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Folate Improves Endothelial Function in
Coronary Artery Disease

An Effect Mediated by Reduction of Intracellular Superoxide?

Sagar N. Doshi, Ian F.W. McDowell, Stuart J. Moat, Derek Lang, Robert G. Newcombe,
Mahmud B. Kredan, Malcolm J. Lewis, Jonathan Goodfellow

Abstract—Homocysteine is a risk factor for coronary artery disease (CAD). Folic acid lowers homocysteine and may
improve endothelial function in CAD, although the mechanism is unclear. We investigated the effect of folic acid on
endothelial function, homocysteine, and oxidative stress in patients with CAD. We also examined the acute effect of
5-methyltetrahydrofolate (5-MTHF), the principal circulating folate, on endothelial function in vivo and on intracellular
superoxide in cultured endothelial cells. A randomized crossover study of folic acid (5 mg daily) for 6 weeks was
undertaken in 52 patients with CAD. Ten further patients were given intra-arterial 5-MTHF. Endothelial function was
assessed by flow-mediated dilatation (FMD). Folic acid increased plasma folate (P,0.001), lowered homocysteine by
19% (P,0.001), and improved FMD (P,0.001). FMD improvement did not correlate with homocysteine reduction.
Malondialdehyde and total plasma antioxidant capacity, markers of oxidative stress, were unchanged. 5-MTHF acutely
improved FMD (P,0.001) without altering homocysteine (P50.47). In vitro, 5-MTHF abolished homocysteine-
induced intracellular superoxide increase (P,0.001); this effect was also observed with folic acid and tetrahydrobiop-
terin. Our data support the beneficial effect of folic acid on endothelial function in CAD but suggest that the mechanism
is independent of homocysteine. Reduction of intracellular endothelial superoxide may have contributed to the effect.
(Arterioscler Thromb Vasc Biol. 2001;21:1196-1202.)
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Elevated total plasma homocysteine (tHcy) is associated
with an increased risk of cardiovascular disease and

appears to be largely independent of other conventional risk
factors.1 However, whether the increased risk is mediated
directly by homocysteine or whether it may simply be a
marker remains controversial.2

The metabolism of folate and homocysteine are interrelated,
and increasing folate intake augments remethylation of homo-
cysteine, leading to a reduction of up to 25% in its plasma
concentration.3 This effect occurs despite normal plasma folate
and can be achieved by folic acid in doses of 400mg to 5
mg/d.3,4 This has led to the proposal that folic acid treatment
may reduce cardiovascular risk by reducing tHcy.

In homocystinuria, a rare inborn error with markedly
elevated tHcy concentrations (.100 mmol/L), folic acid and
pyridoxine (vitamin B6) lower tHcy and reduce cardiovascu-
lar events, the major cause of mortality.5 This benefit is
observed despite residual tHcy concentrations that are often
above the upper limit of “normal,” which suggests a benefit
from B group vitamins that is independent of homocysteine.6

However, in the general population, in which tHcy concen-

trations are much lower (5 to 15mmol/L),7 there are, as yet,
only limited data on the effect of folic acid treatment on
cardiovascular outcome.8,9

Endothelial dysfunction is a key process in atherosclero-
sis10 and has been reported in chronic mild fasting hyperho-
mocysteinemia in subjects free of vascular disease11 and in
experimental hyperhomocysteinemia, which is induced by
methionine loading in normal subjects.12 Precisely how ho-
mocysteine may promote endothelial dysfunction is unclear;
however, generation of reactive oxygen species is proposed to
be an important mechanism.13 Recent studies suggest that B
group vitamins enhance endothelial function in coronary
artery disease (CAD) or hyperhomocysteinemia. However,
the data are limited, and the mechanism underlying this
improvement has not been established.14–17

5-Methyltetrahydrofolate (5-MTHF), the main circulating
folate, can improve endothelial function in subjects with
hypercholesterolemia who are free of vascular disease and
not receiving lipid-lowering treatment.18 However, the effect
of 5-MTHF in subjects with severe CAD on lipid-lowering
treatment is unknown.
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We sought to determine whether high-dose folic acid
supplementation can improve endothelial dysfunction, a sur-
rogate of cardiovascular risk, in patients with significant
CAD on standard therapy, and we endeavored to correlate
this effect, if any, with changes in plasma homocysteine,
plasma folate, and oxidant stress. To further investigate
mechanisms, we examined the acute effect of 5-MTHF on
endothelial function in a similar group of 10 patients and its
effect on intracellular levels of superoxide in cultured porcine
aortic endothelial (PAE) cells.

Methods
Subjects
Patients with CAD aged,70 years were recruited. We defined CAD
as either angiographically proven coronary disease ($50% luminal
stenosis) or a history of myocardial infarction (creatinine kinase rise
.2-fold normal with ECG changes). Plasma homocysteine was not
an entry criterion, and levels were not made known to the investi-
gators during the course of the study. Patients were excluded if an
acute coronary event had occurred,3 months before entry or if there
was diabetes mellitus, uncontrolled hypertension, fasting plasma
cholesterol.6.5 mmol/L, impaired renal function (creatinine.120
mmol/L), or clinically significant heart failure. Patients actively
smoking or who had recently ceased smoking (,6 months), patients
taking antioxidant vitamins (E or C), folic acid, or fish oils, and
women on hormone replacement were also excluded.

The present study was designed to recruit a minimum of 46
subjects, to achieve 80% power to detect an improvement in
flow-mediated dilatation (FMD) from 40mm on placebo to 80mm
on folic acid at thea50.05 level. Of 534 patients screened, 52 were
eligible for entry to the folic acid study, and 10 similar subjects
were identified for the intra-arterial study. All selected subjects were
tested to exclude vitamin B12 deficiency, which precludes folic acid
treatment, before entry.

Study Design

Folic Acid Study
The study was a randomized, double-blind, placebo-controlled cross-
over design. It involved two 6-week treatment periods of folic acid
(5 mg daily) or matched placebo separated by a washout period of 4
months.

Intra-Arterial 5-MTHF Study
The study was open label and investigated the acute effects of
5-MTHF on brachial artery FMD and its NO component.

All patients gave written informed consent, and both protocols
were approved by the Local Research Ethics Committee.

Study Protocol

Folic Acid Study
Each patient was studied at week 0, week 6, week 22, and week 28.
At each visit, venous blood was collected into Vacutainers. Lipids,
glucose, and creatinine were analyzed on the day of sampling; other
samples were separated; and the serum/plasma was stored at270°C
until analysis. Vascular studies were performed by a single experi-
enced operator in a temperature-controlled room (21°C to 24°C) at
the same time of day on patients fasted overnight. Medications were
omitted on the morning of the visit, and nitrates were withheld for 24
hours before the studies. At each visit, FMD was measured. Vascular
measurements were made at baseline, at 1-minute intervals for 6
minutes, and at 8 and 10 minutes after cuff release to establish the
time course of vessel diameter change. The nitroglycerin (NTG)
response was then recorded.

Intra-Arterial 5-MTHF Study
After baseline venous blood sampling, baseline vascular measure-
ments and the NTG response were recorded, and a period of at least
45 minutes was allowed to elapse. A 27-gauge needle was then
inserted into the brachial artery of the nondominant arm. Normal

saline was infused at 0.5 mL/min, and this infusion rate was kept
constant throughout. The brachial artery was imaged 7- to 10-cm
distal to the puncture site, and FMD was measured. After this,
5-MTHF (Sigma Chemical Co) was then infused at 50mg/min to
achieve a plasma concentration of at least 457mg/L (1 mmol/L),
which has been shown to improve endothelial function in untreated
hypercholesterolemia.18 After 30 minutes of infusion, venous blood
samples were drawn from the ipsilateral antecubital vein, and FMD
was reassessed.NG-Monomethyl-L-arginine (L-NMMA), an inhibi-
tor of endothelial NO synthase (eNOS), was then coinfused (3
mg/min) with 5-MTHF to assess the NO component of the observed
FMD. The L-NMMA infusion was then stopped, and during infusion
with 5-MTHF, the response to NTG was reassessed.

Noninvasive Measurement of Endothelial Function
FMD was measured by using high-resolution ultrasound and wall
tracking, as previously described by us19 in response to increased
flow in the brachial artery induced by release of a cuff placed at the
wrist inflated for 5 minutes at 250 mm Hg. FMD was taken as the
greatest absolute increase in vessel end-diastolic diameter (EDD)
during the first 3 minutes after cuff release. Endothelium-
independent dilatation in response to NTG (400mg) was measured
after return of the vessel diameter to baseline and reported as the
greatest absolute increase in EDD. Blood pressure was measured
continuously in the study arm by using photoplethysmography
(Finapres). Blood flow was calculated as the product of the Doppler
time-velocity integral, heart rate, and brachial artery diameter mea-
sured by wall tracking at that time.

Biochemical Assays
Lipids, glucose, and creatinine were assayed routinely. tHcy was
measured by enzymatic immunoassay (Abbot IMx, Abbot Diagnos-
tics). Plasma malondialdehyde (MDA) and 5-MTHF were measured
by high-performance liquid chromatography.20,21 Plasma total anti-
oxidant capacity (TAOC) was measured by using a commercially
available kit (Randox Laboratories) according to the method of
Miller et al.22 Vitamin B12 and folate were measured by competitive
protein binding assays on an Elecys 2010 analyzer (Roche
Diagnostics).

Effect of 5-MTHF, Folic Acid, and BH 4 on
Intracellular Superoxide In Vitro
Experiments were performed on cultured porcine endothelial cells to
assess the effects of 5-MTHF, folic acid, and tetrahydrobiopterin
(BH4) on intracellular superoxide in cells exposed to homocysteine.
Free reducedL-homocysteine was prepared fromL-homocysteine
thiolactone, as described previously.23 PAE cells were isolated and
cultured as previously described,24 and all experiments were carried
out on first-passage cells. PAE cells were incubated at 37°C for 24
hours with buffer or homocysteine alone (1 mmol/L) or were
coincubated with homocysteine (1 mmol/L) and 5-MTHF, folic acid,
or BH4 (all at 0.5 mmol/L). Intracellular PAE cell superoxide levels
were then measured as previously described.25 Briefly, cells were
washed with sterile saline (0.9% [wt/vol]) before being trypsin
(0.05% [wt/vol])–digested and isolated. The resulting cell pellet was
resuspended in HEPES-buffered physiological saline, and the cell
number measured with a Coulter Counter. Cells were added to an
aliquot of buffer, to which lucigenin was added to a final concen-
tration of 500 mmol/L. Cells were then placed into the warmed
chamber of a luminometer with output measured in millivolts.
Intracellular superoxide was measured after the addition of a lysing
agent (Triton X-100, 1% [vol/vol]), calculated from the integral for
the response, and normalized for cell number.

Withdrawals, Medication Changes,
and Compliance
Two subjects were withdrawn from the folic acid study: 1 with a
nonfatal myocardial infarction and 1 with atrial fibrillation. During
the study, all efforts were made to hold medication constant, but
clinical considerations forced changes in 6 patients. Treatment with
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folic acid was well tolerated, and no side effects were reported.
Compliance assessed by a tablet count was 96%.

Statistical Analysis
The main statistical analyses of the folic acid study results were
based on 50 subjects after removal of the 2 withdrawals. Prefolate to
postfolate changes in biochemical and vascular measurements were
compared with corresponding preplacebo to postplacebo changes by
using the Hills-Armitage method.26 The relationships between
changes in FMD, homocysteine, and other parameters on folate
administration were characterized by the Spearman rank correlation,
with 95% CIs calculated by the tanh21 method. In the intra-arterial
study, pairedt tests were used. The main outcome variables of FMD,
folate, and homocysteine were little changed after removal of the 6
subjects in whom medication changes took place.

For the in vitro experiments, data are expressed as mean6SEM
(n510) and compared by ANOVA, followed by an appropriate
multiple range test. All differences were considered significant at
P,0.05.

Results
Baseline Characteristics
The folic acid study group consisted of 52 patients aged
5768 years (males 5768 years, females 5868 years). The
5-MTHF study group consisted of 10 similar subjects, aged
5569 years (all male). Baseline characteristics were similar
in the 2 populations (Table 1).

Folic Acid Study

Effects on Biochemical Parameters
Biochemical parameters are shown in Table 2. Folic acid
significantly decreased tHcy (9.362.4 versus 10.862.4 [pla-
cebo] mmol/L, P,0.001) and markedly increased plasma
folate (3106234 versus 9.163.4 [placebo]mg/L, P,0.001).
MDA and plasma TAOC were not significantly altered by
folic acid. Vitamin B12, lipids, glucose, and creatinine were
unchanged by folic acid compared with placebo.

Effects on Flow-Mediated Dilatation and
Vascular Measurements
Vascular data involving folic acid treatment are shown in
Table 3. The coefficient of variation for the measurement of
FMD in our laboratory was 5.6%. FMD was impaired in the
folic acid group at baseline compared with published normal
values (50633mm and 1.260.97% baseline EDD).27 FMD
significantly improved after folic acid compared with placebo
(110643 versus 47635mm, respectively;P,0.001; Figure
1), and in addition, the time course of vessel diameter change
after cuff release was significantly altered (Figure 2). Heart
rate, blood pressure, baseline brachial artery EDD, peak
hyperemic flow, and NTG response did not differ signifi-
cantly after folic acid.

Intra-Arterial 5-MTHF Study

Effects on Biochemical Parameters
After 30 minutes of infusion, plasma 5-MTHF markedly
increased (from 20.2 to 1595mg/L, P,0.001), whereas no
change in plasma homocysteine was observed (from
10.5062.46 to 10.5362.52mmol/L, P50.47).

Effects on Flow-Mediated Dilatation and
Vascular Measurements
Vascular data during control, 5-MTHF infusion, and
5-MTHF/L-NMMA coinfusion are shown in (Table 4). FMD

was impaired in the 10 subjects at baseline compared with
published normal values (FMD 43615 mm, 0.9660.34%
baseline EDD).27 5-MTHF acutely improved FMD compared
with control (80620 versus 43615mm, respectively;
P5,0.001), an effect that was completely suppressed by
coinfusion with L-NMMA (Figure 3). Heart rate, blood
pressure, baseline brachial artery EDD, peak hyperemic flow,
and NTG response did not differ significantly during
5-MTHF infusion compared with control.

In Vitro Effect of 5-MTHF, Folic Acid, and BH 4

on Intracellular Superoxide Levels
Intracellular superoxide content was 21.062.4 mV · s per 106

cells in the control. Exposure to homocysteine resulted in a
significant (P,0.001) increase in superoxide levels to
53.462.9 mV · s per 106 cells. This increase was abolished
(P,0.001) by coincubation with either 5-MTHF, folic acid,
or BH4 (Figure 4).

TABLE 1. Clinical Characteristics of Study Subjects

Characteristic
Folic Acid Study

(n550)

5-MTHF
Intra-Arterial

Study (n510)

Age, y 5768 5569

Male, n (%) 44 (88) 10 (100)

Female, n (%) 6 (12) 0

Body mass index 28.564.4 28.362.2

Angiographic CAD, n (%) 48 (96) 9 (90)

Myocardial infarction, n (%) 33 (66) 3 (30)

Revascularization, n (%) 39 (78) 9 (90)

CABG 32 (64) 7 (70)

PTCA 7 (14) 2 (20)

Hypertension 20 (40) 4 (40)

Family history ,60 y, n (%) 26 (52) 6 (60)

Smoking history, n (%)

Exsmoker (.6 mo) 36 (72) 6 (60)

Never smoked 14 (28) 4 (40)

Cerebrovascular event, n (%) 4 (8) 1 (10)

Peripheral vascular disease, n (%) 1 (2) 0

Angina, n (%) 7 (14) 0

Antiplatelet therapy, n (%)

Aspirin 46 (92) 9 (90)

Clopidogrel 2 (4) 1 (10)

None 2 (4) 0

Lipid-lowering therapy, n (%)

Statin 44 (88) 10 (100)

Fibrate 5 (10) 0

None 1 (2) 0

Other drug therapy, n (%)

b-Blocker 33 (66) 9 (90)

ACE inhibitor 7 (14) 1 (10)

Calcium channel blocker 12 (24) 2 (20)

ATII receptor blocker 3 (6) 0

Nitrate 4 (8) 0

CABG indicates coronary bypass grafting; PTCA, percutaneous coronary
angioplasty; and ATII, angiotensin II. Values are mean6SD or patient numbers
(with percentages in parentheses).
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Correlates of Improved FMD
Although homocysteine was significantly decreased by folic
acid, a positive correlation between improvement in FMD
and reduction in plasma homocysteine was not found. To the
contrary, there was a trend toward a negative correlation
(rs520.21,P50.15, 95% CI20.46 to 0.08). FMD improve-
ment was weakly and negatively correlated with baseline
homocysteine (rs520.23,P50.11, 95% CI20.48 to 0.06).
No correlation was found between improvement in FMD and
increase in plasma folate (rs50.09,P50.54, 95% CI20.20 to
0.36) or with changes in MDA or TAOC.

Discussion
The present study demonstrated a significant improvement in
endothelial function after 6 weeks of treatment with folic acid
(5 mg daily) in subjects with significant CAD on standard
therapy and with good lipid control (mean cholesterol
4.7 mmol/L). The majority (88%) of patients were taking
statins, which have previously been shown to improve endo-
thelial function,28 indicating additive benefit.

The oral folate study, statistically the most powerful to our
knowledge, confirms and extends the findings of recent
parallel group studies of folic acid (5 mg daily) alone or in
combination with other B group vitamins on endothelial

function in CAD.14,15 In previous studies,14,15 mean baseline
tHcy concentration was higher than that in the present study:
13 mmol/L14 and 12.3mmol/L15 compared with 11.2mmol/L
in the present study. Furthermore, improvement in endothe-
lial function in the present study was not confined to those
with higher baseline homocysteine concentrations. Indeed,
there was a trend toward greater FMD enhancement in
patients with tHcy,9 mmol/L (n514) compared with tHcy
.9 mmol/L (n536); change in FMD was 73643 versus
47643 mm, respectively (P50.07). This suggests that the
benefit is independent of pretreatment tHcy level.

We found no correlation between tHcy reduction and
improvement in endothelial function and, indeed, observed a
trend toward the reverse. This contrasts with the findings of a
recent study in which a significant positive correlation be-
tween tHcy reduction and improvement in endothelial func-
tion was reported.15 It has recently been suggested that
improved endothelial function seen with B group vitamins
(which included folic acid) in CAD is mediated by a
reduction in free (unbound) but not total homocysteine, in
accordance with the observation that FMD improvement is
correlated with a reduction in free but not total homocys-
teine.14 A number of factors would appear to argue against
this correlation being a causal relationship. First, all of the

TABLE 2. Biochemical Parameters at Baseline, Before Placebo and Folic Acid, and After 6-wk Administration

Variable
Baseline
(n550)

Before
Placebo
(n550)

After
Placebo
(n550)

Before
Folic Acid
(n550)

After
Folic Acid
(n550)

P *
(n550)

Homocysteine, mmol/L 11.262.7 10.562.5 10.862.4 11.162.8 9.362.4 ,0.001

Vitamin B12, ng/L 4326116 4306125.75 4286128 4356123 4116128 0.23

Plasma folate, mg/L 8.863.4 9.362.9 9.163.4 8.963.5 3106235 ,0.001

Cholesterol, mmol/L 4.760.8 4.660.7 4.660.7 4.860.7 4.760.7 0.87

HDL cholesterol, mmol/L 1.260.3 1.160.3 1.160.4 1.260.4 1.260.4 0.18

LDL cholesterol, mmol/L 2.860.7 2.860.6 2.860.7 2.860.6 2.860.6 0.95

Triglycerides, mmol/L 1.660.9 1.760.9 1.661.0 1.760.9 1.861.1 0.06

Glucose, mmol/L 5.360.6 5.360.6 5.260.6 5.360.7 5.360.7 0.46

Creatinine, mmol/L 98.6613.2 98.7613.6 98.8614.8 98.9613.7 98.0613.3 0.47

MDA, nmol/mL 0.4960.12 0.5060.13 0.4760.10 0.5060.12 0.4960.11 0.57

TAOC, mmol/L 1.5660.13 1.5660.11 1.5660.12 1.5660.13 1.5460.11 0.13

Values are mean6SD.
*Comparing changes with placebo vs changes with folic acid.

TABLE 3. Vascular Data at Baseline, Before Placebo and Folic Acid, and After 6-wk Administration

Variable
Baseline
(n550)

Before
Placebo
(n550)

After
Placebo
(n550)

Before
Folic Acid
(n550)

After
Folic Acid
(n550)

P *
(n550)

Vessel EDD, mm 4.3760.72 4.3660.73 4.3860.72 4.3960.70 4.3960.70 0.89

FMD, mm 50633 46633 47635 52634 110643 ,0.001

NTG diameter change, mm 333678 340672 340672 340676 340677 0.79

Baseline blood flow, mL/min 41621 40620 40619 40619 40618 0.79

Peak hyperemic flow, mL/min 198673 196668 196671 202667 198666 0.51

Heart rate, bpm 59611 59610 60610 59610 59610 0.64

Systolic blood pressure, mm Hg 133616 132616 133614 133617 133614 0.11

Diastolic blood pressure, mm Hg 7369 7369 7168 7469 7369 0.49

Values are mean6SD.
*Comparing changes with placebo vs changes with folic acid.
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observational data linking homocysteine and cardiovascular
risk has been based on total, not free, homocysteine. Second,
of the free component, only'1% is in the reduced form (ie,
possesses a free sulfhydryl group), which can support auto-
oxidation and therefore superoxide generation, with the
remaining component being oxidized.29,30 The pathological
significance of such low levels of free reduced homocysteine
on oxidative burden in the plasma has been questioned
recently.31

The lack of a positive correlation between the enhancement
in endothelial function and tHcy reduction suggests that the
beneficial effect of folic acid is unlikely to be mediated
principally via tHcy lowering. This proposal is supported by
the intra-arterial study, which demonstrated acute improve-
ment in endothelial function after 30 minutes of infusion with
5-MTHF independent of a change in tHcy. This effect has not
been previously reported in subjects with CAD. The improve-
ment was abolished by coinfusion with the NO synthase
inhibitor L-NMMA, indicating that it was mediated by an
increase in NO bioavailability.

Generation of reactive oxygen species is proposed to be an
important mechanism of homocysteine-induced endothelial

injury.13 This view is supported by methionine loading in
normal subjects, which raises tHcy to'30 to 35mmol/L and
which acutely impairs endothelial function.12 The mechanism
is believed to involve oxidant stress32 and is abrogated by
treatment with antioxidant agents.33,34 However, it cannot be
assumed that moderately elevated homocysteine levels in the
general population exert oxidative stress, because methionine
loading results in large unphysiological increases in free
reduced homocysteine and methionine.35 Although some
observational studies have shown a correlation between tHcy
levels and markers of oxidant stress in the general popula-
tion,36,37a causal relationship has not been established. In the
present study, although tHcy was significantly reduced by
19%, there was no reduction in MDA or any increase in
TAOC, a marker of the antioxidant capacity of plasma. This
suggests either that homocysteine does not directly exert
oxidative stress in the plasma or that measurement of MDA
and TAOC are not sensitive enough indicators. However,
MDA and TAOC were selected because methionine loading
in normal subjects is associated with an increase in MDA and
decrease in TAOC, indicating that under these conditions,
they can detect changes in plasma oxidant stress.38,39

The in vitro study used concentrations of homocysteine
that were far higher than those experienced in vivo (1 mmol/L
versus 10 to 15mmol/L, respectively). The high concentra-
tion of homocysteine used was similar to previously pub-
lished reports of in vitro work. Higher pharmacological
concentrations are sometimes required in vitro to reproduce
the in vivo situation, in part, because the exposure times used
are much shorter than those experienced in hyperhomocys-
teinemia in humans. The main aim of the present study was to
establish homocysteine-induced endothelial dysfunction and
investigate possible mechanism(s) by which folate may re-
verse this and not to mimic the in vivo situation exactly. We
have recently reported that exposure of cultured endothelial
cells to homocysteine ($30mmol/L) stimulates intracellular
generation of superoxide.25 The in vitro study confirmed this
finding and further revealed that 5-MTHF can reduce levels
of intracellular superoxide, suggesting a possible explanation
for improvement in FMD observed in the human study. A
number of mechanisms may account for this: (1) intracellular
homocysteine was decreased, (2) 5-MTHF scavenged super-
oxide directly, and/or (3) 5-MTHF reduced superoxide pro-
duction. Given that it takes some weeks before levels of

Figure 1. FMD before and after 6 weeks of placebo and folic
acid (5 mg daily). Data are presented as mean6SEM. FMD was
defined as the greatest (absolute) increase in EDD during the
first 3 minutes after cuff release. *Comparing change with pla-
cebo vs change with folic acid.

Figure 2. Time course of EDD change (DEDD, mean6SEM) after
cuff release, before and after placebo and folic acid.

Figure 3. FMD during control (saline), 5-MTHF infusion (50
mg/min), and 5-MTHF/L-NMMA coinfusion (mean6SEM). FMD
was defined as the greatest (absolute) increase in EDD during
the first 3 minutes after cuff release. *Comparing 5-MTHF vs
control. †Comparing 5-MTHF/L-NMMA coinfusion vs 5-MTHF
alone. ‡Comparing control vs 5-MTHF/L-NMMA coinfusion. All
comparisons were made by 2-tailed paired t test.
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homocysteine fall significantly with folic acid, a reduction in
homocysteine after 24 hours seems unlikely, and other direct
actions of 5-MTHF more likely explain this observation. In
vitro, 5-MTHF has recently been demonstrated to be capable
of directly scavenging superoxide, increasing NO production
by eNOS, and also reducing superoxide generation by
eNOS.40

The in vitro study also demonstrated that BH4 is capable of
inhibiting the homocysteine-induced increases in endothelial
superoxide. BH4 is an essential cofactor for eNOS, and its
depletion results in uncoupling of eNOS activity and a switch
from production of NO, fromL-arginine, to generation of
superoxide.41 5-MTHF is essential in the redox cycling of the
inactive quinonoid BH2 (qBH2) back to the active form,
BH4.42 Furthermore, oral BH4 supplementation can improve
endothelial function in CAD.43 Thus, the ability of 5-MTHF
to regenerate intracellular BH4 from qBH2 may, at least in
part, explain the improvement in NO bioavailability observed
in the human studies.

Implications of the Present Study
The oral folic acid study supports the finding that high-dose
supplementation improves endothelial function in patients
with CAD. Furthermore, this improvement is observed in
subjects already treated with statins and is independent of
baseline tHcy or its reduction. In contrast to earlier reports,
the present data do not support the view that improvement is
mediated by tHcy reduction but point rather to direct actions
of folic acid, possibly mediated by reduction in intracellular
but not plasma oxidant stress. The dose of folic acid used was

pharmacological, with plasma levels far in excess of the
normal range, and it cannot be assumed that the effects
demonstrated will apply to low-dose folic acid (400mg/d) or
improved dietary intake. In conclusion, folic acid is safe and
offers a simple, well-tolerated, and inexpensive therapeutic
option for improving endothelial function in subjects with
ischemic heart disease.
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