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Abstract

There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have
revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts –
cis effects, and elsewhere in the genome – trans effects. The role of genetic variation in determining protein levels has not
been systematically assessed. Using a genome-wide association approach we show that common genetic variation
influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032
polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study.
Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in
many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects,
including variants in or near the IL6R (p = 1.8610257), CCL4L1 (p = 3.9610221), IL18 (p = 6.8610213), LPA (p = 4.4610210),
GGT1 (p = 1.561027), SHBG (p = 3.161027), CRP (p = 6.461026) and IL1RN (p = 7.361026) genes, all associated with their
respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms
implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different
sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans
effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels
(p = 6.8610240), but this finding was not present when TNF-alpha was measured using a different assay , or in a second
study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the
genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of
protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of
disease pathways.
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Introduction

The identification of gene variants that alter the risk of common

diseases has proven difficult. Recent genome-wide association

studies of disease cases and controls have improved this situation

but have shown that, with a few exceptions, most genetic effects on

common disease are likely to be small [1].

One successful complementary approach to studying gene-

disease associations is to study associations between genetic

variation and gene expression. Several genome-wide studies have

shown that genetic variation influences gene expression [2–8].

Most of these gene regions or variants are found in or close to the

gene that codes for the mRNA product (cis effects), whilst others

are found elsewhere in the genome (trans effects). The identification

of these effects on gene expression may help understand disease

aetiology. However, these data are limited by the fact that they

assess gene expression, usually from a single cell type, rather than

protein levels, which are likely to be more directly implicated in

disease processes [9].

There are no genome-wide analyses of the role of human

genetic variation on large numbers of proteins. One way of testing

this, and a way that could be relevant to the understanding of

human diseases, is in vivo studies of serum and plasma levels of

proteins. There are likely to be many factors that influence

serum and plasma protein levels, only one of which is genetic DNA

variation leading to differences in mRNA transcription and

subsequent mRNA translation to protein. Other mechanisms

could include epigenetic factors, stochastic factors, environmental

factors influencing regulation of expression, rates of secretion

into the blood from the site of synthesis, proteolysis and

clearance, and post-translational modifications such as glycosyla-

tion.

In this study we tested the hypothesis that common genetic

variation influences protein levels in a human population. We used

1200 European individuals from the population based In-

CHIANTI study[10] with fasting measures of 42 proteins

available. The proteins included many implicated in common

diseases and conditions including inflammatory cytokines such as

interleukins (metabolic and inflammatory conditions), insulin

(diabetes), chemokines (e.g. macrophage inflammatory protein

beta, implicated in HIV progression to AIDs), adipokines (e.g.

adiponectin, leptin, resistin, implicated in metabolic conditions)

and liver function markers. Summary details of individuals and

traits are given in Table 1 and Table S1.

Results

We used data from 496,032 single nucleotide polymorphisms

(SNPs) from across the autosomal genome with minor allele

frequencies .1% and which had passed stringent quality control

checks (see methods). These SNPs captured 80.5% and 86.5% of

European genetic variation, based on HapMap data with minor

allele frequencies .1% and .5% respectively at r2.0.8.

We separated our results into cis effects and trans effects. Cis

effects were defined as those in the gene(s) coding for the protein or

within 300 kb either side of that gene. This was based on a recent

study of HapMap variation in relation to gene expression that

showed that most cis expression effects occur within this distance

of genes [5]. An analysis of all SNPs within a 1Mb window either

side of each gene was consistent with this (Figure 1). We used a p

value cut off that related to the number of SNPs in or within

300 kb of the gene. If, for example, there were 100 SNPs in a gene

region we used 0.05/100 = 0.0005 as significant association. We

identified eight cis effects that remained after correction for

Table 1. Basic characteristics of the InCHIANTI study population.

Characteristic N Mean (95% CI) or Percentage

Age (years): Age range 1200 68.4 (67.5–69.3): 21–102

Gender (%female) 1200 55.2%

BMI: BMI range 1131 27.12 (26.87–27.36): 17.99–46.57

Current Smokers (%) 1200 18.80%

Hypertension (via blood pressure tests) (% case) 1176 42.60%

Ever taken drugs for hypertension (current and/or former) 927 38.40%

Diabetes (% case) 1200 11.10%

Myocardial Infarction (% case) 1200 4.00%

Use of Lipid lowering treatment in last 5 years 1167 5.60%

Use of Steroids in last 5 years 1174 8.00%

doi:10.1371/journal.pgen.1000072.t001

Author Summary

One of the central dogmas of molecular genetics is that
DNA is transcribed to RNA which is translated to protein
and alterations to proteins can influence human diseases.
Genome-wide association studies have recently revealed
many new DNA variants that influence human diseases. To
complement these efforts, several genome-wide studies
have established that DNA variation influences mRNA
expression levels. Loci influencing mRNA levels have been
termed ‘‘eQTLs’’. In this study we have performed the first
genome-wide association study of the third piece in this
jigsaw – the role of DNA variation in relation to protein
levels, or ‘‘pQTLs’’. We analysed 42 proteins measured in
blood fractions from the InCHIANTI study. We identified
eight cis effects including common variants in or near the
IL6R, CCL4, IL18, LPA, GGT1, SHBG, CRP and IL1RN genes, all
associated with blood levels of their respective protein
products. Mechanisms implicated included altered tran-
scription (GGT1) but also rates of cleavage of bound to
unbound soluble receptor (IL6R), altered secretion rates of
different sized proteins (LPA) and variation in gene copy
number (CCL4). Blood levels of many of these proteins are
correlated with human diseases and the identification of
‘‘pQTLs’’ may in turn help our understanding of disease.

Genome-Wide Analysis of Protein Levels
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multiple testing at p,0.05, using 300 kb each side of the relevant

gene (Table 2 and Figure 2, Figure S1a). Using 100,000

permutations of the phenotype versus region-wide genotype data

confirmed the associations as empirically significant. Given the

uncertainty of using 300 kb each side of a gene to define cis effects

we repeated these eight analyses using 1Mb of flanking sequence

each side of the gene and in each case the association remained

(p,0.05).

For three of the eight genes showing cis effects, the associations

have been reported in other studies, as part of candidate gene

approaches. Variants in or close to the interleukin 6 receptor

(IL6R) and C-reactive protein (CRP) genes, are closely correlated

with those previously reported [11–13](r2 0.96 and 0.91 for IL6R

and CRP respectively) and are associated with 0.69 (95%CIs:0.62–

0.77), and 0.20 (95%CIs:0.12–0.29) per allele standard deviation

differences in their respective protein levels. The SNP in the sex-

hormone binding globulin (SHBG) gene, rs6761, was associated

with SHBG protein levels with a per-allele effect size of 0.21

(95%CIs:0.13–0.30) standard deviations. This association ap-

peared to be independent of a previously reported variant,

rs1799941 [14,15]. These two SNPs are in moderate linkage

disequilibrium (LD) with each other (r2 = 0.1) and both remain

associated with SHBG levels in the InCHIANTI study when

correcting for the presence of the other (p = 0.008 for rs6761

correcting for rs1799941 and p = 0.003 for rs1799941 correcting

for rs6761). We therefore genotyped these two variants in an

additional 4590 individuals from the WATTs (n = 546) and the

The Northern Finland 1966 Birth Cohort (NFBC1966, n = 4044)

studies. Details of replication studies are given in Table S2. The

association between rs1799941 and SHBG levels replicated

(p = 1.4610212) and meta-analysis of all three studies provided

very strong evidence of association (p = 1.8610216). Conditional

analyses using all three studies showed that the association was

driven by rs1799941 (p = 1.6610213 correcting for rs6761) rather

than rs6761 (p = 0.38 correcting for rs1799941).

Five of the cis findings have not been reported in other studies,

although we recently reported those in the interleukin18

(IL18)[16] and interleukin1 receptor antagonist (IL1RN) [17]genes

in the InCHIANTI study as part of candidate gene studies. The

effect sizes of the most strongly associated variants in the

interleukin18 (IL18) and interleukin1 receptor antagonist (IL1RN)

genes were 0.28 (95%CIs:0.20–0.35) and 0.19 (95%CIs:0.11–0.28)

per allele SD differences in their respective protein levels. A novel

cis association was that in the gamma-glutamyltransferase 1

(GGT1) gene. Each minor allele of rs5751901 was associated with

a 0.21 (95%CIs:0.13–0.29) standard deviation increase in GGT1

levels. Other novel cis findings included those in the CCL4 gene

cluster with levels of the protein product macrophage inflamma-

tory protein beta (MIP-1beta). Each minor allele of rs4796217 was

associated with a 0.49 (95%CIs:0.41–0.32) SD decrease in MIP-

Figure 1. Association of SNPs 1Megabase from each cis gene.
For each SNP the X axis represents the distance in base pairs from either
the 59 or 39 end of the gene. If SNPs occur within the gene, either in
introns or exons, they are given a distance of zero. SNPs in IL6R
,1610225 not shown.
doi:10.1371/journal.pgen.1000072.g001

Table 2. Details of Cis and trans effects.

Protein (units) Gene SNP MAF
Distance
(bp) Mean trait values GC P Perm P

11 12 22

TNFa (pg/ml) ABO rs505922 0.34 intron 2.68 (2.53–2.85) 1.66 (1.61–1.72) 1.71 (1.59–1.84) 6.76610240 ,0.0001

IL-6sR (ng/ml) IL6R rs4129267 0.37 intron 69.92 (66.95–72.99) 100.65 (96.97–104.44) 138.13 (129.94–146.77) 1.82610257 ,0.00001

MIPb (pg/ml) CCL4L2 rs4796217 0.34 227353 74.74 (68.85–81.03) 53.32 (48.64–58.34) 27.21 (21.48–33.83) 3.87610221 ,0.00001

IL18 (ug/ml) IL18 rs2250417 0.44 50476 406.79 (392.66–421.43) 366.58 (355.39–378.12) 330.73 (315.83–346.33) 6.79610213 ,0.00001

LPA (mg/dl) LPA rs7770628 0.49 intron 0.34/0.18 0.46/0.52 0.20/0.30 4.36610210 ,0.00001

GGT1 (u/l) GGT1 rs5751901 0.39 6917 17.86 (17.11–18.67) 19.6 (18.85–20.41) 21.38 (19.88–23.07) 1.5261027 0.00076

SHBG (nmol/l) SHBG rs6761* 0.31 115829 111.67 (106.77–116.77) 100.9 (96.55–105.43) 85.16 (77.65–93.31) 3.0861027 ,0.00001

CRP (ug/ml) CRP rs12093699 0.29 34092 2.26 (2.07–2.47) 2.74 (2.48–3.03) 3.64 (2.77–4.78) 6.3661026 0.0038

IL1RA (pg/ml) IL1RN rs6761276 0.37 43158 118.6 (112.49–125.05) 142.16 (135.73–148.89) 141.23 (126.74–157.37) 7.2761026 0.00097

MAF = minor allele frequency, SNP = single nucleotide polymorphism and represents the best p value. Distance represents the distance from the gene or location within
gene.
GC P represents the p value corrected for inflation factors but not multiple testing. Mean trait values are back transformed values from transformed means, except for
LPA where frequencies of genotypes in the low (first value) and high (second value) level groups are given. 11 = common hom, 12 = het, 22 = minor allele homozygote.
Perm = Permutation.
P values based on 100,000 region wide (gene +-300 kb) permutations for cis effects and 10,000 genome-wide permutations for trans effects (‘‘,’’ indicates the observed
p value did not occur in these numbers of permutations). *Further analysis shows that this signal is driven by a SNP, rs1799941, in partial LD with rs6761 – see text.
doi:10.1371/journal.pgen.1000072.t002
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1beta levels. The association in the LPA gene resulted in a per

allele odds ratio of 1.71 (95%CIs:1.45–2.02) for having LPA levels

.14 mg/dl (46% of participants) compared to participants with

LPA levels ,14 mg/dl. Two further cis findings are worth noting

although they did not stand up to all methods of testing. The third

strongest association from across the genome with GP130 levels

was in the gene, IL6 signal transducer, that encodes the GP130

protein (rs11574783, p = 6.961026). A SNP in the parathyroid

Figure 2. Cis genotype effects. X axis shows the distance on the relevant chromosome. Left hand Y axis shows the 2log10 p values and right hand
Y axis shows the recombination rate as calculated from HapMap data.
doi:10.1371/journal.pgen.1000072.g002
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hormone (PTH) gene region was associated with PTH levels

(rs2170436, p = 6.361025). Full details of the best cis association

for each of the 42 protein levels measured are shown in Table S3a.

We identified one trans effect after a conservative correction for

multiple testing based on the number of genome-wide SNPs and

phenotypes tested (0.05/(496,032642) = 2.461029) and permuta-

tion testing. Specifically, we identified a polymorphism (rs505922)

close to the ABO blood group gene, that was very strongly

associated with serum TNF-alpha levels (p = 6.76610240) (Table 2,

Figure S1b). Using 100,000 permutations of the phenotype versus

genome-wide genotype data confirmed the association as empir-

ically significant. Closer inspection of this region revealed another

SNP (rs8176746) independently associated with TNF-alpha levels

and haplotypes formed by the two SNPs were correlated (r2 = 0.82)

with the three alleles that determine the A, B and O alleles of ABO

blood group. Separate genotyping of an additional SNP allowed us

to accurately recode individuals with their ABO blood group

based on a two SNP haplotype (rs8176746 and rs8176719) (Figure

S2). Individuals of blood group O (40%) had TNF-alpha levels

0.86 (95%CIs:0.75–0.97) standard deviations (SD) higher than

others. This association appears to be assay specific. Using a

second TNF-alpha assay, made by a different company (Luminex)

resulted in measures of TNF-alpha that were poorly correlated

(r = 0.16, Figure S3a) with those from the first assay (R&D systems

HSTA00C, ultra-sensitive ELISA), although each was strongly

correlated with other inflammatory markers such as C-reactive

protein and Interleukin 6 (Figure S3b). There was no association

between ABO blood group and the Luminex measure of TNF-

alpha (p = 0.26 O blood group vs other blood groups) (Figure S3c)

and no association using a third assay (R&D systems HSTA50

ultra-sensitive ELISA) in a separate group of 1620 white

individuals from the Health ABC study (p = 0.60, O blood group

vs other blood groups). In InCHIANTI there was no strong

evidence that rs505922 was associated with any of the other

protein markers (p.0.001). Full details of the best trans association

for each of the 42 protein levels measured are shown in Table S3b.

Six of the nine associations relate to proteins correlated with

inflammatory or metabolic based disease processes so we further

tested the robustness of the associations in InCHIANTI when

correcting for a number of further covariates, including presence

of cardio-vascular disease, diabetes, smoking status and use of

steroid anti-inflammatory or lipid-lowering drugs. We also

additionally corrected for total protein levels. All associations

remained with very similar effect sizes (Table S4).

We next assessed the likely mechanisms of the cis effects.

Positions of SNP-protein-level associations relative to genes are

shown in Figure 2 and Table S5. For most of the effects, the

correlation between SNPs due to linkage disequilibrium does not

allow us to draw any conclusions about whether the effects are due

to functional variants 5 prime, 3 prime, or within genes. The

mechanism of the association between common variation in the

IL6R gene and soluble interleukin-6 receptor levels is known: an

amino acid substitution Asp358Ala results in differential proteol-

ysis, or ‘‘shedding’’ of the membrane bound to the soluble form of

the IL6r protein[18]. The mechanism of the association between

common variation in the LPA and CCL4 gene regions and their

protein products may be related to copy number variation in these

genes. The LPA finding may be due to the previously described

association of different numbers of ‘‘kringle’’ repeats that result in

different sized proteins [19–21], affecting secretion rates from the

liver [22]. The MIP-1beta finding may be due to different copy

numbers of the CCL4L1 gene. Previous studies have shown that

there are copy number variants, in the form of several copies of the

CCL3L1 and CCL4L1 genes, in this region and it is possible that

the variants we have found are in linkage disequilibrium with

copies of the CCL4L1 gene. Copy number variation of the

CCL3L1 gene, has been associated with progression from HIV

infection to AIDs[23,24] although the role of CCL4L1 gene

variation is not known. For the remaining cis effects one of the

most likely mechanisms is that DNA variation alters gene

expression which in turn alters protein levels. To look for effects

of cis SNPs on gene expression we searched a database of

transcript levels of genes in transformed lymphocytes from a

recently described genome-wide association study[25]. The SNP

associated with GGT1 serum protein levels in our study

(rs5751901) was correlated with a SNP that is associated with

GGT1 transcript abundance (rs6519519) (p = 2.461025) at

r2 = 0.71. This suggests that the GGT1 association we have seen

with protein levels is due to altered transcript levels. There was no

evidence that SNPs near the other genes were associated with

altered transcript levels (p.0.001), although data were not

available from rs1799941.

We next looked more extensively at the publicly available

mRNA data [25] to assess the relationship between gene

expression in lymphocytes and protein levels. For each of the 42

proteins we looked for any SNPs within 300 kb of the protein

coding gene that were associated with transcript levels of that gene

above the genome-wide level of statistical significance

(LOD.6.08) [25]. For one protein measured in InCHIANTI,

IL1beta, there was a cis SNP, rs1143627, associated with transcript

levels at LOD = 6.1. However, there was no association between

this signal and serum protein levels, based on a SNP, rs10169916,

in very strong linkage disequilibrium with rs1143627 (r2 = 0.96, p

value with serum protein levels = 0.54).

Discussion

Our study shows that the human genetics of serum and plasma

protein levels share several features of the genetics of gene

expression levels [26]. First, protein levels can be strongly

influenced by common genetic variation. This has been shown

before for some proteins, notably common null alleles in the

enzymes GSTM1 and GSTT1 are associated with a lack of

product [27,28], but our study provides the first systematic,

genome-wide assessment of the role of genetic variation on human

protein levels. The effect sizes we observe are relatively large

(,0.19 to ,0.69 SDs per allele) compared to reproducible effects

of common variation on other human quantitative traits such as

height[29] and body mass index[30]. This does not rule out the

presence of weaker effects that did not reach our statistical

thresholds. Second, protein quantitative trait loci (pQTLs) can be

successfully mapped using a genome-wide association approach,

although fine-mapping and functional studies are needed to

narrow down the most likely functional variants for most of these

traits. Third, there are cis effects and these cis effects are often the

strongest in the genome. Further studies are needed to investigate

the one trans finding we identified with TNF-alpha using one assay

but not others. We did not find evidence for a fourth feature

highlighted by genetic studies of gene expression: we did not find

any ‘‘multi-trans’’ effects, where gene variants are associated with

levels of multiple proteins.

It is likely that there are other cis effects that did not reach our

cut off for significance. The need to correct p values for the

number of tests performed meant that our study was not well

powered to detect cis effects less than ,0.22 or ,0.18 standard

deviations per allele for minor allele frequencies 0.1 and 0.5

respectively (based on p = 0.0005). Known variants that did not

reach our criteria included those in the FGB (fibrinogen beta chain)

Genome-Wide Analysis of Protein Levels
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and CCL2 genes, known to alter levels of their protein products,

fibrinogen[31] and MCP [32], respectively, but which only

reached nominal evidence for association in our data. (rs6056 in

the FGB gene p = 0.051 and rs1024611 in CCL2 p = 0.02).

Additional trans effects may also exist but the need to correct for

both the genome-wide number of SNPs and number of

phenotypes meant that our study would not have detected effects

less than ,0.30 standard deviations per allele (based on

p = 2.461029). Given that our Bonferroni-based statistical cut-offs

are likely to be conservative we also calculated false discovery rates

[33]. For all 496,032 tests across 42 phenotypes we estimated that

5%, 10% and 20% of findings will be false discoveries at p values

of ,161027, ,3.61027 and ,1.061026 respectively.

For one of the eight cis findings, the mechanism is known –

differential cleavage of bound to unbound receptor caused by an

amino acid changing SNP (nsSNP) results in different levels of

soluble IL6 receptor [18]. For two other cis findings the

associations may relate to copy number variants (CNVs). There

are reports that different sized LPA proteins, caused by different

numbers of kringle repeats, are likely to result in altered secretion

rates from the liver into the blood stream [22]. It is also likely that

the MIP-beta finding is caused by copy number variation of the

CCL4L1 gene, although further studies are needed to assess the

extent of linkage disequilibrium between the LPA and CCL4L1-

region variants we have found and CNVs in these genes. For the

remaining cis effects, we have found little correlation between

SNPs altering gene expression levels in lymphocytes and protein

levels, with the exception of the GGT1 finding. This is perhaps not

surprising given the numerous processes that could influence

protein levels and is consistent with the observation in yeast

experiments that there is considerable variation in the correlation

between expression levels and protein abundance[34–37]. For

many of our findings, the unstimulated cultured lymphocytes used

in the gene expression experiment [8] may not be the most

relevant tissue to use to equate expression levels with protein levels.

For example it may be interesting to determine whether the SNPs

we identified are associated with protein levels from stimulated

cells, particularly the inflammatory cytokines, which are known to

be significantly elevated upon stimulation with, for example, the

bacterial membrane antigen lipopolysaccharide [38]. Another

possibility is that associations are caused by nsSNPs that alter

antibody binding affinity, and therefore the measurement of

protein levels. A full re-sequencing effort would be required to rule

this possibility out completely but we note that only two nsSNPs,

D356N, in SHBG, and R1270S in LPA are present in dbSNP, and

neither of these are strongly (r2,0.5) correlated with the most

associated SNPs in our study (both are present in HapMap).

The mechanism of the association between ABO blood group

and TNF-alpha levels is not known and further work is needed to

identify the source of the discrepancy between the associations

when different assays are used. The poor correlation between the

two TNF-alpha measurements in the same study suggests the two

assays are measuring different parts or fractions of the multi-meric

TNF-alpha molecule, which can exist in transmembrane form, as

a freely circulating protein, or as bound to soluble TNF receptors.

Alternatively the association may be caused by cross-reactivity

with ABO antigens. If shown in other studies to have a

physiological effect the association of ABO blood group with

TNF-alpha levels could help the understanding of the mechanisms

behind the associations between blood group O and a reduced risk

of thrombotic related diseases[39] but increased risk of gastric

ulcers[40].

An important implication of our findings is that they may help

dissect the causal direction of the associations between protein

levels and correlated traits. Serum and plasma concentrations of

many proteins change with disease status, ranging from metabolic

and cardiovascular diseases to inflammatory and infectious states.

Often it is not known whether altered levels of proteins are

involved in disease aetiology or are simply a result of the disease

process[12,41]. The identification of genetic variants that alter

protein levels may help dissect these relationships. Given the

relatively small effects that common gene variants usually have on

disease the identification of protein quantitative trait loci (pQTLs)

may be a powerful complementary method of improving our

understanding of disease.

Materials and Methods

Study Participants
InCHIANTI Study. The InCHIANTI study is a population

based sample that includes 298 individuals of ,65 age and 1155

individuals of age $65 years. The study design and protocol have

been described in detail previously [10]. The data collection

started in September 1998 and was completed in March 2000.

The INRCA Ethical Committee approved the entire study

protocol.

Measurement of Proteins. Venipuncture was performed in

the morning after a 12-hour fast. Summary details of mean trait

values and the numbers of individuals those measures were

available in are given in Table 1. Details of the kits used to

measure proteins are given in Table S1 along with intra and inter-

assay coefficients. These assays were done at the INRCA central

laboratory and performed in duplicate and were repeated if the

second measure was more than 10% greater or less than the first.

The average of the two measures was used in the analyses.

Genome-Wide Association Analysis
Genome-wide genotyping was performed using the Illumina

Infinium HumanHap550 genotyping chip (ver1 and ver3 chips

were used). This product assays .555,000 unique SNPs derived

primarily from stages I and II of the International Haplotype Map

Project (www.HapMap.org). Experiments were performed as per

the manufacturers instructions using 750 ng of genomic DNA

extracted from whole blood. After processing chips were scanned

on Illumina BeadStation scanners. All data were analyzed in

BeadStudio (version 3; Illumina), genotype calls were made using

the standard cluster files provided by Illumina. Samples were

initially assessed for genotype success rate (.98%) and concor-

dance of reported and genotype gender. Nine samples were

removed from further analysis due to gender mismatch. Eighty

seven samples failed the cut off genotype success rate of 98%; forty

eight of these samples were re-purified and successfully genotyped,

thus in total 48 samples were removed from further analysis.

Manual checking of genotype clusters was performed for all SNPs

listed in Table 2.

Quality Control
We only used DNA samples for which .98% of all SNPs were

scored. To estimate the ethnicity of each of the InCHIANTI

samples we used the first two principle components from an

EIGENSTRAT[42] analysis of a set of 42,048 independent QC-

ed SNPs (generated using PLINK’s (http://pngu.mgh.harvard.

edu/,purcell/plink/index.shtml) LD-based SNP pruning func-

tion (using parameters –indep-pairwise 200 10 0.1)) that included

InCHIANTI and HapMap CEU, JPT+CHB and YRI samples

(http://www.HapMap.org). Only SNPs with a MAF .10% in

HapMap were used in the analysis. This revealed that all

individuals were of European ancestry (Figure S4). The individuals
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included 20% that were a first degree relative of another person in

the study, as calculated from the Identity by descent (IBD) values

generated by the Plink ‘‘pairwise-IBD’’ function. We corrected for

any over inflation of statistics due to relatedness or residual

population admixture by using an inflation factor for each trait,

generated using EIGENSTRAT[42] (Table S3).

We only used SNPs that were called in .98% of samples and

had minor allele frequencies in our sample of .1%. SNPs

deviating appreciably from the expected population distribution

(Hardy Weinberg Equilibrium p,161024) were also excluded

from the analyses. We calculated how well SNPs passing the QC

criteria covered common variation in the genome by identifying all

European HapMap proxies at r2 $0.8 for minor allele frequencies

(MAF) of 5% and 1%, and then comparing this number to the

HapMap count of all autosomal SNPs $ the MAF.

Individual Genotyping in InCHIANTI
A SNP (rs1799941) previously reported to be associated with

SHBG levels was not present on the Illumina chip or in HapMap.

We therefore genotyped this separately using Taqman probes

(Applied Biosystems).

Statistical Analyses
Protein. Many of the proteins were not normally distributed

and so we performed appropriate statistical transformations.

Where a simple log transformation was not appropriate, we used

the STATA version 9 ‘‘ladder’’ command, which searches a subset

of the ladder of powers to attempt to detect a simple

transformation. Where such simple transformations were not

appropriate (i.e. where the distributions were heavily skewed) we

considered the STATA ‘‘lnskew0’’ command which performs a log

transformation after adding a constant, thus creating a zero-

skewness logged variable. Where this transformation was still not

appropriate we considered the STATA ‘‘bcskew0’’ command

which performs a box-cox power transformation to approximate

normality. For proteins identified as significant using these

transformations we further tested the robustness of the results by

performing a probit transformation: we ranked all individuals for

each trait and assigned Z scores corresponding to percentiles in a

normal distribution.

For eight proteins there were a small percentage of individuals

who had levels below the assay detection limits. In each case there

were less than 13 (1%) individuals with levels below detectable

limits, except for Macrophage inflammatory protein beta, for

which there were 77 individuals below the detectable limits. The

values for these individuals for these traits were coded as zero. For

a ninth protein, TNF-alpha, there were seven individuals who had

levels above the assay detection limits and the values for these

individuals were coded at the maximum detectable value

39.4 pgml-1. Non-parametric analyses using quantile regression

in Stata v9.0, for MIP-beta and TNF-alpha showed that the highly

significant associations observed with these two markers were not

affected by the inclusion of individuals with levels out of the assay

range.

For six proteins (Interferon-G, Interleukin-10, Interleukin-12,

Interleukin-1b, Interleukin-8 and Monocyte Chemoattractant

Protein -1) there were .8% of individuals that had levels below

the detectable limits. For these we dichotomized traits at the

median, or if there was more then 50% below detectable limits, at

this point. There was no transformation which made LipoproteinA

normally distributed but 14 mg/dl is used as a standard clinical

cut off point for high levels and so was used to dichotomise the

variable.

Genome-Wide Association Statistics. For each autosomal

SNP for each of the 36 proteins with levels as quantitative traits,

we performed linear regression using PLINK software with age

and sex as covariates. This means we tested just one genetic model,

an additive model with one degree of freedom. This model tests if

the trait alters by equal amounts with each additional allele across

the three genotypes. For the six markers dichotomized into high

and low values we also performed a single per allele test across

genotypes using PLINK (Cochran-Armitage 1df test for trend).

Permutation Testing and Quantile Regression. To assess

empirical significance of SNPs reaching significance after

Bonferroni correction, we used the maxT function in PLINK.

Full details are available at http://pngu.mgh.harvard.edu/

,purcell/plink/index.shtml but briefly each permutation

randomly swaps phenotype values between individuals to

provide a new dataset sampled under the null hypothesis, but

which preserves any correlation between genotypes. The program

then compares each observed test statistic against the maximum of

all permuted statistics (i.e. over all SNPs) for each single replicate.

For the trans effect we performed 10,000 permutations across the

entire genome and for the cis effects we performed 100,000

permutations across the region (‘‘region-wide’’) containing the

gene and 300 kb each side. This approach meant that

permutation tests were not corrected for relatedness but given

the relatively small inflation factors for each trait and the fact that

the largest permutation p value in Table 2 is 0.0038 this is unlikely

to affect the results appreciably. To further check the robustness of

our findings we performed non-parametric analyses using quantile

regression in Stata v9.0. Three SNPs exceeded the Bonferroni

thresholds for significance, rs11574783 with GP130 levels,

rs2170436 with parathyroid hormone levels (both cis) and

rs1880887 with alkaline phosphatase levels (trans) but these

associations did not remain after either permutation (p.0.05) or

non-parametric tests (p.0.05 after multiplication by number of

SNPs).

False Discovery Rates
To assess false discovery rates we calculated the equivalent q

statistic as implemented in the ‘‘Qvalue’’ software [33] and using a

single file of p values from all 496,032 SNPs for all 42 phenotypes.

ABO Blood Group Determination
The 3 major ABO blood groups are determined by SNPs in the

ABO gene[43]: the O blood group polymorphism (rs8176719) is a

G deletion which generates a premature termination codon, and is

recessive. B blood group differs from A at 7 nucleotides, including

4 non-synonymous SNPs. There were two independent signals in

the ABO gene, associated with TNF-alpha levels (best SNPs were

rs8176746 and rs505922). rs8176746 is one of the 4 non-

synonymous polymorphisms determining the B group and the A

allele, which changes a leucine to methionine amino acid, is found

on all B haplotypes. The O blood group deletion polymorphism

was not present on the Illumina chip and so to accurately

determine ABO blood group, the O deletion polymorphism was

typed in the InCHIANTI samples. The deletion was typed using a

Taqman end-point PCR custom assay designed by Applied

Biosystems. 20ng of DNA was amplified with 1ml of ABsolute

QPCR mix containing ROX reference dye (ABgene) and,

following 40 cycles of PCR, fluorescence was measured on a

Pherastar plate reader and genotypes assigned with Klustercaller

software. Haplotypes were constructed using the B blood group

SNP (rs8176746) and the recessive deletion polymorphism for O

blood group (rs8176719) (Figure S2). Exactly the same methods

were used to assign ABO blood groups to the Health ABC
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samples, except the lack of genome-wide scan data meant we

genotyped both rs8176719 and rs8176746 using Applied Biosys-

tems Taqman assays.

Replication Studies
Summary details of replication studies are given in Table S2. All

individuals are of white European ancestry. To replicate the

SHBG finding we used baseline data from the Weston Area T3/

T4 Study (WATTS) cohort consisting of people on thyroxine

replacement, recruited from GP practices in the Bristol and

Weston-super-Mare areas in the West of England between March

2000 and June 2002. Further details have been previously

published [44]. We also used The Northern Finland 1966 Birth

Cohort (NFBC1966), a study of offspring born in the two

northern-most provinces of Finland to mothers with expected

dates of delivery in 1966[45]. The subjects included in this analysis

are from a subset of individuals who had data taken and DNA

extracted aged 31 years[46,47] To replicate the TNF-alpha

finding we used baseline data from The Health Aging and Body

Composition study, which is an ongoing prospective study

designed to investigate the effect of changes in body composition

and weight-related health conditions on incident functional

limitation. Use of baseline levels of TNF-alpha have been

previously reported [48]. In each case, the serum measure was

transformed to normality before testing an additive genetic model

with age and sex as covariates. Inverse variance meta-analysis as

implemented with the ‘‘metan’’ command in STATAv9.0 was

used to combine associations from across studies. In each

replication study genotyping call rates exceeded 98% and SNPs

were in Hardy Weinberg equilibrium (p.0.05).

Accession Numbers
Accession numbers for proteins are taken from Swissprot

(http://www.ebi.ac.uk/swissprot/): SHBG - PO4278, TNFa -

PO1375, IL-6sR - P08887, MIPb - P13236, IL18 - Q14116, LPA -

P08519, GGT1 - P19440, CRP - P02741, IL1RA - P18510.

Accession numbers for genes are taken from Ensembl (http://

www.ensembl.org/index.html): ABO - ENSG00000175164, IL6R

- ENSG00000160712, CCL4L2 - ENSG00000129277, IL18 -

ENSG00000150782, LPA - ENSG00000198670, GGT1 -

ENSG00000100031, SHBG - ENSG00000129214, CRP -

ENSG00000132693, IL1RN - ENSG00000136689.

Supporting Information

Figure S1 Plots represent box-plots except for LPA where

proportions in high and low groups are given. For each genotype

the box is bordered at the 25th and 75th percentiles with a median

line at the 50th percentile. Horizontal lines joined to the boxes by

vertical lines are calculated utilizing the interquartile range (IQR)

which is the difference between the first and third quartile values

(Q3–Q1). The upper value is the largest data value that is less than

or equal to the third quartile plus 1.5 X IQR and the lower

adjacent value is the smallest data value that is greater than or

equal to the first quartile minus 1.5 X IQR. Values exceeding the

upper and lower adjacent values are called outside values and are

displayed as markers. a) Cis effects b) Trans effect.

Found at: doi:10.1371/journal.pgen.1000072.s001 (0.04 MB

DOC)

Figure S2 A) Map of ABO gene from UCSC genome browser,

May04, showing positions of the Illumina panel genotyped SNPs

(rs8176746 and rs505922) and the functional O blood group

polymorphism (rs8176719). b) Linkage disequilibrium (r2) between

the 3 SNPs after the O deletion was typed separately in the

InCHIANTI samples. c) The four haplotypes formed by the three

SNPs shows how rs505922 splits the A blood group allele

haplotype. d) Haplotypes formed by rs8176746 and rs8176719

(the B blood group SNP and the recessive deletion polymorphism

that defines O blood group, respectively) and how they define

ABO phenotype.

Found at: doi:10.1371/journal.pgen.1000072.s002 (0.13 MB

DOC)

Figure S3 Comparison of TNFA results in InCHIANTI. A)

Correlations between transformed TNFA levels (log transforma-

tion) measured using an ELISA method (R&D systems,

HSTA00C) and a LINCOplex method, (Luminex (HADK2-

61K-B). B) Correlations between each of the two transformed

TNFA measures and three other key proteins, IL6 levels, high

sensitivity C reactive protein levels and albumin levels. C) i)–

ii)Histograms of raw TNFA measures, iii)–iv)associations with

ABO blood group shown as box plots; and v) associations of R&D

systems method with ABO blood group showing association is

strongest in the one third of individuals with highest TNFA levels.

Found at: doi:10.1371/journal.pgen.1000072.s003 (0.09 MB

DOC)

Figure S4 InCHIANTI and HapMap samples plotted for the

first two principal components obtained from multidimensional

scaling of a matrix of "identity by state" genotypes. All

InCHIANTI samples cluster tightly around the European

HapMap samples. INCH = InCHIANTI samples, CEU,

JPT+CHB and YRI = European, combined Japanese and Han

Chinese and Yoruban samples from HapMap, respectively.

Found at: doi:10.1371/journal.pgen.1000072.s004 (0.04 MB

DOC)

Table S1 Summary details of participants and mean traits.

Abbreviations for proteins are included if they are used elsewhere.

Found at: doi:10.1371/journal.pgen.1000072.s005 (0.10 MB

DOC)

Table S2 Details of SHBG and TNF-alpha replication studies.

Found at: doi:10.1371/journal.pgen.1000072.s006 (0.03 MB

DOC)

Table S3 Supplementary Table 3a and 3b Full details of trans

and cis effects for 42 proteins. For the nine regions reaching

overall significance we include all SNPs in that region that cross

the significance threshold. IL = interleukin. 3a Cis results for 42

proteins. Details of only the most strongly associated cis SNP for

each gene are given, except for the eight reaching significance in

which case details of all SNPs in the cis region ,0.001 are also

given. 3b Trans results. Details of the most strongly associated

SNP in the genome wide scan, excluding the gene coding for the

protein, plus 600kb of flanking sequence. For TNF-alpha details of

all SNPs in the ABO region ,0.001 are also given.

Found at: doi:10.1371/journal.pgen.1000072.s007 (0.42 MB

XLS)

Table S4 Associations of the eight cis and one trans finding in

InCHIANTI using different covariates and exclusion criteria.

MAF = Minor allele frequency. GC P = p values from table 2 in

the main paper (corrected for the inflation factor given in

supplementary table 2, age and sex). P2 = P values correcting for

relatedness using generalized estimating equations, age and sex.

P3 = P values correcting for relatedness using generalized

estimating equations, age and sex and using a probit-transformed

phenotype. P4 = P values correcting for relatedness using gener-

alized estimating equations, age, sex, myocardial infarction,

diabetes, being a current smoker, BMI, use of steroids in the last
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5 years and use of lipid lowering treatment in the last five years.

P5 = P values correcting for relatedness using generalized

estimating equations, age, sex, myocardial infarction, diabetes,

being a current smoker, BMI, use of steroids in the last 5 years,

and use of lipid lowering treatment in the last five years, and

additionally the total serum protein. The number of individuals

with missing data for this number of covariates was small such that

N’s for each test were similar, ranging from 1055 to 1195.

Found at: doi:10.1371/journal.pgen.1000072.s008 (0.04 MB

DOC)

Table S5 Positions of the eight genes with significant cis effects

based on Jan 07, NCBI 35, dbSNP125, HapMap phase II data

release 21a, in relation to the region covered by all HapMap SNPs

tagged at r2.0.2 by the most significant cis effect SNP.

Found at: doi:10.1371/journal.pgen.1000072.s009 (0.04 MB

DOC)
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