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Abstract 

An important contributory factor to the bullwhip effect (i.e. the variance amplification of 

order quantities observed in supply chains) is the replenishment rule used by supply chain 

members.  First the bullwhip effect induced by the use of different forecasting methods in 

order-up-to replenishment policies is analysed.  Variance amplification is quantified and we 

prove that the bullwhip effect is guaranteed in the order-up-to model irrespective of the 

forecasting method used.  Thus, when production is inflexible and significant costs are 

incurred by frequently switching production quantities up and down, order-up-to policies may 

no longer be desirable or even achievable.  In the second part of the paper a general decision 

rule is introduced that avoids variance amplification and succeeds in generating smooth 

ordering patterns, even when demand has to be forecasted. The methodology is based on 

control systems engineering and allows important insights to be gained about the dynamic 

behaviour of replenishment rules.  

Keywords
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1. Introduction 

The tendency of orders to increase in variability as one moves up a supply chain is commonly 

known as the bullwhip effect. Forrester (1958, 1961) initiated analysis of this variance 

amplification phenomenon.  His work has inspired many authors to develop business games 

to demonstrate the bullwhip effect.  The well-known Beer Game originated from MIT at the 

end of the fifties and Sterman (1989) reports on the major findings from a study of the 

performance of some 2000 participants. Kaminsky and Simchi-Levi (1998, 2000) developed a 
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computerised version of the beer game. There is certainly no lack of empirical evidence from 

real world supply chains. The figures below illustrate the bullwhip effect observed in the real 

world.  They show data from a major retailer and a manufacturer of fast moving consumer 

goods.  In figure 1a we show the retailer sales versus the shipments from the manufacturers� 

distribution centre (to this retailer) for one specific product.  The shipments are clearly much 

more variable than the sales. In figure 1b we show the shipments from the manufacturing 

plant to the distribution centres versus the production quantities. Again we observe a drastic 

increase in variability. Our data shows that while coefficients of variation
1
 (CV�s) of retail 

sales typically range between 0.15 and 0.5, the CV of the production orders are typically in 

the range of 2 to 3.  In other words, a very substantial increase in variance has occurred. 

Lee, Padmanabhan and Whang (1997a, b) identify five major causes of the bullwhip 

effect: the use of �demand signal processing�, nonzero lead times, order batching, supply 

shortages and price fluctuations. In this paper, we will mainly focus on the issue of non-zero 

lead-times and particularly demand signal processing.  We understand demand signal 

processing as the practice of adjusting the demand forecasts and as a result of this practice, 

adjusting the parameters of the inventory replenishment rule. Doing this may cause over-

reactions to short-term fluctuations and lead to variance amplification.  Baganha and Cohen 

(1998) correctly formulated a very puzzling idea. We quote: �inventory management policies 

can have a destabilising effect by increasing the volatility of demand as it passes up to the 

chain� whereas �one of the principal reasons used to justify investment in inventories is its 

role as a buffer to absorb demand variability�.  In other words, inventories should have a 

stabilising effect on material flow patterns.  How is it that market variability is amplified 

rather than dampened? We show that the design of inventory replenishment rules plays a 

crucial role in that respect.  Given the common practice in retailing to replenish inventories 

very frequently (e.g. daily) and the tendency of manufacturers to produce to demand, we will 

focus our analysis on a class of replenishment strategies known as order-up-to level policies. 

In the absence of fixed ordering costs, it is known that it is optimal to bring the inventory 

position up to a predetermined target level.  This is the simplest form an optimal ordering rule 

can take.  

An order-up-to policy is optimal in the sense that it minimises the expected holding 

and shortage costs. We refer to the important work of Samuel Karlin (1958) for the theoretical 

foundation of this approach.  However, bullwhip effect research is also interested in the 

control of inventory and (production or distribution) order rate fluctuations. In this paper we 

therefore analyse the behaviour of order-up-to policies in terms of order-rate fluctuations. In 

1 The Coefficient of variation (CV) of a dataset is the ratio of the standard deviation of the data over the mean. 
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Figure 1a and 1b: The Bullwhip Effect: real-life illustration
2

practice, production may be very inflexible and significant costs may be incurred by ramping 

up and down production levels frequently.  In the case where we also penalise fluctuations in 

2  Note.  Figure 1a shows weekly data between the manufacturer and one particular retailer.  This plot is 

appropriate as the retailer places orders weekly.  However Figure 1b shows the daily production data for the 

same product, but for a number of retailers (of which one is the retailer in Figure 1a).  This plot is appropriate as 

the production planning is done on a daily basis. 
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production or ordering quantity levels, order-up-to policies may cease to be optimal. These 

production-switching costs may be very large, consequently requiring a smooth production or 

ordering pattern.  In the second part of the paper, we present a general decision rule that can 

be used to generate smooth ordering patterns.  Hence, although the inventory related costs can 

be increased by smoothing the demand pattern, the decision rule may still outperform order-

up-to policies in terms of total costs (inventory holding and shortage costs plus production 

switching costs).  This will of course depend on the particular cost structure of the supply 

chain under consideration.  

We distinguish between two methodological approaches to tackle the problem. One is 

the statistical inventory control approach, the other one being the control systems engineering 

approach. In this paper we advocate the engineering approach and are able to confirm and 

extend the existing results obtained through statistical analysis.  We now briefly review the 

recent major contributions of both methodologies. Lee, Padmanabhan and Whang (1997a, b) 

and Chen, Drezner, Ryan and Simchi Levi (2000a, b) use statistical approach to quantify the 

bullwhip effect.  They quantify the impact of exponential smoothing based forecasts on order-

rate fluctuations within order-up-to policies.  Lower bounds are established for the variance 

amplification in a simple supply chain consisting of a single manufacturer and a single 

retailer.  Several types of demand processes are assumed. The authors are able to provide 

important managerial insights, such as the fact that the bullwhip effect is caused by the need 

to forecast and the smoother the demand forecasts, the smaller the bullwhip effect. 

Application of control engineering to production and inventory control was first 

achieved by Simon (1952) by using the Laplace transform.  This move was quickly translated 

into the newly favoured discrete z-domain by the OR community, mostly notably by Vassian 

(1955), Adelson (1966), Elmaghraby (1966) and Deziel and Eilon (1967).  It is noticeable 

from a literature search that contributions that utilise the Laplace transform are more 

numerous then those utilising the z-transform.  This is probably due to the more tractable 

algebraic manipulation required when using the Laplace transform.   Unfortunately, the order-

up-to model is inherently discrete, forbidding the use of the Laplace transform.   However, as 

the z-transform is a special case of the Laplace transform, many tools, techniques and best 

practises developed for the Laplace transform are readily exploited in the z-domain � usually 

after a small change in notation.   We also refer to Towill (1970, 1982), Bertrand (1986), 

Bonney and Popplewell (1988), Bonney, Popplewell and Matoug (1994), Grubbström (1998), 

Towill (1999), Dejonckheere, Disney, Lambrecht and Towill (2001) and Disney (2001) for 

contributions on replenishment rules and inventory fluctuations using transform techniques.  

The works of Aseltine (1958), Jury (1964) and Houpis and Lamont (1985) are particularly 
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illuminating texts describing the mathematics of the z-transform.

A brief literature review shows that replenishment rules have largely been analysed by 

the; 

 OR community by exploiting the z-transform directly, 

 System dynamics community by generating simulations from causal loop 

diagrams, although knowledge of control theory is often advocated as a useful 

source of inspiration, 

 Control theory community by using signal flow diagrams, block diagrams, s/z-

transforms, �hard system� control laws, frequency response plots and 

simulation. 

Thus, the presentation of this research via causal loop diagrams, block diagrams, z-

transforms, frequency response plots and simulation will be directly accessible and relevant to 

a large audience.   We refer to Sterman (2000) for an overview of the systems thinking 

approach. 

In this paper we will measure the variance amplification of orders within order-up-to 

policies from a control engineering perspective. We will prove that classical order-up-to 

policies will always generate a bullwhip effect.  It is however possible to design 

replenishment rules based on what we call fractional adjustments, thereby generating smooth 

order patterns. In other words, it is possible to dampen order fluctuations even in 

environments where decision makers have to rely on forecasts.  

The remainder of the paper is organised as follows: in the second section, an overview 

of the control engineering based methodology is given. In the third section, we analyse the 

bullwhip effect induced by exponential smoothing forecasts in order-up-to policies. In the 

fourth section, we measure variance amplification for two other types of forecasting methods 

within the order-up-to setting: moving averages and demand signal processing (Lee et al., 

1997b and 2000) and we compare those forecasting systems with the exponential smoothing 

scenario of section 3. In the fifth section, a general replenishment rule is proposed that can be 

used to generate smooth ordering patterns for different demand patterns.  Finally, a summary 

is given of all the policies analysed and insights presented in this paper.   

2. Methodology 

The methodology used in this paper is control systems engineering (transfer functions, 

frequency response curves and spectral analysis). We complement this methodology with 
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simple spreadsheet analysis in order to test our insights via system responses to real-life 

demand patterns and to perform the Fast Fourier Transform on real-life demand patterns. First 

we briefly review the most important concepts and techniques. 

a. Transfer function 

In control systems engineering, the transfer function of a system represents the 

relationship describing the dynamics of the system under consideration.  It algebraically 

relates a system�s output to its input and in this paper is defined as the ratio of the z-transform 

of the output variable to the z-transform of the input variable.  Since supply chains can be 

seen as systems, with complex interactions between different parts of the chain, we can use a 

transfer function approach to model these interactions. For every replenishment rule, a 

transfer function will be developed that completely represents the dynamics of this particular 

rule. Input to the system corresponds to the demand pattern and output refers to the 

corresponding replenishment or production orders.  For more details on control engineering 

and transfer functions, we refer the reader to the appropriate literature, although Nise (1995) 

provides a good introduction.  In sections 3 and 4, we will illustrate how we obtain the 

transfer function by constructing the �causal loop diagram� and the �block diagram� for the 

replenishment rule under consideration. 

b. The frequency response plot 

To derive the �frequency response� plot (FR) of a replenishment rule, we will present 

the rule with sinusoidal inputs of different frequencies; that means we want to know what 

orders (output) are generated when the demand (input) is sinusoidal. Since we are dealing 

with linear systems, we know that in the steady state the output will also be a sine wave with 

the same frequency, but the amplitude and the phase angle may have changed. We will be 

particularly interested in the ratio of the amplitude of the generated orders (output) over the 

amplitude of the sinusoidal demand (input): this is known as the Amplitude Ratio (AR).  We 

will present the replenishment rule with sine waves of frequencies ranging from 0 to  radians 

per sample interval. For all of these frequencies, we can find the AR and in this way draw the 

FR plot and hence have an extremely insightful profile of the system dynamics. Because of 

the fact that real life demand data can be seen as composed of different sinusoids, it is 

intuitive to analyse responses to different sine waves. The FR will be used to make 

predictions on whether or not, and to what extent, the replenishment rule will lead to variance 

amplification. Consequently, some new metrics for the bullwhip effect are introduced 

specifically based on the FR plot.  
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c. Spectral analysis  

Spectral analysis is a mathematical technique used to decompose a time series into 

constituent frequencies or periodicities. The amplitude or variance associated with each 

frequency component is known as the �spectral density estimate.�  The Fourier transform, 

Cochran et al (1967), is an algebraic method of decomposing any time series into a set of pure 

sine waves of different frequencies, with a particular amplitude and phase angle associated 

with each frequency. The algebraic sum of the sinusoidal components, adjusted for phase 

angle will accurately reproduce the original time series. There are a variety of methods to 

calculate the spectral density estimates. A technique often used is called the Fast Fourier 

Transform (FFT), Cochran et al (1967). This technique greatly reduces the time required to 

perform a Fourier analysis on a computer, and can be obtained by using simple spreadsheets. 

We will illustrate the FFT on the demand pattern shown by the shipment data in figure 1b and 

this is designated �demand� in this paper. 

We have a demand history of 128 periods: this input can be seen as the sum of a constant term 

and plus 63 sine waves of increasing frequency (in integer multiples of the base frequency 

(1/128)2 radians per sample interval). If all the individual sine waves were added to the 

constant term, we can exactly reconstruct the original data set (see Makridakis, 1978). The 

amplitudes of the 63 sine waves are a measure of their relative importance in recomposing the 

original data set. The amplitudes are given in figure 2. The plot of the amplitude versus the 

frequencies is called the �periodogram� of the demand pattern under consideration. 
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Figure 2: Amplitudes of the different sinusoids in the demand pattern given in the 

shipments in figure 1b  
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The control engineering based methodology used in this paper is summarised in the 

figure 3 below. Replenishment rules used in supply chains can be described by means of 

transfer functions. Based on the transfer function, the FR plot can be obtained.  Next, spectral 

analysis will be applied to demand patterns resulting in a periodogram.  This information can 

be used to measure and predict the magnitude of the bullwhip effect.  

Supply chain world Control engineering world

Inventory policy
Replenishment rule

Bullwhip effect?
Normally distributed demands

Correlated demands
Real life demand patterns

Transfer function

Frequency response plot
New bullwhip metrics

Simulation
verification

Causal loop diagram
Block diagram

Spectral 
analysis

Bode plot

Figure 3: Summary of control engineering based methodology 

3. The bullwhip effect caused by order-up-to policies based on exponential 

smoothing forecasts 

Consider a simple supply chain consisting of a single retailer and a single 

manufacturer. We assume the following sequence of events: in each period t, the retailer first 

receives goods, then demand Dt is observed and satisfied (if not backlogged), next, the retailer 

observes the new inventory level and finally places an order Ot on the manufacturer. Any 

unfilled demand is backlogged in our model.  There is a fixed lead time between the time an 

order is placed by the retailer and when it is received at the retailer, such that an order placed 

at the end of period t is received at the start of period t+L.  Specifically, the lead-time L, 

consists of one time period ordering delay and 
pT  time periods of physical production or 

distribution delay. Thus when L=1 the production/distribution lead-time = 0, i.e. the 

production/distribution is instantaneous, i.e. if a product with a production/distribution lead-

time of zero is ordered in time period t, it arrives in time period t+1.  This is because, of 
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course, the receipt of the order is delayed by one period because of the sequence of events. 

We assume in our numerical examples used throughout the text that 
pT  equals 3 time periods.  

There is nothing special in this choice of delay. 

In this section, we first analytically describe the order-up-to policy based on 

exponential smoothing forecasts. Then we derive the transfer function and determine the FR. 

Furthermore, with the FR plot, we will highlight some interesting insights into the bullwhip 

effect created by using this replenishment rule.  And finally, we will look at the impact of the 

smoothing parameter  on the resulting variance amplification.  

a. The decision rule 

In any order-up-to policy, ordering decisions are as follows: 

 tt SO inventory positiont         (1)  

where 
tO  is the ordering decision made at the end of period t, 

tS  is the order-up-to level used 

in period t and the inventory position equals net stock plus on order (or WIP), and net stock 

equals inventory on hand minus backlog. The order-up-to level is updated every period 

according to L

t

L

tt kDS ��          (2) 

where L

tD� is an estimate of mean demand over L periods (
t

L

t DLD ��  ), 
L

t�  is an estimation of 

the standard deviation of the demand over L periods, and k is a chosen constant to meet a 

desired service level.  

Chen et al. (2000a) correctly mention that when the average and the standard deviation 

of the demand during the lead-time are known with certainty, the order-up-to level would be 

constant, and in every period, the retailer would order the last observed demand.  Hence, there 

is no bullwhip effect. However, when LD  and L  are unknown, the retailer must forecast 

demand. This forecasting creates variability in the order-up-to level and causes the bullwhip 

effect. Thus, for every period, the retailer updates the order-up-to level with the current 

estimates. To simplify the analysis (and to ensure that our model matches the model of Chen 

et al (2000a) � to be illuminated later at a more appropriate point in the discussion), we have 

set k equal to zero and increased the lead-time by one.  Policies of this form are often used in 

practice: the value of L is inflated and the extra inventory represents the safety stock. In other 

words L not only represents the physical lead-time, but also a safety lead-time. Remember 

that L already includes a nominal one period order delay because of the sequence of events, so 

that we now have 2 pTL .  

In this section, we use simple exponential smoothing to forecast demand. The formula 
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for simple exponential smoothing is well known to be:  

111
�*)1(*�or)�(*��

  ttttttt DDDDDDD  (3) 

Note that since we make the ordering decision at the end of the period, the current demand 
tD

can be used in the forecast 
tD� . For simple exponential smoothing, the average age of the data 

in the forecast is equal to  /)1(   (Makridakis, 1978). Let 
aT  be the average age of the data 

in the forecast, consequently )1/(1 aT .  

b.  Deriving the transfer function

In order to derive the transfer function for a particular order-up-to policy, we first have 

to draw the �causal loop diagram�.  This is shown in figure 4.  We refer to Sterman (2000) for 

a useful tutorial on constructing and interpreting causal loop diagrams.   Causal loop diagrams 

are a helpful means of communication, but need translating into a rigorous block diagram, 

which is our next step. 

Time to Average
 Sales (Ta)

Customer 
Orders, D

Exponential smoothingSmoothed 
Orders

Production 
Order Rate D

Production 
Completion or 
Receiving Rate

Production 
Delay (Tp)

Orders in the 
Pipeline, WIP

Inventory Feedback Loop

Actual Net Stock

+

++

-
--

-+

Order-up-to Level
S

+

Actual Inventory
Position

+
+

+

L=Tp+2

Figure 4: Causal loop diagram for the order-up-to policy based on exponential 

smoothing forecasts 

The corresponding block diagram is given in the figure 5.  Note that there is a delay operator 

in the block diagram to ensure the correct sequence of events as mentioned earlier.   If, this 
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delay were omitted in a spreadsheet simulation, the software would return an error message 

because of the existence of an algebraic loop, which is obviously not a physically realisable 

situation
3
.  Applying the well-established rules for block diagram reduction, we obtain the 

following transfer function for the orders made under policy defined by equations (1-3) O, 

over the observed demand D: 

zzT

zTTTT

D

O

a

apap






)1(

)3()2(
  (4) 

To derive this transfer function in equation (4), we had to use the z- transform for the 

exponential smoothing algorithm 
1)1(1

�
)(




zD

D
zF


 , (Wikner, 1994). (5) 

D

O, Orders R, Receiving

WIP

NS, Net Stock1

1-z
+

+
-

+
-

+

-1z
-Tp

1

1-z-1

z -1

Exponential
Smoothing

D

Tp+2

-

Nominal delay 
to preserve 

correct order 
of events 

Inventory position

+

S

Figure 5: Block diagram for the order-up-to policy with exponential smoothing forecasts 

Remember that our sequence of events was the following:  1. receive, 2. satisfy demand, 3. 

count inventory, 4. place order.   It is important that in this sequence of events the order is 

made after the demand has been realised and fulfilled.   This is also the case for Lee, So, Tang 

(2000), where their ordering decision at the end of the ordering period equals; 

Ot=Dt+St-St-1 (6) 

3
Additionally, if demand is known with certainty then the order-up-to model is expected to produce orders that 

are the same as the last observed demand, i.e. to simply pass on orders.  If demand is known with certainty then 

Ta is set to  (or a very large number) in the model to reflect that we don�t have to update the estimated average 

demand since it is already known.   If the nominal delay is omitted from this model then it produces an erroneous 

response.   The pure order-up-to model should also have a perfectly flat frequency response of unity for all 

frequencies as it just passes on demand.  If this delay is omitted from the transfer function then this property is 

also not obtained.
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In such a scenario, in any time period t, the current demand Dt can already be used to update 

the forecasts and to calculate the order Ot made at the end of the time period.    Furthermore, 

if the order-up-to is constant, then Ot=Dt.    

However, another type of sequence of events is also used in the literature and the crucial 

difference is that the order is placed before the demand has been observed, e.g. at the 

beginning of the time period, (see Lee, Padmanabhan, Whang (1997b) and Chen, Ryan and 

Simchi-Levi (2000a)).   In these cases, the order decision Ot is based on the previous periods 

demand and inventory position: 

Ot=Dt-1+St-St-1 (7) 

For a constant order-up-to level, we then have Ot=Dt-1.   In general we may say that for a 

constant order-up-to levels, in both scenarios the order equals the last observed demand.   So 

although there are two different sequences of events and there are two different forms of 

notation in the literature, both systems are actually the same as their differences �cancel out�.   

This has been exploited by Chen, Drezner, Ryan and Simchi-Levi (2000), who have also 

correctly used both sequences of events within their analysis. 

c.  The frequency response plot and new bullwhip metrics 

For the order-up-to policy described by equations (1-3), we can now easily draw the 

FR plot. Technically, this is done by letting iwez   in the transfer function of equation (4) and 

determining the size of the radius vector in the complex plane (i.e. its modulus). A discrete 

version of the FR can also be drawn in a spreadsheet by calculating AR-values for a series of 

sine waves with the frequencies gradually increasing from 0 to  radians per sample interval. 

The FR is given in figure 6, for the order-up-to policy defined by equations (1-3) with values 

of 8aT  (or 1111.0 ), and with Tp = 3.  



Dejonckheere, J., Disney, S.M., Lambrecht, M.R. and Towill, D.R., (2003), �Measuring and avoiding the bullwhip effect: A control theoretic approach�, 
European Journal of Operational Research, Vol. 147, No. 3, pp567-590. DOI: 10.1016/S0377-2217(02)00369-7. 

13

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0
.0

0
.5

0
.9

1
.3

1
.8

2
.2

2
.7

3
.1

Freq 

AR

Figure 6: The FR for the order-up-to policy with exponential smoothing forecasts with 

Ta=8 and Tp=3 

The conventional way to measure bullwhip is to use the ratio of the variance (or 

standard deviation or CV) of the orders being generated (output) to the variance (or standard 

deviation or CV) of the demand (input). In our control engineering methodology, we can 

define similar bullwhip metrics for any replenishment rule, based on its FR.

We could take the maximum of the FR plot as a bullwhip effect measure. For the 

order-up-to policy of equations (1-3), with Tp = 3 and 
aT = 8, we have a peak AR�value of 

1.588. This peak AR-value is a worse-case scenario, because it only occurs for a perfectly 

sinusoidal demand of one particular frequency. It can easily be shown that any AR-value, is 

exactly the same as the ratio of the standard deviations of input over output. Therefore, we 

need to know the arithmetic relationship between amplitude and variance of a sine wave: the 

square of the amplitude divided by two is equal to the variance (var = A
2
/2, see Porges and 

Bohrer, 1991). The remainder of the proof is as follows: 

)(

)(

)input(var*2

)output(var*2

inputstdev

outputstdev

A

A
AR

input

output      (8) 

Since real demands are seldom perfectly sinusoidal, but rather a combination of 

different sine waves (see spectral analysis), we will use the area under the squared FR curve 

as another metric for the bullwhip effect. This second measure is a common metric in 

communications engineering (Garnell and East, 1977) and is called the �Noise Bandwidth�. It 

is formally defined as 


 deFW i
N

2

0

)( ,      (9) 

where )( ieF is the steady state response at excitation frequency  .  In particular cases the 

noise bandwidth may be calculated directly from formulae (Garnell and East, 1977). 
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Alternatively, if the FR plot is determined at discrete points, for example as in a spreadsheet, 

Noise Bandwidth can be estimated through numerical integration up to the Nyquist frequency 

( radians per sampling period).  For the order-up-to policy with smoothing parameter 8aT

and Tp = 3, we obtain WN  = 7.625.  

d.  Insights for supply chains

Based on both the FR plot and spectral analysis, we obtain four interesting insights 

concerning the bullwhip effect generated by replenishment rules in general, and by this order-

up-to policy (1-3) in particular. 

Insight 1: The FR plot provides a valuable insight into the dynamic behaviour of the 

replenishment rule.

Since this order-up-to policy overshoots for all possible frequencies from 0 to 
radians per sampling period (see figure 6), and since every possible demand pattern is 

eventually a combination of different frequencies (spectral analysis), we know that this order-

up-to policy will create variance amplification for every possible demand pattern. This first 

insight is very strong, because we do not have to make any assumptions regarding the 

distribution of demand!  

Insight 2: It is possible to quantify very accurately the magnitude of the variance 

amplification that will be caused by any replenishment rule when applied to any demand 

pattern, based on both the FR curve for the replenishment rule under consideration and the 

periodogram of this particular demand pattern. 

Proof.  Suppose our demand pattern (input) is a time series I with N observations and suppose 

that N is an even number and a power of two. Applying the FFT, we decompose our input as 

the sum of a constant term C and (N/2-1) sine waves with frequencies that start at 0 radians 

per sampling interval and increase in integer multiples of a base frequency f0 = 1/N

(Makridakis, 1978). The sine waves are denoted Xi with i = 1, �, (N/2)-1. Adding up the sine 

waves results in the original input:  

)1
2

(21 ...


 NXXXCI          (10) 

Let the amplitude of the i
th

 sine wave be denoted iA . Because the variance of the i
th

 sine wave 

is equal to 2/2

iA  and the covariance between two sine waves is always zero if the frequencies 
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are different (Porges and Bohrer, 1991), the variance of our input signal can be written as: 







1
2

1

22

)1
2

(

2

2

2

1 5.05.0...5.05.0var
N

i
iN AAAAI   with i = 1,�,(N/2 � 1)    (11) 

The physical meaning of equation (11) is that the spectral density estimate 2

iA  (also called the 

�power�) represents the contribution of frequency i to the total variance of the input signal 

(see also Chatfield, 1996). The generated orders (output) O based on policy (1-3) is again a 

summation of a constant term and (N/2 �1) sine waves, 
iX

~
,  

)1
2

(21

~
...

~~


 NXXXCO          (12) 

Since we are dealing with linear systems, the sine waves 
iX

~
 will have the same frequency as 

the sine waves 
iX , but the amplitude and phase angle may have changed. Let 

iA
~

 determine 

the amplitude of sine wave 
iX

~
. To find the new amplitudes, we have to use the FR plot, 

which gives us AR-values for all frequencies from 0 to  radians per sampling interval. We 

will indicate the AR values corresponding with the (N/2 � 1) frequencies used in the spectral 

analysis as 
iAR . Then we have 

iA
~

 = 
ii AAR * , for i = 1, �, (N/2 � 1). Next, we can determine 

the variance of the generated orders as: 

2
1

2

1

22

)1
2

(

2

)1
2

(

2

2

2

2

2

1

2

1 5.05.0...5.05.0var i
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iNN ARAARAARAARAO 




    (13) 

Finally, the estimated variance amplification is given by the ratio of equation (13) divided by 

equation (11): 


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O , with i = 1, � , (N/2 �1)       (14) 

(14) can also be rewritten as: 




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O ; with i = 1, � , (N/2 �1)     (15) 

Predicting the variance increase for any possible demand set is thus actually making a 

weighted average of all 
2AR  values, with the weights being determined by the squared 

amplitudes found in the periodogram from the FFT.      

Applying equation (15) to our illustrative demand pattern (the shipments in figure 1b) 

and using the amplitude values of figure 2 together with the amplitude ratios of figure 6, we 

obtain an estimated variance ratio of 2.036. To verify this result, we have developed a 
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spreadsheet application enabling us to simulate various replenishment rules, allowing us to 

measure the variance amplification for any demand pattern (Lambrecht and Dejonckheere, 

1999). We tested the previously described policy of equations (1-3) on the same demand 

pattern and we obtained a variance ratio of 2.047, illustrating the accuracy of our prediction. 

The generated orders according to equations (1-3) are given in figure 7 (dotted line): 
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Figure 7: Simulated orders generated by the order-up-to policy defined equations (1-3) 

to the real-life shipments of figure 1b 

In order to compare the estimated variance amplification using equation (15) with the 

simulated results, we selected 30 real life demand patterns (of 128 periods) from a 

manufacturer of fast moving consumer goods (data set 1 corresponds to the example used in 

this text and shown by the shipments of figure 1b). Column one of Table I summarises the 

results. Note that the average deviation is 0.279%.  
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Col 1 Col 2 Col 3 Col 4  

Data sets Order up to policy based on Order up to policy based on Order up to policy based on Fractional adjustment

exp. smoothing forecasts moving average forecasts demand signal processing Smoothing decision rule 

with T a  = 8 with T m  = 17 with   = 1 with T a = 8, T n  = T w  = 4

predicted simulated  % gap predicted simulated  % gap predicted simulated  % gap predicted simulated  % gap

Data set 1 2.0363 2.0445 0.4011 1.5790 1.6089 1.8584 3.7706 3.8754 2.7042 0.7534 0.7382 2.0646

Data set 2 2.4778 2.4759 0.0767 1.8552 1.8621 0.3716 4.4564 4.5342 1.7154 0.3749 0.3630 3.2782

Data set 3 2.1456 2.1433 0.1068 1.9106 1.9483 1.9340 1.8078 1.8586 2.7347 1.5013 1.4842 1.1549

Data set 4 2.4582 2.4598 0.0642 1.8240 1.7875 2.0421 4.9242 4.9566 0.6543 0.4401 0.4465 1.4290

Data set 5 2.3908 2.3887 0.0871 1.9065 1.8930 0.7116 4.3340 4.4527 2.6651 0.6820 0.6734 1.2846

Data set 6 2.3294 2.3323 0.1248 1.6925 1.7052 0.7455 4.8199 4.9353 2.3385 0.4826 0.4811 0.3072

Data set 7 2.3336 2.3391 0.2358 1.7428 1.7369 0.3423 4.3745 4.4181 0.9862 0.5925 0.5933 0.1389

Data set 8 2.4949 2.4973 0.0967 1.8311 1.8554 1.3075 5.1787 5.2246 0.8794 0.3096 0.3113 0.5498

Data set 9 2.4349 2.4401 0.2123 1.8014 1.7794 1.2359 5.0048 5.2102 3.9423 0.3908 0.3620 7.9654

Data set 10 2.2607 2.2475 0.5871 1.7133 1.7042 0.5367 4.5575 4.6169 1.2876 0.5612 0.4985 12.5866

Data set 11 2.4663 2.4671 0.0310 1.8067 1.8127 0.3326 4.4811 4.5232 0.9314 0.3680 0.3715 0.9541

Data set 12 2.4299 2.4268 0.1258 1.8045 1.7814 1.2957 4.7409 4.7581 0.3612 0.4401 0.4469 1.5225

Data set 13 2.4185 2.4264 0.3268 1.7710 1.7801 0.5106 4.2166 4.2791 1.4610 0.4669 0.4733 1.3501

Data set 14 2.4631 2.4624 0.0268 1.6885 1.7029 0.8476 4.8955 4.9766 1.6303 0.3331 0.3342 0.3229

Data set 15 2.1037 2.1220 0.8641 1.6553 1.6749 1.1706 3.9910 4.0548 1.5744 0.7533 0.7904 4.6914

Data set 16 2.2779 2.2782 0.0132 1.8231 1.8187 0.2408 3.6852 3.7263 1.1032 0.8540 0.8503 0.4304

Data set 17 2.4488 2.4501 0.0549 1.9371 1.9505 0.6890 5.1307 5.1476 0.3276 0.3166 0.3071 3.1102

Data set 18 2.4937 2.4659 1.1274 1.7520 1.7844 1.8166 5.4396 5.3168 2.3087 0.2689 0.3192 15.7687

Data set 19 2.4422 2.4444 0.0884 1.8429 1.8385 0.2401 4.8685 4.9023 0.6889 0.3448 0.3457 0.2617

Data set 20 2.4344 2.4262 0.3367 1.6509 1.6666 0.9414 5.8597 5.7712 1.5335 0.2768 0.2888 4.1544

Data set 21 2.2296 2.2282 0.0633 1.8475 1.8298 0.9651 3.1495 3.1818 1.0145 1.0145 1.0010 1.3456

Data set 22 2.4486 2.4503 0.0691 1.7836 1.8150 1.7299 5.7015 5.7871 1.4791 0.2811 0.2779 1.1697

Data set 23 2.4416 2.4343 0.2991 1.8359 1.8104 1.4070 5.7019 5.7814 1.3743 0.2733 0.2679 2.0046

Data set 24 2.4392 2.4388 0.0181 1.8426 1.8562 0.7327 6.0194 6.1347 1.8795 0.2377 0.2244 5.9275

Data set 25 2.4452 2.4470 0.0749 1.7797 1.8353 3.0268 5.6390 5.7404 1.7661 0.2863 0.2797 2.3700

Data set 26 2.4216 2.4287 0.2918 1.7777 1.7764 0.0725 4.2501 4.2959 1.0672 0.4656 0.4737 1.7095

Data set 27 2.4871 2.4885 0.0555 1.8146 1.7998 0.8251 4.2629 4.3654 2.3476 0.3840 0.3836 0.1121

Data set 28 2.4562 2.4633 0.2897 1.8018 1.8206 1.0352 4.3176 4.3491 0.7245 0.4490 0.4237 5.9647

Data set 29 2.2992 2.2574 1.8511 1.9900 1.9287 3.1777 3.1244 3.1157 0.2777 1.0248 0.9883 3.6896

Data set 30 2.2445 2.2358 0.3914 1.7500 1.8095 3.2895 4.1140 4.1568 1.0294 0.6765 0.6671 1.4121

average gap 0.2797% 1.1811% 1.4929% 2.9677%

Table I: Variance amplification for 30 real-life demand pattern data sets 

Table I verifies that we can calculate the estimation of bullwhip (the coefficient of variation) 

from the frequency response via the frequency plot of the order-up-to system and the 

periodogram of the demand signal.    

Insight 3: Given the frequency response plot of a replenishment rule, the corresponding Noise 

Bandwidth divided by  ( /NW ) is equal to the expected variance increase (or decrease) for 

the replenishment rule applied to independently and identically distributed (i.i.d) normally 

distributed demands.  

The proof of insight 3 is relatively easy and intuitive, since insight 3 is only a special case of 

insight 2.  Normally distributed demands have �equal power at all densities�, or other words 

the squared amplitudes A
2
 are constant over the whole frequency spectrum (Chatfield, 1996). 

Applying (10) to i.i.d. normally distributed demand patterns results in: 
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The expected variance increase for normally distributed demands from equation (16) is 

nothing other than the expected value of all 2AR  values. Exactly the same value will be 

obtained by calculating /NW . In the case when the Noise Bandwidth is calculated via 

numerical integration, we have  
N

ARW
N

i
iN


*

1

2


 . Thus, /NW  equals the expected value of 

all 2AR  as well.  This result is intuitively clear since in a normally distributed demand pattern, 

all frequencies are equally present consequently the weights are identical. This result will be 

quite familiar to control engineers (see e.g. Chatfield, 1996), since �for an input of white 

random noise, 
NW  is a direct measure of the variance at the output from the filter� (Towill, 

1999). Instead of the term �white random noise�, we use the term �i.i.d. normally distributed 

demands�, but the same conclusion can be made, namely that the Noise Bandwidth is a direct 

measure for the variance amplification induced by the particular replenishment rule under 

consideration.  For our order-up-to policy defined by equations (1-3) with 8aT  and Tp = 3, 

/NW  equals 2.43, and this is the expected increase of the variance for normally distributed 

demands.   

It is interesting to note that, for our order-up-to model with exponential smoothing, the noise 

bandwidth may be calculated analytically as the integral given by (9) is tractable as shown in 

(17) 
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This analytical bullwhip measure can be shown, after the necessary replacement of 

variables, to be exactly the same as the bound found by Chen et al (2000a).  This verifies that 

obviously our z-transform model of order-up-to policies with exponential smoothing is the 

same as the tight bound on variance amplification given by Chen et al. (2000a), shown below: 


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)(var

)(var 22L
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1
1       (18) 

Chen et al. obtained this result for same order-up-to policy (1-3) through statistical analysis.  

The main conclusion from this analysis is that the statistical approach used by Chen et al. and 

our control engineering approach result in identical variance amplification predictions. Just 
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for illustrative purpose, the variance amplification equals 4.111 for 
aT  = 4 and L=

pT +2 = 5 

and we obtain 2.437 in (17 and 18) for 
aT  = 8 and 1.677 for 

aT  = 16.   

Insight 4: Exponential smoothing based order-up-to policies applied to positively (negatively)

correlated demands will result in less (more) bullwhip effect than when applied to normally 

distributed demands. 

It can be shown that when applying the FFT to positively correlated demands, the 

resulting periodogram is a decreasing function of frequency, meaning that the lowest 

frequencies are most dominantly present. To predict the variance increase, we have to 

calculate a weighted average of the 2AR  values as explained in insight 2. In this weighted 

average for positively correlated demands, the weights for the lowest frequencies are larger 

than the weights for the higher frequencies.  And since the 2AR  values for low frequencies are 

smaller than for high frequencies (see figure (6)), the predicted variance increase will be less 

than for normally distributed demands.  A symmetric argument can be made to prove that 

negatively correlated demands will result in more bullwhip effect than normally distributed 

demands.  The same conclusion was found by Chen et al. (2000a) using statistical methods.  

e.  Impact of the smoothing parameter on the bullwhip effect

It is well known that the smoothing parameter has a significant impact on the bullwhip 

effect. Our control engineering approach confirms this managerial insight. We may highlight 

this by plotting the FR and computing the Noise Bandwidth for different values of aT . The 

results are plotted in the figures 8a and 8b.  
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Figure 8a and 8b: Impact of aT  on the bullwhip effect in exponential smoothing order-

up-to polices 
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We observe that the bullwhip effect increases as aT  decreases (and thus  increases). Note 

that when aT  goes to infinity (i.e. 0 ), we have a fixed order-up-to level for all periods and 

hence no bullwhip effect.  However, large aT -values are only usable for stable demand 

patterns. When demand is unstable and irregular and certainly when demand has a trend, 

small aT -values have to be chosen to follow the demand closely and obtain a sufficient 

service level (see Dejonckheere et al (2002) for more details on tracking abilities of common 

forecasting algorithms).  From figure 8 we can see that in those cases the bullwhip effect will 

certainly be present. Hence there is a trade-off to be made between being responsive and 

following the demand changes very closely (small aT - values) on the one hand and avoiding 

bullwhip (large aT - values) on the other hand. 

4.  Order-up-to policies based on other forecasting techniques  

In this section, we will use order-up-to policies whose order-up-to levels St will be 

updated by means of moving average forecasting, and �demand signal processing� (Lee, 

1997a, 2000). We will conclude that whatever forecasting method is used, order-up-to 

policies will always result in a bullwhip effect. The four insights obtained in section 3 will 

hold under the new assumptions as well.  

a. Order-up-to policies with moving average forecasts 

We still use the order-up-to policy described in equations (1-2), but now with moving 

average forecasts used to update the order-up-to levels St. The demand forecast of period t, 

tD� , is defined as 
m

Tm

i

it

t
T

D

D









1

0� ,        (19) 

with mT  being the number of periods used to compute the forecast. It can be shown (see 

Appendix B and Wikner, 1994) that the transfer function equals: 

m

T
pmp

T

zTTT

D

O m


)2(2
         (20) 

In order to make a fair comparison between exponentially smoothed forecasts with 

forecasts based on moving averages we have to set (e.g. see Pyke, 1999): 

)1(/2  mT  or 12  am TT ,        (21) 

Applying equation (21), the average age of demand data used in both forecasting systems is 

identical. In section 3, we used 
aT = 8, consequently we use 

mT  = 17 in this section. The FR 
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plot for 
mT  = 17 is given in figure 9: 
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Figure 9: FR for the order-up-to policy with moving average forecasts 

Observe the (sinusoidal) shape of the curve: only for a few frequencies, the maximal 

overshoot (1.588) is obtained. On the other hand, there do exist some frequencies where the 

overshoot is zero and consequently, there is no bullwhip effect. For sine waves of those 

particular frequencies, the moving average turns out to be a constant, and thus the order-up-to 

level St is constant, and hence the generated orders are equivalent to the sinusoidal input. 

Other frequencies will lead to intermediate overshoots. Note that the maximum overshoot is 

exactly equal to the maximum of the FR curve for the exponential smoothing forecasts (see 

figure 6). The bullwhip generated by moving average forecasting in order-up-to model 

therefore is much less than that generated by exponential forecasts. 

The variance amplification estimation procedure explained in section 3 and given by 

equation (15) can easily be repeated for this case. We do however have to use the A
2
-values 

obtained in figure 9.  The verification is again based on our spreadsheet simulation. The 

results for 30 data sets are given in Table I, column 2. For i.i.d. normally distributed demands 

we can again compare the control engineering based variance amplification metric (Noise 

Bandwidth / ) with the statistical bound obtained by Chen et al. (2000b) given by: 

2

222
1

)(var

)(var

mm T

L

T

L

I

O
                      (22) 

It is satisfying to observe that Chen�s statistical approach and our control theory approach 

result in the exact same outcomes. For 
mT  = 17 we estimate an increase in variance by a factor 

of 1.761. The amplification equals 2.728 for 
mT  = 9 and 1.348 for 

mT  = 33.  However, the 

control theory route to the analytic expression for bullwhip via the area under the squared 

frequency plot involves a transcendental equation and the integral cannot be found.   The 
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statistical route taken by Chen et al (2000a) has obviously managed to avoid this problem.   

It is also important to note that as Tm=2Ta+1, these three bullwhip results (for Tm = 9, 17 and 

33) may be directly compared to the exponential smoothing results highlighted earlier.  Based 

on these numbers we can conclude that the magnitude of variance amplification is less for 

moving average based forecasts than for exponentially smoothed forecasts (for an identical 

age of the demand data used in the forecast). In any case, the bullwhip effect is again 

guaranteed.  

b. Demand signal processing 

Consider the following inventory policy:  

)( 11   tttt DDSS  ,  and  tt SO inventory positiont,      (23) 

where 
tO  is the ordering decision made at the end of period t, 

tS  (St-1) is the order-up-to level 

at the end of period t (t-1), 
tD  (Dt-1) is the observed demand during period t  (t-1) and  is the 

�signalling factor�, which is a constant between zero and one. We still have an order-up-to 

policy, but the order-up-to level is updated every period using the most recently observed 

demand information. Policies of this type are called �demand signal processing� by Lee et al. 

(1997a).  For  = 1, (23) is quite an intuitive policy, often used by human schedulers in real 

supply chains, Lee et al (1997a). If the retailer experiences a surge of demand in one period, it 

will be interpreted as a signal of high future demand and a larger order will be placed.   

The demand signal processing causal loop diagram is given in Appendix A. For the 

block diagram, we refer to appendix B. The transfer function for policy (23) is given by:  

zD

O  1           (24) 

The FR plot is given in figure 10 for 1 . 
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Figure 10: FR for demand signal processing with 1

The shape of the FR is particularly interesting: there is an overshoot for all different 
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frequencies and the overshoot increases proportionally with frequency. This is intuitively 

clear since we only use the two most recent demand observations and these short-run demand 

fluctuations correspond to high frequency signals.  

The same insights as explained in section 3 hold for a demand signal processing 

behaviour.  Firstly, there will be a bullwhip effect for every possible demand pattern. Second, 

the magnitude of the effect can be accurately estimated using equation (15). See Table I, 

column 3. Third, for i.i.d. normally distributed demand patterns we can easily compute the 

variance amplification by using (16). For  = 1, we obtain an amplification factor of 5. And 

finally, positively (negatively) correlated demands will result in less (more) amplification than 

normally distributed demands.   

 It is interesting to focus on the extremely high amplification factor for  = 1. Demand 

signal processing clearly overreacts dramatically. The overreaction however can be dampened 

by lowering the adjustment factor  in equation (23). For  = 1, the variance amplification 

equals 5, for  = 0.6, it is reduced to 2.91 and for  = 0.2, the amplification equals 1.479. 

Fractional adjustments clearly result in less amplification.  

 The integral from w=0 to  of
z

 1 when z=e
iw

 is tractable (helped by the fact 

that  is obviously a real number), thus exploiting the fact that bullwhip= /NW for i.i.d 

demands allows us to generate an analytic expression (equation 25) of bullwhip for order-up-

to policies with demand signalling.  


)var(

)var(

I

O
)1(21   (25)

c.  Impact of the insights on the �optimal� use of forecasting within order-up-to policies

The managerial insights presented in this section are very general and have a number of 

implications on the OR communitity.   For instance, given that an optimum forecasting 

mechanism (whatever that may be) is selected for a particular demand pattern, and that the 

smoothing parameter(s) is(are) selected to minimise an error function between the demand 

and the forecast, we have shown that within an order-up-to policy it will always create 

bullwhip (Insight 1).    This is due to the fact the forecasts errors are not the correct focus for 

the optimisation routine.   Analysis of forecasting mechanisms needs to be considered within 

the context of the entire production and inventory control system.    Hence, order rate 

variations should be analysed if the focus is to minimise bullwhip. 

Of course, the exact amount of bullwhip generated by the optimal forecasting system will 

depend in the forecasting mechanism used and the actual demand signal.   The procedure 
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highlighted to prove Insight 2 may be used with confidence to predict actual bullwhip 

generated by optimal forecasting mechanisms and settings.    

In the next section we will design a replenishment rule that will be able to generate 

smooth ordering patterns, even when forecasting is necessary. 

5.  A general replenishment rule generating smooth ordering patterns 

Order-up-to settings seem to unavoidably result in a bullwhip effect when demand has 

to be forecasted. In this section we present a general decision rule that does not have that 

drawback.  

a. The decision rule 

The order quantity in period t, Ot, is given by: 

)(
1

)(
1�

tt

w

tt

n

aT

tt WIPDWIP
T

NSTNS
T

DO  ,      (26) 

where aT

tD� is the demand forecast using simple exponential smoothing with parameter aT , 

TNSt a target net stock level, NSt is the current net stock in period t, DWIPt is the desired WIP 

level, and WIPt finally is the current work in process (or on-order) position in period t.  TNSt

is the target net stock level, similar to the safety stock in order-up-to policies. It is updated 

every period according to the new demand forecast and equals aT

tD� . DWIPt is updated every 

period as well, aT
tpt DTDWIP � . Note that we only have Tp orders in WIP. Ta, Tn and Tw are 

the key parameters or controllers of the decision rule. The policy can be described in words as 

�ordering quantities are set equal to the sum of forecasted demand, a fraction (1/Tn) of the 

discrepancy of finished goods net stock, and a fraction (1/Tw) of our on-order position 

discrepancy.� The decision rule of equation (26) and small variations of this rule have been 

described by Towill (1982), John et al. (1994) and Disney (2001). Analysing this 

replenishment rule from a control engineering perspective offers powerful insights into the 

variance amplification issue.  

b. Relationship with order-up-to policies 

Before we derive the transfer function, it is important to see the difference between our 

policy defined by (26) and an order-up-to policy. The order-up-to policy is defined as follows: 

 L

t

L

tt kDO �� inventory positiont        (27) 

For simplicity, we set k = 0 and increase the lead time L by one period. Inventory position 

equals net stock (NS) + products on order (WIP). We then successively obtain: 
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     (28) 

Thus equation (28) turns out to be the complete analogue to the smoothing rule presented in 

(26) with parameters Tn = Tw = 1. In an order-up-to policy, the order quantity is a summation 

of the demand forecast, a net stock discrepancy (or error) term and a WIP discrepancy term, 

but both the net stock and WIP errors are completely taken into account. This is the key 

difference with our decision rule of equation (26) in which the errors are included only 

fractionally. These fractional adjustments are second nature to control engineers, (Towill and 

Yoon, 1982).   It is the reason why the decision rule (26) will be able to generate smooth 

ordering patterns.  Another difference is that in our smoothing decision rule, we have two 

separate feedback loops (one for the net stock and one for the WIP), whereas in an order-up-to 

policy, there is only one joint feedback loop for the inventory position. At first sight, these are 

small differences, but the impact is dramatic.  

Note that the decision rule presented in equation (26) is a very general rule. For this paper, 

we use exponential smoothing to forecast demand, but it is obvious that other forecasting 

methods can be used.  The reader will readily observe that order-up-to policies are actually a 

special case of our general rule, namely the case  wn TT  1.  

c. Deriving the transfer function and drawing the frequency response plot 

The causal loop diagram for (26) is given below.  
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Figure 11: Causal loop diagram for the smoothing decision rule (26) 

For the block diagram derivation we refer to Appendix B.  Reducing the block 

diagram yields the following transfer function: 
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    (29) 

Note that if we set  wn TT 1 in equation (29), then we obtain transfer function (4). This 

proves again that order-up-to policies are a special case of the decision rule (26).  

Once the transfer function is derived, it is easy to draw the FR plot. For illustrative 

purposes we set Ta=8, Tn=4 and Tw=4 (here after, denoted as parameter setting (8/4/4)): 
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Figure 12: FR for the general replenishment smoothing rule with parameter setting 

(8/4/4) 
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We observe a very special and interesting shape of the FR curve in figure 12: there is only 

overshooting for very few frequencies (the lowest frequencies up to .5 radians per sample 

interval).  For the remaining of the frequency spectrum, the amplitude ratio is actually smaller 

than one!   This gives us the key to bullwhip reduction. 

d. Insights for supply chains  

Based on the FR plot and spectral analysis we will again enumerate the four insights. 

Numerical results are given for a (8/4/4) parameter setting. First, replenishment rule (26) is 

able to reduce variability. There is only overshooting for very few frequencies, and the 

maximum of the FR plot in figure 12 is less than the peak for order-up-to policies. More 

importantly, the AR is less than one for the remaining frequencies. This is a very desirable 

result, because in practice, a decision-making process should be able to correctly identify and 

track genuine changes in demand (low frequencies). At the same time, the process is expected 

to detect and reject rogue variations in demand (high frequencies) so that excess costs due to 

unnecessary ramping up and down production or ordering levels are avoided. Secondly, it is 

possible to quantify the amount of variability reduction by means of the same procedure 

explained in section 3. This is shown in column 4 of Table I. For the demand pattern used 

throughout the text (shipments in figure 1b), we plot the generated smooth ordering pattern in 

figure 13. Note that the variance ratio is now approximately 0.75 clearly indicating the 

dampening effect.   
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A third observation is that when the rule of equation (26) is applied to normally distributed 

demands, the ratio of the variances is down to 0.422 (Noise Bandwidth/). In a fourth 

observation, we focus on correlated demands. Since low frequencies are most dominantly 

present in positively correlated demand patterns, and because of the fact that the FR plot 

shows some restricted overshooting at low frequencies, it goes without saying that the 

variability reduction for positively correlated demands will be less than the reduction for 

normally distributed demand patterns.  Furthermore negatively correlated demands will be 

damped substantially more than normally distributed demands.  

e. Comparing order-up-to policies with the smoothing decision rule in terms of costs 

Let us now compare the order-up-to policy (1-3) with 
aT =8 (section 3) with the 

general smoothing policy (26) with parameter setting (8/4/4). We already know that the 

former will create variance amplification, whereas the latter succeeds in generating smooth 

ordering patterns. Hence, the production switching costs will be much larger for order-up-to 

policies. However, it is important to realise that the order-up-to policy is more responsive to 

changes in the demand pattern than the smoothing policy when the same smoothing constant 

aT  is used. To illustrate that in control systems engineering terms, we present both 

replenishment rules with a �step� input signal, which represents a one time abrupt change in 

the level of demand.  In figure 14, we plot the generated orders following a step input, as well 

as the resulting changes in the net stock for both policies. We can observe that for the 

smoothing policy, there is less overshooting in the generated orders compared to the order-up-

to policy, but it takes considerably longer for the net stock to recover completely from this 

step input signal.  
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Figure 14: Step responses for the order-up-to replenishment rule described by equation 

(1-3) with Ta=8 (upper graphs) and for the general replenishment rule described by 

equation (26) with parameter setting (8/4/4) (lower graphs) 

As a result of this, the inventory related costs will be larger for the smoothing policy 

than they were for the order-up-to policy.  This is no surprise since order-up-to policies are 

known to minimise inventory and shortage costs. Hence, there is a trade-off to be made 

between minimising inventory holding and shortage costs on the one hand and production 

switching costs on the other side. The choice will be determined by the cost structure of the 

supply chain under consideration.  In this context Elmaghraby (1966) presents an inspirational 

outline of how to design a replenishment rules to match the cost structure of a supply chain 

via variance ratios of orders and inventory responses, although this is outside the scope of this 

particular paper. 

It is clear that the selection of the parameters Ta, Tn and Tw will determine the 

inventory holding and shortage costs as well as the degree of variability reduction that takes 

place. In figure 12, it can be seen that frequencies up to 0.5 radians per sample interval are 

�followed�, while frequencies from 0.5 up to  radians per sample interval are �filtered out�. 

Other parameters can then be found that ensure more variability reduction takes place. This 
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would again be at the expense of more inventory and holding costs. The choice between 

signal tracking and signal rejection is well known to control engineers and is described as 

filter theory.  Towill and del Vecchio (1995) have exploited this technique in a supply chain 

setting. 

6. Summary of the replenishment rules explained in the paper 

In Table II below, we give an overview of the four replenishment rules (RR) analysed 

in this paper (column 1): order-up-to policy with exponentially smoothed forecasts, order-up-

to policy with moving average forecasting, order-up-to policy with demand signal processing, 

and the smoothing replenishment rule. For each policy we give the following information: the 

frequency response plot (column 1) and the presence or absence of the bullwhip effect 

(Insight 1), the variance ratio for the real life shipments of figure 1b (Insight 2) and for i.i.d. 

normally distributed demands (Insight 3), and finally the impact of correlated demands on the 

bullwhip effect (Insight 4).  

CONCLUSION 

In this paper, we have analysed the bullwhip effect induced by forecasting algorithms 

in order-up-to policies and we suggest a new general replenishment rule that can reduce 

variance amplification significantly.  Different forecasting methods have been integrated into 

the order-up-to system. We prove that whatever forecasting method is used (simple 

exponential smoothing, moving averages or demand signal processing), order-up-to systems 

will always result in the bullwhip effect.  In order-up-to systems, the bullwhip phenomenon is 

unavoidable when forecasting is necessary; it is the price to pay to forecast unstable demand 

and to detect trends. Switching production levels up and down frequently may be very 

expensive in practice. In those cases, it may be important to avoid variance amplification or 

even to reduce variability of customer demand. We therefore have to design new 

replenishment rules. We propose a general replenishment rule capable smoothing ordering 

patterns, even when demand has to be forecasted. The crucial difference with the class of 

order-up-to policies is that in our proposed rule, net stock and on order inventory 

discrepancies are only fractionally taken into account. We show that an order-up-to setting is 

a special case of our general rule.  

The methodology is based on control engineering insights. We derive the transfer 

function and the frequency response plot (FR) for all replenishment rules in the paper. The 

demand signals are analysed with the Fast Fourier Transform (FFT) in spreadsheets. 

Combining those techniques, several interesting insights can be found concerning the  
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Policy and Frequency 

Response Plot 

Insight 

No. 
Operational Insight Obtained 

1 
Bullwhip is always generated by this policy.   

Minimum bullwhip of unity when aT =. 

2 

Predicted bullwhip from FR = 2.0363 for demand signal 

shown by shipments in Figure 1b.   Actual simulated 

bullwhip = 2.047. 
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aT =8 4 
Positively correlated demands create less bullwhip.  

Negatively correlated demands create more bullwhip. 

1 
Bullwhip is always generated by this policy.   

Minimum bullwhip of unity when aT =. 

2 

Predicted bullwhip from FR = 1.5790 for demand signal 

shown by shipments in Figure 1b.   Actual simulated 

bullwhip = 1.6089. 

2. Order-up-to with 

moving average 

forecasting

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0
.0

0
.5

0
.9

1
.3

1
.8

2
.2

2
.7

3
.1

Freq

AR

mT =17

3 

For i.i.d. demand bullwhip= /NW = 

2

)2)(2(2
1

m

pmp

T

TTT 
 . 

1 
Bullwhip is always generated by this policy.   

Minimum bullwhip of unity when aT =. 

2 

Predicted bullwhip from FR = 1.5790 for demand signal 

shown by shipments in Figure 1b.   Actual simulated 

bullwhip = 1.6089. 

3 For i.i.d. demand bullwhip= /NW = )1(21   . 

3.  Order-up-to with 

demand signalling 

forecasting

0

0.5

1

1.5

2

2.5

3

0
.0

0
.5

0
.9

1
.3

1
.8

2
.2

2
.7

3
.1

Freq

AR

 = 1

4 
Positively correlated demands create less bullwhip.  

Negatively correlated demands create more bullwhip. 

1 

It is possible to eliminate variance amplification or the 

bullwhip effect by using fraction adjustments in the 

inventory and WIP feedback paths. 

2 

Predicted bullwhip from FR = 0.7534 for demand signal 

shown by shipments in Figure 1b.   Actual simulated 

bullwhip = 0.7382. 

3 
For i.i.d. demand bullwhip= /NW .  When Ta=8, 

Tn=4,Tw=4, Tp=3, bullwhip= /NW =0.422. 

4.  Smoothing 

replenishment rule 

0

0.25

0.5

0.75

1

1.25

1.5

0
.0

0
.5

0
.9

1
.3

1
.8

2
.2

2
.7

3
.1

Freq 

AR

aT =8, nT =4, wT =4
4 

Positively correlated demands create less smoothing.  

Negatively correlated demands create more smoothing. 

Table II: Summary of the four replenishment rules (RR) analysed in the paper 
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dynamic behaviour of the replenishment rules and more specifically, we are able to predict 

whether or not and to what extent they result in variance amplification or smoothing. The 

presented methodology is very general for two reasons. Firstly, it can be used to analyse the 

behaviour of every possible replenishment rule for which the transfer function can be derived. 

In this paper, we mainly focused on order-up-to policies because they are very popular both in 

supply chain practice and in recent supply chain literature. Secondly, both variance 

amplification (or dampening) predictions can be made for any possible demand pattern, 

including real-life data. For the special case of order-up-to policies applied to i.i.d. normally 

distributed demand patterns, our predictions are identical to the statistically calculated 

predictions available in the literature. 

Acknowledgements

The research contribution from the K.U. Leuven authors was supported by the Science 

Foundation of Flanders (FWO-project 6.0063.98).   We would also like to thank the referees 

for their careful and detailed reviews of this paper. 

Appendix A: Causal loop diagram for �demand signal processing� 

Before drawing the causal loop diagram, we will rewrite equation (20). Recall that the 

inventory position is net stock plus WIP. 




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









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

         (A.1.) 

In this policy, the current inventory position is subtracted from a constant target level plus a 

�demand correction term�, based on the last observed demand Dt.  The causal loop diagram is 

therefore slightly different from the order-up-to policies based on exponential smoothing or 

moving average forecasts. 
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Figure A.1: Causal loop diagram for demand signal processing 

Appendix B: A generic block diagram for all the policies treated in the 

paper 

A generic block diagram can be drawn for all policies treated in this paper: 

D

O, Orders R

WIP

NS1

1-z

Tw

+

+
-

+
-

+

ENS
-1z

-Tp

1

1-z-1

z -1

Forecasting
Policy

D

+

+

b
1

Tn
1

a

+

Nominal delay 
to preserve 

correct order 
of events 

DWIP

EWIP

TNS
SS

Figure B.1.  Generic block diagram for the order-up-to policies studied in the paper 
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In the block diagram ENS stands for the net stock error term and EWIP for the WIP error 

term. The specific parameters for the different replenishment rules are summarised in the 

table below.  Notice that the a (the gain between the estimate of average demand and Target 

Net Stock) and b (the gain between the estimate of average demand and Desired WIP) terms 

in the block diagram need to be substituted for the values in Table B.1.     Furthermore the 

demand signal processing forecasting mechanism reduces to a simple constant.  

Inventory Policy Forecasting Policy Tn Tw Operator a Operator b 

Order-up-to policy with 

Demand Signal Processing 
         where 0<1 1 1 0 0 

Order-up-to policy with 

Exponential Smoothing 
1)1(1  z


; 

=1/(1+Ta) 

1 1 1 Tp

Order-up-to policy with 

Moving Average )
1

1(

1

z
T

z

m

mT



 

; 

Tm  2Ta+1 

1 1 1 Tp

Smoothing rule with 

Exponential Smoothing 
1)1(1  z


; 

=1/(1+Ta) 

< 1 < 1 1 Tp 

Table B.1.  Specific details of individual order-up-to policies shown in figure B.1 
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