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Abstract

In this paper we define a new linearity measure for open planar curve segments.
We start with the integral of the squared distances between all the pairs of points
belonging to the measured curve segment, and show that, for curves of a fixed length,
such an integral reaches its maximum for straight line segments. We exploit this nice
property to define a new linearity measure for open curve segments. The new measure
ranges over the interval (0, 1], and produces the value 1 if and only if the measured open
line is a straight line segment. The new linearity measure is invariant with respect to
translations, rotations and scaling transformations. Furthermore, it can be efficiently
and simply computed using line moments. Several experimental results are provided
in order to illustrate the behaviour of the new measure.

Key words: Shape, curves, linearity measure, image processing.
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1 Introduction

Shape descriptors are a useful tool in the area of many computer vision and image processing
tasks (e.g. image retrieval, object classification, object recognition, and so forth). Different
mathematical tools have been used to define the shape descriptors: algebraic invariants [10],
Fourier analysis [13], statistics [17], morphological operations [24], curvature [25], integral
transformations [21], fuzzy approaches [32], computational geometry [36], and so forth.

Generally speaking there are two approaches to analyse shapes: boundary-based (which
use the information from boundary points only) and area-based ones which use all shape
points. It could be said that, in the past, more attention has been given to the area-
based methods. The area-based methods are more robust (e.g. with respect to noise).
Although not often mentioned, an additional reason for a higher number of methods which
are based on ‘interior’ shape points, rather than the methods based on the boundary points,
is that the area-based methods are usually simpler to compute. For example, to estimate
accurately the area of a given planar shape it is sufficient to enumerate the number of
pixels inside the shape [11, 15] while perimeter estimation is still a challenging task [4, 27].
Another example is geometric (area) moment invariants [10] which are easily and accurately
computable from the corresponding object images, while their boundary-based analogues [3]
involve computation of path integrals. However, these are not easy to estimate from discrete
data, which are mainly used in image processing and computer vision tasks. Nevertheless,
high resolution image data is now available, enabling sufficiently accurate computation of line
features (e.g. perimeter, curvature), making the use of boundary-based methods practical for
many applications. The boundary-based methods are more suitable for computer vision and
image processing tasks that require high sensitivity to small details on shape boundaries. In
addition, boundary-based methods, very often, have a much lower time complexity, because
shape boundaries are represented by a significantly smaller number of pixels than complete
shapes are. Of course, there are methods which cannot be classified as either boundary-based
or area-based ones. For example, a very standard shape compactness measure [28, 33]:

Cst(S) =
4 · π · Area of S

(Perimeter of S)2

(for more details about the isoperimetric inequality see Chapter 1 in [14]) which can be
considered as indicating how much a given shape S differs from a perfect circle, obviously uses
both boundary and interior information. Also, there are methods which use only information
from specific points (corners, for example) or specific boundary parts – e.g. belonging to the
convex hull of the given shape [34], or from significant object characteristics in a correlogram
structure [6].

As mentioned, due to the high demand for efficient image verification, identification and
recognition systems there is an ongoing interest for shape properties that could be derived
from their boundaries [16, 18, 26, 31]. A particular benefit of boundary-based methods is that
some objects, like human signatures for example, are linear by their nature and area-based
descriptors cannot be used for their analysis.

In this paper we derive a new linearity measure that indicates the degree to which an open
curve segment corresponds to a perfectly straight line segment. Several linearity measures
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have already been considered. Most of them relate to ordered sets of points [1, 7, 8, 12, 30, 35],
but there are also linearity measures for unordered sets of points [29, 33].

It is not possible to establish a strict ranking among shape measures. A measure dom-
inant in one application could fail in another. All of them have their strengths and their
weaknesses and their performance strongly depends on the application performed. For ex-
ample, a simple and natural linearity measure defined as the ratio of the squared distance
between the curve end points and the curve length (so called straightness index [1]) is simple
and fast to compute. Such a measure assigns the same value of linearity to the two open
curve segments in Figure 1(a) and Figure 1(b), which could be desirable in some applications

(a)

(b)

Figure 1: Straightness index [1] assigns the same linearity for the curves displayed. The new
linearity measure and the measure from [35] assign different linearities to these curves.

where the curves displayed are judged as curves of the same linearity. On the other hand,
if we would like to distinguish between these curves, what could be a requirement in some
applications, we need another measure. One such measure which assigns different linearities
for the curve segments in Figure 1 was developed in [35]. Informally speaking, the measure
from [35] defines the linearity of a given curve segment as the sum of the average square
distances of the curve points from the curve end points. Obviously, such a linearity measure
also depends on the distance between the end points (as the straightness index does) but
is also sensitive to curve deformations (the straightness index is not). Further, since the
definition of the linearity measure from [35] uses the curve endpoints it cannot be applied to
compound curves (like curves in Figure 4, for example) which do not have strictly defined
end points. The measure introduced here overcomes such a problem and can be applied to
such compound curves. For some applications this can be a big advantage because these
curves appear very often in applications (e.g. shape skeletons, or letters, as displayed in Fig-
ure 4). Notice that the new linearity measure also considers the squared distance between
curve points, but not only the sum of squared distances between a curve point and the curve
end points.

The measure defined here is easy to compute, and is invariant with respect to translations,
rotations, and scaling. It ranges over the interval (0, 1] and takes the value 1 if and only if
the measured curve is a perfect straight line segment. Several experiments are provided to
illustrate the behaviour of the new linearity measure. Note that the linearity measure defined
here is a global shape descriptor, and it can be used as a component along with others in
a feature vector used for shape classification. This approach makes it easy to update the
feature vectors of a shape database if new shapes are added, and consequently makes shape
matching and classification relatively simple and fast. In contrast, local shape descriptors
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may provide higher classification rates, but their computation and matching tends to be
time consuming.

2 New Linearity Measure

In this section we define a new linearity measure for open curve segments. We will use the
following denotations:

– Let C be an open curve given in the arc-length parametrisation x = x(s), y = y(s),
and s ∈ [0, 1];

– Let F (s0,C) denote the integral of the squared distances of a fixed point (x(s0), y(s0)) ∈
C to all the points of C, i.e.

F (s0,C) =

∫

1

s=0

(

(x(s0)− x(s))2 + (y(s0)− y(s))2
)

ds. (1)

Now we give the following theorem.

Theorem 1 The following is true for any planar curve C:

(a) F (s0,C) ≤ s20 − s0 +
1

3
, for any s0 ∈ [0, 1].

(b)

∫

1

s0=0

F (s0,C) ds0 ≤
1

6
.

(c)

∫

1

s0=0

F (s0,C) ds0 =
1

6
⇔ C is a straight line segment.

Proof. Since the parameter s measures the distance along the curve C, between the points
(x(s), y(s)) and (x(0), y(0)), it means that |s0 − s| measures the distance (again, along the
curve C) between points (x(s0), y(s0)) and (x(s), (y(s)). This implies (see Figure 2 for an
illustration):

(x(s0)− x(s))2 + (y(s0)− y(s))2 ≤ (s0 − s)2 , for all s ∈ [0, 1]. (2)

Now, we prove (a):

F (s0,C) =

∫

1

s=0

(

(x(s0)− x(s))2 + (y(s0)− y(s))2
)

ds ≤

∫

1

s=0

(s0 − s)2 ds = s20−s0+
1

3
. (3)

Item (b) easily follows from (a). I.e.:

∫

1

s0=0

F (s0,C) ds0 ≤

∫

1

s0=0

(

s20 − s0 +
1

3

)

ds0 = 1/6.
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(x(0),y(0))

C

.
..(x(s),y(s))

(x(1),y(1)) (x(0),y(0))
.

C .

(x(1),y(1))

(x(s),y(s))...

(x(s  ),y(s  ))0 0 (x(s  ),y(s  ))0 0

Figure 2: The Euclidean distance (length of dashed line) between the points (x(s0), y(s0))
and x(s), y(s)) is not bigger than |s− s0| (which equals the length of the arc of C between
those points) in both cases: s ∈ [0, s0] (on the left) and s ∈ [s0, 1] (on the right).

Item (c) follows from the fact that the equalities in (2) and (3) are true if and only if C
is a straight line segment. �

Further, by using (1) it is easy to see that F (s0,C) can be expressed as

F (s0,C) = m2,0(C)+m0,2(C)− 2 · x(s0) ·m1,0(C)− 2 · y(s0) ·m0,1(C) + x(s0)
2 + y(s0)

2 (4)

where

mp,q(C) =

∫

C

xp · yq ds

are the well-known line moments (see [3]). In addition, (4) gives

∫

1

s0=0

F (s0,C) ds0 = 2 ·m2,0(C) + 2 ·m0,2(C)− 2 ·m1,0(C)2 − 2 ·m0,1(C)2. (5)

Now, by using statements (b) and (c) of Theorem 1 which say that
∫

1

s0=0
F (s0,C)ds0 is

bounded from above by
1

6
and reaches this upper bound if and only if C is a straight line

segment, we naturally come to the following definition for a new linearity measure L(C) of
a given open curve segment C.

Definition 1 The linearity measure L(C) of the open planar curve C, having the length 1,
is defined as

L(C) =

∫

1

0
F (s,C)ds

1/6
= 12 ·m2,0(C) + 12 ·m0,2(C)− 12 ·m1,0(C)2 − 12 ·m0,1(C)2. (6)

Note. For the sake of simplicity, the above note assumes C to have unit length. If such
an assumption is not made then the linearity of C is computed as:

12 ·m2,0(C) + 12 ·m0,2(C)− 12 ·m1,0(C)2 − 12 ·m0,1(C)2

(length of C)3

The following theorem summarises the properties of L(C).
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Theorem 2 The linearity measure L(C) has the following properties:

(i) L(C) ∈ (0, 1], for all open curve segments C;

(ii) L(C) = 1 ⇔ C is a straight line segment;

(iii) L(C) is invariant with respect to similarity transformations.

Proof. Items (i) and (ii) are a direct consequence of Theorem 1.
To prove the item (iii) it is sufficient to notice that the subintegral function in (1) is

invariant with respect to translation and rotation, while the invariance with respect to scaling
transformations follows from the Definition 6. �

In the next section we perform several experiments in order to illustrate the behaviour
and applicability of the new linearity measure. When applying (6) to discrete data the com-
putation can be performed incrementally. This is advantageous if linearity is to be repeatedly
measured from overlapping sections of data since it allows more efficient computation than
recomputing all the moments from scratch each time. Remember that (6) assumes that the
curve has unit length, and so to enable the incremental computation the moments need to
be rescaled as

m1,0

m2
0,0

,
m0,1

m2
0,0

,
m2,0

m3
0,0

,
m0,2

m3
0,0

.

3 Experiments

0.992 0.965 0.893 0.395 0.141 0.040

0.361 0.218 0.125 0.137 0.037 0.009

Figure 3: Values of L for synthetic curves.

0.309 0.321 0.443 0.486 0.524 0.119 0.250 0.250 0.408

Figure 4: Values of L for synthetic curves containing multiple components.

In Figure 3 we show some simple synthetic curves with their calculated linearity values
to illustrate the behaviour of L(C). It can be seen that the linearity measure matches our
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intuition: as the curves become “more complex” (e.g. as it has more extreme points (as the
last three curves in the first row in Figure 3), or as it has more corners (see the first three
curves in the second row)) then their linearity value decreases.

It is worth mentioning that in addition to the fact that L(C) = 1 fully describes the shape
of the curve C (it must be a straight line segment, as stated by Theorem 2), very small values
of L(C) also give some information about the shape of C: such curves must be inscribed
into a small disc around the curve centroid. This is in accordance with the fact that L(C)
actually considers the average squared values between pairs of points of C. More than this is
not known – i.e. for other values of L(C) ∈ (ε, 1−ε) (ε indicates a small positive number) it
is not possible to say something precise about the shape of C. Curves very different in shape
can have the same linearity measure, and the same happens for all shape measures. Notice
that there are many known measures which do not characterise the shape of C for both
extreme values (i.e. minimum and maximum). Such examples could be the orientability
measures from [34] or the convexity measure from [21]. The situation is even worse for the
well-known Hu moment invariants [10] where the shapes which maximise/minimise these
invariants (apart from the first one [33]) are still unknown. A similar situation occurs with
Fourier descriptors, and so forth.

The new measure can also applied to curves with multiple components and varying
topology, as demonstrated in Figure 4. Notice that these curves are not simple curves
because they cannot be presented in the form x = x(s), y = y(s), s ∈ [0, 1]. This is because
these curves have more than 2 end points. E.g. the first curve in Figure 4 has 3 end
points, while a simple open curve has exactly two such points: (x(0), y(0)) and (x(1), y(1)).
Nevertheless, the new measure can be applied to compound curves. Indeed, each of these
curves C can be represented as a union C = C1 ∪ . . . ∪ Cn of a number of simple non-
overlapping curves C1, . . .Cn and the moments mp,q(C) appearing in the definition of L(C)
(see (6)) are computed as the sum mp,q(C) = mp,q(C1) + . . . + mp,q(Cn) of the moments
corresponding to these components. Notice that the decomposition of C into simple curve
segments is not unique, but the computed moments mp,q(C) do not depend on the specific
decomposition of C.

0.935 0.872 0.842 0.781 0.642

Figure 5: Retinal images showing the blood vessels and their manually extracted centre-
lines [9]. The examples are shown manually ordered by increasing tortuosity. Values of L
are displayed below each centreline.

We now demonstrate the application of the linearity measure to real data. This was taken
from Grisan et al. [9], and consists of 60 retinal images of which 30 arteries and 30 veins of
similar length and diameter were manually extracted. The vessels have also been assessed
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by a clinician who ranked them according to their tortuosity (which is an indication of how
twisted the curve is). Figure 5 shows five examples of arteries which cover the full range of
tortuosity ratings. The goal is to automatically measure tortuosity, which can then be used
to indicate retinal pathologies. This is evaluated by computing the correlation between the
measured tortuosities against the clinical rankings using Spearman’s rank-order correlation
coefficient. Table 1 is based on [9] and shows results for a variety of methods ordered by
their correlation values.1

arteries veins
measure correlation measure correlation

τ 0.949 τ 0.853
tc/Lx 0.939 tc/Lx 0.842
1− L22 0.935 1− L10 0.842
tsc/Lx 0.928 tc 0.837
tsc 0.925 tsc 0.826
tc 0.922 tc/Lc 0.814

MAC 0.920 MAC 0.814
tc/Lc 0.919 1− L22 0.814
tsc/Lc 0.917 tsc/Lx 0.804
1− L10 0.888 tsc/Lc 0.773
1− L 0.858 1− L 0.715
TN 0.838 TN 0.695

Lc/Lx 0.792 Lc/Lx 0.656
DCI 0.787 DCI 0.589
ICM 0.684 ICM 0.575

Table 1: Spearman’s rank-order correlation coefficient computed between various computed
shape measures against clinical rankings of tortuosity. See [9] for full details of the shape
measures.

We use the inverse of linearity as a tortuosity measure, and as Table 1 shows, this provides
reasonable results. However, global non-linearity does not exactly capture the concept of
tortuosity, since curved blood vessels are not considered to have high tortuosity as long as
they are smooth. Therefore, we also consider a more local version of our linearity measure
in which the mean is taken of (6) after it has been computed over all (overlapping) local
sections of a given length.2 More precisely, let Ci,j denote the section of discretely sampled

1In brief, the tortuosity measures in table 1 are defined as follows. L: our proposed global linearity
measure, L10 L22 DCI: integral of squared deviation of curvature, ICM : number of inflection points,
MAC: mean angle change, tc: integral of absolute curvature, TN : number of times the local change in
direction ≥ π

6
, tsc: integral of squared curvature, τ : decomposes a curve into sections at turns and measures

how much each turn is different from a smooth curve. In addition, the following are used: Lc: curve length,
Lx: distance between end points of curve.

2The average lengths of the arteries/veins were 980/890 pixels. We have applied linear interpolation to
the sparse and irregular centreline points of the vessels to provide a denser and regular sampling with a 10
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curve between C(i) and C(j). Given a uniformly sampled curve C(i); i = 1 . . . n, and using
all n − w local sections of length w pixels, the mean local linearity is denoted by Lw, and
calculated as

Lw =
1

n− w

n−w
∑

s=1

L(Cs,s+w).

This substantially improves their correlation values, which are now ranked in the top two
or three. Arteries and veins appear to have different characteristics, and so best results are
obtained for each using different sub-section lengths (22 for arteries as compared to 10 for
veins).

(a) original (b) L1 (c) L2 (d) L∞
(e) (1−L) ∗m0,0

(f) L1 (g) L2 (h) L∞
(i) (1−L)∗m0,0

Figure 6: A signature with its optimal polygonal approximations using various error functions
at two scales: (b)-(e) 50 lines, (f)-(i) 10 lines.

A second application of the linearity measure is now given, for polygonal approximation.
Dynamic programming was used to produce the optimal solution of partitioning a discrete
curve into a given number of segments [20].3

Rather than use a standard error measure for each segment such as the summed shortest
distances between points along the curve segment and the straight line segment connecting
its end points we shall use linearity. More specifically, to convert it into an appropriate error
term to be minimised we calculate the error for each curve segment as (1−L(Cij))·m0,0(Cij),
where Cij denotes the section of curve between C(i) and C(j). That is, for a section of curve
Cij, (1−L(Cij)) measures its deviation from linearity which is to be minimised to create a
good polygonal approximation. The total error of a polygonal approximation is computed as
the sum of the linearity errors for each curve segment which are weighted by the length of the
curve segment (m0,0). This is shown in Figure 6 where the optimal polygonal approximation

pixel spacing.
3If the total error can be decomposed into the sum of local errors then a polygonal approximation can

be made by generating a table Tij containing the approximation errors for replacing each segment of curve
C(i) → C(j) by a straight line segment through C(i) and C(j). Dynamic programming can then be used to
efficiently determine the globally optimal polygonal approximation which corresponds to the minimal cost
path through the table.
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of a signature is computed as described; note that this data is not a simple curve, but it
contains several self intersections. For comparison, approximations are also given using the
standard L1, L2 and L∞ errors norms on the distances between the curve segment and the
corresponding straight line segment. Another example is demonstrated in Figure 7. It can
be seen that there are differences between the polygonal approximations produced by the
various error terms, although they are relatively small except for very coarse approximations.

4 Linearity Plot

The linearity measure L(C), as defined here, provides an extension to a richer description
of open curve segments. Instead of assigning a single number (e.g. linearity measure L(C))
to the given shape C, we will assign a function, called here the linearity plot. The idea is to
compute linearity incrementally, i.e. to compute linearity of sub-segments of C determined
by the start-point (x(0), y(0)) of C and another point (x(s), y(s)) ∈ C which moves from
the beginning (x(0), y(0)) of C to the end (x(1), y(1)) of C, as s varies from 0 to 1. The
linearity plot P(C), associated with the given curve C is formally defined as follows.

Definition 2 Let C be a curve given in an arc-length parametrisation: x = x(s), y = y(s),
and s ∈ [0, 1]. Let A(s) be the part of the curve C bounded by the starting point (x(0), y(0))
and by the point (x(s), y(s)) ∈ C. Then the linearity plot P(C) is defined by:

P(C) = {(s,L(A(s)) | s ∈ [0, 1]}. (7)

Note. P(C) is actually a graph of the function L(A(s))), s ∈ (0, 1]. Since in our
applications we work with discrete data, real curves are represented by a certain polygonal
approximation [22]. This implies that in our experiments P(C) starts at the point (0, 1) and
ends at the point (1,L(C)).

original 30 20 10 original 30 20 10
data lines lines lines data lines lines lines

L2 error

(1− L) ·m0,0 error

Figure 7: Two shapes with their optimal polygonal approximations using the L2 error func-
tion (top row) and the (1 − L) · m0,0 error function (bottom row). Approximations are
determined using 30, 20 and 10 line segments.
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We also will use the reverse linearity plot Prev(C) defined as:

Prev(C) = {(s,L(Arev(1− s)) | s ∈ [0, 1]}, (8)

where Arev(1−s) is the segment of C determined by the end point (x(1), y(1)) and the point
(x(1− s), y(1− s)) (which moves from the point (x(1), y(1)) to the point (x(0), y(0)), along
the curve C, as s′ = 1 − s varies from 1 to 0, i.e. as s varies from 0 to 1). In other words,
Prev(C) is the graph of the function which measures the linearity of Arev(s

′ = 1− s).
We also note that the linearity plot differs from well-known shape signature descriptors,

which are also ‘one-dimensional’ representations of planar shapes, often used in shape anal-
ysis tasks [5, 37].

Now, an additional application is demonstrated, using data from Munich and Perona [19]
to perform signature verification. The data consists of pen trajectories for 2911 genuine
signatures taken from 112 subjects. In addition, five forgers provided a total of 1061 forgeries
across all the subjects. Some examples are provided in Figure 8.

Figure 8: Examples of genuine (leftmost three) and forged (rightmost three) signatures.

In our experiment we have only considered the curve shape, and discounted temporal
information (i.e. writing speed) although Munich and Perona found this useful to reject
overly slow signatures as forgeries.

(a)

0.0 0.2 0.4 0.6 0.8 1.0
s

0.0

0.2

0.4

0.6

0.8

1.0

P
(C

)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
s

0.0

0.2

0.4

0.6

0.8

1.0

P
   

(C
)

re
v

(c)

Figure 9: (a) A genuine signature from Fig.8. A magnified start of the signature is inside
the rectangle displayed. (b) The linearity plot P(C) of the signature obtained by forward
traversal of the curve. (c) The reverse linearity plot Prev(C) obtained by reverse traversal
of the curve.
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s

0.0

0.2

0.4

0.6

0.8

1.0

P
(C

)

(c)
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Figure 10: (a & b): Linearity and reverse linearity plots P(C) and Prev(C) of three genuine
signatures in Figure 8 (first row). (c & d): Linearity and reverse linearity plots P(C) and
Prev(C) of three forged signatures in Fig.8 (first row).

The quality of match between signaturesC1 andC2 is measured by the similarity between
the linearity plots P(C1) and P(C2). This similarity is measured by the area bounded by
the linearity plots P(C1) and P(C2) and by the vertical lines s = 0 and s = 1. We achieve
better results by also consider traversing the curve in reverse direction, i.e. by considering
the reverse linearity plots Prev(C1) and Prev(C2). The similarity of two signatures C1 and
C2 is now determined as

min {area (P(C1),P(C2)) , area (Prev(C1),Prev(C2))} .

Of course, there are many other possibilities to measure the similarity between P(C1) and
P(C2), i.e. between Prev(C1) and Prev(C2).

Figure 9 shows the linearity plots for one signature. It can be seen that the two plots,
obtained by traversing the curve from either end, provide useful complementary information.
The linearity plot that starts from the letter H generally has a low value due to the complex
shape of the signature (see Figure 9(b)). In addition, as the magnified inset in Figure 9(a)
shows, there is an erratic wiggle containing about fifteen low magnitude oscillations at the
start of the curve, which appears to by a systematic artifact produced by the data acquisition
process (probably created when the pen is initially at rest). This non-linear wiggle causes the
initial sharp drop (close to 0) in linearity values in Figure 9(b). When the curve is traversed
from the other end there is no starting artifact, and the long linear flourish underneath the
name causes a significant high peak in the corresponding linearity plot (see Figure 9(c)).
Figure 10 shows the linearity plots for the six signatures in the top row of Figure 8. The lin-
earity plots for the three genuine signatures appear significantly more similar in Figure 10(b)
than either of the two linearity plots for the three forged signatures in Figure 10(c) & (d).

Nearest neighbour matching is then performed on all the data using the leave-one-out
strategy. Signature verification is a two class (genuine or fake) problem. Since the identity
of the signature is already known, the nearest neighbour matching is only applied to the
set of genuine and forged examples of the subject’s signature. We achieved 93.1% accuracy
on this task, which given the close similarities between the genuine and forged signatures,
is reasonable. Munich and Perona [19] report an accuracy of around 99%; however their
system was specifically designed for signature analysis, and used temporal information in
addition to shape.
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5 Conclusion

A new linearity measure for open curve segments has been defined.4 We start by considering
the average square distance between the points on the curve and show that such quantity is
maximised by the straight line segments. By exploiting such a nice property we have defines
a new linearity measure and prove several properties on it. The new measure ranges over the
interval (0, 1], and produces the value 1 if and only if the measured open line is a straight
line segment. It is invariant with respect to similarity transformation, and can be efficiently
and simply computed using line moments. The new measure has a clear geometric meaning,
and because of this, the behaviour of the new measure can be well understood and predicted
to some extent, prior to the application planned to be performed.

A variety of experiments demonstrate its effectiveness for measuring tortuosity of blood
vessels for indicating retinal pathologies, and use as the error function for computing polyg-
onal approximations. The linearity measure can be extended to give a linearity plot, which
provides a richer descriptor of open curve segments. Matching curves based on matching
linearity plots was demonstrated on the application of identifying forged signatures.

It would be straightforward to extend the current 2D linearity measure to 3D. This
measure could also be applied to in a similar way to all the applications demonstrated in
this paper, namely: 3D polygonal approximation [23], classification of 3D blood vessels [2],
and detection of forged signatures, using temporal dynamics as an additional dimension [19].
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[7] T. Gautama, D.P. Mandić, and M.M. Van Hull. A novel method for determining the
nature of time series. IEEE Transactions on Biomedical Engineering, 51(5):728–736,
2004.

4Source code is available at http://users.cs.cf.ac.uk/Paul.Rosin.

13
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[17] R. Melter, I. Stojmenović, and J. Žunić. A new characterization of digital lines by least
square fits. Pattern Recognition Letters, 14(2):83–88, 1993.

[18] W. Mio, A. Srivastava, and S.H. Joshi. On shape of plane elastic curves. Int. Journal

of Computer Vision, 73(3):307–324, 2007.

[19] M.E. Munich and P. Perona. Visual identification by signature tracking. IEEE Trans.

on Patt. Anal. and Mach. Intell., 25(2):200–217, 2003.

[20] J.C. Perez and E. Vidal. Optimum polygonal approximation of digitized curves. Pattern
Recognition Letters, 15(3):743–750, 1994.
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[29] M. Stojmenović and A. Nayak. Measuring linearity of ordered point sets. PSIVT 2007,

Lecture Notes in Computer Science, 4872:274–288, 2007.
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[34] J. Žunić, L. Kopanja, and P.L. Rosin. On the orientability of shapes. IEEE Transactions

on Image Processing, 15(11):3478–3487, 2006.
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