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Purified recombinant VIM-7 possesses efficient penicillinase and carbapenemase activities comparable to
those of VIM-2. Cephalosporinase activity was variable and generally lower than those of VIM-1 and VIM-2.
A homology model suggests that the VIM-7 Tyr-218 Phe substitution may be responsible for the reduced
catalytic efficiency against certain cephalosporins, including ceftazidime and cefepime.

Metallo-B-lactamases (MBLs) effectively hydrolyze most
B-lactams and are not inhibited by clinical B-lactamase inhib-
itors (13, 16). Five clinically important MBLs (IMP, VIM,
SPM, GIM, and SIM) are reported to be encoded by genes
located on plasmids or associated with mobile genetic elements
(13, 16). So far, 18 distinct VIM enzymes from a variety of
gram-negative opportunist pathogens have been described
(www.lahey.org/Studies). We have previously identified
VIM-7, the most divergent of all reported VIM subtypes (77%
amino acid identity with VIM-1) and the first MBL to be
reported from the United States (14). Here we report the
overexpression of VIM-7 in Escherichia coli and the kinetic
characterization of the purified enzyme.

The bla, 1\, gene was amplified from Pseudomonas aerugi-
nosa 07-406 (14) by PCR using the primers VIM-7F 5'-GAAT
TCCATATGTTTCAAATTCGCAGCTTTCTGGTTG-3" and
VIM-7R 5'-CGCGGATCCTTACTCGGCCACCGGGCGTAC
TTTG-3' to introduce Ndel and BamHI restriction sites, respec-
tively (underlined). The PCR product was cloned into the T7
expression vector pET-26b (Novagen) and transformed into E.
coli BL21 (DE3) (Novagen). Protein expression was induced in
Terrific broth (Sigma-Aldrich) at 37°C by using 1 mM isopro-
pyl-1-thio-B-p-galactopyranoside. VIM-7 was purified from the
periplasm according to the method of Avison et al. (1) with
modifications including 50 mM Tris (pH 7.5), 100 pM ZnCl,,
0.02% (wt/vol) sodium azide used as the buffer system, and
Q-Sepharose and Superdex 75 matrices (GE Healthcare) for
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the ion-exchange and gel filtration steps, respectively. In addi-
tion, bla ., was amplified from P. aeruginosa 81-11963 (15)
by using primers VIM-2F 5'-GGAATTCCATATGTTCAAACT
TTTGAGTAAGTTATTGG and VIM-2R 5'-CGCGGATCCC
TACTCAACGACTGAGCGATTTGTG (Ndel and BamHI re-
striction sites underlined), and cloned, expressed and purified as
described for VIM-7. The concentrations of VIM-7 and VIM-2
were determined from the absorbance at 280 nm by using extinc-
tion coefficients of 26,930 M~! cm ™! (calculated from the amino
acid sequence [www.expasy.ch]) and 28,500 M~ cm ! (2), re-
spectively. Protein preparations were estimated to be >99% pure,
as judged by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis.

Steady-state kinetic measurements were performed at 25°C
in UV-transparent 96-well plates (BD Biosciences) in a Spec-
traMax 190 spectrophotometer (Molecular Devices) in 50 mM
sodium cacodylate (pH 7.0), 100 pM ZnCl,, and 0.1 mg/ml
bovine serum albumin. A parallel investigation of nitrocefin
hydrolysis by VIM-7 in 1-ml cuvettes yielded kinetic parame-
ters identical to those obtained with 96-well plates (data not
shown). The wavelengths and extinction coefficients used were
those previously reported (7, 12) excepting those for ertap-
enem (Ag, —6,920 M~ ' cm ™ '; A, 300 nm). For 96-well plates,
extinction coefficients were recalculated from standard curves
constructed from absorbance measurements of serially diluted
unhydrolyzed and completely hydrolyzed substrates. K,,, (nM)
and k., (s~') were determined from plots of initial velocity of
hydrolysis against substrate concentration. For penicillin G,
ampicillin, carbenicillin, piperacillin, aztreonam, and clavu-
lanic acid, the K, was determined as the K; by measuring
inhibition of hydrolysis of the reporter substrate nitrocefin
across a range of substrate and nitrocefin concentrations. K; val-
ues were determined by a global (shared-parameter) fit of these
multiple data sets to a competitive inhibition model. All kinetic
data were fitted by nonlinear regression as implemented in the
Prism program (GraphPad Software, San Diego, CA).

Table 1 lists the steady-state kinetic parameters k_,,, K,,,,

cat’
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TABLE 1. Steady-state kinetic parameters of the purified VIM-7 in comparison with those of the other variants, VIM-1 and VIM-2¢

K, (WM) Keat (571 Kea/ K (WM - 571)
Substrate
VIM-7 VIM-1? VIM-2° VIM-7 VIM-1° VIM-2° VIM-7 VIM-1° VIM-2°
Penicillins
Benzylpenicillin 17 = 2¢ 840 70 430 =2 30 280 25 0.036 4
Ampicillin 15 = 2¢ 920 90 190 £ 17 35 125 13 0.038 1.4
Carbenicillin 84 = 10° 75 205 1,200 = 74 170 185 14 2.3 0.9
Piperacillin 26 £ 3¢ 3,500 125 140 £ 13 1,900 300 5.4 0.54 2.4
Azlocillin 66 * 16 120 200 78 =4 1,500 200 1.2 12.5 1.0
Cloxacillin 860 = 310 ND 250 = 47 2,500 = 400 ND 350 %18 2.9 ND 1.4
Cephalosporins
Cephalothin 45+5 55 11 180 = 6 280 130 4.0 5.1 12
Cephaloridine 250 = 21 30 50 180 £ 6 315 140 0.72 10.5 2.8
Cefoxitin 68 =7 130 13 10 = 0.3 26 15 0.15 0.2 1.2
Cefuroxime 29 £ 4 42 20 16 = 0.5 325 8 0.55 7.7 0.4
Cefotaxime 22+2 250 12 56 =2 170 70 2.6 0.68 5.8
Ceftazidime 120 =25 800 72 14 £0.1 60 3.6 0.012 0.075 0.05
Cefepime 580 + 61 150 >400 53+02 550 >40 0.0091 3.7 0.1
Nitrocefin 58+3 17 18 1,500 = 29 95 770 26 5.6 42.8
Moxalactam 75 £ 15 450 55 230 = 13 43 90 3.1 0.096 1.6
Carbapenems
Imipenem 272 1.5 9 100 £2 0.2 34 3.7 0.13 3.8
Meropenem 384 50 2 42 = 0.8 13 5 1.1 0.26 2.5
Ertapenem 28 £3 ND 9+0.6 8§+0.2 ND 0.2 £0.01 0.29 ND 0.022
Monobactam (aztreonam) 2,700 * 630 >1,000 >1,000 NH <0.01 <0.01 ND <1.0 X 10> <1.0 x 10?
Inhibitors
Tazobactam 3,500 = 360 340 875 68 =3 5.3 28 0.019 0.016 0.032
Sulbactam 740 = 90 200 320 110 £ 6 10 23 0.15 0.05 0.072
Clavulanic acid 940 + 320°¢ ND >5,000¢ 2.3 =044 ND 54+214  0.0025 ND 0.0011

“ ND, data not determined; NH, no measurable hydrolysis.

b Kinetic constants for VIM-1 are from Franceschini et al. (3), and those for VIM-2 are from Docquier et al. (2) except for those for cloxacillin, ertapenem, and

clavulanic acid (this study).

¢ K,, values were measured as inhibition constants (K;) in a competitive model using nitrocefin as the reporter substrate.
@ ko values were calculated from fits of initial velocity against the clavulanate concentration assuming the K, equals the K; (from the experiment).

and k_,/K,, for hydrolysis of a series of substrates by VIM-7
and compares these data with published values for VIM-1 and
VIM-2 (2, 3) and data from our own investigations of cloxacil-
lin, ertapenem, and clavulanic acid hydrolysis by VIM-2 (this
study). Note that we also investigated hydrolysis of nitrocefin
and cephaloridine by VIM-2 under our conditions and found
no major discrepancies with previously published values (2).
VIM-7 hydrolyzed all the tested B-lactams except aztreonam,
for which only very weak interaction with enzyme was ob-
served. VIM-7 efficiently hydrolyzes all penicillins and carbap-
enems (k. /K,, > 10° M~! s™!) with the exception of ertap-
enem, while activity against cephalosporins varies by almost
four orders of magnitude (activity against cefepime, 9.1 X 10?
M~! s™'; activity against nitrocefin, 2.6 X 10’ M~ ' s~ ). The
B-lactamase inhibitors tazobactam, sulbactam, and clavulanic
acid are hydrolyzed with lower efficiencies, due primarily to
high K,,, values. Activity against penicillins, and to some extent
carbapenems, arises both from high k_,, and, with the excep-
tion of that for cloxacillin, relatively tight (10 to 100 uM) K,
values. Comparison with VIM-1 and VIM-2 (Table 1) suggests
three general trends in overall catalytic efficiency. That for
penicillins is VIM-7 > VIM-2 > VIM-1, that for cephalospo-
rins is VIM-1 =~ VIM-2 > VIM-7, and that for carbapenems is
VIM-7 =~ VIM-2 > VIM-1. The trend in k,/K,, values for
VIM-7 broadly follows that observed for MICs determined

with E. coli DH5a transformed with the pMATVIM-7 plasmid
(14) in that penicillin MICs are generally high, the value for
imipenem is higher than that for meropenem, and there is little
effect on aztreonam susceptibility.

Experiments in which VIM-7 (2 nM) was incubated with
EDTA (200 wM) at set time points and activity assessed by
nitrocefin (100 wM) hydrolysis rates revealed loss of more than
85% of activity in an incubation period of 2 h. The inactivation
process was dominated by an exponential process with a rate
(0.014 min~') comparable to the slower of the two phases
(0.012 min—') observed in the equivalent experiment per-
formed with P. aeruginosa SPM-1 (9). However, the data also
suggest a second, faster phase (0.48 min~') accounting for
approximately one-eighth of the activity lost. Although this
might be considered indicative of the presence of two metal
sites of significantly differing affinities, as has been proposed
for SPM-1 (8), further experiments are necessary to resolve
this point.

A homology model of VIM-7 (Fig. 1) constructed using the
EsyPred3D server (www.fundp.ac.be/urbm/bioinfo/esypred)
(6) based on the structure of reduced VIM-2 (5) suggests that
four residues (positions 68, 218, 224, and 228) might have an
impact upon substrate binding and hydrolysis. The Pro-68 Ser
and Tyr-218 Phe substitutions are unique to VIM-7, while
VIM-7 shares the Tyr-224 His substitution with VIM-1,
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FIG. 1. Stereo view of VIM active sites. The figure shows VIM-2 active site (atom colors as standard [carbon green, oxygen red, nitrogen blue,
sulfur yellow] excepting alpha-carbon rainbow ramped by sequence position; zinc ions are rendered as gray, and water molecules are rendered as
red spheres). Residues are numbered according to the BBL standard numbering scheme (4). Metal-ligand and hydrogen bonds are shown as thin
gray lines. Positions showing variation between VIM-1, VIM-2, and VIM-7 (68, 218, 224, and 228) are labeled in cyan. Side chains of Ser-68,
Phe-218, and His-224 of the VIM-7 homology model are shown with carbon atoms rendered in cyan. This figure was rendered using Pymol

(http://www.pymol.org).

VIM-4, and VIM-12 only. Arg-228 is present in all VIM en-
zymes other than VIM-1 and VIM-12. Pro-68, a well-conserved
residue in subclass B1 MBLs, forms an H bond to the Zn2
ligand His-263 through its main-chain carbonyl oxygen, and
although the replacement of this residue by Ser will likely
increase flexibility in this region of the protein, our model does
not suggest that this interaction will be abolished. VIM-2 Tyr-
218 participates in an H-bonding network, involving Asp-84,
that is present in some form in all MBLs of known structure
and connects the two Zn** sites (8). In the related IMP en-
zymes, enhancing these interactions through the Phe-218 Tyr
mutation promotes hydrolysis of so-called type II B-lactam
substrates with neutral or charged substituents at the C-2/C-3
(R2) position (10, 11). Our model suggests that in VIM-7,
replacement of Tyr-218 by Phe will disrupt this network
(Fig. 1). Consistent with this hypothesis, VIM-7 indeed dis-
plays a loss of activity against type II cephalosporins bearing
charged cyclic substituents (ceftazidime, cefepime, and
cephaloridine).

For VIM-2 (2), the Tyr-224 hydroxyl is suggested to interact
with the charged C-2/C-3 (R2) substituents of some (3-lactams,
while Arg-228 is proposed to make effective H bonds to the
invariant B-lactam C-3/C-4 carboxylate. The generally tight K,
values observed with VIM-7 (Arg-228), compared with those
reported for VIM-1 (Ser-228), would support the latter con-
clusion. The structure suggests that the Tyr-224 hydroxyl moi-
ety makes a second-shell metal-ligand interaction by H bond-
ing via a water molecule (Wat-X) (Fig. 1) to the distal nitrogen
of the Znl ligand His-196. Substitution of Tyr-224 for His
might be expected to disrupt this interaction. Nevertheless, the
efficient hydrolysis of many substrates by VIM-7 suggests ei-
ther that this interaction is of marginal importance to the
function of the VIM active site or that compensating structural
rearrangements are possible.

In summary, our kinetic data show that, despite possessing a
number of alterations close to the active site, VIM-7 effectively

hydrolyzes both penicillin and carbapenem substrates but dis-
plays some diminished activity against cephalosporins, partic-
ularly those with bulky, charged C-3 substituents. Analysis of a
VIM-7 homology model suggests that these effects might arise
primarily from the Tyr-218 Phe substitution that distinguishes
this enzyme from other family members. Further structural
and mutagenic studies will be required to confirm this hypoth-
esis.

We are grateful for financial support from the Northern Norway
Regional Health Authority Medical Research Program to @rjan Sam-
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We thank Jackie Martin for expert advice on protein purification.

REFERENCES

1. Avison, M. B., C. S. Higgins, C. J. von Heldreich, P. M. Bennett, and T. R.
Walsh. 2001. Plasmid location and molecular heterogeneity of the L1 and L2
B-lactamase genes of Stenotrophomonas maltophilia. Antimicrob. Agents
Chemother. 45:413-419.

2. Docquier, J. D., J. Lamotte-Brasseur, M. Galleni, G. Amicosante, J. M.
Frere, and G. M. Rossolini. 2003. On functional and structural heterogeneity
of VIM-type metallo-B-lactamases. J. Antimicrob. Chemother. 51:257-266.

3. Franceschini, N., B. Caravelli, J. D. Docquier, M. Galleni, J. M. Frere, G.
Amicosante, and G. M. Rossolini. 2000. Purification and biochemical char-
acterization of the VIM-1 metallo-B-lactamase. Antimicrob. Agents Che-
mother. 44:3003-3007.

4. Galleni, M., J. Lamotte-Br , G. M. R lini, J. Spencer, O. Dideberg,
and J. M. Frere. 2001. Standard numbering scheme for class B B-lactamases.
Antimicrob. Agents Chemother. 45:660-663.

5. Garcia-Saez, L., J. D. Docquier, G. M. Rossolini, and O. Dideberg. 2008. The
three-dimensional structure of VIM-2, a Zn-B-lactamase from Pseudomonas
aeruginosa in its reduced and oxidised form. J. Mol. Biol. 375:604-611.

6. Lambert, C., N. Leonard, X. De Bolle, and E. Depiereux. 2002. ESyPred3D:
prediction of proteins 3D structures. Bioinformatics 18:1250-1256.

7. Laraki, N., N. Franceschini, G. M. Rossolini, P. Santucci, C. Meunier, E. de
Pauw, G. Amicosante, J. M. Frere, and M. Galleni. 1999. Biochemical char-
acterization of the Pseudomonas aeruginosa 101/1477 metallo-B-lactamase
IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother. 43:
902-906.

8. Murphy, T. A, L. E. Catto, S. E. Halford, A. T. Hadfield, W. Minor, T. R.
Walsh, and J. Spencer. 2006. Crystal structure of Pseudomonas aeruginosa
SPM-1 provides insights into variable zinc affinity of metallo-B-lactamases. J.
Mol. Biol. 357:890-903.

9. Murphy, T. A., A. M. Simm, M. A. Toleman, R. N. Jones, and T. R. Walsh.
2003. Biochemical characterization of the acquired metallo-B-lactamase

AlUN Jipaed Ag #T0Z ‘v Areniga4 uo /Bio wse oee//:dny Woiy papeojumod


http://aac.asm.org/
http://aac.asm.org/

2908

10.

11.

12.

13.

NOTES

SPM-1 from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47:
582-587.

Oelschlaeger, P., S. L. Mayo, and J. Pleiss. 2005. Impact of remote muta-
tions on metallo-B-lactamase substrate specificity: implications for the evo-
lution of antibiotic resistance. Protein Sci. 14:765-774.

Oelschlaeger, P., and S. L. Mayo. 2005. Hydroxyl groups in the B sandwich
of metallo-B-lactamases favor enzyme activity: a computational protein de-
sign study. J. Mol. Biol. 350:395-401.

Prosperi-Meys, C., G. Llabres, D. de Seny, R. P. Soto, M. H. Valladares, N.
Laraki, J. M. Frere, and M. Galleni. 1999. Interaction between class B
B-lactamases and suicide substrates of active-site serine beta-lactamases.
FEBS Lett. 443:109-111.

Rossolini, G. M., and J. D. Docquier. 2007. Class B B-lactamases, p. 115-144.

14.

15.

ANTIMICROB. AGENTS CHEMOTHER.

In R. A. Bonomo and M. E. Tomasky (ed.), Enzyme-mediated resistance to
antibiotics: mechanisms, dissemination, and prospects for inhibition. ASM
Press, Washington, DC.

Toleman, M. A., K. Rolston, R. N. Jones, and T. R. Walsh. 2004. blay\; 7, an
evolutionarily distinct metallo-B-lactamase gene in a Pseudomonas aeruginosa
isolate from the United States. Antimicrob. Agents Chemother. 48:329-332.
Walsh, T. R., M. A. Toleman, W. Hryniewicz, P. M. Bennett, and R. N. Jones.
2003. Evolution of an integron carrying blavy,., in Eastern Europe: report
from the SENTRY Antimicrobial Surveillance Program. J. Antimicrob. Che-
mother. 52:116-119.

. Walsh, T. R., M. A. Toleman, L. Poirel, and P. Nordmann. 2005. Metallo-

B-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18:306—
325.

AlUN Jipaed Ag #T0Z ‘v Areniga4 uo /Bio wse oee//:dny Woiy papeojumod


http://aac.asm.org/
http://aac.asm.org/

