
MULTIPLY-REFINED ENUMERATION OF

ALTERNATING SIGN MATRICES

ROGER E. BEHREND

Abstract. Four natural boundary statistics and two natural bulk statistics are consid-

ered for alternating sign matrices (ASMs). Specifically, these statistics are the positions

of the 1’s in the first and last rows and columns of an ASM, and the numbers of gener-

alized inversions and −1’s in an ASM. Previously-known and related results for the exact

enumeration of ASMs with prescribed values of some of these statistics are discussed in

detail. A quadratic relation which recursively determines the generating function associated

with all six statistics is then obtained. This relation also leads to various new identities

satisfied by generating functions associated with fewer than six of the statistics. The deriva-

tion of the relation involves combining the Desnanot–Jacobi determinant identity with the

Izergin–Korepin formula for the partition function of the six-vertex model with domain-wall

boundary conditions.
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1. Introduction

A major focus of attention throughout the history of alternating sign matrices (ASMs)

has simply been the derivation of results related to their exact enumeration. Such results

typically state that the number of ASMs which satisfy specific conditions, such as having

prescribed values of certain statistics or being invariant under certain symmetry operations,

is given by an explicit formula or generating function, is equal to the number of combinatorial

objects of some other variety satisfying specific conditions, or is equal to a number which

arises from a particular physical model.

A few examples of such results, with references to conjectures and initial proofs, are as

follows: a formula for the total number of ASMs of any fixed size but with no further

conditions applied (Mills, Robbins and Rumsey [112, 113], Zeilberger [157], and Kuper-

berg [100]); a formula for the number of ASMs with a prescribed boundary row or column

(Mills, Robbins and Rumsey [112, 113], and Zeilberger [158]); formulae for numbers of ASMs

invariant under certain natural symmetry operations (Robbins [133, 134], Kuperberg [101],

Okada [121], and Razumov and Stroganov [129, 130]); equalities between numbers of certain

ASMs and numbers of certain totally symmetric self-complementary plane partitions (Mills,

Robbins and Rumsey [114], and Fonseca and Zinn-Justin [81]); equalities between numbers

of certain ASMs and numbers of certain descending plane partitions (Mills, Robbins and

Rumsey [113], and Behrend, Di Francesco and Zinn-Justin [16]); equalities between num-

bers of certain ASMs and numbers associated with a certain case of the O(1) loop model

(Razumov and Stroganov [126], and Cantini and Sportiello [34]). For reviews of some of

these results, see, for example, Bressoud [24, 26], Bressoud and Propp [27], Di Francesco [63,

Sec. 4], [64], Hone [86], Zeilberger [160], or Zinn-Justin [161].
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The main result of this paper is of the type which provides a relation which determines

the generating function associated with numbers of ASMs of any fixed size with prescribed

values of particular statistics. In any ASM, the first and last rows and columns each contain

a single entry of 1, with all of their other entries being 0’s, so that the positions of these 1’s

provide four natural statistics which describe the boundary configuration of an ASM. The

generating function under primary consideration in this paper is associated with these four

boundary statistics, together with two statistics which depend on the bulk structure of an

ASM, namely the number of generalized inversions (which will be defined in (2)) and the

number of entries of −1. A detailed account of the elementary properties of this generating

function and these statistics will be given in Section 2.

All previously-known results for the exact enumeration of ASMs have involved fewer than

six of these statistics. A review of such results will be given in Section 3. In particular, that

section will aim to provide a comprehensive account of all previous appearances of these

statistics in exact enumeration, together with an outline of some new results which can be

obtained relatively straightforwardly from the previously-known results. Recently, a result

involving all four of the boundary statistics, but neither of the bulk statistics, was obtained,

independently of the work reported in this paper, by Ayyer and Romik [12, Thm. 2]. That

result will be outlined in Section 3.3.

In ASM enumerations, it is common to refer to a certain order of refinement which is based

on the number of boundary statistics involved. Hence, the primary generating functions used

in this paper, and by Ayyer and Romik [12], can be described as quadruply-refined.

The main result of this paper, Theorem 1, will be stated in Section 4, and proved in

Section 5. The result consists of a quadratic relation satisfied by the ASM generating function

associated with all six statistics, and which enables this generating function to be obtained

recursively for successive ASM sizes. Various corollaries of Theorem 1, consisting of new

expressions or relations for ASM generating functions associated with fewer than six of the

statistics, will also be obtained in Section 4.

The approach used in the proof of Theorem 1 is essentially as follows. First, certain

standard techniques, which have played a crucial role in proofs of many of the other known

enumerative results for ASMs, are used to obtain a determinantal expression related to ASM

generating functions. More specifically, a bijection between ASMs and configurations of the

statistical mechanical six-vertex, or square ice, model with domain-wall boundary conditions

(DWBC) is used to derive a relation between ASM generating functions and the partition

function of the model, and the Izergin–Korepin formula is used to provide a determinantal

expression for this partition function. Next, the Desnanot–Jacobi determinant identity is

applied to the matrix in the Izergin–Korepin formula, which leads to a quadratic relation

involving the required quadruply-refined ASM generating function, and generating functions

associated with no ASM boundary statistics or with two ASM boundary statistics, for all

four pairs of adjacent boundaries.



4 R. E. BEHREND

The key step in this derivation is the use of the Desnanot–Jacobi identity together with

the Izergin–Korepin formula, and the reason that this leads to a relation of the previously-

described form can be understood relatively easily. The six-vertex model with DWBC, in

the form used here, involves so-called spectral parameters u1, . . . , un and v1, . . . , vn, and the

Izergin–Korepin formula expresses the partition function of this model as an explicit prefactor

multiplied by the determinant of an n×n matrix, whose entry in row i and column j depends

only on spectral parameters ui and vj . Furthermore, in terms of generating functions for

n × n ASMs, the parameters ui and vj are, in a certain sense, associated with row i and

column j of the ASMs. For an n × n matrix M , the Desnanot–Jacobi identity, in the form

used here, consists of a relation involving detM and five minors of M : the four connected

(n − 1)× (n− 1) minors, corresponding to deletion of the first or last row and first or last

column of M , and the central (n− 2)× (n− 2) minor, corresponding to deletion of the first

and last rows and columns of M . Therefore, it seems that applying the Desnanot–Jacobi

identity to the matrix in the Izergin–Korepin formula, and using an assignment of spectral

parameters in which u1, un, v1 and vn remain arbitrary, while u2, . . . , un−1 are equal and

v2, . . . , vn−1 are equal, should lead to an expression involving a quadruply-refined generating

function for n×n ASMs, four doubly-refined generating functions for (n−1)×(n−1) ASMs,

and an unrefined generating function for (n − 2) × (n − 2) ASMs. Indeed, this essentially

does occur, with some further, subsidiary aspects of the resulting expression being related

to the form of the prefactor in the Izergin–Korepin formula, and to the fact that each corner

entry of an ASM is associated with two of the parameters u1, un, v1 or vn.

The Desnanot–Jacobi identity has, in fact, been associated with ASMs since these matri-

ces first arose. In particular, the identity is used in Dodgson’s condensation algorithm [66]

for determinant evaluation, and it was through studies of this algorithm by Mills, Robbins

and Rumsey that ASMs initially appeared. In particular, it was shown by Robbins and

Rumsey [135, Eq. (27)] that if Dodgson’s algorithm is applied to an n× n matrix M using

a modified form of the Desnanot–Jacobi identity containing a parameter λ, then the result-

ing so-called λ-determinant of M can be expressed naturally as a sum over n × n ASMs.

The latter expression involves the two ASM bulk statistics which are used in this paper,

and, as will be shown in Section 3.2, the λ-determinant shares certain features with the

quadruply-refined ASM generating function studied in this paper. For example, the modi-

fied Desnanot–Jacobi identity satisfied by the λ-determinant is analogous to the quadratic

relation satisfied by the quadruply-refined ASM generating function. For further informa-

tion regarding Dodgson condensation, λ-determinants, and related matters, see, for example,

Abeles [1], Bressoud [24, Sec. 3.5], Bressoud and Propp [27], Di Francesco [62], Langer [105],

Propp [124], or Robbins and Rumsey [135].

It should also be noted that the Desnanot–Jacobi identity, the λ-modified Desnanot–Jacobi

identity, and further related equations studied by Robbins and Rumsey [135], and others,

are closely connected with the Laurent phenomenon, cluster algebras, and associated areas.

For reviews of such connections, see, for example, Di Francesco [63, Sec. 5], Hone [86, Sec. 5],

or Propp [123, Sec. 10].
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Following a suggestion by a referee, a file MultiplyRefinedEnumerationOfASMs.nb, in

which cases of the main results of this paper are demonstrated in Mathematica, has been

provided at the author’s web page.

2. Definitions and basic properties

2.1. Statistics. In this section, the standard definitions of ASMs and certain statistics for

ASMs are given, and the elementary properties of these statistics are identified in detail.

An ASM, as first defined by Mills, Robbins and Rumsey [112, 113], is simply a square

matrix in which each entry is 0, 1 or −1, and along each row and column the nonzero entries

alternate in sign and have a sum of 1.

It follows that, for any ASM A, each partial row sum
∑j

j′=1Aij′ and each partial column

sum
∑i

i′=1Ai′j is 0 or 1. It can also be seen that any permutation matrix is an ASM, and

that, in any ASM, the first and last rows and columns each contain a single 1, with all of

their other entries being 0’s.

For each positive integer n, denote the set of all n × n ASMs as ASM(n). For example,

for n = 1, 2, 3, these sets are

ASM(1) = {(1)},

ASM(2) =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
,

ASM(3) =

{(
1 0 0
0 1 0
0 0 1

)
,

(
0 1 0
1 0 0
0 0 1

)
,

(
1 0 0
0 0 1
0 1 0

)
,

(
0 1 0
0 0 1
1 0 0

)
,

(
0 0 1
1 0 0
0 1 0

)
,

(
0 0 1
0 1 0
1 0 0

)
,

(
0 1 0
1 −1 1
0 1 0

)}
. (1)

For any A ∈ ASM(n), define statistics which depend on the bulk structure of A as

ν(A) =
∑

1≤i<i′≤n
1≤j′≤j≤n

Aij Ai′j′, µ(A) = number of −1’s in A, (2)

and define statistics which describe the configuration of A at its top, right, bottom and left

boundaries as, respectively,

ρT(A) = number of 0’s to the left of the 1 in the top row of A,

ρR(A) = number of 0’s below the 1 in the right-most column of A,

ρB(A) = number of 0’s to the right of the 1 in the bottom row of A,

ρL(A) = number of 0’s above the 1 in the left-most column of A. (3)

Note that certain generalizations of the statistics (2)–(3) will be defined in Section 3.5.

The statistic ν(A) in (2) is a nonnegative integer for any A ∈ ASM(n), since it can be

written as ν(A) =
∑n

i,j=1(
∑i−1

i′=1Ai′j)(
∑j

j′=1Aij′), where each factor in the summand (being

a partial row or column sum of an ASM) is 0 or 1. This statistic can also be written as

ν(A) =
∑

1≤i≤i′≤n; 1≤j′<j≤nAij Ai′j′, where this can be obtained from the definition in (2)

using the fact that each complete row and column sum of A is a constant. It will be seen
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in Section 5.2 that, in terms of the configuration of the six-vertex model with DWBC which

corresponds to A, ν(A) is simply the number of vertex configurations of type (1), or equally

the number of vertex configurations of type (2).

If A is a permutation matrix, then it can be seen from (2) that ν(A) is the number of

inversions in the permutation π given by δπi,j = Aij . Accordingly, for any ASM A, ν(A) is

referred to as the number of generalized inversions in A. This statistic was first defined and

used by Robbins and Rumsey [135, Eq. (18)], who referred to it as the number of positive

inversions in an ASM [135, p. 182]. A closely-related statistic,
∑

1≤i<i′≤n; 1≤j′<j≤nAij Ai′j′ =

ν(A) + µ(A), was previously defined and used by Mills, Robbins and Rumsey [113, p. 344],

and provides an alternative generalized inversion number for each A ∈ ASM(n).

Proceeding to the other statistics, µ(A) in (2) can also be written as µ(A) =
(∑n

i,j=1(Aij)
2−

n
)
/2, and the boundary statistics of (3) can be depicted diagrammatically as




0 0 0 0 1 0 0 0 0
0 0
0 0
1 0
0 A 1
0 0
0 0
0 0
0 0 1 0 0 0 0 0 0




ρT(A)

ρB(A)

ρL(A)

ρR(A)

. (4)

It can be checked that the statistics of (2)–(3), regarded as functions on ASM(n), have

ranges

ν(ASM(n)) =
{
0, 1, . . . , n(n−1)

2

}
,

µ(ASM(n)) =
{
0, 1, . . . ,

⌊
n−1
2

⌋
⌊n
2

⌋}
=
{
0, 1, . . . ,

⌊(n−1)2

4

⌋}
,

ρT(ASM(n)) = ρR(ASM(n)) = ρB(ASM(n)) = ρL(ASM(n)) = {0, 1, . . . , n− 1}. (5)

The ASMs A which give the extreme values within the ranges in (5) are as follows. The

only A with ν(A) = 0 is the n × n identity matrix, and the only A with ν(A) = n(n−1)
2

is

the n × n antidiagonal matrix given by Aij = δi,n+1−j . The A with µ(A) = 0 are the n!

n× n permutation matrices, and the A with µ(A) =
⌊ (n−1)2

4

⌋
are given by Aij = (−1)i+j+kn

if kn + 2 ≤ i + j ≤ 2n − kn and |i − j| ≤ kn, and Aij = 0 otherwise, where kn = n−1
2

for n

odd (giving a single such A), and kn = n
2
− 1 or n

2
for n even (giving two such A). The A

for which a boundary statistic of (3) is 0 or n− 1 are the ASMs with a 1 in a corner, which

will be discussed further shortly.

It can be seen that transposition or anticlockwise quarter-turn rotation of an ASM give

another ASM. It can also be checked easily that, for each A ∈ ASM(n), the statistics (2)–(3)



MULTIPLY-REFINED ENUMERATION OF ASMs 7

behave under these operations according to

ν(A) = ν(AT ) = n(n−1)
2

− ν(AQ)− µ(A), µ(A) = µ(AT ) = µ(AQ),

ρT(A) = ρL(A
T ) = n− 1− ρL(A

Q), ρR(A) = ρB(A
T ) = n− 1− ρT(A

Q),

ρB(A) = ρR(A
T ) = n− 1− ρR(A

Q), ρL(A) = ρT(A
T ) = n− 1− ρB(A

Q), (6)

where Q denotes anticlockwise quarter-turn rotation, i.e., AQ
ij = Aj,n+1−i. By combining

transposition and anticlockwise quarter-turn rotation, the behaviour of any of the eight

operations of the dihedral group acting on ASMs can be obtained.

The properties of ASMs with a 1 in a corner can be described easily. For example, for

the case of ASMs with a 1 in the top-left corner, the sets {A ∈ ASM(n) | A11 = 1} = {A ∈

ASM(n) | ρT(A) = ρL(A) = 0} and ASM(n − 1) are in bijection for any n ≥ 2, where an

ASM from the first set is mapped to the second set by simply deleting the first row and

first column. Furthermore, if A from the first set is mapped to A′ in the second set, then

ν(A′) = ν(A), µ(A′) = µ(A), ρR(A
′) = ρR(A) and ρB(A

′) = ρB(A).

The properties of ASMs in which a 1 on a boundary is separated from a corner by a

single zero, i.e., ASMs in which a boundary statistic of (3) is 1 or n − 2, can also be

described relatively easily. For example, for the case of ASMs A with A21 = 1, the sets

{A ∈ ASM(n) | A21 = A1,k+1 = 1} = {A ∈ ASM(n) | ρL(A) = 1, ρT(A) = k} and

{A ∈ ASM(n − 1) | A11 = . . . = A1,k−1 = 0} = {A ∈ ASM(n − 1) | ρT(A) ≥ k − 1} are in

bijection for any n ≥ 2 and k = 1, . . . , n− 1, where an ASM A from the first set is mapped

to the second set by replacing A2,k+1 by A2,k+1+1, while leaving all other entries unchanged,

and then deleting the first row and first column. Furthermore, if A from the first set is

mapped to A′ in the second set, then ν(A′) = ν(A)−A2,k+1 − 1 and µ(A′) = µ(A) +A2,k+1.

The previous bijection seems not to have appeared explicitly in the literature, although it

is likely to have been known to several authors. In particular, it seems to have been used by

Mills, Robbins and Rumsey [113, p. 344] in claiming that the case k = 1 of their Conjecture 2

(which will appear as the identity An,1 =
n
2
An−1 in (33)) could be proved easily, and it also

seems to have been used by Stroganov [150, p. 61] in claiming that a certain identity (which

corresponds to the first equation of (33)) could be proved bijectively.

2.2. Generating functions. In this section, various ASM generating functions are defined,

and some simple relations which they satisfy are derived. Each of these generating functions

is described by a certain order of refinement, which corresponds to the number of boundary

statistics of (3) (or simply the number of boundaries) with which it is associated. Each

generating function is also associated with the two bulk statistics of (2), i.e., the numbers of

generalized inversions and −1’s in an ASM.

For each positive integer n, define a quadruply-refined ASM generating function, which

involves all six statistics of (2)–(3), and associated indeterminates x, y, z1, z2, z3 and z4, as

Zquad
n (x, y; z1, z2, z3, z4) =

∑
A∈ASM(n) x

ν(A) yµ(A) z
ρT(A)
1 z

ρR(A)
2 z

ρB(A)
3 z

ρL(A)
4 . (7)
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It follows that x and y can be regarded as bulk parameters or weights, and that z1, z2, z3
and z4 can be regarded as boundary parameters or weights.

It can be seen, using (5) and (7), that Zquad
n (x, y; z1, z2, z3, z4) is a polynomial, with non-

negative integer coefficients, of degree n(n−1)
2

in x, of degree
⌊ (n−1)2

4

⌋
in y, and of degree n−1

in each of z1, z2, z3 and z4.

Examples of the quadruply-refined ASM generating function (7), for n = 1, 2, 3, are

Zquad
1 (x, y; z1, z2, z3, z4) = 1,

Zquad
2 (x, y; z1, z2, z3, z4) = 1 + x z1 z2 z3 z4,

Zquad
3 (x, y; z1, z2, z3, z4) = 1 + x z1 z4 + x z2 z3 + x2 z1 z2 z

2
3 z

2
4 + x2 z21 z

2
2 z3 z4 +

x3 z21 z
2
2 z

2
3 z

2
4 + x y z1 z2 z3 z4, (8)

where the terms are written in orders which correspond to those used in (1).

Now define triply-refined, adjacent-boundary doubly-refined, opposite-boundary doubly-

refined, singly-refined and unrefined ASM generating functions as, respectively,

Ztri
n (x, y; z1, z2, z3) = Zquad

n (x, y; z1, 1, z2, z3) =
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

ρB(A)
2 z

ρL(A)
3 ,

Zadj
n (x, y; z1, z2) = Zquad

n (x, y; z1, 1, 1, z2) =
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

ρL(A)
2 ,

Zopp
n (x, y; z1, z2) = Zquad

n (x, y; z1, 1, z2, 1) =
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

ρB(A)
2 ,

Zn(x, y; z) = Zquad
n (x, y; z, 1, 1, 1) =

∑
A∈ASM(n) x

ν(A) yµ(A) zρT(A),

Zn(x, y) = Zquad
n (x, y; 1, 1, 1, 1) =

∑
A∈ASM(n) x

ν(A) yµ(A), (9)

where z is a further indeterminate.

Also define alternative quadruply-refined and alternative adjacent-boundary doubly-refined

ASM generating functions as, respectively,

Z̃quad
n (x, y; z1, z2, z3, z4) = (z2z4)

n−1Zquad
n (x, y; z1,

1
z2
, z3,

1
z4
)

=
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

n−ρR(A)−1
2 z

ρB(A)
3 z

n−ρL(A)−1
4 ,

Z̃adj
n (x, y; z1, z2) = Zquad

n (x, y; z1, z2, 1, 1) =
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

ρR(A)
2 . (10)

Note that Z̃quad
n (x, y; z1, z2, z3, z4) is a generating function in which the positions of the 1’s

in the first and last columns of an ASM are measured relative to the opposite ends of the

columns to those used in (3)–(4), i.e., in this generating function, the statistics associated

with z2 and z4 are, respectively, the numbers of 0’s above the 1 in the right-most column,

and below the 1 in the left-most column of an ASM.
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It can be seen immediately that some relations among generating functions of (9)–(10),

involving specializations of boundary parameters to 1, are

Ztri
n (x, y; z1, 1, z2) = Zadj

n (x, y; z1, z2),

Ztri
n (x, y; 1, z1, z2) = Z̃adj

n (x, y; z1, z2),

Ztri
n (x, y; z1, z2, 1) = Zopp

n (x, y; z1, z2),

Zadj
n (x, y; z, 1) = Z̃adj

n (x, y; z, 1) = Zopp
n (x, y; z, 1) = Zn(x, y; z),

Zn(x, y; 1) = Zn(x, y). (11)

Some elementary identities satisfied by the ASM generating functions of (7), (9) and (10),

which follow from the ASM properties outlined in Section 2.1, will now be obtained.

Note that, in this and all subsequent sections, many of the identities which contain the

positive integer n will be valid only for all n ≥ 2, or for all n ≥ 3. This will often be due to

their containing terms (such as Zn−1(x, y) or Zn−2(x, y)) which are not defined if n is taken

to be 1 or 2.

Note also that several of the identities of this section, obtained here using simple combi-

natorial arguments, can alternatively be obtained as special cases of more general identities

which will be derived in subsequent sections using other methods.

Some symmetry relations, which can be derived by acting on ASM(n) with transposition

or anticlockwise quarter-turn rotation, and using (6), are

Zquad
n (x, y; z1, z2, z3, z4) = Zquad

n (x, y; z4, z3, z2, z1)

= xn(n−1)/2 (z1z2z3z4)
n−1 Zquad

n

(
1
x
, y
x
; 1
z2
, 1
z3
, 1
z4
, 1
z1

)
,

Z̃quad
n (x, y; z1, z2, z3, z4) = (z1z2z3z4)

n−1 Z̃quad
n (x, y; 1

z4
, 1
z3
, 1
z2
, 1
z1
)

= xn(n−1)/2 Z̃quad
n

(
1
x
, y
x
; z2, z3, z4, z1

)
,

Ztri
n (x, y; z1, z2, z3) = xn(n−1)/2 (z1z2z3)

n−1 Ztri
n ( 1

x
, y
x
; 1
z2
, 1
z1
, 1
z3
),

Zadj
n (x, y; z1, z2) = Zadj

n (x, y; z2, z1)

= xn(n−1)/2 (z1z2)
n−1 Z̃adj

n

(
1
x
, y
x
; 1
z1
, 1
z2

)
,

Zopp
n (x, y; z1, z2) = Zopp

n (x, y; z2, z1)

= xn(n−1)/2 (z1z2)
n−1Zopp

n

(
1
x
, y
x
; 1
z1
, 1
z2

)
,

Zn(x, y; z) = xn(n−1)/2 zn−1 Zn

(
1
x
, y
x
; 1
z

)
,

Zn(x, y) = xn(n−1)/2 Zn

(
1
x
, y
x
). (12)

Some identities involving specializations of boundary parameters to 0, which follow from

the properties of ASMs with a 1 in a corner, as discussed near the end of Section 2.1, are

Zquad
n (x, y; z1, 0, z2, z3) = Ztri

n (x, y; z1, 0, z3) = Zadj
n−1(x, y; z1, z3),

Z̃adj
n (x, y; z, 0) = Zopp

n (x, y; z, 0) = Zn−1(x, y; z),
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Zadj
n (x, y; z, 0) = Zn(x, y; 0) = Zn−1(x, y). (13)

It will sometimes be useful to refer to boundary parameter coefficients in the adjacent-

boundary doubly-refined and singly-refined ASM generating functions. In particular, define

Zadj
n (x, y)k1,k2 = coefficient of zk11 zk22 in Zadj

n (x, y; z1, z2),

Zn(x, y)k = coefficient of zk in Zn(x, y; z). (14)

These coefficients satisfy identities which correspond to identities of (11)–(13). For exam-

ple,
∑n−1

k2=0 Z
adj
n (x, y)k1,k2 = Zn(x, y)k1,

∑n−1
k=0 Zn(x, y)k = Zn(x, y),

Zadj
n (x, y)k1,k2 = Zadj

n (x, y)k2,k1, Zn(x, y)k = xn(n−1)/2 Zn(
1
x
, y
x
)n−1−k,

Zadj
n (x, y)k,0 = Zn−1(x, y) δk,0, Zadj

n (x, y)k+1,n−1 = xn−1 Zn−1(x, y)k,

Zn(x, y)0 = Zn−1(x, y). (15)

Furthermore, the properties of ASMs in which a 1 on a boundary is separated from a

corner by a single zero, as discussed at the end of Section 2.1, lead to identities such as

Zadj
n (x, y)k,1 = xZn−1(x, y)k−1 + y

∑n−2
i=k Zn−1(x, y)i − yZn−1(x, y)δk,0,

Zn(x, y)1 = xZn−1(x, y) + y
∑n−2

k=1 k Zn−1(x, y)k. (16)

3. Previously-known and related results

In this section, an account is given of results for the exact enumeration of n × n ASMs

(for arbitrary, finite n), involving any of the six statistics of (2)–(3), or any of the associated

generating functions of (7), (9) or (10).

Most of these results have appeared elsewhere in the literature (although possibly in

different formulations, or with different notation), but some new results which are closely

related to previously-known results are also presented. The main new results in this section

are (19) and some cases of (20), for ASM generating functions in which the bulk parameters

are related by y = x + 1, and (72), (73) and (75), for a generating function, which will be

introduced in (67), associated with several rows (or several columns) of ASMs. Derivations

of the new results will be given in this section and in Section 5.

Various cases for the values of the parameters x and y, associated with the bulk statis-

tics (2), will first be considered separately: y = 0 in Section 3.1, y = x + 1 in Section 3.2,

x = y = 1 in Section 3.3, and x and y arbitrary in Section 3.4. Further results will then be

discussed in Sections 3.5–3.15.

3.1. Bulk parameter y = 0. The case in which the bulk parameter y is 0 corresponds

simply to the enumeration of permutation matrices, with prescribed values of the inversion

number of the associated permutations, and prescribed positions of 1’s on the boundaries of

the matrices.

Let x-numbers and the x-factorial be defined, as usual, as [n]x = 1 + x+ . . .+ xn−1, and

[n]x! = [n]x[n− 1]x . . . [1]x.
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For y = 0, the quadruply-refined ASM generating function is explicitly

Zquad
n (x, 0; z1, z2, z3, z4) =

x2z1z2z3z4
∑

0≤i<j≤n−3

(
xn+i−j−3zi4z

n−j−3
2 + xn−i+j−4zn−i−3

4 zj2
)
×

∑
0≤i<j≤n−3

(
xn+i−j−3zi1z

n−j−3
3 + xn−i+j−4zn−i−3

1 zj3
)
[n−4]x! +

(
xz4z1 [n−2]xz4 [n−2]xz1 + z1z2(xz3z4)

n−1 [n−2]xz1 [n−2]xz2 +

xz2z3 [n−2]xz2 [n−2]xz3 + z3z4(xz1z2)
n−1 [n−2]xz3 [n−2]xz4

)
[n−3]x! +

(
1 + x2n−3(z1z2z3z4)

n−1
)
[n−2]x!, (17)

and the ASM generating functions of (9) are explicitly

Ztri
n (x, 0; z1, z2, z3) =

(
xz2
∑

0≤i<j≤n−3

(
xn+i−j−3zi1z

n−j−3
2 + xn−i+j−4zn−i−3

1 zj2
)
+

[n−2]xz1 + z2(xz1)
n−2 [n−2]xz2

)
xz1z3 [n−2]xz3 [n−3]x! +(

z1(xz2z3)
n−1 [n−2]xz1 + xz2 [n−2]xz2 + 1 + x2n−3(z1z2z3)

n−1
)
[n−2]x!

Zadj
n (x, 0; z1, z2) = xz1z2 [n−1]xz1 [n−1]xz2 [n−2]x! + [n−1]x!,

Zopp
n (x, 0; z1, z2) =

∑
0≤i<j≤n−1

(
xn+i−j−1 zi1 z

n−j−1
2 + xn−i+j−2 zn−i−1

1 zj2
)
[n−2]x!,

Zn(x, 0; z) = [n]xz [n−1]x!,

Zn(x, 0) = [n]x!. (18)

Each of these formulae is either a standard result for permutations, or a straightforward

variation of such a result, and each formula can be derived using simple combinatorial ar-

guments. See, for example, Stanley [142, Cor. 1.3.13] for a derivation of the last equation

of (18).

Note that if (17) is shown first to be valid, then each equation of (18) can subsequently be

obtained by setting certain boundary parameters in (17) to 1. Alternatively, if the last two

equations of (18) are shown first to be valid, then (17) and the remaining equations of (18)

can subsequently be obtained by using the general results (81), (83) (or (86)), (87) and (88),

which will be given in Section 4.

In interpreting (17), note also that the seven main terms on the RHS of (17) (i.e., the term

ending in [n−4]x!, the four terms ending in [n−3]x! and the two terms ending in [n−2]x!) cor-

respond to sums over the sets of n×n permutation matrices A with (A11, A1n, Ann, An1) equal

to (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 0) or (0, 1, 0, 1), respectively.

In subsequent formulae for quadruply-refined ASM generating functions (e.g., (19), (49)

and (81)), the RHS will again consist of seven or eight main terms, but these terms will

no longer correspond simply to sums over sets of ASMs with fixed values of the four corner

entries.

3.2. Bulk parameters satisfying y = x + 1. The case in which the bulk parameters are

related by y = x + 1 is closely related to x-determinants (or, in the notation usually used,

λ-determinants) of matrices, domino tilings of an Aztec diamond, tournaments, and the free
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fermion case of the six-vertex model. (Note that the sub-case x = 1 and y = 2, which

corresponds to the so-called 2-enumeration of ASMs, is often considered separately.) Due

to certain combinatorial and algebraic simplifications, it is again possible to obtain explicit

formulae.

For y = x+ 1, the quadruply-refined ASM generating function is given explicitly by

(xz4z1+z4+z1−1)(xz1z2−xz1−xz2−1) ×

(xz2z3+z2+z3−1)(xz3z4−xz3−xz4−1) Zquad
n (x, x+1; z1, z2, z3, z4) =

z1z2z3z4(xz1z3+1)(xz2z4+1)
(
(xz1+1)(xz2+1)(xz3+1)(xz4+1)

)n−2
(x+1)(n−4)(n−5)/2 −

(
(z2−1)(z3−1)z4z1

(
(xz4+1)(xz1+1)

)n−2
+

(z4−1)(z1−1)z2z3
(
(xz2+1)(xz3+1)

)n−2
)
×

(xz1z2−xz1−xz2−1)(xz3z4−xz3−xz4−1)(x+1)(n−3)(n−4)/2 −
(
(z3−1)(z4−1)z1z2(z3z4)

n−1
(
(xz1+1)(xz2+1)

)n−2
+

(z1−1)(z2−1)z3z4(z1z2)
n−1
(
(xz3+1)(xz4+1)

)n−2
)
×

(xz4z1+z4+z1−1)(xz2z3+z2+z3−1) xn(x+1)(n−3)(n−4)/2 +

(z1−1)(z2−1)(z3−1)(z4−1)
(
(xz1z2−xz1−xz2−1)(xz3z4−xz3−xz4−1) +

(xz4z1+z4+z1−1)(xz2z3+z2+z3−1)(z1z2z3z4)
n−1x2n−1

)
(x+1)(n−2)(n−3)/2, (19)

and the ASM generating functions of (9) are given explicitly by

(xz1z3+z1+z3−1)(xz2z3−xz2−xz3−1)Ztri
n (x, x+1; z1, z2, z3) =

− z1z3(xz1z2+1)
(
(xz1+1)(xz2+1)

)n−2
(xz3+1)n−1(x+1)(n−3)(n−4)/2 +

(z2−1)(z3−1)(xz1z3+z1+z3−1)z1(z2z3)
n−1(xz1+1)n−2xn(x+1)(n−2)(n−3)/2 −

(z1−1)(z3−1)(xz2z3−xz2−xz3−1)(xz2+1)n−2(x+1)(n−2)(n−3)/2,

(xz1z2+z1+z2−1)Zadj
n (x, x+1; z1, z2) = z1z2

(
(xz1+1)(xz2+1)

)n−1
(x+1)(n−2)(n−3)/2

− (z1−1)(z2−1) (x+1)(n−1)(n−2)/2,

Zopp
n (x, x+1; z1, z2) = (xz1z2+1)

(
(xz1+1)(xz2+1)

)n−2
(x+1)(n−2)(n−3)/2,

Zn(x, x+1; z) = (xz+1)n−1 (x+1)(n−1)(n−2)/2,

Zn(x, x+1) = (x+1)n(n−1)/2. (20)

Each of these formulae is either a previously-known result, or can be obtained relatively

easily from such results. More specifically, the last three cases of (20) have appeared, in

various forms, in the literature (see the references at the end of this section), but it seems

that (19) and the first two cases of (20) have not. A formula which can be regarded as a

generalization of the last three cases of (20) will be given near the end of Section 3.5.
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A derivation of (19)–(20), based on a result of Robbins and Rumsey [135, Sec. 5] for x-

determinants, will now be given, since this derivation involves the use of a quadratic relation

satisfied by the quadruply-refined ASM generating function, and thereby shares some features

with new material which will be presented in Section 4. An alternative derivation, based on

the Izergin–Korepin formula for the partition function of the six-vertex model with DWBC

and the Cauchy double alternant evaluation, will be given in Section 5.8.

For an n× n matrix of indeterminates,
(
Mij

)
1≤i,j≤n

, define

Zn(x,M) =
∑

A∈ASM(n) x
ν(A) (x+ 1)µ(A)

∏n
i,j=1(Mij)

Aij , (21)

this being the so-called x-determinant of M , as introduced by Robbins and Rumsey [135,

Sec. 5]. It can be seen that Zn(−1,M) is the standard determinant of M , since the RHS

of (21) is then a sum over all n× n permutation matrices A, with ν(A) being the number of

inversions in the permutation associated with A.

It follows from a result of Robbins and Rumsey [135, Sec. 5] that

Zn(x,M)Zn−2(x,MC) = Zn−1(x,MTL)Zn−1(x,MBR)+xZn−1(x,MTR)Zn−1(x,MBL), (22)

where MTL, MTR, MBR and MBL denote the (n − 1) × (n − 1) submatrices corresponding

to the top-left, top-right, bottom-right and bottom-left corners of M , respectively, and MC

denotes the central (n−2)×(n−2) submatrix ofM . For x = −1, (22) is the Desnanot–Jacobi

determinant identity, which will be discussed in more detail in Section 5.5.

Taking M in (22) to be

M =




1 z1 . . . zn−2
1 (z1z2)

n−1

z4 1 . . . 1 zn−2
2

...
...

...
...

zn−2
4 1 . . . 1 z2

(z3z4)
n−1 zn−2

3 . . . z3 1




, (23)

it follows, using definitions from (7), (9), (10) and (21), that the quadruply-refined ASM

generating function satisfies the quadratic relation

Zquad
n (x, x+1; z1, z2, z3, z4)Zn−2(x, x+1) = Zadj

n−1(x, x+1; z4, z1)Z
adj
n−1(x, x+1; z2, z3) +

xz1z2z3z4 Z̃
adj
n−1(x, x+1; z1, z2) Z̃

adj
n−1(x, x+1; z3, z4). (24)

Note that a quadratic relation for arbitrary x and y will be given in (81), and that a different

quadratic relation for the present case can be obtained by setting y = x+ 1 in (81).

Setting z1 = z2 = z3 = z4 = 1 in (24) gives

Zn(x, x+1)Zn−2(x, x+1) = (x+1)Zn−1(x, x+1)2, (25)

which, together with Z1(x, x+1) = 1 and Z2(x, x+1) = x+1, gives the formula in (20) for

Zn(x, x+1).

Setting z2 = z3 = z4 = 1 in (24), and relabelling z1 as z, gives

Zn(x, x+1; z)Zn−2(x, x+1) = (xz+1)Zn−1(x, x+1; z)Zn−1(x, x+1), (26)
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which, together with Z1(x, x+1; z) = 1 and the formula for Zn(x, x+1), gives the formula

in (20) for Zn(x, x+1; z). The formula for Zopp
n (x, x+1; z1, z2) can be obtained similarly, by

setting z2 = z4 = 1 in (24), and using the formulae for Zn(x, x+1; z) and Zn(x, x+1).

Setting z2 = z3 = 1 in (24), and relabelling z4 as z2, gives

Zadj
n (x, x+1; z1, z2)Zn−2(x, x+1) =

Zadj
n−1(x, x+1; z1, z2)Zn−1(x, x+1) + xz1z2 Zn−1(x, x+1; z1)Zn−1(x, x+1; z2), (27)

which, together with Zadj
1 (x, x+1; z1, z2) = 1, gives

Zadj
n (x, x+1; z1, z2) = Zn−1(x, x+1)

(
1 + xz1z2

n−1∑

i=1

Zi(x, x+1; z1)Zi(x, x+1; z2)

Zi−1(x, x+1)Zi(x, x+1)

)
, (28)

where, in the sum over i, Z0(x, x+1) is taken to be 1. Substituting the formulae for Zi(x, x+

1; z) and Zi(x, x+1) into (28), and then performing the sum over i and simplifying, gives

the formula in (20) for Zadj
n (x, x+1; z1, z2).

Finally, the formulae in (19)–(20) for Zquad
n (x, x+1; z1, z2, z3, z4) and Ztri

n (x, x+1; z1, z2, z3)

can be obtained using (24), together with the formulae for Zadj
n (x, x+1; z1, z2) and Zn(x, x+1),

and a similar formula for Z̃adj
n (x, x+1; z1, z2) (which can be obtained from the formula for

Zadj
n (x, x+1; z1, z2) and the relevant equation from (12)).

For further information regarding various aspects of the case y = x + 1 and closely re-

lated cases, including details of several alternative methods for obtaining formulae such

as (19)–(20), see, for example, Bogoliubov, Pronko and Zvonarev [21, Sec. 5], Bosio and

van Leeuwen [22], Bousquet-Mélou and Habsieger [23, Sec. 5], Bressoud [25], Brualdi and

Kirkland [28], Brubaker, Bump and Friedberg [30, 31], Bump, McNamara and Nakasuji [32],

Chapman [36], Ciucu [39], [40, Thm. 6.1], Colomo and Pronko [48, Secs. 4.2 & 5.2], [49,

Sec. 4.3], Di Francesco [62], Elkies, Kuperberg, Larsen and Propp [69, 70], Eu and Fu [71],

Ferrari and Spohn [72], Hamel and King [85, Cor. 5.1], Kuo [99, Sec. 3], Kuperberg [101,

Thm. 3], Langer [105], Lascoux [106], McNamara [111], Mills, Robbins and Rumsey [113,

Sec. 6], Okada [121, Thm. 2.4(1), third eq.], Rosengren [136, Sec. 9], Striker [144, Sec. 5], [146,

Sec. 6], Tokuyama [152, Cor. 3.4], and Yang [155].

3.3. Bulk parameters x = y = 1. The case in which the bulk parameters x and y are

both 1 involves numbers of ASMs with prescribed configurations on certain boundaries, but

without prescribed values of bulk statistics. The cases of zero, one or two boundaries will

be considered together first, followed by the cases of three or four boundaries.
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Define unrefined, singly-refined, opposite-boundary doubly-refined and adjacent-boundary

doubly-refined ASM numbers as, respectively,

An = |ASM(n)|,

An,k = |{A ∈ ASM(n) | A1,k+1 = 1}|,

Aopp
n,k1,k2

= |{A ∈ ASM(n) | A1,k1+1 = An,n−k2 = 1}|,

Aadj
n,k1,k2

= |{A ∈ ASM(n) | A1,k1+1 = Ak2+1,1 = 1}|, (29)

for 0 ≤ k, k1, k2 ≤ n− 1, with the numbers being 0 for k, k1 or k2 outside this range. These

numbers are therefore related to generating functions of (9)–(10) by

Zn(1, 1) = An,

Zn(1, 1; z) =
∑n−1

k=0 An,k z
k,

Zopp
n (1, 1; z1, z2) =

∑n−1
k1,k2=0 Aopp

n,k1,k2
zk11 zk22 ,

Zadj
n (1, 1; z1, z2) =

∑n−1
k1,k2=0 Aadj

n,k1,k2
zk11 zk22 ,

Z̃adj
n (1, 1; z1, z2) =

∑n−1
k1,k2=0 Aadj

n,n−1−k1,n−1−k2
zk11 zk22 , (30)

and to the boundary-parameter coefficients of (14) by

An,k = Zn(1, 1)k, Aadj
n,k1,k2

= Zadj
n (1, 1)k1,k2. (31)

The ASM numbers of (29) satisfy various elementary identities related to their definitions,

symmetry properties of ASMs or properties of ASMs with a 1 in a corner, and which corre-

spond to identities, such as (11)–(13) and (15), satisfied by the generating functions. Some

examples of these identities are

∑n−1
k=0 An,k = An, An,k = An,n−1−k, An,0 = An−1,

∑n−1
k2=0A

opp
n,k1,k2

=
∑n−1

k2=0A
adj
n,k1,k2

= An,k1,

Aopp
n,k1,k2

= Aopp
n,k2,k1

= Aopp
n,n−1−k1,n−1−k2

, Aadj
n,k1,k2

= Aadj
n,k2,k1

,

Aadj
n,k,0 = An−1 δk,0, Aopp

n,k,0 = Aadj
n,k+1,n−1 = An−1,k. (32)

Furthermore, some identities related to properties of ASMs in which a 1 on a boundary is

separated from a corner by a single zero, and which can be obtained from (16) and the first

two identities of (32), are

Aadj
n,k,1 =

∑n−2
i=k−1An−1,i −An−1 δk,0, An,1 = An−1 +

∑n−2
k=1 kAn−1,k =

n
2
An−1. (33)
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Proceeding to more general identities, for which derivations using combinatorial arguments

are not currently known, formulae which give the ASM numbers of (29) explicitly are

An =
∏n−1

i=0
(3i+1)!
(n+i)!

, (34)

An,k =

{
(n+k−1)! (2n−k−2)!
k! (n−k−1)! (2n−2)!

∏n−2
i=0

(3i+1)!
(n+i−1)!

, 0 ≤ k ≤ n− 1,

0, otherwise,
(35)

Aopp
n,k1,k2

= 1
An−1

∑min(k1,n−k2−1)
i=0

(
An,k1−iAn−1,k2+i +An−1,k1−i−1An,k2+i −

An,k1−i−1An−1,k2+i −An−1,k1−i−1An,k2+i+1

)
, (36)

Aadj
n,k1,k2

=





An−1, k1 = k2 = 0,
(
k1+k2−2
k1−1

)
An−1 −

∑k1
i=1

∑k2
j=1

(
k1+k2−i−j

k1−i

)
Aopp

n,i−1,n−j, 1 ≤ k1, k2 ≤ n− 1,

0, otherwise,

(37)

It follows from (34)–(35) that the unrefined and singly-refined ASM numbers satisfy simple

recursion relations, such as

An = (n−1)! (3n−2)!
(2n−2)! (2n−1)!

An−1,

AnAn−2 =
3(3n−2)(3n−4)
4(2n−1)(2n−3)

A2
n−1,

k(2n−k−1)An,k = (n−k)(n+k−1)An,k−1. (38)

It also follows that the singly-refined ASM generating function at x = y = 1 can be expressed

in terms of the Gaussian hypergeometric function as

Zn(1, 1; z) = An−1 2F1

[
1−n, n
2−2n

; z

]
, (39)

and satisfies the hypergeometric differential equation

z(1−z) d2

dz2
Zn(1, 1; z) + 2(1−n−z) d

dz
Zn(1, 1; z) + n(n−1)Zn(1, 1; z) = 0. (40)

Furthermore, the singly-refined ASM numbers satisfy, for 0 ≤ k ≤ n− 1,

An,k =
∑k

i=0(−1)i
(
n+k−1
k−i

)
An,i. (41)

Recursion relations which involve the opposite-boundary and adjacent-boundary doubly-

refined ASM numbers are

(Aopp
n,k1−1,k2

−Aopp
n,k1,k2−1)An−1 = An,k1−1An−1,k2−1 −An,k1 An−1,k2−1 −

An−1,k1−1An,k2−1 +An−1,k1−1An,k2, (42)

Aadj
n,k1−1,k2

+Aadj
n,k1,k2−1 −Aadj

n,k1,k2
= Aopp

n,k1−1,n−k2
− (δk1,1 − δk1,0)(δk2,1 − δk2,0)An−1. (43)

It follows that, in terms of generating functions, (42) can be written as

(z1−z2)Z
opp
n (1, 1; z1, z2)An−1 = (z1−1) z2 Zn(1, 1; z1)Zn−1(1, 1; z2) −

z1 (z2−1)Zn−1(1, 1; z1)Zn(1, 1; z2), (44)
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and (43) can be written as

(z1+z2−1)Zadj
n (1, 1; z1, z2) = z1 z

n
2 Z

opp
n (1, 1; z1,

1
z2
)− (z1−1)(z2−1)An−1. (45)

The relation (45) will be used in Section 4.3 for the derivation of results for the quadruply-

refined ASM generating function at x = y = 1.

The opposite-boundary doubly-refined ASM generating function at x = y = 1 can also be

expressed as

Zopp
n (1, 1; z1, z2) = 3−n(n−1)/2

(
q2(z1 + q)(z2 + q)

)n−1
×

s(n−1,n−1,...,2,2,1,1)

(
qz1+1
z1+q

, qz2+1
z2+q

, 1, . . . , 1︸ ︷︷ ︸
2n−2

)∣∣
q=e±2πi/3, (46)

where s(n−1,n−1,...,2,2,1,1)

(
qz1+1
z1+q

, qz2+1
z2+q

, 1, . . . , 1
)
is the Schur function indexed by the double-

staircase partition (n − 1, n − 1, . . . , 2, 2, 1, 1), evaluated at the 2n parameters qz1+1
z1+q

, qz2+1
z2+q

,

1, . . . , 1. Setting z1 = 1 or z2 = 1 in (46) gives an expression for the singly-refined ASM

generating function at x = y = 1, while setting z1 = z2 = 1 in (46), and using (30) and (32),

it follows that

An = 3−n(n−1)/2 ×
(
number of semistandard Young tableaux of shape

(n− 1, n− 1, . . . , 2, 2, 1, 1) with entries from {1, . . . , 2n}
)
. (47)

The product formula (34) for An can be obtained from (47) using the hook-content formula

for semistandard Young tableaux.

A further identity satisfied by the opposite-boundary doubly-refined and unrefined ASM

numbers is

det
0≤k1,k2≤n−1

(Aopp
n,k1,k2

) = (−1)n(n+1)/2+1 (An−1)
n−3. (48)

Additional expressions for some of the previous ASM numbers or associated ASM gener-

ating functions will be discussed in Section 3.13.

Proceeding now to the enumeration of ASMs with prescribed configurations on three or

four boundaries, the alternative quadruply-refined ASM generating function at x = y = 1 is

given by

(z4z1−z4+1)(z1z2−z1+1)(z2z3−z2+1)(z3z4−z3+1) Z̃quad
n (1, 1; z1, z2, z3, z4) =

z1 z2 z3 z4 det1≤i,j≤4

(
z j−1
i (zi−1)4−j Zn−j+1(1, 1; zi)

)

An−1An−2An−3

∏
1≤i<j≤4(zi − zj)

+

(z2−1)(z3−1)(z4z1−z4+1)(z1z2−z1+1)(z3z4−z3+1)(z2z4)
n−1Zadj

n−1(1, 1;
1
z4
, z1) +

(z3−1)(z4−1)(z1z2−z1+1)(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1Zadj

n−1(1, 1;
1
z1
, z2) +

(z4−1)(z1−1)(z2z3−z2+1)(z3z4−z3+1)(z1z2−z1+1)(z2z4)
n−1Zadj

n−1(1, 1;
1
z2
, z3) +

(z1−1)(z2−1)(z3z4−z3+1)(z4z1−z4+1)(z2z3−z2+1)(z1z3)
n−1Zadj

n−1(1, 1;
1
z3
, z4) −



18 R. E. BEHREND

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z1z2−z1+1)(z3z4−z3+1)(z2z4)

n−1 +

(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1
)
An−2. (49)

Setting z2 = 1 in (49) (and then relabelling z3 as z2 and z4 as z3), it follows that the

triply-refined ASM generating function at x = y = 1 is given by

(z1z3−z3+1)(z2z3−z2+1)zn−1
3 Ztri

n (1, 1; z1, z2,
1
z3
) =

z1 z3 det1≤i,j≤3

(
z j−1
i (zi−1)3−j Zn−j+1(1, 1; zi)

)

An−1An−2

∏
1≤i<j≤3(zi − zj)

+

(z2−1)(z3−1)(z1z3−z3+1)z1z
n−1
2 Zn−1(1, 1; z1) +

(z1−1)(z3−1)(z2z3−z2+1)zn−1
3 Zn−1(1, 1; z2). (50)

Note that the identities (44) and (45), satisfied by the doubly-refined ASM generating

functions at x = y = 1, can be regarded as special cases of the identity (50) satisfied by the

triply-refined ASM generating function. More specifically, setting z3 = 1 in (50) gives (44),

while setting z2 = 1 in (50), and using (44), gives (45).

Note also that, by using (45) to replace each case of an adjacent-boundary doubly-refined

ASM generating function in (49) by an opposite-boundary doubly-refined ASM generating

function, (49) can be restated as

(z4z1−z4+1)(z1z2−z1+1)(z2z3−z2+1)(z3z4−z3+1) Z̃quad
n (1, 1; z1, z2, z3, z4) =

z1 z2 z3 z4 det1≤i,j≤4

(
z j−1
i (zi−1)4−j Zn−j+1(1, 1; zi)

)

An−1An−2An−3

∏
1≤i<j≤4(zi − zj)

+

(z2−1)(z3−1)(z1z2−z1+1)(z3z4−z3+1)z4z1z
n−1
2 Zopp

n−1(1, 1; z4, z1) +

(z3−1)(z4−1)(z2z3−z2+1)(z4z1−z4+1)z1z2z
n−1
3 Zopp

n−1(1, 1; z1, z2) +

(z4−1)(z1−1)(z3z4−z3+1)(z1z2−z1+1)z2z3z
n−1
4 Zopp

n−1(1, 1; z2, z3) +

(z1−1)(z2−1)(z4z1−z4+1)(z2z3−z2+1)z3z4z
n−1
1 Zopp

n−1(1, 1; z3, z4) +

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z1z2−z1+1)(z3z4−z3+1)(z2z4)

n−1 +

(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1
)
An−2. (51)

The first terms (i.e., the determinant terms) on the RHS of (49)–(51) are proportional

to certain cases of a function which will be defined in (70). Specifically, using (70), the

first terms on the RHS of (49) (or (51)) and (50) are z1z2z3z4 Xn(1, 1; z1, z2, z3, z4) and

z1z3Xn(1, 1; z1, z2, z3), respectively. It will also be seen, in (75), that the function (70) at

x = y = 1, and hence the first terms on the RHS of (49)–(51), are related to a certain Schur

function.

Further expressions for Z̃quad
n (1, 1; z1, z2, z3, z4) and Ztri

n (1, 1; z1, z2,
1
z3
), which differ from

(50)–(51) in the first terms on each RHS, will be obtained in Corollaries 10 and 11.

The origins of the results given in this section will now be outlined.
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The product formula (34) was conjectured by Mills, Robbins and Rumsey [112, 113,

Conj. 1], and first proved by Zeilberger [157] and, shortly thereafter, but using a different

method, by Kuperberg [100]. The product formula (35) was first proved by Zeilberger [158],

and confirms the validity of further conjectures of Mills, Robbins and Rumsey [112, 113,

Conj. 2].

Alternative proofs of (34)–(35) have been given by Colomo and Pronko [48, Sec. 5.3], [49,

Sec. 4.2], Fischer [74], and Stroganov [150, Sec. 4]. (See also Razumov and Stroganov [127,

Sec. 2], [131, Sec. 2] for additional details related to the third of these proofs.)

The formulae (34)–(35) also follow from certain other known results. For example, as

already indicated, (34) can be obtained from the result (47) and the hook-content for-

mula. Alternatively, (34) can be obtained as a special case of a result of Rosengren [136,

Cor. 8.4]. Also, (35) can be obtained by combining a result of Behrend, Di Francesco and

Zinn-Justin [16, Thm. 1] that An,k is the number of descending plane partitions with each

part at most n and exactly k parts equal to n, with a result of Mills, Robbins and Rum-

sey [112, Sec. 5] which gives a product formula for the number of such objects.

Among these various derivations of (34)–(35), all make essential use of the Izergin–Korepin

formula [89, Eq. (5)] for the partition function of the six-vertex model with DWBC, or related

properties of integrability, except for Zeilberger’s proof [157] of (34), which uses a result of

Andrews [4] for the number of totally symmetric self-complementary plane partitions in a

2n × 2n × 2n box, and Fischer’s proof [74], which uses an operator formula obtained by

Fischer [73, 75] (see also Colomo and Pronko [52, Eq. (3.3)]).

The hypergeometric function expression (39) is given by Colomo and Pronko [46, Eq.

(2.16)], [48, Eq. (5.43)], [49, Eq. (4.19)], and the differential equation (40) is given by

Stroganov [150, Eq. (26)].

The relation (41) was obtained by Fischer [74, Sec. 3], with a corresponding relation for

descending plane partitions, containing a further parameter associated with the sum of the

parts of a descending plane partition, having been obtained previously by Mills, Robbins

and Rumsey [112, Sec. 5]. It was also shown by Fischer [74, Sec. 4] that the formula (35)

follows from (41), the first three equations of (32), and A1,0 = 1.

The relations (42)–(45) for the opposite-boundary and adjacent-boundary doubly-refined

ASM numbers were first obtained by Stroganov [150, Sec. 5]. Furthermore, (43) is a special

case of a formula obtained by Fischer [77, Thm. 1], and (44) is a special case of a relation, (62),

which will be discussed in Section 3.4. As indicated elsewhere in this section, (44) and (45)

are also special cases of (49).

The formula (36) follows easily from (42). The formula (37) was first obtained by Fis-

cher [77, p. 570], and can be derived by dividing both sides of (45) by z1+z2−1 and equating

coefficients of zk11 zk22 on each side.

The Schur function expression (46) was obtained by Di Francesco and Zinn-Justin [65,

Eqs. (2.2) & (2.4)], using a result of Okada [121, Thm. 2.4(1), second equation]. A general-

ization of (46) will be given in (75), and a derivation of (75) will be given in Section 5.10.

The relation (47) was first obtained by Okada [121, Thm. 1.2 (A1)].
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The identity (48) was obtained by Biane, Cantini and Sportiello [18, Thm. 1], by com-

bining (46) with a certain Schur function identity, also obtained by Biane, Cantini and

Sportiello [18, Thm. 2].

Some further aspects of the opposite-boundary doubly-refined ASM numbers are discussed

by Fischer [75, Sec. 6].

Identities for the quadruply- and triply-refined ASM generating functions at x = y = 1,

which are essentially equivalent to (49)–(50), were obtained recently by Ayyer and Romik [12,

Thms. 1–3]. The forms of (49)–(50) given here were observed by Colomo [43], and can be

derived by combining a result which will be given in (73), with a result that the partition

function of the six-vertex model with DWBC is symmetric in all of its spectral parameters

at its so-called combinatorial point. A derivation of (49) using this approach will be given

in Section 5.10. Roughly speaking, this derivation involves associating spectral parame-

ters t1, t2, t3 and t4 with the first row, last column, last row and first column, respectively,

of an ASM. The symmetry of the partition function in all of its spectral parameters then en-

ables t2 and t4 to be associated instead with rows, so that the result (73) (in the form (156)),

which involves parameters associated with several rows, can be applied.

Note that, since setting certain boundary parameters in (49) to 1 gives (44), (45) and (50),

Section 5.10 also provides derivations of these other identities. (For the identity (45), such

a derivation essentially depends only the symmetry of the partition function in all of its

spectral parameters, and not on (73).)

In the versions of (49)–(50) obtained by Ayyer and Romik [12, Thms. 1–3], slightly different

quadruply-refined and triply-refined ASM generating functions are used, and matrices appear

which are related by transposition and column operations to those in the first terms on the

RHS of (49)–(50). In particular, the quadruply-refined generating function used there is

Z ′
n(x, y; z1, z2, z3, z4) =

∑
A∈ASM(n)

A11=A1n=Ann=An1=0

xν(A) yµ(A) z
ρT(A)−1
1 z

n−2−ρR(A)
2 z

ρB(A)−1
3 z

n−2−ρL(A)
4

(at x = y = 1), which can be shown straightforwardly to be related to generating functions

used here by

z1 z2 z3 z4 Z
′
n(x, y; z1, z2, z3, z4) =

Z̃quad
n (x, y; z1, z2, z3, z4)− (z2z4)

n−1Zadj
n−1(x, y;

1
z4
, z1)− (z2z4)

n−1 Zadj
n−1(x, y;

1
z2
, z3) −

z1z
n−2
2 (xz3)

n−1 Z̃adj
n−1(x, y; z1,

1
z2
)− z3z

n−2
4 (xz1)

n−1 Z̃adj
n−1(x, y; z3,

1
z4
) +

(
(z2z4)

n−1 + x2n−3(z1z3)
n−1
)
Zn−2(x, y). (52)

The matrices used in some of the formulae of Ayyer and Romik [12, Eqs. (1.8) & (1.11)]

involve functions γn(z) and δn(z) (see Ayyer and Romik [12, Eq. (1.7)] for definitions) which

are related to the functions used in the matrices in the first terms on the RHS of (49)–(50)

by

γn(z) =
4(n−1)! (3n−5)!
(2n−3)! (2n−4)!

z2 Zn−2(1, 1; z)−
4(2n−3)! (2n−5)!
(n−3)! (3n−5)!

(z−1)2 Zn(1, 1; z),

δn(z) =
4(n−1)! (n−4)! (3n−5)! (3n−8)!
((2n−4)!)2 (2n−5)! (2n−7)!

z3 Zn−3(1, 1; z)−
9(9n2−30n+20)

2n−5
z(z−1)2 Zn−1(1, 1; z). (53)
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These relations can be confirmed (perhaps with the assistance of a computer to verify certain

underlying identities) by applying the definitions of γn(z), δn(z) and Zn(1, 1; z), and using the

product formula (35) for the singly-refined ASM numbers which appear in these functions.

The fact that the matrices used by Ayyer and Romik are related to those used here by

(transposition and) column operations follows immediately from (53). See also Ayyer and

Romik [12, Thm. 3 & App. A] for a discussion of this matter.

3.4. Arbitrary bulk parameters x and y. The case in which the bulk parameters x and y

are arbitrary is of primary interest in this paper, and several new results will be presented

in Section 4. In this section, the previously-known results for this case, which involve the

unrefined, singly-refined and opposite-boundary doubly-refined ASM generating functions,

are reviewed.

A determinant formula for the opposite-boundary doubly-refined ASM generating function

is

Zopp
n (x, y; z1, z2) = det

0≤i,j≤n−1

(
Kn(x, y; z1, z2)ij

)
, (54)

where

Kn(x, y; z1, z2)ij =

− δi,j+1 +





∑min(i,j+1)
k=0

(
i−1
i−k

)(
j+1
k

)
xkyi−k, j ≤ n− 3,

∑i
k=0

∑k
l=0

(
i−1
i−k

)(
n−l−2
k−l

)
xkyi−kzl+1

2 , j = n− 2,
∑i

k=0

∑k
l=0

∑l
m=0

(
i−1
i−k

)(
n−l−2
k−l

)
xkyi−kzm1 zl−m

2 , j = n− 1.

(55)

Setting z2 = 1 or z1 = z2 = 1 in (54)–(55), and using standard binomial coefficient

identities, it follows that determinant formulae for the singly-refined and unrefined ASM

generating functions are

Zn(x, y; z) = det
0≤i,j≤n−1

(
Kn(x, y; z)ij

)
, (56)

Zn(x, y) = det
0≤i,j≤n−1

(
Kn(x, y)ij

)
, (57)

where

Kn(x, y; z)ij = Kn(x, y; z, 1)ij

= −δi,j+1 +

{∑min(i,j+1)
k=0

(
i−1
i−k

)(
j+1
k

)
xkyi−k, j ≤ n− 2,

∑i
k=0

∑k
l=0

(
i−1
i−k

)(
n−l−1
k−l

)
xkyi−kzl, j = n− 1,

(58)

Kn(x, y)ij = Kn(x, y; 1, 1)ij = −δi,j+1 +
∑min(i,j+1)

k=0

(
i−1
i−k

)(
j+1
k

)
xkyi−k. (59)

There are further simplifications if x = y = 1. For example,

Kn(1, 1)ij = −δi,j+1 +
(
i+j
i

)
. (60)
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The opposite-boundary doubly-refined ASM generating function satisfies

(z1−z2) (z3−z4)Z
opp
n (x, y; z1, z2)Z

opp
n (x, y; z3, z4) −

(z1−z3) (z2−z4)Z
opp
n (x, y; z1, z3)Z

opp
n (x, y; z2, z4) +

(z1−z4) (z2−z3)Z
opp
n (x, y; z1, z4)Z

opp
n (x, y; z2, z3) = 0, (61)

and it can be expressed in terms of singly-refined and unrefined ASM generating functions

as

(z1−z2)Z
opp
n (x, y; z1, z2)Zn−1(x, y) = (z1−1) z2 Zn(x, y; z1)Zn−1(x, y; z2) −

z1 (z2−1)Zn−1(x, y; z1)Zn(x, y; z2). (62)

The two previous identities are essentially equivalent, since (62) can be obtained from (61)

by setting z3 = 1 and z4 = 0, and then applying relations from (11) and (13), while (61)

can be obtained from (62) by expressing each of the six cases of (zi − zj)Z
opp
n (x, y; zi, zj) in

terms of singly-refined and unrefined ASM generating functions, and then checking that the

resulting expression for the LHS of (61) vanishes.

The formula (54) was derived by Behrend, Di Francesco and Zinn-Justin [17, Eqs. (21)–

(22)], as part of the proof of an equality [17, Thm. 1] between the opposite-boundary doubly-

refined ASM generating function and a four-parameter generating function for descending

plane partitions. (See also Section 3.12.) The formula (56) was derived by Behrend, Di

Francesco and Zinn-Justin [16, Eqs. (97)–(98)], prior to the derivation of (54), as part of

the proof of an equality [16, Thm. 1] (conjectured previously by Mills, Robbins and Rum-

sey [113, Conj. 3]) between the singly-refined ASM generating function and a three-parameter

generating function for descending plane partitions.

For an alternative version of (54), involving a transformation of the matrix Kn(x, y; z1, z2),

see Behrend, Di Francesco and Zinn-Justin [17, Eqs. (65)–(66)], and for alternative versions

of (56) or (57), involving transformations of the matricesKn(x, y; z) orKn(x, y), see Behrend,

Di Francesco and Zinn-Justin [16, Props. 1 & 4, Eqs. (65), (66), (87) & (88), & Sec. 4.1].

For additional information on determinants closely related to those of (56)–(57), includ-

ing formulae for their evaluation or factorization in certain special cases, see, for exam-

ple, Andrews [2], Andrews and Stanton [5], Ciucu, Eisenkölbl, Krattenthaler and Zare [41,

Thms. 10–13], Ciucu and Krattenthaler [42], Colomo and Pronko [44, Eqs. (23)–(24)], [45,

Eqs. (4.3)–(4.7)], de Gier [56, Sec. 2.1], Gessel and Xin [84, Sec. 5], Krattenthaler [96, e.g.,

Thms. 25–37], [97, Sec. 5.5], Lalonde [102, Thm. 3.1], Mills, Robbins and Rumsey [112], [113,

p. 346], [115, Secs. 3–4], Robbins [134, Sec. 2], and Rosengren [138].

The case of (62) with x = y = 1 (as given in (44)) was first obtained by Stroganov [150,

Sec. 5], and this relation for arbitrary x and y was first obtained, as an identity involving

one- and two-point boundary correlation functions for the six-vertex model with DWBC, by

Colomo and Pronko [47, Eq. (5.32)], [49, Eq. (3.32)]. An alternative proof of (62) was given

by Behrend, Di Francesco and Zinn-Justin [17, Sec. 5]. This identity will also be obtained
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from Theorem 1 of this paper, as Corollary 5, and it will be found to be a special case of the

identity (73) given in Section 3.5.

3.5. ASM enumeration involving statistics associated with several rows or several

columns. In this section, a generating function involving statistics associated with several

rows (or several columns) of ASMs is defined, and (in (73)) a result is stated which, for the

case of particular assignments of certain parameters, provides a determinantal expression for

this generating function in terms of singly-refined and unrefined ASM generating functions.

A derivation of this result will be given in Section 5.9.

For A ∈ ASM(n), define ASM statistics, associated with row i or column j of A, as

νrow i(A) =
∣∣{j ∈ {1, . . . , n}

∣∣ ∑i−1
i′=1Ai′j =

∑j
j′=1Aij′

}∣∣,
νcol j(A) =

∣∣{i ∈ {1, . . . , n}
∣∣ ∑i−1

i′=1Ai′j =
∑j

j′=1Aij′
}∣∣,

µrow i(A) = number of −1’s in row i of A,

µcol j(A) = number of −1’s in column j of A. (63)

It follows from the defining properties of ASMs that if, for an ASM A,
∑i−1

i′=1Ai′j =∑j
j′=1Aij′ (or equivalently

∑i
i′=1Ai′j =

∑j−1
j′=1Aij′), then Aij = 0. Hence, νrow i(A) and

νcol j(A) can be regarded as the numbers of certain 0’s in row i and column j, respectively,

of A. It will be seen in Section 5.2 that, in terms of the configuration of the six-vertex model

with DWBC which corresponds to A, νrow i(A) and νcol j(A) are simply the numbers of vertex

configurations of types (1) and (2) in row i and column j, respectively, of the grid.

It can also be seen that the statistics νrow i(A) and νcol j(A) can be written in various other

ways, for example as

νrow i(A) =
∑n

j=1

(∑i−1
i′=1

∑j
j′=1Ai′jAij′ +

∑n
i′=i

∑n
j′=j+1Ai′jAij′

)
,

νcol j(A) =
∑n

i=1

(∑i−1
i′=1

∑j
j′=1Ai′jAij′ +

∑n
i′=i

∑n
j′=j+1Ai′jAij′

)
. (64)

It can be checked easily that, for any A ∈ ASM(n), the statistics of (2)–(3) and those

of (63) are related by
∑n

i=1 ν
row i(A) =

∑n
j=1 ν

col j(A) = 2ν(A),

νrow 1(A) = ρT(A), νcol n(A) = ρR(A), νrow n(A) = ρB(A), νcol 1(A) = ρL(A),
∑n−1

i=2 µrow i(A) =
∑n−1

j=2 µ
col j(A) = µ(A),

µrow 1(A) = µcoln(A) = µrown(A) = µcol 1(A) = 0, (65)

and that the statistics of (63) behave under the operations of transposition or anticlockwise

quarter-turn rotation of ASMs according to

νrow i(A) = νcol i(AT ) = n− 1− νcol i(AQ)− 2µrow i(A),

µrow i(A) = µcol i(AT ) = µcol i(AQ), (66)

using the same notation as in (6).
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For any 0 ≤ m ≤ n and 1 ≤ k1 < . . . < km ≤ n, define an ASM generating function

associated with rows (or, as will be seen in (69), columns) k1, . . . , km as

Zk1,...,km
n (x, y; z1, . . . , zm;w1, . . . , wm) =

∑

A∈ASM(n)

xν(A) yµ(A)−
∑m

i=1 µ
row ki(A)

m∏

i=1

z
νrow ki (A)
i w

µrow ki (A)
i , (67)

for indeterminates x, y, z1, . . . , zm and w1, . . . , wm.

It can be seen that

Zk1,...,km
n (x, y; z1, . . . , zi−1, 1, zi+1, . . . , zm;w1, . . . , wi−1, y, wi+1, . . . , wm) =

Zk1,...,ki−1,ki+1,...,km
n (x, y; z1, . . . , zi−1, zi+1, . . . , zm;w1, . . . , wi−1, wi+1, . . . , wm), (68)

and that Zk1,...,km
n (x, y; z1, . . . , zm;w1, . . . , wm) is the unrefined ASM generating function

Zn(x, y) for m = 0, the singly-refined ASM generating function Zn(x, y; z1) for m = 1

and k1 = 1 or k1 = n, and the opposite-boundary doubly-refined ASM generating function

Zopp
n (x, y; z1, z2) for m = 2, k1 = 1 and k2 = n.

Using (66), it also follows that

Zk1,...,km
n (x, y; z1, . . . , zm;w1, . . . , wm) =

∑

A∈ASM(n)

xν(A) yµ(A)−
∑m

j=1 µ
col kj (A)

m∏

j=1

z
νcol kj (A)
j w

µcol kj (A)
j =

xn(n−1)/2 (z1 . . . zm)
n−1 Zk1,...,km

n

(
1
x
, y
x
; 1

z1
, . . . , 1

zm
; w1

xz 2
1
, . . . , wm

xz 2
m

)
. (69)

Now define, for 0 ≤ m ≤ n, a further function

Xn(x, y; z1, . . . , zm) =





Zn(x, y), m = 0,

det1≤i,j≤m

(
z j−1
i (zi−1)m−j Zn−j+1(x, y; zi)

)
∏

1≤i<j≤m(zi−zj)
∏m−1

i=1 Zn−i(x, y)
, 1 ≤ m ≤ n.

(70)

This definition is based on a definition of Colomo and Pronko [50, Eq. (6.6)], [52, Eq. (4.18)]

of a closely-related function for the six-vertex model with DWBC.

Some properties of Xn(x, y; z1, . . . , zm), which follow straightforwardly from (70) and the

latter equations of (11), (12) and (13), are

Xn(x, y; z1, . . . , zm) is symmetric in z1, . . . , zm,

Xn(x, y; z1, . . . , zm) = xn(n−1)/2 (z1 . . . zm)
n−1Xn

(
1
x
, y
x
; 1
z1
, . . . , 1

zm

)
,

Xn(x, y; z1, . . . , zi−1, 1, zi+1, . . . , zm) = Xn(x, y; z1, . . . , zi−1, zi+1, . . . , zm),

Xn(x, y; z1, . . . , zi−1, 0, zi+1, . . . , zm) = Xn−1(x, y; z1, . . . , zi−1, zi+1, . . . , zm),

Xn(x, y; z) = Zn(x, y; z). (71)

Certain further properties can be found by combining (70) with general identities for minors

of a matrix. For example, for 1 ≤ m ≤ n, and indeterminates z1, . . . , zm, u1, . . . , um−1 and
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v1, . . . , vm−1, the identity

∏
1≤i<j≤m(zi−zj)

∏
1≤i≤j≤m−1(ui−vj) ×

Xn(x, y; z1, . . . , zm)
∏m−1

i=1 Xn(x, y; u1, . . . , um−i, vm−i, . . . , vm−1) =

det
1≤i,j≤m

(∏m−j
k=1 (zi−uk)

∏m−1
k=m−j+1(zi−vk)Xn(x, y; zi, u1, . . . , um−j, vm−j+1, . . . , vm−1)

)
(72)

is satisfied. This result can be obtained from (70) by applying a certain identity for minors

of a matrix, which will be given in (154), to the (3m − 2) × m matrix N with entries

Nij = fj(zi) for 1 ≤ i ≤ m, Nij = fj(ui−m) for m+ 1 ≤ i ≤ 2m− 1, and Nij = fj(vi−2m+1)

for 2m ≤ i ≤ 3m− 2, where fj(z) = zj−1(z− 1)m−jZn−j+1(x, y; z) (although the actual form

of the function fj(z) in this derivation is immaterial).

Note that the 1 ≤ m ≤ n case of (70) can be retrieved from (72), using only the last

three properties in (71) and the m = 0 case of (70), by setting u1 = . . . = um−1 = 1 and

v1 = . . . = vm−1 = 0.

The main result of this section is that, for any 0 ≤ m ≤ n and 1 ≤ k1 < . . . < km ≤ n,

Zk1,...,km
n (x, y; z1, . . . , zm; xz

2
1 +(y−x−1)z1+1, . . . , xz 2

m+(y−x−1)zm+1) =

Xn(x, y; z1, . . . , zm). (73)

A derivation of (73), based on a result of Colomo and Pronko [50, Eq. (6.8)], [51, Eq. (A.13)],

will be given in Section 5.9. It will also be shown in Section 5.9 that (73) can be derived

by combining a general identity for minors of a matrix with the Izergin–Korepin formula for

the partition function of the six-vertex model with DWBC.

Note that, using (68) and the third property of (71), the cases of (73) with m < n all

follow from the case m = n.

It can now be seen, using (67) and (73), that the function (70) is a polynomial in x, y and

z1, . . . , zm with integer coefficients.

It follows from (73) that, for fixed n and m, the LHS of (73) is independent of k1, . . . , km.

This implies, for example, that the singly-refined and opposite-boundary doubly-refined ASM

generating functions can be written, for any 1 ≤ k ≤ n and 1 ≤ k1 < k2 ≤ n, as

Zn(x, y; z) = Zk
n(x, y; z; xz

2+(y−x−1)z+1),

Zopp
n (x, y; z1, z2) = Zk1,k2

n (x, y; z1, z2; xz
2
1 +(y−x−1)z1+1, xz 2

2 +(y−x−1)z2+1). (74)

It can also be seen that the case m = 2, k1 = 1 and k2 = n of (73) gives the identity (62)

satisfied by the opposite-boundary doubly-refined ASM generating function, and that the

case m = 2 of (72) and the result Zopp
n (x, y; z1, z2) = Xn(x, y; z1, z2) give the identity (61).

For the case y = x + 1, using the last two formulae of (20) in (70) gives Xn(x, x +

1; z1, . . . , zm) =
(∏m

i=1(xzi + 1)
)n−m

(x + 1)(n−m)(n−m−1)/2 det1≤i,j≤m

(
z j−1
i ((zi − 1)(xzi +

1))m−j
)/∏

1≤i<j≤m(zi−zj) =
∏

1≤i<j≤m(xzizj +1)
(∏m

i=1(xzi+1)
)n−m

(x+1)(n−m)(n−m−1)/2.

(In the last step, the determinant evaluation det1≤i,j≤m

(
z j−1
i ((zi − 1)(xzi + 1))m−j

)
=∏

1≤i<j≤m(zi − zj)(xzizj + 1) can be obtained using the method of identification of factors.
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See Krattenthaler [96, p. 5 & Sec. 2.4], [97, Sec. 4, Method 3]. For example, it follows that

xzizj+1 is a factor of this determinant, for each i 6= j, by setting zj = −1/(xzi), and observ-

ing that row j of the matrix is then row i divided by (−xz2i )
m−1.) This explicit expression

for Xn(x, x+ 1; z1, . . . , zm) can be seen to generalize the last three formulae of (20).

Finally, it will be shown in Section 5.10 that the function (70) at x = y = 1 can be

expressed as

Xn(1, 1; z1, . . . , zm) = 3−n(n−1)/2 (−q)m(n−1)
(
(z1+q) . . . (zm+q)

)n−1
×

s(n−1,n−1,...,2,2,1,1)

(
qz1+1
z1+q

, . . . , qzm+1
zm+q

, 1, . . . , 1︸ ︷︷ ︸
2n−m

)∣∣
q=e±2πi/3, (75)

where this uses the same notation as, and can be seen to generalize, the identity (46).

3.6. ASMs with several rows or columns closest to two opposite boundaries pre-

scribed. In this section, the enumeration of ASMs with prescribed configurations of several

rows or columns closest to two opposite boundaries (but not involving any further statistics)

is discussed.

Let K1 and K2 be subsets of {1, . . . , n} with |K1| + |K2| ≤ n, and let AK1 and AK2 be

matrices with n columns and |K1| or |K2| rows respectively, in which each entry is 0, 1 or −1,

along each row and column the nonzero entries alternate in sign, in each row the entries sum

to 1, in column j of AK1 the entries sum to 1 if j ∈ K1 and the entries sum to 0 with the

first nonzero entry (if there is one) being 1 if j 6∈ K1, and in column j of AK2 the entries

sum to 1 if j ∈ K2 and the entries sum to 0 with the first nonzero entry (if there is one)

being −1 if j 6∈ K2. (For example, the entries of these matrices could be taken as simply

(AK1)ij = δj,K1,i
and (AK2)ij = δj,K2,i

, where K1,i and K2,i are the ith smallest elements

of K1 and K2, respectively.) For a fixed choice of matrices AK1 and AK2 which satisfy these

conditions, define

An,K1,K2 = number of n× n ASMs whose first |K1| rows are given by AK1,

and last |K2| rows are given by AK2, (76)

where it can be checked easily that An,K1,K2 is independent of the choice of AK1 and AK2.

(Note that if K1 = ∅ or K2 = ∅, then there is no restriction on the first or last rows,

respectively, of the ASMs in (76).) Thus, An,K1,K2 is the number of n × n ASMs in which

certain rows or columns closest to two opposite boundaries are prescribed.

Alternatively, An,K1,K2 can be written, without reference to AK1 and AK2 , as the number

of (n−|K1|−|K2|)×n matrices in which each entry is 0, 1 or −1, along each row and column

the nonzero entries alternate in sign, in each row the entries sum to 1, and in column j the

entries sum to 1 if j ∈ {1, . . . , n} \ (K1 ∪ K2), the entries sum to −1 if j ∈ K1 ∩ K2, the

entries sum to 0 with the first nonzero entry (if there is one) being −1 if j ∈ K1 \K2, and

the entries sum to 0 with the first nonzero entry (if there is one) being 1 if j ∈ K2 \K1.

It can be seen that

An,K1,K2 = An,K2,K1 = An,{n+1−k|k∈K1},{n+1−k|k∈K2} (77)
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and that

An,∅,∅ = An, An,{k+1},∅ = An,k, An,{k1+1},{n−k2} = Aopp
n,k1,k2

, (78)

for any 0 ≤ k, k1, k2 ≤ n− 1.

It can also be seen that An,{1,...,n}\K1,∅ or An,{1,...,n}\K2,∅ give the numbers of possible matri-

ces AK1 or AK2 , respectively, which satisfy the conditions outlined above. Furthermore, for

a fixed set K of positive integers, An,{1,...,n}\K,∅ is independent of n, for n ≥ max(K), with

an operator formula for this number having been obtained by Fischer [73, Thm. 1]. Some

related functions for the six-vertex model with DWBC have been studied by Colomo and

Pronko [52].

The numbers An,K1,K2 have been studied by Fischer [76, 77], Fischer and Romik [78],

and Karklinsky and Romik [91]. Results which have been obtained include linear relations

between the numbers An,K,∅ with |K| = 2 and the opposite-boundary doubly-refined ASM

numbers (Fischer [76, Eq. (5.3)], and Karklinsky and Romik [91, Eq. (7)]), explicit formulae

for An,K,∅ with |K| = 2 (Fischer [76, Eq. (1.3)], and Karklinsky and Romik [91, Thm. 1]),

and an expression for An,K,{k} with |K| = 2 in terms of numbers of n × n ASMs with

prescribed configurations on three boundaries (Fischer [77, Thm. 1]). Also, related numbers

have been defined (Fischer [76, Eq. (1.2)], [77, Eq. (2.9)]), and have been shown to give

the numbers An,K1,K2 in certain cases (Fischer [76, Thm. 1]), and to satisfy certain linear

relations (Fischer [76, Eq. (5.1) & p. 253, first equation], [77, Eqs. (1.5) & (1.6)]).

3.7. The cases Zn(1, 3) and Zn(1, 3; z). Results involving Zn(1, 3) and Zn(1, 3; z), some

of which were previously conjectured by Mills, Robbins and Rumsey [113, Conj. 6–7], [114,

Conj. 5], and which correspond to the so-called 3-enumeration of ASMs, have been obtained

by Cantini [33, Sec. 4.1], Colomo and Pronko [46], [48, Secs. 4.4 & 5.4], [49, Sec. 4.3], Kuper-

berg [100, Thm. 2], [101, Thm. 3], Okada [121, Thm. 2.4(1), fourth eq.], and Stroganov [148].

3.8. The case Zn(1, 1;−1). It was observed by Di Francesco [60, Eqs. (2.7)–(2.8)], and

shown explicitly by Williams [154, Thm. 4], that

Zn(1, 1;−1) = V2
n, (79)

where Vn is the number of vertically-symmetric n × n ASMs (i.e., ASMs A with Aij =

Ai,n+1−j). Note that for n even, it can be seen easily (for example, using the second equation

of (32)) that both sides of the equation are zero. For n odd, Vn =
∏(n−1)/2

i=1 (6i − 2)!/(n +

2i− 1)!, as conjectured by Robbins [133, 134], and first shown by Kuperberg [101, Thm. 2,

second equation]. It is known that Vn is also the number of descending plane partitions

invariant under a certain operation (see Behrend, Di Francesco and Zinn-Justin [16, Sec. 4.2

& Eq. (102)]), and the number of totally symmetric self-complementary plane partitions

invariant under a certain operation (see Ishikawa [88, Thm. 7.11(i)]), and it has been con-

jectured by Di Francesco [60, Eq. (2.8)], [61, Eq. (4.5)] that V 2
n (up to sign) and V 4

n are

obtained when a parameter is set to −1 in certain generating functions for totally symmetric

self-complementary and cyclically symmetric transpose-complementary plane partitions.
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3.9. ASMs with a fixed number of generalized inversions. Expressions for the coef-

ficients of xp in Zn(x, 1), i.e., for the number of n × n ASMs with p generalized inversions,

can be obtained using a result of Behrend [15, Cor. 14], and are given by Behrend, Di

Francesco and Zinn-Justin [16, Eqs. (24)–(25)]. Some particular cases of p, for ASMs with

fixed values of certain further statistics, are also considered by Behrend, Di Francesco and

Zinn-Justin [16, pp. 337–338], [17, Sec. 7.1].

3.10. ASMs with a fixed number of −1’s. For the case of Zn(1, y), an expression for

the coefficient of ym, i.e., for the number of n× n ASMs with m −1s, has been obtained by

Cori, Duchon and Le Gac [53, 108], [109, Ch. 3] (and, for m = 1, 2, by Aval [6, Prop. 4]), a

certain factorization property (previously conjectured by Mills, Robbins and Rumsey [113,

Conj. 4 & Conj. 5], [115, pp. 50 & 54] and Robbins [134, Sec. 2]) has been established

by Kuperberg [100, Thm. 3], [101, Thm. 4, first two eqs.], and a certain operator formula

containing a parameter which corresponds to the number of −1’s in an ASM has been

obtained by Fischer [75, Thm. 1].

Results involving the coefficient of y1 in Zn(x, y; z), i.e., for a certain generating function

for n× n ASMs with a single −1, have been obtained by Lalonde [102, 104].

3.11. Objects in simple bijection with ASMs. Simple bijections are known between

ASMs and various other combinatorial objects. Some examples, all of which are reviewed by

Propp [123, Secs. 2–4 & 7], are bijections between ASM(n) and sets of monotone (or Gog)

triangles with bottom row 1, . . . , n, (n+ 1)× (n+ 1) corner-sum matrices, (n+ 1)× (n+ 1)

height-function matrices, 3-colourings of an (n + 1) × (n + 1) grid with certain boundary

conditions, configurations of the six-vertex model on an n × n grid with DWBC, or fully

packed loop configurations on an n×n grid with certain boundary conditions. Some further

examples are a bijection between ASM(n) and the set of sets of n osculating paths on an

n × n grid in which all paths start and end on two adjacent boundaries (see, for exam-

ple, Behrend [15, Secs. 2–4], Bousquet-Mélou and Habsieger [23, pp. 68–69], Bressoud [24,

pp. 226–227], or Eğecioğlu, Redmond and Ryavec [68, pp. 35–36]), and a bijection between

ASM(n) and the set of alternating paths for any fixed fully packed loop configuration on an

n× n grid (see Ng [120, Prop. 3.1]).

In each of these cases, the statistics for the other combinatorial object which correspond,

under the bijection, to the ASM statistics (2)–(3) or (63) can be obtained relatively straight-

forwardly. For example, this will be done for configurations of the six-vertex model with

DWBC in (113). Accordingly, all of the results reviewed or obtained in this paper for ASM(n)

with the statistics (2)–(3) or (63) could alternatively be expressed in terms of any of these

other combinatorial objects and their associated statistics. However, it should be noted

that certain statistics will seem more natural when expressed in terms of some objects than

others.

It should also be noted that, by applying some of these simple bijections between ASMs

and other objects, further statistics or characteristics, which would not seem natural in

terms of the ASMs themselves, may become apparent. For instance, a natural statistic
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for the monotone triangle which corresponds to an ASM is the number of diagonals whose

entries all have certain minimal values (see, for example, Zeilberger [157, Lem. 1] for a result,

previously conjectured by Mills, Robbins and Rumsey [114, Conj. 7], involving this statistic),

natural statistics for the 3-colouring of a grid which corresponds to an ASM are the numbers

of appearances of each colour (see, for example, Rosengren [136, Cor. 8.4], [137, Sec. 3]

for results involving these statistics), and a natural characteristic for the fully packed loop

configuration which corresponds to an ASM is its associated link pattern (see, for example,

Cantini and Sportiello [34, Eq. (23)] for a result, previously conjectured by Razumov and

Stroganov [126], involving this characteristic).

In the case of the six-vertex model with DWBC, ASM generating functions are closely re-

lated to certain partition functions, expectation values, probabilities or correlation functions

for the model, and the results of this paper could alternatively be expressed in terms of the

latter quantities. For example, the quadruply-refined ASM generating function is closely as-

sociated with a certain four-point boundary correlation function for the six-vertex model with

DWBC. For studies of various correlation functions, and related quantities, for the six-vertex

model with DWBC, see, for example, Bogoliubov, Kitaev and Zvonarev [20], Bogoliubov,

Pronko and Zvonarev [21], Colomo and Pronko [47, 49, 50, 52], Foda and Preston [79], and

Motegi [116, 117].

3.12. Descending plane partitions. Descending plane partitions are certain combinato-

rial objects first defined by Andrews [2, 3]. It was shown by Behrend, Di Francesco and

Zinn-Justin [17, Thm. 1] that the opposite-boundary doubly-refined ASM generating func-

tion Zopp
n (x, y; z1, z2) is equal to the generating function for descending plane partitions with

largest part at most n, in which the statistics associated with x, y, z1 and z2 are, respec-

tively, the number of nonspecial parts, the number of special parts (as first defined by Mills,

Robbins and Rumsey [113, p. 344]), the number of n’s, and the number of (n − 1)’s plus

the number of rows of length n − 1, in a descending plane partition. (Note, however, that

no general bijection is currently known between ASM(n) and the set of descending plane

partitions with largest part at most n, and that no further statistics for descending plane

partitions are currently known which, together with the previous four statistics, lead to gen-

erating functions which are equal to the adjacent-boundary doubly-refined, triply-refined or

quadruply-refined ASM generating functions.)

It follows that certain known results for descending plane partitions correspond to results

involving the opposite-boundary doubly-refined, singly-refined or unrefined ASM generating

functions. For example, certain such results were outlined in Section 3.4.

Results are also known for the enumeration of descending plane partitions with a prescribed

sum of parts. In particular, it follows from work of Mills, Robbins and Rumsey [112, Sec. 5]

that, for 0 ≤ k ≤ n− 1,

∑
D∈DPP(n) q

|D| =
∏n−1

i=0
[3i+1]q!
[n+i]q!

,

∑
D∈DPP(n,k) q

|D| = qkn [n+k−1]q! [2n−k−2]q!

[k]q! [n−k−1]q! [2n−2]q!

∏n−2
i=0

[3i+1]q!

[n+i−1]q!
, (80)
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where DPP(n) denotes the set of descending plane partitions with largest part at most n,

DPP(n, k) denotes the set of elements of DPP(n) with exactly k parts equal to n, |D| denotes
the sum of parts of a descending plane partition D, and [n]q! is the usual q-factorial of n. As

expected, each RHS of (80) reduces to each RHS of (34)–(35) for q = 1. However, no ASM

statistic is currently known which corresponds to the sum of parts of a descending plane

partition, and leads to generating functions matching those of (80).

For further information, and related results or conjectures, regarding descending plane

partitions, see, for example, Andrews [2, 3], Ayyer [10], Behrend, Di Francesco and Zinn-

Justin [16, 17], Bressoud [24], Bressoud and Propp [27], Krattenthaler [98], Lalonde [102,

103, 104], Mills, Robbins and Rumsey [112, 113, 115], Robbins [133, 134], and Striker [145].

3.13. Totally symmetric self-complementary plane partitions. Totally symmetric

self-complementary plane partitions are certain combinatorial objects first defined by Mills,

Robbins and Rumsey [114, Sec. 1], and Stanley [141, Sec. 2]. It was shown by Fonseca and

Zinn-Justin [81], following conjectures of Mills, Robbins and Rumsey [114, Conj. 2 & 3], that

the opposite-boundary doubly-refined ASM generating function with both bulk parameters

set to 1, i.e., Zopp
n (1, 1; z1, z2), is equal to a generating function for totally symmetric self-

complementary plane partitions in a 2n×2n×2n box in which the statistics associated with z1
and z2 can be certain pairs from among several statistics defined by Doran [67, Sec. 7], and

Mills, Robbins and Rumsey [114, Sec. 3] (see also Robbins [133, p. 16]). The singly-refined

case of this result was obtained previously by Razumov, Stroganov and Zinn-Justin [132,

Sec. 5.5]. (Note, however, that no general bijection is currently known between ASM(n) and

the set of totally symmetric self-complementary plane partitions in a 2n× 2n× 2n box, and

that no statistics for totally symmetric self-complementary plane partitions are currently

known which have the same enumerative behaviour as the number of generalized inversions

or the number of −1’s in an ASM.)

It follows that certain known results for totally symmetric self-complementary plane par-

titions, or obtained while studying these objects, correspond to results involving the ASM

generating functions Zopp
n (1, 1; z1, z2) or Zn(1, 1; z), or the ASM numbers Aopp

n,k1,k2
, An,k or An.

For example, for Zopp
n (1, 1; z1, z2), Zn(1, 1; z) or An, Pfaffian expressions follow from results

of Ishikawa [87, Thms. 1.2 & 1.4, & Sec. 7] and Stembridge [143, Thm. 8.3], constant-term

expressions follow from results of Ishikawa [87, Sec. 8], Krattenthaler [95, Thm.] and Zeil-

berger [156], [157, Sublems. 1.1 & 1.2], and integral expressions (which can easily be converted

to constant-term expressions) follow from results of Fonseca and Zinn-Justin [81, Eqs. (4.9)

& (4.14)] and Zinn-Justin and Di Francesco [162, Eqs. (37) & (39)]. Note that many of these

results are expressed in terms of certain triangles of positive integers (specifically, monotone

or Gog triangles for ASMs, and Magog triangles for totally symmetric self-complementary

plane partitions), or closely related integer arrays. Also, many such results are stated in

more general forms which contain additional parameters associated with certain entries of

such arrays being prescribed to take certain values, or being bounded by certain values.
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For the case of adjacent-boundary doubly-refined ASM enumeration, it has been conjec-

tured by Cheballah [37, Conj. 4.3.1] that Aadj
n,k1,k2

equals the number of totally symmetric

self-complementary plane partitions in a 2n×2n×2n box for which a certain pair of statistics

have values k1 and k2.

For further information, and related results or conjectures, regarding totally symmetric

self-complementary plane partitions, see, for example, Andrews [4], Ayyer, Cori and Gouyou-

Beauchamps [11], Bressoud [24, Sec. 6.2], Bressoud and Propp [27], Biane and Cheballah [19],

Cheballah [37], Cheballah and Biane [38], Di Francesco [60, 61], Doran [67], Fonseca [80,

Secs. 3–4], Fonseca and Zinn-Justin [81], Ishikawa [87, 88], Krattenthaler [95], Mills, Robbins

and Rumsey [114], Robbins [133], Stanley [141], Stembridge [143, Sec. 8], Striker [144, 146],

Zeilberger [156, 157], Zinn-Justin [161], and Zinn-Justin and Di Francesco [162].

3.14. Loop models. Numbers of certain ASMs, or plane partitions, have been found to

appear also as appropriately normalized entries of particular eigenvectors (or sums of such

entries, or norms of such eigenvectors) associated with certain cases of integrable loop models

(or associated quantum spin chains). A wide variety of such cases are known, and these often

involve ASMs with prescribed link patterns of associated fully packed loop configurations,

with prescribed values of some of the statistics of (2)-(3) or of related statistics or parameters,

or subject to invariance under certain symmetry operations.

Of the many papers which study the confirmed or conjectured appearances of numbers of

ASMs in such contexts, a few examples are Batchelor, de Gier and Nienhuis [13], Cantini and

Sportiello [34, 35], Di Francesco [58, 59], Di Francesco and Zinn-Justin [65], Pasquier [122],

Razumov and Stroganov [125, 126, 128], and Stroganov [147]. For reviews of some of these

matters, see, for example, de Gier [54, 55, 56], or Zinn-Justin [161].

3.15. ASMs invariant under symmetry operations. This paper is focused on the enu-

meration of ASMs with prescribed values of the bulk statistics (2) and boundary statis-

tics (3), but with no other conditions applied. However, other studies have focused on the

enumeration of ASMs which are invariant under certain symmetry operations, or subject

to related conditions, and which in some cases also have prescribed values of some of the

statistics of (2)-(3). For results of this type (some of which remain conjectural), see, for ex-

ample, Aval and Duchon [8, 9], Bousquet-Mélou and Habsieger [23], Bressoud [24, Sec. 6.1],

Kuperberg [101], Okada [121], Robbins [133, 134], Razumov and Stroganov [127, 129, 130],

Stanley [140], and Stroganov [149, 151].

Numbers of certain such ASMs have also been related (again, in some cases, only con-

jecturally) to numbers of certain descending plane partitions (see, for example, de Gier,

Pyatov and Zinn-Justin [57, Prop. 3, first equation], and Mills, Robbins and Rumsey [113,

Conj. 3S]), numbers of certain totally-symmetric self-complementary plane partitions (see,

for example, Ishikawa [87, 88], and Mills, Robbins and Rumsey [114, Conjs. 4 & 6]), or

appropriately normalized entries of eigenvectors associated with certain cases of loop models

(see, for example, the references given in Section 3.14).
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4. Main results

In this section, the main result of this paper (Theorem 1) is stated, and some of its con-

sequences (Corollaries 2–11) are derived and discussed. The proof of Theorem 1 is deferred

to Section 5.6.

In particular, new results are given for the quadruply-refined ASM generating function

(Theorem 1 and Corollary 10), triply-refined ASM generating function (Corollaries 2, 4

and 11), adjacent-boundary doubly-refined ASM generating functions (Corollaries 3, 6 and 7),

singly-refined ASM generating function (Corollary 8), and unrefined ASM generating func-

tion (Corollary 9), and a previously-known result is obtained for the opposite-boundary

doubly-refined ASM generating function (Corollary 5).

4.1. Main theorem. The primary result of this paper is as follows.

Theorem 1. The quadruply-refined ASM generating function satisfies

y(z4−z2)(z1−z3)Z
quad
n (x, y; z1, z2, z3, z4)Zn−2(x, y) =

(
(z1−1)(z2−1)−yz1z2

)(
(z3−1)(z4−1)−yz3z4

)
Zadj

n−1(x, y; z4, z1)Z
adj
n−1(x, y; z2, z3) −

(
x(z4−1)(z1−1)−y

)(
x(z2−1)(z3−1)−y

)
z1z2z3z4 Z̃

adj
n−1(x, y; z1, z2) Z̃

adj
n−1(x, y; z3, z4) −

(z2−1)(z3−1)
(
(z4−1)(z1−1)−yz4z1

)
Zadj

n−1(x, y; z4, z1)Zn−2(x, y) +

(z3−1)(z4−1)
(
x(z1−1)(z2−1)−y

)
z1z2 (xz3z4)

n−1 Z̃adj
n−1(x, y; z1, z2)Zn−2(x, y) −

(z4−1)(z1−1)
(
(z2−1)(z3−1)−yz2z3

)
Zadj

n−1(x, y; z2, z3)Zn−2(x, y) +

(z1−1)(z2−1)
(
x(z3−1)(z4−1)−y

)
z3z4 (xz1z2)

n−1 Z̃adj
n−1(x, y; z3, z4)Zn−2(x, y) +

(z1−1)(z2−1)(z3−1)(z4−1)
(
1− (x2z1z2z3z4)

n−1
)
Zn−2(x, y)

2. (81)

The identity (81) holds for each n ≥ 3. Furthermore, if Z0(x, y) is taken to be 1, then

it can be seen, using Zadj
1 (x, y; z1, z2) = Z̃adj

1 (x, y; z1, z2) = 1 and Zquad
2 (x, y; z1, z2, z3, z4) =

1 + xz1z2z3z4 (from (8)–(10)), that (81) also holds for n = 2.

The proof of (81), which will be given in Section 5.6, will involve using a relation between

a certain generalized ASM generating function and the partition function of the six-vertex

model with DWBC, and then combining the Desnanot–Jacobi determinant identity with the

Izergin–Korepin formula for this partition function.

An alternative form of (81) will be obtained, and some further related results will be

discussed, in Section 5.7.

It can be seen that (81) enables Zquad
n (x, y; z1, z2, z3, z4) to be obtained recursively, using

the initial conditions (from (8)) Zquad
1 (x, y; z1, z2, z3, z4) = 1 and Zquad

2 (x, y; z1, z2, z3, z4) =

1 + xz1z2z3z4, and the definitions (from (9)–(10)) Zadj
n (x, y; z1, z2) = Zquad

n (x, y; z1, 1, 1, z2),

Z̃adj
n (x, y; z1, z2) = Zquad

n (x, y; z1, z2, 1, 1) and Zn(x, y) = Zquad
n (x, y; 1, 1, 1, 1). Accordingly,

in this sense, Zquad
n (x, y; z1, z2, z3, z4), and all of the ASM generating functions of (9)–(10)

which are defined in terms of Zquad
n (x, y; z1, z2, z3, z4), are determined by (81).
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Note, however, that if the generating functions are computed recursively in this way, then,

for each successive n, Zquad
n (x, y; z1, z2, z3, z4) should first be computed for arbitrary z1, z2, z3,

and z4, with the factor (z1−z3)(z4−z2) being explicitly cancelled from both sides of (81), so

that division by zero is avoided when boundary parameters need to be set to 1 in subsequent

computations. Alternatively, certain expressions in which this cancellation has effectively

been done, will be given in Section 4.2.

By replacing z2 and z4 by 1
z2

and 1
z4

respectively, Theorem 1 can be restated for the

alternative quadruply-refined ASM generating function of (10) as

y(z1−z3)(z2−z4) Z̃
quad
n (x, y; z1, z2, z3, z4)Zn−2(x, y) =

(
(z1−1)(z2−1)+yz1

)(
(z3−1)(z4−1)+yz3

)
(z2z4)

n−1 ×

Zadj
n−1(x, y;

1
z4
, z1)Z

adj
n−1(x, y;

1
z2
, z3) −

(
x(z4−1)(z1−1)+yz4

)(
x(z2−1)(z3−1)+yz2

)
z1z3(z2z4)

n−2 ×

Z̃adj
n−1(x, y; z1,

1
z2
) Z̃adj

n−1(x, y; z3,
1
z4
) −

(z2−1)(z3−1)
(
(z4−1)(z1−1)+yz1

)
(z2z4)

n−1 Zadj
n−1(x, y;

1
z4
, z1)Zn−2(x, y) +

(z3−1)(z4−1)
(
x(z1−1)(z2−1)+yz2

)
z1z

n−2
2 (xz3)

n−1 Z̃adj
n−1(x, y; z1,

1
z2
)Zn−2(x, y) −

(z4−1)(z1−1)
(
(z2−1)(z3−1)+yz3

)
(z2z4)

n−1 Zadj
n−1(x, y;

1
z2
, z3)Zn−2(x, y) +

(z1−1)(z2−1)
(
x(z3−1)(z4−1)+yz4

)
z3z

n−2
4 (xz1)

n−1 Z̃adj
n−1(x, y; z3,

1
z4
)Zn−2(x, y) +

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z2z4)

n−1 − (x2z1z3)
n−1
)
Zn−2(x, y)

2. (82)

4.2. Corollaries for arbitrary bulk parameters x and y. In this section, some conse-

quences of Theorem 1, for the case in which the bulk parameters x and y remain arbitrary, are

derived. These results are obtained from (81) using only definitions and elementary proper-

ties of ASM generating functions from Section 2.2, and the initial conditions (from (8)–(10))

Zadj
1 (x, y; z1, z2) = Z̃adj

1 (x, y; z1, z2) = 1 and Zadj
2 (x, y; z1, z2) = Z̃adj

2 (x, y; z1, z2) = 1 + xz1z2.

In particular, most of the results are obtained by setting boundary parameters to 1, using (11)

for the corresponding specializations, and, in some cases, solving recursion relations.

Alternative forms of some of the results of this section will be given in Section 5.7.

Corollary 2. The triply-refined ASM generating function satisfies

(z2−z1)(z3−1)Ztri
n (x, y; z1, z2, z3)Zn−2(x, y) =
(
(z2−1)(z3−1)−yz2z3

)
z1 Z

adj
n−1(x, y; z1, z3)Zn−1(x, y; z2) −

(
x(z1−1)(z3−1)−y

)
z1z2z3 Z̃

adj
n−1(x, y; z2, z3)Zn−1(x, y; z1) −

(z1−1)(z3−1) z2 Zn−1(x, y; z2)Zn−2(x, y) +

(z2−1)(z3−1) z1 (xz2z3)
n−1Zn−1(x, y; z1)Zn−2(x, y). (83)

Proof. Set z2 = 1 in (81) (and then relabel z3 as z2 and z4 as z3). �
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Corollary 3. The adjacent-boundary doubly-refined ASM generating functions satisfy the

recursion relations

(z1−1)(z2−1)Zadj
n (x, y; z1, z2)Zn−2(x, y) = yz1z2 Z

adj
n−1(x, y; z1, z2)Zn−1(x, y) +

(
x(z1−1)(z2−1)−y

)
z1z2 Zn−1(x, y; z1)Zn−1(x, y; z2) +

(z1−1)(z2−1)Zn−1(x, y)Zn−2(x, y), (84)

(z1−1)(z2−1) Z̃adj
n (x, y; z1, z2)Zn−2(x, y) = yz1z2 Z̃

adj
n−1(x, y; z1, z2)Zn−1(x, y) +(

(z1−1)(z2−1)−yz1z2
)
Zn−1(x, y; z1)Zn−1(x, y; z2) +

(z1−1)(z2−1) (xz1z2)
n−1Zn−1(x, y)Zn−2(x, y). (85)

Proof. To obtain (84), set z2 = 1 in (83) (and then relabel z3 as z2). To obtain (85), set

z1 = 1 in (83) (and then relabel z2 as z1 and z3 as z2). �

Note that, if Z0(x, y) is taken to be 1, then (84) and (85) hold for all n ≥ 2.

Corollary 4. The triply-refined ASM generating function also satisfies

y(z2−z1)z3 Z
tri
n (x, y; z1, z2, z3)Zn−1(x, y) =

(z1−1)
(
(z2−1)(z3−1)−yz2z3

)
Zadj

n (x, y; z1, z3)Zn−1(x, y; z2) −

(z2−1)
(
x(z1−1)(z3−1)−y

)
z1z3 Z̃

adj
n (x, y; z2, z3)Zn−1(x, y; z1) −

(z1−1)(z2−1)(z3−1)Zn−1(x, y; z2)Zn−1(x, y) +

(z1−1)(z2−1)(z3−1) z1z
n−1
2 (xz3)

n Zn−1(x, y; z1)Zn−1(x, y). (86)

Proof. Use (84)–(85) to replace Zadj
n−1(x, y; z1, z3) and Z̃adj

n−1(x, y; z2, z3) in (83) by terms which

instead contain Zadj
n (x, y; z1, z3) and Z̃adj

n (x, y; z2, z3), and then cancel an overall factor which

contains a term z3 − 1. �

Corollary 5. The opposite-boundary doubly-refined ASM generating function satisfies

(z1−z2)Z
opp
n (x, y; z1, z2)Zn−1(x, y) = (z1−1) z2 Zn(x, y; z1)Zn−1(x, y; z2) −

z1 (z2−1)Zn−1(x, y; z1)Zn(x, y; z2). (87)

Proof. Set z3 = 1 in (86). �

Note that Corollary 5 is a previously-known result, as already given in (62) and discussed

in Section 3.4.
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Corollary 6. The adjacent-boundary doubly-refined ASM generating functions can be ex-

pressed as

Zadj
n (x, y; z1, z2) = Zn−1(x, y)

(
1 +

n−1∑

i=1

(
y z1 z2

(z1−1)(z2−1)

)n−i

×

(
1 +

(x(z1−1)(z2−1)−y)Zi(x, y; z1)Zi(x, y; z2)

y Zi−1(x, y)Zi(x, y)

))
, (88)

Z̃adj
n (x, y; z1, z2) = Zn−1(x, y)

(
(xz1z2)

n−1 +

n−1∑

i=1

(
y

(z1−1)(z2−1)

)n−i

×

(
xi−1(z1z2)

n−1 +
(z1z2)

n−i−1((z1−1)(z2−1)−yz1z2)Zi(x, y; z1)Zi(x, y; z2)

y Zi−1(x, y)Zi(x, y)

))
, (89)

where, in the sums over i, Z0(x, y) is taken to be 1.

Proof. It can be checked straightforwardly (again taking Z0(x, y) = 1), that the initial con-

ditions Zadj
1 (x, y; z1, z2) = Z̃adj

1 (x, y; z1, z2) = 1 and recursion relations (84)–(85) are satisfied

by (88)–(89). �

Corollary 7. The two types of adjacent-boundary doubly-refined ASM generating function

are related by

((z1−1)(z2−1)−yz1z2)Z
adj
n (x, y; z1, z2)− (x(z1−1)(z2−1)−y) z1z2 Z̃

adj
n (x, y; z1, z2)

= (z1−1)(z2−1)
(
1− (xz1z2)

n
)
Zn−1(x, y). (90)

Proof. This can be obtained directly from (88)–(89). Alternatively, it can be obtained

from (84)–(85), by showing that ((z1 − 1)(z2 − 1)− yz1z2)Z
adj
n (x, y; z1, z2) − (z1 − 1)(z2 −

1)Zn−1(x, y) and (x(z1−1)(z2−1)−y) z1z2 Z̃
adj
n (x, y; z1, z2)− (z1−1)(z2−1)(xz1z2)

n Zn−1(x, y)

satisfy the same recursion relation and initial condition. �

Note that, from (12), the two types of adjacent-boundary doubly-refined ASM generating

function are also related by

Zadj
n (x, y; z1, z2) = xn(n−1)/2 (z1z2)

n−1 Z̃adj
n

(
1
x
, y
x
; 1
z1
, 1
z2

)
. (91)

Combining (90) and (91), it follows that the adjacent-boundary doubly-refined ASM gener-

ating function satisfies

((z1−1)(z2−1)−yz1z2)Z
adj
n (x, y; z1, z2) =

(x(z1−1)(z2−1)−y) (z1z2)
n xn(n−1)/2 Zadj

n ( 1
x
, y
x
; 1
z1
, 1
z2
) +

(z1−1)(z2−1)
(
1− (xz1z2)

n
)
Zn−1(x, y). (92)

By using (81) and (90), together with identities from (12), it is also possible to ob-

tain a certain identity which involves Zquad
n (x, y; z1, z2, z3, z4) and Zquad

n (x, y; z3, z2, z1, z4) (or

Zquad
n (x, y; z1, z2, z3, z4) and Zquad

n (x, y; z1, z4, z3, z2)). A form of this identity will be given

in (143).
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Corollary 8. The boundary parameter coefficients in the singly-refined ASM generating

function, as defined in (14), satisfy

Zn(x, y)k = Zn−1(x, y) δk,0 + Zn−1(x, y)

k−1∑

i=0

(
yi+1

(
k−1

i

)(
n−1

i+1

)
+

yi
k−i−1∑

j1=0

n−i−2∑

j2=0

Zn−i−1(x, y)j1 Zn−i−1(x, y)j2
Zn−i−1(x, y)Zn−i−2(x, y)

(
x

(
k−j1−2

i−1

)(
n−j2−2

i

)
−

y

(
k−j1−1

i

)(
n−j2−1

i+1

)))
, (93)

where Z0(x, y), if it appears, is taken to be 1.

Proof. Expanding the factors 1/((z1 − 1)(z2 − 1))n−i in (88) as binomial series, equating

coefficients of zk11 zk22 on both sides of (88), and using the definitions (14), gives

Zadj
n (x, y)k1,k2 = Zn−1(x, y) δk1,0 δk2,0 + Zn−1(x, y)

min(k1,k2)−1∑

i=0

(
yi+1

(
k1−1

i

)(
k2−1

i

)
+

yi
k1−i−1∑

j1=0

k2−i−1∑

j2=0

Zn−i−1(x, y)j1 Zn−i−1(x, y)j2
Zn−i−1(x, y)Zn−i−2(x, y)

(
x

(
k1−j1−2

i−1

)(
k2−j2−2

i−1

)
−

y

(
k1−j1−1

i

)(
k2−j2−1

i

)))
. (94)

Summing (94) over k2, using a standard binomial coefficient summation identity, and rela-

belling k1 as k, then gives (93). �

Corollary 9. The unrefined ASM generating function satisfies

Zn(x, y) = Zn−1(x, y)

(
1 +

n−2∑

i=0

(
yi+1

(
n−1

i+1

)2

+

xyi
(∑n−i−2

j=0

(
n−j−2

i

)
Zn−i−1(x, y)j

)2
− yi+1

(∑n−i−2
j=0

(
n−j−1
i+1

)
Zn−i−1(x, y)j

)2

Zn−i−1(x, y)Zn−i−2(x, y)

))
, (95)

where Z0(x, y) is taken to be 1.

Proof. Sum (93) over k, and use a standard binomial coefficient summation identity. �

Note that various other expressions for Zn(x, y)k and Zn(x, y), which provide alternatives

to (93) and (95), can be obtained by taking the limits z1 → 1 and z2 → 1 of (88) in ways

somewhat different from those used in Corollaries 8 and 9.

As observed in Section 4.1, the main result (81) enables all of the ASM generating functions

of (7), (9) and (10) to be computed recursively. The corollaries of this section essentially
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comprise special cases of (81) which apply to specific ASM generating functions, and can

alternatively be used for their computation.

For example, it can be seen that (93) and (95) give Zn(x, y)k and Zn(x, y) in terms of

Zi(x, y)j and Zi(x, y) for i = 1, . . . , n − 1, and thereby enable the singly-refined and unre-

fined ASM generating functions to be computed recursively. The adjacent-boundary doubly-

refined, opposite-boundary doubly-refined, triply-refined and quadruply-refined ASM gener-

ating functions can then be computed using (88)–(89), (87), (83) or (86), and (81), respec-

tively.

Note that the opposite-boundary doubly-refined, singly-refined and unrefined ASM gener-

ating functions can instead be computed using the determinant formulae (54), (56) and (57).

4.3. Corollaries for bulk parameters x = y = 1. In this section, some consequences of

Theorem 1, for the case in which the bulk parameters x and y are both set to 1, are derived.

In contrast to the consequences of Theorem 1 given in Section 4.2 for the case of arbitrary x

and y, which were obtained essentially using only (81), the consequences in this section are

obtained using (81) together with the nontrivial relation (45) between the adjacent-boundary

and opposite-boundary doubly-refined ASM generating functions at x = y = 1.

Corollary 10. The alternative quadruply-refined ASM generating function at x = y = 1

satisfies

(z4z1−z4+1)(z1z2−z1+1)(z2z3−z2+1)(z3z4−z3+1) Z̃quad
n (1, 1; z1, z2, z3, z4) =

z1 z2 z3 z4
An−2 (z1−z3)(z2−z4)

×

(
(z1z2−z1+1)(z1z2−z2+1)(z3z4−z3+1)(z3z4−z4+1)Z

opp
n−1(1, 1; z4, z1)Z

opp
n−1(1, 1; z2, z3) −

(z4z1−z4+1)(z4z1−z1+1)(z2z3−z2+1)(z2z3−z3+1)Zopp
n−1(1, 1; z1, z2)Z

opp
n−1(1, 1; z3, z4)

)
+

(z2−1)(z3−1)(z1z2−z1+1)(z3z4−z3+1)z4z1z
n−1
2 Zopp

n−1(1, 1; z4, z1) +

(z3−1)(z4−1)(z2z3−z2+1)(z4z1−z4+1)z1z2z
n−1
3 Zopp

n−1(1, 1; z1, z2) +

(z4−1)(z1−1)(z3z4−z3+1)(z1z2−z1+1)z2z3z
n−1
4 Zopp

n−1(1, 1; z2, z3) +

(z1−1)(z2−1)(z4z1−z4+1)(z2z3−z2+1)z3z4z
n−1
1 Zopp

n−1(1, 1; z3, z4) +

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z1z2−z1+1)(z3z4−z3+1)(z2z4)

n−1 +

(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1
)
An−2. (96)

Proof. Setting x = y = 1 in (82), and using (91), gives

(z1−z3)(z2−z4)Z̃
quad
n (1, 1; z1, z2, z3, z4)An−2 =

(z1z2−z2+1)(z3z4−z4+1)(z2z4)
n−1 Zadj

n−1(1, 1;
1
z4
, z1)Z

adj
n−1(1, 1;

1
z2
, z3) −

(z4z1−z1+1)(z2z3−z3+1)(z1z3)
n−1 Zadj

n−1(1, 1;
1
z1
, z2)Z

adj
n−1(1, 1;

1
z3
, z4) −

(z2−1)(z3−1)(z4z1−z4+1)(z2z4)
n−1 Zadj

n−1(1, 1;
1
z4
, z1)An−2 +
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(z3−1)(z4−1)(z1z2−z1+1)(z1z3)
n−1Zadj

n−1(1, 1;
1
z1
, z2)An−2 −

(z4−1)(z1−1)(z2z3−z2+1)(z2z4)
n−1 Zadj

n−1(1, 1;
1
z2
, z3)An−2 +

(z1−1)(z2−1)(z3z4−z3+1)(z1z3)
n−1 Zadj

n−1(1, 1;
1
z3
, z4)An−2 +

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z2z4)

n−1 − (z1z3)
n−1
)
A2

n−2. (97)

Multiplying both sides of (97) by (z4z1−z4+1)(z1z2−z1+1)(z2z3−z2+1)(z3z4−z3+1)/((z1−z3)(z2−

z4)An−2), and using (45), in the form (z1z2−z1+1)z
n−2
1 Zadj

n−1(1, 1;
1
z1
, z2) = z2Z

opp
n−1(1, 1; z1, z2)+

zn−2
1 (z1−1)(z2−1)An−2, then gives (96). �

Corollary 11. The triply-refined ASM generating function at x = y = 1 satisfies

(z1z3−z3+1)(z2z3−z2+1)zn−1
3 Ztri

n (1, 1; z1, z2,
1
z3
) =

z1 z3
An−2 (z1−z2)(z3−1)

(
(z1z3−z1+1)(z1z3−z3+1)z2Zn−1(1, 1; z1)Z

opp
n−1(1, 1; z2, z3) −

(z2z3−z2+1)(z2z3−z3+1)z1Zn−1(1, 1; z2)Z
opp
n−1(1, 1; z1, z3)

)
+

(z2−1)(z3−1)(z1z3−z3+1)z1z
n−1
2 Zn−1(1, 1; z1) +

(z1−1)(z3−1)(z2z3−z2+1)zn−1
3 Zn−1(1, 1; z2). (98)

Proof. Set z2 = 1 in (96) (and then relabel z3 as z2 and z4 as z3). �

It can be seen that (96) and (98) provide alternative formulae to (49)–(51) for the quad-

ruply- and triply-refined ASM generating functions at x = y = 1. In fact, (96) and (98)

differ from (51) and (50), respectively, only in the first terms on each RHS. It can also be

seen that the last five terms on the RHS of (96) could be replaced by the last five terms on

the RHS of (49).

5. Proofs

In this section, proofs of Theorem 1, and of several of the results of Section 3, are given.

Preliminary results which are needed for these proofs are obtained or stated in Sections 5.1–

5.5, while the main steps of the proofs are given in Sections 5.6 and 5.8–5.10. In Section 5.7,

alternative forms of certain results of Section 4, and some further results, are discussed.

5.1. A generalized ASM generating function. In this section, a generating function

which generalizes the quadruply-refined ASM generating function is introduced, and some

of its elementary properties are identified. This generating function will be shown, in Sec-

tion 5.3, to be proportional to a certain case of the partition function of the six-vertex model

with DWBC.

The generalized ASM generating function involves the six statistics of (2)–(3), together

with four further statistics associated with the entries in the corners of an ASM, and is
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defined, for indeterminates x, y, z1, z2, z3, z4, z41, z12, z23 and z34, as

Zgen
n (x, y; z1, z2, z3, z4; z41, z12, z23, z34) =

∑

A∈ASM(n)

xν(A) yµ(A) z
ρT(A)
1 z

ρR(A)
2 z

ρB(A)
3 z

ρL(A)
4 z 1−A11

41 z 1−A1n
12 z 1−Ann

23 z 1−An1
34 . (99)

For example, for n = 3, the function is

Zgen
3 (x, y; z1, z2, z3, z4; z41, z12, z23, z34) = z12 z34 + x z1 z4 z41 z12 z34 +

x z2 z3 z12 z23 z34 + x2 z1 z2 z
2
3 z

2
4 z41 z12 z23 + x2 z21 z

2
2 z3 z4 z41 z23 z34 +

x3 z21 z
2
2 z

2
3 z

2
4 z41 z23 + x y z1 z2 z3 z4 z41 z12 z23 z34, (100)

where the terms are written in an order which corresponds to that used in (1).

It can be seen immediately that the quadruply-refined ASM generating function is

Zquad
n (x, y; z1, z2, z3, z4) = Zgen

n (x, y; z1, z2, z3, z4; 1, 1, 1, 1). (101)

By acting on ASM(n) with transposition or anticlockwise quarter-turn rotation, and us-

ing (6), it follows that

Zgen
n (x, y; z1, z2, z3, z4; z41, z12, z23, z34) = Zgen

n (x, y; z4, z3, z2, z1; z41, z34, z23, z12)

= xn(n−1)/2 (z1z2z3z4)
n−1Zgen

n

(
1
x
, y
x
; 1
z2
, 1
z3
, 1
z4
, 1
z1
; z12, z23, z34, z41

)
. (102)

The properties of ASMs with a 1 in the top-left corner, as outlined in Section 2.1, imply

that

Zgen
n (x, y; z1, z2, z3, z4; 0, z12, z23, z34) = Zgen

n (x, y; 0, z2, z3, z4; z41, z12, z23, z34)

= z12 z34 Z
gen
n−1(x, y; 1, z2, z3, 1; 1, 1, z23, 1), (103)

and the fact that an ASM cannot contain a 1 in both its top-left and top-right corner, implies

that

Zgen
n (x, y; z1, z2, z3, z4; 0, 0, z23, z34) = 0. (104)

It can be seen from the definition (99) that Zgen
n (x, y; z1, z2, z3, z4; z41, z12, z23, z34) is linear

in z41, z12, z23 and z34. Therefore, using interpolation for these parameters at 0 and 1, it

follows that

Zgen
n (x, y; z1, z2, z3, z4; z41, z12, z23, z34) =
∑

i1,i2,i3,i4∈{0,1}

(1− z41)
1−i1 z i1

41 (1− z12)
1−i2 z i2

12 (1− z23)
1−i3 z i3

23 (1− z34)
1−i4 z i4

34 ×

Zgen
n (x, y; z1, z2, z3, z4; i1, i2, i3, i3). (105)

Applying cases of (9)–(10) and (101)–(104) to (105) (as a result of which, for exam-

ple, (102) and (104) imply that nine of the sixteen terms on the RHS of (105) vanish, while (9)

and (101)–(103) give Zgen
n (x, y; z1, z2, z3, z4; 0, 1, 0, 1) = Zn−2(x, y)), it now follows that the
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generalized ASM generating function can be expressed entirely in terms of quadruply-refined,

adjacent-boundary doubly-refined and unrefined ASM generating functions as

Zgen
n (x, y; z1, z2, z3, z4; z41, z12, z23, z34) = z41 z12 z23 z34 Z

quad
n (x, y; z1, z2, z3, z4) +

z41 z12 (1−z23) z34 Z
adj
n−1(x, y; z4, z1) +

z41 z12 z23 (1−z34) z1z2 (xz3z4)
n−1 Z̃adj

n−1(x, y; z1, z2) +

(1−z41) z12 z23 z34 Z
adj
n−1(x, y; z2, z3) +

z41 (1−z12) z23 z34 z3z4 (xz1z2)
n−1 Z̃adj

n−1(x, y; z3, z4) +

(1−z41) z12 (1−z23) z34 Zn−2(x, y) +

z41 (1−z12) z23 (1−z34) x
2n−3 (z1z2z3z4)

n−1 Zn−2(x, y). (106)

Some special cases of (106), which will be used in Section 5.6, are

Zgen
n (x, y; z1, 1, 1, z2; z12, 1, 1, 1) = Zgen

n (x, y; 1, z1, z2, 1; 1, 1, z12, 1)

= z12 Z
adj
n (x, y; z1, z2) + (1−z12)Zn−1(x, y),

Zgen
n (x, y; z1, z2, 1, 1; 1, z12, 1, 1) = Zgen

n (x, y; 1, 1, z1, z2; 1, 1, 1, z12)

= z12 Z̃
adj
n (x, y; z1, z2) + (1−z12) (xz1z2)

n−1 Zn−1(x, y). (107)

5.2. The bijection between ASMs and configurations of the six-vertex model with

DWBC. In this section, the set of configurations of the six-vertex model on an n× n grid

with DWBC is described, and the details of a natural bijection between this set and ASM(n)

are summarized. This is standard material, with similar accounts having been given, for

example, by Behrend, Di Francesco and Zinn-Justin [16, Secs. 2.1 & 3.1], [17, Sec. 5.1].

The six-vertex, or square ice, model is a much-studied integrable statistical mechanical

model (see, for example, Baxter [14, Chaps. 8 & 9] for further information and references),

with DWBC for the model having been introduced and first studied by Korepin [93]. The

bijection between ASMs and configurations of the model with DWBC was first discussed

by Elkies, Kuperberg, Larsen and Propp [70, Sec. 7], with the details having mostly been

observed previously, but using different terminology, by Robbins and Rumsey [135, pp. 179–

180]. There exist closely-related bijections between ASMs and certain sets of osculating

lattice paths (see Section 3.11 for references), and between ASMs and certain fully-packed

loop configurations (see, for example, Propp [123, Sec. 7]).

Let Gn be the n×n undirected grid with vertex set {(i, j) | i, j = 0, . . . , n+1}\{(0, 0), (0, n+

1), (n+ 1, 0), (n+ 1, n+ 1)}, where (i, j) is taken to be in the ith row from the top and jth

column from the left, and for which there are horizontal edges between (i, j) and (i, j ± 1),

and vertical edges between (i, j) and (i ± 1, j), for each i, j = 1, . . . , n. This grid is shown

in Figure 1. Each vertex or edge of Gn can be described as either internal or external, i.e.,

the n2 vertices of degree 4 are internal, the remaining 4n vertices of degree 1 are external,

the 2n(n− 1) edges which connect two internal vertices are internal, and the remaining 4n

edges are external.
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• • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • •
(0,1) (0,n)

(n+1,1) (n+1,n)

(1,0)

(n,0) (n,n+1)

(1,n+1)
(1,1) (1,n)

(n,n)(n,1)

· · ·

...

· · ·

...

Figure 1. The grid Gn.

A configuration of the six-vertex model on Gn with DWBC is an assignment of arrows to

the edges of Gn such that the arrows on the external edges on the upper, right, lower and left

boundaries of Gn are all directed upward, leftward, downward and rightward, respectively,

while the arrows on the four edges incident to any internal vertex satisfy the condition that

two point towards and two point away from the vertex.

Now define 6VDW(n) to be the set of all configurations of the six-vertex model on Gn with

DWBC. For example,

6VDW(3) =
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. (108)

In an element of 6VDW(n), there are six possible configurations of arrows on the four

edges incident to an internal vertex of Gn. These so-called vertex configurations, are shown

in Figure 2, where the numbers 1, . . . , 6 will be used to label the types, as indicated.

• • • • • •

(1)

u

u

u u

(2)

u

u

u u

(3)

u

u

u u

(4)

u

u
u u

(5)

u

u

u u

(6)

u

u

u u

Figure 2. The possible arrow configurations on edges incident to an internal vertex.

For C ∈ 6VDW(n), let Cij ∈ {1, . . . , 6} denote the type of vertex configuration in C

at internal vertex (i, j) of Gn, and let N(k)(C), N row i
(k) (C), N col j

(k) (C) and N ij
(k)(C) denote

the numbers of type-k vertex configurations in C in the whole of Gn, in row i of Gn, in

column j of Gn, or at vertex (i, j) of Gn, respectively. Thus, for example, N ij
(k)(C) = δCij ,k,

and N(k)(C) = |{(i, j) | 1 ≤ i, j ≤ n, Cij = k}| =
∑n

i,j=1N
ij
(k)(C).
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It can be shown easily that, for any C ∈ 6VDW(n),

N(1)(C) = N(2)(C), N(3)(C) = N(4)(C), N(5)(C) = N(6)(C) + n, (109)

N row 1
(5) (C) = N coln

(5) (C) = N rown
(5) (C) = N col 1

(5) (C) = 1. (110)

(See, for example, Bressoud [24, p. 228], [25, p. 290] for a discussion of the first two equations

of (109).) It can also be seen that, for any C ∈ 6VDW(n) and 1 ≤ i, j ≤ n,

C1j ∈ {1, 3, 5}, Cin ∈ {2, 3, 5}, Cnj ∈ {2, 4, 5}, Ci1 ∈ {1, 4, 5}, (111)

and therefore that

C11 ∈ {1, 5}, C1n ∈ {3, 5}, Cnn ∈ {2, 5}, Cn1 ∈ {4, 5}. (112)

It can be shown straightforwardly that there is a natural bijection between ASM(n) and

6VDW(n), and that, for each A ∈ ASM(n) and C ∈ 6VDW(n) which correspond under this

bijection, the statistics (2)–(3) and (63) satisfy

ν(A) = N(1)(C) (= N(2)(C)), µ(A) = N(6)(C) (= N(5)(C)− n),

ρT(A) = N row 1
(1) (C), ρR(A) = N coln

(2) (C), ρB(A) = N rown
(2) (C), ρL(A) = N col 1

(1) (C),

νrow i(A) = N row i
(1) (C) +N row i

(2) (C), νcol j(A) = N col j
(1) (C) +N col j

(2) (C),

µrow i(A) = N row i
(6) (C), µcol j(A) = N col j

(6) (C). (113)

The details of this bijection are as follows. To map A ∈ ASM(n) to C ∈ 6VDW(n), for

each i = 1, . . . , n and j = 0, . . . , n, assign a right or left arrow to the horizontal edge of Gn

between (i, j) and (i, j + 1), according to whether the partial row sum
∑j

j′=1Aij′ is 0 or 1,

respectively. Similarly, for each i = 0, . . . , n and j = 1, . . . , n, assign an upward or downward

arrow to the vertical edge of Gn between (i, j) and (i+1, j), according to whether the partial

column sum
∑i

i′=1Ai′j is 0 or 1, respectively. To map C ∈ 6VDW(n) to A ∈ ASM(n), let

Aij =






1, Cij = 5,

−1, Cij = 6,

0, Cij ∈ {1, 2, 3, 4}.

(114)

The behaviour of the statistics µ, ρT, ρR, ρB and ρR under this bijection can be seen

easily. To obtain the behaviour of the statistics ν, νrow i and νcol j, note that, for each

A ∈ ASM(n) and C ∈ 6VDW(n) which correspond under the bijection, and each 1 ≤ i, j ≤ n,∑i−1
i′=1Ai′j =

∑j
j′=1Aij′ = 0 (or equivalently

∑i
i′=1Ai′j =

∑j−1
j′=1Aij′ = 0) if and only if Cij = 1,

and
∑i−1

i′=1Ai′j =
∑j

j′=1Aij′ = 1 (or equivalently
∑i

i′=1Ai′j =
∑j−1

j′=1Aij′ = 1) if and only if

Cij = 2.

As examples of this bijection, in (1) and (108) the elements of ASM(3) and 6VDW(3) are

listed in an order for which respective elements correspond under the bijection.



MULTIPLY-REFINED ENUMERATION OF ASMs 43

5.3. The partition function of the six-vertex model with DWBC. In this section,

the partition function of the six-vertex model with DWBC is introduced. A relation between

this partition function, for certain assignments of its parameters, and the generalized ASM

generating function (99), for certain assignments of its parameters, is then derived using the

bijection of Section 5.2.

Let a weight W(k)(u, v) be associated with the vertex configuration of type k, where u

and v are so-called spectral parameters.

The partition function for the case of the six-vertex model of relevance here depends on

these weights, and on spectral parameters ui and vj associated with row i and column j

of Gn, for each 1 ≤ i, j ≤ n. Specifically, this partition function is defined as

Z6V
n (u1, . . . , un; v1, . . . , vn) =

∑

C∈6VDW(n)

n∏

i,j=1

W(Cij)(ui, vj). (115)

Let the weights now satisfy

W(1)(u, v) = W(2)(u, v) = a(u, v), W(3)(u, v) = W(4)(u, v) = b(u, v),

W(5)(u, v) = W(6)(u, v) = c(u, v), (116)

for functions a, b and c.

Taking the spectral parameters in (115) to be

u2 = . . . = un−1 = r, v2 = . . . = vn−1 = s, u1 = t1, vn = t2, un = t3, v1 = t4, (117)

for indeterminates r, s and t1, . . . , t4, and using (109)–(112), gives

Z6V
n (t1, r, . . . , r, t3; t4, s, . . . , s, t2) =

∑

C∈6VDW(n)

a(r, s)2N(1)(C) b(r, s)2N(3)(C) c(r, s)2N(6)(C)+n ×

(a(t1,s)
a(r,s)

)N row 1
(1)

(C)−N 11
(1)

(C) ( b(t1,s)
b(r,s)

)N row 1
(3)

(C)−N 1n
(3)

(C) ( c(t1,s)
c(r,s)

)1−N 11
(5)

(C)−N 1n
(5)

(C)
×

(a(r,t2)
a(r,s)

)N coln
(2)

(C)−Nnn
(2)

(C) ( b(r,t2)
b(r,s)

)N col n
(3)

(C)−N 1n
(3)

(C) ( c(r,t2)
c(r,s)

)1−N 1n
(5)

(C)−Nnn
(5)

(C)
×

(a(t3,s)
a(r,s)

)N row n
(2)

(C)−Nnn
(2)

(C) ( b(t3,s)
b(r,s)

)N row n
(4)

(C)−Nn1
(4)

(C) ( c(t3,s)
c(r,s)

)1−Nn1
(5)

(C)−Nnn
(5)

(C)
×

(a(r,t4)
a(r,s)

)N col 1
(1)

(C)−N 11
(1)

(C) ( b(r,t4)
b(r,s)

)N col 1
(4)

(C)−Nn1
(4)

(C) ( c(r,t4)
c(r,s)

)1−N 11
(5)

(C)−Nn1
(5)

(C)
×

(a(t1,t4)
a(r,s)

)N 11
(1)

(C) ( c(t1,t4)
c(r,s)

)N 11
(5)

(C) ( b(t1,t2)
b(r,s)

)N 1n
(3)

(C) ( c(t1,t2)
c(r,s)

)N 1n
(5)

(C)
×

(a(t3,t2)
a(r,s)

)Nnn
(2)

(C) ( c(t3,t2)
c(r,s)

)Nnn
(5)

(C) ( b(t3,t4)
b(r,s)

)Nn1
(4)

(C) ( c(t3,t4)
c(r,s)

)Nn1
(5)

(C)
. (118)
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It can be seen that

N(1)(C) +N(3)(C) +N(6)(C) = n(n−1)
2

, (119)

N row 1
(1) (C) +N row 1

(3) (C) = N coln
(2) (C) +N coln

(3) (C) =

N rown
(2) (C) +N rown

(4) (C) = N col 1
(1) (C) +N col 1

(4) (C) = n− 1, (120)

N 11
(1)(C) +N 11

(5)(C) = N 1n
(3)(C) +N 1n

(5)(C) =

N nn
(2) (C) +N nn

(5) (C) = N n1
(4)(C) +N n1

(5)(C) = 1, (121)

where (119) follows from (109) and
∑6

k=1N(k)(C) = n2, (120) follows from (110)–(111) and∑6
k=1N

row i
(k) (C) =

∑6
k=1N

col j
(k) (C) = n, and (121) follows from (112).

By using (119)–(121) to eliminate N(3)(C), N row1
(3) (C), N coln

(3) (C), N rown
(4) (C), N col 1

(4) (C),

N 11
(5)(C), N 1n

(5)(C),N nn
(5) (C) andN n1

(5)(C) from (118), and then using the bijection of Section 5.2

between ASM(n) and 6VDW(n), the behaviour (113) of the statistics (2)–(3) under this

bijection, and the definition (99) of the generalized ASM generating function, it now follows

that (118) can be written as

Z6V
n (t1, r, . . . , r, t3; t4, s, . . . , s, t2) =

b(r, s)n(n−1) c(r, s)n
( b(t1,s) b(r,t2) b(t3,s) b(r,t4)

b(r,s)4

)n−1 c(t1,t4) c(t1,t2) c(t3,t2) c(t3,t4)
c(t1,s) c(r,t2) c(t3,s) c(r,t4)

×

Zgen
n

((
a(r,s)
b(r,s)

)2
,
(
c(r,s)
b(r,s)

)2
; a(t1,s) b(r,s)

a(r,s) b(t1,s)
, a(r,t2) b(r,s)

a(r,s) b(r,t2)
, a(t3,s) b(r,s)

a(r,s) b(t3,s)
, a(r,t4) b(r,s)

a(r,s) b(r,t4)
; a(r,s) a(t1,t4) c(t1,s) c(r,t4)

a(t1,s)a(r,t4) c(r,s) c(t1,t4)
,

b(r,s) b(t1,t2) c(t1,s) c(r,t2)
b(t1,s) b(r,t2) c(r,s) c(t1,t2)

, a(r,s) a(t3,t2) c(t3,s) c(r,t2)
a(t3,s) a(r,t2) c(r,s) c(t3,t2)

, b(r,s) b(t3,t4) c(t3,s) c(r,t4)
b(t3,s) b(r,t4) c(r,s) c(t3,t4)

)
. (122)

5.4. The Izergin–Korepin determinant formula. In this section, the Izergin–Korepin

formula for the partition function (115), with certain assignments of the weights (116), is

stated.

It was found by Izergin [89, Eq. (5)], using certain results of Korepin [93], that if the

weights (116) satisfy the Yang–Baxter equation (see, for example, Baxter [14, pp. 187–189]),

then the partition function (115) is given by an explicit formula involving the determinant

of a certain n× n matrix.

Let the functions a, b and c in (116) be given by

a(u, v) = u q1/2 − v q−1/2,

b(u, v) = v q1/2 − u q−1/2 = a(v, u),

c(u, v) =
(
q − q−1

)
u1/2 v1/2, (123)

where q is a further indeterminate, often known as the crossing parameter. (Note that q will

be present in many subsequent equations, even though it may not appear explicitly.)

It can be seen that these functions satisfy

a(u, v)2 + b(u, v)2 − c(u, v)2

a(u, v) b(u, v)
= −(q + q−1). (124)
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The fact that the LHS of (124) (which is often denoted as 2∆) is independent of u and v

implies that the six-vertex model weights given by (116) and (123) satisfy the Yang–Baxter

equation (see, for example, Baxter [14, Eq. (9.6.14)]).

The resulting Izergin–Korepin determinant formula is then given by the following result.

Theorem (Izergin). The partition function (115), with weights given by (116) and (123),

satisfies

Z6V
n (u1, . . . , un; v1, . . . , vn) =

∏n
i,j=1 a(ui, vj) b(ui, vj)∏

1≤i<j≤n(ui − uj)(vj − vi)
det

1≤i,j≤n

(
c(ui, vj)

a(ui, vj) b(ui, vj)

)
. (125)

This theorem can be proved by showing that each side of (125) satisfies, and is uniquely de-

termined by, four particular properties. Specifically, each side is symmetric in u1, . . . , un and

in v1, . . . , vn (which can be obtained for the LHS using the Yang–Baxter equation, and is im-

mediate for the RHS), is a polynomial of degree 2n−1 in each of u
1/2
1 , . . . , u

1/2
n , v

1/2
1 , . . . , v

1/2
n ,

satisfies the same recursion relation for cases in which ui = q±1vj for some i and j, and sat-

isfies the same initial condition at n = 1. For further details of this proof, see, for example,

Izergin, Coker and Korepin [90, Sec. 5], Fonseca and Zinn-Justin [81, Sec. B.1], Kuper-

berg [100, Sec. 1], or Zinn-Justin [161, Secs. 2.5.2–2.5.3]. For an alternative proof, see

Bogoliubov, Pronko and Zvonarev [21, Sec. 4].

Note that, although the determinant and the denominator of the prefactor on the RHS

of (125) both vanish if ui = uj or vi = vj for some i 6= j, the RHS has a well-defined limit in

these cases, as a polynomial in u
1/2
1 , . . . , u

1/2
n , v

1/2
1 , . . . , v

1/2
n . Accordingly, it will be valid to

use (125) to derive properties of the partition function for the assignments (117), as will be

done in Section 5.6.

5.5. The Desnanot–Jacobi identity. In this section, the Desnanot–Jacobi determinant

identity is stated, and discussed briefly.

For a square matrix M , let MTL, MTR, MBR, MBL and MC be the submatrices of M

defined in Section 3.2. The Desnanot–Jacobi identity, in the form which will be used here,

can be stated as follows.

Theorem (Desnanot, Jacobi). For any square matrix M ,

detM detMC = detMTL detMBR − detMTR detMBL. (126)

For proofs of (126) using various methods, see, for example, Bressoud [24, Sec. 3.5],

Fulmek [82, Sec. 5.1], Fulmek and Kleber [83], or Zeilberger [159]. Cases of (126) for n× n

matrices M with small values of n were published by Desnanot in 1819 (see Muir [118,

Eqs. (A)–(G), (A′)–(G′), pp. 139–142]). The further attribution to Jacobi is based on the

fact that, for arbitrary n, (126) corresponds to the case m = 2 of the identity, published

by Jacobi in 1834 (see Muir [118, Eq. (XX. 4), p. 208]), that for any n × n matrix M and

any m ≤ n, each m × m minor of the matrix of (n − 1) × (n − 1) minors of M equals the

complementary minor of M multiplied by (detM)m−1. For proofs of the Jacobi identity

using various methods, see, for example, Brualdi and Schneider [29, Sec. 4], Knuth [92,
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Eq. (3.16)], Leclerc [110, Sec. 3.2], Muir [119, Sec. 175], or Turnbull [153, pp. 77–79]. Some

closely related identities will be given in (153) and (154).

For a discussion of alternative forms of (126), and of further determinant identities of

which (126) is a special case, see, for example, Behrend, Di Francesco and Zinn-Justin [17,

Sec. 4].

5.6. Proof of Theorem 1. In this section, the main steps in the proof of Theorem 1

are given. These involve using the relation (122) between the generalized ASM generating

function and the partition function of the six-vertex model with DWBC, the Izergin–Korepin

formula (125), and the Desnanot–Jacobi identity (126).

By applying the Desnanot–Jacobi identity (126) to the matrix
(

c(ui,vj)

a(ui,vj) b(ui,vj)

)

1≤i,j≤n
, and

then applying the Izergin–Korepin formula (125) to each of the six determinants which

appear, it follows that the partition function (115), with weights given by (116) and (123),

satisfies

(u1 − un) (vn − v1)Z
6V
n (u1, . . . , un; v1, . . . , vn)Z

6V
n−2(u2, . . . , un−1; v2, . . . , vn−1) =

a(u1, vn) b(u1, vn) a(un, v1) b(un, v1)Z
6V
n−1(u1, . . . , un−1; v1, . . . , vn−1) ×

Z6V
n−1(u2, . . . , un; v2, . . . , vn)

− a(u1, v1) b(u1, v1) a(un, vn) b(un, vn)Z
6V
n−1(u1, . . . , un−1; v2, . . . , vn) ×

Z6V
n−1(u2, . . . , un; v1, . . . , vn−1), (127)

for any u1, . . . , un, v1, . . . , vn. In fact, it can be seen, from the previous derivation, that (127)

is satisfied by any function which has the form of (125), for arbitrary functions a, b and c.

Certain forms of the Desnanot–Jacobi identity have previously been combined with cer-

tain cases of the Izergin–Korepin formula by Korepin and Zinn-Justin [94, Sec. 3] (see also

Sogo [139, Sec. 4]), and by Behrend, Di Francesco and Zinn-Justin [17, Sec. 5.4].

Now let parameters x, y, z1, z2, z3, z4, z41, z12, z23, z34, z
′
41, z

′
12, z

′
23 and z′34 be given in

terms of parameters q, r, s, t1, t2, t3 and t4 by

x =
(a(r,s)
b(r,s)

)2
, y =

( c(r,s)
b(r,s)

)2
,

z1 =
a(t1,s) b(r,s)
a(r,s) b(t1,s)

, z2 =
a(r,t2) b(r,s)
a(r,s) b(r,t2)

, z3 =
a(t3,s) b(r,s)
a(r,s) b(t3,s)

, z4 =
a(r,t4) b(r,s)
a(r,s) b(r,t4)

,

z41 =
a(r,s) a(t1,t4)
a(t1,s) a(r,t4)

, z12 =
b(r,s) b(t1,t2)
b(t1,s) b(r,t2)

, z23 =
a(r,s) a(t3,t2)
a(t3,s)a(r,t2)

, z34 =
b(r,s) b(t3,t4)
b(t3,s) b(r,t4)

,

z′41 =
b(r,s) b(t1,t4)
b(t1,s) b(r,t4)

, z′12 =
a(r,s) a(t1,t2)
a(t1,s)a(r,t2)

, z′23 =
b(r,s) b(t3,t2)
b(t3,s) b(r,t2)

, z′34 =
a(r,s) a(t3,t4)
a(t3,s) a(r,t4)

, (128)

where the functions a, b and c are given by (123).

The parameterizations (128) allow arbitrary x, y and z1, . . . , z4 to be expressed in terms

of q, r, s and t1, . . . , t4. In particular, it follows, using (123), (124) and (128), that q can

first be taken to be a solution of

x1/2 q2 + (x− y + 1) q + x1/2 = 0, (129)
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that r and s can then be taken to satisfy

(x1/2 + q) r = (x1/2 q + 1) s, (130)

and that t1, . . . , t4 are then given by

t1 =
s(x1/2 z1 q+1)

x1/2 z1+q
, t2 =

r(x1/2 z2+q)

x1/2 z2 q+1
, t3 =

s(x1/2 z3 q+1)

x1/2 z3+q
, t4 =

r(x1/2 z4+q)

x1/2 z4 q+1
. (131)

It can be checked easily that the parameterizations (128) imply that z41, z12, z23, z34, z
′
41,

z′12, z
′
23 and z′34 can be expressed in terms of x, y and z1, . . . , z4 as

z41 = 1−(z4−1)(z1−1)
y z4 z1

, z12 = 1−x(z1−1)(z2−1)
y

, z23 = 1−(z2−1)(z3−1)
y z2 z3

, z34 = 1−x(z3−1)(z4−1)
y

, (132)

and

z′41 = 1−x(z4−1)(z1−1)
y

, z′12 = 1−(z1−1)(z2−1)
y z1 z2

, z′23 = 1−x(z2−1)(z3−1)
y

, z′34 = 1−(z3−1)(z4−1)
y z3 z4

. (133)

Thus, each zij and z′ij has the form f(y, zi, zj) = 1− (zi−1)(zj−1)

y zi zj
or f( y

x
, 1
zi
, 1
zj
).

The parameterizations (128) also give

(t2 − t4) (t1 − t3) =
a(r,s)2 b(t1,s) b(r,t2) b(t3,s) b(r,t4)

(b(r,s) c(r,s))2
(z4 − z2) (z1 − z3). (134)

Assigning the parameters in (127) according to (117), applying the relation (122) to each

of the six cases of the partition function in (127), and using (128) and (134), it now follows

that

(z4−z2) (z1−z3)Z
gen
n (x, y; z1, z2, z3, z4; z41, z12, z23, z34)Z

gen
n−2(x, y; 1, 1, 1, 1; 1, 1, 1, 1) =

y z1 z2 z3 z4
(
z12 z

′
12 z34 z

′
34 Z

gen
n−1(x, y; z1, 1, 1, z4; z41, 1, 1, 1) ×

Zgen
n−1(x, y; 1, z2, z3, 1; 1, 1, z23, 1)

− z41 z
′
41 z23 z

′
23 Z

gen
n−1(x, y; z1, z2, 1, 1; 1, z12, 1, 1) ×

Zgen
n−1(x, y; 1, 1, z3, z4; 1, 1, 1, z34)

)
, (135)

where x, y and z1, . . . , z4 are arbitrary, while the remaining parameters are given by (132)–

(133).

Finally, the required identity (81) follows from (135) by applying (106), including the

special cases (107), to each of the six cases of generalized ASM generating functions, and

using (132)–(133) to eliminate z41, z12, z23, z34, z
′
41, z

′
12, z

′
23 and z′34.

5.7. Alternative statement of some results of Sections 4.1 and 4.2. In this section,

it is shown that some of the results of Sections 4.1 and 4.2 can be stated, slightly more

compactly, in terms of a certain function which will be defined in (136) (and which has

essentially already appeared in (135)). Also, an additional symmetry property for ASM

generating functions is obtained, and further quadratic relations satisfied by these functions

are discussed briefly.
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Define a function

Yn(x, y; z1, z2, z3, z4) =
∑

A∈ASM(n)

xν(A) yµ(A)+A11+A1n+Ann+An1 ×

z
ρT(A)+A11−1
1 z

ρR(A)+Ann−1
2 z

ρB(A)+Ann−1
3 z

ρL(A)+A11−1
4 ×

(yz4z1−(z4−1)(z1−1))1−A11 (y−x(z1−1)(z2−1))1−A1n ×

(yz2z3−(z2−1)(z3−1))1−Ann (y−x(z3−1)(z4−1))1−An1 . (136)

It follows that Yn(x, y; z1, z2, z3, z4) is a polynomial in x, y and z1, . . . , z4, with integer

coefficients.

Also define

Yn(x, y; z1, z2) = Yn(x, y; z1, z2, 1, 1). (137)

It can be seen, using the definition (99) of the generalized ASM generating function, that

Yn(x, y; z1, z2, z3, z4) = y4Zgen
n

(
x, y; z1, z2, z3, z4;

1− (z4−1)(z1−1)
y z4 z1

, 1− x(z1−1)(z2−1)
y

, 1− (z2−1)(z3−1)
y z2 z3

, 1− x(z3−1)(z4−1)
y

)
, (138)

i.e., Yn(x, y; z1, z2, z3, z4) = y4Zgen
n (x, y; z1, z2, z3, z4; z41, z12, z23, z34), with z41, z12, z23 and z34

given by (132).

Therefore, by applying (106) to the RHS of (138), Yn(x, y; z1, z2, z3, z4) can be expressed in

terms of quadruply-refined, adjacent-boundary doubly-refined and unrefined ASM generating

functions.

It can be seen immediately from (136)–(137) that

Yn(x, y; z1, 1, z2, 1) = y4Zopp
n (x, y; z1, z2),

Yn(x, y; z, 1) = y4Zn(x, y; z),

Yn(x, y; 1, 1) = y4Zn(x, y), (139)

and by acting on ASM(n) in (136) with transposition or anticlockwise quarter-turn rotation

and using (6) (or by applying (102) to (138)), it follows that

Yn(x, y; z1, z2, z3, z4) = Yn(x, y; z4, z3, z2, z1)

= xn(n−1)/2+4 (z1z2z3z4)
n−1 Yn

(
1
x
, y
x
; 1
z2
, 1
z3
, 1
z4
, 1
z1

)
. (140)

It can also be shown, using (136) and the properties of ASMs in which a 1 on a boundary

is in a corner or separated from a corner by a single zero (as discussed in Section 2.1), that

Yn(x, y; z1, z2, z3, 0) =
(
1+ x(z1−1)

y

) (
1+ x(z3−1)

y

)
Yn−1(x, y; z1, z2, z3, 1). (141)



MULTIPLY-REFINED ENUMERATION OF ASMs 49

Taking x, y, z1, . . . , z4, z41, z12, z23 and z34 to be parameterized by (128), and us-

ing (122), (132) and (138), gives

b(r, s)(n−1)(n−4)+8 c(r, s)n−8
(
b(t1, s) b(r, t2) b(t3, s) b(r, t4)

)n−1
t
1/2
1 t

1/2
2 t

1/2
3 t

1/2
4 (rs)−1 ×

Yn

((
a(r,s)
b(r,s)

)2
,
(
c(r,s)
b(r,s)

)2
; a(t1,s) b(r,s)

a(r,s) b(t1,s)
, a(r,t2) b(r,s)
a(r,s) b(r,t2)

, a(t3,s) b(r,s)
a(r,s) b(t3,s)

, a(r,t4) b(r,s)
a(r,s) b(r,t4)

)
=

Z6V
n (t1, r, . . . , r, t3; t4, s, . . . , s, t2), (142)

where the weights in the partition function are given by (116), and the functions a, b and c

are given by (123).

It now follows from the symmetry of the partition function on the RHS of (142) in t1
and t3, and in t2 and t4, as discussed after (125), that

Yn(x, y; z1, z2, z3, z4) = Yn(x, y; z3, z2, z1, z4) = Yn(x, y; z1, z4, z3, z2). (143)

In contrast to (140), there does not seem to be a simple combinatorial derivation of (143).

(Note that the first equality of (140) together with either equality of (143) gives the other

equality of (143).)

It can be seen that (143), together with (106), provides an identity (referred to after (92))

involving Zquad
n (x, y; z1, z2, z3, z4) and Zquad

n (x, y; z3, z2, z1, z4) (or Z
quad
n (x, y; z1, z2, z3, z4) and

Zquad
n (x, y; z1, z4, z3, z2)).

It follows from (135) and (138), together with (132)–(133), (137) and (139)–(140), that

y7(z4−z2) (z1−z3) Yn(x, y; z1, z2, z3, z4)Zn−2(x, y) =
(
x(z1−1)(z2−1)−y

)(
(z1−1)(z2−1)−yz1z2

)(
x(z3−1)(z4−1)−y

)
×

(
(z3−1)(z4−1)−yz3z4

)
Yn−1(x, y; z1, z4) Yn−1(x, y; z2, z3) −

(
x(z4−1)(z1−1)−y

)(
(z4−1)(z1−1)−yz4z1

)(
x(z2−1)(z3−1)−y

)
×

(
(z2−1)(z3−1)−yz2z3

)
Yn−1(x, y; z1, z2) Yn−1(x, y; z3, z4). (144)

This can be regarded as a restatement of (81), where (106) and (138) enable the conversion

between (81) and (144).

Setting z2 = 1 in (144), and relabelling z3 as z2 and z4 as z3, gives

y(z1−z2) (z3−1) Yn(x, y; z1, 1, z2, z3)Zn−2(x, y) =
(
x(z2−1)(z3−1)−y

)(
(z2−1)(z3−1)−yz2z3

)
z1 Yn−1(x, y; z1, z3)Zn−1(x, y; z2) −(

x(z3−1)(z1−1)−y
)(
(z3−1)(z1−1)−yz3z1

)
z2 Yn−1(x, y; z2, z3)Zn−1(x, y; z1), (145)

which can be regarded as a restatement of (83).
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Setting z3 = 0 in (144), using (141), replacing n by n+ 1, and relabelling z3 as z2 and z4
as z3 gives

y2(z1−z2) z3 Yn(x, y; z1, 1, z2, z3)Zn−1(x, y) =

(z1−1)
(
x(z2−1)(z3−1)−y

)(
(z2−1)(z3−1)−yz2z3

)
Yn(x, y; z1, z3)Zn−1(x, y; z2) −

(z2−1)
(
x(z1−1)(z3−1)−y

)(
(z1−1)(z3−1)−yz1z3

)
Yn(x, y; z2, z3)Zn−1(x, y; z1), (146)

which can be regarded as a restatement of (86).

It can be seen that various other identities from Section 4 involving quadruply-refined,

triply-refined or adjacent-boundary doubly-refined ASM generating functions could similarly

be restated in terms of the functions (136)–(137).

Finally, note that some further quadratic identities satisfied by ASM generating functions

can be obtained from (144), or by combining certain variations of the Desnanot–Jacobi

identity with the Izergin–Korepin formula, for certain assignments of the spectral parameters,

and then using (142).

An example of such an identity is

(z1−z2) (z3−z4) Yn(x, y; z1, w1, z2, w2) Yn(x, y; z3, w1, z4, w2) −

(z1−z3) (z2−z4) Yn(x, y; z1, w1, z3, w2) Yn(x, y; z2, w1, z4, w2) +

(z1−z4) (z2−z3) Yn(x, y; z1, w1, z4, w2) Yn(x, y; z2, w1, z3, w2) = 0. (147)

This reduces to (61) for w1 = w2 = 1, and can be obtained by applying (144) to each of

the six cases of (zi − zj)Yn(x, y; zi, w1, zj, w2) on the LHS, and then checking that the overall

expression on the LHS vanishes.

5.8. Derivations of (19) and (20). In this section, the explicit expressions (19) and (20)

for the ASM generating functions at y = x + 1 are derived using a method different from

that used in Section 3.2, which instead involves the six-vertex model with DWBC.

Let the crossing parameter q, for the weights (123), be given by q = ±i, this corresponding

to the so-called free fermion case of the six-vertex model. It can be shown that, for this

assignment of q, the partition function (115), with weights given by (116) and (123), is

explicitly

Z6V
n (u1, . . . , un; v1, . . . , vn)

∣∣
q=±i

= (±2)n in
2 ∏n

i=1 u
1/2
i v

1/2
i

∏
1≤i<j≤n(ui+uj)(vi+ vj). (148)

This result can be obtained by combining the Izergin–Korepin formula (125) (in which q = ±i

gives a(u, v)b(u, v) = −(u2 + v2)) with the Cauchy double alternant evaluation

det
1≤i,j≤n

(
1

αi + βj

)
=

∏
1≤i<j≤n(αi − αj)(βi − βj)∏

1≤i,j≤n(αi + βj)
. (149)

For previous appearances of (148), see, for example, Bogoliubov, Pronko and Zvonarev [21,

Eq. (58)], or Okada [121, Thm. 2.4(1), third eq.], and for information regarding (149), see,

for example, Muir [118, p. 345], [119, Sec. 353].
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Assigning the spectral parameters in (148) according to (117), applying the relation (122),

and using the first ten parameterizations of (128), which enable arbitrary x and z1, . . . , z4 to

be obtained, with y, z41, z12, z23 and z34 then being given by y = x+ 1 and (132), it follows

that

Zgen
n

(
x, x+ 1; z1, z2, z3, z4; 1−

(z4−1)(z1−1)
(x+1) z4 z1

, 1− x(z1−1)(z2−1)
x+1

, 1− (z2−1)(z3−1)
(x+1) z2 z3

, 1− x(z3−1)(z4−1)
x+1

)

= (xz1z3+1)(xz2z4+1)
(
(xz1+1)(xz2+1)(xz3+1)(xz4+1)

)n−2
×

(x+1)(n−2)(n−3)/2−2n+3. (150)

(Using (138), the function in (150) could be written as (x+ 1)−4Yn(x, x+ 1; z1, z2, z3, z4).)

The required expressions (19)–(20) now follow from (150) by applying (106)–(107), and,

in some cases, setting boundary parameters to 1.

5.9. Derivation of (73). In this section, a derivation is given of the identity (73) satisfied

by the generating function (67) associated with several rows (or several columns) of ASMs.

For 0 ≤ m ≤ n and 1 ≤ k1 < . . . < km ≤ n, and indeterminates r, s and t1, . . . , tm,

consider the partition function Z6V
n (r, . . . , r, t1, r, . . . . . . , r, tm, r, . . . , r; s, . . . . . . , s), as given

by (115)–(116), with arbitrary functions a, b and c, where ti appears in position ki within

r, . . . , r, t1, r, . . . . . . , r, tm, r, . . . , r. Using the bijection of Section 5.2 between ASM(n) and

6VDW(n), and the behaviour (113) of the relevant statistics under this bijection, it can be

checked (by applying a process similar to that used in Section 5.2 for the derivation of (122))

that this partition function is related to the ASM generating function of (67) by

Z6V
n (r, . . . , r, t1, r, . . . . . . , r, tm, r, . . . , r; s, . . . . . . , s) =

b(r, s)(n−1)(n−m) c(r, s)n−m
∏m

i=1 b(ti, s)
n−1 c(ti, s) ×

Zk1,...,km
n

((a(r,s)
b(r,s)

)2
,
( c(r,s)
b(r,s)

)2
; a(t1,s) b(r,s)

a(r,s) b(t1,s)
, . . . , a(tm,s) b(r,s)

a(r,s) b(tm,s)
;
( c(t1,s)
b(t1,s)

)2
, . . . ,

( c(tm,s)
b(tm,s)

)2)
. (151)

(Note that the case of (122) obtained by setting t2 = t4 = s, and then relabelling t3 as t2,

matches the case m = 2, k1 = 1 and k2 = n of (151).)

It follows from a result of Colomo and Pronko [50, Eq. (6.8)], [51, Eq. (A.13)] (with a special

case stated previously by Colomo and Pronko [49, Eq. (5.8)]) that if the functions a, b and c

are given by (123), then, for 1 ≤ m ≤ n,

(a(r, s) b(r, s))m(m−1)/2
∏

1≤i<j≤m

(
ti − tj

)
×

Z6V
n (r, . . . , r, t1, r, . . . . . . , r, tm, r, . . . , r; s, . . . . . . , s)

∏m−1
i=1 Z6V

n−i(r, . . . , r; s, . . . , s)

= det
1≤i,j≤m

(
(a(ti, s) b(ti, s))

j−1 (ti − r)m−j Z6V
n−j+1(ti, r, . . . , r; s, . . . . . . , s)

)
. (152)

Due to the symmetry of the partition function in each set of spectral parameters (as discussed

after (125)), the positions of t1, . . . , tm within r, . . . , r, t1, r, . . . . . . , r, tm, r, . . . , r on the LHS,

and within ti, r, . . . , r on the RHS, are immaterial in (152). A result related to (152), in
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the case q = e±2πi/3 (where q is the crossing parameter which appears in (123)), has been

obtained by Ayyer and Romik [12, Thm. 6 & App. A].

An alternative derivation of (152) (in which a general identity for minors of a matrix is

combined with the Izergin–Korepin formula (125), analogously to the derivation of (127))

will now be given, before continuing with the main derivation of (73).

It can be established that, for any 1 ≤ m ≤ n, any (n + m − 1) × n matrix M , any

1 ≤ k1 < . . . < km < l1 < . . . < lm−1 ≤ n +m− 1, and any 1 ≤ p1 < . . . < pm−1 ≤ n,

detM l1,...,lm−1
∏m−1

i=1 detM
k1,...,km,l1,...,li−1
p1,...,pi = det

1≤i,j≤m

(
detMk1,...,ki−1,ki+1,...,km,l1,...,lj−1

p1,...,pj−1

)
, (153)

where M i1,...,ir
j1,...,jc

denotes the submatrix of M in which rows i1, . . . , ir and columns j1, . . . , jc
have been deleted. The identity (153) is closely related to various identities for compound

determinants, as outlined, for example, by Leclerc [110, Sec. 3]. In particular, using a certain

polarization of Bazin’s theorem, as given by Leclerc [110, Prop. 3.4], it follows that, for any

1 ≤ m ≤ n, any (n+2m− 2)×n matrix N , and any 1 ≤ k1 < . . . < km < l1 < . . . < lm−1 <

q1 < . . . < qm−1 ≤ n + 2m− 2,

detN l1,...,lm−1,q1,...,qm−1
∏m−1

i=1 detNk1,...,km,l1,...,li−1,qi+1,...,qm−1 =

det
1≤i,j≤m

(
detNk1,...,ki−1,ki+1,...,km,l1,...,lj−1,qj,...,qm−1

)
, (154)

where the same notation as previously is used for the deletion of rows from a matrix. The

identity (153) can be obtained from (154) by appending m − 1 rows to the bottom of an

(n + m − 1) × n matrix M to form a matrix N , where the ith appended row (i.e., row

n +m − 1 + i of N) contains a 1 in column pi and 0’s elsewhere, and then applying (154)

to N , choosing qi = n +m− 1 + i.

By applying (153) to the matrix
(

c(ui,vj)

a(ui,vj) b(ui,vj)

)

1≤i≤n+m−1; 1≤j≤n
, and then applying the

Izergin–Korepin formula (125) to each of the minors which appear, it follows that, for any

1 ≤ m ≤ n, any 1 ≤ k1 < . . . < km < l1 < . . . < lm−1 ≤ n + m − 1, any 1 ≤ p1 < . . . <

pm−1 ≤ n, and indeterminates u1, . . . , un+m−1 and v1, . . . , vn, the partition function (115),

with weights given by (116) and (123), satisfies

∏
1≤i≤j≤m−1 a(ulj , vpi) b(ulj , vpi)

∏
1≤i<j≤m

(
uki − ukj

)
×

Z6V
n (ul1,...,lm−1 ; v1, . . . , vn)

∏m−1
i=1 Z6V

n−i(u
k1,...,km,l1,...,li−1 ; vp1,...,pi) =

det
1≤i,j≤m

(∏j−1
j′=1 a(uki, vpj′ ) b(uki, vpj′ )

∏m−1
j′=j

(
uki − ulj′

)
×

Z6V
n−j+1(u

k1,...,ki−1,ki+1,...,km,l1,...,lj−1 ; vp1,...,pj−1)
)
, (155)

where ui1,...,ir and vj1,...,jc denote the subsequences of u1, . . . , un+m−1 and v1, . . . , vn in which

ui1, . . . , uir and vj1 , . . . , vjc have been deleted. The identity (152) can now be obtained

from (155) by considering 1 ≤ k1 < . . . < km ≤ n, choosing arbitrary 1 ≤ p1 < . . . < pm−1 ≤

n, and setting li = n + i, ui = r for i /∈ {k1, . . . , km}, uki = ti, and vj = s (and also using
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the symmetry of the partition function to reassign positions of ti in the partition functions

in the determinant on the RHS).

It can be seen from the previous derivation that (152) and (155) are, in fact, satisfied by

any function which has the form of (125), for arbitrary functions a, b and c.

The main derivation of (73) will now be completed. Using (151) to express each case

of a partition function in (152) as a case of the ASM generating function (67), noting (as

already done after (68)) that Zk1,...,km
n (x, y; z1, . . . , zm;w1, . . . , wm) is Zn(x, y) for m = 0, or

Zn(x, y; z1) for m = 1 and k1 = 1, and then applying the definition (70), gives

Zk1,...,km
n

((a(r,s)
b(r,s)

)2
,
( c(r,s)
b(r,s)

)2
; a(t1,s) b(r,s)

a(r,s) b(t1,s)
, . . . , a(tm,s) b(r,s)

a(r,s) b(tm,s)
;
( c(t1,s)
b(t1,s)

)2
, . . . ,

( c(tm,s)
b(tm,s)

)2)
=

Xn

((
a(r,s)
b(r,s)

)2
,
(
c(r,s)
b(r,s)

)2
; a(t1,s) b(r,s)

a(r,s) b(t1,s)
, . . . , a(tm,s) b(r,s)

a(r,s) b(tm,s)

)
. (156)

The required result (73) now follows immediately from (156) by parameterizing x, y,

z1, . . . , zm and w1, . . . , wm in terms of q, r, s and t1, . . . , tm as x =
(a(r,s)
b(r,s)

)2
, y =

( c(r,s)
b(r,s)

)2
, zi =

a(ti,s) b(r,s)
a(r,s) b(ti,s)

and wi =
( c(ti,s)
b(ti,s)

)2
, and observing that this parameterization enables arbitrary x, y

and z1, . . . , zm to be obtained, with w1, . . . , wm then being given by wi = xz2i +(y−x−1)zi+1.

5.10. Derivations of (49) and (75). In this section, an expression for the partition function

of the six-vertex model with DWBC at a certain value of its crossing parameter is given. This

result, together with certain other previously-stated results, is then used to obtain derivations

of the identity (49) satisfied by the alternative quadruply-refined ASM generating function

at x = y = 1, and of the identity (75) satisfied by the function (70) at x = y = 1.

Let the crossing parameter q, for the weights (123), be given by q = e±2πi/3, this corre-

sponding to the so-called combinatorial point of the six-vertex model. It can be shown that,

for this assignment of q, the partition function (115), with weights given by (116) and (123),

can be expressed as

Z6V
n (u1, . . . , un; un+1, . . . , u2n)

∣∣
q=e±2πi/3 =

(±1)n in
2

3n/2 u
1/2
1 . . . u

1/2
2n s(n−1,n−1,...,2,2,1,1)(u1, . . . , u2n), (157)

where s(n−1,n−1,...,2,2,1,1)(u1, . . . , u2n) is the Schur function indexed by the double-staircase

partition (n− 1, n− 1, . . . , 2, 2, 1, 1), evaluated at the spectral parameters u1, . . . , u2n.

An important consequence of (157) is that Z6V
n (u1, . . . , un; un+1, . . . , u2n)|q=e±2πi/3 is sym-

metric in all spectral parameters u1, . . . , u2n.

The result (157) was first obtained by Okada [121, Thm. 2.4(1), second equation], and

Stroganov [150, Eq. (17)]. For further related information, derivations and results, see, for

example, Aval [7], Fonseca and Zinn-Justin [81, Sec. B.2], Lascoux [107, p. 4], Razumov and

Stroganov [127, Sec. 2], or Zinn-Justin [161, Sec. 2.5.6].
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Proceeding to the derivation of (49), using the symmetry of the LHS of (157) in all of its

spectral parameters, it follows that

Z6V
n (t1, r, . . . , r, t3; t4, r, . . . , r, t2)

∣∣
q=e±2πi/3 =

Z6V
n (t1, t2, t3, t4, r, . . . , r; r, . . . . . . , r)

∣∣
q=e±2πi/3 . (158)

Applying (122) and (151) (with r = s = 1, m = 4 and ki = i) to the LHS and RHS,

respectively, of (158), and then using (123) (with q = e±2πi/3) for the functions a, b and c

(and noting that a(1, 1) = b(1, 1) and b(1, 1)2 = c(1, 1)2), gives

( b(1,t2) b(1,t4)
b(t2,1) b(t4,1)

)n−1
Zgen

n

(
1, 1; a(t1,1)

b(t1,1)
, a(1,t2)
b(1,t2)

, a(t3,1)
b(t3,1)

, a(1,t4)
b(1,t4)

;

a(1,1) a(t1,t4)
a(t1,1) a(1,t4)

, b(1,1) b(t1,t2)
b(t1,1) b(1,t2)

, a(1,1) a(t3,t2)
a(t3,1) a(1,t2)

, b(1,1) b(t3,t4)
b(t3,1) b(1,t4)

)∣∣∣
q=e±2πi/3

=

Z1,2,3,4
n

(
1, 1; a(t1,1)

b(t1,1)
, a(t2,1)
b(t2,1)

, a(t3,1)
b(t3,1)

, a(t4,1)
b(t4,1)

;
( c(t1,1)
b(t1,1)

)2
,
( c(t2,1)
b(t2,1)

)2
,
( c(t3,1)
b(t3,1)

)2
,
( c(t4,1)
b(t4,1)

)2)∣∣∣
q=e±2πi/3

. (159)

It follows from (159), by applying (156) to the RHS, and then setting ti =
qzi+1
zi+q

, or equiva-

lently zi =
qti−1
q−ti

= a(ti,1)
b(ti,1)

, for each 1 ≤ i ≤ 4, that

(z2z4)
n−1Zgen

n

(
1, 1; z1,

1
z2
, z3,

1
z4
; 1+ (z4−1)(z1−1)

z1
, 1+ (z1−1)(z2−1)

z2
, 1+ (z2−1)(z3−1)

z3
, 1+ (z3−1)(z4−1)

z4

)

= Xn(1, 1; z1, z2, z3, z4). (160)

The required result (49) now follows from (160) by applying (106) to the LHS, and using

the first definition of (10), the definition (70) and the identity (91).

Proceeding to the derivation of (75), setting r = s = 1, q = e±2πi/3 and ki = i in (152), and

then applying (157) to the partition function Z6V
n (t1, . . . , tm, 1, . . . , 1; 1, . . . , 1), applying (151)

(withm = 0 orm = 1) to the remaining cases of partition functions, and using (70) and (123),

gives

s(n−1,n−1,...,2,2,1,1)(t1, . . . , tm, 1, . . . , 1︸ ︷︷ ︸
2n−m

) =

3n(n−1)/2 b(1, 1)−m(n−1) (b(t1, 1) . . . b(tm, 1))
n−1Xn

(
1, 1; a(t1,1)

b(t1,1)
, . . . , a(tm,1)

b(tm,1)

)∣∣
q=e±2πi/3 . (161)

(Alternatively, this can be obtained by combining (123), (151), (156) and (157).)

The required result (75) now follows from (161) by setting ti = qzi+1
zi+q

, or equivalently

zi =
qti−1
q−ti

= a(ti,1)
b(ti,1)

, for each 1 ≤ i ≤ m.
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