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We examine the dynamics of a two-dimensional droplet spreading over a random
topographical substrate. Our analysis is based on the formalism developed in Part
1 of this study, where a random substrate was modelled as band-limited white
noise. The system of integrodifferential equations for the motion of the contact
points over deterministic substrates derived by Savva and Kalliadasis (Phys. Fluids,
vol. 21, 2009, 092102) is applicable to the case of random substrates as well. This
system is linearized for small substrate amplitudes to obtain stochastic differential
equations for the droplet shift and contact line fluctuations in the limit of shallow
and slowly varying topographies. Our theoretical predictions for the time evolution
of the statistical properties of these quantities are verified by numerical experiments.
Considering the statistics of the dynamics allows us to fully address the influence of
the substrate variations on wetting. For example, we demonstrate that the droplet wets
the substrate less as the substrate roughness increases, illustrating also the possibility
of a substrate-induced hysteresis effect. Finally, the analysis of the long-time limit
of spreading dynamics for a substrate represented by a band-limited white noise
is extended to arbitrary substrate representations. It is shown that the statistics of
spreading is independent of the characteristic length scales that naturally arise from
the statistical properties of a substrate representation.
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1. Introduction
It is a fundamental problem to understand how deterministic or random

heterogeneities influence the characteristics of contact line propagation, e.g. speed
and location. Theoretical studies on droplet spreading, a simple prototype for the
study of contact line motion, have primarily focused on ideally flat substrates (e.g.
Hocking 1983) often in the presence of other effects such as chemical heterogeneities,
evaporation and thermocapillarity (e.g. Ehrhard & Davis 1991; Schwartz 1998;
Sodtke, Ajaev & Stephan 2008; Rednikov, Rossomme & Colinet 2009).

The effects of substrate topography on droplet spreading dynamics, albeit
known from experiments with highly irregular micro-scale features to be significant
(Cazabat & Cohen-Stuart 1986), have received far less attention. The few theoretical
studies have focused on deterministic substrates. For example, Gramlich, Mazouchi &
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Homsy (2004) examined the motion of a two-dimensional contact line over a
topographical feature (trench or mound) by solving numerically the full Stokes
equations and employing numerical slip at the contact line. Gaskell et al. (2004)
examined droplet spreading over a rectangular step by solving numerically the long-
wave approximation with the constant-thickness precursor film model, often used
in spreading studies (see e.g. Troian et al. 1989; Schwartz & Eley 1998; Kalliadasis
2000). Recently, Savva & Kalliadasis (2009) examined theoretically two-dimensional
droplet (referred to hereafter simply as ‘droplet’) spreading on spatially varying
deterministic topographical substrates. They utilized the long-wave approximation
with a slip model and through a singular perturbation method they obtained a system
of integrodifferential equations (IDEs) for the evolution of the two moving fronts.
The restriction to two dimensions implies that there are no transverse variations,
essentially treating the contact lines as a set of two points.

As far as the influence of random substrates on spreading dynamics is concerned,
the few previous studies on the subject are mostly based on ad hoc modelling
ideas and postulated equations (Moulinet, Guthmann & Rolley 2002; Tanguy &
Vettorel 2004; Nikolayev 2005; Katzav et al. 2007). To date, no attempt has been
made to quantify the statistics of the dynamics on random substrates through a
systematic treatment that relies solely on hydrodynamic principles. Considering the
statistics of the dynamics also allows us to fully assess the influence of random spatial
heterogeneities on wetting.

Our starting point is the set of IDEs developed by Savva & Kalliadasis (2009).
Following the formalism in Savva, Pavliotis & Kalliadasis (2011, hereafter referred to
as Part 1), the topographical substrate is taken to be band-limited white noise. We also
assume that characteristic variations of the substrate are much larger than the slip
length. The governing equations are given in § 2 while in § 3 they are linearized for small
values of the substrate amplitude to obtain a set of evolution equations for the contact
line fluctuations and droplet shift. In § 4 we examine the dynamics of the droplet shift
and deduce its behaviour analytically through early- and long-time asymptotics. In § 5
we assess the effects of substrate roughness on wetting, by considering the statistics
of the contact line fluctuation. In § 6 we examine effects such as droplet equilibria on
‘very’ rough substrates and a substrate-induced hysteresis effect, demonstrating also
the possibility of a stick-slip behaviour that is commonly reported in experiments.
Finally, in § 7 we generalize our analysis of spreading on a substrate represented
as band-limited white noise to arbitrary substrate representations. A discussion and
summary of our results is offered in § 8.

2. Problem formulation
We follow Part 1 and represent the substrate as a stationary random function

given by a trigonometric series and defined in terms of a characteristic amplitude and
wavenumber. Its form is re-written here for the reader’s convenience,

η(x) =
η0√
N

N∑
m=1

[
αm sin

k0mx

N
+ βm cos

k0mx

N

]
, (2.1)

where η0 and k0 are the characteristic amplitude and wavenumber of the substrate,
respectively, and N is a large positive integer. Again, αm and βm are statistically
independent, normal random variables with 〈α2

m〉 = 〈β2
m〉 = 1.

Our starting point is the recent study by Savva & Kalliadasis (2009) on droplet
spreading over deterministic topographical substrates. For the sake of clarity and
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completeness we briefly review their study. These authors utilized a slip model and
a long-wave expansion in the Stokes flow regime, i.e. assumed slow flows, small
contact angles and strong surface tension effects, obtaining a single equation for the
evolution of the droplet thickness H (x, t) over a smooth substrate η(x). The spatial
coordinate, x, and time, t , are made dimensionless by the characteristic length scale
L =

√
A/(2 tan αs) and time τ =3µL/(γ tan3 αs), respectively, where A is the droplet

cross-sectional area, αs is the equilibrium contact angle, and µ, γ are is the fluid
viscosity and surface tension, respectively. Note that H (x, t) and η(x) are scaled by
L tanαs . The dimensionless form of the free-surface evolution equation is

Ht + ∂x

[
H 2(H + λ)∂3

x (H + η)
]

= 0, (2.2)

where λ� 1 is the non-dimensional slip length, scaled by L tan αs/3, that originates
from the Navier model imposed to make the stress singularity that occurs at the
moving contact line integrable (Huh & Scriven 1971). Unlike the computationally
advantageous precursor film model mentioned in § 1, here we maintain a sharp
contact line.

Let a(t) and b(t) be the right and left contact points, respectively. Equation (2.2)
must be solved subject to the volume constraint∫ a

b

H (x, t) dx = 2 (2.3)

and the boundary conditions at the two contact points that the droplet thickness
vanishes and the angle the free surface makes with the substrate remains equal to its
static value, αs , so that

∂xH |x=a = −tan θa and ∂xH |x=b = +tan θb, (2.4a, b)

with

tan θa =
1 + η′2

a tan2 αs

1 + η′
a tan2 αs

and tan θb =
1 + η′2

b tan2 αs

1 − η′
b tan2 αs

, (2.5)

where we use ∂xη|x=c = η′
c. To be consistent with the long-wave expansion, we should

have taken tan θa = tan θb =1, given that tan αs � 1 by assumption. However, we
retain the full expression to exactly force the contact angle conditions. In principle,
we rarely see a difference between simulations that use the two different forms, but the
droplet may be driven to a different equilibrium if initially it is close to a boundary
that separates the basins of attraction of two stable equilibria.

For quasi-static spreading, asymptotic matching of the solution in the bulk of the
fluid with the solutions in the vicinity of the contact lines yields the following IDEs
for the time evolution of the two moving fronts:

ȧ = +
δaMb + δbφaM0

MaMb − φaφbM
2
0

and ḃ = − δbMa + δaφbM0

MaMb − φaφbM
2
0

, (2.6a, b)

where the dots denote time differentiation. Here we identify

δa = 1
3

(
φ3

a − θ3
a

)
, (2.7a)

δb = 1
3

(
φ3

b − θ3
b

)
, (2.7b)
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Ma = ln

(
θa

a − b

λ

)
+

∫ +1

−1

1

1 − y

[
φ3

a (a − b)3 (1 − y2)4

128H 3
0 (1 − y)

− 1

]
dy, (2.7c)

Mb = ln

(
θb

a − b

λ

)
+

∫ +1

−1

1

1 + y

[
φ3

b (a − b)3 (1 − y2)4

128H 3
0 (1 + y)

− 1

]
dy, (2.7d )

M0 =
φaφb (a − b)3

128

∫ +1

−1

(1 − y2)3

H 3
0

dy, (2.7e)

where

φa =
2

a − b

[
6

a − b
+ 3η̄ − 2ηa − ηb +

1

2
η′

a (a − b)

]
, (2.8a)

φb =
2

a − b

[
6

a − b
+ 3η̄ − 2ηb − ηa − 1

2
η′

b (a − b)

]
, (2.8b)

correspond to the ‘mesoscopic’ contact angles at x = a and b, respectively, observed
at distances at which the substrate features are sufficiently resolved (a schematic
illustrating the different contact lines is given in the study of Savva & Kalliadasis
2009) and y, a coordinate introduced to facilitate the analysis, is defined from
x = (a − b)y/2 + (a + b)/2 (so that the domain a � x � b is mapped to −1 � y � + 1).
Also,

H0(y) =
3

2

[
2

a − b
+ η̄ − 1

2
(ηa + ηb)

]
(1−y2)+

1

2
[ηa(1 + y) + ηb(1 − y)]−η(x) (2.9)

is the leading-order solution in the bulk of the droplet with ηa = η(a), ηb = η(b) and
η̄ =

∫ a

b
η(ξ ) dξ/(a − b). Savva & Kalliadasis (2009) confirmed the validity of (2.6a, b)

through detailed comparisons with numerical solutions to the full equation (2.2).
In addition, they examined many qualitative features of droplet spreading, but they
restricted their attention to deterministic substrates only.

3. Derivation of leading-order equations for droplet shift and contact line
fluctuations

Analytical progress can be made by assuming a small substrate amplitude, which
then allows us to linearize (2.6a, b) around the flat-substrate case. We note that even
if we do so, because of the spatial dependence of the noise, the contact line locations
enter (2.6a, b) in a highly nonlinear fashion, thus precluding the use of the standard
Langevin–Fokker–Planck formalism often employed to study randomly perturbed
dynamical systems (e.g. Gardiner 1985). Proceeding as in Part 1, we introduce the
droplet shift, �, and contact line fluctuation, ε, which allows us to split the droplet
motion into two separate components. The former accounts for a sliding motion
along the topographical features whereas the latter accounts for deviations from the
droplet radius of the flat-substrate spreading dynamics. This distinction results into
the following dynamical system:

ε̇ = 1
2
(ȧ − ḃ) − ẋ0, �̇ = 1

2
(ȧ + ḃ), (3.1a, b)

where x0(t) is the flat-substrate droplet radius given by the solution to the differential
equation

3ẋ0 ln
2x0

λe2
=

27

x6
0

− 1, (3.2)
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which approaches
√

3 in the long-time limit. In order to express the right-hand sides
of (3.1a, b) in terms of � and ε, we employ a linearization procedure which takes
tan θa = tan θb = 1 and treats ε as O(η0), retaining only the linear terms in η0 and ε.
As with the statics, the linearization is valid provided that

η0k
2
0 � 1. (3.3)

The derivation of the linearized equations is rather lengthy and tedious, and for the
sake of brevity of presentation we omit its details here. However, through certain
algebraic manipulations more compact and manageable expressions can be obtained,
as for example the symmetrization of the integrand of M0. By neglecting the higher-
order terms in η0, we obtain at the end a stochastic differential equation for ε of the
form

ε̇ + A (t) ε =
η0√
N

N∑
m=1

(αm sin km� + βm cos km�) B (t, kmx0), (3.4)

where

A (t) =
1

x0 ln
2x0

λe2

(
ẋ0 +

54

x6
0

)
, (3.5)

B (t, ξ (t)) =
x0

ln
2x0

λe2

{
27

x6
0

(
sinc ξ − cos ξ − 1

3
ξ sin ξ

)

+ ẋ0 [(ξ sin ξ − cos ξ ) Cin 2ξ + (ξ cos ξ + sin ξ ) Si 2ξ − 3ξ sin ξ ]

}
. (3.6)

Here we set

sinc x =
sin x

x
, Si x =

∫ x

0

sinc x ′ dx ′, Cin x =

∫ x

0

1 − cos x ′

x ′ dx ′, (3.7)

corresponding to the cardinal sine function, sine and cosine integrals,
respectively (Abramowitz & Stegun 1964). Since (3.4) is linear in ε, we can obtain the
following explicit solution:

ε (t) =
η0√
N

N∑
m=1

∫ t

0

(αm sin km�(t ′) + βm cos km�(t ′))B(t ′, kmx0) exp

(
−
∫ t

t ′
A(t ′′) dt ′′

)
dt ′.

(3.8)
For the droplet shift we obtain the stochastic differential equation

�̇ =
η0√
N

N∑
m=1

(αm cos km� − βm sin km�) C(t, kmx0), (3.9)

where, again, the higher-order terms are neglected and

C(t, ξ (t)) =
x0

ln
2x0

λ

{
9

x6
0

(ξ cos ξ − sin ξ )

+ ẋ0

[
ξ

(
7

3
− Cin 2ξ

)
cos ξ +

(
ξ Si 2ξ − 7

3

)
sin ξ

]}
. (3.10)
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It is clear that in the above system of differential equations, (3.4) and (3.9), the
time dependence enters A(t, ξ (t)), B(t, ξ (t)) and C(t, ξ (t)) through x0(t) and its time
derivative.

Evidently, the solution to (3.9) cannot be given in explicit form. However, since at
t = 0 we have that � =0, we may obtain its early-time behaviour by expanding the
trigonometric functions for small �, which leads to

�̇ =
η0√
N

N∑
m=1

(αm − βmkm�) C(t, kmx0) + O(�2). (3.11)

By neglecting the higher-order terms, we get a linear differential equation for � that
may be solved explicitly to yield

� (t) =
η0√
N

N∑
m=1

∫ t

0

αmC(t ′, kmx0) exp

(
− η0√

N

N∑
n=1

∫ t

t ′
βnknC(t ′′, knx0) dt ′′

)
dt ′. (3.12)

Similarly, (3.8) becomes

ε (t) =
η0√
N

N∑
m=1

∫ t

0

(αmkm�(t ′) + βm)B(t ′, kmx0) exp

(
−
∫ t

t ′
A(t ′′) dt ′′

)
dt ′. (3.13)

The analysis that follows is based on the system of differential equations (3.2), (3.4)
and (3.9) and aims to characterize the statistics of ε and �. Our theoretical predictions
will be compared with numerical solutions to the IDEs in (2.6a, b) by considering
typically 2 × 104 realizations from each substrate family. At t = 0, we take x0(0) = 1,
ε(0) = 0 and �(0) = 0. Given also the generally weak dependence of the dynamics
on the slip length (Hocking 1983), in all computations we fix λ= 10−4 as well as
the static contact angle αs = 10◦ in order to focus only on the effects of substrate
topography. The value of the static contact angle in particular, is not expected to
play an important role. It must be small to conform with the long-wave expansion,
and besides it enters the boundary conditions (2.4a, b) as tan2 αs .

Typical evolution curves for ε(t) and �(t) are shown in figure 1 for three random
substrate realizations with η0 = 5 × 10−4 and k0 = 15. The plots in figure 1(a–c) depict
ε as a function of t for each of the substrate realizations and the plots in figure 1(d–f )
show the corresponding evolution curves for �. The solid lines are the solutions to
the system of IDEs, (3.1a, b), the dashed curves are the solutions to the linearized
equations, (3.8) and (3.9), whereas the dotted lines correspond to the early-time
asymptotic curves, (3.12) and (3.13). Provided that (3.3) is valid, our linearized theory
typically yields excellent results, especially at the onset of spreading. In the majority
of our random simulations, we observe behaviours similar to figures 1(a) and 1(d ),
where we notice an overall good agreement for all times for the linearized equations,
but the early-time asymptotics fail to capture the long-time behaviour. It is also quite
common to find substrate realizations for which the agreement is excellent for all
times, even for the early-time asymptotics, as shown in figures 1(b) and 1(e), where
all three curves are nearly indistinguishable. However, in some rare cases illustrated
by figures 1(c) and 1( f ), our theory fails to predict the behaviour at long times,
and there is a clear deviation towards different equilibria. This is possibly due to
the nonlinear interplay of our small parameter, η0k

2
0 , with ẋ0 when the latter is also

small. However, since such cases are not as common as the other two cases, we do
not believe that they can affect the overall statistics and for this reason we did not
deem it necessary to exclude such situations. Having verified the generally excellent
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Figure 1. Time evolution of ε and � for η0 = 5 × 10−4 and k0 = 15 for three substrate
realizations comparing the solutions to the IDEs (solid lines), (3.1a, b), the solutions to the
linearized equations (dashed lines), (3.4) and (3.9), and the early-time approximation (dotted
lines), (3.12) and (3.13). The plots in (a–c) show ε(t) for each of the three random substrate
realizations and those in (d–f ) show the corresponding curves for �(t).

performance of our linear theory, we proceed to examine the statistics of �, since its
leading-order dynamics does not depend on ε, as suggested by (3.9).

4. Droplet shift dynamics
As mentioned above, (3.9) cannot be solved analytically and a theoretical assessment

of the statistics of � for all times is not possible. As a matter of fact, we are bound to
encounter similar difficulties in assessing the statistical properties of � as we did for
its static equilibria in Part 1. Nevertheless, it is still possible to examine analytically
the early-/long-time asymptotics of (3.9).

Owing to symmetry, we expect that 〈�(t)〉 = 0 ∀t , since the droplet should not
preferentially slide on either side of the topography with respect to our chosen
origin. Clearly, the effects of the substrate characteristics on wetting do not depend
explicitly on the statistics of �, since only the statistics of the droplet radius are needed
to calculate, for example, an apparent contact angle. However, the droplet shift is
expected to influence wetting indirectly as the dependence of ε on � in (3.4) suggests.

While considering the statics in Part 1, we concluded that the statistics of � do not
depend on η0. We note from (3.9), however, that the speed at which the droplet slides
is influenced by η0. In fact, due to the linearity of (3.9) on η0, the equilibrium tends
to be attained at a faster rate when the topography amplitude increases.

Hence, at the onset we see from (3.12) that � is given as an infinite sum of random
variables with well-prescribed moments and by the central limit theorem (Breiman
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1992), it is therefore well approximated as a normal variable. At later times, for which
�̇ → 0, the early-time asymptotics are expected to fail given that (3.11) predicts that
� should approach a ratio of two normal variables, i.e. a Cauchy random variable,
whose mean and variance are not defined. We have seen in Part 1, however, that
the equilibria of � have a well-defined variance, albeit with a probability density that
cannot be determined analytically. Hence, we can assess the region of validity of
(3.12) by computing the variance of � and compare it with results from numerical
experiments. Consider

�2 =
η2

0

N

N∑
q=1

N∑
m=1

αqαm

∫ t

0

∫ t

0

C(t ′, kmx0)C(t ′′, knx0)

× exp

(
− η0√

N

N∑
n=1

βn

[∫ t

t ′
kqC(t ′′′, knx0) dt ′′′ +

∫ t

t ′′
knC(t ′′′, knx0) dt ′′′

])
dt ′dt ′′. (4.1)

By taking the ensemble average, we can suppress the summation with respect to q

due to the mutual independence of the αm values so that

Var [�] = 〈�2〉 =
η2

0

N

N∑
m=1

∫ t

0

∫ t

0

C(t ′, kmx0)C(t ′′, kqx0)

× exp

(
η2

0

2N

N∑
n=1

[∫ t

t ′
knC(t ′′′, knx0) dt ′′′ +

∫ t

t ′′
knC(t ′′′, knx0) dt ′′′

]2
)

dt ′dt ′′, (4.2)

where the mean of the exponential term is found using 〈eX〉 =eσ 2
X/2, for X being a

zero-mean normal variable with variance σ 2
X . Conversion of the Riemann sums into

integrals gives the variance of � at early times

Var [�] = η2
0

∫ 1

0

∫ t

0

∫ t

0

C(t ′, k0x0y)C(t ′′, k0x0y)

× exp

(
η2

0k
2
0

2

∫ 1

0

[D(t ′, q; t) + D(t ′′, q; t)]2 dq

)
dt ′dt ′′, (4.3)

where the functional D is given by

D (τ, q; t) =

∫ t

τ

qC(t ′, qk0x0(t
′)) dt ′. (4.4)

Figure 2 depicts the evolution of σ� =
√

Var[�] as computed from numerical
experiments, together with the early-time behaviour predicted by (4.3) for η0 = 5×10−4

and k0 = 10, 20, 30 and 40. We note that depending on the value of k0, the agreement
between the linear theory and the numerics can be excellent even up to t ∼ O(102);
after that time the theoretically predicted variance goes to infinity in accord with
our earlier discussion that (3.11) predicts a Cauchy variable in the long-time limit.
For intermediate times, it is impossible to theoretically predict any of the statistical
properties of � and we can only resort to a numerical study. Naturally, the tendency
of the droplet to slide along the topographical features is reduced as k0 increases. This
behaviour may be inferred from figure 2, where we see that at the end of computation,
at t = 380, σ� is closer to saturating for k0 = 40 compared with k0 = 10 which is still
growing.
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Figure 2. Time evolution of σ� for η0 = 5 × 10−4 and k0 = 10, 20, 30 and 40. The solid lines
correspond to numerical experiments, whereas the dashed lines to the early-time asymptotics
predicted by (4.3).

In the long-time limit, where �̇ → 0 and � → �∞, we obtain the following equation
for the droplet shift at equilibrium:

N∑
m=1

(αm cos km�∞ − βm sin km�∞) G
(
km

√
3
)

= 0, (4.5)

which is identical to (3.13) obtained in Part 1 for the droplet statics (as in Part 1, we set
G(ξ ) = ξ cos ξ − sin ξ ). As we have also pointed out in Part 1, (4.5) admits infinitely
many solutions as N → ∞. But now we are dealing with a dynamical system and
where contrary to the statics we have an evolution from � = 0 to �∞. Hence, we are
interested not only in a solution to (4.5) that is closest to � = 0 but also in a solution
that corresponds to a stable equilibrium. Again, this is reminiscent of a first-passage
problem, but we have the additional constraint that the equilibrium �∞ must also be
stable. To find conditions for the stability of this equilibrium, we introduce in (3.9)
� = �∞ + �̃ where �̃ is a small perturbation. Doing so yields the linearized system

˙̃� = − η0

√
3 ln

2
√

3

λ

[
N∑

m=1

km(αm sin km�∞ + βm cos km�∞)G
(
km

√
3
)]

�̃. (4.6)

Linear stability of the equilibrium � = �∞ requires that

N∑
m=1

km (αm sin km�∞ + βm cos km�∞) G
(
km

√
3
)

> 0, (4.7)



Contact lines over random topographical substrates. Part 2 393

0

5

–5

10

–10

15

(a)

(b)

0 0.2〈α
m

co
sk

m
�

∞ 
+

 β
m

si
n

k m
�

∞〉
〈α

m
co

sk
m
�

∞ 
+

 β
m

si
n

k m
�

∞〉

0.4 0.6 0.8 1.0

0

1

–1

–2

2

m/N

(×10–1)

(×10–2)

Figure 3. Comparison of 〈αm sin km�∞ + βm cos km�∞〉 obtained from numerical experiments
(thin lines) and the semi-analytical result (4.9) (thick lines) for substrate families with (a)
η0 = 10−3, k0 = 15, N = 900 and (b) η0 = 10−3, k0 = 40 and N =800.

which should also hold for the ensemble average. Hence, we anticipate that the
validity of an ensemble average of the above inequality is guaranteed if we have

〈αm sin km�∞ + βm cos km�∞〉 ∝
G
(
km

√
3
)

√
N

, (4.8)

so that the summands in (4.7) are all positive. A rigorous theory to support the above
claim is presently lacking but our numerical experiments suggest that, provided (3.3)
holds, we have

〈αm sin km�∞ + βm cos km�∞〉 ≈
√

3

N

G
(
km

√
3
)

k0

. (4.9)

The inverse square-root dependence on the number of harmonics comes as no
surprise since as N increases, the final value of �∞ becomes ‘less dependent’ on the
individual αm and βm. At this stage, it is crucial not to take N → ∞, in which case
the right-hand side of (4.9) vanishes, because this relation has important implications
in characterizing wetting on random substrates, as it is responsible for a non-zero
〈ε〉. To demonstrate the validity of this semi-analytical result, we depict in figure 3
plots of the mean of αm sin km�∞ + βm cos km�∞ as a function of m/N . In figure 3(a),
N = 900 harmonics were used with η0 = 10−3 and k0 = 15 and in figure 3(b), N = 800
with η0 = 10−3 and k0 = 40. Evidently, our numerical experiments (thin lines) closely
follow (4.9) (thick lines), even for k0 = 40, where, strictly speaking, (3.3) does not hold.
The fluctuations, which appear to persist regardless of the size of N , may be possibly
attributed to unavoidable roundoff errors in our computations.
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independent of η0.

The probability density function of �∞ cannot be predicted analytically, but
can be nevertheless approximated via Padé approximants as discussed in Part 1.
The computation of the variance of �∞ is performed in a manner similar to that
in Part 1. We expect that the variance scales with 〈��〉2, where 〈��〉 is the mean
distance between zeros, given by (4.7) of Part 1. Since on average, a stable equilibrium
is expected to be found within a distance 〈��〉 from the origin, we can also argue
that

σ 2
�∞ = Var [�∞] =

1

2
〈��〉2 ∼ 5π2

6k2
0

[
1 − 2 sinc

(
2k0

√
3
)]

+ O
(
k−4

0

)
, (4.10)

in the limit k0 � 1. It is important to note that σ�∞ is two times larger than that
obtained from statics considerations. This is attributed to the fact that, on average
half of the equilibria considered are unstable, whereas in a dynamic setting we are
seeking the stable equilibria only. The overall qualitative behaviour is that the droplet
slides less as the length scale of substrate variations decreases. Such behaviour is
confirmed in figure 4, where we show the theoretically predicted σ�∞ as a function
of k0 together with numerical experiments for substrate families with η0 = 10−3 (filled
circles) and η0 = 5 × 10−4 (open circles). In figure 4, we also depict by filled and
open squares the corresponding σ� at time t = 1000. For smaller η0, the approach to
equilibrium is slower compared with that for larger values of η0, but as t → ∞, σ�

eventually becomes independent of η0. Finally, it is worth noting that our numerical
experiments also show that the veracity of (4.10) may extend beyond its regime of
validity imposed by (3.3).
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5. Contact line fluctuation dynamics
The dynamics of contact line fluctuations can be used to assess the effect of the

substrate features on wetting. This can be quantified through the apparent contact
angle, θapp , given by

θapp =
3

(x0 + ε)2
= θflat

(
1 − 2

ε

x0

)
+ O

(
ε2/x2

0

)
, (5.1)

where θflat = 3/x2
0 corresponds to the apparent contact angle for a droplet on an

ideally flat substrate. As we have already pointed out in § 4, the dynamics of � is
required in the computations for ε, because it appears in its evolution equation (3.8).

The central limit theorem is expected to apply in (3.8) and through a similar
reasoning as the one offered in § 4 for (3.12), we may conclude that ε(t) is adequately
approximated by a normal variable for all t with a probability density function

pε(ε) =
1√
2πσ 2

ε

exp

(
− (ε − µε)

2

2σ 2
ε

)
, (5.2)

where µε corresponds to its mean and σ 2
ε to its variance. Hence the statistics of ε are

completely determined by µε and σ 2
ε . However, the dependence of ε on � complicates

matters considerably.

5.1. Mean of contact line fluctuations

The present theory cannot predict the time evolution of µε , because to do so we need
to determine 〈αm sin km�+βm cos km�〉 as a function of t , a task that cannot be carried
out analytically. However, we can deduce a differential equation for the early-time
behaviour of µε , using the early-time behaviour of �(t), prescribed by (3.12). Since at
the onset � is small, we expand (3.4) for small � and use (3.12) to finally obtain

µ̇ε + A(t)µε = η2
0k0

∫ 1

0

yB(t, k0x0y)

×
∫ t

0

C(t ′, k0x0y) exp

(
η2

0k
2
0

2

∫ 1

0

[
q

∫ t

t ′
C(τ, k0x0q) dτ

]2

dq

)
dt ′ dy, (5.3)

upon taking an ensemble average of all substrate realizations. Again, this is a linear
equation whose solution may be written explicitly as

µε(t) = η2
0k0

∫ t

0

exp

[
−
∫ t

t ′
A(s) ds

] ∫ t ′

0

exp

⎛
⎝η2

0k
2
0

2

∫ 1

0

[
q

∫ t ′

t ′′
C(τ, k0x0q) dτ

]2

dq

⎞
⎠

×
∫ 1

0

yB(t ′, k0x0y)C(t ′′, k0x0y) dy dt ′′ dt ′. (5.4)

For arbitrary t , we can determine the dynamic variation of µε via numerical
experiments. In figure 5 we plot µε/η0 as a function of t , for 0 � t � 400, for
substrate families with η0 = 10−3 (solid lines) and η0 = 5 × 10−4 (dashed lines) for
two characteristic wavenumbers, k0 = 20 and k0 = 40. We note that the approach
towards equilibrium need not be monotonic. For some of these curves we observe a
rapid change in µε for relatively small t prior to relaxation to equilibrium for larger
t . More importantly, we see that when k0 = 20, µε/η0 approaches a common value as
t → ∞. In figure 5 we also plot the corresponding early-time asymptotics (dash-dotted
lines), given by (5.4).



396 N. Savva, G. A. Pavliotis and S. Kalliadasis

500 100 150 200 250

Early-time asymptotics

300 350 400

0

–1

–2

–3

µ
ε
/η

0

–4

–5

–6

t

k0  = 20

k0  = 40

k0  = 40

η0 = 10–3

η0 = 5 × 10–4
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lines) and η0 = 5 × 10−4 (dashed lines). When k0 = 20, µε/η0 approaches a common value in
the long-time limit for both amplitudes.

In the long-time limit, which is crucial in determining the mean of the apparent
contact angle at equilibrium, 〈θapp〉, we can use the semi-analytical expression for
〈αm sin km�∞ + βm cos km�∞〉 in (4.9). Conversion of the Riemann sum into an integral
yields

µε∞ ≈
√

3η0

2k0

∫ 1

0

G
(
k0y

√
3
)
F
(
k0y

√
3
)
dy, (5.5)

where as in Part 1, F (ξ ) = 3 sinc ξ − 3 cos ξ − ξ sin ξ . The above integral can be
computed analytically to obtain

µε∞ ≈ −3η0

8

(
2 − cos 2

√
3k0

)
− 15η0

4
sinc 2k0

√
3 +

η0

8

(
17 sin2 k0

√
3 − 6 Cin 2k0

√
3
)
.

(5.6)
In the limit k0 � 1, µε∞ has the asymptotic expansion

µε∞ ∼ −3η0

8

(
2 − cos 2

√
3k0

)
+ O

(
η0k

−1
0

)
, (5.7)

which shows that the mean contact line fluctuation is negative over the regime of
interest and also explains the earlier observation in figure 5 that for k0 = 20, the curves
for µε/η0 when η0 = 10−3 and η0 = 5 × 10−4 share a common limit. Using (5.1), it can
be shown that the ratio of the mean equilibrium apparent contact angle for a droplet
on a rough substrate over the apparent contact angle on a flat substrate is given by

〈θapp〉
θflat

∼ 1 +
η0

√
3

4

(
2 − cos 2

√
3k0

)
+ O

(
η0k

−1
0

)
. (5.8)

This result suggests that 〈θapp〉 >θflat , i.e. wetting is ultimately reduced linearly in η0

over the regime where the perturbation expansion is valid, having also an oscillatory
behaviour as k0 varies.
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(open circles) and η0 = 10−3 (filled circles) together with the corresponding theoretical curve,
(5.6). Deviations occur for larger k0, as the perturbation condition (3.3) no longer holds.

Figure 6 depicts a plot of (5.6) as a function of k0 together with the means
obtained from numerical simulations for substrates with various substrate families,
with two different η0 = 10−3 and η0 = 5 × 10−4. For k0 in the region ∼[10, 20], the
agreement between the semi-analytic approximation and the numerical experiments
is excellent, but as the substrate becomes more rough so that η0k

2
0 � 1 is no longer

valid, there is a clear deviation towards a progressive reduction of the mean droplet
radius. Most importantly, the present analysis demonstrates that, by taking into
account the dynamics, substrate roughness ultimately reduces wetting on average.
Even though such behaviour appears to contradict Wenzel’s law, which predicts
wetting enhancement for rough substrates, it signifies the physical fact that the
droplet has to overcome the energy barriers that separate the multiple equilibrium
droplet states. In other words, in a dynamic setting the droplet can get ‘trapped’ in
an equilibrium state prior to reaching a Wenzel state. This effect is demonstrated in
the recent experiments of Chung, Youngblood & Stafford (2007), where it was found
that spreading in a direction perpendicular to the grooves indeed violates Wenzel’s
law. It is further supported by the work of Cox (1983) on wedge equilibria over
three-dimensional rough substrates, who postulated that roughness-induced wetting
enhancement is due to a higher-order effect with respect to the substrate amplitude
which manifests itself when spreading does not occur in a direction perpendicular to
the substrate grooves.

5.2. Variance of fluctuations

The variance of ε, σ 2
ε , is more easily determined for all times compared to its mean,

provided that we make some simplifying assumptions. In § 4 we argued that as the
number of harmonics increases, � becomes less dependent on the values of αm and
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Figure 7. Time evolution of σε for η0 = 5 × 10−4 and k0 = 10, 20, 30 and 40. The solid lines
correspond to numerical experiments, whereas the dotted lines to the linear theory (5.10).
When k0 = 10, there is perfect agreement between the theory and the numerical experiment.

βm. Taking this into account when considering the variance of ε, we have

σ 2
ε ≈ η2

0

N

N∑
m=1

〈
α2

m

〉〈[∫ t

0

sin km� B(t ′, kmx0) exp

(
−
∫ t

t ′
A(t ′′) dt ′′

)
dt ′
]2
〉

+
〈
β2

m

〉〈[∫ t

0

cos km� B(t ′, kmx0) exp

(
−
∫ t

t ′
A(t ′′) dt ′′

)
dt ′
]2
〉

, (5.9)

where the cross-terms were neglected on the basis of the mutual independence of the
αm and βm values. In § 4 we noted that the length scale over which � varies is long
compared with ε, due to the small characteristic amplitude of the topography. Thus,
at least for small t , we may take the trigonometric functions of � outside the integrals
with respect to t ′. Doing so we obtain an approximate expression for σ 2

ε ,

σ 2
ε (t) ≈ η2

0

∫ 1

0

[∫ t

0

B(t ′, yk0x0) exp

(
−
∫ t

t ′
A(t ′′) dt ′′

)
dt ′
]2

dy, (5.10)

where, again, the Riemann sum is converted into an integral as N → ∞.
Figure 7 shows plots of σε as a function of time for η0 = 5×10−4 and k0 = 10, 20, 30

and 40. We observe that, despite our simplifying assumptions, the agreement between
the theoretically predicted curves and those obtained from numerical experiments
is quite good, especially for small times. For k0 = 10, the two curves are practically
indistinguishable, but as expected the agreement tends to degrade as (3.3) no longer
holds. It is worth noting that the time scale over which σε saturates is independent of
k0, compared with σ� of figure 2, which is highly dependent on k0. Finally, these time
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scales are much shorter for σε compared with σ�, which signifies the fact that when
a droplet spreads on a parallel-grooved substrate, it may spend more time sliding
along the topographical features than spreading. Thus, the droplet quickly spreads
so that its free surface nearly attains its equilibrium shape, but reaching the actual
equilibrium takes a longer time due to the sliding motion. Nevertheless, the rate at
which this happens is quite small and in reality the slightest bump on the topography
can stop the already slowly moving droplet.

In the long-time limit, the variance predicted by (5.10) is identical to (5.3) obtained
in Part 1 for the statics, whose asymptotic behaviour is

σ 2
ε∞ ∼ η2

0k
2
0

8

(
1 − 3 sinc 2

√
3k0

)
+ O

(
η2

0

)
, (5.11)

when k0 � 1. The theoretically predicted σε∞ is in very good agreement with the
standard deviations obtained from numerical simulations as shown in figure 8, where
we plot σε∞ as a function of k0 when η0 = 5 × 10−4 and η0 = 10−3. It is worth noting
that as long as (3.3) holds, the leading-order behaviour of σε is nearly linear in η0k0.

6. Nonlinear effects
The formalism developed in the previous sections primarily deals with ‘weakly’

rough substrates so that linearization can be carried out. For substrates that lie
beyond the regime of validity of our linearization scheme imposed by the condition
(3.3), no analytical prediction can be made and we have to resort to a purely numerical
investigation using the full dynamic equations (2.6a, b).
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As noted earlier, undulations in the substrate topography are expected to impede the
motion of the droplet. As these undulations become more frequent (i.e. k0 increases),
they should naturally inhibit spreading to a greater extent. This holds provided that
air is not trapped between the substrate and the droplet. Figure 9 shows plots of
〈θapp〉/θflat as a function of k0 for different η0. There is a monotonic increase in
the apparent contact angle, which is indicative of wetting inhibition. This substrate-
induced hysteresis effect increases with k0 and η0 and for large k0, there is a linear
increase in the apparent contact angle. Unfortunately our present theory cannot
rationalize this behaviour analytically, which then precludes the rigorous derivation
of a Wenzel-like formula to describe substrate-induced hysteresis as a function of
surface roughness for two-dimensional substrates.

In figure 10 we plot the probability density function of θapp at different times for a
substrate family with η0 = 10−3 and k0 = 100, by solving numerically (2.6a, b) for 104

members of this substrate family. At early times, the probability densities are highly
concentrated about the mean, which roughly corresponds to the apparent contact
angle when η(x) = 0. At later times, when the effects of the topography are more
strongly felt, θapp becomes more broadly and less symmetrically distributed about
the mean. In the long-time limit, shown in the inset of figure 10, we observe that
there can exist substrate realizations that enhance wetting, even though the average
behaviour inhibits wetting. By calculating the area of the shaded region, we can infer
that there is a finite probability (about 10 %) for which wetting enhancement occurs,
i.e. θapp � 1. Consequently, wetting inhibition is meant to be taken in an ‘averaged
sense’, since not all realizations may exhibit such behaviour.

Wetting inhibition occurs not only for advancing fronts but also for receding ones.
To illustrate this, we performed numerical experiments over 104 substrate realizations
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Figure 10. Evolution of the probability density of θapp when η0 = 10−3 and k0 = 100. The
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location of the mean. Inset: the probability density of θapp in the long-time limit. The shaded
region indicates that a substrate realization may enhance wetting with finite probability.

by solving numerically (2.6a, b) for droplet fronts that both initially advance,
a(0) = −b(0) = 1 and recede, a(0) = −b(0) = 2. As noted by Savva & Kalliadasis (2009),
a droplet front may not exhibit a single behaviour (i.e. either advancing or receding)
for all times, but can both advance and recede during its motion, especially when
the droplet is close to its equilibrium. The results of our computations are shown in
figure 11, where we plot θapp as a function of the rate of change of the droplet radius,
(ȧ − ḃ)/2. Because of the substrate-induced hysteresis effect, it is generally observed
that the apparent contact angle at equilibrium for advancing fronts, θa , is different
from the apparent contact angle at equilibrium for receding ones, θr . In this particular
case we have that on average θa − θr ≈ 0.08. As we show in figure 11, an ensemble
average at each time step yields a smooth, one-to-one, curve (solid line) compared
with a more oscillatory curve about the mean for a particular substrate realization
(dashed line). During such oscillations, the moving fronts usually exhibit stick-slip
behaviour.

Stick-slip dynamics is difficult to characterize because there can exist a wide
variability on how and when stick-slip events occur. Using the same computations as
those of figure 10, we depict in figure 12 some representative cases where stick-slip
occurs. Low-amplitude heterogeneities do not significantly affect the moving fronts
at the onset of spreading, since in all cases presented in the figure, the evolution is
nearly indistinguishable from the flat-substrate case for small t . Different stick-slip
behaviours occur, however, as the droplet approaches equilibrium and its speed is
low enough so that the topographical variations become important. For example, in
figure 12(a) the left contact point (l.c.p.) gets pinned whereas the right one (r.c.p.)
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Figure 11. Apparent contact angle as a function of the rate of change of the droplet radius,
illustrating substrate-induced contact angle hysteresis. For each numerical experiment, the
droplet lies initially either at a(0) = −b(0) = 1 (advancing) or at a(0) = −b(0) = 2 (receding).
The solid line corresponds to the curve obtained for an ensemble average taken for fixed t
over 104 different substrates. The dashed line shows a sample evolution curve for a particular
realization.

continues to move in a series of weak pinning, de-pinning events. In figure 12(b),
both fronts appear to be stuck for some time before the r.c.p. depins. Stick-slip events
commonly occur for one of the contact points. However, de-pinning can happen
for both the r.c.p. and l.c.p. as figure 12(c) indicates. It is also possible for multiple
stick-slip events to occur for a single front (see figure 12d ). Figure 12(e) shows that
stick-slip can occur even at long times and figure 12( f ) shows that consecutive de-
pinning events can happen close to each other. Figure 12(g, h) shows the corresponding
spreading rates for figure 12(e, f ). Despite the remarkable similarity in the evolution
of the spreading rates, the relatively minor differences lead to a markedly different
evolution for the two moving fronts.

7. Generalization to arbitrary substrate representations
Thus far, we have almost exclusively focused on substrate families described by

band-limited white-noise spectral densities as a means to illustrate the concepts we
have developed throughout this study. As we have pointed out in Part 1, one of the
primary reasons for choosing such substrates is that they are completely prescribed
by two parameters, η0 and k0. Moreover, we demonstrated in § 6 of Part 1 that such
substrates are able to adequately capture qualitatively the leading-order behaviour of
the statistical properties of the two fronts, as the statistics do not change with respect
to η0 and k0, apart from a numerical prefactor that depends on the specific form of
the spectral density of the substrate.
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Figure 12. Demonstration of pinning–de-pinning dynamics from numerical experiments using
random realizations of (2.1). Plots (a–f ) show the evolution curves of a(t) (r.c.p. solid lines)
and −b(t) (l.c.p. dashed lines), illustrating different pinning/de-pinning scenarios. At the onset,
all droplets are oblivious to the substrate variations and the evolution curves nearly follow the
flat-substrate evolution curve (dotted line). Topography effects become important when the
droplet spreads sufficiently slowly. Plots (g) and (h) show the spreading rates for plots (e) and
(f ), respectively. The final location of the droplet is markedly different regardless of the fact
that the spreading rates resemble each other.

In this section, we will go a step further, by presenting an analysis that facilitates
the extraction of the leading-order statistics of wetting, without knowing the precise
form of the spectral density. To achieve this, it is necessary to define another set of
length scales, which will yield expressions that are able to fully capture the leading-
order statistics, allowing us to go beyond the qualitative agreement we were able
to achieve previously. Naturally, to properly quantify the statistics, these new length
scales should encompass information from the spectral density of the substrate family.
Apart from the intricacies encountered in the analysis that will follow, it is also of
interest from a more practical point of view, as it is generally much more difficult to
measure the spectral density of a substrate experimentally, compared to some length
scale that arises in a natural fashion and can be trivially extracted from substrate
profilometry measurements.

Since wetting is essentially characterized by the statistics of ε at a stable equilibrium,
we will only focus on ε, no longer requiring for � to be the closest equilibrium to 0, as
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in zero. Physically, this amounts to looking at the statistics of the equilibria attained by
a droplet that is randomly placed on the substrate. Contrary to the analysis of Part 1,
we now take into account the stability criterion derived in § 4, aiming to establish
more rigorously the wetting inhibition for all substrates with band-limited spectral
densities, which was earlier observed for band-limited white noise substrates.

Hence, the starting point is to use a substrate family with arbitrary spectral density
S(k), given by

η(x) =

+∞∑
m=1

(αm sin kmx + βm cos kmx)
√

S(km)�k, (7.1)

where km − km−1 = �k and k1 = 0, aiming to deduce the statistics of

ε =
1

2

+∞∑
m=1

(αm sin km� + βm cos km�) F
(
km

√
3
)√

S (km) �k, (7.2)

which is the same as (6.3a) of Part 1. Here, � is not arbitrary and needs to satisfy the
additional constraints:

+∞∑
m=1

(αm cos km� − βm sin km�) G
(
km

√
3
)√

S (km) �k = 0, (7.3a)

+∞∑
m=1

km (αm sin km� + βm cos km�) G
(
km

√
3
)√

S (km) �k > 0. (7.3b)

The first equation above is the same as (6.3b) of Part 1 and the second one is the
generalization of the stability criterion, given by (4.7). We readily see that the � values
that satisfy (7.3) give the locations of the maxima of

Q (�) =

+∞∑
m=1

(αm sin km� + βm cos km�) k−1
m G

(
km

√
3
)√

S (km) �k. (7.4)

Analytical progress can be made by appropriately casting this problem as one that
bears similarities with a classical problem in probability theory, that of determining
the statistics of the local maxima of a stationary random function. This problem has
been investigated in the work of Rice (1939), where he obtained the distribution of
local maxima for random functions such as the one in (7.4). More specifically, for the
local maxima of Q(�), he found that they are distributed according to the probability
density PQmax

, given by

PQmax
= −n−1

Q

∫ 0

−∞
ζ p̃(Q, 0, ζ )dζ, (7.5)

where nQ is the number of maxima of Q per unit length and p̃(Q, Q′, Q′′) is the joint
probability density function of the Gaussian random variables Q, Q′ and Q′′, where
the primes denote differentiation of a function with respect to its argument (in this
case �). Here we are interested in the statistics of the additional equation (7.2), which
is of course not present in Rice’s original analysis. Consequently, the problem is to
find the statistics of ε, provided that � locally maximize Q(�).

Since ε is correlated with Q and its derivatives, we consider their joint probability
density function, p(Q, Q′, Q′′, ε), given in terms of x = [Q, Q′, Q′′, ε]T and the square
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matrix composed of the second moments of the x values for fixed �, M,

p(Q, Q′, Q′′, ε) =
1

4π2
√

‖M‖
exp

(
−1

2
xTM−1x

)
, (7.6)

where ‖M‖ and M−1 represent the determinant and inverse of M, respectively (Cramér
1962). The entries of M are

M =

⎡
⎢⎢⎢⎣

〈Q2〉� 0 〈QQ′′〉� 〈Qε〉�

0 〈Q′2〉� 0 0

〈QQ′′〉� 0 〈Q′′2〉� 〈Q′′ε〉�

〈Qε〉� 0 〈Q′′ε〉� 〈ε2〉�

⎤
⎥⎥⎥⎦ , (7.7)

where 〈·〉� denotes an ensemble average for fixed �. In this general formulation, the
probability density function of ε is given by

P (ε) = −n−1
Q

∫ +∞

−∞

∫ 0

−∞
ζp (ξ, 0, ζ, ε) dζ dξ, (7.8)

which comes from (7.5) and an integration over all attainable values for Q. In terms
of the entries of M, nQ is given by (Rice 1945)

nQ =
1

2π

√
〈Q′′2〉�

〈Q′2〉�

. (7.9)

The integral in (7.8) may be computed analytically so that P (ε) is expressed as the
superposition of the probability density of a zero-mean normal variable together with
a smaller, perturbative term that is responsible for the non-zero mean. This establishes
rigorously our earlier argument where we took ε to be a normal variable to leading
order. This deviation from normality is merely a consequence of the fact that ε

is expressed as an infinite sum of weakly dependent random variables, whereas the
central limit theorem is expected to exactly hold provided that the random variables
are mutually independent.

Nevertheless, our principal interest is to determine 〈ε〉 and 〈ε2〉, since we have
already found that ε is nearly a normal variable. From the probability density
function of ε, we can extract, after some rather lengthy algebra, analytical expressions
for the first two moments of ε, given as

〈ε〉 = −〈Q′′ε〉�

√
π

2〈Q′′2〉�

, (7.10)

〈ε2〉 = 〈ε2〉� +
〈Q′′ε〉2

�

〈Q′′2〉�

. (7.11)

The expressions above provide information about the statistics of ε in the most
general form. However, as we ideally want to investigate the ‘roughest’ substrates
permitted by the perturbation condition (3.3), we will proceed by obtaining the
leading-order expressions with respect to some large scale, taken to be an upper
cutoff wavenumber kc, for which S(k) = 0 for k > kc. The second moments, 〈ε2〉�,
〈Q′′2〉� and 〈Q′′ε〉�, can be expressed in terms of the autocovariance function of η(x)
and its derivatives, given by

ψτ = 〈η (x) η (x + τ )〉 =

∫ +∞

0

S (k) cos kτ dk. (7.12)
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In particular, for ‘rough’ substrates, the most important contributions come from the
first two terms from each of the following:

〈ε2〉� ∼ −3

8
ψ ′′

0 − 3

8

∫ kc

0

k2S(k) cos 2k
√

3 dk, (7.13)

〈Q′′2〉� ∼ 3

2
ψ ′′′′

0 +
3

2

∫ kc

0

k4S(k) cos 2k
√

3 dk, (7.14)

〈εQ′′〉� ∼ −
√

3

2
ψ ′′

0 +
3

4

∫ kc

0

k3S(k) sin 2k
√

3 dk. (7.15)

Contributions due to a lower cutoff wavenumber, say kl , are neglected on the basis
of the assumption that kc � kl . Furthermore, with the most generality, the spectral
density is taken to have mc ∈ �0 = {0, 1, 2, . . .} vanishing derivatives at k = kc so
that near kc it behaves like

S (k) ∼ Sc

mc!
(k − kc)

mc + O
(
(k − kc)

mc+1
)
, (7.16)

where Sc is some constant. Hence, we have that, for mc =2n, n ∈ �0,

〈ε2〉� ∼ −3

8
ψ ′′

0 − 3

8

(
− 1

12

)n

k3
cSc sinc 2kc

√
3, (7.17)

〈Q′′2〉� ∼ 3

2
ψ ′′′′

0 +
3

2

(
− 1

12

)n

k5
c Sc sinc 2kc

√
3, (7.18)

〈Q′′ε〉� ∼ −
√

3

2
ψ ′′

0 +
3
√

3

2

(
− 1

12

)n+1

k3
c Sc cos 2kc

√
3, (7.19)

and for mc = 2n + 1 that

〈ε2〉� ∼ −3

8
ψ ′′

0 − 3

8

(
− 1

12

)n+2

k2
cSc cos 2kc

√
3, (7.20)

〈Q′′2〉� ∼ 3

2
ψ ′′′′

0 +
3

2

(
− 1

12

)n+2

k4
c Sc cos 2kc

√
3, (7.21)

〈Q′′ε〉� ∼ −
√

3

2
ψ ′′

0 − 3
√

3

2

(
− 1

12

)n+1

k4
c Sc sinc 2kc

√
3. (7.22)

For the second moment of ε, one may verify that 〈ε2〉� � 〈Q′′ε〉�/〈Q′′2〉� and hence
〈ε2〉 ∼ 〈ε2〉�. It is noteworthy that this analysis proves a result we have previously
obtained in Part 1 using less rigorous arguments. Hence,

〈ε2〉 ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−3

8
ψ ′′

0 − 3

8

(
− 1

12

)n

k3
cSc sinc 2kc

√
3, mc = 2n,

−3

8
ψ ′′

0 − 3

8

(
− 1

12

)n+2

k2
c Sc cos 2kc

√
3, mc = 2n + 1,

(7.23)
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where the contributions due to ψ ′′
0 are the highest. For the mean of ε, we have

〈ε〉 ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
π

4ψ ′′′′
0

[
ψ ′′

0 − 3

(
− 1

12

)n+1

k3
c Sc cos 2kc

√
3

]
, mc = 2n,

√
π

4ψ ′′′′
0

[
ψ ′′

0 + 3

(
− 1

12

)n+1

k4
c Sc sinc 2kc

√
3

]
, mc = 2n + 1,

(7.24)

where both terms are now of the same order. Here 〈ε〉 and 〈ε2〉 depend on integrals
of the spectral density function, ψ ′′

0 and ψ ′′′′
0 . Interestingly, knowledge of the number

of maxima per unit length, nmax , and their mean, η̄max , suffice to determine ψ ′′
0 and

ψ ′′′′
0 . Consequently, it is not necessary to know S(k) everywhere to compute these

integrals, since all the required information is already contained in these two length
scales. Hence, we have that (Rice 1945)

nmax =
1

2π

√
−ψ ′′′′

0

ψ ′′
0

and η̄max = −ψ ′′
0

√
π

2ψ ′′′′
0

. (7.25)

Solving for ψ ′′
0 and ψ ′′′′

0 yields

ψ ′′
0 = −8πn2

max η̄2
max , (7.26)

ψ ′′′′
0 = 32π3n4

max η̄2
max , (7.27)

and therefore

〈ε2〉 ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3πn2
max η̄2

max − 3

8

(
− 1

12

)n

k3
cSc sinc 2kc

√
3, mc = 2n,

3πn2
max η̄2

max − 3

8

(
− 1

12

)n+2

k2
cSc cos 2kc

√
3, mc = 2n + 1,

(7.28)

〈ε〉 ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− η̄max√
2

[
1 − k3

c Sc cos 2kc

√
3

32πn2
max η̄2

max (−12)n

]
, mc = 2n,

− η̄max√
2

[
1 +

k4
cSc sinc 2kc

√
3

32πn2
max η̄2

max (−12)n

]
, mc = 2n + 1.

(7.29)

In addition to the statistics of ε, knowing ψ ′′
0 allows us to obtain an expression for

the roughness coefficient, r , defined in (2.4) of Part 1, which is given by

r ≈ 1 − 1
2
ψ ′′

0 = 1 + 4πn2
max η̄2

max (7.30)

in its more general form. Through the analysis we presented above, we were able to
obtain the leading-order statistics of the droplet radius at a stable equilibrium in a
form that is independent of the spectral density of the substrate we employ, compared
with the analysis presented in § 6 of Part 1, where the form of the results we obtained
was highly dependent on the specifics of S(k). On the other hand, here we found
that provided that the appropriate length scales are used, namely nmax and η̄max , the
leading-order expression for the second moment for ε is always 〈ε2〉 ∼ 3πn2

max η̄2
max

irrespective of the precise form for S(k), because these two scales already contain
information from the spectral density. The two length scales given by (7.25) are easily
determined from an experimental substrate profile; determining the next-order term
however requires additional information about the behaviour of S(k) near the cutoff,
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kc. Hence, nmax and η̄max may be regarded, respectively, as the natural characteristic
wavenumber and amplitude for the substrate family, whereas k0 and η0 appear to be
more mathematically than physically motivated.

To make the connection with the band-limited white noise used throughout this
study for which

S (k) =

⎧⎪⎨
⎪⎩

η2
0

k0

, 0 � k � kc,

0, k > kc.

(7.31)

In this case, we have the parameters mc = 0, kc = k0, Sc = η2
0/k0, nmax = k0

√
3/5/(2π)

and η̄max = η0

√
10π/6. Using (7.28) and (7.29), we obtain

〈ε2〉 ∼ 1

8
η2

0k
2
0

(
1 − 3 sinc 2k0

√
3
)
, (7.32)

〈ε〉 ∼ −1

6
η0

√
5π

(
1 − 3

4
cos 2k0

√
3

)
. (7.33)

The first equation corresponds exactly to the variance of ε obtained earlier, given
also that 〈ε2〉 � 〈ε〉2. The mean of ε, (7.33) differs from the semi-analytical expression
(5.7), which was verified by our numerical experiments. The difference between the
two expressions is due to the way the problem was posed. To get (5.7), � is treated as
a solution to a first-passage problem by assuming initial symmetry about the x-axis
such that �(0) = 0, whereas (7.32) takes into account all possible stable equilibria.

8. Conclusions
We have analysed the dynamics of a two-dimensional droplet spreading over

randomly varying shallow substrates in the limit of small contact angles, building
upon the theoretical framework introduced in Part 1 and the results from the recent
work of Savva & Kalliadasis (2009) on droplet spreading over deterministic substrates.
We obtained a set of differential equations for the time evolution of the droplet shift,
�, and the contact line fluctuations, ε, which correspond to the sliding and spreading
components of the droplet motion, respectively. These equations cannot be treated
with the standard Langevin–Fokker–Planck formalism of stochastic dynamics and
special statistical approaches for their solution had to be developed.

The droplet shift, which is independent of the contact line fluctuations, is governed
by a nonlinear differential equation which can only be solved numerically for arbitrary
times. However, the early-time and the long-time behaviours of the droplet shift can
be obtained analytically. In the long-time limit, in particular, we found its variance
to scale like Var[�] ∼ O(k−2

0 ), which is independent of the characteristic amplitude,
η0. On the other hand, the contact line fluctuation is governed by a linear differential
equation, and is therefore predicted to be a normally distributed normal variable
for all times. Some simplifying assumptions allowed us to deduce the leading-order
variance for all times; in the long-time limit in particular, Var[ε] ∼ O(η2

0k
2
0).

Obtaining the time evolution of the mean of the contact line fluctuation is a
substantially more difficult task due to the dependence of the ε-dynamics on �.
However, we were able to deduce the long-time behaviour for the mean, which
predicts wetting inhibition on average, thus allowing us to fully assess the influence
of substrate roughness on the wetting characteristics. Our theoretical predictions are
in excellent agreement with numerical experiments in a regime where η0k

2
0 � 1. We
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also demonstrated a number of intriguing features. In particular, by examining the
evolution of ε and � we showed the tendency of the droplet to slide along the
substrate without spreading before reaching equilibrium, the presence of a stick-slip
behaviour that is rather sensitive to the substrate features and the static contact angle
and a substrate-induced, hysteresis-like effect. Finally, our analysis was generalized
to arbitrary substrate representations. We showed, in particular, that the statistics
depend on naturally occurring length scales such as the mean number of substrate
maxima per unit length and their mean value.

To summarize this two-part study, we have presented a detailed and systematic
investigation of the motion of a droplet over randomly and slowly varying substrates
in the limit of small contact angles that is based solely on hydrodynamic principles.
In Part 1, we modelled the substrates as stationary random functions and investigated
the linearized droplet equilibria on such substrates. We focused mostly on substrates
represented by band-limited white-noise spectral densities, mostly because such
densities were completely specified by only two length scales that are readily available
from experiments, but we found that there are no qualitative changes had the spectral
density been different. We also found that ε is nearly normally distributed and
the statistics of � are most appropriately studied as a first-passage problem, which
could only be solved approximately via Padé approximants. Most importantly, we
concluded that the effects of substrate roughness on wetting cannot be assessed by
statics alone, since such analysis is carried out irrespective of the stability of the
equilibria considered. In Part 2 we focused on the dynamics, where we considered
a set of evolution equations for the linearized dynamics in the limit of shallow
substrates, obtaining the statistics of ε and � both in the early- and long-time limits of
spreading. Aside from our main results we already summarized above in this section,
it is important to reiterate that it is only by studying the dynamics one can correctly
predict the effects on wetting. One of our main findings is that wetting inhibition can
be observed in two dimensions, which appears to increase with substrate roughness.
Also noteworthy is our generalization to arbitrary spectral densities, which allows us
to identify the proper, natural length scales of the problem, which may potentially
facilitate direct comparisons of the droplet behaviour among substrates belonging to
families with different spectral densities.

Although the results of the present study are restricted to two dimensions, thus
avoiding some of the intricacies of spreading in three dimensions, they nevertheless
show that taking into consideration the details of spreading dynamics through a
hydrodynamic model obtained from first principles as well as the way by which
droplet equilibria are approached in time, it is crucial in analysing the effects of
substrate roughness on wetting.

We acknowledge financial support from EPSRC Platform Grant No. EP/E046029
and ERC Advanced Grant No. 247031.
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