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Orientation and Anisotropy of Multi Component Shapes

from Boundary Information

Paul L. Rosin,∗ Jovǐsa Žunić†

Abstract

We define a method for computing the orientation of compound shapes based on

boundary information. The orientation of a given compound shape S is taken as

the direction α that maximises the integral of the squared length of projections, of

all the straight line segments whose end points belong to particular boundaries of

components of S to a line that has the slope α. Just as the concept of orientation can

be extended from single component shapes to multiple components, elongation can

also be applied to multiple components, and we will see that it effectively produces a

measure of anisotropy since it is maximised when all components are aligned in the same

direction. The presented method enables a closed formula for an easy computation of

both orientation and anisotropy.
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1 Introduction

1.1 Region Boundary versus Region Interior

A distinction is sometimes made between methods for shape analysis that operate on a

region’s interior (i.e. the enclosed area) as opposed to those that process the exterior (i.e.

its boundary) [23] – in this paper we are considering only region masks and ignoring interior

intensities or colours. The interior can be reconstructed from the exterior, and vice-versa,

and so the two representations are equivalent in the information they contain. Nevertheless,

the distinction remains since that methods that operate on the interior often tend to be

dominated by the global properties of the shape, whereas boundary-based methods are often

more sensitive to local properties. This is made clear by using as a concrete example two

standard methods for measuring the convexity of a shape S using its convex hull CH(S).

The interior based method uses areas and define the convexity measure C1(S), of a given

shape S, as: C1(S) =
Area(S)

Area(CH(S))
, while the boundary-based method uses perimeters for

an alternative definition of the shape convexity: C2(S) =
Perimeter(CH(S))

Perimeter(S)
. Substantial

differences in the approaches can be seen on many shapes, one example being shown in

figure 1. The overall shape is a (convex) rectangle, and since the indentations are relatively

thin their area is small. Consequently according to C1(S) this shape has a high degree of

convexity. On the other hand, it would receive a low convexity score from C2(S) since the

boundary has many deviations from the convex hull.

The majority of methods used in shape analysis and shape classification are area based

ones. A reason for this is their robustness, which is particularly an advantage when working

with low quality data. Another reason could be that such methods are assumed to be easier

Figure 1: A shape with deep but narrow indentations which is considered highly convex by

C1 but not by C2.
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Figure 2: Orientations of a noisy indented circle computed using the (standard) interior

based moments (shown as the short black arrows) and boundary-based moments (shown as

the longer arrows).

to analyse and to develop. For example, consider the basic problem of computing the size

of a shape. When its area is used, it is often sufficient to enumerate the number of pixels

inside the studied shape, multiply this number with the pixel size and this is (in many

applications) a reasonably good estimate for the shape’s size. An analogous discussion holds

when working with shape moments and moment invariants – it is, again, relatively easy to get

good approximations of real moments (moment invariants) by applying simple operations on

the set of pixels inside the shape [17]. In contrast, consider using a boundary based measure

of a shape’s size such as perimeter. When working in a discrete (digital) space, computing

perimeter is well known to be a very difficult task [4, 30].

Recently, despite the difficulties when working with boundary information in a discrete

space, there is ongoing interest in methods and tools that could extract information from

shape boundaries. Such an interest is due to a strong demand for powerful tools in, for

example, object and person identification, but also in many other computer vision and

image processing application. We cite just a few recent works [2, 7, 13, 20, 21, 26, 28, 29]

for an illustration.

In this paper we shall also describe a method for analysing shape by boundaries or con-

tours. The method will involve computation of line-based moments instead of the area based

ones. Line-based moments provide more sensitivity to boundary detail; of course, depending

on the application this sensitivity can be considered either as an advantage (providing extra

discriminatory power) or a disadvantage (oversensitivity to noise). Another aspect of using

line-based moments – which can generally be seen as an advantage – is that they can be

easily and directly applied to objects that are intrinsically linear rather than regional (e.g.

edges, signatures, etc.), even if the boundaries are open or fragmented.

Specifically, this paper will address the issue of determining the orientation of shapes.
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Figure 2 provides an example demonstrating in this context the difference between interior

and boundary-based methods. In both cases the standard formula using moments was used.

The shape in figure 2 is basically a circle, which is not orientable using the area-based

moments method [38]. However, the circle contains a deep intrusion, giving it a perceptually

well defined orientation. Nevertheless, since the intrusion is relatively narrow, and therefore

has a small area, the interior based estimation is unreliable and is significantly affected by

noise as shown in figure 2. In contrast, the perimeter of the intrusion is more substantial than

its area, and so the boundary-based estimation is able to estimate the shape’s orientation

more reliably despite the noise.

1.2 Determining Compound Shape Orientation

Computing shape orientation is a typical preprocessing task in image processing and com-

puter vision applications. Consequently, use of inappropriate methods for determining ob-

ject orientation would lead to a cumulative error at the end of the vision system’s processing

pipeline. Because of that, and because of the diversity of image processing and computer

vision applications, the problem of reliably and accurately determining shape orientation

is a perennial research topic, and many methods have already been developed; for recent

examples see [32, 34]. Most of this work is done for single component shapes, whereas in

this paper we introduce a method for computing the orientation of compound shapes. We

consider a line that maximises the integral of the squared lengths of the projections of line

segments whose end points belong the boundaries of particular shape components onto this

line. Then we define the orientation of the shape by the slope of this line. It turns out

that such a method for computing orientation of compound shapes, if applied to a single

component shape, is consistent with the method that defines the shape’s orientation by the

line that minimises the integral of the squared distances of all boundary points to this line.

It is worth mentioning that the latter method is analogous to the standard method which

defines the shape orientation by the line that minimises the integral of squared distances

of the points in the shape to the line. A use of a higher exponent than 2 (in the standard

method) is studied in [31, 36]. Namely, it is well known that the standard method should be

modified in order to be applicable to a wider class of shapes. A modification is introduced

in [31] where the squared distances are replaced with distances to a higher power.

Here, we will not discuss a modification of the method that uses a higher exponent
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2N of the length projections (instead of squared ones) but such a modification is possible

and relatively straightforward if the idea and approach from [37] is followed. It is worth

mentioning that if such a modified method is applied to a single component shape then it is

not consistent for N > 1 with the method which defines the shape’s orientation by the line

that minimises the integral of the distances, taken with the power of 2N , of all boundary

points to this line.

Notice that there is not a straightforward way to compute the orientation of a multi-

component shape from the orientations (computed by some of the existing methods for single

component shapes) of its components. Indeed, a very natural idea would be to compute the

orientation of a compound shape from the orientations assigned to its components, probably

weighted by some coefficients (e.g. a function of the component size). However, the problem

is that almost all existing methods define the shape orientation by a line (not by a vector),

implying that the computed orientations α and α + 180◦ are assumed to be the same. So,

if S1, S2, . . . , Sn are components of a multi-component shape S, then most of the existing

methods would compute their orientations as ϕ1+a1 ·180◦, ϕ2+a2 ·180◦, . . . , ϕn+an ·180◦,
where the numbers a1, a2, . . . , an are arbitrarily chosen from {0, 1}. Thus if, in the simplest

variant, the orientation of S = S1 ∪ S2 ∪ . . . ∪ Sn is computed as the average value of the

orientations assigned to its components, then the orientation of S would be computed as

(ϕ1 + a1 · 180◦) + . . .+ (ϕn + an · 180◦)
n

=
ϕ1 + . . .+ ϕn

n
+

(a1 + . . .+ an) · 180◦
n

and obviously, for different choices of a1, a2, . . . , an, the computed orientations are inconsis-

tent (i.e. they could differ for an arbitrary multiple of the fraction 180◦/n). This is obviously

unacceptable.

1.3 Anisotropy of Multiple Component Shapes

In the literature, shape orientation and shape elongation are very often considered together.

The following scenario could be understood as a common approach: If orientation of a given

shape S is defined by the direction for which the optimisation function F (S, α) reaches its

maximum, then the elongation of S is defined as the ratio
maxα∈[0,2π) F (S, α)

minα∈[0,2π) F (S, α)
.

Just as the concept of orientation can be extended from single component shapes to

multiple components, elongation can also be applied to multiple components, and we will see

that it effectively produces a measure of anisotropy. These two shape properties (orientation
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and anisotropy) can be generally useful in computer vision, and have hundreds of applications

in material science, medicine, engineering, geophysics, etc. To give just a few examples:

• Arnold [1] analysed the relationship between the orientation of fish larvae with respect

to the direction of the current and various conditions (e.g. light intensity).

• Karátson et al. [15] quantified the strength of directional clast fabric (i.e. the anisotropy

of rock fragments) in the flow of volcanic material so as to discriminate between types

of deposits and provide evidence for emplacement mechanisms.

• Enomae et al. [6] measured the orientation angle and anisotropy of paper fibre since

these values affect the physical properties of paper, such as its strength, shrinkage and

curl. Moreover, they can also be used in the classification of ancient papers.

• Scharcanski and Dodson [27] also considered paper and other web-based materials such

as polymer sheets, non-woven textiles, etc. A method for quantifying anisotropy was

developed for application to on-line monitoring of continuous manufacturing processes.

• Saha and Wehrli [25] measured trabecular bone anisotropy since it has a significant

effect on the bones biomechanical behaviour, and can therefore be used to check for

disorders such as osteoporosis.

• The analysis of microstructure is important when designing new materials. Ganesh

and Chawla [8] analysed the orientations of the reinforcement particles in metal matrix

composites to check for a relationship between particle orientation and tensile strength.

1.4 Contents of This Paper

This paper makes several contributions. It extends our previous work on computing shape

orientation based on the line maximising the integral of the squared lengths of the projections

of line segments [37]. Whereas that previous work operated on the shape interior (the

endpoints of the line segments were defined to lie inside the shape) the current work adapts

this approach to provide a different, boundary-based orientation instead. The method is

further extended in this paper to develop a new measure of anisotropy.

The paper is organised as follows. A short overview of the standard method for compu-

tation of shape orientation is given in section 2.
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Section 3 introduces the new method for computing orientation of multi component

shapes, explains the basic idea and motivation. Also, the same section gives several modifi-

cation of the new method. Those methods enable a control of the impact of the components

size to the computed orientation of the compound shape. In section 3 we extend the method

to compound shapes and make some notes regarding its properties. In section 4 the idea of

the standard region-based measure of elongation is adapted to a boundary-based measure

over multiple components, effectively providing a measure of anisotropy. Section 5 demon-

strates the results of computing orientation and anisotropy on several different data sets.

Finally, concluding comments are given in section 6.

2 The Standard Method for Single Component Shapes

Before considering the definition of orientation of compound shapes, what will be done in

the next section, we give a short overview of the most standard methods for the computation

of orientation of a single component shape. The most standard area based method, for the

computations uses the geometric (area) moments is based on a use the axis of the least

second moment of inertia [31, 36]. More precisely, the axis of the least second moment of

inertia [14, 16] is the line which minimises the integral of the squares of distances of the

points (belonging to the shape) to the line. The integral is

I(α, S, ρ) =

∫

S

∫

r2(x, y, α, ρ) dx dy (1)

where r(x, y, α, ρ) is the perpendicular distance from the point (x, y) to the line given in the

form X · sinα − Y · cosα = ρ. The angle which minimizes the above integral can be easily

computed [31], and is used to define the orientation of the shape S. So, the following formal

definition is natural.

Definition 1 The orientation of a given shape S is given by the angle α for which the

function I(α, S, ρ) reaches the minimum.

If someone would like to use the boundary points only, to define the shape orientation,

then the line moments µp,q(∂S) along the contour ∂S, (i.e. the boundary of a given shape

S), should be used instead of the geometric (area) moments and a similar reasoning can be
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applied [3]. More formally, for the contour ∂S representing the boundary of S and given in

its arc length parametrisation x = x(s), y = y(s), s ∈ [0, per(S)], the line moment µp,q(∂S),

is defined by

µp,q(∂S) =

∫

∂S

x(s)p y(s)q ds, (2)

while the centralised line moments µp,q(∂S) is defined as

µp,q(∂S) =

∫

∂S

(

x(s)− µ1,0(∂S)

µ0,0(∂S)

)p (

y(s)− µ0,1(∂S)

µ0,0(∂S)

)q

ds. (3)

Now, the orientation of S, based only on the information from its boundary ∂S, is defined

by the angle α that minimises the function

E(α, ∂S) =

∫

∂S

((

x− µ1,0(∂S)

µ0,0(∂S)

)

· sinα−
(

y − µ0,1(∂S)

µ0,0(∂S)

)

· cosα
)2

ds (4)

i.e.

E(α, ∂S) =

(

µ2,0(∂S)−
(µ1,0(∂S))

2

µ0,0(∂S)

)

· sin2 α +

(

µ0,2(∂S)−
(µ0,1(∂S))

2

µ0,0(∂S)

)

· cos2 α

−
(

µ1,1(∂S)−
µ1,0(∂S) · µ0,1(∂S)

µ0,0(∂S)

)

· sin(2α). (5)

Notice that E(α, ∂S) equals the integral of the squared distances of all the boundary

points of S to the line that passes the point
(

µ1,0(∂S)

µ0,0(∂S)
, µ0,1(∂S)

µ0,0(∂S)

)

and has the slope α. Such a

line is described by the equation
(

X − µ1,0(∂S)

µ0,0(∂S)

)

· sinα−
(

Y − µ0,1(∂S)

µ0,0(∂S)

)

· cosα = 0. Thus, the

following definition for boundary-based shape orientation is an analogue for the standard

method for the computing shape orientation.

Definition 2 Let S be a given shape. The orientation of S is defined by the angle α where

the function E(α, ∂S) reaches its minimum.

It is easy to verify that such an angle α satisfies the following equation

tan(2α) =
2µ1,1(∂S)

(µ2,0(∂S))
2 − (µ0,2(∂S))

2
. (6)
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3 Orientation of Compound Shapes

In this section we use idea of [37] and introduce a method for computing the boundary based

orientation of compound shapes. Informally speaking, we consider all the line segments

whose end points belong to a particular shape component and define the orientation of the

compound shape by the line which maximises squared projections of such line segments onto

this line. Thus, it can be said that such a defined orientation is based on the orientations

of the shape components rather than determining orientation as a global property of the

compound shape. We continue with a more formal definition.

Let S be a compound object consisting ofm components S1, S2, . . . , Sm whose boundaries

∂S1, ∂S2, . . . , ∂Sm are given in an arc length parametric form xi = xi(s), yi = yi(s),

s ∈ [0, per(Si)], where per(Si) =

∫

∂Si

ds is the length of the contour ∂Si. For each component

Si, let consider all the line segments [AiBi] whose end points Ai and Bi belong to the

boundary ∂Si. In other words,

Ai = Ai(s) = (xi(s), yi(s)) and Bi = Bi(l) = (xi(l), yi(l)) for some s, l ∈ [0, per(Si)].

Further, let

– −→a denote the unit vector in the direction α, i.e. −→a = (cosα, sinα),

– pr−→a [AB] be the projection of the line segment [AB] onto a line that makes an angle

α with the x-axis, and

– |pr−→a [AB]| denotes the length of such a projection.

Now, we give the following definition for orientation of compound shapes.

Definition 3 Let S be a compound object consisting of m components S1, S2, . . . , Sm, and

let ∂S denotes the boundary of S, i.e. ∂S = ∪m
i=1∂Si is the union of boundaries ∂Si of

components Si of S. Then the orientation of S is defined by the angle that maximises the

function Lcomp(α, ∂S) defined by

Lcomp(α, ∂S) =
m
∑

i=1

∫

s∈[0,per(Si)]
l∈[0,per(Si)]

∫

|pr−→a [Ai(s)Bi(l)]|2ds dl. (7)
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Figure 3: Projections of all the line segments whose endpoints lie on the boundary of a

particular component Si of the given compound shape S are considered, irrespective of

whether the line segment intersects the boundary ∂Si (e.g. the line segment [CD]) or not

(e.g. [AB]).

Definition 3 can be understood as a natural one, taking into account that we are looking

for a definition of the orientation of compound shapes which takes into account the boundary

information only. Once again, Definition 3 considers all the edges whose end points belong

to the boundary of certain component of S, and then defines the orientation S by the line

that maximises the sum of the squared projections of such edges onto this line.

A very desirable property of such a defined orientation is that it enables easy computa-

tion. That is the result of the following theorem. To prove the statement, only elementary

mathematics is needed. The proof is omitted, since the same formalism could be applied as

in the proof of Theorem 2 from [37].

Theorem 1 The angle α where the function Lcomp(α, ∂S) reaches its maximum satisfies the

following equation

tan(2α) =

2 ·
m
∑

i=1

(µ1,1(∂Si) · µ0,0(∂Si)− µ1,0(∂Si) · µ0,1(∂Si))

m
∑

i=1

((µ2,0(∂Si)− µ0,2(∂Si)) · µ0,0(∂Si) + (µ0,1(∂Si))2 − (µ1,0(∂Si))2)
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=

2 ·
m
∑

i=1

µ1,1(∂Si) · µ0,0(∂Si)

m
∑

i=1

(µ2,0(∂Si)− µ0,2(∂Si)) · µ0,0(∂Si)
. (8)

We proceed with the lemma which shows that the standard, boundary based method,

for computing the shape orientation orientation (see Definition 2) is a particular case of the

method for computing the orientation of compound shapes introduced in this paper. If we

specify that the shape S from Definition 3 is a single component shape then such a restriction

leads to the following definition for the orientation of a single component shape S.

Definition 4 For a given shape S the orientation of S is defined by the angle α where the

function

L(α, ∂S) =

∫

s∈[0,per(S)]
l∈[0,per(S)]

∫

|pr−→a [A(s)B(l)]|2 ds dl (9)

reaches its maximum.

Even though Definition 2 and Definition 4 come from different motivations it turns out

that they are equivalent. We give the following lemma.

Theorem 2 Let S be a single component shape, then the orientation of S computed by

Definition 4 is the same as the orientation computed by Definition 2.

Proof. By using definitions of L(α, ∂S) and E(α, ∂S) (see (9) and (5)) we easily derive:

L(α, ∂S) + 2 · µ0,0(∂S) · E(α, ∂S)

= 2 · (µ2,0(∂S) + µ0,2(∂S)) · µ0,0(∂S)− 2 · (µ1,0(∂S))
2 − 2 · (µ0,1(∂S))

2. (10)

A direct consequence of the previous equality is that the quantity

L(α, ∂S) + 2 · µ0,0(∂S) · E(α, ∂S) (11)

depends only on the shape S but not on the angle α.

Further, this implies that the maximum of L(α, ∂S) and minimum of E(α, ∂S) must be

reached at the same point. In other words, the orientations computed by Definition 2 and

Definition 4 are consistent, which establishes the proof. �
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Note. Notice that specifying m = 1 in the equation (8), in Theorem 1, we obtain that

the orientation α of a single component shape S computed by the new method satisfies the

equation

tan(2α) =
2 · µ1,1(∂S) · µ0,0(∂S)

(µ2,0(∂S)− µ0,2(∂S)) · µ0,0(∂S)
.

The same equation is satisfied by the orientation angle β computed by the standard method

(see Definition 2 and the equation (6) thereafter). Thus,

tan(2α) = tan(2β)

holds. But Theorem 2 gives more:

• The orientations α and β computed by the standard method and the new one, respec-

tively, satisfy the equality tan(2α) = tan(2β) but Theorem 2 excludes the possibility

α = β + π
2
. I.e. Theorem 2 says that it must be α = β.

• The derived equation (10) fully describes the relationship between the optimising func-

tions E(α, ∂S) and L(α, ∂S) used in the standard method and the method developed

here.

Being naturally defined and theoretically well founded, the behaviour of the new method

for computing the compound shapes orientation can be well understood. Also, in some

particular situations such a behaviour can be predicted very precisely. We illustrate this

by the following lemma which summarises how the new method behaves in some canonical

situations, including the situations when the method brakes down.

Lemma 1 The new method for the computation of the orientation of compound shapes has

the following properties.

(a) Let a compound shape S = S1 ∪ . . . ∪ Sm. The new method breaks down when

m
∑

i=1

µ1,1(∂Si) · µ0,0(∂Si) =
m
∑

i=1

(

µ2,0(∂Si)− µ0,2(∂Si)
)

· µ0,0(∂Si) = 0 (12)

(i.e. the optimizing function Lcomp(α, ∂S) is then constant).

(b) Let a compound shape S = S1 ∪ . . . ∪ Sm and let L(α, ∂Si) = constant for i = 1, . . . , k

where k < m. Then

Lcomp(α, ∂S1 ∪ . . . ∪ ∂Sk ∪ ∂Sk+1 ∪ ∂Sm) = Lcomp(α, ∂Sk+1 ∪ . . . ∪ ∂Sm).
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(I.e., the new method gives the same orientation for the compound shapes S1∪ . . .∪Sm

and Sk+1∪ . . .∪Sm. So, the components S1, . . . , Sk can be ignored when computing the

orientation of S1 ∪ . . . ∪ Sm).

(c) If all components of S have identical orientation according to L(α, ∂S) then this same

orientation is also computed by Lcomp(α, ∂S)).

Proof. Since the proof is similar to the proof of the analogous statements for the area based

measure from [37], it is omitted. �

The differences between the standard and new methods for computing orientation are

demonstrated clearly in figure 4(a). The data consists of several components (coloured

black or gray), which are split into two sets according to the overlaid central dividing line.

Orientation is computed both separately for the left and right sets of components, and is

also computed for the combined set. As expected, the results for the standard method

depend on the distribution of the components, and so the orientations for the three sets

vary substantially. In contrast, the new method produces very consistent orientations for

the three sets. A similar effect occurs in figure 4(b), where an image of embryonic tissue is

split onto two parts. Again, the new method produces very consistent orientations for the

upper part (coloured gray), lower part (coloured black) and the whole image, whereas the

standard method produces inconsistent orientations.

3.1 Components Size Dependent Method

As in the case of the area based method for the computation of the orientation of multi-

component shapes [37], the new (boundary based) method allows modifications which enable

to control the impact of the perimeter of the shape components to the computed shape

orientation. Moreover, there is also a modification which does not take into account the

component perimeters at all, which could be desirable in some applications. Note that the

size of shape components, as measured in a given image, are dependent on the position of

the original object components with respect to the camera. Thus, such a modified method

would be able to correct such a (very often) unacceptable influence of the relative components

position with respect to the camera.

As in [37], can use a simple two-component shape to illustrate our conclusions. So, if we

consider a two-component shape S = S1 ∪ S ′
2 where S ′

2 is the dilation of a shape S2 by a
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(a): (b):

Figure 4: (a): The components are coloured black or gray, and are separated into sets by

the central dividing line. Orientations computed for the left, right and combined sets are

shown overlaid for the standard method (long arrows) and the new method (short arrows).

(b): Similarly, an embryonic tissue image is split onto two parts. Orientations computed

for the lower part, upper part and whole image are shown overlaid for the standard method

(long arrows) and the new method (short arrows).

factor r, i.e. S ′
2 = r · S2 = {(r · x, r · y) | (x, y) ∈ S2}, then the orientation α of S, computed

by (8), is computed from

tan(2α) =
2 · µ1,1(∂S1) · µ0,0(∂S1) + 2 · r4 · µ1,1(∂S2) · µ0,0(∂S2)

(µ2,0(∂S1)− µ0,2(∂S1)) · µ0,0(∂S1) + r4 · (µ2,0(∂S2)− µ0,2(∂S2)) · µ0,0(∂S2)
.

Obviously, the influence of S ′
2 to the computed orientation of S is proportional to r4 and

could be very big if the dilation factor r is much bigger than 1. To reduce such a large effect

we can apply the following formula:

tan(2α) =

2 ·
m
∑

i=1

µ1,1(∂Si)/(m0,0(∂Si))
2

m
∑

i=1

(µ2,0(∂Si)− µ0,2(∂Si))/(m0,0(∂Si))2
, (13)

which enforce instead a linear weighting by perimeter (i.e. an influence proportional to r).

Whilst a linear weighting by perimeter (given by (13)) seems reasonable in most circum-

stances, another possibility that may be suitable for some applications is that the weight of a

component is completely independent of its size (for example, see the gait analysis example
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in [37]). This can be enforced using the following formula:

tan(2α) =

2 ·
m
∑

i=1

µ1,1(∂Si)/(m0,0(∂Si))
3

m
∑

i=1

(µ2,0(∂Si)− µ0,2(∂Si))/(m0,0(∂Si))3
. (14)

In the view of the previous simple example, if the last formula is applied then the computed

orientation α satisfies:

tan(2α) =
2 · µ1,1(∂S1)/(µ0,0(∂S1))

3 + 2 · µ1,1(∂S2)/(µ0,0(∂S2))
3

(µ2,0(∂S1)− µ0,2(∂S1))/(µ0,0(∂S1))3 + (µ2,0(∂S2)− µ0,2(∂S2))/(µ0,0(∂S2))3
(15)

and obviously, the computed orientation (i.e. tan(2α)) does not depend on r. It is easy to

verify that the same holds if a given shape consists of more than two components.

4 Anisotropy Measure

As mentioned in the introduction, a shape’s orientation and elongation are often considered

together. If the orientation of a given shape S is defined by the direction for which an

optimising function F (S, α) reaches its extreme value, then a common approach is to define

the elongation of S as the ratio
maxα∈[0,2π) F (S, α)

minα∈[0,2π) F (S, α)
. But it turns out that in the case of

multiple component shapes, the meaning of such a ratio describes the anisotropy of a set

of multiple components rather than its elongation (in the sense of the ordinary meaning of

these words).

To be exact, in the case of compound shapes S1 ∪ . . . ∪ Sm, we will consider the ratio

maxα∈[0,2π) Lcomp(α, ∂S)

minα∈[0,2π) Lcomp(α, ∂S)

and will call it a compound shape anisotropy measure since it is maximised when all compo-

nents are aligned in the same direction, as shown by the following theorem.

Theorem 3 Let S be a compound shape whose components are S1, S2, . . . , Sm, and each

of the components of Si has orientation αi where αi is computed by maximising L(α, ∂Si).

Then the ratio
maxα∈[0,2π) Lcomp(α, ∂S)

minα∈[0,2π) Lcomp(α, ∂S)
reaches its maximum if αi = α2 = . . . = αm.
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Proof. We start from Definitions 3 and 4 and show that the nominator and denominator

reach their maximum and minimum value (respectively) if and only if the components of S

have the same orientation, i.e. if and only if αi = α2 = . . . = αm. So,

max
α∈[0,2π]

{Lcomp(α, ∂S)} = max
α∈[0,2π]

{

m
∑

i=1

L(α, ∂Si)

}

≤
m
∑

i=1

max
α∈[0,2π]

{L(α, ∂Si)} =
m
∑

i=1

L(αi, ∂Si).

(16)

Thus, an upper bound for max
α∈[0,2π]

{Lcomp(α, ∂S)} is
∑m

i=1 L(αi, ∂Si) and this upper bound is

obviously reached if αi = α2 = . . . = αm, i.e. then max
α∈[0,2π]

{Lcomp(α, ∂S)} =
∑m

i=1 L(αi, ∂Si).

On the other hand, if for two components, say Sp and Sq, the functions L(α, ∂Sp) and

L(α, ∂Sq) reach their maxima for a different angle, then max
α∈[0,2π]

{L(α, ∂Sp) + L(α, ∂Sq)} <

max
α∈[0,2π]

{L(α, ∂Sp)} + max
α∈[0,2π]

{L(α, ∂Sq)} which further implies that the inequality in (16) is

also strict.

This completes the proof that the greatest possible value of max
α∈[0,2π]

{Lcomp(α, ∂S)} is

reached if and only if all the component Si of S have the same orientation.

To prove that the smallest possible value of min
α∈[0,2π]

{Lcomp(α, ∂S)} is reached if and only

if all the components of S have the same orientation, we should start from

min
α∈[0,2π]

{Lcomp(α, ∂S)} = min
α∈[0,2π]

{

m
∑

i=1

L(α, ∂Si)

}

≥
m
∑

i=1

min
α∈[0,2π]

{L(α, ∂Si)}. (17)

and apply similar reasoning as for (16). �

Based on Theorem 3 it seems natural to define the anisotropy shape measure by using

the ratio
maxα∈[0,2π) Lcomp(α, ∂S)

minα∈[0,2π) Lcomp(α, ∂S)
. We give the following formal definition.

Definition 5 Let S be a compound shape whose components are S1, S2, . . . , Sm. Then the

anisotropy A(S) = A(S1 ∪ S2 ∪ . . . ∪ Sm) of S is defined as

A(S) =
maxα∈[0,2π) Lcomp(α, ∂S)

minα∈[0,2π) Lcomp(α, ∂S)
. (18)

The compound shape anisotropy measure A(S), defined as above, indicates how con-

sistent the orientations of the components comprising a shape are. It has the following

properties:

• A(S) ranges over [1,∞);
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• A(S) is translation, rotational and scaling invariant;

• A(S) is also easy to compute (as shown by the next theorem).

The following theorem (for a proof see Appendix A) gives a closed formula for the com-

putation of A(S).

Theorem 4 Let S be a compound shape whose components are S1, S2, . . . , Sm. Then

A(S) = A(S1 ∪ S2 ∪ . . . ∪ Sm) =
C +

√
A2 + B2

C −
√
A2 + B2

(19)

where

C =
m
∑

i=1

(µ2,0(∂Si) + µ0,2(∂Si))µ0,0(∂Si), A =
m
∑

i=1

(µ2,0(∂Si)− µ0,2(∂Si))µ0,0(∂Si) and

B =
m
∑

i=1

2µ1,1(∂Si)µ0,0(∂Si).

Roughly speaking, the anisotropy measure, as given by Definition 5, primarily depends

on the consistency of the orientations of the shape’s components, but also on the elongation

of the components. E.g. consider two compound shapes such that the components in each

shape are mutually the same and have the same orientation. A higher anisotropy value will be

assigned to the shape whose components are more elongated (formally to the shape whose

components have the larger ratio
maxα∈[0,2π]{L(α,Si)

minα∈[0,2π{L(α,Si)}
). This is a desirable property. Notice

that the effects of a component’s elongation could be controlled (if necessary) by some

modifications of the definition. In addition, for shapes which do not consist of identical

components, the influence of a component’s size could also be controlled by modifications

similar to those in subsection 3.1.

We give a few examples to demonstrate the anisotropy measure. Each image in figure 5

is treated as a multiple component object (e.g. a herd of cattle). For the image in figure 5a

the anisotropy was first computed for just the cattle, giving a value of 3.49, which is ap-

propriate since they are mostly facing in the same direction. The anisotropy of the cattle’s

shadows alone increases to 7.57 since the shadows are more consistently orientated, and are

also slightly more elongated. Merging the cattle and their shadows produces even more elon-

gated regions, and so the herd’s anisotropy further increases to 12.08. Another example of

somewhat elongated shapes which are approximately aligned in one direction is given by the

yachts moored in figure 5b, and again the anisotropy value of 4.65 is much greater than 1.
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a)

b)

c)

d)

Figure 5: Images and extracted object boundaries. For each image the set of boundaries is

treated as a multiple component object. The computed orientations are displayed as arrows

with length proportional to 1− 1
A(S)

.
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In comparison, the remaining examples contain components distributed over two (fig-

ure 5c) or more (figure 5d) orientations which causes the anisotropy values to be much lower

(1.33, 1.38 respectively) even though the individual components are elongated.

5 Examples

1/

2/

3/

4/

(a)

1/

2/

4/

3/

(b)

1/

2/

3/

4/

(c)

1/

4/

2/

3/

(d)

1/

2/

3/

4/

(e)

2/

3/

4/

1/

(f)

1/

2/

3/

4/

(g)

1/

2/

3/

4/

(h)

1/

2/

3/

4/

(i)

Figure 6: Orientations are displayed as arrows in the order: 1/ boundary method treating

shape as multiple components, 2/ boundary method treating shape as single object, 3/

interior method treating shape as multiple components, 4/ interior method treating shape

as single object.

The following provides some examples of applying the proposed methods. Where the

input data consists of (binarized) images, the boundaries have been extracted. Rather than

calculating the moments from the boundary pixels, polygonal approximations of the bound-

aries are generated using Ramer’s algorithm [24] with a threshold of two unless specified

otherwise. The line moments are then directly calculated from the polygon or polyline [18].
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In figure 6 we present results of computing the orientation of trademarks which consist of

multiple components. The results are compared when orientations are obtained by i) treating

the shapes as single entities versus multiple components, and ii) analysis of shape boundary

versus shape interior. First, it is possible for all these four combinations of approaches

to coincide, as in the example in figure 6a which contains two curvilinear structures and

six balls. For the component based approaches the curvilinear structures dominate the

orientation estimation since not only are they larger than the balls, but are elongated and

therefore much more orientable. In fact, the balls have negligible effect on the component

based orientation values, which is desirable since their computed individual orientations

are dependent on just digitisation and noise effects. Consequently, if the balls are moved

outwards (figure 6b) then the component based orientations are unaltered, although the balls

now dominate the globally measured orientation since they lie far from the global centroid.

Figure 6c shows an instance of a repeated shape, and (unlike the global orientation) both

methods which explicitly deal with multiple components identify the overall orientation to

be the same as the individual component orientations.

The trademark in figure 6d is made up of two parts, an upper and lower half. In terms of

interior mass each component has a diagonal trend, whereas the multiple narrow indentations

create a large portion of boundary along the horizontal. This results in differences in the

boundary-based and interior-based method multiple component methods as they produce

orientations aligned as above.

The difference in the boundary-based multiple component orientation for the shape in

figure 6e compared to the interior-based multiple component orientation is due to several

factors. First, the corners of the outer ring of the shape are thicker on one of the diagonals

compared to the other, and this extra area is sufficient to fix the orientation chosen by the

interior-based method. Second, the two rings produce four nested boundaries, but not all

of these affect the computation of the interior-based method. In fact, counting outwards

from the centre, the first and third boundaries are sufficiently symmetrical that they are

essentially unorientable using the moments based approach. This is confirmed by their values

of µ1,1(Si)/(µ0,0(Si))
2 and (µ2,0(Si)−µ0,2(Si))/(µ0,0(Si))

2 which are {0.01, 0.03}, {1.09, 1.00},
{-0.19, -0.38}, {-0.89, 0.10}. That is, the first and third pairs of values are close to zero.

Thus, the second boundary (the Q-shape) is the most orientable component of the shape,

and this dominates the final computed orientation.
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The shape in figure 6f is essentially symmetric, and the orientations are closely aligned

with the axis of symmetry since the shape is reasonably elongated. However, there is some

distortion, most evident in the leftmost triangle which is part of the largest component. This

affects the interior-based multiple component method most. Since the perimeter of that

component is less affected distortion the boundary-based multiple component estimation of

orientation is less affected, and is closer to the axis of symmetry.

Figure 6g shows a marked difference between the interior and boundary-based methods.

In terms of size, there are two main components, the outer ring, and almost the complete

angel with the exception of the hair and facial details. The angel shape is nearly vertical

according to the interior-based method, but the outer ring is determined to be horizontal,

and the combined effects of these two components produces an orientation in between, but

more influenced by the larger angel shape. In contrast, the thin lines making up the angel

mean that it has a substantially larger perimeter than the outer ring, and therefore the

boundary-based multiple component estimation of orientation is overwhelmingly dominated

by its vertical orientation.

Because the two arrows in figure 6h have a fairly wide horizontal separation the global

methods compute a horizontal orientation. The arrows themselves are more consistent with

a vertical orientation, as computed by both the multiple component methods. When the

right-hand arrow is scaled in X and Y by a factor of 0.5 and duplicated (see figure 6i) then

the alteration causes the global methods to produce new orientations. If the boundary-

based multiple component method is applied with a linear weighting by perimeter then, as

expected, the change has no effect. The interior-based multiple component was also applied

with linear weighting by area, which naturally results in an alteration in orientation. Of

course, the interior-based multiple component method can also be modified to use alternative

area based weightings [37].

The second example applies multiple component orientation estimation and anisotropy

to perform orientation normalisation (as shown in figure 7) in which it is applied as a step

towards deskewing scanned pages of text. The images are thresholded and polygonal ap-

proximations to the extracted boundaries are formed using Ramer’s algorithm [24] with a

small threshold (i.e. a maximum deviation of one) since the letters are relatively small (20-

70 pixels high). Although the characters are not generally vertically aligned, the idea is

that if the pages contain sufficient characters then the distribution of characters within each
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Figure 7: Thresholded pages from two books as scanned (first row) and after character based

orientation normalisation (second row), and line based orientation normalisation (third row)

page should be similar, and so the orientations computed from each page’s set of characters

should be fairly consistent over a book. Experiments show that the results shown in figure 7

are typical and that the estimated orientations of a book’s pages lie within an interval of

1◦. To complete the deskewing process the pages would have to be further rotated by a

constant amount determined from knowledge of the font or else from a sample page. Since

this method operates on just the individual characters irrespective of their placement it is

applicable even for very irregularly spaced text.

We can also use the compound component anisotropy measure to tackle the page deskew-

ing problem in a different manner. Unlike our previous approach we now assume a traditional

page layout with characters and words forming well defined straight lines. The idea is to

blur the image so that the characters merge into maximally consistently elongated lines – i.e.

maximally anisotropic. The set of lines extracted after thresholding makes up the compound

shape from which the orientation can be computed. Since by definition the components are
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Figure 8: One of the page images from figure 7 is blurred and thresholded, and the resulting

component anisotropy is plotted. A small portion of some of the thresholded images is shown

demonstrating that maximum anisotropy is achieved when many of the words are merged

into lines.

elongated, so their orientation should be distinct.

The process is demonstrated in figure 8. The graph shows that with little smoothing

the components – which are initially mainly individual characters – are not consistently

elongated. Further smoothing merges characters into words which now exhibit a reasonably

pronounced anisotropy. However, it is when enough blurring is applied to merge characters

into continuous lines that the anisotropy increases dramatically. More blurring is counter

productive as sections of adjacent lines merge, and their anisotropy quickly drops. The

results of deskewing using the estimated blur values are shown in the bottom row of figure 7,

and it can be see that the pages are all correctly re-oriented. Note that the approach is

successful even though the simple isotropic blurring was unable to produce a perfect grouping

and segmentation into individual lines. For instance, one instance of over-merging and many

instances of under-merging are evident in the third image representing maximal anisotropy in

figure 8. Nevertheless, the compound component orientation computed over the set (typically

about a thousand components) is globally consistent with the page alignment.

The third example looks at a sample of 19 images of embryonic tissue taken from Iles
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a)

b)

c)

d)

Figure 9: Embryonic tissue. Column 1: original image overlaid with orientation from image

tensor. Column 2: ground truth boundaries overlaid with orientation from boundary-based

multiple component method. Column 3: watershed algorithm boundaries overlaid with ori-

entation from boundary-based multiple component method. Column 4: watershed algorithm

boundaries overlaid with orientation from boundary-based multiple component method ap-

plied to line segments.
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et al. [10]. The application was to measure the average size, aspect ratio and orientation of

the cells since these aspects of cellular fabric are related to the tissue’s mechanical proper-

ties, and consequently can help develop an understanding of irregularities occurring during

morphogenesis that give rise to birth defects.

The image segmentations were taken directly from Iles et al. [11] and were obtained by

first performing adaptive contrast enhancement and image inversion followed by iterative

applications of the extended-minima transform, imposed-minima transform, and watershed

segmentation until a target number of segments is found. A final stage removes segments

touching the image boundary. Despite the care taken over the segmentation the results

are still relatively poor due to the nature of the images, i.e. the inhomogeneity within

the images and also across the cells, which often produces low contrast at cell boundaries.

For this reason, in addition to the automatically segmented boundaries we also use, for

comparison, the ground truth delineation of the main cell outlines provided by Iles et al.

In addition to the method proposed in this paper we also compare the popular structure

tensor approach [12], in particular the version applied to particle analysis by Scharcanski

and Dodson [27]. They compute the covariance (or second moment) matrix

C =

[

I2x Ixy

Ixy I2y

]

where Ixy is the covariance of the image gradients about the means Ix and Iy. The principal

eigenvector of C identifies the dominant orientation, while the eigenvalues of C

λmax =
Ixx + Iyy +

√

(Ixx − Iyy)2 + 4I2xy

2

λmin =
Ixx + Iyy −

√

(Ixx − Iyy)2 + 4I2xy

2

can be used to provide a measure of coherence [12]
(

λmax−λmin

λmax+λmin

)2

or anisotropy [27] λ2
max

λ2
min

.

These measures are related to the standard moment based region elongation measures, except

that region interior pixels are replaced with edge magnitude values over the full image,

avoiding the need for segmentation. This should be effective when the objects of interest

have good contrast, but problems are to be expected when this is not the case.

The anisotropy measure proposed in this paper was applied to the ground truth bound-

aries to provide an indication of the degree of orientability of the cell images. Figure 9a and
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figure 9b show the two most orientable images, figure 9c shows a cell image with intermediate

orientability, while the least orientable image is shown in figure 9d.

The results of the structure tensor approach are overlaid on the original image in the first

column, followed in the next column by the results of applying the boundary-based multiple

component method to the ground truth regions. The last two columns show results of the

boundary-based multiple component method applied to the watershed segmentation bound-

aries, taking two approaches. The first treats each region boundary as a component, and the

second takes individual line segments from the polygonal approximation of the boundaries

as separate components. The latter case was considered in case the poor segmentation (in

particular the many instances of over-merging) caused problems.

Since the dominant orientation of the cells is so well defined in figure 9a all estimations

of the methods are all in agreement despite the poor segmentation. Although figure 9b

was also considered to be highly anisotropic (also by the structure tensor approach) the

tensor method estimate is inaccurate, perhaps due to the low quality of the image and poor

contrast. The boundary-based multiple component method gives the correct result for all

the three versions of the data. Similar correct results are also achieved by all methods for

the cell image with intermediate anisotropy in figure 9c. Finally, the image in figure 9d

is problematic since it has low anisotropy, and so the orientation is ill defined, causing

the different methods to produce varying results. Thus we see from these examples that,

despite the faulty segmentation, the automatically extracted boundaries contained sufficient

information to enable good orientation estimates to be made.

The fourth example is taken from Munich and Perona [22]) who performed identification

of (handwritten) signatures. Since the similarity measure used for comparing curves was

not invariant to rotation, the curves had to be normalised for orientation before performing

matching. They used the standard method (6) which was mostly effective since the signatures

tended to be elongated and therefore easily orientable. However, this approach broke down

for one subject’s signatures which were more compact – see figure 10, top row.

The multiple component method (9) was able to provide a better normalisation. The

approach was to segment the curve at vertices with small subtended angles, and then apply

the multiple component method to the set of curve segments. To choose an appropriate

angle threshold for the segmentation a similar approach was taken to the page deskewing

example in figure 8. That is, for each signature the segmentation that maximised the multiple
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Figure 10: Signatures of subject s048 from Munich and Perona [22]. The top row is re-

oriented according to the standard method (6) while the bottom row is re-oriented according

to the multiple component method (9).

Figure 11: Signatures of subjects s001, s002, s003, s004 from Munich and Perona re-oriented

according to the multiple component method (9).
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(a) (b) (c) (d)

Figure 12: Examples of boundaries of SEM images of Toyoura sand (Japanese standard

sand) prepared using two methods: (a) & (b) moist tamping, (c) & (d) dry deposition.

component anisotropy measure was selected. The results are shown in the bottom row

of figure 10. The signatures generally have four or more fairly vertical strokes, which on

segmentation provide a good indication of the preferred direction of the signature. A quartic

perimeter weighting was used to emphasise the importance of these strokes. Figure 11

demonstrates that when the proposed method is applied in the same manner to other (more

easily orientable) signatures it remains effective.

Recently, Yang et al. [35] quantified the fabric anisotropy of granular soil in order to

investigate its response under applied loading. Such experimental analysis then led to the

inclusion of anisotropy in an analytical behaviour model. Our final example describes an

application of our approach to the analysis of part of this data. We have 29 samples of

the test material (Toyoura sand) – see figure 12 – and these have been prepared using two

different methods: 1/ moist tamping (MT) in which sand with 5% water content is laid

down in layers and each layer is compacted, and 2/ dry deposition (DD) in which oven dried

sand is poured using a funnel. Even under otherwise identical conditions, these different

preparations result in different stress responses of the samples under compression. The first

step of Yang et al. [35] was to characterise the intensity of anisotropy of the preferred particle

orientation, and in particular to differentiate between the two preparation methods. To do

this they used the “vector magnitude” [5]

∆ =
1

2N

√

√

√

√

(

2N
∑

i=1

cos 2φi

)2

+

(

2N
∑

i=1

sin 2φi

)2

where φi is the orientation of the i’th component. In fact, this is directly related to the

circular variance of the directions of the components (orientations are scaled by a factor of

two in order to allow for 180◦ ambiguity).
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Although the vector magnitude method was shown to be successful on this data [35] we

also show as an alternative that the anisotropy measure proposed in this paper can be applied.

Moreover, it has the advantage that it takes into account the size and orientability of the

components. Since we do not have a true value of the fabric anisotropy for comparison we test

the effectiveness of the anisotropy estimates by performing nearest neighbour classification

with leave one out validation. Accuracy with ∆ is 62.07%, while our computed anisotropy

produced {58.62%, 31.03%, 68.97%} with perimeter weighting set respectively to zero, linear,

and quartic. Thus with the last weighting, in which we allow large particles to dominate the

measure, a better discrimination between the preparation methods is obtained compared to

the “vector magnitude”.

Figure 13: The first 5 images from the tree bark and brick sets before and after orientation

normalisation plus the extracted binary regions which make up the multiple component

shapes.

averaged features directional features

unrotated images 90.72% 84.78%

rotated images 88.91% 92.56%

Table 1: Classification rates for UIUC texture database [19] using gray level co-occurrence

matrix texture measures.

The final example concerns texture based classification, and uses the database provided
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by Lazebnik et al. [19], which consists of 25 classes and 40 images per class. Previously [37]

we demonstrated that the interior-based multiple component method was capable of reliably

computing the texture orientation by first removing global illumination effects, followed by

thresholding to extract a set of regions which are treated as a compound shape. The bound-

ary based method presented in this paper produces similar results – see figure 13. In addition,

we now use the computed orientation to reorient the images, so that direction specific texture

measures can be applied. We have used Haralick et al.’s standard texture measures based

on the gray level co-occurrence matrix [9]1 The texture measures were calculated separately

for four directions. Orientation invariance was obtained either by rotating the image to its

canonical orientation, or else by averaging the measures across the four directions.

Following Varma and Zisserman [33], evaluation is performed by performing 1000 random

splits of the data, keeping M = 20 images per class for training, and testing the classifier

on the remaining 40 −M images. We use a minimum Mahalanobis distance classifier, and

choose an appropriate subset of textures using sequential forward search. As table 1 shows,

the classification rate using averaged texture features drops when the rotated images are

used rather than the original images. This suggests that the rotation (bilinear interpolation)

has degraded the image content. Nevertheless, there is still an overall increase in classifica-

tion accuracy when the directional texture features are extracted from the rotated images,

demonstrating the benefits of our orientation estimation. Classification performance is not

as good as the recent results from Varma and Zisserman (97.83%), but are still comparable

with the other state of the art accuracies that they report (in the range 90.29%–95.40%).

6 Conclusion

A boundary-based method for computing the orientation α of a shape S has been described.

It has the benefit that it leads to a new method for computing the orientation of compound

objects which consist of several components. The new method naturally leads to a new

measure for shape anisotropy which is a shape descriptor suitable for analysing compound

1The gray level co-occurrence matrix was calculated over 7 × 7 windows with inter-pixel separation of

2, and the following measures extracted: angular second moment, contrast, correlation, variance, inverse

difference moment, sum average, sum variance, sum entropy, entropy, difference variance, difference entropy,

correlation, recursivity, inverse recursivity. For each image and each measure the measure was averaged over

all the 7× 7 windows to produce the final texture measure value.
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shapes. There are closed formulas for computing both orientation and anisotropy, which

enable their simple and efficient computation. Moreover, the new defined anisotropy measure

allows the effect of each component on the computed measure to be controlled based on the

size of each component and its degree of orientability. The methods are theoretically founded

and are experimentally verified by several examples.

The analysis of compound objects requires identifying which components form each ob-

ject. There are many segmentation and grouping methods that tackle this problem, and

so this is not covered here. Moreover, in many applications such as those included in this

paper, as well as others in the areas of industrial inspection, biometrics, etc., each image

only contains a single multiple component object, avoiding the need for explicit grouping.

As demonstrated in the Introduction, boundary based methods are more sensitive than

area based methods to changes in shape that involve small changes in area. This could be

considered to be a problem if they are also more sensitive to noise. However, in practise, as

shown in the examples in this paper, the effects of noise can be minimised in two ways. The

first is straightforward: to perform some noise reduction along the boundary e.g. by carrying

out polygonal approximation. The second is that in many applications there will be many

components, e.g. the pages of text, cell images, and sand particle images in Section 5. Thus,

even if the individual properties from each component have high inherent uncertainties,

their combination will tend to produce more reliable estimates of the overall orientation and

anisotropy values.

Acknowledgements

We would like to thank: Zhongxuan Yang and Xiang Song Li for providing the mask images

for the Toyoura sand SEM data; Peter Iles, David Clausi and Wayne Brodland for providing

the embryonic tissue images and segmentation software; and Aditya Vailaya for providing

the trademark database.

References

[1] G.P. Arnold. The orientation of plaice larvae (Pleuronectes platessa L.) in water cur-

rents. J. Experimental Biol., 50(3):785–801, 1969.

31



[2] P. Buddharaju, I.T. Pavlidis, P. Tsiamyrtzis, and M. Bazakos. Physiology-based face

recognition in the thermal infrared spectrum. IEEE Trans. on Patt. Anal. and Mach.

Intell., 29(4):613–626, 2007.

[3] C.-C. Chen. Improved moment invariants for shape discrimination. Patt. Recog.,

26(5):683–686, 1993.

[4] D. Coeurjolly and R. Klette. A comparative evaluation of length estimators of digita

curves. IEEE Trans. on Patt. Anal. and Mach. Intell., 26(2):252–257, 2004.

[5] J.R. Curray. The analysis of two-dimensional orientation data. J. Geology, 64(2):237–

248, 1956.

[6] T. Enomae, Y.-H. Han, and A. Isogai. Nondestructive determination of fiber orientation

distribution of fiber surface by image analysis. Nordic Pulp and Paper Research Journal,

21(2):253–259, 2006.

[7] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour segments

for object detection. IEEE Trans. on Patt. Anal. and Mach. Intell., 30(1):36–51, 2008.

[8] V.V. Ganesh and N. Chawla. Effect of particle orientation anisotropy on the tensile

behavior of metal matrix composites: experiments and microstructure-based simulation.

Materials Science and Engineering A, 391(1-2):342–353, 2005.

[9] R. Haralick, K. Shanmugam, and I. Dinstein. Texture features for image classification.

IEEE Trans. on Systems, Man and Cybernetics, 3(6), 1973.

[10] P.J.W. Iles, G.W. Brodland, D.A. Clausi, and S.M. Puddister. Estimation of cellu-

lar fabric in embryonic epithelia. Computer Methods in Biomechanics and Biomedical

Engineering, 10(1):75–84, 2007.

[11] P.J.W. Iles, D.A. Clausi, and G.W. Brodland. Estimation of average cell shape from

digital images of cellular surfaces. In Computer and Robot Vision, pages 273–278, 2004.

[12] B. Jähne. Digital Image Processing. Springer-Verlag, 2001.

[13] A.K. Jain, Yi Chen, and M. Demirkus. Pores and ridges: High-resolution fingerprint

matching using level 3 features. IEEE Trans. on Patt. Anal. and Mach. Intell., 29(1):15–

27, 2007.

32



[14] R. Jain, R. Kasturi, and B.G. Schunck. Machine Vision. McGraw-Hill, 1995.
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soils. Géotechnique, 58(4):237–248, 2008.
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Appendix A

Proof of Theorem 4. First we show that each function H(α) having the form

H(α) = A · cos(2α) + B · sin(2α) + C (20)

has the minimum and maximum as follows:

max
α∈[0,2π]

H(α) = C +
√
A2 + B2, min

α∈[0,2π]
H(α) = C −

√
A2 +B2. (21)

Indeed, if α = α0 is a point where H(α) reaches an extreme value then:

tan(2α0) =
sin(2α0)

cos(2α0)
=

B

A
(22)

follows easily from
dH(α)

dα
= −2A sin(2α) + 2B cos(2α) = 0. By using (27) and entering

the following equalities

sin(2α0) =
± tan(2α0)
√

1 + tan2 2α0

=
±B/A

√

1 + B2/A2

and

cos(2α0) =
±1

√

1 + tan2(2α0)
=

±1
√

1 +B2/A2

into (20) we obtain the required H(α0) = C ±
√
A2 + B2 which proves (21).

Further, starting from

Lcomp(α, ∂S) =
m
∑

i=1

∫

s∈[0,per(Si)]
l∈[0,per(Si)]

∫

|pr−→a [Ai(s)Bi(l)]|2 ds dl = cos2 α ·
m
∑

i=1

2µ2,0(∂Si) · µ0,0(∂Si)

+ sin2 α ·
m
∑

i=1

2µ0,2(∂Si) · µ0,0(∂Si) + sin(2α) ·
m
∑

i=1

2µ1,1(∂Si) · µ0,0(∂Si) (23)

and by using cos2 α =
1 + cos(2α)

2
and sin2 α =

1− cos(2α)

2
we notice that Lcomp(α, ∂S)

is of the form

L(α, ∂S) = A · cos(2α) + B · sin(2α) + C
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where C =
m
∑

i=1

(µ2,0(∂Si) + µ0,2(∂Si)µ0,0(∂Si), A =
m
∑

i=1

(µ2,0(∂Si)− µ0,2(∂Si)µ0,0(∂Si) and

B =
m
∑

i=1

2µ1,1(∂Si)µ0,0(∂Si).

Finally, by using (21) we obtain the required A(S) =
C +

√
A2 + B2

C −
√
A2 +B2

, where A, B, and

C are defined as above. �
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