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EIGENVALUE ASYMPTOTICS OF PERTURBED PERIODIC
DIRAC SYSTEMS IN THE SLOW-DECAY LIMIT
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Abstract. A perturbation decaying to 0 at ∞ and not too irregular at 0
introduces at most a discrete set of eigenvalues into the spectral gaps of a
one-dimensional Dirac operator on the half-line. We show that the number of
these eigenvalues in a compact subset of a gap in the essential spectrum is given
by a quasi-semiclassical asymptotic formula in the slow-decay limit, which for
power-decaying perturbations is equivalent to the large-coupling limit. This
asymptotic behaviour elucidates the origin of the dense point spectrum ob-
served in spherically symmetric, radially periodic three-dimensional Dirac op-
erators.

1. Introduction

For a large class of potentials, the semiclassical Weyl formula gives a correct as-
ymptotic description of the total multiplicity of the lower spectrum of a Schrödinger
operator in the large coupling limit (see [18], Chapter XIII.15, and the references
given there). However, there are also some notable exceptions, e.g. in the two-
dimensional case ([9], [10]). In recent years an analogous asymptotic analysis of the
point spectrum arising in spectral gaps of Schrödinger operators under perturba-
tions has attracted considerable attention; starting from [1], Birman has developed
a general framework to study this problem [2], [3], [4], [5], [6], [7]; see also [16].

More specifically, Sobolev [26] has studied the perturbed periodic one-dimen-
sional Schrödinger operator, showing that for a wide range of power-decaying per-
turbations, the number of eigenvalues arising in a closed subinterval of a spectral
gap of the unperturbed problem is asymptotically given by a quasi-semiclassical
formula in which the quasimomentum of the periodic background problem takes
the role of the ordinary momentum in the Weyl formula. This result has an in-
teresting application to spherically symmetric Schrödinger operators in Rn with a
radially periodic potential, which have dense point spectrum in all spectral gaps of
the corresponding one-dimensional periodic operator [14]. Indeed, treating the an-
gular momentum term of the one-dimensional half-line operators in the partial-wave
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decomposition

−∆ + q(| · |) =
⊕
l∈N0

− d2

dr2 + q(r)

+
(
l(l + n− 2) +

(n− 1)(n− 3)
4

)
/r2 (r ∈ (0,∞)),

with periodic q, as a perturbation, the quasi-semiclassical formula explains the
origin of the dense eigenvalues, and describes their asymptotic density in the limit
l → ∞. Furthermore, numerical experiments have shown that the asymptotic
formula can give a surprisingly accurate prediction for the number of eigenvalues,
even for small values of the coupling constant [11]. (We mention in passing that
the angular momentum term also happens to be a boundary case for the question
of whether the total number of eigenvalues introduced in a spectral gap for an
individual half-line operator is finite or infinite ([19], [20], [21], [22], [25]); but this
critical behaviour is not apparent in the large-coupling limit.)

The relativistic counterpart of the Schrödinger operator, the Dirac operator,
is unbounded below, so that there is no lower spectrum, and one is always in a
gap situation when studying the discrete spectrum, even when there is no periodic
background potential (for the large coupling asymptotics in that case see e.g. [8],
which corrects a result by [15], and [12]). Again, an interesting class of perturbed
periodic one-dimensional operators arises from the partial-wave decomposition of
the spherically symmetric, radially periodic Dirac operator in R3,

H = −iα · ∇+mβ + q(| · |) ∼=
⊕

k∈Z\{0}
−iσ2

d

dr
+mσ3 + q(r) +

k

r
σ1

where α1, α2, α3, β are 4× 4 Dirac matrices, and

σ1 =
(

0 1
1 0,

)
σ2 =

(
0 −i
i 0,

)
σ3 =

(
1 0
0 −1

)
.

This operator also has dense point spectrum in the spectral gaps of the correspond-
ing one-dimensional periodic operator, but one exceptional gap may or may not
contain dense point spectrum — it is an open question of whether partial filling
of the gap can occur [23], [24]. The underlying reason for the complications in
the Dirac case is the fact that the angular momentum term σ1k/r, in contrast
to the Schrödinger angular momentum term, does not have a definite sign. Since
it does not depend monotonically on the quantum number k, the eigenvalues can
move either way as k increases. Methods such as Sturm comparison, which yields a
fairly quick proof for the quasi-semiclassical formula for perturbed Sturm-Liouville
operators, are of little use when applied to matrix perturbations of Dirac operators.

In the present paper we study the asymptotic distribution of eigenvalues in spec-
tral gaps of periodic Dirac operators with a matrix perturbation of the type of the
angular momentum term. We assume that the perturbation tends to 0 at ∞, but
no assumptions on its sign or rate of decay are needed. The asymptotic limit we
consider is in fact a ‘slow-decay’ limit, which for perturbations of inverse power
decay is equivalent to the ‘large-coupling’ limit, an observation central to Sobolev’s
result. More explicitly, given a Dirac system

τ = −iσ2
d

dx
+mσ3 + q(x)
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with m > 0 and real-valued, α-periodic q ∈ L1
loc(R), and a real-valued perturbation

template

l0 ∈ C(0,∞), lim
%→0

l0(%) =∞, lim
%→∞

l0(%) = 0,

we investigate the number of eigenvalues of the perturbed Dirac system on (0,∞)

τ(c) = −iσ2
d

dr
+mσ3 + q(r) + l0(r/c)σ1

in a compact subinterval of a spectral gap asymptotically as c→∞.
The angular momentum term is clearly of this type, with l0(%) = 1/%.
We follow Sobolev’s basic idea of comparing τ(c) to an operator in which l0(r/c)

is locally replaced by a constant, but in the absence of Sturm comparison to obtain
upper and lower bounds we must resort to the coarser instrument of operator per-
turbation theory. This complication leads to severe difficulties near 0, where the
perturbation is divergent: in the Sturm-Liouville case this actually helps, as the
perturbed eigenvalue equation becomes disconjugate near 0, so that no spectrum
is produced near that end-point. The case of the Dirac system, however, with an
unperturbed operator unbounded below and a strong perturbation of no definite
sign, is entirely different. For this reason we introduce the following additional
assumptions on q and l0 to ensure that essentially no spectrum is created near 0; as
will be seen, they also imply that τ(c) is in the limit point case at 0 for sufficiently
large c.

q ∈ L∞(R); l0 ∈ ACloc(0, · ), lim sup
%→0

|l′0(%)|
l20(%)

<∞.(H)

The requirements on l0 are clearly satisfied in the case of the angular momentum
term.

Let k(λ, l) be the quasi-momentum (cf. Section 2 below) of the periodic equation

τu = (λ− lσ1)u,

for λ, l ∈ R.
Our main result is

Theorem 1. Assume that (H) holds in addition to the general hypotheses, and let
[λ1, λ2] be compactly contained in a spectral gap of the self-adjoint realisation h of
τ .

Then for sufficiently large c > 0, τ(c) is essentially self-adjoint on C∞0 (0,∞),
and the number N(c) of eigenvalues in [λ1, λ2] of its self-adjoint extension h(c)
satisfies

lim
c→∞

N(c)
c

=
1
απ

∫ ∞
0

(k(λ2, l0(%))− k(λ1, l0(%))) d%.

Remarks. 1. Our assumptions imply that the essential spectra of h(c) and h coin-
cide, so h(c) has only discrete eigenvalues in [λ1, λ2]. It will be apparent from the
proof that the asymptotic formula in Theorem 1 continues to hold if, instead of (H)
and lim

%→0
l0(%) =∞, we assume l0 ∈ C([0,∞)).

2. In [23], Theorem 2, it was shown that λ ∈ R is a point of the essential
spectrum of H if λ is in the spectrum of the periodic operator h + lσ1 for some
l ∈ R, i.e. if λ is a point of growth of k( · , l). In a rather weak sense, Theorem 1 is a
reverse of this statement: if a λ interval does not intersect the spectrum of h+ lσ1
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for any l ∈ R, then the integral on the r.h.s. of the asymptotic formula vanishes,
i.e. the asymptotic eigenvalue density is 0. Of course, this does not rule out the
existence of dense point spectrum of H in this interval.

2. Rotation number and quasimomentum

of periodic Dirac systems

The qualitative behaviour of solutions of a linear ordinary differential equation
with periodic coefficients is characterised by its monodromy matrix, the value of the
canonical fundamental system after one period. In the case of an α-periodic Sturm-
Liouville or Dirac equation, this is a 2×2 matrix with real entries and (Wronskian)
determinant 1; the position of its eigenvalues µ1, µ2 in the complex plane is thus
fully determined by its trace, the discriminant D = µ1 +µ2. If µ1 6= µ2, then there
are corresponding Floquet solutions u1, u2 satisfying

uj(x + α) = µj uj(x) (x ∈ R, j ∈ {1, 2}).

Hence it is easy to see that the equation is stable (all solutions are globally bounded)
if |D| < 2, and unstable (all solutions are unbounded) if |D| > 2; as D is an
analytic function of the spectral parameter, the real line splits into alternating
stability and instability intervals. This already provides a complete description
of the (purely absolutely continuous) spectrum of the corresponding self-adjoint
ordinary differential operator: it is the closure of the union of all stability intervals,
spectral gaps corresponding to non-degenerate instability intervals (cf. [13], [27]).

Furthermore, the oscillation behaviour of solutions is very closely linked to the
discriminant as well. Thus for the periodic Dirac system, it is not difficult to
verify along the lines of [13], proof of Thm. 3.1.2, that for any value of the spectral
parameter in the closure of the nth instability interval, n ∈ Z, the Prüfer angle ϑ
of any R2-valued solution u, defined by

u = R

(
cosϑ
− sinϑ

)
with R > 0, satisfies

ϑ(x) =
nπx

α
+O(1) (x→∞).

In particular, the asymptotic rate of growth of ϑ, the so-called rotation number

lim
x→∞

ϑ(x)
x

=
nπ

α
,

is constant in instability intervals.
It turns out that the rotation number is in fact well-defined as a continuous non-

decreasing function of the spectral parameter on the whole real line, which can be
expressed in terms of the discriminant in the stability intervals. For periodic Sturm-
Liouville equations this was elegantly shown in [17], using a connection between the
winding number of a complex-valued Floquet solution in the punctured plane and
the Prüfer angle of its real part. Unfortunately, this argument does not carry over to
the Dirac system, with Floquet solutions (in the case of stability) consisting of two
complex-valued components with no immediate link between them. Nevertheless,
the following statement holds.
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Theorem 2. Let ϑ be the Prüfer angle of an R2-valued solution of the Dirac system

(−iσ2
d

dx
+mσ3 + lσ1 + q)u = λu

with real-valued, α-periodic coefficients m, l, q ∈ L1
loc(R), λ ∈ R in a stability inter-

val, and let D be the discriminant.
Then there is k(λ) ∈ R such that ϑ(x) = k(λ)x

α + O(1) (x → ∞), and D =
2 cosk(λ).

k(λ) is called the quasimomentum of this periodic equation; k(λ)/α is the ro-
tation number. k(λ)/(απ) is called the integrated density of states in view of the
following consequence of Theorem 2, which is readily obtained using oscillation
theory ([27], Thm. 14.7, 14.8).

Corollary 1. In the situation of Theorem 2, let (an)n∈N, (bn)n∈N be sequences of
real numbers such that an < bn and lim

n→∞
bn−an =∞, and let tn be any self-adjoint

realisation of

−iσ2
d

dx
+mσ3 + lσ1 + q

on [an, bn] with separated boundary conditions. Then for λ1 < λ2 the number Nn
of eigenvalues of tn in [λ1, λ2] satisfies

lim
n→∞

Nn
bn − an

=
k(λ2)− k(λ1)

απ
.

In the proof of Theorem 2 we use the following elementary observation on com-
plex solutions of general Dirac systems with real-valued coefficients.

Lemma 1. Let u : I → C2 be a non-trivial solution of

(−iσ2
d

dx
+mσ3 + lσ1 + q)u = λu

(m, l, q ∈ L1
loc(I) real-valued, λ ∈ R). Then the following statements are equivalent:

a) There is x ∈ I, ϕ ∈ C, |ϕ| = 1, such that ϕu(x) ∈ R2.
b) There is ϕ ∈ C, |ϕ| = 1, such that ϕu : I → R2.
c) u, u are linearly dependent.

Proof of Theorem 2. As |D| < 2, the monodromy matrix has complex eigenvalues
µ 6= µ, |µ| = 1. By Lemma 1, the corresponding Floquet solutions u, u are linearly
independent as µ /∈ R.

Again by Lemma 1, the components u1, u2 have no zeros, and their arguments
(locally absolutely continuous functions) are nowhere equal to mod π. By choosing
an appropriate branch of the argument, we can assume 0 < |arg u1 − arg u2| < π
throughout. More specifically, there are locally absolutely continuous functions
R1, R2 > 0, ϕ1, ϕ2, and ν ∈ {−1, 1} such that u1 = R1e

iϕ1 , u2 = iνR2e
iϕ2 , and

|ϕ1 − ϕ2| < π/2. Interchanging u and u if necessary, we can assume without loss
of generality that ν = 1.

Consider the R2-valued solution v := Reu; its Prüfer angle satisfies

tanϑ = −v2

v1
=
R2 sinϕ2

R1 cosϕ1
=
R2

R1
cos(ϕ2 − ϕ1) (tanϕ1 + tan(ϕ2 − ϕ1)).
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1210 KARL MICHAEL SCHMIDT

Thus ϑ and ϕ1 are connected by a modified Kepler transformation (cf. [25]); as a
consequence, they take the values (Z+1/2)π at the same points, and their difference
is globally bounded.

From u1(x+ α) = µu1(x) we find that R1 is α-periodic, and that there is k ∈ R
such that µ = eik and ϕ1(x+α) = ϕ1(x)+k (x ∈ R). Thus ϕ1(x)− kx

α is α-periodic
and continuous, hence globally bounded, and it follows that

ϑ(x) =
xk

α
+O(1) (x→∞).

Furthermore, D = µ+ µ = 2 cosk.

3. Proof of Theorem 1

We shall use the following consequences of the spectral theorem (cf. [24], Lemma
6).

Lemma 2. Let L be a self-adjoint operator with purely discrete spectrum of finite
total multiplicity NI(L) in the real interval I = [λ1, λ2].

a) (Decomposition Principle) If L is a k-dimensional extension of a restriction
of a self-adjoint operator L′, then NI(L) ≤ NI(L′) + k.

b) (Bounded Perturbations) If A is symmetric and bounded, then NI(L) ≤
NI′(L+A), where I ′ = [λ1 − ‖A‖, λ2 + ‖A‖].

The proof of Theorem 1 proceeds as follows. We introduce the rescaled inde-
pendent variable % = r/c ∈ (0,∞), and use the decomposition principle to split off
the two regions near the singular endpoints 0 and ∞. The regular operator on the
intermediate interval is then, by another application of the decomposition princi-
ple, split into operators on a large but finite number of subintervals on which the
perturbation σ1l0(%) does not change very much. Lemma 2 b) relates the number
of eigenvalues of each subinterval operator to that of an operator with periodic co-
efficients on the same subinterval. By virtue of Corollary 1, the asymptotic number
of eigenvalues for the latter can be expressed by means of the quasimomentum,
considering that in terms of the original variable r, the subintervals grow beyond
all bounds in the limit c→∞.

The operator on the unbounded interval near ∞, on which the perturbation is
small, is easily dealt with in a similar manner. The endpoint 0, however, presents
more serious difficulties, which reflect the lack of monotonicity of spectral behaviour
with respect to a matrix perturbation; it is at this point only that our rather strong
hypotheses (H) enter. We show that with a suitably chosen boundary condition, the
operator on the interval near 0 has no eigenvalues at all in [λ1, λ2] for sufficiently
large c. The asymptotic formula then follows in the limit of infinite refinement of
the subintervals.

The Dirac system

τ(c)u = λu

is in the limit point case at infinity ([27], Cor. to Theorem 6.8). We begin the proof
of Theorem 1 by showing that for sufficiently large c, it is in the limit point case at
0 as well, thus proving the essential self-adjointness.

Let %̂ > 0 and C > 0 be such that l0(%) > 0 (% ∈ (0, %̂)) and

|l′0(%)|
l0(%)2

≤ C (% ∈ (0, %̂)).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Then (− log l0)′(%) ≤ Cl0(%), and hence

l0(%) ≤ l0(%̂) exp

(
C

∫ %̂

%

l0

)
(% ∈ (0, %̂));

similarly

l0(%)− l0(%̂) = −
∫ %̂

%

l′0 ≤ C
∫ %̂

%

l20,

which implies l0 /∈ L2(0, · ) in view of lim
%→0

l0(%) =∞.

As mσ3 + q − λ is bounded, it is sufficient to establish that

(−iσ2
d

dr
+ σ1l0(r/c))u = 0

is in the limit point case at 0. If u is a non-trivial R2-valued solution of this
equation, then u′1(r) = −l0(r/c)u1(r), and setting v(%) := u1(c%), we find for c ≥ C

v(%) = v(%̂) exp

(
c

∫ %̂

%

l0

)
≥ v(%̂)
l0(%̂)

l0(%),

so v /∈ L2(0, · ).
To prove the asymptotic formula, we first observe that the region near 0 does

not contribute to the eigenvalue count. Indeed, let c0 := C + 1. Then

l20(%)− 1
c0
|l′0(%)| ≥ l20(%)

c0
→∞ (%→ 0),

and thus there is %0 > 0 such that

l20(%)− 1
c0
|l′0(%)| ≥ (‖q‖∞ + max{|λ1|, |λ2|}+ 1)2 (% ∈ (0, %0)).

Let c ≥ c0, and let h0(c) be the self-adjoint realisation of τ(c) on (0, c%0) with
the boundary condition

u1(c%0) + u2(c%0) = 0.

As τ(c) is in the limit point case at 0, h0(c) is essentially self-adjoint on D0 := {u ∈
D(h0(c)) | u ≡ 0 near 0}. Hence if λ ∈ σ(h0(c)) and ε ∈ (0, 1), there is u ∈ D0 \{0}
such that ‖(h0(c)− λ)u‖ < ε‖u‖, so

‖−iσ2u
′ + (mσ3 + l0( · /c)σ1)u‖ ≤ (‖q‖∞ + |λ|+ ε)‖u‖.

But on the other hand, integration by parts yields

‖−iσ2u
′ + (mσ3 + l0( · /c)σ1)u‖2

=
∫ c%0

0

(|u′|2 + (m2 + l0( · /c)2)|u|2 −m((σ1u)Tu)′ + l0( · /c)((σ3u)Tu)′)

= m|u(c%0)|2 +
∫ c%0

0

(|u′|2 + (m2 + l0( · /c)2)|u|2 − 1
c
l′0( · /c)((σ3u)Tu))

≥
∫ c%0

0

(l0(r/c)2 − 1
c
|l′0(r/c)|)|u(r)|2 dr ≥ (‖q‖∞ + max{|λ1|, |λ2|}+ 1)2‖u‖2.

Thus |λ| > max{|λ1|, |λ2|}; in particular, h(c) has no spectrum in [λ1, λ2].
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A similar calculation shows that for all fixed % ∈ (0, %0), the self-adjoint periodic
operator

−iσ2
d

dx
+mσ3 + q(x) + l0(%)σ1

has a spectral gap, and hence instability interval, containing [λ1, λ2], and it follows
that k(λ1, l0(%)) = k(λ2, l0(%)) (% ∈ (0, %0)).

We now turn to the remaining interval (c%0,∞). Choose δ∞ ∈ (0, 1) so small
that δ∞ < (λ2 − λ1)/2, and [λ1 − δ∞, λ2 + δ∞] is still compactly contained in the
spectral gap of the periodic problem. Fix P0 > %0 such that |l0(%)| < δ∞ (% > P0).

Let ε > 0. There is L > 0 such that |l0(%)| ≤ L (% ∈ (%0,∞)). As the quasimo-
mentum k(λ, l) is uniformly continuous on the compact set K := [λ1 − 1, λ2 + 1]×
[−L,L], there is δ ∈ (0, δ∞) such that

(µ, l), (µ′, l′) ∈ K, |µ− µ′|, |l − l′| < δ ⇒ |k(µ, l)− k(µ′, l′)| < ε.

As l0 is uniformly continuous on [%0, P0], there is γ > 0 such that

|l0(x) − l0(y)| < δ (x, y ∈ [%0, P0], |x− y| < γ).

Now consider a partitioning of the interval I := (%0, P0) into n subintervals
Ij = (%j−1, %j) with |Ij | < γ (j ∈ {1, . . . , n}).

Let hj(c), j ∈ {1, . . . , n}, and h∞(c) be self-adjoint realisations of τ(c) on cIj
and (cP0,∞), respectively, with separated boundary conditions at the regular end-

points. Then h0(c) ⊕
n⊕
j=1

hj(c) ⊕ h∞(c) is a 2(n + 1)-dimensional extension of the

2(n+1)-dimensional restriction of h(c) with domain {u ∈ D(h(c)) | u(c%j) = 0 (j ∈
{0, . . . , n})}; comparing these operators by means of the decomposition principle
(Lemma 2 a)) we find

|N0(c) +
n∑
j=1

Nj(c) +N∞(c)−N(c)| ≤ 2(n+ 1)

for the total spectral multiplicities in [λ1, λ2]. As observed above, N0(c) = 0.
To estimate Nj(c) for j ∈ {1, . . . , n}, choose %̃j ∈ Ij , let lj := l0(%̃j), and define

self-adjoint operators

h̃j(c) = −iσ d
dr

+mσ3 + q(r) + ljσ1

on cIj with D(h̃j(c)) = D(hj(c)). Then Lemma 2 b) and |l0(%) − lj| < δ (% ∈ Ij)
yield the bounds

Ñj(λ1 + δ, λ2 − δ; c) ≤ Nj(c) ≤ Ñj(λ1 − δ, λ2 + δ; c),

where Ñj(µ1, µ2; c) is the number of eigenvalues of h̃j(c) in [µ1, µ2].
As h̃j(c) has α-periodic coefficients, Corollary 1 implies

lim
c→∞

Ñj(µ1, µ2; c)
c|Ij |

=
k(µ2, lj)− k(µ1, lj)

απ
.
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PERTURBED PERIODIC DIRAC SYSTEMS 1213

Thus we find
|Ij |
απ

(k(λ2, lj)− k(λ1, lj)− 2ε) ≤ |Ij |
απ

(k(λ2 − δ, lj)− k(λ1 + δ, lj))

= lim
c→∞

1
c
Ñj(λ1 + δ, λ2 − δ; c) ≤ lim inf

c→∞

Nj(c)
c

≤ lim sup
c→∞

Nj(c)
c
≤ lim

c→∞

1
c
Ñj(λ1 − δ, λ2 + δ; c)

=
|Ij |
απ

(k(λ2 + δ, lj)− k(λ1 − δ, lj)) ≤
|Ij |
απ

(k(λ2, lj)− k(λ1, lj) + 2ε).

In order to estimate N∞(c), we observe that

Ñ∞(λ1 + δ∞, λ2 − δ∞; c) ≤ N∞(c) ≤ Ñ∞(λ1 − δ∞, λ2 + δ∞; c),

where Ñj(µ1, µ2; c) is the number of eigenvalues in [µ1, µ2] of the self-adjoint re-
alisation h̃∞(c) of τ on (cP0,∞) with D(h̃∞(c)) = D(h∞(c)). Since h̃∞(c) is a
direct summand of a 2-dimensional extension of a restriction of the unperturbed
periodic operator on R, we find, again by the decomposition principle, that 0 ≤
Ñ∞(µ1, µ2; c) ≤ 2 for any [µ1, µ2] compactly contained in a spectral gap.

Summing up, we obtain

1
απ

n∑
j=1

(k(λ2, lj)− k(λ1, lj))|Ij | −
2ε
απ
|I| ≤ lim inf

c→∞

1
c

n∑
j=1

Nj(c)

= lim inf
c→∞

N(c)
c
≤ lim sup

c→∞

N(c)
c

= lim sup
c→∞

1
c

n∑
j=1

Nj(c)

≤ 1
απ

n∑
j=1

(k(λ2, lj)− k(λ1, lj))|Ij |+
2ε
απ
|I|,

and refining the Riemann sums,
1
απ

∫
I

(k(λ2, l0(%))− k(λ1, l0(%))) d%− 2ε
απ
|I| ≤ lim inf

c→∞

N(c)
c

≤ lim sup
c→∞

N(c)
c
≤ 1
απ

∫
I

(k(λ2, l0(%)) − k(λ1, l0(%))) d% +
2ε
απ
|I|.

The assertion of Theorem 1 follows, as ε > 0 is arbitrary, and k(λ2, l0(%)) =
k(λ1, l0(%)) (% ∈ (0,∞) \ I).

This concludes the proof of Theorem 1.
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