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Abstract

Transforming Growth Factor Beta-1 (TGF-b1) is a pleiotropic cytokine that is of central importance in wound healing,
inflammation, and in key pathological processes including cancer and progressive tissue fibrosis. TGF-b1 is post-
transcriptionally regulated, but the underlying mechanisms remain incompletely defined. Previously, we have extensively
delineated post-transcriptional regulation of TGF-b1 synthesis in the kidney, with evidence for relief of translational
repression in proximal tubular cells in the context of diabetic nephropathy. In this study, we have investigated the role of
the TGF-b1 39Untranslated Region (39UTR). Two different 39UTR lengths have been reported for TGF-b1, of 543 and 137
nucleotides. Absolute quantification showed that, while both UTR lengths were detectable in various human cell types and
in a broad range of tissues, the short form predominated in the kidney and elsewhere. Expression of both forms was up-
regulated following auto-induction by TGF-b1, but the short:long UTR ratio remained constant. Incorporation of the short
UTR into a luciferase reporter vector significantly reduced reporter protein synthesis without major effect on RNA amount,
suggesting post-transcriptional inhibition. In silico approaches identified multiple binding sites for miR-744 located in the
proximal TGF-b1 39UTR. A screen in RNA from human tissues showed widespread miR-744 expression. miR-744 transfection
inhibited endogenous TGF-b1 synthesis, while direct targeting of TGF-b1 was shown in separate experiments, in which miR-
744 decreased TGF-b1 39UTR reporter activity. This work identifies miR-744-directed post-transcriptional regulation of TGF-
b1 which, given the pleiotropic nature of cellular responses to TGF-b1, is potentially widely significant.
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Introduction

Transforming growth factor-b1 (TGF-b1) directs cellular

responses including proliferation, differentiation, migration, and

survival. TGF-b1 is a key regulator of embryogenesis, angiogen-

esis, inflammation, and wound healing. Aberrant TGF-b1

synthesis is implicated in numerous pathological processes

including tumorigenesis, atherosclerosis and fibrosis (reviewed in

[1,2]). Thus, understanding the regulation of TGF-b1 expression is

of importance in homeostatic regulation and disease.

Disparities in TGF-b1 expression at the level of mRNA and

protein suggest post-transcriptional regulation [3,4]. Polysome

analysis confirms that TGF-b1 mRNA is inherently poorly

translated, in vitro and in vivo [5,6]. Our previous work

demonstrates specific activation of TGFb translation in renal

epithelial cells in response to stimuli including Glucose, Platelet

Derived Growth Factor, and TGF-b1 itself [7,8,9]. Subsequently,

we have studied the mechanisms by which TGF-b1 translation is

regulated. The 59 and 39 Untranslated Regions (UTRs) are key in

cis sites for post-transcriptional control. We have previously studied

the 59UTR of TGF-b1. We have identified an interaction between

the 59UTR and the RNA/DNA binding protein YB-1 [10] that

regulates its translational activity, and have characterised a

translation-inhibitory stem loop motif [11].

In the current study, we have examined the role of the TGF-b1

39UTR in post-transcriptional regulation, and the potential for

regulation of TGF-b1 by microRNAs (miRs). miRs are small,

endogenous, non-coding RNAs that inhibit gene expression post-

transcriptionally, principally via interaction with target recognition

sites in the 39UTRs of regulated genes. Relevant for potential

targeting by miRs, two distinct 39UTR lengths have been reported

for TGF-b1, length 543 and 137 nucleotides [12,13]. This is in

keeping with recent reports, which suggest that for a proportion of

human genes 39UTR length may vary dependent on alternate

polyadenylation sites, selection of which may be regulated during

development and in response to cellular cues [14] (and reviewed in

[15]). Two potential polyadenylation signals are found within the

TGF-b1 39UTR. The hexanucleotide AAUAAA is the predominant

sequence directing cleavage and polyadenylation of pre-mRNA [16].

This sequence is found at position 498 following the stop codon of

TGF-b1. Other less conserved AU- or A-rich sequences have been

observed in the 39 end of a smaller fraction of transcripts. One such

sequence, AUUAAA, is present at position 110 of the TGFb 39UTR.

In this work we have investigated expression and function of the

TGF-b1 39UTR variants. We show that 543-nucelotide and 137-

nucleotide variants are expressed, and that both variants inhibit

heterologous reporter gene expression, apparently predominantly

via post-transcriptional mechanisms. Detailed expression studies
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show that the transcript containing a 543-nucelotide UTR is a

minor component of TGF-b1 mRNA across a range of human

tissues and cells, while the 137-nucleotide UTR predominates.

Subsequently, we have identified miR-744 as targeting the 137-

nucleotide UTR, identifying a microRNA-mediated mechanism of

post-transcriptional regulation of TGF-b1.

Results

Detection and Characterisation of the TGFb1 39UTR
We have previously demonstrated post-transcriptional regula-

tion of TGF-b1 expression, and extensively characterised under-

lying mechanisms, using E6/E7 transformed proximal tubular

epithelial cells (HK-2 cells). RT PCR showed expression of both

long and short TGF-b1 39UTR variants in HK-2 cells (Fig. 1).

Subsequently, reporter vectors were generated from the pGL3

plasmid incorporating the TGF-b1 137 nucleotide (pGL3short)

and 543 nucleotide (pGL3long) UTRs in an appropriate 39

context downstream of the firefly luciferase open reading frame.

Both TGF-b1 UTR vectors showed diminished reporter activity

compared with control (Fig. 2a, pGL3short 79% reduction in

control activity, pGL3long 94% reduction in control activity,

p,0.0001 pGL3short, p,0.0001 pGL3long, compared to control

vector). Quantification of luciferase RNA showed no significant

differences between UTR vectors and control (Fig. 2b) suggesting

that the effect of the UTR was predominantly at the level of

protein synthesis rather than RNA stability.

The predominant TGF-b1 isoform contains the 137-
nucleotide UTR

Subsequently, absolute quantification of long and short UTR

variants was performed, utilising qRT PCR and standard curves of

known copy numbers of plasmid-derived reference standard. Copy

number evaluation was performed in cell lines of epithelial and

mesenchymal lineage, together with monocytes and polymorphonu-

clear cells (Fig. 3 a: Short copy number, b: Long copy number, c:

percentage of total transcript number that contains the long form

UTR). Long and short UTR variants were detectable in all cell lines

tested, however the long UTR variant was ubiquitously found at low

copy number, typically representing 2% of total TGF-b1 mRNA.

Similarly, a screen of 19 human tissues showed presence of the long

UTR variant at low copy number (Fig. 4 a: Short copy number, b:

Long copy number, c: percentage of total transcript number that

contains the long form UTR). Subsequently we investigated whether

increased TGF-b1 synthesis was associated with a change in the ratio

of short to long TGF-b1 39UTR expression. TGFb auto-induction is

a well-recognised phenomenon. We have previously documented

transcriptional and post- transcriptional TGFb autoinduction in

HK2 cells [17]. Incubation of HK-2 cells with TGF-b1 10 ng/ml for

24 h led to enhanced TGF-b1 expression, however the ratio of short

to long UTR variant remained constant (Fig. 5 a: Short copy number,

b: Long copy number, c: percentage of total transcript number that

contains the long form UTR). Interestingly, absolute quantification of

long vs. short UTR transcript number in nuclear and cytoplasmic

RNA preparations showed increased expression of the long UTR

variant in nuclear RNA (Fig. 6). This is suggestive that the long UTR

variant may be retained or degraded in the nucleus to a greater extent

than the short UTR variant. However, in nuclear RNA, the short

UTR variant remained the predominant transcript type.

Taken together, this data shows that in a wide range of cells and

tissues the preponderant form of TGF-b1mRNA is the short form,

originating from polyadenylation directed by the non-canonical

ATTAAA site at position 110 of the TGF-b1 39UTR, and that

polyadenylation at the canonical AATAAA site at position 498 of

the TGF-b1 39UTR makes only a minor contribution. The

predominance of the short UTR transcript is suggestive that

important post-transcriptional regulation will be constrained to the

first 137 nucleotides of the TGF-b1 UTR.

microRNA-744 is highly conserved, and predicted to
target TGF-b1

MicroRNAs are a recently described and generally important

mechanism of post-transcriptional regulation of gene expression.

MicroRNAs act principally via binding to sites in the 39UTR of their

targets. In silico prediction of microRNA/mRNA interactions relies

on sequence complementarity, site homology with classical

recognition sites, and conservation of sequence (reviewed in [18]).

We used in silico approaches including Target Scan, Pictar and

Miranda to predict potential microRNA regulation of TGF-b1. A

total of 117 potential miR binding sites were identified in the TGF-

b1 39UTR, of which 79 are distal to nucleotide 147, and are thus

found only in the long UTR variant, while 38 are proximal to

nucleotide 147, and so are common to both variants. In most cases,

only a single binding site was identified for each miR. Multiple sites

were identified for miR-663 and miR-744. Four binding sites for

miR-744 were identified in close proximity in the proximal UTR,

and interestingly an additional potential miR-744 site was identified

in the open reading frame, between nucleotides 1875 and 1895. We

have restricted the current analysis to sites in the 39UTR, and have

evaluated their evolutionary conservation, using UCSC Genome

Browser (Fig. 7a). Three of the four miR-744 sites appear highly

conserved in vertebrates, while the fourth site is identified only in H

sapiens and simians (Fig. 7a). Interestingly a second miR, miR-663,

shows considerable seed region homology with miR-744, and

exhibits overlapping potential targeting sites within the TGF-b1

UTR (Fig. 7a). However, while miR-744 appears highly conserved

in vertebrates, this is not the case for miR-663 (Fig. 7b). It is also

notable that miR-663 is located in the heterochromatin close to the

centromere of Chromosome 20, potentially limiting its expression in

many contexts.

Figure 1. RT-PCR detection of short and long variants of TGF-b1

39UTR in HK-2 cells. Arrows indicate detected products of predicted
size (137 and 543 nucleotides). The far right lane is a standard DNA
ladder. N = 6.
doi:10.1371/journal.pone.0025044.g001
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The TGF-b1 137-nucleotide UTR is a direct target of miR-
744

We performed an initial screen in human tissues, and found

widespread expression of miR-744 (Fig. 8). In order to test for

microRNA-directed regulation of TGF-b1 synthesis, TGF-b1 was

quantified in the cell culture supernatant of HK-2 cells transfected

with miR-663 and -744 precursors. Transfection with miR-744

precursor led to a significant decrease in TGF-b1 release (Fig. 9a,

control transfection 118.5pg/ml, miR-663 precursor transfection

87.0 pg/ml (p = n.s.), miR-744 precursor transfection 71.7 pg/ml

(p,0.05)). Measurement of TGF-b1 mRNA by RT-qPCR also

showed significant decreases in TGF-b1 mRNA in cells over-

expressing miR-744 (Fig. 9b, compared to control transfection,

there was 23% decrease with miR-663 precursor transfection

(p = n.s.) and 52% decrease with miR-744 precursor transfection

(p,0.0001)). Subsequently, the potential for direct targeting of the

TGF-b1 39UTR by miR-744 was evaluated. Co-transfection of

miR-744 precursor with pGL3short led to reduction in reporter

vector activity (Fig. 10a, miR-663 precursor transfection, 15.8%

reduction vs. control (p = n.s,) miR-744 precursor transfection,

34.0% reduction (p,0.05)). In contrast, transfection of miR-744

or of control miRs did not significantly alter luciferase mRNA

generation (Fig. 10b). This contrasts with the reduction in

endogenous TGF-b1 mRNA seen following miR-744 transfection

(Fig. 9b). This may reflect inherent differences in TGF-b1 and

luciferase reporter mRNA stability, or relate to the potentially

higher luciferase mRNA copy number seen following transfection,

compared to endogenous TGF-b1 mRNA copy number.

These data confirm that miR-744 directly targets the predom-

inant, short, isoform of the TGF-b1 39UTR, and are suggestive

that reduced miR-744 expression may be associated with

increased TGF-b1 synthesis.

Discussion

In this paper, we have analysed the structure and function of the

TGF-b1 39Untranslated Region (39UTR). TGF-b1 is extensively

post-transcriptionally regulated, and we have previously demon-

strated specific activation of TGF-b1 translation in response to

stimuli including Glucose, Platelet Derived Growth Factor, and

TGF-b1 itself [7,8,9]. Two lengths of TGF-b1 39UTR have been

described [12,19]. We have confirmed that both potential

polyadenylation sites are utilised, leading to two alternate lengths

of 39UTR, but have found that the predominant form in all human

cells and tissues studied is the 137 nucleotide ‘‘short’’ 39UTR,

derived from the alternate polyadenylation signal AUUAAA, rather

than the consensus AAUAAA present at position 498.

The AAUAAA polyadenylation motif is very highly conserved

in human cells and mutation in any of the nucleotides in this

canonical sequence disrupts cleavage and polyadenylation of

transcripts [16]. However, variant motifs occur, of which the

AUUAAA motif present in the TGF-b1 39UTR is the most

common, and one of the least disruptive in terms of loss of

cleavage and polyadenylation efficiency [16]. Multiple potential

polyadenylation motifs within a single gene are increasingly

recognised to play a role in post-transcriptional regulation of gene

expression. In a comprehensive screen of UTR length, Mangone

et al. have recently shown that in C elegans, approximately 50% of

genes have .1 polyadenylation site, giving rise to variable length

UTRs [20]. Mangone et al. identified developmental stage-specific

isoforms of many transcripts, with a preponderance of longer

isoforms in earlier developmental stages [20]. The relatively high

diversity in polyadenylation sites employed in lower organisms

such as C elegans suggests that polyadenylation site recognition

may be more flexible than in higher eukaryotes [20]. However,

there is also robust evidence for coordinated shortening of UTR

length in higher eukaryotes. Proliferating murine CD4+ T cells

exhibit increased expression of mRNAs terminating at upstream

polyadenylation sites [21]. Tumor-derived cell lines express

substantial amounts of mRNA isoforms with shorter 39UTRs

[22]. In both cases, UTR shortening enables relief of post-

transcriptional repression by microRNAs (miRs), and leads to

increased expression of the proteins in question. In the current

study, we found that the short isoform of TGF-b1 predominated in

a wide variety of normal human tissues and cells. However, this

does not exclude the longer isoform playing an important role in

disease states, or earlier developmental stages or organisms.

The above data shows that while the long form of TGF-b1

39UTR is highly inhibitory to translation, it is expressed at low

levels in adult human tissues, and is suggestive that TGF-b1

Figure 2. Effect of long and short TGF-b1 39UTRs on reporter gene expression. (a) Amount of firefly luciferase activity corrected for renilla
activity of cells following transfection with pGL3 control empty vector, pGL3short and pGL3long. (n = 11) *p,0.0001 (b) Relative expression of firefly
luciferase RNA detected by qPCR in cells following transfection with pGL3 control empty vector, pGL3short and pGL3long (p = NS).
doi:10.1371/journal.pone.0025044.g002
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Figure 3. Copy number evaluation of short and long variants of TGF-b1 39UTR. The copy number of (a) short and (b) long forms of TGF-b1

39UTR detected in peripheral blood mononuclear cells (PBMC), polymorphonuclear cells (PMN), lung fibroblasts, HK2 (proximal tubular epithelial cells)
and the monocyte cell line U937. (c) The percentage of total TGF-b1 mRNA with long UTR variant. (Data is from 3 independent experiments).
doi:10.1371/journal.pone.0025044.g003
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Figure 4. Copy number evaluation of short and long variants of TGF-b1 39UTR. The copy number of (a) short and (b) long forms of TGF-b1

39UTR present in 0.04 mg total RNA from 19 human tissues. (c) The percentage of total TGF-b1 mRNA with long UTR variant.
doi:10.1371/journal.pone.0025044.g004
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Figure 5. Effect of TGF-b1 autoinduction on long and short UTR variant expression. The copy number of (a) short and (b) long forms of
TGF-b1 39UTR present (in 0.04 mg total RNA), and (c) The percentage of total TGF-b1 mRNA with long UTR variant present in unstimulated and TGF-b1

(10 ng/ml) stimulated HK2 cells. (n = 3) *p,0.005).
doi:10.1371/journal.pone.0025044.g005
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transcripts with the short 39UTR play a dominant role in TGF-b1

synthesis in adult human tissues, and in cells of diverse lineage.

The data also shows that the short 39UTR is inherently inhibitory

to protein synthesis, suggesting the potential for post-transcrip-

tional regulation of this transcript by miRs. Use of multiple

predictive algorithms suggested targeting of the short UTR by

miR-744. Subsequently, miR-744 was confirmed experimentally

to repress TGF-b1 synthesis, and direct targeting of TGF-b1 was

established using a 39UTR reporter construct.

miR-744 has been identified in a broad range of cells and tissues

in sequencing-based screens of small RNA libraries [23,24].

Increased expression of miR-744 has been detected in B

lymphocyte-derived cell lines and peripheral blood mononuclear

cells from patients with lupus nephritis [25]. In the current study,

we have shown widespread expression of miR-744 in human

tissues. It will be interesting in future studies to characterise the

role of miR-744 in the regulation of TGF-b1 in pathological

contexts characterised by increased TGF-b1 synthesis.

TGF-b1-dependent changes in miR expression are important

effectors of cellular responses. Our recent data demonstrate that

TGF-b1-mediated suppression of miR-192 facilitates epithelial to

mesenchymal transition in renal epithelial cells [26], while Thum

et al. have shown that increased expression of miR21 downstream

of TGF-b1 leads to cardiac fibrosis [27]. miRs are also known to

regulate TGF-b1 signalling, including repression of Smad2 by

miR155 [28], and targeting of multiple components of the TGF

beta-Smad signalling pathway by the miR17-92 cluster [29]. In

the current study, we have shown that miRs also target TGF-b1

directly, further emphasising the important role that miRs play in

TGF-b1-directed cellular responses, and demonstrating a novel

mechanism by which TGF-b1 synthesis may be controlled.

Materials and Methods

General laboratory reagents
Except as otherwise stated, reagents were purchased from

Sigma-Aldrich (Poole, UK), Promega (Southampton, UK), New

England Biolabs (MA, USA), and Invitrogen (Paisley, UK) unless

stated otherwise. Oligonucleotides were purchased from Thermo-

Fisher Scientific (MA, USA).

Figure 6. Nuclear vs. cytoplasmic copy number of long and short UTR variants. The copy number of (a) short and (b) long forms of TGF-b1

39UTR present (in 0.04 mg total RNA), and c) Long variant expression as a percentage of the total amount present in the cytoplasm, nucleus and total
cell extract of unstimulated and TGF-b1 stimulated HK2 cells. (*p,0.05).
doi:10.1371/journal.pone.0025044.g006

Figure 7. Vertebrate conservation and multi-species sequence alignments for the short form 39-UTR of the TGF-b1 gene at 19q13.2
as well as miR-633 and miR-744 genomic loci. (a) multiple seed sequence recognition sites for miR-633 and miR-744 in the TGF-b1 39-UTR. The
alignment features sequences from: hu, human; ch, chimpanzee; rm, rhesus macaque; ba, baboon, ma, marmoset; mo, mouse; el, elephant; xe, frog.
(b) variable conservation across pre- miR-633 and pre-miR-744 sequences with alignment data from the same species. In each figure, seed sequences
are highlighted by horizontal bars for miR-633 (grey) and miR-744 (black).
doi:10.1371/journal.pone.0025044.g007
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Cell culture
HK-2 cells, a clonal E6/E7-transformed human renal

proximal tubule epithelial cell line [30], were maintained in

DMEM/Ham’s F-12 medium supplemented with 10%FCS

(Biological Industries Ltd, Cumbernauld, UK) 2 mM L gluta-

mine, 5 mg/ml insulin, 5 mg/ml transferrin, 5 ng/ml sodium

selenite and 0.4 mg/ml hydrocortisone, at 37uC in a 5% CO2

humidified incubator. The growth medium was replaced every 3–

5 days. Transfection was typically carried out on cells that were

80% confluent.

RNA extraction
RNA was extracted from cells in culture using TriReagent

according to the manufacturers protocol. The RNA was

resuspended in 20 ml of water and 1 mg was reverse transcribed

by the High Capacity cDNA Reverse Transcription (RT) kit

(Applied Biosystems, CA, USA)).

Polymerase Chain Reaction
PCR for the two forms of 39UTR was carried out using the

following primers which incorporate the Xba1 restriction site to

facilitate cloning:

Forward CCTCTAGAGGTCCCGCCCCGCCCCGCCCC

Reverse short form of 39UTR CCTCTAGACCTCTCTCCA-

TCTTTAATGGGG

Reverse long form of 39UTR CCTCTAGACAGGCGTGAG-

CCACCCCGCCTGGCCT

PCR reactions contained 0.25 ml DNA polymerase (AGS Gold,

5 U/ml, Hybaid, Essex, UK) 5 ml of 106 PCR buffer (AGS,

Hybaid), 3 ml of d-nucleotides triphosphate (dNTP) (10 mM),

1.25 ml of sense primer (20 mM), 1.25 ml of anti-sense primer

(20 mM), 2 ml of cDNA template, (equivalent to 0.2 mg of the RNA

transcribed), 2 ml of DMSO, and deionized water to make a final

volume of 50 ml. The reaction consisted of a DNA denaturing step

of 94uC for 4 min, followed by 35 cycles of a denaturing step for

30 s at 94uC, primer annealing for 30 sec at 55uC, and extension

for 60 sec at 68uC. The PCR was concluded with a final extension

for 15 min at 68uC. Negative RT controls show no bands on the

gel following PCR, confirming that the products seen were not due

to genomic contamination.

Plasmid construction
The PCR products were separated on a 2% agarose gel,

purified and cut with Xba1 and then ligated into a pGL3-control

vector (Promega) that had been linearised by cutting at the Xba

site which is located 39 to the luciferase coding region. The

resulting constructs, pGL3Long and pGL3short, were then

sequenced to ensure complete homology with the published

sequences and correct orientation in the vector.

Luciferase Reporter System
The dual reporter assay system (Promega) was used to examine

the effects of the different 39UTR sequence lengths on the

luciferase activity relative to that of Renilla in this reporter assay

system. Transfection was carried out using Lipofectamine LTX

and the Plus reagent (Invitrogen) as recommended. Cells were

growth arrested in the absence of serum for 4 h prior to

transfection with the luciferase reporter constructs (pGL3-control)

together with the Renilla luciferase control plasmid (pRL-SV40) at

a ratio of 9:1. 24 h following transfection the cells were lysed in

passive lysis buffer. The firefly and renilla luciferase activity were

determined by the dual luciferase reporter assay kit (Promega) and

luciferase measured on a Fluostar Optima luminometer.

miR transfection
The transfection of miRs into HK2 cells was carried out at a

final concentration of 50 nM of miR. In co-transfection experi-

ments, the amount of plasmid luciferase construct used was

reduced from 0.2 mg/well of a 24 well plate to 0.05 mg/well as

preliminary experiments suggested that this was the optimum ratio

of plasmid DNA to miR oligonucleotide. Scrambled miR and

miR-16 were transfected in parallel to the miRs of interest as

negative and irrelevant controls. Successful transfection of HK-2

cells with the miRs of interest was confirmed by RT-qPCR.

RT-qPCR for Luciferase mRNA
RNA was extracted 24 h following transfection of 6-well plates

using a total RNA isolation kit (Agilent Technologies, Wilmington,

USA). The samples were DNAse I treated to remove plasmid

DNA contamination. cDNA was generated as described previ-

ously. Primers to luciferase and GAPDH mRNA were designed

using Primer3 (http://frodo.wi.mit.edu/primer3/input.htm)

GAPDH-forward CCTCTGACTTCAACAGCGACAC

GAPDH-reverse TGTCATACCAGGAAATGAGCTTGA,

luciferase-forward GGTCCTATGATTATGTCCGGTTATGT

luciferase-reverse CGTCTTCGTCCCAGTAAGCTATGT.

The mRNA was quantified by RT-qPCR according to standard

protocol using ‘‘power sybrH green PCR Master Mix’’ (Applied

Biosystems) on a 7900HT Fast Real-Time PCR System (Applied

Biosystems). The relative changes in gene expression were

analysed by the 2 2DDCT method.

Quantification of total TGFb1 protein by ELISA
HK-2 cells were growth arrested prior to transfection in serum

free medium as described above. Parallel wells were treated with

transfection reagent alone, or with control miR oligonucleotides.

The cells were incubated for up to 72–96 h, at which time the

medium was harvested and the total TGFb1 was quantified by

sandwich enzyme – linked immunosorbant assay (R and D

Systems, Minneapolis, USA) as described previously [8].

Figure 8. The expression of miR-744 in human tissues. The
relative expression of miR-744 in RNA from 8 human tissues. Expression
is calculated relative to miR-16, found to be uniformly expressed across
all tissues, and normalized to kidney tissue expression. (Data is from
three independent experiments).
doi:10.1371/journal.pone.0025044.g008
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Quantification of TGFb1 mRNA and 39UTRs by RT-qPCR
In order to determine the copy number of each form of UTR, a

reference plasmid was generated incorporating TGF-b1 sequence

from the end of the last intron junction to the 39 end of the

reference sequence (Genebank NM_000660.3). Absolute quanti-

fication was performed including log10 dilutions of reference

standard. Long- and total- TGFb UTR sequence were assayed

using the PCR primers:

TGFB1 Total F

GCCCTGTACAACCAGCATAAC

Figure 9. Effect of miR-663 and -744 transfection on endogenous TGF-b1 protein and message expression. (a) The amount of TGF-b1

protein detected by ELISA produced by cells 96 h following transfection with scrambled miR, miR-663 and miR-744. N = 3, *p,0.05. (b) The relative
amount of TGF-b1 RNA detected by qPCR in cells following transfection with scrambled miR, miR-663 and miR-744. n = 3, **p,0.0001.
doi:10.1371/journal.pone.0025044.g009
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TGFB1 Total R

CACGTAGTACACGATGGGCA

TGFB1 Long F

ACTGCGGATCTCTGTGTCATTG

TGFB1 Long R

CAGTAGTGTTCCCCACTGGTC

Quantification of microRNA by RT-qPCR
The presence and relative amounts of miR-744 and miR-16 as

endogenous control were determined by qPCR using Applied

Biosystems TaqMan MicroRNA Assays [Product IDs 002324 and

000391] (Applied Biosystems, Lingley House, 120 Birchwood

Boulevard, Warrington. WA3 7QH UK) as per the manufacturers

instructions.

Statistics
Replicate samples were analysed a minimum of three times and

the results were compared using the Students’ T Test. P values of

0.05 and under were taken to be significant, and the significant p

values are indicated with an asterix in the figure, with the degree of

significance given in the corresponding figure legend.
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