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Abstract 

 

Background:  Vascular calcification is a common complication of advanced 

chronic kidney disease, contributing to increased cardiovascular mortality.  

Hypercalcaemia is a recognised risk factor for calcification, and calcimimetics 

show protective actions in vivo.  In addition to its central role in Ca2+ 

homeostasis, the calcium sensing receptor (CaSR) has been identified in 

smooth muscle cells, suggesting extracellular Ca2+ and calcimimetics may 

have a more direct role in the modulation of mineralisation. 

 

Methods and results:  The presence of CaSR in bovine aortic smooth muscle 

cells (BAoSMC) is confirmed using immunofluorescence and western blot.  In 

an in vitro model of calcification (i.e. β-glycerophosphate induction) Ca2+ 

dose-dependently increases SMC mineralisation and induces alkaline 

phosphatase activity.  Transfecting cells with a dominant negative CaSR does 

not attenuate Ca2+-induced SMC mineralisation.  Confirming previous reports, 

calcimimetics R-568 (1 nM) and AMG641 (10 pM, 100 pM and 1nM) delay the 

process of calcification.  However S-568 (1 nM), an isomer of R-568 that 

shows little/no activity at the CaSR, fails to elicit any protective effects.  The 

signalling pathways activated by R-568 (1nM), in the presence of 2.5 mM 

Ca2+ are investigated in human aortic smooth muscle cells (HAoSMC) using a 

multibead phosphoprotein detection array.  R-568 (1 nM) produces significant 

elevations in MEK and p90RSK phosphorylation.  The relevance of these 

molecules in the mineralisation process is not investigated, although it is 

interesting to note that, elevations in MEK and p90RSK phosphorylation are 

not observed in HAoSMC incubated with Ca2+ alone (i.e. 5 mM Ca2+ vs. 0.5 

mM Ca2+).   

 

Conclusions:  These results suggest that the delay in mineralisation afforded 

by calcimimetics are mediated via the CaSR, whilst the increased 

mineralisation observed when cells are exposed to 1.8 mM Ca2+ are, at least 

in part, independent of the CaSR.  
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Chapter 1: Introduction 

 

1.1 Vascular calcification in chronic kidney disease (CKD) 

Calcification of the cardiovascular system is associated with a number of 

diseases including metabolic syndrome, diabetes, hypertension and 

atherosclerosis.  However, its most devastating manifestation is in patients 

with chronic kidney disease (CKD), the focus of this work.  Patients with CKD, 

particularly end stage renal disease (ESRD), show a disproportionate burden 

of vascular calcification1-4 which contributes to the markedly increased 

cardiovascular risk and mortality in these patients (Figure 1.1).   

 

 

 

 

 

 

 

Figure 1.1  Cardiovascular mortality rates (per 1000 person-years) in dialysis patients 

vs. the general population (GP) (adapted from de Jager et al. (2009)
5
). 

de Jager DJ, Grootendorst DC, Jager KJ, van Dijk PC, Tomas LM, Ansell D, Collart F, Finne 

P, Heaf JG, De Meester J, Wetzels JF, Rosendaal FR, Dekker FW. Cardiovascular and 

noncardiovascular mortality among patients starting dialysis. Jama. 2009;302:1782-1789 

 

 

In general, the prevalence and intensity of vascular calcification increases as 

kidney function declines.  Although calcification can be present at early stages 

of CKD6, 7, increased calcification is observed prominently once a patient 

enters ESRD and requires dialysis treatment1, 6, 8.  It has been suggested that 

dialysis may prime arteries to develop vascular calcification9 as more rapid 

progression of vascular calcification is detected in dialysis patients compared 

to the general population1, 10.    

 

The majority of CKD patients who require dialysis die as a result of 

cardiovascular events, and the presence and extent of vascular calcification 

are independent predictors of cardiovascular disease and mortality11.  Arterial 

This image has been 

removed by the author for 

copyright reasons. 



 

 2 

calcification leads to a number of adverse clinical outcomes i.e. myocardial 

infarction, congestive heart failure, valvular heart disease3, 11, 12 that can 

cause cardiovascular disease or aggravate its severity.   

 

Calcification can occur at two distinct sites in the vessel wall: the intima and 

the media and both types of arterial calcification can occur in CKD.  Intimal 

calcification involves localised calcification in the vicinity of lipid or cholesterol 

deposits within an atherosclerotic plaque.  Calcification can be detected on 

the shoulders and at the base of the plaque13.  Intimal calcification is thought 

to be triggered by inflammatory processes14.  In an in vivo model of 

atherosclerosis, accumulation of infiltrating macrophages was shown to be 

one of the earliest steps in the calcification processes, potentially acting as a 

trigger for further pro-calcifying actions15.   

 

Medial calcification (also known as Mönckeberg’s sclerosis) is typically 

observed as a pipeline-like distribution and can occur all around the vessel16.  

In contrast to intimal calcification, it occurs in the absence of lipid or 

cholesterol deposits17 and without macrophage infiltration suggesting that 

distinct mechanisms may underlie the development of these two types of 

calcification.   

 

Intimal and medial calcification also differ in their clinical consequences.  

Medial calcification results in stiffening of the vasculature and reduced 

vascular compliance which is associated with increased pulse pressure18, 19 

and left ventricular hypertrophy20.  Whereas, intimal Ca2+ deposition may 

contribute to atherosclerotic plaque instability21 which can cause myocardial 

infarction and thrombotic events.   
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Figure 1.2  Coronary artery calcification of a CKD patient (adapted from Amann K.  

(2008)
17

).  Both intimal (*) and medial calcification (arrow) are observed in hematoxylin and 

eosin (H&E) stain (A) and Kossa stain (B).  

Amann K. Media calcification and intima calcification are distinct entities in chronic kidney 

disease. Clinical journal of the American Society of Nephrology : CJASN. 2008;3:1599-1605 

 

 

In CKD patients, one or both of intimal and medial calcification can be 

observed4, 22 (Figure 1.2).  Looking at a select subgroup of individuals with 

coronary artery disease and varying kidney function, Nakamuru et al. (2009) 

found that intimal calcification is observed in most cases of vascular 

calcification with CKD, across stages 1-5, whereas medial calcification is 

typically only present when more severe CKD ensues i.e. CKD stage 4/5 and 

haemodialysis patients6.  Despite the delay in presentation, the development 

of medial calcification does not appear to be dependent on intimal calcification 

as medial calcification can be identified in segments that show no signs of 

intimal calcification17.   

 

Amongst haemodialysis patients the presence of predominantly intimal 

calcification has been shown to be associated with a relative higher risk in 

mortality compared to predominantly medial calcification16.  Additionally within 

the dialysis population, patient characteristics influence the likelihood of 

developing intimal or medial calcification: intimal calcification is typically 

observed in older patients with a conventional atherosclerotic risk factors 

whereas medial calcification is observed in younger patients and is related to 

the time on dialysis and the Ca x P balance16.   

 

 

This image has been 

removed by the author for 

copyright reasons. 
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1.2  Mechanisms of vascular calcification in CKD 

Knowledge of the mechanisms underlying vascular calcification have greatly 

increased in recent years.  Thinking has evolved from the original hypothesis 

suggesting that vascular calcification is a passive degenerative process, to 

understanding vascular calcification to be a highly regulated, active, cell–

mediated process that involves phenotypic change23, 24. The process shows 

many similarities to bone formation and cells with osteoblastic and 

chondrogenic potential have been identified in vascular tissue25-28.   

 

There is growing acceptance that smooth muscle cells (SMCs) undergo a 

phenotypic transition and act as the source of the osteochondrogenic 

precursors.  SMCs are the predominant cell type found in the artery wall and 

unlike most cell types, retain phenotypic plasticity in response to injurious 

stimuli.  With treatment of pro-calcifying stimuli, SMC cultures can be induced 

to express osteoblastic and chondrogenic transcription factors whilst in 

parallel showing reduced expression of SMC marker proteins (i.e. expression 

of α-smooth muscle actin and SM22α)29, 30.  Evidence in favour of SMCs as 

the source of the osteochondrogenic precursors came with the findings by 

Speer et al. (2009) who, using genetic fate mapping of matrix Gla protein 

mutant mice (MGP -/-), identified that the chondrocytic cells identified in areas 

of calcification had differentiated from SMCs29.   

 

The onset of expression of bone marker proteins, and reduced expression of 

SMC markers, appears to be a trigger for mineralisation rather than a 

consequence, as these events precede calcification29.  Moreover, a recent 

report by Speer et al. (2010) suggests that it is primarily the induction of the 

osteogenic transcription factors and not the loss of the SMC markers which 

promote mineralisation30.  Loss of myocardin alone does not appear to drive 

an osteochondrogenic phenotype change or an increased propensity to 

mineralise30.  Similarly, forced expression of SMC markers does not affect the 

calcification ability of SMCs when treated with the pro-calcifying factor, 

inorganic phosphate30.  However, that is not to say that the reduced 

expression of SMC markers is just a consequence of SMC transdifferentiation 

as in cases of arterial injury, expression of SMC markers appears to be 
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protective.  A recent study demonstrated that mice deficient in SM22α exhibit 

enhanced medial chondrogenesis in response to arterial injury compared to 

their wild type counterparts31. 

 

Of particular interest within these recent studies is data suggesting that SMC 

transdifferentiation may be reversible and cells can regain SMC properties30.  

When cultured in medium that favours SMC differentiation (i.e. supplemented 

with 20% FBS) vascular cells with an osteochondrogenic phenotype regained 

SMC properties showing increased expression of SMC marker proteins (i.e. 

SM22α and α-sma), in parallel to reduced expression of osteochondrogenic 

gene expression30.  Additional support for the reversibility of vascular SMCs in 

the osteochondrogenic state is provided by data reporting that sevelamer (a 

phosphate binder) reduces established calcification in a mouse model of 

atherosclerosis and CKD32.  Together these findings suggest that vascular 

calcification may be therapeutically treated and potentially reversed.   

 

 

 

Figure 1.3  Mechanisms contributing to the initiation and promotion of vascular 

calcification.  Loss of mineralisation inhibitors (for example, matrix Gla protein (MGP), fetuin-

A and pyrophosphate (PPi)), cellular apoptosis and the production of calcifying matrix vesicles, 

and transdifferentiation of SMCs all contribute to process of mineralisation.  
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The complete mechanism underlying transdifferentiation and mineralisation is 

still under investigation.  A number of key events contribute to vascular 

calcification initiation and progression (Figure 1.3), including dysregulated 

mineral metabolism, loss of local and systemic inhibitors of calcification, 

induction of apoptosis and matrix vesicle (MV) release, and development of a 

calcifiable extracellular matrix26, 33.   

 

 

1.2.1  Dysregulated mineral metabolism as a trigger for calcification in 

CKD 

Abnormal regulation of mineral ion homeostasis is one of the major problems 

in patients with CKD and is strongly linked to the development of calcification.  

There is increasing evidence that hyperphosphatemia, hypercalcaemia, an 

increased Ca × P product and hyperparathyroidism may increase 

susceptibility to develop vascular calcification34.  Direct actions of elevated 

levels of phosphate and Ca2+ on SMCs have been shown and their 

contribution to calcification beginning to be unravelled, discussed in sections 

1.2.1.2 and 1.2.1.3 respectively.    

 

 

1.2.1.1  Dysregulated mineral homeostasis in CKD 

In normal physiology Ca2+ and phosphate levels are under tight control via a 

number of hormonal regulators which work through concerted actions on the 

intestine, kidney and bone.  Hormonal regulators of phosphate metabolism 

include parathyroid hormone (PTH), 1,25(OH)2D3, FGF-23 and klotho.  PTH, 

1,25(OH)2D3 and klotho are also regulators of Ca2+ metabolism.  The actions 

of these hormonal regulators are illustrated in Figure 1.4.  The physiological 

role of calcitonin in humans remains unclear, although inhibition of bone 

resorption is detected at pharmacological doses underlying its use for Paget's 

disease, osteoporosis and hypercalcaemia of malignancy35.  For detailed 

reviews on Ca2+ and phosphate homeostasis see Bergwitz and Juppner 

(2010)36, Renkema et al. (2008)37. 
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Figure 1.4  Ca
2+

 and phosphate homeostasis (adapted from Renekema et al. (2008)
37

).  

Mechanisms responsible for the control of Ca
2+

 and phosphate (Pi) homeostasis are 

interlinked.  The calcium sensing receptor (CaSR) in the parathyroid glands responds to free 

extracellular Ca
2+

 and modulates PTH secretion.  PTH acts directly, on renal Ca
2+

 

reabsorption, and indirectly, via stimulation of 1,25(OH)2D3 production, to increase serum 

Ca
2+

.  Hyperphosphatemia also stimulates secretion of PTH, which acts directly to increase 

urinary excretion of phosphate whilst indirectly increases intestinal absorption via 

1,25(OH)2D3.  Both PTH and 1,25(OH)2D3 stimulate the FGF-23-klotho axis, increasing Pi 

excretion.  To ensure tight regulation of Ca
2+

 and Pi homeostasis numerous feedback loops 

exist – 1,25(OH)2D3 inhibits PTH secretion, and FGF-23 inhibits the synthesis of 1,25(OH)2D3 

and PTH.    

Renkema KY, Alexander RT, Bindels RJ, Hoenderop JG. Calcium and phosphate 

homeostasis: Concerted interplay of new regulators. Annals of medicine. 2008;40:82-91 

 

 

In CKD, the mechanisms that normally ensure tight control of serum 

phosphate and Ca2+ levels are dysregulated and cannot sufficiently 

compensate for changes in serum phosphate and Ca2+.  With renal 

insufficiency the ability of the kidney to excrete phosphate and generate 

1,25(OH)2D3 is compromised.  Additionally, in CKD changes in the expression 

of the hormonal regulators, and the relationship between them, contribute to 

the mineral dysregulation observed and development of secondary 

hyperparathyroidism.  

 

In humans, FGF-23 levels rise in parallel to declining renal function38-40.  

Stimulation of FGF-23 is typically triggered by elevations in serum phosphate 

or increased 1,25(OH)2D3.  However the trigger in early CKD remains unclear 

as FGF-23 levels appear to increase before the development of 

hyperphosphatemia 41, 42.  Using a model of progressive CKD in rats, 

Hasegawa et al. (2010) assessed the development of mineral dysregulation 

by evaluating different biochemical parameters in the serum over an extended 

This image has been 

removed by the author for 

copyright reasons. 
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timeframe.  Interestingly, significant elevations in FGF-23 were detected on 

day 10, while increased phosphate was not detected until day 30 (Figure 1.5).  

Although Hasegawa et al. (2010) described FGF-23 as the first biochemical 

change, it has also been shown that PTH is necessary for the initial elevation 

in FGF-23 levels, as a parathyroidectomy prevented the increase in FGF-23 in 

kidney failure rats43.  Therefore the onset of events may be more complex 

than shown (Figure 1.5). 

 

FGF-23 inhibits 1α-hydroxylase, a key enzyme in the development of 

1,25(OH)2D3 
44-47

  and can also stimulate 24-hydroxylase, an enzyme involved 

in the inactivation of vitamin D metabolites46.  Therefore, increased levels of 

FGF-23 result in reductions in 1,25(OH)2D3, further confounded by the 

reduced capacity of the kidney to convert 25(OH)D3.  With reduced generation 

of 1,25(OH)2D3, and therefore reduced intestinal Ca2+ absorption, 

hypocalcaemia ensues.  Hypocalcaemia acts as a stimulus for PTH secretion, 

which acts on the bone to increase serum Ca2+ and in doing so also increases 

serum phosphate.  As the glomerular filtration rate declines in advanced CKD, 

inefficient urinary phosphate excretion combined with disordered bone 

remodelling results in hyperphosphatemia. 

 

 

 

 

 

 

Figure 1.5  Time course of biochemical changes in rats with anti-GBM nephritis 

(adapted from Hasegawa et al. (2010)
42

).  Progressive nephritis was induced in Wistar-

Kyoto rats by injecting an anti-glomerular basement membrane antiserum.  On days 0, 10, 20, 

30 blood samples were collected and sera prepared.  The figure illustrates the sequential 

changes in serum parameters compared to control rats (i.e. those injected with an equivalent 

volume of normal rabbit serum), at their first presentation.  All changes shown are significantly 

different vs. control.   

Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto 

S, Shimada T. Direct evidence for a causative role of fgf23 in the abnormal renal phosphate 

handling and vitamin d metabolism in rats with early-stage chronic kidney disease. Kidney 

international. 2010;78:975-980 

This image has been 

removed by the author for 

copyright reasons. 
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With persistent hyperphosphatemia, 1,25(OH)2D3 deficiency and 

hypocalcaemia, secondary hyperparathyroidism (SHPT) develops.  Whilst 

abnormal parathyroid function is detected in only some patients with stage 2 

CKD, it increases in prevalence with disease progression and most patients 

with stages 4 and 5 CKD show elevations in PTH48, 49
.  PTH elevations are 

accompanied by parathyroid hyperplasia which increases the capacity of the 

parathyroid gland to synthesise and secrete PTH.  Additionally, expression of 

the “sensor” molecules on the parathyroid gland, the vitamin D receptor (VDR) 

and the calcium sensing receptor (CaSR), which normally act as part of a 

negative feedback loop, are decreased in renal failure50 and SHPT51, 52 

respectively.  It has also been suggested that in later stages of CKD the 

parathyroid gland may become resistant to the inhibitory signals produced by 

FGF-23, thus allowing high levels of FGF-23 and PTH to co-exist53.  It has 

been suggested that down regulation of klotho and FGF receptor 1 underlie 

this change, as parathyroid tissue of chronic haemodialysis patients showed 

reduced expression of these receptors54.  

 

In the absence of correctly functioning negative feedback loops, levels of PTH 

continue to rise and hypercalcaemia can be observed in later stages of CKD.  

Additionally, the management of SHPT of CKD and 1,25(OH)2D3 deficiency 

can involve calcium-based phosphate binders and vitamin D analogues55 both 

of which contribute to the generation of hypercalcaemia.  

 

 

1.2.1.2  Hyperphosphatemia as risk factor / contributor to vascular 

calcification  

Clear associations between serum phosphate and cardiovascular outcomes 

and mortality have been reported in haemodialysis patients1, 56-61 and in the 

general population62, 63.  The importance of phosphate regulation in the 

calcification process can also be observed in vivo by examining the 

phenotype of mice with a targeted deletion of either FGF-2364, 65 or klotho66 

both of which show hyperphosphatemia accompanied by enhanced vascular 

calcification.  Furthermore, in vitro it has been shown that culturing SMC in 
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conditions of elevated phosphate produces mineralisation71-78.  A number of 

potential mechanisms underlying phosphates pro-calcifying effect exist 

including, apoptosis and initiation / promotion of osteochondrogenic 

differentiation, discussed below. 

 

Phosphate has been shown to dose-dependently increase SMC apoptosis67, 

known to be important in the regulation of SMC calcification68.  

Downregulation of Gas6 (growth arrest-specific 6), a known apoptosis 

inhibitor in SMCs69, and its receptor Axl. is detected with exposure to 

increasing phosphate concentrations67.   

 

In response to increased phosphate, a number of authors have shown 

upregulation of osteochondrogenic gene expression (Runx2, osterix, alkaline 

phosphatase, osteopontin) accompanied by down regulation of SM lineage 

gene expression (including α-sma, SM22α) in SMC cultures30, 70-73.  

Phosphate-induced osteochondrogenic conversion has also been detected in 

vivo by El-Abbadi et al. (2009) showing upregulation of Runx2 and 

osteopontin with simultaneous down regulation of SM22ɑ in uremic mice fed 

with a high phosphate diet74.   

 

The mechanisms underlying phosphate-induced calcification have been 

shown to involve a number of different proteins / pathways.  Phosphate entry 

into SMCs, via Pit-1, has been shown to contribute to the process of 

phosphate-induced calcification75.  Loss of Pit-1, in vitro, and therefore 

inhibition of phosphate uptake reduces calcification and prevents 

Cbfa1/Runx2 and osteocalcin expression75.   

 

Also, recent reports highlight BGP as an inducer of H2O2, and more 

specifically mitochondrial superoxide76.  Blockade of mitochondrial ROS can 

abrogate β-glycerophosphate -induced calcification, and reduce expression of 

the osteogenic genes, Cbfa1 and Msx276.  Furthermore, in a rat model of 

dietary adenine-induced chronic renal failure, blockade of mitochondrial ROS 

by the use of MnTMPyP (Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin 
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pentachloride) reduces aortic ROS levels, p65 activation, and Ca2+ 

deposition76.   

 

Additionally the presence of BMP-2 is required for phosphate-induced 

mineralisation.  Addition of noggin, a BMP2 inhibitor, can block 

mineralisation77 (for a more comprehensive review of the effects of phosphate 

on SMC calcification see Shanahan et al. (2011)78). 

 

However, despite a seemingly key role for phosphate in vascular calcification, 

experiments performed using serum from uremic patients show that 

calcification occurs irrespectively of phosphate levels73, suggesting that other 

factors are required to induce mineralisation in the vasculature. 

 

 

1.2.1.3  Hypercalcaemia as risk factor / contributor to vascular 

calcification  

Hypercalcaemia has been shown to contribute to the increased morbidity in    

dialysis patients58, 61, 79.  Treatment with calcium-based phosphate binders vs. 

calcium free phosphate binders has been shown to accelerate arterial 

calcification in randomized control trials79, 80, however studies showing that 

calcium-based phosphate binders increase cardiovascular mortality are 

lacking in patients with ESRD81.    

 

The role of Ca2+ in calcification has received less attention than phosphate.  

On the basis of in vitro findings it is still unclear if Ca2+ can produce SMC 

mineralisation in the absence of phosphate, as contradictory reports exist82-84.  

Yang et al. (2004) reported Ca2+-induced mineralisation under normal 

phosphate conditions but observed that increased phosphate levels 

accelerated mineralisation, suggesting independent and synergistic 

mechanisms82, also observed by Reynolds et al. (2004)84.  However, Alam et 

al. (2009) failed to detect any mineralisation without an external phosphate 

source, suggesting phosphate plays a permissive role84.  Interestingly, when 

combined it appears that for a given Ca x P product elevated Ca2+ is more 

potent at inducing SMC calcification than elevated P85, 86. 
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Whether Ca2+-induced mineralisation is mediated by osteochrondogenic 

differentiation remains unclear.  Upregulation of alkaline phosphatase mRNA  

expression was detected in Ca2+ treated SMCs82, however a recent report 

shows that when Ca2+ is added to high phosphate media the level of alkaline 

phosphatase activity detected decreases86.   

 

To date, the role of Ca2+ as a promoter of calcification has largely focused on 

its effects on cell apoptosis and release of matrix vesicles.  Apoptosis has 

been demonstrated to precede calcification, and apoptotic bodies can initiate 

calcification in a similar way to matrix vesicles (MVs)68.  Matrix vesicles have 

been identified in mineralising tissues where they are believed to be released 

into the extracellular space and attach to matrix proteins initiating 

mineralisation87.  Exposing SMCs to elevated levels of Ca2+ promotes 

apoptosis and the release of matrix vesicles83.  In addition to promoting their 

formation, Ca2+ can also increase the mineralisation potential of MVs, 

increasing the level of Ca2+ incorporation83 and potentially the level of 

phosphate incorporation via upregulation of Pit-182.   

 

Under normal conditions, MV contain inhibitors of calcification, fetuin-A and 

MGP (discussed in sections 1.2.2.1 and 1.2.2.2 respectively), preventing 

mineralisation, however in CKD / ESRD lower levels of inhibitors are 

detected88.  Interestingly, Ca2+ has been shown to increase fetuin-A uptake 

into matrix vesicles83, 89, 90 and upregulate MGP production91, 92 potentially as 

an adaptive response.  However in the case of MGP it has been suggested 

that unprocessed MGP may be produced as a consequence of ER stress 

driven by prolonged exposure to elevated Ca2+, and that MGP levels 

eventually deplete from MV93. 

 

 

1.2.2  Inhibitors of vascular calcification  

The existence of inhibitors of calcification has long been suspected as serum, 

even of a healthy individual, is supersaturated with Ca2+ and phosphate and 

thus a mechanism(s) to prevent the development and progression of 
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extraskeletal calcification must be in place.  Even in CKD patients, a small 

subset of patients do not develop calcification despite exposure to a similar 

uremic environment79.   

 

A number of calcification inhibitors have been identified including fetuin-A, 

matrix Gla protein (MGP), osteopontin (OPN), pyrophosphate (PPi) and 

osteoprotegerin (OPG).  Evidence suggests that these proteins may be 

deficient or non-functional in patients with CKD, and many have been 

correlated with calcification scores in CKD patients88, therefore increasing the 

likelihood of calcification (see Figure 1.6).  Our understanding of the role of 

these physiological inhibitors has been assisted by recent animal knockout 

models, discussed below.   

 

 

 

 

Figure 1.6  Schematic diagram illustrating the balance of inhibitors and inducers in 

normal physiology and CKD.  In normal physiology, calcification inhibitors protect from 

spontaneous calcification.  However, with reduced expression of inhibitors and additional 

drivers of calcification (hyperphosphatemia and hypercalcaemia) the balance shifts in CKD.  

MGP; matrix gla protein, OPN; osteopontin, PPi; pyrophosphate, OPG; osteoprotegerin, 

SHPT; secondary hyperparathyroidism. 

 

 

1.2.2.1  Fetuin-A  

Fetuin-A is a circulating serum protein that acts as a potent inhibitor of 

extraosseous calcification, accounting for ~50% of the calcification inhibitory 

capacity of serum94.  This inhibition is achieved by formation of colloidal 
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spheres with Ca2+ and PO4
3-, referred to as calciprotein particles95, 96 thereby 

preventing precipitation of basic calcium phosphate.  Fetuin-A can also 

modulate the calcification process locally.  Fetuin-A has been observed at 

sites of injury where it is internalised by SMCs, via an annexin-dependent 

mechanism97, inhibiting apoptosis of smooth muscle cells (SMCs) and 

preventing mineral nucleation from MVs89.  

 

The role of fetuin-A as an important mineralisation inhibitor was demonstrated 

when examining animals with targeted disruption of the fetuin gene.  Despite 

the mild calcification phenotype98, 99 of fetuin-A knock out mice (Ahsg -/-), 

extensive calcification was observed when mice were either a) on a high 

phosphate and vitamin D diet or b) normal diet and crossed onto a strain of 

calcification-prone mice (DBA/2)99.  Westenfield et al. (2004) produced an 

additional model, a double knock out of fetuin-A and apolipoprotein E (Ahsg -

/-, ApoE -/-) and, in support of existing findings, confirmed that fetuin-A 

deficiency enhances calcification100.  With induced CKD (i.e. a high phosphate 

diet and unilateral nephrectomy), these animals (Ashg -/- ApoE -/-) showed 

more extensive aortic calcification compared to their WT and ApoE-/- 

counterparts receiving the same treatment100.   

 

Clinically, the role of fetuin-A is more difficult to define as fetuin-A acts as an 

acute phase reactant and thus its production is down regulated with systemic 

inflammation.  However, significantly lower levels of fetuin-A have been 

observed in dialysis patients (vs. normal population)101, and associated with 

increased all-cause cardiovascular mortality101, 102.  A polymorphism in the 

fetuin-A gene (T256S) predisposes patients to low levels of serum fetuin-A 

and is associated with increased mortality versus those patients carrying the 

alternative polymorphism103, 104.  While none of these studies assessed the 

relationship between fetuin-A and the extent of vascular calcification, Moe et 

al. (2005) reported an inverse relationship between circulating levels of fetuin-

A and coronary calcification scores, in CKD stage 5 patients88.  Similar 

observations have also been noted in patients without CKD105, 106.  Moreover, 

serum from dialysis patients shows a reduced capacity to inhibit Ca x P 

product precipitation in vitro versus serum from normal controls, an effect that 
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can be reversed by addition of purified fetuin-A to physiological 

concentrations101.   

 

 

1.2.2.2  Matrix γ-Carboxyglutamic Acid Protein   

Matrix Gla (γ-carboxyglutamic acid) protein (MGP) was the first calcification 

inhibitor to be characterised in vivo107 and probably the most widely known.  

To produce its anti-calcification effects, MGP requires post translational 

gamma carboxylation107.  Out of 5 of the glut residues, 4 need to be converted 

to gla, for MGP’s inhibitory actions108, a process which is dependent on the 

availability of vitamin K.  Additionally, a second series of post translational 

modifications appear to be required to ensure successful secretion and 

functionality of MGP: phosphorylation of 3 serine residues109. 

 

MGP is expressed and secreted by SMCs 110, 111, and is found in high 

abundance in areas of calcification both in vitro111 and in vivo112, 113.  However 

it is the uncarboxylated form that is predominantly found in areas of 

calcification114.  MGP is believed to work via 1) direct inhibition of Ca2+ 

precipitation and crystalisation as a result of Ca2+-binding to Gla motif110, 115, 

and 2) antagonising bone morphogenetic protein 2 (BMP-2), which plays a 

role in osteoblast differentiation and thus bone formation116-118 and bone 

morphogenetic protein 4119.  Interestingly, the effect of MGP, in vitro, is 

dependent on the relative amounts of BMP-2 present and when BMP-2 is low 

MGP has been shown to promote calcification120.  MGP has also been 

identified as being associated with matrix vesicles83 however whether its 

mechanism of inhibition in matrix vesicles is the same as above, or MGP has 

other actions, is unknown.   
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Figure 1.7  Mineralised blood vessels in MGP deficient mice (taken from Luo et al. 

(1997)
107

). 

4 week old MGP -/- mice show prominent calcification of the arteries.  Calcified arteries 

resisted the alkaline digestion of soft tissues and show alizarin red staining, for mineral. 1 

carotid artery, 2 cervical trunk, 3 anxillary artery, 4 unnamed, 5 aortic arch, 6 aorta, 7 

intercostal artery, 8 coeliac artery, 9 renal artery, 10 iliac artery 

Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G. Spontaneous 

calcification of arteries and cartilage in mice lacking matrix gla protein. Nature. 1997;386:78-

81 

 

Deletion of the MGP gene in mice results in extensive arterial calcification 

within a few weeks (Figure 1.7) and aortic rupture causing premature death107.  

Restoration of MGP expression in SMC can rescue the calcification 

phenotype108.  Clinical data also suggest a role for MGP as a calcification 

inhibitor; an inverse association exists between serum MGP levels and 

calcification121, 122.  Additionally, mutations in the MGP gene resulting in 

truncated forms of MGP, i.e. Keutel syndrome123, produce widespread 

calcification in the tracheobronchial tree123, 124.  However, unlike in vivo 

models, patients survive until adulthood, suggesting that the truncated forms 

of MGP may retain some biological activity.  Additionally in CKD, an inverse 

relationship between total uncarboxylated MGP and vascular calcification is 

reported in haemodialysis patients125-127.  However, recently in a report 

examining all CKD patients and focusing only on dephosphorylated and 

uncarboxylated MGP (dp-ucMGP), it was reported that plasma dp-ucMGP 

increases progressively with CKD stage and is positively association with the 

severity of arterial calcification128 suggesting that the dephosphorylated and 

uncarboxylated form of MGP is regulated differently to the uncarboxylated 

form.     
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1.2.2.3 Osteopontin 

Osteopontin (OPN) is a Ca2+-binding, phosphorylated glycoprotein normally 

found in mineralised tissues where it is involved in bone remodelling: 

promoting osteoclast function through αvβ3 integrin129 and inhibiting apatite 

crystal growth130.  Whilst OPN is not normally present in soft tissues it is 

secreted by macrophages, T cells, haematopoietic cells, SMCs, fibroblasts, 

and myocardial cells131. 

 

Whilst loss of OPN alone does not cause spontaneous calcification, in the 

presence of pro-calcifying stimuli, deficiency of OPN in vivo results in 

accelerated calcification132.  Similarly to MGP, the anti-calcification abilities of 

OPN are dependent on post translational modifications, its inhibitory effect 

being directly dependent on the number of phosphorylated sites133.    

 

In injured / atherosclerotic vessels, OPN is found in abundance134-140 and 

plasma OPN levels are significantly higher in patients with coronary 

calcification141.  OPN exists as a component of human atherosclerotic 

lesions137, 142 and is observed in the arteries of MGP null mice71.  In patients 

with coronary artery disease OPN correlates to disease severity, independent 

of conventional risk factors143.  Whilst a protective action for OPN is assumed, 

data supporting the suggestion of an atherogenic role for OPN rather than a 

protective one also exist144.   

 

 

1.2.2.4 Pyrophosphate 

Pyrophosphate (PPi) has demonstrated inhibition of mineralisation both in 

vivo145 and in vitro146, inhibiting hydroxyapatite formation via a direct 

physicochemical reaction147.  It has been suggested that PPi may also play a 

role in stabilising the SMC phenotype and preventing transdifferentiation148.   

 

To maintain PPi levels, its generation and release is modulated via 

ectonucleotide pyrophosphatase/phosphodiesterase I (ENPP1) and Ank 

respectively, and its breakdown via tissue nonspecific alkaline phosphatase 

(TNAP).  Studies in vivo and ex vivo report that deficiencies in ENPP1149 or 
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Ank, a pyrophosphate transporter150, or overexpression of TNAP149 results in 

extensive calcification.  Idiopathic infantile arterial calcification (IIAC) results 

from a genetic deficiency of pyrophosphate and in most cases this is related 

to deficiencies in ENPP1151.  These patients exhibit severe medial arterial 

calcification at an early age151, 152, and often die as a result of heart failure 

soon after birth highlighting the importance of pyrophosphate control.   

 

In vivo, upregulation of TNAP has been demonstrated in the aorta of uremic 

animals153 which may lead to vascular deficiency of PPi in CKD.  In fact, PPi 

levels are reported to be reduced in haemodialysis patients154, and a negative 

association with the severity of vascular calcification exists155.  Administration 

of exogenous PPi shows substantial inhibition of vascular calcification in 

uremic rats, without detrimental effects on bone156.  Despite the short half life 

of pyrophosphate, inhibition of calcification was achieved with small, transient 

elevations in plasma PPi and therefore PPi has been suggested as a therapy 

for uremic vascular calcification156. 

 

 

1.2.2.5 Osteoprotegerin   

Osteoprotegerin (OPG) is a member of the tumour necrosis factor (TNF)-

related family and is involved in bone metabolism.  In mice, the importance of 

OPG in vascular calcification is clear with OPG null mice (OPG -/-) showing 

both severe osteoperosis and spontaneous calcification157.  In vivo, loss of 

OPG results in markedly increased calcification when animals are subjected 

to pro-calcifying stimulus158 or pro-atherogenic conditions159.  Additionally, 

treatment with OPG can reduce the extent of calcification in animals prone to 

develop atherosclerosis159, 160 and calcification161.  

 

However the role of OPG in humans appears to be different.  Clinical studies 

have consistently reported that serum OPG levels are positively associated 

with the progression of coronary calcification88, 162-164.  Whilst it’s possible that 

OPG may be upregulated in response to vascular damage to exert its 

protective role, detrimental effects on the vasculature have also been 



 

 19 

documented165, 166, however further work is required to complete our 

understanding. 
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1.3 Introduction to the calcium sensing receptor 

The calcium sensing receptor (CaSR) is central to the calcium homeostatic 

mechanism.  The CaSR senses free extracellular calcium ions and couples 

this information to intracellular signalling pathways enabling the cell to 

respond to increases in extracellular Ca2+ concentrations.  It is highly 

expressed in the parathyroid chief cells where it acts as the sensor 

modulating the synthesis and secretion of PTH.  High levels of extracellular 

Ca2+ activate the CaSR, which in turn inhibits the expression and secretion of 

PTH as well as inhibiting parathyroid cell proliferation167.  In contrast, when a 

fall in serum Ca2+ is sensed by the CaSR, increased release of preformed 

PTH is detected and, within hours, increased transcription of pre-pro-PTH 

mRNA168.  CaSR has also been shown to be highly abundant in the kidney169 

and thyroidal cells170 where it further contributes to Ca2+ homeostasis; 

controlling urinary Ca2+ excretion (reviewed by Riccardi and Brown (2010)171) 

and the release of calcitonin, respectively.   

 

The importance of CaSR in Ca2+ homeostasis is highlighted by the phenotype 

resulting from CaSR mutations in humans, including familial hypocalciuric 

hypercalcaemia (FHH; inactivating), neonatal severe primary 

hyperparathyroidism (NSHPT; inactivating), autosomal dominant 

hypocalcaemia (ADH: activating) and Bartter syndrome type V (activating).  

Heterozygous inactivating mutations of the CaSR gene typically cause FHH 

and homozygosity of the mutation manifests as NSHPT.  Patients present 

with hypercalcaemia and relative hypocalciuria.  The hypercalcaemia of FHH 

is mild to moderate, whereas children with NSHPT can develop severe 

hypercalcaemia and without quick intervention neurodevelopmental damage 

or fatality may result.  ADH is characterized by hypocalcaemia accompanied 

by hypercalciuria and an inappropriately low concentration of PTH.  Patients 

with activating CaSR mutations and features of Bartter syndrome additionally 

exhibit hypokalemia with renal potassium wasting, hyperreninemia, and 

hyperaldosteronemia.  CaSR autoantibodies have also been identified that 

can be activating or inactivating in nature, mimicking ADH172 and FHH172-174, 

respectively.   
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1.3.1 Structure and signalling of the CaSR  

The CaSR is a G-protein coupled cell surface receptor (GPCR), originally 

cloned from bovine parathyroid gland, and is well conserved showing a large 

degree of homology between different species.  The human CaSR gene is 

located on chromosome bands 3q13.3-21.  The cDNA has a coding region of 

3234 bp, producing a 1078aa protein.  Several splice variants have been 

reported175-177 however for many of these the functional significance is 

unknown.    

 

The CaSR belongs to family 3 (or C) G-protein coupled receptors.  Family 3 

represents a small subfamily of GPCRs including metabotropic glutamate 

receptors (mGluR1-8), GABAB receptors, GPRC6A responsible for sensing 

basic amino acids, sweet taste receptors (T1R1-3) and putative pheromone 

receptors (V2Rs).  Figure 1.8 shows the topology of the CaSR with its large 

extracellular domain (ECD) (612 residues), a transmembrane domain (TMD) 

of 250 amino acids containing the 7 membrane spanning helices, and an 

intracellular C-terminal domain (ICD) of 216 amino acids.   

 

Characteristic of family 3 GPCRS, the CaSR possesses an unusually large N-

terminal extracellular domain (ECD).  The ECD contains a bi-lobed venus fly 

trap domain, cysteine-rich domain and several N-linked glycosylation sites.  

The venus fly trap domain shows homology to the bacterial periplasmic 

binding protein178.  Based on the crystal structure of mGluR1 it has been 

suggested that the VFTD can exist in open and closed confirmations and 

agonist binding is thought to stabilise the closed confirmation179, 180.  The 

cysteine-rich domain is a second characteristic feature of family 3 GPCRs, 

present in all except orphan and GABAB receptors, and in the case of the 

CaSR has been shown to be critical for CaSR mediated signalling181.  Upon 

cloning of the CaSR, 11 putative N-linked glycosylation sites were identified 

and since, mutagenesis studies have highlighted the importance of 

glycosylation in cell surface expression of the CaSR182.   
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Figure 1.8 Schematic representation of the CaSR (adapted from Saidak et al. (2009)
183

).  

Predicted Ca
2+

 bindings sites are illustrated in purple, yellow, pink, green and blue
184

. 

Residues involved in both calcimimetic and calcilytic binding are shown in black, and those 

only involved in calcilytic binding in orange
185-187

.   

Saidak Z, Brazier M, Kamel S, Mentaverri R. Agonists and allosteric modulators of the 

calcium-sensing receptor and their therapeutic applications. Mol Pharmacol. 2009;76:1131-

1144 

 

Thirdly, all family 3 GPCRs function as dimers.  Dimerisation occurs in the 

endoplasmic reticulum through intermolecular disulfide bonds involving 

cysteines 129 and 131, and non-covalent interactions188-191.  The cell-surface 

CaSR is typically present in a homodimeric configuration, however instances 

of heterodimerisation of CaSR with other family 3 receptors has also been 

reported192-194. 

 

As a GPCR, the CaSR coordinates its signalling cascades via heterotrimeric 

G proteins.  The nature of the signalling pathways activated, i.e. the G 

proteins recruited, in response to CaSR activation varies depending on cell 

type and the CaSR has been labelled as a pleiotropic GPCR that can couple 

to more than one type of G-protein195.  A large amount of work has focused on 

the signalling in HEK cells transfected with the CaSR (CaSR-HEKs).  

Activation of the CaSR can stimulate phospholipase A2 (PL2A), C (PLC) and D 

(PLD)196.  Stimulation of PLC leads to the production of IP3 and activation of 

protein kinase C (PKC).  IP3 binds to IP3 receptors on the endoplasmic 

reticulum membrane, which causes Ca2+ mobilisation within the cell.  In 

parallel to activation of PLC, activation of the CaSR stimulates 

phosphatidylinositol 4-kinase (PIK4), involved in the first step in inositol lipid 

biosynthesis, via Gαq.  The CaSR not only interacts with Gαq, but can also 

This image has been 

removed by the author for 

copyright reasons. 
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signal via Gαi, which results in the inhibition of adenylate cyclase and thus 

reduction of cyclic adenosine monophosphate (cAMP) levels197.  Finally, 

another important group of signalling molecules that can be activated by 

CaSR is the mitogen activated protein kinases (MAPK)198; which often result 

in changes in gene expression.  Whilst by no means an exhaustive list, genes 

known to be induced by MAPK signalling include COL1A1 (coding collagen 

1)199, 200, EGR1 (coding early growth response protein 1)201, 202, FOS203, 

HSPA5 (coding heat shock 70 kDa protein 5)204, HSPB1 (coding heat shock 

27 kDa protein)205, JUN206 and MYC207.   

 

Phosphorylation of the CaSR can alter the receptors signalling potential.  At 

least 5 PKC sites exist (T646, S794, T888, S895 and S915) )208 and 2 

predicted protein kinase A (PKA) sites (S899 and S900)209.  PKA 

phosphorylation is believed to contribute only a minor role in the regulation of 

CaSR209, however the effects of PKC phosphorylation on PTH secretion and 

Ca2+ mobilisation in the parathyroid were well known prior to the discovery of 

CaSR210, 211.  Mutation of each PKC site highlighted the importance of Thr888 

in the regulation of CaSR signalling; producing a substantial shift in EC50, 

whilst the other sites produces little (S895 and S915) or no change (T646 and 

S794)212.   PKC mediated inhibition of CaSR signalling can be stimulated by 

receptor activation, allowing for a negative feedback loop213.  

 

CaSR signalling has also been shown to be influenced by the presence of 

filamin A.  Filamin A is a cytoskeletal scaffold protein that has been shown to 

be important for CaSR mediated ERK activity214-216, Rho signalling217, 218 and 

JNK activation215.  In addition to its role in signalling, filamin A may also allow 

for greater stability of the CaSR at the plasma membrane219.  CaSR 

expression was shown to double in M2 cells when filamin A, not a natural 

expression, was transfected219.  Other binding partners of the CaSR include 

the inwardly rectifying K+ channels Kir4.1 and 4.2, dorfin, involved in the 

ubiquitination of the CaSR, the receptor activity-modifying proteins (RAMP) 

RAMP-1 and RAMP-3 involved in receptor trafficking and β-arrestins 

regulating internalisation and degradation (reviewed in detail by Huang and 

Miller (2007)220). 
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1.3.2  Pharmacology of the CaSR 

A considerable number of ligands modulate CaSR activation and can be 

divided into 2 groups: orthosteric modulators which act on the CaSR directly 

or allosteric modulators, which modulate the effects of orthosteric modulators.  

Moreover the CaSR is responsive to changes in ionic strength221 and pH222.    

 

Whilst Ca2+ is the primary orthosteric agonist of the CaSR, many other 

orthosteric agonists exist.  A number of divalent and trivalent cations can 

activate the CaSR i.e. Gd3+, Al3+, Sr2+, Mn2+, Ni2+, Ba2+, and Mg2+ 223, however 

Ca2+ and Mg2+ are the only endogenous divalent agonists.  Other orthosteric 

agonists, which are all positively charged, include polyamines and 

aminoglycoside antibiotics223.   

 

The hill co-efficient for CaSR indicates that 3–5 Ca2+ ions bind 

cooperatively224 and initial work by Huang et al. (2007) identified 2 regions, 

amino acids 222–235 and 383–408, which when removed from the CaSR 

altered intracellular responses to Ca2+.  Additionally, insertion of these 

sequences into non-Ca2+ binding scaffold proteins gave the new protein the 

ability to bind Ca2+225.  More recent modelling work by the same group, 

utilised the crystal structure of mGluR1, and identified 5 potential Ca2+ binding 

sites in the ECD184.  Whilst binding of CaSR’s other cation agonists was not 

examined at each of the potential sites individually, Mg2+ and La3+ were 

shown to bind within select subdomains of the CaSR ECD containing 2-3 of 

the potential binding sites and competition between the agonists visible.  

Whilst, the ECD is believed to possess the primary extracellular ion binding 

site(s), it is not the only site for orthosteric binding.  Ray and Northup et al. 

(2002) report a response to Ca2+, Mg2+ and Gd3+ in a CaSR mutant lacking 

the ECD (T903-Rhoc), suggesting at least one other site within the TMD also 

participates in cation sensing226.   

 

Allosteric modulators independently have no effect on receptor activity (in the 

case of the physiological CaSR) but in the presence of an orthosteric agonist 
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can influence receptor activity i.e. shift the dose-response curve.  Both 

positive and negative allosteric modulators have been identified that can 

potentiate or attenuate the response to orthosteric agonists respectively.   

 

L-amino acids, in particular aromatic L-amino acids have been demonstrated 

to act as positive allosteric modulators of the CaSR227.  In addition to 

endogenous positive allosteric modulators, small molecule drugs (NPS R-568, 

AMG641, AMG073, Cinacalcet), also known as calcimimetics, have been 

developed.  Most calcimimetics are phenylalkylamines and are derived from 

Ca2+ channel blockers. Cinacalcet is approved for use in hyperparathyroid 

states (i.e. primary and secondary hyperpathyroidism and parathyroid 

carcinoma).  Interestingly, further potential for calcimimetics may exist as 

recent reports suggest the possibility of using calcimimetics to rescue CaSR 

mutants228. 

 

Despite their common actions, the binding sites for L-amino acids and 

calcimimetics appear to be distinct.   A chimeric receptor was developed in 

which the CaSR TMD was replaced with that of the rat mGluR1 receptor.  

While L-Phe enhanced the sensitivity of the chimeric receptor to Ca2+, R-467, 

a calcimimetic, produced no effect.  However, when assessed in an N-

terminally truncated CaSR R-467, but not L-Phe, increased receptor 

sensitivity229.   

 

Negative allosteric modulators of the CaSR, known as calcilytics, have also 

been developed (SB-751689, SB-423557).  As with the calcimimetics, the 

calcilytics are believed to bind in the 7TMD185, 187, and in some cases the 

binding site may overlap with the calcimimetics187.  No calcilytic is currently 

approved for use, however their potential as bone anabolic agents are being 

investigated for the treatment of osteoporosis.   
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1.4  Calcimimetics in vascular calcification 

The central role of CaSR in SHPT makes it an interesting target to attempt to 

restore mineral imbalance and potentially reduce risk factors for vascular 

calcification in CKD.  Currently calcimimetics represent the only available 

treatment of SHPT in CKD stage 5 patients which allows control of high PTH 

levels in the absence of a concomitant increase in serum Ca2+ and 

phosphate230, 231 and have been shown to be effective in this patient group.  

Therefore it was hypothesised that calcimimetics may also contribute to 

slowing the progression of vascular calcification in the setting of CKD.   

 

 

1.4.1 A systemic role for calcimimetics in the protection against vascular 

calcification  

Whilst clinical data are currently lacking to confirm or refute the ability of 

calcimimetics to attenuate vascular calcification in CKD patients, it is an area 

actively being researched and data from small scale studies emerging.  

Existing data report that cinacalcet treatment reduces cardiovascular-related 

hospitalization (39%) in haemodialysis patients with uncontrolled 

hyperparathyroidism232 and prospective studies investigating cardiovascular 

events in dialysis patients are ongoing (EVOLVE study; Evaluation of 

Cinacalcet HCl Therapy to Lower CV Events)233.  More specifically, attention 

is now also focused on vascular calcification as a primary endpoint.  A small 

scale, prospective, observational study has reported the ability of cinacalcet to 

reduce arterial stiffness of SHPT with CKD234 and the effect of cinacalcet plus 

low dose vitamin D on vascular calcification in CKD patients receiving dialysis 

is being addressed in the ADVANCE study235.  However, as we await robust 

clinical data, strong support for a protective role of calcimimetics comes from 

numerous in vivo studies.     

 

A number of uremic animal models exist including 5/6 nephrectomy and 

adenine-induced uremia.  Treatment of uremic animals with calcitrol and/or a 

high phosphate diet can be used to accelerate calcification in these models.  

The effect of calcimimetics in vivo have been investigated by a number of 

groups, and consistently show reduced vascular calcification and increased 
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survival236-239.  This benefit has been shown with different calcimimetic 

compounds including cinacalcet237, R-568238 and AMG641236, 239(Figure 1.9) 

eluding to a class effect.  As expected these actions are accompanied by 

alterations in serum biochemistry i.e. reductions in serum Ca2+ 92, 236, 237, 239, 

phosphate236, 239 and PTH236, 237 towards levels of non-uremic animals.  

Reduction in serum PTH is also accompanied by reductions in parathyroid 

gland volume in the order of around 50%236, 237.    

 

 

1.4.2 A protective role for calcimimetics on smooth muscle cells 

For the most part the beneficial actions of calcimimetics in vascular 

calcification have been attributed to reducing levels of the non-traditional risk 

factors (i.e. Ca2+, phosphate, PTH), supported by the observation that a 

parathyroidectomy can also suppress calcification237.  However, Ivanovski et 

al. (2009) surprisingly showed that R-568 not only to reduced intimal and 

medial calcification in uremic artherosclerotic mice, but also the progression of 

atherosclerosis240.  R-568 reduced the atherosclerotic plaque area fraction 

suggesting R-568 may have a more direct action on the vasculature 

responsible for eliciting this protection.  Moreover, with the identification of the 

CaSR in the vasculature, the possibility of a more direct effect of the 

calcimimetics also emerged.   

 

 

 

 

 

 

 

Figure 1.9  Protective effect of AMG641 in aortic mineralisation in adenine fed animals 

(taken from Henley et al. (2009)
236

).  Von Kossa-stained sections of aortas showing 

mineralisation from animals fed adenine (0.75%) for 4 weeks and treated for 4 weeks with 

either (A) AMG-641 (3 mg/kg, p.o.); (B) 10% captisol-vehicle for AMG 641 (1 ml/rat, p.o.)  

Henley C, Davis J, Miller G, Shatzen E, Cattley R, Li X, Martin D, Yao W, Lane N, Shalhoub V. 

The calcimimetic amg 641 abrogates parathyroid hyperplasia, bone and vascular calcification 

abnormalities in uremic rats. Eur J Pharmacol. 2009;616:306-313 

This image has been 

removed by the author for 

copyright reasons. 
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1.4.2.1  CaSR expression in SMCs 

CaSR has been convincingly shown to be expressed in the vascular 

endothelium241, where upon activation it is responsible for an increase in 

intracellular Ca2+ and thus opening IKCa channels, suggestive of a role in 

controlling arterial blood pressure.  In addition in areas of calcification, 

phagocytic cells expressing the CaSR have been identified in uremic rats239.  

However it is the identification of the CaSR in SMC84, 92, 242-244 that has 

attracted the most attention.   

 

The presence of CaSR in SMCs was once a controversial topic.  Within the 

literature, some groups have failed to detect CaSR91, 245, 246.  However, CaSR, 

both in its protein and mRNA form, has been demonstrated in rat, bovine and 

human SMC84, 92, 242-244.  Interestingly, in 2 reports failing to detect CaSR, only 

the presence of CaSR mRNA was investigated91, 246, known to be in low 

abundance in SMC.  Additionally CaSR expression has been shown to be 

sensitive to culture conditions; Ca2+ concentrations of 1.8 mM present in 

normal DMEM (Dulbecco's Modified Eagle Medium) can result in reduced 

CaSR expression84.  Recently the use of knock down technologies has 

confirmed the presence of a functional CaSR in SMC84, 247. 

 

Limited information exists as to the function of CaSR in SMC.  So far, CaSR 

activation has been shown to increase proliferation via the MEK / ERK 

signalling pathways242-244 and protect against apoptosis242, however the 

relevance of CaSR in these processes in vivo have not yet been shown.   

 

 

1.4.2.2.  SMC CaSR and mineralisation  

Evidence exists supporting a role for the SMC CaSR in the process of 

vascular calcification.  Reduced expression of CaSR is observed in calcified 

human arteries versus non-calcified arteries and loss of the CaSR in vitro has 

been convincingly shown to be increase SMC mineralisation84.  Transfection 

of BAoSMCs with a dominant negative construct of CaSR resulted in 

accelerated mineralisation, data shown in Figure 1.1084.  In vitro findings show 

that constant exposure to high extracellular Ca2+, a promoter of calcification, 
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results in reduced expression of the CaSR84.  Similarly, arteries of ESRD 

patients, who are typically exposed to a high extracellular Ca2+ concentrations, 

also show reduced levels of CaSR expression vs. general population243.  

Decreased expression of the SMC CaSR may be one of the changes in 

ESRD patients that increase their susceptibility to the development of 

vascular calcification.     

 

 

 

 

 

 

 

 

Figure 1.10  Overexpression of the dominant negative calcium sensing receptor 

(dnCaSR) enhances mineralisation (taken from Alam et al. (2009)
84

).   

Alam MU, Kirton JP, Wilkinson FL, Towers E, Sinha S, Rouhi M, Vizard TN, Sage AP, Martin 

D, Ward DT, Alexander MY, Riccardi D, Canfield AE. Calcification is associated with loss of 

functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovasc Res. 

2009;81:260-268 

 

In vitro, treatment of SMC with R-568 has been shown to delay the process of 

calcification84, 240.  These actions have been attributed to activation of the 

SMC CaSR as introduction of CaSR siRNA abolished this effect240.   Whilst 

the downstream mechanism contributing to the protective actions of 

calcimimetics on mineralisation is still under investigation, in vitro studies with 

a second calcimimetic, AMG641, show increased CaSR expression in 

BAoSMC92.  It is possible that by restoring CaSR expression, cells regain 

some protection against mineralisation.  Additionally, stimulation of CaSR with 

AMG641 in vitro has recently been shown to increase MGP expression by 

SMCs92, which may underlie their protective actions on mineralisation.   

This image has been 

removed by the author for 

copyright reasons. 
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1.5  Aims of this research  

Our understanding of the role of the CaSR in the modulation of calcification is 

by no means complete.  Whilst evidence points to a protective role for the 

CaSR, it is well   established that high concentrations of Ca2+, the major 

physiological agonist for the CaSR can trigger mineralisation of SMC, 

whereas positive allosteric modulation of the receptor appears to be protective.  

Distinct mechanisms of Ca2+ and calcimimetics must be at play, however the 

level of involvement of the CaSR in each of these processes is unknown.   

 

Whilst the activity of Ca2+ is certainly not limited to CaSR and calcification 

could be induced via a CaSR-independent mechanism, it is interesting that 

Gd3+ a second orthosteric agonist has also been shown to promote 

calcification in BAoSMC84.  Furthermore, common downstream actions are 

reported upon SMC treatment with Ca2+ or calcimimetics i.e. elevated MGP 

expression92, suggesting at least some shared mechanisms.   

 

Our understanding has, to some extent, increased recently as it has been 

shown that chronic stimulation with Ca2+ and Gd3+ result in down regulation of 

the SMC CaSR84 whereas AMG641 can increase SMC CaSR expression92, 

however the mechanisms involved in these differential process, and their 

relative contribution to SMC mineralisation, is unknown.   

 

Aims of research:  

1) To produce an explant culture of BAoSMC and in vitro model of 

calcification using methods described by Alam et al. (2009)   

2) Understand the relative involvement of CaSR in the effects of Ca2+ and 

calcimimetics on mineralisation:  

a. Test the differential effects of Ca2+ and calcimimetics on SMC 

mineralisation  

b. Test the hypothesis that the protective actions mediated by 

calcimimetics are related to their activity at the CaSR using 

pharmacological tools (research was performed prior to 

publication of data using siRNA to demonstrate CaSR mediated 

mechanisms) 
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3) Examine the signalling pathways activated by Ca2+ and calcimimetic 

treatment in attempt to  

a. Better understand the cellular consequences of CaSR activation 

in SMCs 

b. Evaluate the potential overlap between Ca2+- and calcimimetic-

induced activities 

c. Identify potentially protective signalling pathways mediated by 

the calcimimetics through CaSR activation  
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Chapter 2:  Methods 

 

2.1 Cell culture 

2.1.1  Isolation and culture of BAoSMC 

Bovine aorta was obtained from freshly slaughtered animals from a local 

abattoir.  The aorta was cut open longitudinally and a 2 cm2 section taken 

from the luminal face of the vessel wall, 20 cm below the left subclavian artery.  

The structure of the vessel wall is shown in Figure 2.1.  After thorough 

washing with sterile Hank’s balanced saline solution (HBSS; Invitrogen Ltd, 

Paisley, UK), the adventitia was removed by blunt dissection before removing 

the endothelial layer using a scalpel blade.  The aortic section was then 

further dissected, removing 2 mm2 sections of the medial layer and placing 

them luminal side down in a sterile 100 mm2 petri dish.    

 

 

 

 

 

 

 

Figure 2.1  Schematic diagram illustrating the structure of the aorta, showing the 

intima, smooth muscle cell containing media and adventita (taken from Ashley and 

Niebauer (2004)
248

).   

Ashley A.E. and Niebauer J (2004). Cardiology explained.  London, Remedica 

  

 

Aortic explants were cultured in Dulbeccos Modified Eagles Medium (DMEM) 

without CaCl2 (Invitrogen Ltd, Paisley, UK) containing 10% fetal calf serum 

(FCS), 100 U/mL penicillin, 100 g/mL streptomycin, 2 mM L- glutamine, 1 

mM sodium pyruvate and  1% non-essential amino acids.  To match 

physiological Ca2+ conditions, Ca2+ free medium was supplemented with 1 M 

CaCl2 to produce a final concentration of 1.2 mM CaCl2.  Amphotericin (1 

µg/ml; Invitrogen Ltd, Paisley, UK) was included in culture media for the first 2 

weeks to prevent fungal infections developing from the primary culture.  With 

This image has been 

removed by the author for 

copyright reasons. 



 

 33 

the exception of those stated all cell culture reagents were purchased from 

Lonza (Lonza Biologics plc, Tewkesbury, UK).   

 

Nine 2 mm2 sections were arranged within one Petri dish and medium was 

initially added dropwise to the fresh explants.  The following day, 15 ml of 

medium was added to the culture. BAoSMCs were first seen to migrate from 

the tissue explant at 5–7 days, at which point explants were removed. Cells 

were maintained at 37 °C and 5% CO2 and medium renewed every 2–3 days.  

Cells were used between passages 3–10 with medium changed every second 

day. 

 

  

2.1.2  Culture of human SMC 

Proliferating human aortic SMC (HAoSMC), and all culture media for human 

cell culture, were purchased from Promocell (Heidelberg, Germany) and used 

for signalling experiments.  HAoSMC were cultured in smooth muscle cell 

growth media containing 5 % FCS, 5 µg/ml insulin, 0.5 ng/ml epidermal 

growth factor and 2.0 ng/ml basic fibroblast growth factor (basal Ca2+ 

concentration equals 1.6 mM).  Cells were maintained at 37 °C and 5 % CO2 

and medium renewed every 2–3 days.  Cells were used between passages 3–

8 and split with a ratio of 1:2.  Subcultivation was performed with DetachKit 

(Promocell) which utilises a trypsin/EDTA solution to promote detachment and 

a serum-free trypsin neutralisation solution to inactivate the trypsin. 

 

 

2.2  Immunofluorescence 

2.2.1  α-smooth muscle actin (-sma) staining 

BAoSMC at passage 3 were plated on 4-well chamber slides (Thermo 

Scientific Inc, Essex, UK) at a density of 1 x 104 cells/cm2.  The next day cells 

were fixed in 50% methanol (2.5 min), 100% methanol (2.5 min) and 50% 

methanol (2.5 min).  After washing, BAoSMCs were incubated with α-sma 

monoclonal antibody (Sigma-Aldrich Co, Dorset, UK) 1:400 in 1% rabbit 

serum (Dako, Glostrup, Denmark) for 1 hr at RT.  After washing three times 
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with phosphate buffered saline (PBS), cells were incubated with rabbit anti-

mouse fluorescein isothiocyanate (FITC) 1:100 (Dako, Glostrup, Denmark) for 

40 min at RT in the dark.  From this point onwards all experimental 

procedures were performed in the dark.  Cell nuclei were stained with 4',6-

diamidino-2-phenylindole (DAPI; final concentration 4 g/ml) for 30 sec, 

before washing and mounting with Vectashield (Vector Laboratories Ltd., 

Peterborough, UK).  Immunostained BAoSMCs were viewed with an upright 

microscope (Olympus BX51, Olympus, Essex, UK) and images captured 

using a high-resolution camera (Coolsnap ES camera (Photometrics, Arizona, 

US) with MetaVue Software (Molecular devices, California, USA)).  Specific 

band pass filter sets for DAPI and FITC were used to prevent bleed through 

from one channel to the next.  Control experiments were performed where the 

primary antibody was replaced with mouse immunoglobulin (IgG2a) (1:400) 

(DakoCytomation, Cambridgeshire, UK). 

 

 

2.2.2  CaSR staining 

BAoSMC (passage 4–6) and HAoSMC (human aortic smooth muscle cells; 

passage 4–5) were plated at 1 x 104 cells/cm2 on a 4-well chamber slide.   

Cells were fixed for 20 min with 4% formaldehyde in PBS.  Non-specific 

binding was prevented by blocking with 4% rabbit serum (Dako, Glostrup, 

Denmark) in 0.2% bovine serum albumin (BSA; Sigma-Aldrich Co, Dorset, 

UK) in PBS for 1 hr at RT.  SMCs were incubated with CaSR antibody (Affinity 

BioReagents MA1-934, Rockford, Illinois, USA), diluted in 4% rabbit serum in 

0.2% bovine serum albumin at 1:200, overnight at 4 °C.  After washing three 

times, cells were incubated for 1 hr at RT with rabbit anti-mouse FITC 

(BAoSMC and HAoSMC), goat anti-mouse Alexa Flour 488 and 568 

(Molecular Probes, Oregon USA) (HAoSMC) all diluted in 4% rabbit serum in 

0.2% bovine serum albumin at 1:40.  Coverslips were mounted using 

Vectashield (Vector Laboratories Ltd., Peterborough, UK) and sealed with nail 

varnish.  Alternatively, as control experiments, the CaSR primary antibody 

was replaced with a mouse IgG2a (DakoCytomation, Cambridgeshire, UK) or 

removed completely and cells incubated with the secondary antibody alone.  
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Immunostained SMCs were viewed and images captured as above but 

including a band pass filter set for texas red.  

 

 

2.3 Mineralisation assays  

2.3.1  Ca2+ experiments 

BAoSMC (passage 5–8) were plated in 6-well plates (Corning Inc., New York, 

USA) at 1 x 104 cells/cm2 in 10% FCS-DMEM.  The following day medium 

was changed to 5% FCS-DMEM.  Upon confluence (~day 5) the incubation 

medium was switched to calcification medium i.e. medium supplemented with 

5 mM -glycerophosphate (BGP) (Sigma-Aldrich Co, Dorset, UK).  The first 

day of culture in the calcification medium was defined as day 0.  For Ca2+ 

experiments, BAoSMCs were incubated with different Ca2+ concentrations 

(1.2, 1.8 and 2.2 mM).  Treatment medium was changed every 2–3 days.  

Time to onset of mineralisation was variable between preparations and 

individual experiments.  Mineralisation was visualised using alizarin red dye 

which stains Ca2+ deposits red (see section 2.3.3) and quantified by dye 

elution (see section 2.3.3).  

 

 

2.3.2  Calcimimetic experiments 

BAoSMC (passage 6–9) were plated and maintained as above.  Upon 

confluence, cells were treated with medium supplemented with 5 mM -

glycerophosphate (BGP) containing different Ca2+ concentrations (1.2 mM, 

1.8 mM, 2.2 mM), as indicated, with or without the calcimimetic R-568 (N-[3-

[2-chlorophenyl]propyl]-[R]-α-methyl-3-methoxybenzylamine; 1 nM) or its 

isomer S-568 (1 nM).  The first day of culture in the calcification medium was 

defined as day 0.  Functional responses to calcimimetics have been 

previously shown to be elicited in SMC within the range of baseline Ca2+ 

concentrations used in this study (1.8 mM or 2.2 mM Ca2+)84, 92.  The dose-

dependent effects of AMG641 (10 pM, 100 pM, 1 nM) were also investigated.  

All calcimimetic compounds were provided by Amgen, Thousand Oaks, 

California.  R-568 and S-568 were diluted in distilled water and AMG641 in 
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1:1000 DMSO for the most concentrated solution (1 nM).  Upon formation of 

nodules and deposition of mineral, calcification was visualized by alizarin red 

staining which stains Ca2+ deposits red (see section 2.3.3) and quantified by 

dye elution (see section 2.3.3). 

 

 

2.3.3  Alizarin red staining 

To visually detect mineralisation, alizarin red staining was used which 

identifies calcium-rich deposits in culture by staining them red.  To perform the 

staining, first, medium was aspirated, BAoSMCs washed with PBS and fixed 

with 2% formaldehyde and 1% sucrose in PBS for 20 min.  After washing 

BAoSMCs with PBS, 40 mM Alizarin Red (pH 4.1–4.2) was applied to cells for 

20 min.  Excess stain was removed using by washing the BAoSMCs with 

distilled H20 (pH 7.0) for 20 min.  After drying by evaporation at RT, the 

BAoSMCs were viewed with an inverted microscope (Olympus IX51, Olympus 

Optical, London, UK) and images captured using an Olympus digital camera 

and analySIS imaging software (Olympus soft imaging systems, Munster, 

Germany). 

 

To quantify mineralisation the dye was eluted.  This was performed by treating 

stained BAoSMCs with 800 µl of 10% acetic acid to each well for 30 min while 

shaking to extract the Ca2+.  Cells were detached from the plate using a 

plastic scraper and the resulting solution (yellow) was collected and vortexed.  

Mineral oil was added to prevent evaporation and the solution heated to 85 °C 

for 10 min.  The solution was cooled on ice before centrifuging at 20,000 x g 

for 15 min.  The supernatant was transferred to a clean 1.5 ml eppendorf tube 

and 200 µl 10% ammonium hydroxide added to neutralise the acid.  150 µl of 

the resulting solution (pH should be 4.1–4.2) was added to a 96 well plate 

(Corning Inc., New York, USA) in triplicate and absorbance measured at 405 

nm.  

 

2.3.4  Ca2+ deposition assay 

To verify results generated with alizarin red staining a second method of Ca2+ 

detection was also employed.  The Ca2+ assay described detects total calcium 
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using the o-Cresolphthalein-calcium reaction which produces a vivid purple 

product that is absorbed between 560 and 590nm.   

 

BAoSMCs (passage 5–7) were plated in 6-well plates (Corning Inc., New York, 

USA) at 1 x 104 cells/cm2 and Ca2+ deposition assays performed in parallel to 

mineralisation assays.  Upon mineralisation, medium was aspirated and 

BAoSMCs washed twice with PBS.  Then, 500 µl 0.6 N HCl was added to 

each well and the plates incubated on a rotating platform overnight at 4 °C.  

The following day the HCl was removed from the wells and transferred to 

fresh 1.5 ml eppendorf tubes and kept for Ca2+ quantification.  BAoSMCs 

were then washed with PBS before adding 500 µl 0.1 M NaOH and shaking 

for 30 min.  Cells were scraped from the culture dish using a cell scraper and 

assayed for protein content using a BCA assay (Thermo Scientific Inc, Illinois, 

US) (see section 2.5).  Protein concentration was used to normalise the Ca2+ 

detected through the cresolphthalein method.   

 

HCl samples were assayed for Ca2+ quantification.  Samples (5 µl) were 

incubated in a 96-well plate along with 100 µl colour reagent  containing HCl, 

O-cresolphthalein complexone powder, hydroxyquinoline (stored in the dark 

and at 4 °C) and 100 µl AMP buffer (AMP reagent (2-amino-2-methyl-1-

propanol) dissolved in water and pH adjusted to 10.7, stored at 4 °C in dark) 

for 15 min and absorbance read at 570 nm.  A Ca2+ gradient was also 

included to create a standard curve for comparison.  A stock Ca2+ standard 

(50 mg/dl) was created using dry CaCO3 dissolved in water and concentrated 

HCl and stored in brown bottle at RT.  Stock Ca2+ solution was diluted to 

create Ca2+ standards at 5, 7.5, 10, 12.5 and 25 mg/dl Ca2+ which were 

assayed along with the samples.  All reagents unless otherwise stated are 

from Acros Organics, Thermo Fisher Scientific, Geel, Belgium.   

 

 

2.4  Alkaline phosphatase (ALP) activity 

Alkaline phosphatase (ALP), a phenotypic marker of osteoblasts, has been 

shown to be present at sites of vascular calcification and its activity implicated 

in the process of SMC mineralisation72, 249, 250.  Therefore its activity was 
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evaluated as one factor suggestive of osteogeogenic differentiation within 

SMC cultures.   

 

BAoSMC (passage 7–9) were plated in a 6-well plate (Corning Inc., New York, 

USA) at 1 x 104 cells/cm2.  Upon confluence, BAoSMCs were incubated with 

5% FCS-DMEM and 5 mM BGP in the presence of 1.2 mM or 1.8 mM Ca2+.  

Protein was harvested from cultures on day 3 and day 5 by aspirating the 

medium and washing BAoSMCs twice in ice cold PBS.  Cells were lysed 

using 0.1% Triton X-100 in 0.9% NaCl and detached from the plate with a 

plastic scraper.  Alkaline phosphatase activity was measured colorimetrically 

by the conversion of p-nitrophenyl phosphate (pNPP; Sigma-Aldrich Co, 

Dorset, UK (colourless) to p-nitrophenol (pNP; yellow) and phosphate.  Cell 

lysate (10 µl) was added to 200 µl pNPP, incubated at 37 °C for 20 min and 

the absorbance read immediately at 405 nm.  A standard curve of pNP (10 

mM – 10 nM) (Sigma-Aldrich Co, Dorset, UK) was used to correlate 

absorbance readings to conversion to pNP, representing ALP activity.  Protein 

concentration was measured using a BCA assay (Thermo Scientific Inc, 

Illinois, US) (see section 2.5).   

 

 

2.5  Assessment of protein content 

Protein content was assessed using the Pierce BCA assay, according to the 

manufacturer’s instructions.  Protein standards ranging 25–2000 µg/µl were 

used (diluted in lysis buffer appropriate to sample).  Samples and standards, 

15 µl, were loaded onto a 96-well plate (Corning Inc., New York, USA).  BCA 

reagents A and B were prepared at a 1:50 ratio and 200 µl added to each well 

before incubation at 37 °C for 30 min.  Absorbance was read at 562 nm.   

 

 

2.6  Western blotting  

2.6.1  ERK activation assay 

BAoSMCs (passage 6–10) and CaSR-HEKs (HEK293 expressing human 

CaSR; passage 12–14) were seeded in 35 mm culture dishes (Corning Inc., 

New York, USA) in 10% FCS-DMEM (1.2 mM Ca2+).  Cells were washed with 
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PBS heated to 37 °C before being exposed to a low Ca2+ solution (0.5 mM) 

for 20 min for equilibration (these and subsequent incubations were 

conducted at 37 °C).  0.5 mM Ca2+ solution consisted of 20 mM HEPES (pH 

7.4), 125 mM NaCl, 4 mM KCl, 0.5 mM CaCl2, 0.5 mM MgCl2 and 5.5 mM 

glucose.   After this time equilibration medium was removed the cells treated 

with a low (0.5 mM) or high (5 mM) Ca2+ solution for 5 min (BAoSMC) or 10 

min (CaSR-HEK).  When the concentration of CaCl2 was increased to 5 mM, 

the concentration of NaCl was reduced accordingly to keep the total 

osmolarity constant.  Timings for SMC incubation were selected in line with 

findings by Molostvov et al. (2007).  After incubation, treatments were 

removed and cells washed with ice cold PBS and stored on ice.  Cells were 

lysed with ice cold RIPA buffer; 12 mM HEPES (pH 7.6), 300 mM mannitol, 

1% (v/v) Triton X-100, 0.1% (w/v) SDS, 1 mM  EDTA and 1 mM EGTA with 

freshly added phosphatase inhibitors (100 μM sodium vanadate and 1 mM 

NaF) and protease inhibitors (250 μM  sodium pyrophosphate, 1.25 μM 

pepstatin, 4 μM leupeptin and 4.8 μM phenylmethylsulfonyl fluoride; Sigma-

Aldrich Co, Dorset, UK). 

 

Lysates were transferred to fresh 1.5 ml eppendorf tubes and centrifuged at 

2500 x g for 15 min to pellet the cell debris and nuclear fraction.  Lysates were 

mixed with 5x Laemmli buffer and heated to 95 °C for 3 min.  Proteins were 

separated on a 10% polyacrylamide gel and transferred to nitrocellulose 

membrane (Amersham, GE Healthcare, Buckinghamshire, UK).  The protein 

equivalency of the samples was confirmed by ponceau-staining the blot 

before immunoblotting.  Membranes were blocked with Tris-buffered saline 

Tween-20 (TBST; 150 mM Tris-HCl, 1.5 mM NaCl, 0.1% Tween 20) 

containing 2% BSA before incubation with a rabbit polyclonal antibody 

(1:5000) targeting the active forms of ERK1 and ERK2 (Promega UK Ltd., 

Hampshire, UK) at RT for 1 hr on a shaker.  The primary antibody 

preferentially targets the dually phosphorylated form of ERK1 and ERK2 

corresponding to residues Thr183 and Tyr185.  After serial washes immunoblots 

were developed with a horseradish peroxidase-conjugated anti-rabbit mouse 

secondary antibody from DakoCytomation (Ely, Cambridgeshire, UK) for 1 hr 

at RT and the antigen-antibody reaction analysed by enhanced 
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chemiluminescense using a commercially available kit (ECL plus; Amersham, 

GE Healthcare, Buckinghamshire, UK). 

 

2.6.2  CaSR western blotting 

BAoSMC (passage 6–8) and HAoSMC (passage 4-5) were grown in 75 cm2 

culture flasks in 10% FCS-DMEM (1.2 mM Ca2+) until confluence.  Upon 

confluence, SMCs were lysed on ice with RIPA buffer supplemented with 

protease and phosphatase inhibitors (as above; section 2.6.1) with the 

addition of 1 mM N-ethylmaleimide.  Lysates were spun at 2500 x g for 20 min, 

pelleting the cell debris and cell nuclei.  The post nuclear supernatant was 

then spun at 17,000 x g for 30 min at 4 °C.  After resuspension total protein 

concentration of the samples were determined as detailed in section 2.5. 

 

Membrane preparations were mixed with 5x Laemmli buffer and heated at 

65 °C for 3 min prior to immunoblotting.  Proteins were separated on a 5% 

polyacrylamide gel and transferred to nitrocellulose membrane.  Immunoblots 

were blocked with 2% BSA in TBST for 1 hr at 37 °C and probed with an anti-

CaSR moloclonal antibody (Affinity BioReagents MA1-934, Rockford, Illinois, 

USA), raised to amino acids 214–235 of the extracellular domain of the 

human parathyroid CaSR.  Primary antibody was diluted 1:5000 in 2% BSA in 

TBST and incubated for 1 hr at RT.  Immunoblots were washed for 20 min 

with periodic changes of TBST and incubated with the secondary antibody, a 

horseradish peroxidase-conjugated anti-rabbit antibody (DakoCytomation, 

Cambridgeshire, UK) for 1 hr at RT.  After washing, immunoblots were 

incubated with enhanced chemiluminescence (ECL plus; Amersham, GE 

Healthcare, Buckinghamshire, UK) to detect binding of the secondary 

antibody to the primary anti-CaSR antibody.  

 

 

2.7  Bio-Plex phosphoprotein detection array 

HAoSMC (passage 4–6) were plated at 2 x 105 cells/10cm2. All materials, 

including Bio-Plex kits, were from BioRad (BioRad Laboratories Inc, 

Hempstead, UK) unless otherwise stated.  The following day (day 1) medium 

was changed to DMEM/F:12 (1:1) (Invitrogen, Paisley UK) with sterilized 0.2% 
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BSA and cells incubated overnight.  On the day of the experiment (day 2) the 

medium was aspirated and HAoSMCs washed briefly with PBS heated to 

37 °C.  HAoSMCs were equilibrated in low Ca2+ buffer (0.5 mM, as described 

in section 2.6.1) for 20–30 min.  For Ca2+ experiments: after equilibration, low 

Ca2+ buffer was aspirated and cells incubated with 0.5 mM Ca2+ (control) and 

5 mM Ca2+ for 5 min, consistent with the time-dependent elevation in Ca2+-

induced signalling in HAoSMC demonstrated by Molostvov et al. (2007).  For 

calcimimetic experiments: after equilibration, low Ca2+ buffer was aspirated 

and cells incubated with 2.5 mM Ca2+ in the presence and absence (control) 

of R-568 (1 nM).  Following the 5 min incubation, HAoSMCs were washed 

with ice cold wash buffer and lysed using 250 µl lysis buffer supplemented 

with factor 1 (250x), factor 2 (500x) (Bio-Plex cell lysis kit) and 

phenylmethylsulfonyl flouride (Sigma-Aldrich Co, Dorset, UK) dissolved in 

DMSO (500 mM), in accordance with manufacturer’s instructions.  HAoSMCs 

were incubated with the lysis buffer on a rotating platform at 300 rpm for 20 

min at 4 °C after which they were removed using a plastic scraper. Lysates 

were collected in 1.5 ml eppendorf tubes and centrifuged at 4,500 x g for 20 

min at 4 °C.  The supernatant was collected and diluted 1:1 using assay buffer 

(Bio-Plex phosphoprotein detection reagent kit).     

 

The Bioplex assay was performed following the manufacturer's protocol 

(BioRad, BioRad Laboratories Inc, Hempstead, UK), and summarised in 

Figure 2.2.  The target phosphoproteins examined and the binding sites of the 

antibodies used are shown in Table 2.1.  Firstly, the 96-well filter plate (Bio-

Plex phosphoprotein detection reagent kit) was pre-wet with assay buffer.  

Then, 1 µl of each phosphoprotein bead solution (50x) was diluted in wash 

buffer (Bio-Plex phosphoprotein detection wash buffer) and added to each 

well.  Excess liquid was removed by aspiration.  After two washes, 50 µl of 

cell lysate (final concentration 200–900 µg/mL) was added to each well and 

incubated overnight at RT on a shaking platform at 300 rpm.  The following 

day, any unbound proteins were removed by washing with wash buffer. 

Biotinylated detection antibodies (25x), specific to each phosphoprotein bead, 

were prepared using the detection antibody diluent and 25 µl added to the 

reaction.  The plate was vortexed before a 30 min incubation.  After further 
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washes and vacuum filtration, Streptavidin-Phycoerythrin (Strept-PE) (100x; 

Bio-Plex phosphoprotein detection reagent kit) diluted to a 1x solution with 

wash buffer to a final volume of 50 µl was then added and incubated for a 

further 10 min in the dark.  Strept-PE was removed by vacuum filtration and a 

further series of washes .  The beads were resuspended in 125 µl of 

resuspension buffer, incubated for 30 seconds at 1,100 rpm on a shaking 

platform and analysed using the Luminex 100 system.  The Luminex system 

identifies beads for specific phosphoproteins by the bead region, the ratio of 

the internal red and green fluorescent dyes. Data are expressed as % change 

from control.   

 

 

 

 

 

 

 

 

 

Figure 2.2  The methodological processes and rationale underlying the Bioplex assay 

(adapted from Bioplex manual). 

This image has been 

removed by the author for 

copyright reasons. 
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Table 2.1  Phosphorylation sites targeted by Bioplex antibodies 

 

Phosphoprotein Amino acid site 

Akt Ser473 

BCR-Abl Tyr245 

c-Jun Ser63 

CREB Ser133 

ERK 1/2 
Thr202/Thr204 

Thr185/Thr187 

GSK-3/ß Ser21/Ser9 

HSP27 Ser78 

IGF-1R Tyr1131 

I-B Ser32/Ser36 

JNK Thr183/Tyr185 

MEK Ser217/Ser221 

PDGF Tyr751 

p38 Thr180/Thy182 

p53 Ser15 

p70 S6K Thr359/Ser363 

p90 RSK Thr421/Ser424 

Src Tyr416 

Stat3 Tyr705 

Tyk2 Tyr1054/Tyr1055 
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2.8  Adenoviral infection 

A recombinant adenovirus (RAd) encoding the full length human CaSR with 

an arginine to glutamine substitution at position 185 (pacAd5CMV/dnCaSR), 

resulting in a dominant negative form, was generated under the direction of Dr. 

Beverly Davidson at the University of Iowa Gene Transfer Vector Core and 

has been characterised previously84.   A multiplicity of infection (MOI) of 150 

pfu/cell and viral titre of 3 x 1010 plaque-forming units/µl was used and 

transfection efficiency confirmed using a CaSR Western blot.   

 

BAoSMCs (passage 9) were transfected at 80% confluence (typically day 4).  

48 hrs following infection (day 6), BAoSMCs were induced to calcify with 

medium containing 5% FCS-DMEM and 5 mM BGP with either 1.2 mM or 1.8 

mM Ca2+.  BAoSMCs were maintained in this media for the remainder of the 

experiment.  Overexpression of the transgene was maintained by re-infection 

of the cultures on day 8.  Alizarin red staining was performed on day 12.   

 

 

2.9  RT-PCR 

2.9.1  RNA isolation  

RNA from freshly isolated bovine parathyroid gland was kindly provided by 

Donald Ward (University of Manchester).  RNA was isolated from cultured 

BAoSMCs (passage 6–8), at 90% confluence, using Trizol reagent (Invitrogen, 

Paisley, UK).  Medium was removed, BAoSMCs washed with ice cold PBS 

and cells lysed directly in the culture flask.  1 ml Trizol/T75 flask was added 

and cells detached using a cell scraper.  The Trizol solution was removed and 

placed in a 1.5 ml eppendorf tube where 0.2 ml chloroform (0.2 ml to 1 ml 

Trizol) was added.  The lysates were vortexed vigorously for 15 sec and 

centrifuged at 12,000 x g for 10 min at 4 °C.  Following centrifugation, the 

mixture separates into a lower red, phenol-chloroform phase, an interphase, 

and a colourless upper aqueous phase. RNA remains exclusively in the 

aqueous phase.  

 

The clear aqueous solution (upper level) was transferred to a clean 1.5 ml 

eppendorf tube.  To precipitate the RNA, the aqueous phase was mixed with 
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0.5 ml isopropanol for 2 min before being centrifuged at 12,000 x g for 10 min 

at 4 °C.  The RNA precipitate forms a small pellet on the bottom/side of the 

tube.  The RNA pellet produced was washed with 75% ethanol and further 

centrifuged at 12,000 x g for 5 min.  All leftover ethanol was removed and the 

pellet left to air-dry.  RNA was dissolved in diethylpyrocarbonate (DEPC)-

treated water (Ambion, Warrington, UK) and stored at -80 °C until use.  

 

RNA was quantified using a Nanodrop (Nanodrop ND-100 v3.3 

Spectrophotometer, Thermo Scientific, Delaware, USA) and the quality of the 

RNA assessed by running 1 µl on a 2% agarose gel and ethidium bromide 

staining.  Contaminating genomic DNA appears as a weak band of high 

molecular weight.   If present, contaminating genomic DNA was removed 

using Turbo DNase (Ambion inc, Huntingdon, UK). The reaction was 

incubated at 37 °C for 30 min before adding the inactivation reagent. The 

inactivation reagent was removed from the sample by centrifugation.    

 

 

2.9.2  First strand cDNA synthesis 

Reverse transcription of total RNA was carried out using SuperScript first 

strand synthesis kit (Invitrogen, Paisley, UK), according to manufacturer’s 

instructions.  Total RNA was mixed with 50 ng/µl random hexamers, 10 mM 

dNTP mix, 10 µl DEPC-treated water and incubated at 65 °C for 5 min.  

Following incubation the RNA/primer mixture was placed on ice for 1 min.  

The cDNA synthesis mix was prepared by adding 10 X reverse transcriptase 

buffer, 25 mM MgCl2, 0.1 M dithiothreitol (DTT), 40 U/µl RNaseOUT and 200 

U/µl Superscript III RT.  To this, the RNA/primer mixture was added, mixed 

gently and incubated for 10 min at 25 °C followed by 50 min at 50 °C.  The 

reaction was terminated by heat inactivation of the enzyme at 85 °C for 5 min 

and samples chilled on ice.  Finally, 1 µl of RNase H was added to each tube 

and the samples were incubated at 20 min at 37 °C before storing at -20 °C.  

Control reactions were performed in which the reverse transcription step was 

omitted.   
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2.9.3  PCR 

PCR amplification of CaSR complementary DNA (cDNA) was attempted using 

2 different primer sets; primer 1 designed to amplify 2198–2253 and primer 2 

4755–4951 of NM_174002. The binding sites of each primer set is shown in 

Figure 2.3.  Primer 1 was designed using Primer3251, and the reverse primer 

bridges the exon6-exon7 junction.  Primer 2 was kindly provided by Dr. Masih 

Alam (University of Manchester), and is positioned within the 3’ downstream 

sequence.  Amplification was performed using Immomix Red (Bioline, London, 

UK) using the Eppendorf MasterCycler Gradient (Eppendorf, Cambridge, UK).  

Each PCR amplification was performed under the following conditions: an 

initial denaturation step at 95 °C for 10 min, followed by a total of 35 cycles of 

95 °C (30 sec), 58 °C (30 sec ), and 72 °C (30 sec) and a final elongation step 

of 72 °C.  Control PCR was carried out using primers specific for bovine 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), amplifying 572–626 of 

NM_001034034, to produce a PCR product of 54 bp.  As a negative control 

and to prevent amplification of contaminating genomic DNA, control samples 

which were treated without reverse transcriptase were also included. RT-PCR 

products were separated on a 1% agarose gel. 

 

 

2.10 Statistical analysis 

For paired comparisons, paired t-tests were performed.  For multiple 

comparisons a one way anova with tukey’s post hoc test was used.  Signalling 

data were analysed comparing raw data from control vs. test samples.  In 

instances where multiple control samples were included in one experiment the 

average of the control samples was used.  
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cggaaaaaaaaaaaaagttccccactctagtacagagaaggttggcagagtcgtaagcccccaacctctt

aaacttctctgcatctccaaggagaaggagggaagaggggttctttccgacctgaggagctggatctgggg

tccgagaaccccaaggtagcaccggaaagaacagcacaggaggcgagagcgtggccggtggccggg

agaaccagacccgacgcgcggtcctcggcgccggggtcccggggactcagctcagcacgactgggaa

gccgaaagtactacacacggtctctgcatgatgtgacttctgaagactcaagagccacccacttcactagtc

tgcaatggagaaggcagaaatggaaagtcaaaccccacggttccattctattaattctgtagacatgtgccc

ccactgcagggagtgagtcgcaccaagggggaaagtcctcaggggcccccagaccaccagcgcttga

gtccctcttcctggagagaaagcagaactatggcactttatagctgctgttggatcctcttggctttttctacctg

gtgcacttccgcctatgggcctgaccagcgagcccaaaagaaaggggacattatcctcggggggctctttc

ctattcattttggggttgcagtgaaagatcaggatctaaagtcgaggccggagtccgtggagtgtatcaggta

taatttccgaggatttcgctggttacaagctatgatatttgccatagaggaaataaacagcagtccagcccttc

ttcccaacatgaccctgggatacaggatattcgacacttgtaacaccgtctctaaagccttggaggccaccct

gagttttgtggcccagaacaaaattgactctttgaaccttgatgagttctgcaactgctcagagcacatcccct

ctaccatcgcagtggtgggagctactggctcgggcatctccacagcagtggccaacctgctggggctcttct

acatcccccaggtcagctatgcctcctccagcagactcctcagcaacaagaatcaattcaagtccttcctcc

gcaccatacccaatgatgaacaccaggccacggccatggctgacatcatcgagtacttccgctggaactg

ggtgggcacaattgcagctgacgatgactatggccggccagggatcgagaagtttcgagaggaagctga

ggagagggacatctgcatcgacttcagcgagctcatctcccaatactctgatgaggaaaagatccagcag

gtggtggaggtgatccagaattccaccgccaaagtcattgtcgtcttctccagcggcccagacctggaaccc

ctcatcaaagagatcgtccggcgcaatatcacaggcaggatctggctggccagcgaggcctgggccagc

tcttccctgattgctatgcccgagtatttccatgtggtcggaggcaccattgggtttggtttgaaagctgggcag

atcccaggcttccgggaattcctgcagaaagtccaccccaggaagtctgtccacaatggttttgccaagga

gttttgggaagaaacatttaactgccacctgcaagagggtgctaaaggcccattaccggtggacaccttcct

gagaggtcacgaagaaggaggtgccaggttaagcaacagtcccactgccttccgacctctgtgcactggg

gaggagaacatcagcagtgtcgagactccttacatggattatacacatttacggatatcctacaacgtctact

tagccgtctactccattgctcatgccctacaagatatatacacctgcatacctgggagagggctcttcaccaa

cggttcctgcgcagatatcaagaaggttgaagcttggcaggtcctgaaacacctgcggcacctaaattttac

cagcaatatgggggagcaagtaactttcgatgaatgtggagacctggcagggaactattccatcatcaact

ggcacctctccccagaggacggctccatagtgtttaaggaagttggatattacaatgtctatgccaagaaag

gagagagactcttcatcaatgatgaaaaaattctgtggagtggattctcaagggaggtgcctttctccaactg

cagtcgagactgcctggcagggaccaggaaaggaatcattgagggggagcccacctgctgctttgagtgt

gtggaatgtcctgatggggagtacagcgacgagacag*atgcaagtgcctgtgataagtgccctgatgact

tctggtccaatgagaaccacacttcctgcatcgccaaggagatcgagtttctgtcgtggaccgagcccttcg

ggatcgcactcacgctctttgctgtgctgggcattttcctcacagccttcgtgctgggcgtcttcatcaagttccg
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caacacgcccatcgtcaaggccaccaaccgggagctctcctatctccttctcttctccctgctctgctgcttctc

cagctccctgttcttcatcggggagccccaggactggacgtgccgcctgcgccagccggcctttggcatca

gcttcgtgctctgcatctcgtgcatcctggtgaaaaccaatcgggtcctcctggtgtttgaggccaagattccc

accagcttccaccggaagtggtgggggctcaacctgcagttcctgctggtcttcctctgcaccttcatgcagat

tgtcatctgtgccatttggctcaatacagcgcccccctcggctaccgcaaccacgagctggaggacgagat

catcttcatcacctgccacgagggctcgctcatggcgctgggcttcctgatcggctacacctgcttgctggcc

gccatctgcttcttcttcgccttcaagtcccggaagctgccagagaacttcaatgaagccaagttcatcacctt

cagcatgctcatcttcttcatcgtctggatctctttcatccccgcctacgccagcacttacggcaagttcgtctctg

ccgtggaggtgatcgccatcctggcggccagctttggcttgctggcctgtatcttcttcaacaaggtctacatc

atcctcttcaagccttcccggaacaccatcgaggaggtgcgctgcagcaccgcggcacacgccttcaagg

tggccgcccgagccacgctgcgccgcagcaacgtctcccgccagcggtccagcagcctagggggctcc

acgggatccaccccctcctcctccatcagcagcaagagcaacagcgaggacccgttccctcagcagcag

ccgaagaggcagaagcagccgcagccgctggccctgagcccgcacaacgcgcagcagccacagcc

gcggccaccctcgaccccacagccgcagccacagtcgcagcagccgccccgatgcaagcagaaggtc

atcttcggcagcggcaccgtcaccttctcgctgagctttgacgagcctcagaagaccgccgtggctcacag

gaattccacgcaccagacctccctggaggcccagaaaaacaatgacgccctgaccaaacaccaggcgt

tgctcccgctgcagtgcggagagacggactcagaattgacctcccaggagacaggcctgcagggccctg

tgggtgaggaccaccagctagagatggaggaccccgaagagatgtccccggcacttgtagtgtctaattcc

cggagctttgtcatcagtggcggaggcagcactgttacggaaaacatgctgcgttcttaaaagggaaggag

aaagccagttcagggggaatccaggcagtttccccgggatgaccttctccaaagggatgaggaactgccc

ccccacccccacccccttcctccaggaaggagggataagacccaccaaatgcttggaacttagttgcact

gctataaacgacagtgaatgaaataatgtcccccttaaaattaaaaagaggggagcggtgtgcttctgtggt

taggtttatcagagtgctgagatccctatagtcaggttcgcctttcctatccctgcttccattctcctcttctgttctat

cccatccaacagtccagagataaaaccatggctttaagatacccacctattccccctagggtcttatttgttgtt

tttgttgctgttgttttggtttgatttttgtttttaatgttgaaacgtctgccctgaactttgcagacagcctggtccaaa

aacaaacctgtgcagagtgacaggacctcctatgggcaccactagagttgagtgcgaaagacagaatgt

cgccagcgctgcccaacaccttgacagtgggaagaacttgaaatgtccagagctgtaagatgaatgtgtcc

cctcctatttatgaaaaatgttaaatatgtggtttcctacttgctgctgctgtcacgtgacatggagaaggttagc

atccatcctccagcagtatgtctgatcttgtccagagtgtgatggtgatgccacgtttagattccaatatctcagg

aatcacctcagcctgcatgaatccaatgagctgtatctgtaattaatattgtcatatgtagctttatccttaagaa

aatgtgtttgttttaatagtccgtggaaaatataagctggaaaaaatgtcccagtctggttgatataaggcagta

ttattgagtcccgttttctttgcccgccccaccacccacaccccaatgagctaagccctaaatgagccctttca

gggcccagggatccagaagctccctctttctccaccccaaacgcttcctgaagtcagatccatgcctttccct

gtgaagaataagctcccagtctctgacctcctaccagtttctggggtaagaacacgtggttccaagagagct
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ctcatgggatattactcttggcaccccccaatgccatacttaggttccctccagcagtgggatctgcccatggg

tagttacaagattgaacgttgaatggcatactgctgaacagtcagttctggagctagagaggcctggggtca

agtgctgggtttgtcactcacaagttgggtgaccacaggcagggaaccttgacctcactcagccccagcttc

tttgtgtctaaaatggaggtaataatcatccttttcccgcagagctcttatgtgggttaaatgagataaatgtatgt

aaagtattttagcatggtgcctagcccatagtaagcacgcaataaatattagttaatatta 

 

 

Figure 2.3  Binding sites of primer sets on the Bos taurus CaSR sequence (NM_174002).  

Positioning of the two primer sets demonstrated in yellow (Primer 1) and pink (Primer 2).  The 

start and stop codons, highlighting the translated region, are bolded.  * represents positioning 

of intron 6–7. 
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3.0  Results  

 

3.1 Characterisation of explanted cells 

Three preparations of cells were explanted from bovine aorta (as described in 

section 2.1.1), named preparation A – C.  Immunofluorescent staining using a 

monoclonal -sma antibody, was used to characterise the explanted cells.  A 

mouse IgG2a replaced the primary antibody and served as a negative control.  

Cells explanted from the aorta showed appropriate morphology for smooth 

muscle cells and positive -sma staining of the actin filaments in each 

preparation (Figure 3.1, left panel) whilst no staining was observed when the 

primary antibody was replaced with mouse IgG (Figure 3.1, right panel).   

 

To further characterise each SMC preparation, the mineralisation potential 

was assessed.  SMCs can be induced to undergo mineralisation when 

cultured in the presence of β-glycerophosphate (BGP)72.  The mineralisation 

potential of prep A-C was evaluated in response to 5 mM BGP in the 

presence of 1.8 mM Ca2+ (Figure 3.2).  In the presence of 1.8 mM Ca2+ and 5 

mM BGP, all preparations showed an increase in mineralisation confirmed 

using alizarin red staining (Figure 3.2, right panel).  In preparations A and C, 

cells retracted into multicellular nodular structures which stained with alizarin 

red, whilst mineralisation in preparation B appeared more diffuse and 

widespread throughout the cell population.   
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Figure 3.1   Immunostaining of bovine aortic explanted cells (prep A-C) with α-sma.  

BAoSMC (passage 3) were cultured in 10% FCS-DMEM in the presence of 1.2 mM Ca
2+

.  

Images show immunofluorescence staining with α-smooth muscle actin (1:400) and 

fluorescein isothiocyanate (FITC) secondary (1:100) in cultured explanted BAoSMCs (left 

panel).  As a control, the α-sma primary antibody was replaced with mouse IgG2a (right 

panel).  Nuclei were counterstained using the DNA specific dye DAPI (blue).  Bar = 25 µm. 
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Figure 3.2  Mineralisation potential of explanted BAoSMC (prep A-C).  Explanted 

BAoSMC (passage 3) were incubated from confluence (day 0) with calcifying medium (5% 

FCS-DMEM with 5 mM BGP) in the presence of 1.8 mM Ca
2+

.  Mineral deposition was 

detected with alizarin red staining at variable time points (right hand panel).  Bar = 500 µm.   
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The different preparations of BAoSMCs showed variability in their response to 

incubation with 2.5 mM Ca2+ in the presence of BGP (Figure 3.3).  At day 9, 

BAoSMCs incubated with 5 mM BGP and 2.5 mM Ca2+ from preparation A 

remain healthy, however by day 14 the cell monolayer had detached (image 

not shown).  With preparation B, detachment of the cell monolayer was 

detected earlier in the course of the experiment with complete detachment 

detected by day 9 (Figure 3.3).  Preparation C BAoSMCs did not show cell 

monolayer detachment but by day 9 rapid nodule formation was detected 

alongside cell loss.   

 

For consistency only one preparation of BAoSMCs were used in all future 

experiments.  On the basis of these initial results, any of the preparations 

shown would have been suitable for follow on experiments (all showing 

positive α-sma staining and the ability to undergo mineralisation), however 

preparation C was selected.  Additionally, a maximum Ca2+ concentration of 

2.2 mM was used for experiments requiring chronic incubation. 
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Figure 3.3  Effect of 2.5 mM Ca
2+

 and 5 mM BGP on BAoSMC morphology and 

distribution (prep A  - C).  Explanted BAoSMC (passage 3) were incubated from confluence 

(day 0) with 5% FCS-DMEM with 5 mM BGP in the presence of 2.5 mM Ca
2+

.  Images were 

captured at day 0 and day 9.  No image is presented for preparation B at day 9 as the cell 

monolayer had detached from the culture flask.  Cell morphology in the presence of 1.8 mM 

Ca
2+

 from the same experiment is shown in Figure 3.2.  Bar = 500 µm. 
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3.2  Assessment of CaSR immunoreactivity in BAoSMC  

To examine the expression of the CaSR in BAoSMC methods to investigate 

both protein and messenger RNA (mRNA) expression were used.  Alam et al. 

(2009) previously examined the protein expression of CaSR in BAoSMC, 

successfully demonstrating CaSR-like immunoreactivity84.  Therefore to 

confirm that preparation C BAoSMC also expressed CaSR, 

immunofluorescence and western blot analysis were employed.  

Immunostaining BAoSMC with an anti-CaSR antibody raised against residues 

214–235 of the human CaSR, produced positive staining (Figure 3.4Ai).  

Whilst positive staining was detected in the majority of BAoSMCs (additional 

images shown in Figure 6.2B), a few cells showed no expression (Figure 

3.4Ai, arrow). Replacing the primary antibody with mouse IgG2a (ii) or 

omitting the primary antibody (iii) resulted in the absence of immunoreactivity.  

 

CaSR-like immunoreactivity in BAoSMC was also demonstrated using SDS 

PAGE and Western blotting of BAoSMC membrane preparations (Figure 

3.4B).  Under reducing conditions 3 major bands were detected with apparent 

Mw’s of ~160, ~200 and ~250 kDa.  The ~160 kDa polypeptide corresponds 

to the expected position of the glycosylated form of the full length CaSR while 

the 250 kDa band is likely to represent the dimeric form.  In human embryonic 

kidney cells (HEK293) induced to stably express human CaSR (CaSR-HEK), 

4 major bands were detected; with bands at ~160 kDa and ~200 kDa 

corresponding to those seen in SMCs and a doublet at ~280 / 300 kDa 

(Figure 3.4C).  A comparison of the immunoreactivities produced by CaSR-

HEK and SMC samples is shown in Figure 6.2A.   
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Figure 3.4  CaSR immunoreactivity in BAoSMC.  A:  BAoSMC (prep C; passage 4) grown 

on chamber slides for 24 hrs in 10% FCS-DMEM (1.2 mM Ca
2+

) were fixed with 4% 

formaldehyde before incubation with a polyclonal antibody against human CaSR (1:200).  A 

fluorescein isothiocyanate (FITC)-conjugated secondary antibody (green; 1:40) and DAPI 

(blue) was used to visualise the CaSR and nuclear staining (i). Arrows used to highlight 

BAoSMCs with negative staining.  Control cells were stained with either mouse IgG2a (ii) or 

secondary antibody alone (iii).   (iv) shows BAoSMC stained with anti-CaSR (as above) at a 

higher magnification.  Bar = 25 µm.  B:  Membrane preparations from cultured BAoSMC 

(passage 6) were separated using 5% SDS-PAGE and CaSR immunoreactivity detected by 

Western blotting using a CaSR antibody (1:5000).  Exposure time 3 min.  Lysate from CaSR-

HEK cells (C) were used as a positive control. Exposure time 10 sec.  Size (in kDa) of 

molecular weight markers is indicated on the left.   
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3.3  Assessment of CaSR mRNA expression in BAoSMC  

To investigate whether CaSR mRNA is expressed in cultured BAoSMC, RT-

PCR was performed on complementary DNA (cDNA) synthesized from total 

RNA.  Amplification of CaSR from BAoSMC and parathyroid cDNA (from 

freshly isolated bovine parathyroid gland) was performed with two distinct 

primer sets (detailed in section 2.9.3 and illustrated in Figure 2.3).  PCR 

products of the expected size for each primer set were demonstrated with 

parathyroid cDNA, 55 bp and 196 bp respectively (Figure 3.5A).  No products 

were detected in the absence of reverse transcriptase.  However, RT-PCR of 

BAoSMC cDNA did not yield any CaSR amplicons, despite the acceptable 

quality of the cDNA demonstrated with successful amplification of GAPDH, a 

house keeping gene (Figure 3.5B).  Despite the negative result, the presence 

of CaSR cannot be confirmed or denied as amplification of CaSR was not 

attempted in other tissues with reported low expression of CaSR (e.g. lung).    
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Figure 3.5  Calcium-sensing receptor (CaSR) mRNA expression was not detected in 

BAoSMC  

RT-PCR was carried out using cDNA synthesized from total RNA from cultured BAoSMC 

(prep C; passage 6) and freshly isolated bovine parathyroid gland (provided by Donald T 

Ward).  A:  Two distinct primer sets for CaSR (described in section 2.9.3) were used (Ai-ii).  

Lane 1: Hyperladder IV, Lane 2: PTG (+ reverse transcriptase (RT)), Lane 3: PTG (-RT), 

Lane 4: SMC (+RT), Lane 5: PTG (-RT).  B:  A control PCR to demonstrate successful 

reverse transcription of BAoSMC RNA was conducted using bovine GAPDH primers.  Lane 1: 

Hyperladder V, Lane 2: SMC (+ RT), Lane 3: SMC (-RT).   
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3.4  Ca2+ increases mineralisation and osteogenic differentiation in 

BAoSMC in the presence of BGP 

The effect of Ca2+, a typical CaSR agonist, on BAoSMC mineralisation was 

investigated.  No mineralisation was detected in BAoSMC treated with 

different concentrations of Ca2+ (1.2 mM, 1.8 mM and 2.2 mM) in the absence 

of BGP, however retraction of cells into nodular formations was observed 

(Figure 3.6).   

 
 

 

 

Figure 3.6  Ca
2+

-induced mineralisation requires the presence of BGP.  BAoSMC (prep 

C; passage 5) were treated upon confluence with increasing concentrations of Ca
2+

 in the 

absence of BGP.  Images show cells stained with alizarin red at indicated time points 

(staining in the presence of BGP from the same experiment is shown in Figure 3.7A).  Images 

depict a single experiment, however similar results were obtained in two independent 

experiments performed on different BAoSMC isolates (see figure 6. 3).  Bar = 500 µm. 

 

 

However in the presence of 5 mM BGP, BAoSMC treated with different 

concentrations of Ca2+ (1.2 mM, 1.8 mM and 2.2 mM) showed a dose- and 

time-dependent increase in mineral deposition (Figure 3.7).  Ca2+ 



 

 60 

accumulation was quantified using cresolphthalein method and alizarin red 

dye elution.  Increases in Ca2+ accumulation were detected using both 

methods, with each showing significant increases with each elevation of 

[Ca2+] (Figure 3.7B & C). 

 

The potential for Ca2+ to promote osteogenic differentiation alongside Ca2+ 

deposition was also investigated.  Alkaline phosphatase is an early indicator 

of SMC osteogenic conversion, and its activity was measured in BAoSMC 

incubated with 1.2 and 1.8 mM Ca2+ in the presence of BGP.  On day 3 no 

difference in alkaline phosphatase activity was detected, however on day 5, 

alkaline phsophatase activity was shown to be significantly elevated in cells 

incubated with 1.8 mM Ca2+ compared to cells incubated with 1.2 mM Ca2+ 

(Figure 3.8A).  No signs of mineralisation were observed on day 5 (Figure 

3.8B), however by day 14 alizarin red staining confirmed mineral deposition, 

with greater mineralisation detected in BAoSMCs incubated with 1.8 mM Ca2+ 

compared to 1.2 mM (Figure 3.8C).   
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Figure 3.7  Concentration-dependent effects of Ca
2+

o on SMC mineral deposition  A:  

BAoSMC (prep C; passage 5) were treated upon confluence with increasing concentrations of 

Ca
2+

 alongside 5 mM BGP.  Images show BAoSMCs stained with alizarin red at indicated 

time points (staining in the absence of BGP from the same experiment is shown in Figure 3.6).  

Images shown were captured from a single experiments, however Ca
2+

-induced increases in 

mineralisation were shown in 2 additional experiments (Figure 6.4).  Bar = 500 µm.  B:  

Mineralisation quantified by elution of alizarin red stain from stained mineral deposits on day 

14.  Results are expressed as moles of alizarin red stain per mg of total cellular protein. Data 

are from a single mineralisation experiment conducted in triplicate.  Data represent the mean 

± SEM. * P < 0.05 vs. 1.2 mM Ca
2+

; ♦ P < 0.05 vs. 1.8 mM Ca
2+

.  C:  Ca
2+

 accumulation was 

quantified on day 14 using the cresolphthalein method.  

Data are represented as mean ± SEM from a single experiment (n=3).  * P < 0.05 vs. 1.2 mM 

Ca
2+

; ♦ P < 0.05 vs. 1.8 mM Ca
2+
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Figure 3.8  Alkaline phosphatase activity in BAoSMC is Ca
2+

-dependent.  A: BAoSMC 

(prep C; passage 7-9) were incubated with 5% FCS-DMEM and 5 mM BGP in the presence 

of 1.2 mM or 1.8 mM Ca
2+

 for the indicated period of time.  BAoSMC lysates were extracted 

and ALP activity measured using the colorimetric conversion of p-nitrophenol phosphate to p-

nitrophenol and absorbance measured at 405 nm.  P-nitrophenol concentrations was 

normalised to protein content.  Data presented are expressed as % change versus control 

and combine results from n=3 independent experiments.  *P < 0.05 versus 1.2 mM Ca
2+

.  B:  

BAoSMCs (prep C; passage 9) were plated in parallel to those used in an alkaline 

phophatase experiment and treated with 1.2 and 1.8 mM Ca
2+

 in the presence of 5 mM BGP.  

Images were captured on day 5.  Bar = 500 µm.  C:  BAoSMCs (prep C; passage 9) were 

plated in parallel to those used in an alkaline phophatase experiment and treated with 1.2 and 

1.8 mM Ca
2+

 in the presence of 5 mM BGP.  Cells were stained with alizarin red dye on day 

14.   Bar = 500 µm. 



 

 63 

3.5 Ca2+-induced mineralisation may, at least in part, be independent of 

the CaSR  

Alam et al. (2009) first implicated the SMC CaSR in the local calcification 

process, reporting enhanced mineralisation with overexpression of a dominant 

negative form of the CaSR84.  To expand on these findings, preliminary 

experiments using an adenovirus expressing a dominant negative (R185Q) 

variant of the CaSR were used to evaluate the role of the CaSR in Ca2+-

induced mineralisation.  BAoSMC transfected with the adenovirus in the 

presence of 1.2 mM Ca2+, showed markedly increased expression of the 

receptor at 48 and then 96 hrs compared to cells with no infection (Figure 

3.9A) in the absence of cell toxicity.   

 

Despite transfection with dnCaSR, BAoSMCs incubated in 1.8 mM Ca2+ and 5 

mM BGP produced an increase in BAoSMC mineralisation, compared to 

BAoSMCs incubated in 1.2 mM Ca2+ (Figure 3.9B).  Without the appropriate 

controls cautious interpretation is required however, if validated, these results 

suggest that Ca2+ may have an additional role in the calcification process, 

independent of the CaSR.     
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Figure 3.9  Effect of overexpressing a dominant negative adenoviral CaSR on Ca
2+

-

induced mineralisation in BAoSMC.  A:  Cell lysates (20 μg) from BAoSMC with no 

infection or infected with dnCaSR construct (MOI 150 pfu/cell) were taken at 48 and 96 hours 

examined for successful transfection using Western blotting with anti-CaSR antibody (1:5000).  

B: BAoSMC (prep C; passage 9) were cultured in 10 % FCS-DMEM containing 1.2 mM Ca
2+

.  

Upon reaching 80% confluence (day 4), cells were infected with dnCaSR recombinant 

adenovirus (pacAd5CMV/dnCaSR).  48 hr later (day 6) cells were treated with 5% FCS-

DMEM containing 5 mM BGP and 1.2 mM or 1.8 mM Ca
2+

.  Cells were subsequently re-

infected at day 8 to maintain high transgene expression and mineralisation assessed 

qualitatively at day 12 with alizarin red staining.  Images are representative of a single 

preliminary experiment performed in duplicate.  Bar = 500 µm. 
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3.6  The effect of calcimimetics on mineral deposition by BAoSMC 

To further investigate the possible protective effects of local CaSR activation 

the effect of three calcimimetic compounds on Ca2+-induced mineralisation 

was examined in the presence of BGP.  The effect of AMG641(10 pM – 1 nM), 

a potent calcimimetic, was evaluated in BAoSMC incubated with 5 mM BGP 

and 1.8 mM Ca2+.  AMG641 evoked a dose-dependent decrease in BAoSMC 

mineralisation, however when quantified statistical significance was achieved 

with the higher dose, 1 nM, only (Figure 3.10).   

 

A second calcimimetic, R-568 (1 nM), also reduced mineral deposition by 

BAoSMC in cells incubated with 1.8 and 2.2 mM Ca2+ (Figure 3.11A).  

Quantification of these effects showed a significant reduction in Ca2+ 

accumulation in the matrix with 1 nM R-568 at 1.8 mM Ca2+ (Figure 3.11B).  

However, at higher Ca2+ concentrations (i.e. 2.2 mM), despite a trend towards 

decreased Ca2+ accumulation being observed, R-568 failed to significantly 

reduce Ca2+ accumulation. 

 

To account for the possibility of non-CaSR mediated effects of the 

calcimimetics, S-568, an isomer of R-568 which has 10-100 times less 

potency to activate the CaSR252 was evaluated for its ability to delay 

mineralisation.  Little/no difference in mineralisation is seen between 

BAoSMCs treated with S-568 (1 nM) in the presence of 2.2 mM Ca2+ and 

those treated with 2.2 mM Ca2+ only (Figure 3.12).  Furthermore, when 

examined quantitatively no significant difference was detected. 
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Figure 3.10  Effect of AMG641 on Ca
2+

-induced mineralisation.  A:  BAoSMC (prep C; 

passage 7) were treated upon confluence with 1.8 mM Ca
2+

 and 5 mM BGP in the presence 

of vehicle (1:1000 DMSO) (i) or AMG641 at 10 pM (ii), 100 pM (iii) and 1 nM (iv).  On day 19 

alizarin red staining was performed to visualise mineralisation.  Images represent a single 

experiment performed in triplicate.  Similar results were obtained in 2 independent 

experiments (shown in Figure 6.5).  Bar = 500 µm.  B: Mineralisation was quantified on day 

19 using ARS elution.  Data are represented as mean ± SEM from one experiment (n=3). *P 

< 0.05 compared to vehicle control. 
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Figure 3.11  Protective actions of R-568 on Ca
2+

-induced mineralisation.  A:  BAoSMCs 

(prep C; passage 9) were cultured in 5% FCS-DMEM and 5 mM BGP with 1.8 or 2.2 mM Ca
2+

 

in the presence or absence of R-568 (1nM).  Cells were stained with alizarin red at day 9.  

Images shown were obtained from a singular experiment but indicative of 2 independent 

experiments although time of onset and progression of mineralisation varied (images are 

shown in Figure 6.6).  Bar = 500 µm.  B:  Mineralisation was quantified on day 9 using ARS 

elution from a single experiment with n=3.  
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Figure 3.12  S-568 does not delay Ca

2+
-induced mineralisation. A:  BAoSMCs (prep C; 

passage 6) were incubated with 2.2 mM Ca
2+

 in the presence or absence of S-568 (1nM).  

BAoSMCs were stained with alizarin red at day 10.  Images shown were obtained from a 

single experiment performed in triplicate but are indicative of 2 independent experiments 

although time of onset and progression of mineralisation varied (images from repeat 

experiments are shown in Figure 6.7).  Bar = 500 µm.  B:  Mineralisation was quantified on 

day 10 using ARS elution.  Data are represented as mean ± SEM from a single experiment 

(n=3). 
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3.7 Signalling profile(s) induced by acute Ca2+ and calcimimetic 

incubation  

 

To evaluate the activated signalling pathways in SMCs upon Ca2+ incubation, 

a multiplexable assay was used to assess the modulation of 19 

phosphoproteins (methodology explained in section 2.9).  Previous studies 

have reported ERK signalling in human, bovine and rat SMC stimulated with 

elevated Ca2+
o 

84, 242-244.  In this study a broader range of signalling molecules 

were examined simultaneously (a list of the phosphoproteins targeted is 

shown in table 1). 

 

HAoSMC were used to ensure maximum cross-reactivity with human 

antibodies.  Firstly, CaSR expression was confirmed in these cells.  

Membrane preparations of HAoSMCs assessed by Western blotting exhibited 

three prominent bands at ~160, ~200 and ~250 kDa (Figure 3.13A).  The 

band at ~160 kDa is consistent with the fully glycosylated form of CaSR, also 

observed in BAoSMC (Figure 3.4B) and CaSR-HEKs (3.4C).   

 

Immunofluorescent staining was also used to verify the presence of a CaSR-

like protein in HAoSMC.  Initial experiments using a polyclonal CaSR antibody 

and anti-mouse FITC showed positive staining, however removal of the 

primary antibody did not abolish all staining and reveals non-specific staining 

produced by the secondary antibody (Figure 3.13B).  Therefore the 

experiment was repeated with alternative secondary antibodies; goat anti-

mouse Alexa Fluor 468 (Figure 3.13C) and Alexa Fluor 488 (Figure 3.13D).  

With both antibodies some non-specific staining was observed, however more 

prominent staining is detected in HAoSMCs treated with anti-CaSR.   
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Figure 3.13  CaSR like immunoreactivity in human aortic SMCs.  A:  Membrane 

preparations of primary HAoSMC (passage 5) were separated on a 5% acrylamide gel and 

Western blotted with anti-CaSR (1:5000). Sizes (in kDa) of molecular weight markers are 

indicated on the left.  B/C/D: Primary HAoSMC cells (passage 5) were cultured for 24 hr 

before fixing with 4% formaldehyde and incubation with a polyclonal antibody against human 

CaSR (1:100).  FITC (B), Alexa Flour 568 (red) (C) and Alexa Flour 488 (green) (D) were 

used as the secondary antibodies (1:40). Cell nuclei were stained using the DNA-specific dye 

DAPI (blue).  B:  (i) nuclear (DAPI) and CaSR immunostaining. Control cells were stained with 

either mouse IgG2a (ii)  or secondary antibody alone (iii). C&D:  Nuclear and CaSR 

immunostaining (i) and negative control for which the primary antibody was omitted (ii).  Bar = 

25 µm.   
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As a positive control, cell signalling in CaSR-HEKs exposed to 5 mM Ca2+ was 

evaluated (lysates provided by Donald T. Ward).  Compared to CaSR-HEKs 

incubated with 0.5 mM Ca2+, cells incubated with 5 mM Ca2+ showed 

elevations in the phosphorylation of signalling components of the MAPK 

signalling cascades (Table 3.1).  Typical of CaSR signalling, significant 

elevations in phosphorylated MEK, p90RSK and CREB were detected.  

Furthermore, activation of the phosphoinositide 3-kinase pathway, typically 

elicited by CaSR agonists, was suggested with increased phosphorylation of 

p70S6K kinase in cells incubated with 5 mM Ca2+ versus control (0.5 mM 

Ca2+). 
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Table 3.1.  Ca
2+

-induced signalling in CaSR-HEK cells.  CaSR-HEKs were seeded in 10% 

FCS-DMEM and allowed to reach 70% confluence.  CaSR-HEKs were incubated in the 

presence of 0.5 mM or 5 mM Ca
2+

o for 10 min before lysates were prepared as described in 

the methods section (section 2.7).  CaSR-HEK lysates were provided by Donald Ward, 

University of Manchester.  Lysates were ran on a multiplex phospho-protein bead array, 

which allow for detection of phosphorylation levels of 19 phosphoproteins (a technical error 

prevented calculation of ERK phosphorylation status). Values are the results of n=4 samples 

and expressed as % of control (0.5 mM Ca
2+

) ± SEM.  * P < 0.05 

 

Phosphoprotein % change in phosphorylation status with 

5mM Ca2+ compared to 0.5 mM Ca2+ 

Akt 224.3 ± 72 

BCR-Abl 148.6 ± 44 

c-Jun 191.5 ± 30 

CREB 792.7 ± 82 * 

ERK - 

GSK-3/ß 612.4 ± 288 * 

HSP27 155.8 ± 38 

IGF-1R 525.9 ± 203 

I-B 303.9 ± 72 * 

JNK 164.8 ± 40 

MEK 989.7 ± 233 * 

PDGF 203.7 ± 48 

p38 213.1 ± 53 

p53 153.3 ± 23 

p70 S6K 482.0 ± 89 * 

p90RSK 545.3 ± 173 * 

Src 160.5 ± 40 

Stat3 311.8 ± 91 

Tyk2 179.0 ± 36 
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3.7.1 Ca2+-induced signalling in HAoSMC 

 

Table 3.2  Ca
2+

-induced signalling in SMCs. HAoSMCs (passages 4-6) were seeded in 

10% FCS-DMEM and cultured overnight in serum free medium. To assess Ca
2+

-induced 

signalling, upon reaching 70% confluence HAoSMCs were incubated with either 0.5 mM 

(control) or 5 mM Ca
2+

 for 5 minutes.  Cell lysates were prepared as described in the methods 

section (section 2.7) and ran on a multiplex phospho-protein bead array, which allow for 

detection of phosphorylation levels of 19 phosphoproteins (indicated below). Values are the 

results of n=6 samples expressed as % of control (0.5 mM Ca
2+

) ± SEM.  * P < 0.05 

 

Phosphoprotein % change in phosphorylation status with 

5mM Ca2+ compared to 0.5 mM Ca2+ in SMC 

Akt 92.5 ± 14 

BCR-Abl 69.7 ± 8 * 

c-Jun 66.7 ± 14 

CREB 91.6 ± 16 

ERK 89.4 ± 13 

GSK-3/ß 96.5 ± 20 

HSP27 75.0 ± 9 

IGF-1R 54.4 ± 11 * 

I-B 75.5 ± 12 

JNK 75.2 ± 9 

MEK 82.7 ± 14 

PDGF 56.0 ± 11 * 

p38 76.5 ± 11 

p53 70.7 ± 7 * 

p70 S6K 74.9 ± 13 

p90RSK 80.9 ± 8 

Src 68.3 ± 8 * 

Stat3 87.5 ± 11 

Tyk2 65.1 ± 11 * 
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When examining signalling in HAoSMCs, cells were incubated for 5 minutes 

in line with the time-dependent elevation in Ca2+-induced signalling in 

HAoSMC demonstrated by Molostvov et al. (2007).  Compared to 0.5 mM 

Ca2+, incubation of HAoSMC with 5 mM Ca2+ for 5 minutes produced 

decreases in the phosphorylation status of all tested phosphoproteins, and 

these reductions reached statistical significance for BCR-Abl, IGF-1R, PDGF, 

p53, Src and Tyk2 (Table 3.2.) (P<0.05).  Surprisingly, no significant change 

was detected in ERK phosphorylation, or its upstream activator MEK 

inconsistent with previous studies in SMCs84, 242-244.   

 

To verify these findings, ERK phosphorylation was investigated using a 

second method, western blotting with a phospho-ERK antibody.   Consistent 

with the data from Table 3.2 no change in ERK phosphorylation was 

demonstrated in BAoSMC incubated with 5 mM Ca2+, compared to BAoSMCs 

incubated with 0.5 mM Ca2+, despite clear increases detected in CaSR-HEK 

cells (Figure 3.14). 

 

 

Figure 3.14.  ERK phosphorylation in the presence of 0.5 mM or 5.0 mM Ca
2+ 

in CaSR-

HEK and BAoSMC.   

CaSR-HEK cells (left; passage 12) and BAoSMC (right; prep C, passage 6) were exposed to 

5 mM Ca
2+

 for 5 minutes.  Cell lysates (20 μg) were separated on a 10% acrylamide gel and 

analysed by Western blotting with anti phospho-ERK 1/2.  MW markers of ERK 1 and 2 are 

demonstrated on the left.  Results are representative of n=4 experiments.   
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3.7.2  Calcimimetic-induced signalling in HAoSMC 

The signalling pathways involved in response to calcimimetic treatment were 

also assessed.   HAoSMC were treated with 2.5 mM Ca2+ in the presence and 

absence of R-568.  In the presence of R-568 (1 nM), increases in the 

phosphorylation status of all phosphoproteins were observed, and significant 

elevations in MEK (21.9 ± 4%) and p90RSK (8.0 ± 1%) detected, compared to 

those incubated with Ca2+ alone (Table 3.3).   
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Table 3.3  R-568-induced signalling in SMCs. HAoSMCs (passages 4-6) were seeded in 

10% FCS-DMEM and cultured overnight in serum free medium. To assess R-568 (1 nM) 

signalling cells were incubated with 2.5 mM Ca
2+

 in the presence and absence (control) of R-

568. Cell lysates were prepared as described in the methods section (section 2.7) and ran on 

a multiplex phospho-protein bead array, which allow for detection of phosphorylation levels of 

19 phosphoproteins. Values are the results of n=3 samples both expressed as % of control 

(2.5 mM Ca
2+

 alone) ± SEM.  * P < 0.05 

 

Phosphoprotein % change in phosphorylation status with 

R-568 compared to 2.5 mM Ca2+ alone 

Akt 100.6 ± 13 

BCR-Abl 124.8 ± 22 

c-Jun 103.2 ± 11 

CREB 105.8 ± 12 

ERK 122.6 ± 23 

GSK-3/ß 126.9 ± 37 

HSP27 107.1 ± 4 

IGF-1R 134.3 ± 27 

I-B 113.7 ± 13 

JNK 119.0 ± 19 

MEK 121.9 ± 4 * 

PDGF 126.5 ± 18 

p38 122.9 ± 8 

p53 121.8 ± 34 

p70 S6K 107.5 ± 6 

p90RSK 108.0 ± 1 * 

Src 117.9 ± 24 

Stat3 117.3 ± 10 

Tyk2 116.0 ± 10 
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4.0 Discussion 

 

The effects of hypercalcaemia and calcimimetics on vascular calcification 

have been studied in vivo 236-240 and in vitro 82-84, 240.  The parathyroid CaSR238, 

239, and the SMC CaSR84, 240
  have been implicated in the actions of Ca2+ and 

calcimimetics on the mineralisation process.  This research supports previous 

findings suggesting calcimimetics can act directly on SMCs to protect against 

the mineralisation process84, 240 and identifies the downstream signalling 

pathways activated by calcimimetic treatment in SMCs.  Furthermore we 

provide additional insight into the respective role of the SMC CaSR in the 

promotion and protection of mineralisation produced by Ca2+ and 

calcimimetics respectively.    

 

4.1  Characterisation of explant cultures  

4.1.1. α-sma expression and mineralisation potential 

Firstly, primary cultures were assessed for α-sma expression.  α-sma  is 

predominantly expressed within SMC.  Whilst its expression is relatively 

restricted to SMCs, α-sma has also been shown to be present in fibroblasts.  

In most reports fibroblasts only express α-sma in response to tissue injury253, 

although α-sma expression has been detected in the absence of injury also254.  

As cells were characterised with α-sma only, the possibility of contaminating 

cells cannot be excluded, however the method used is a well-established 

method for isolating SMCs from aorta involving removal of the adventita and 

endothelial layer.   

 

It is a well accepted principle that SMC preparations can behave differently in 

regards to their mineralisation potential.  Early experiments showed that not 

all SMC cultures mineralise255 and the rate of mineralisation is variable across 

individual preparations and experiments70, 255-257.  Therefore, initially, each 

preparation of cells was assessed for their ability to calcify.  All preparations 

showed mineralisation following incubation with 1.8 mM Ca2+ and 5 mM BGP, 

albeit in different patterns.  Preparation A and C formed multicellular nodular 

structures, typical of the calcified vascular cells initially described by Prof. 
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Demer’s group255.  Although, with increasing passages the pattern of 

mineralisation observed with preparation C changed and in later experiments 

more diffuse and widespread calcification was detected.  This may reflect a 

change in SMC as they move from a more contractile phenotype to a 

synthetic phenotype.  The change in SMC phenotype can be characterised by 

differing morphology, with contractile SMCs possessing an elongated spindle 

shape vs. synthetic cells with a cobblestone morphology, differing proliferative 

and migratory characteristics, with synthetic SMCs showing a higher growth 

rates and higher migratory activity, and expression of protein markers 

including α-sma, smooth muscle-myosin heavy chain (SMMHC) and 

smoothelin- A/B 258, however expression of these protein markers was not 

monitored in this research.  While senescence of SMC, classified as passage 

11 onwards, has been shown to increase SMC calcification259, in the present 

study cells were not used at passage 10 or above. 

 

 

4.1.2  CaSR expression in BAoSMC 

The major objective of this work was to further understand the role of the 

CaSR in SMC mineralisation.  Expression of the CaSR in SMC is now well 

established84, 240, 242-244, although previously has been a controversial topic, 

with some groups failing to detect the CaSR245, 246 and others detecting a 

CaSR-like protein but that is molecularly distinct91.  However, the first step 

was to confirm CaSR expression in the cell population to be tested (i.e. 

preparation C BAoSMC and HAoSMC).  In this study we detected the 

presence of a CaSR-like protein in BAoSMC (prep C) via Western blotting and 

immunofluorescence using a CaSR-specifc antibody raised against a region 

within the extracellular domain of the protein.  Positive staining was observed 

throughout the cell reflecting the pattern of localisation of the CaSR reported 

in rat SMC244 and other cell types260, 261, although in contrast   to the punctate 

staining shown by Alam et al. (2009)84.  A few cells failed to show CaSR 

expression, although this represented the minority with majority showing 

positive expression.    
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Positive staining was also detected in HAoSMC, although some 

immunoreactivity was also observed in cells incubated with secondary 

antibody alone suggesting non-specific staining of the secondary antibody.  

Similar findings were reported by Molostvov et al (2007), who detected 

positive CaSR staining intracellularly and at the plasma membrane, however 

some immunoreactivity was shown with the secondary antibody alone or 

when the CaSR antibody was pre-absorbed with the immunising peptide243.  

However, in support of current findings, more prominent staining was detected 

in cells treated with anti-CaSR243.   

 

Western analysis of membrane preparations from both HAoSMC and 

BAoSMC revealed immunoreactivities at ~160 kDa, ~200 kDa and ~250kDa.  

The ~160 kDa band, was observed in SMCs and CaSR-HEKs (see Figure 

3.4B, 3.4C and 3.13A) and corresponds to the glycosylated form of the full 

length CaSR monomer.  These findings are consistent with findings from 

Molostvov et al. (2007), where SMC CaSR immunoreactivity was identified at 

160kDa, aligned with CaSR immunoreactivities observed in HKC-8 cells, a 

human renal proximal tubular cell line (positive control)243.  The lower 

molecular weight band (~140 kDa), representing the unglycosylated form of 

CaSR262 was absent from membrane preparations of SMCs.  Previous reports 

confirm the absence of the 140 kDa band in cultured SMCs243, however 

lysates from freshly dissected renal and epigastric arteries from transplant 

patients, reveals immunoreactive species including a 140 kDa band243.   

 

CaSR immunoreactivities were also observed at ~200 and 250 kDa with 

BAoSMC and HAoSMC.  Whilst not visible on lower exposure blots, these 

bands to appear to align with immunoreactivities detected with CaSR-HEK 

cells (see Figure 6.2A).  Previous reports have identified two bands major 

between 200 and 300 kDa in CaSR-HEK cells, which are believed to 

represent the dimeric forms of the receptor263.  Therefore, the 250 kDa band 

observed in SMCs may represent a dimeric form of the receptor, however this 

is not anticipated under reducing conditions.  Although, bands of 250 kDa and 

above, are also detected in CaSR-HEKs, suggesting some dimeric forms of 
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the receptors may remain.  Whilst not presented in Figure 3.4 or 3.13 SMCs 

also show the traditional dimer doublet at ~280 kDa (shown in Figure 6.2A).   

 

Despite confirmation of protein expression of the CaSR, no CaSR messenger 

RNA was detected in cultured BAoSMC contrary to previous reports243, 244, but 

supported by Farzaneh-Far et al. (2001) who failed to identify CaSR mRNA 

expression24.  This may, in part, reflect the sensitivities of our methods, as 

despite a clear CaSR signal detected from parathyroid gland tissue, the level 

of CaSR mRNA expression in smooth muscle cells is significantly lower than 

those observed in the parathyroid gland.  However, it may also, additionally, 

suggest that there is little generation of new CaSR in cultured cells, supported 

by the absence of the immature unglycosylated form in cultured cells243.    

 

 

4.2  The effect of CaSR activation on SMC mineralisation   

Strong in vitro data supports a role for the CaSR, independent of systemic 

changes in calciotropic hormones.  Alam et al. (2009) first proposed a 

relationship between SMC CaSR and SMC mineralisation, demonstrating 

increased mineralisation when cells were treated with a dominant negative 

CaSR construct84.  The reported effects of CaSR agonists on SMC 

mineralisation were variable with Ca2+ and Gd3+, promoting SMC 

mineralisation, whilst R-568, delayed the onset of mineralisation84.  The aim of 

this research was to expand our knowledge of how CaSR agonists modulate 

SMC mineralisation and the relative involvement of the CaSR in these actions.   

 

 

4.2.1 The effect of Ca2+ on SMC mineralisation   

Data presented as part of this study support the findings of Alam et al. (2009) 

showing increased mineralisation with increased [Ca2+]o in the presence of an 

external source of phosphate84.  Increasing [Ca2+]o alone was not sufficient to 

trigger mineralisation suggesting that the resulting mineralisation is a 

reflection of the final Ca x P rather than the Ca2+ concentration alone.  

Additional reports of Ca2+-induced mineralisation exist, however in these 

reports increased mineralisation is detected in the absence of an external 
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phosphate source82, 83, in contrast to results presented.  A species difference 

may underlie the differential response as Yang et al. (2004) and Reynolds et 

al. (2004) both used human SMCs, compared to the current report, and Alam 

et al. (2009), which used bovine SMCs.   

 

Increasing [Ca2+]o  also resulted in a significant elevation in alkaline 

phosphatase (ALP) activity, supporting previous findings of Ca2+-induced 

mRNA expression of ALP82.  ALP is among one of the first functional genes 

expressed in the process of calcification in osteogenesis264 and current 

findings suggest it may also be an early step in vascular calcification with 

significant elevations detected on day 5, in advance of mineralisation.   

 

The role of Ca2+ in the induction of ALP has more recently been questioned 

as interestingly it has been found that applying high Ca2+/PO4
3- medium (i.e. 

2.7 mM Ca2+ / 2 mM PO4
3-) to vessel rings from humans decreases ALP 

activity compared to both baseline medium (low Ca2+/PO4
3-) 86.   This is in 

contrast to applying high PO4
3- medium (1.8 mM Ca2+ / 2 mM PO4

3-) where 

significant elevations in ALP activity are observed in pre-dialysis and dialysis 

vessels86.  In opposition to current findings these findings suggest that Ca2+-

induced calcification in humans occurs in the absence of elevated ALP 

activity86.        

 

It is well accepted that increases in extracellular Ca2+ can contribute to 

increased SMC mineralisation82-84.  However, an intriguing question 

unanswered from the findings of Alam et al. (2009) was how Ca2+ and Gd3+, 

typical agonists of CaSR, enhance mineralisation whilst R-568, an allosteric 

modulator, inhibits mineralisation84.  The authors reported that increasing 

extracellular Ca2+ concentrations from 1.2 mM Ca2+ to 1.8 or 2.5 mM resulted 

in reduced CaSR expression84, although the effect of Gd3+ or calcimimetic 

treatment on the expression of the SMC CaSR was not reported.  Given the 

available data one could hypothesize that a possible mechanism for Ca2+-

induced mineralisation is by downregulation of the SMC CaSR, thus reducing 

the level of protection afforded by its presence.  Furthermore it was suggested 

that calcimimetics may oppose this action by increasing SMC CaSR 
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expression84, an action that has been observed in the parathyroid glands265, 

266 and HEK-293 cells228.  Whilst only a hypothesis at the time, recently 

Mendoza et al. (2011) has presented evidence to confirm this suggestion; 

showing that AMG641 can significantly increase CaSR mRNA in SMCs92.   

 

 

4.2.1.1  Understanding the process of Ca2+-induced mineralisation 

Whilst data support CaSR downregulation as one of the likely steps in Ca2+-

induced mineralisation84, this study also reports preliminary results suggesting 

additional mechanisms contributing to the promotion of mineralisation, 

independent of CaSR-mediated events.  Mechanisms for Ca2+-induced 

mineralisation, independent of the CaSR are well reported and have recently 

been reviewed78.  Whilst the experimental data presented require cautious 

interpretation and further validation, we showed that despite treatment with 

the dominant negative adenoviral construct of CaSR (R185Q), Ca2+ maintains 

the ability to dose-dependently induce SMC mineralisation.   

 

One of the major limitations of this experiment is that the extent of residual 

CaSR activity by the endogenous receptor was not investigated.  Residual 

activity of the endogenous CaSR may account for the modest increase in 

mineralisation detected with increased extracellular Ca2+ (1.8 mM vs. 1.2 mM 

Ca2+).  Additionally this experiment lacked the appropriate controls.  Without 

the inclusion of an empty virus control the relative importance of CaSR-

dependent and CaSR-independent actions on local Ca2+-induced 

mineralisation cannot be commented upon.   

Although very preliminary at the time, evidence supporting these findings 

have since emerged247.  Caudriller et al. reported that Ca2+-induced 

mineralisation occurs in the absence of CaSR and that cells treated with 

CaSR-SiRNA became more sensitive to the calcifying actions of Ca2+247.  This 

finding reinforces that CaSR has a protective role in SMCs and also proposes 

the question of whether Ca2+ acts in a protective capacity through the CaSR, 

but its effects are outweighed by other calcifying activities.   
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The signalling activities induced in SMC by Ca2+, appear to be distinct from 

previously reported CaSR-mediated actions.  Ca2+ evoked signalling in CaSR-

HEKs showed elevations in a number of protein kinases involved in MAPK 

signalling (i.e. MEK/p90RSK/p70 s6K), consistent with previous reports in 

CaSR-HEK198, 267, 268 and CaSR mediated signalling in other cell types269-273.  

Whereas, no elevation in components of MAPK signaling were detected when 

SMC were incubated with 5 mM Ca2+, compared to 0.5 mM Ca2+.  These data 

contradict a number of previous reports in SMC which have shown ERK 

activation in response to CaSR agonists92, 242-244, and have shown these 

changes to be CaSR-dependent242, 243.  No definitive conclusions can be 

drawn from the comparison between Ca2+-induced signalling in CaSR-HEKs 

and SMCs as CaSR interactions may be cell specific and different durations 

of incubation were used between experiments.  However, these results open 

up the possibility that the Ca2+-induced signalling events reported in SMCs 

are not CaSR mediated, although without further work using dominant 

negative CaSR this remains conjecture.   

 

Instead, Ca2+ incubation (5 mM) of SMC evoked significant depressions in a 

number of signalling pathways; BCR-Abl, IGF-1R, PDGF, p53, Src, Tyk2 

compared to 0.5 mM Ca2+.  Of interest within this group is IGF-1R, which has 

been suggested to be involved in SMC mineralisation274, 275.  Loss of IGF-1R 

signalling, or inhibition of its downstream signalling molecules, promotes 

mineralisation274, 275.  Therefore it may be possible that by attenuating IGF-1R 

signalling, Ca2+ reduces the protection afforded by the active IGF-1R receptor.   

 

Furthermore, incubation of SMCs with elevated levels of extracellular Ca2+ 

modulates components of apoptotic pathways.  Acute incubation with 5 mM 

Ca2+ suppresses levels of activated BCR-Abl, an apoptosis inhibitor, and p53, 

which has been reported to protect SMCs from apoptosis, both in vivo and in 

vitro276.  Supporting this hypothesis, extracellular Ca2+ (5.4 mM) has been 

shown to induce apoptosis83 compared to 1.8 mM Ca2+.  However these 

results need to be interpreted cautiously  with recent reports showing that 

extracellular Ca2+ at 1.36 – 3.3 mM can be protective of apoptosis275 
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suggesting that the actions of extracellular Ca2+ on apoptosis may be dose 

specific. 

 

 

4.2.2 The effect of calcimimetics on SMC mineralisation   

Previous studies have reported that R-56884, 240 can delay the onset of SMC 

mineralisation induced by Ca2+ in vitro.  In the present study we expanded on 

these findings demonstrating that, a second calcimimetic, AMG641 also 

delays mineral deposition by BAoSMC in vitro, in a dose dependent manner.   

Additionally, as a control for the effect of R-568, its isomer S-568 which shows 

little/no activity at the CaSR was investigated.  Unlike R-568, S-568 produced 

no protection against the onset of mineralisation, suggesting that the 

protective actions of calcimimetics are mediated through the CaSR.  

Consistent with previous reports, calcimimetics did not inhibit the process of 

calcification but slowed the development / progression of mineralisation84. 

 

To conclusively report that the actions of AMG641 and R-568 are mediated 

via the CaSR, knockout studies would be required.  The dominant negative 

adenoviral construct, used in this research, was not suitable for verification of 

this finding as recent data have shown that calcimimetics can act as 

pharmacochaperone and increase membrane expression and activity of 

mutant receptors, including the R185Q receptor used in this research228, 277.  

However, further evidence that the local protective actions of R-568 are 

mediated through the CaSR came from Ivanovski et al. (2009) who 

demonstrated that knockout of the CaSR, in vitro, by siRNA technology 

attenuates the protective role of calcimimetics240.   

 

 

4.2.2.1  Calcimimetic-induced signalling in SMC 

Acute treatment of SMCs with R-568 in the presence of 2.5 mM Ca2+ evoked 

increased phosphorylation of MEK and p90RSK compared to Ca2+ alone.  

Activation of the MEK/ERK pathway is consistent with existing reports that 

treatment with CaSR agonists increased ERK phosphorylation in SMCs84, 242, 

244.  Furthermore use of CaSR siRNA abolishes ERK phosphorylation induced 
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by neomycin234, confirming CaSR specific activation of MEK / ERK pathways.  

Lending additional support to these findings, Mendoza et al. (2011) recently 

reported increased ERK phosphorylation with AMG641 treatment in SMCs92.  

However, confirmation that the reported the observed elevations in MEK and 

p90RSK produced by R-568 are CaSR-dependent will require knockout 

studies.   

 

Strangely this study failed to show a significant activation of ERK despite 

activation of signalling components up- and down-stream of ERK.  In CaSR-

HEK cells, Ca2+-induced MEK / ERK pathway activation has been linked to 

Gαq/11, Gαi/o , P13K, as well as PKC and filamin278.  Limited data exists to 

understand how these molecules interact with the SMC CaSR to elicit 

activation of MEK / ERK pathways.  Smajilovic et al. (2006) reported no or 

very little IP3 accumulation in the presence of neomycin and high 

concentration Ca2+ (20–30 mM), respectively, with no mobilisation of 

intracellular Ca2+244.  However, Molostvov et al. (2008) showed that the PLC 

inhibitor, U73122, could attenuate ERK phosphorylation and observed IP3 

production in response to neomycin and gentamicin, suggesting a mechanism 

dependent on the PLC pathway242.   This group also showed that ERK 

phosphorylation was independent of PI3K242.  Findings from this research 

support that observation showing that elevations in phosphorylated MEK and 

p90RSK were not accompanied by increased Akt phosphorylation. 

 

Activation of MEK / ERK can trigger a large number of signalling molecules.  

Downstream of MEK activation, phosphorylation of a number of the tested 

phosphoproteins may be expected (e.g. c-Jun, IκB,  p53, p70s6k, Stat3, 

CREB), however this research only showed significant elevations on p90RSK.  

Furthermore, no other MAPK pathways (i.e. p38 or JNK) were shown to be 

activated by calcimimetics in SMCs, as have been shown in CaSR-HEKs and 

other cell types198, 267, 279.   
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4.2.2.2 Implications for mineralisation 

The roles of MEK and p90RSK in the process of calcification were not 

examined as part of this research although do warrant further investigation.  

To understand the impact of each of these pathways and their potential as 

mediators of the protective actions of the calcimimetics we would need to 

examine signalling pathways following chronic calcimimetic treatment with 

and without their respective inhibitors (MEK; UO126, PD98059 / p90RSK; BI-

D1870, SL0101).   

 

Among the molecules identified that can induce/delay BAoSMC mineralisation, 

a number of authors have identified MEK / ERK signalling as playing a key 

role in this process29, 274, 280-282.  Speer et al. (2009) speculated a role for 

extracellular signal-regulated kinases (ERKs)29, as ERK signalling had been 

implicated in osteoblastic differentiation283-285, and they found levels of 

phosphorylated ERK1/2 increased prior to a decrease in the levels of SMC 

lineage markers29.  The role of ERK in osteoblastic differentiation in SMC was 

confirmed using the MEK inhibitor U0126 which prevented down regulation of 

SMC lineage markers and the SMC-specific transcription coactivator 

myocardin in calcifying SMCs29.  Interestingly, ERK has also been reported to 

be involved in the upregulation of smooth muscle myosin heavy chain286 and 

thus may help protect against SMC transdifferentiation.  However 

discrepancies in the current literature exist as to whether MEK / ERK 

signalling provides a protective role274, 280 or its activation is one of the steps 

promoting mineralisation29, 281, 282, 287.  A large degree of substrate 

dependence appears to exist as a result of the cross talk among the 

downstream signalling pathways and the different microenvironments created 

by each group.   

 

p90RSK (p90 ribosomal S6 kinase) lies immediately downstream from ERK 

and while a lot of research interest has surrounded ERK signalling, less is 

known about the role of p90RSK in the process of vascular calcification.  In its 

inactive form, p90RSK resides in the cytoplasm, however upon stimulation is 

transported to the nucleus complexed with ERK.  p90RSK has a number of 
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cytosolic substrates, including Iκ-B288 and also regulates a number of 

transcription factors including c-Fos289, CREB290 and Nur77291.   

 

Of interest to the process of SMC mineralisation, p90RSK has the potential to 

antagonise apoptosis through neutralizing BAD, a pro-apoptotic member of 

the Bcl family of proteins288, 292, 293.  This opposes the signalling activities 

observed in SMC upon acute incubation with 5 mM Ca2+, where reduced 

activation of apoptosis inhibitors were detected.  Therefore, calcimimetics may 

help delay mineralisation by increasing survival of SMC.  Molostvov et al. 

(2008) have already demonstrated that CaSR-mediated PLC activation is 

important for SMC survival and protection against apoptosis and reported on 

the importance of MEK / ERK signalling in this process242, however more 

direct association to the mineralisation process is required. 

 

 

4.5  Conclusions 

This work advances our understanding of the current role of the CaSR in SMC 

mineralisation.  I have shown that treatment with calcimimetics can delay 

SMC mineralisation and hypothesise that this protection is mediated via a 

CaSR-dependent mechanism.  Additionally I demonstrated that the role of 

Ca2+ as a promoter of SMC mineralisation is, in part, independent of its 

actions on the CaSR.  MAPK signalling pathways are reported to be activated 

after acute stimulation with calcimimetics in SMCs and the literature supports 

a hypothetical role for these signalling molecules in the mineralisation process.       

 

 

4.6  Limitations of current work 

1. The cell population used in these experiments were identified as 

smooth muscle cells on the basis of positive α-smooth muscle actin (α-

sma) staining uniformly across the cell culture, however α-sma is not 

exclusive to SMCs alone.  α-sma has also been identified in 

fibroblasts294, which are similar in morphology to SMCs; therefore the 

possibility of cross-contamination cannot be excluded. 
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2. Whilst the presence of the CaSR in SMC is now widely accepted, the 

current data do not provide definitive evidence.   

a. Methods used to asses CaSR mRNA expression were no 

optimised to detect low abundance mRNA transcripts, previously 

observed in bovine SMCs92.   

b. Immunfluorescence experiments could have been performed 

under more stringent conditions with stronger controls (i.e. pre-

incubation of the CaSR antibody with immunising peptide).  

Protocols for immunostaining of the CaSR in HAoSMC should 

have been further optimised using different blocking agents and 

dilutions of antibodies.  

c. Assessment of CaSR mRNA and protein expression from 

freshly isolated bovine SMCs may have yielded better results, 

but were not investigated in this research.     

3. This research reports preliminary findings that Ca2+-induced 

mineralisation can occur independently of CaSR.  However, no empty 

virus control was included in this preliminary research and therefore the 

relative role played by CaSR cannot be inferred.  As part of future work 

we would expect confirmation that cells treated with the dominant 

negative RAd produce a dose dependent increase in mineralisation 

with increasing concentrations of Ca2+ (vs. empty virus control).   

4. The bioplex allowed for an initial screen of 19 phosphoproteins in a 

time efficient manner, however, limitations to exist which may have led 

to the generation of false positives / negatives and thus results require 

validation 

a. Total phosphoprotein was not assessed in parallel to 

phosphorylation status and therefore effects could have been 

masked or amplified.  Positive results require confirmation with 

western blot for both the phosphorylated form and total 

phosphoprotein.   

b. Ca2+-treated CaSR-HEKs were used as a positive control, 

however, positive controls showing activation of each 

phosphoprotein were not included, and therefore results may 

contain false negatives 
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c. Methods used required that the average of control values for 

individual experiments were used in statistical analysis 

incorporating a false uniformity within the data set. 

5. Finally, the current research utilised pharmacological tools to suggest 

that calcimimetic effects are mediated through the CaSR.  Calcimimetic, 

however, have been shown to effect Ca2+ channels at high doses295, 

therefore for confirmation of these findings knockout studies are 

necessary, which have recently been published240.  Similarly the 

signalling pathways found to be activated by CaSR cannot be 

conclusively attributed to the CaSR activation without KO being used. 

 

 

4.7  Future research questions and directions 

We know, through this research and that of others, that calcimimetics can act 

on SMC to prevent mineralisation.  However it is still unknown how they 

produce their protective actions, whether their protective actions can reverse 

established mineralisation and the relative contribution of activation of SMC 

CaSR vs parathyroid CaSR.   

 

1. Reported data suggest that calcimimetics may enhance signalling 

through MAPK pathways, in particular MEK and p90RSK.  Firstly, to 

expand on current findings, confirmation that enhanced MAPK 

signalling results from CaSR activation is necessary, using CaSR 

siRNA.  Secondly, the potential contribution of the activation of these 

signalling molecules to the mineralisation process, and apoptosis, 

should be investigated, using pharmacological manipulation of each of 

these pathways independently.  Therefore, in vitro calcification 

experiments assessing the degree of protection afforded by 

calcimimetics in the presence and absence of MEK (UO126 / 

PD98059) and p90RSK (BI-D1870 and SL0101) inhibitors should be 

performed.  

 

2. (i) To further evaluate the current hypothesis that the loss of CaSR is 

associated with SMC mineralisation we need to better understand at 
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what stage in the mineralisation process CaSR is downregulated.  

Alam et al. (2009) reported CaSR downregulation in response to high 

levels of [Ca2+]o as early as 24 hours after a change in culture 

conditions.  However whether this occurs prior to changes in gene 

expression of osteoblast / smooth muscle markers is unknown.  Using 

qPCR, expression levels of osteoblastic (e.g. osterix, Runx2, 

osteonectin) and SM markers (α-sma, SM22α, myocardin) will be 

analysed alongside CaSR expression.   

(ii) In parallel, the ability of calcimimetics to promote CaSR expression 

and correct for CaSR down regulation in high Ca2+ environments 

should be examined.  Reports by Mendoza et al. (2011) reported the 

ability of AMG641 to increase CaSR expression in cells incubated in 

1.8 mM Ca2+, a concentration which has been reported to result in 

receptor down regulation84.  However the length of time cells were 

incubated in this environment and the extent of down regulation prior to 

treatment with AMG641 are unknown.  

 

3. As a potential therapeutic strategy for calcification, it is important to 

understand the extent of protection afforded by calcimimetics and 

whether calcimimetics are also capable of reversing / slowing the 

progression of established calcification.  This can be investigated in 

vitro, staggering the introduction of calcimimetic therapy to SMCs 

cultured with pro-calcifying stimulus (i.e. 5mM BGP + 1.8 mM Ca2+) ie 

day 0, day 3, day 6, day 9…  This should accompany ex vivo work in 

which cells isolated from calcifying arterial medias of matrix Gla-protein 

knockout (MGP -/-) mice are treated with calcimimetics and the 

progression of mineralisation monitored.   

 

4. Finally, despite the accumulating in vitro evidence, the physiological 

role of SMC CaSR remains largely unknown.  Severe 

hyperparathyroidism, premature death, and incomplete gene excision 

in CaSR–/– mice have precluded the assessment of CaSR function in 

SMCs, thus a tissue specific knockout is required.  Dr. Shoback and 

colleagues have recently generated mice with tissue specific deletions 
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in the parathyroid gland, bone and cartilage296.  As part of a 

collaborative effort with our group, the floxed animals with exon 7 of the 

CaSR ‘knocked out’ (equating to the 7TMD and 4 intracellular loops of 

the receptor protein) are being bred with a SM22α-Cre transgenic 

mouse to remove CaSR in a tissue specific manner.  This will allow us 

to assess the relative contribution of the SMC CaSR in calcification i.e. 

does loss of SMC CaSR in vivo predispose animals to the development 

of calcification and to what extent are the protective effects of 

calcimimetics dependent on the presence of CaSR SMC? 
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Chapter 6:  Appendix 

 

6.1  Serum batch testing 

In vitro, mineralisation of BAoSMC is dependent on the batch of serum used 

(Prof.  Ann Canfield, University of Manchester, personal communication).  

Therefore prior to experimentation serum is assessed for its ability to induce 

mineralisation.  The figure below (Figure 6.1) illustrates one such experiment. 

 

 

 

Figure 6.1  Serum batch testing.  BAoSMC were grown to confluence in 10% FCS–DMEM 

containing 1.2 mM Ca
2+

.  Upon confluence cells were incubated with 1.8 mM Ca
2+

 with (i) 

established calcifying serum but no BGP (negative control), (ii) test serum in the presence of 

BGP or (iii) established calcifying serum in the presence of 5 mM BGP (positive control).  A 

lots of serum were tested 7SB0015HA and 7SB0015H5.  Cells were treated for 10 days 

before fixing and staining with ARS, illustrating mineral deposition. 

 

6.2. Supplementary figures   

The following figures show additional data / repeat experiments from findings 

presented with the results section (Chapter 3).   
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Figure 6.2  CaSR immunoreactivity in BAoSMC (supplement to Figure 3.4)  A:  

Membrane preparations from cultured BAoSMC (prep C; passage 4) were separated using 

5% SDS-PAGE and CaSR immunoreactivity detected by Western blotting using a CaSR 

antibody (1:5000).  Exposure time 2 min.  Original figure (Figure 3.4) shows 

immunoreactivities at two different exposure times, optimised for visualisation of SMC CaSR 

and CaSR-HEK CaSR.  Size (in kDa) of molecular weight markers is indicated on the left.  B:  

BAosMC (prep C; passage 4) grown on chamber slides for 24 hrs in 10% FCS-DMEM (1.2 

mM Ca
2+

) were fixed with 4% formaldehyde before incubation with a polyclonal antibody 

against human CaSR (1:200).  A fluorescein isothiocyanate (FITC)-conjugated secondary 

antibody (green; 1:40) and DAPI (blue) was used to visualise the CaSR and nuclear staining 

(i). Arrow used to highlight cells with negative staining.  Bar = 25 µm.   
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Figure 6.3  Ca
2+

-induced mineralisation requires the presence of BGP (supplement to 

Figure 3.6).  A and B represent independent experiments.  BAoSMC (prep C; passage 6 and 

7) were treated upon confluence with increasing concentrations of Ca
2+

 in the absence of 

BGP.  Images show cells stained with alizarin red at days 17 (experiment A) and 13 

(experiment B).  Bar = 500 µm. 
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Figure 6.4  Concentration-dependent effects of Ca
2+

o on SMC mineral deposition 

(supplement to Figure 3.7).  A and B represent independent experiments.  BAoSMC (prep 

C; passage 6 and 7) were treated upon confluence with increasing concentrations of Ca
2+

 

alongside 5 mM BGP.  Images show cells stained with alizarin red at day 17 (experiment A) 

and day 13 (experiment B).  Bar = 500 µm.  
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Figure 6.5  Effect of AMG641 on Ca
2+

-induced mineralisation (supplement to Figure 

3.10).  

A and B represent independent experiments.  BAoSMC (prep C; passage 8 and 9) were 

treated upon confluence with 1.8 mM Ca
2+

 and 5 mM BGP in the presence of vehicle (1:1000 

DMSO) (i) or AMG641 at 10 pM (ii), 100 pM (iii) and 1 nM (iv).  Images show cells stained 

with alizarin red at day 19 (experiment A) and day 11 (experiment B).  Bar = 500 µm. 
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Figure 6.6  Protective actions of R-568 on Ca
2+

-induced mineralisation (supplement to 

Figure 3.11).  A & B represent independent experiments.  BAoSMCs (prep C; passage 6 and 

8) were cultured in 5% FCS-DMEM and 5 mM BGP with 1.8 or 2.2 mM Ca
2+

 in the presence 

or absence of R-568.  Cells were stained with alizarin red at day 15 (experiment A) and day 

18 (experiment B).  Bar = 500 µm.   
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Figure 6.7  S-568 does not delay Ca2+-induced mineralisation (supplement to 3.12). 

BAoSMCs (prep C; passage 9) were incubated with 1.8 mM or 2.2 mM Ca
2+

 in the presence 

or absence of S-568.  Cells were stained with alizarin red at day 10.  Bar = 500 µm.  

 

 


