In this chapter we have introduced and tested five different push

techniques. There are Push with Structure; Push Probability with Structure; Push

Probability without Structure; Push Once without Structure; and Push Once with

Structure. We have also combined these with different mobility models. We found

that using a social structure approach, a node is able to reduce the cost through
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pushing information to its social network members only. However this will also

decrease the data dissemination performance. The Push Once approach is an intel-

ligent push which has the same performance as flooding. On top of that, it has very

small amount of cost in comparison to the flooding approach. With this discovery we

are able to make recommendation about the information dissemination performance

that is as close as to flooding performance.

As a conclusion, information dissemination in opportunistic networks is possible to

be delivered with reduced costs while maintaining the speed of information dissemination

performance close to flooding technique. This is can be achieved via an intelligent infor-

mation dissemination protocol as tested with a number of mobility models. The overhead

costs can be further minimised through a social structure approach. However, the speed

of information availability to other mobile nodes is slower compared to flooding approach.

7.2 Recommendation

In this section we provide several recommendations based on what we have learned from

this research. The recommendations are as follows:

• The density of nodes influences quickness of information availability. For high node

density, nodes easily find different potential nodes to relay the information to the final

destination. In contrast, with low node density, a better mobility model selection

must be in operation to create an opportunity for all nodes to interact with others.

This is important because the interactions between nodes is the main condition to

spread the information in an opportunistic networks.

• From a mobility model perspective, before investigating data dissemination in oppor-

tunistic network, a careful selection of mobility models is required. This is because

the information exchange between nodes is dependent on the frequency of nodes

seeing each other. High interaction between nodes spreads the information quickly

among the nodes. A Random walk mobility model is able to model the random of

nodes movement, Random Waypoint is able to model the stop and move of human

movement and Gauss Markov mobility model is close to human movement compared
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to Random walk and Random Waypoint mobility models movement because it can

represent different directions to reach the final destination. D-GM model takes the

advantages of Random Waypoint and Gauss Markov mobility models which makes

this model more realistic as compared to the other mobility models tested in this

research.

• Besides the mobility model, the information exchange protocol also influences the

performance of data dissemination. From this research we know that push technique

is very effective in disseminating information in which no network infrastructure is

exists. However, pushing information blindly has a high consumption of resources

and information duplication. So, in order to achieve a good performance with push

technique, nodes history of interaction can be used to reduce the overhead of re-

sources.

The query technique is useful in discovering information. However, without a proper

management of querying, a node has high potential to query the same nodes which

also contributes to the overuse of resources. To avoid this, the history of the node

(past interaction) can be used as one of the tools to utilize the query technique.

Using the push technique with quota has potential to improve the data dissemination

performance. But to get a good performance, the right quota and the size of exper-

iment must be known first. This makes this approach impractical in opportunistic

networks when the network topology and density is unknown and uncertain.

• In opportunistic networks, a logical social network exists which can be created from

the past nodes interactions history. However, this creation of a social network is

dependent on many factors (the nodes mobility models, the nodes social policy in-

teractions, the node frequency interactions, and so forth). The social structure

formed with a very strict policy suffers from a high delay of information delivery.

This is because the nodes are more selective or exclusive to establish the interactions.

However resources are controlled.

Using social structure as a mean of disseminating information in opportunistic net-

works is useful in condition where the objective of information spreading is focus

on minimizing the use of resources rather than the speed of information availability.
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However, if the speed of information dissemination is the priority objective, then the

social structure in not a good option to be used.

• Push information intelligently is a very efficient technique in spreading infor-

mation via opportunistic networks. By keeping track on whom the node has pushed

information to, not only can duplication be avoided but it also ensures that each node

that is in range receives information without giving any information about their iden-

tity. However this technique requires a sufficient memory storage to remember the

past node interactions.

In summary, from this research, in order to be able to achieve a good data dissemination

performance in opportunistic networks, the following issues need to be considered:

• The node density.

• The placement of information Source (if required).

• The use of mobility models.

• The information exchange protocols.

• The use of the nodes past interactions history.

• The importance of speed of dissemination verses resource usage.

Besides the performance issues mentioned above, there are more overheads (i.e. node

discovery, memory management, lookup table) that need to be considered to measure

the data dissemination performance in practical opportunistic networks which are not

addressed in this thesis.

7.3 Future Works

This research paves the way for several potential research areas in improving the data

dissemination in opportunistic networks. The following list potential research that can be

conducted as an extension of works from this research.
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• Since this research focuses on homogeneous information, the next potential research

is looking at heterogeneous information. Investigating heterogenous information in-

volves profiling the nodes preferences. Therefore a lot of overhead cost in maintaining

the accuracy of profile as to helps nodes to improve the quality of information ex-

change.

• Reliability and accuracy of information is critical in information dissemination. Ba-

sically the reliability and accuracy of information is dependent on time and location.

However, investigating these issues require a better synchronization with the user

profile. This is because user profiles determine information that are related to the

particular consumer (receiver).

• Using an opportunistic networking platform to disseminate information in a small

area and measure the effectiveness of different dissemination approaches which are

introduced in this thesis is also a vital research issue. However to establish the

research, it requires collaboration from users (mobile nodes) to participate as infor-

mation relays or gateways to allow information dissemination. The advantages of

using real application is tested with other hidden factors that affect the data dissem-

ination performance. So, the result can be used further to validate the finding that

has be presented in this thesis.

Realizing the work to understand the data dissemination in opportunistic network via

simulation requires further work to make the interactions between nodes more reliable and

accurate at the operational level.
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