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Abstract 

With an increase in the use of the internet, there has been a rise in the number of attacks on 

servers. These attacks can be successfully defended against using security technologies such 

as firewalls, IDS and anti-virus software, so attackers have developed new methods to spread 

their malicious code by using web pages, which can affect many more victims than the 

traditional approach. The attackers now use these websites to threaten users without the user’s 

knowledge or permission. The defence against such websites is less effective than traditional 

security products meaning the attackers have the advantage of being able to target a greater 

number of users. 

Malicious web pages attack users through their web browsers and the attack can occur even if 

the user only visits the web page; this type of attack is called a drive-by download attack. This 

dissertation explores how web-based attacks work and how users can be protected from this 

type of attack based on the behaviour of a remote web server.  We propose a system that is 

based on the use of client Honeypot technology. The client Honeypot is able to scan malicious 

web pages based on their behaviour and can therefore work as an anomaly detection system. 

The proposed system has three main models: state machine, clustering and prediction models. 

All these three models work together in order to protect users from known and unknown web-

based attacks.  

This research demonstrates the challenges faced by end users and how the attacker can easily 

target systems using drive-by download attacks. In this dissertation we discuss how the 

proposed system works and the research challenges that we are trying to solve, such as how to 

group web-based attacks into behaviour groups, how to avoid attempts at obfuscation used by 

attackers and how to predict  future malicious behaviour for a given web-based attack based 

on its behaviour in real time. Finally, we have demonstrate how the proposed system will 

work by implementing a prototype application and conducting a number of experiments to 

show how we were able to model, cluster and predict web-based attacks based on their 

behaviour. The experiment data was collected randomly from online blacklist websites. 
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Chapter 1 

 

The internet represents a vital resource identifying a collaborative process between 

organisations and individuals, which can communicate and perform business processes.  The 

internet arose from a research environment, so it was not designed to be a very secure 

environment. Therefore, various internet users, such as agencies and organizations have been 

attacked or probed by intruders, with resultant losses to productivity and reputation. In some 

cases, organizations have decided to disable their internet access and have invested significant 

resources for improving the security of their internet connection. Internet connectivity offers 

enormous benefits in terms of increased access to information, but using the internet can 

become a dangerous experience for those with low levels of security. Major threats of using 

the internet are problems with TCP/IP services, the complexity of host configuration and 

vulnerabilities introduced in the software development process. 

Internet security appears as a policy for deciding how an organisation or internet user is going 

to protect themselves against different threats. Within this policy, there are two important 

parts: (i) a mechanism of protection against internet vulnerabilities and (ii) specific rules 

implemented in accordance with the context of internet usage. 

Before the internet, computer security was restricted to ‘closed systems’ or networked 

computers in offices or banks, where only users could operate the computer system. Once the 

internet appeared, computer users were able to work in an ‘open system’, but security became 

a sensitive aspect. Even though users can connect to the internet and perform remote 

transactions, there is a security issue involved, as the transaction takes place through the 

internet by bouncing the information through various computers on the route from user to 

destination and back again. 
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There are many researchers, as well as industry, working to improve the level of internet 

security to organizations and to home users [2]. In the past, most of the attacks used viruses or 

worms to open a new window, change the wallpaper or pop-up an advertisement, without 

serious impact to the victim’s system. However, recent attacks use complex and serious 

malicious methods and exploits to attack the target networks, sponsored by government or by 

individual attackers. According to the Internet Security Threat report 2011 by Symantec [138], 

shows the total number of vulnerabilities in Table 1-1: 

Year Total number of vulnerabilities 

2008 5,562 

2009 4,814 

2010 6,253 

2011 4,989 

Table 1-1: total number of vulnerabilities by Symantec 2011 [138]. 

A study has shown that a successful compromise of a computer with the default installation of 

Redhat 6.2 occurs within 72 hours. Where a computer has the default installation of Windows 

XP, it is compromised within 15 minutes [3] [126]. Many aspects have to be made secure to 

ensure the security of the internet, including hardware, servers and clients. This work is 

concerned with the client side and the threats that arise out of it. Generally, web attacks are 

divided into two forms: 

1. Server-side attack: The server provides some services, such as Apache HTTP server, 

which contains vulnerabilities that lead to attacks on that service, including the 

possible takeover of the whole server. OWASP report [139] provides the top 10 web 

security attacks, 8 out of 10 top attacks are server attacks such as SQL injection where 

it compromised the SQL database in order to access unauthorised data. 

2. Client-side attack: Here the attacker threatens the client application within the user 

environment. Examples of client applications are: web browsers, media players 

(WinZip or RealPlayer) and Microsoft office. 

Attackers have preferred client-side attacks in recent years because server-side attacks have 

been made difficult by the improvement of a wide range of security measures, such as 

Firewalls and IDS. Therefore, attackers (Blackhats) are attracted to client-side attacks 

because of the lack of security measures.  
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1.1 Honeypot 

“In warfare, information is power. The better you understand your enemy, the more able you 

are to defeat him”[4]. In order to defeat attackers, security professionals need to learn and 

understand the attacker’s methods, tactics, motivation and tools. A Honeypot is defined as a 

“security resource whose value lies in being probed, attacked or compromised” [5]. An 

alternative definition is “A   program, machine or system put on a network as bait for 

attackers” [6]. The aim of the Honeypot is to collect data on attacks and attackers by 

monitoring the machine being attacked. Alternatively, it can emulate the operating system 

services to detect attacks. Because the Honeypot is a provision made by the owner of the 

network, it should not receive any internet traffic from the network or the outside world. 

Consequently, any traffic that comes to the Honeypot could be an attempt to attack or scan the 

system. Generally, Honeypots are divided into two main types: passive and active Honeypots 

(client Honeypots). A passive Honeypot involves setting up a vulnerable system or service, or 

possibly their simulation, and then monitoring activity to detect any attack on the system. The 

objective of this process is to then improve the security of the operating system and network, 

as well as gather information about the attacker’s motives and behaviour. By contrast, instead 

of waiting for attackers passively, an active Honeypot will go and search for the attackers. The 

Honeypots can be used: 

1. By the network administrator, to learn how the attackers are getting into the 

networked computers, by monitoring attacker methods and exploits when they 

compromise the Honeypot system. 

2. To collect known and unknown malicious codes for analysis by security 

professionals and companies to release patches or learn new attack methods used. 

3. As an easy target for the attackers to compromise. Therefore, it will attract the 

attacker’s attention while keeping their eyes away from network servers, which are 

harder targets, meanwhile the network administrator is informed of the attack and 

able to defend it. 

The log files of Honeypot traffic have a high value for the security team and owner of the 

network because they reveal the traffic of the attacker with a low false positive, compared to a 

firewall or an Intrusion Detection System (IDS). By using a Honeypot, the effort required to 

analyse the log files from other security techniques can be avoided. 
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1.2 Research Hypothesis 

Malicious web pages can be detected by using their signature and behaviour. Most of the 

techniques are based on the signature, such as anti-malware software, or by using a pre-

defined list, the blacklist, and then checking if the target web page matches or not. The 

detection and prediction of malicious web pages based on behaviour is an emerging area and 

there is limited work on how to build a real detection and prediction model to analyse 

malicious web pages based on their behaviour and activities on the end-user’s system. 

The hypothesis of this research is that monitoring behaviour is a more efficient, safer and 

accurate approach to detecting web-based malware than a signature-based approach. This 

thesis has created a number of approaches that can serve to build detection and prediction 

models. The first method is to encode malicious web page behaviour using a state machine, 

which is presented in chapter 3. A clustering model is developed that can group similar 

malicious web pages in order to understand the relationships and similarities between 

particular web-based malware and others. This clustering model, which is described in chapter 

4, can also find additional correspondences by creating sub-groups within each main 

behaviour group. The objective is to detect malicious web pages through their behaviour and 

activity on a client. Combining a prediction model with clustering and classification 

algorithms enables the detection of malicious behaviour at run time and provides a useful way 

to block web sites without needing to analyse the signatures of malware. The web-based 

malware behaviour model can be used to analyse, group, detect and predict the activity of a 

malicious web page within the end user’s environment while the client is surfing the web. 

Alternatively, it can be used in test environments, such as the Client Honeypot, in order to 

analyse and predict future behaviour of malicious web pages.  

The client Honeypot monitors the web-based malware as it interacts with the end-user's 

system, interrupts its events and logs them. The events caused by the malicious web page may 

change the system state in order to compromise it, such as through writing new files or 

opening a back-door. We encode these events into a state machine in order to understand them 

and use them with clustering and prediction models. Fig 1-1 shows an overview of how the 

web-based malware events were monitored. 
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Fig 1-1: an overview of how the web-based malware events were monitored. 

1.3 Research Aims and Objectives 

The overall aims of this thesis can be summarised as follows: 

“The use of the pre-defined malicious behaviour to detect web-based attacks by 

predicting future potential malicious behaviour” 

The main aims of the thesis are as follows: 

 Detect malicious web pages based on behaviour which represents actual malicious 

activity, even when the exploit code has been encrypted and packed. 

 Provide real-time behaviour analysis of the web-based attack while interacting with a 

web browser. 

 Identify and understand similarities between malicious web page exploits and define 

common characteristics to group them in one behaviour group. 

 Improve the detection accuracy of Web-based attacks using information from previous 

attacks. 
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1.4 Research Questions 

Question 1: How does the security analyst, network administrator and end-user 

interpret the behaviour of a malicious web page? 

Malicious websites may cause a number of activities, as explained in chapter 4, to be 

performed on the victim’s system; each activity is performed in different stages. Therefore, if 

a malicious website causes three activities, then they will be performed in three stages, 

represented as three independent states. 

An automated state machine has been used to convert the malicious web page stages into pre-

defined states. Websites may contain one or more malicious web pages, which can affect the 

visitors, while the other pages are benign. For this reason the author focuses on the term ‘web 

page’ as opposed to ‘website’. These states can describe every malicious web page using the 

same state machine sequence. There will be a pre-defined sequence for any malicious web 

page, called a “state machine.” The state machine advantages can be summarised as: 

 System administrator: Helps the system administrator to explore web-based malware 

activities and protect networked machines, by applying the appropriate patches or 

reverse malicious states to undo their effects. 

 Security researcher: 

o Creates a pre-defined sequence for any web-based behaviour and activity. 

o Provides easy and simple states (activities) describing web-based malware 

behaviour to security researchers. 

 End-user: 

o Provides a web-based activity to the end-user in a simple and easy way that 

allows them to understand what malware actually does to a victim’s system. 

o Provides the ability to explore the activities of current web-based malware 

attacking their machine. 

Question 2: How can the relationships between different malicious web pages be 

analysed and displayed, based on their behaviour within the end-user’s system? 

To answer this question, two different clustering algorithms were implemented. The clustering 

algorithms are able to read the state machine signatures, encode malicious web page behaviour 
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and then group similar malicious web page exploits together. The output of clustering 

algorithms will be categorized to build up groups of similar web-based malware, which 

represent the malicious behaviour performed on the victim’s system. The benefit of using this 

process is to identify families of malicious web pages with similar behaviours (behaviour 

families). The advantages are: 

 System administrator: Provide the ability to explore the behaviour steps of web-

based malware attacking the network in order to protect the network from other web-

based malware in the same family.  

 Security researcher: 

o Can build behavioural families of web-based malware. There are currently no 

accepted web-based malware categories based on behaviour. 

o Can analyse similar web-based malware to find differences between one 

malicious web-based activity and another. 

o Can reduce the time required to analyse web-based malicious files, by using 

behaviour families to cluster similar malicious web-based activities, thereby 

enabling security researchers to analyse and study them quicker. 

Question 3: How can the future behaviour of a running web page be predicted based on 

its past behaviour? 

The clustering models as described in chapter 6 were used to understand the relationships and 

similarity between the behaviour of malicious web pages. The prediction model will check the 

current web page behaviour and try to predict the subsequent activities of the malicious web 

page. If the model can predict the next activity of a web page, and determine it to be 

malicious, then it will be able to block the web page and protect the victim’s machine. The 

aim of the prediction model is to act as an intrusion detection system (IDS) by using the 

behaviour and activities collected from the state machine and analysed by the clustering 

algorithm. The objective is to detect malicious web pages through their behaviour and activity 

with a client. Combining a prediction model with the clustering and classification algorithms 

enables the detection of malicious behaviour(s) at run time and provides a useful way to detect 

web sites. This is discussed in chapter 7 (without needing to analyse signatures of malware). 

The advantages of the prediction model are: 

 System administrator: 
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o Help detect zero-day exploits (unknown attacks). The zero-day exploit is 

defined as “An exploit that has no corresponding patch to counteract it” [134]. 

o Assist work with other security mechanisms to provide better security 

protection. Traditional security mechanisms include firewalls, intrusion 

detection systems (IDS) and anti-malware software. 

 Security researcher: Enables the detection of web-based malware, based on activities 

and behaviour on a victim’s machine. 

 End-user: Enable the detection of known and unknown web-based malware by 

monitoring the current web page and predicting its future malicious behaviour based 

on previous knowledge of the prediction model. 

1.5 Overview of the Thesis 

Chapter 2 examines the approaches currently being used in the area of malware analysis, 

detection and modelling. This chapter aims to introduce related work in detail and explain how 

our approaches and models will differ from existing approaches. 

Chapter 3 discusses web-based malware techniques and tools. Furthermore, it introduces 

Honeypot technology and describes how it can help by monitoring and detecting malicious 

web pages. At the end of this chapter, we introduce our web-based behaviour model which 

combines the three different models – state machine, clustering and prediction – in order to 

help detect and analyse malicious web pages dynamically. 

Chapter 4 describes the state machine model and shows how it works to monitor and encode 

web-based malware behaviour. This chapter also shows how we implement our automated 

state machine and then evaluate it by scanning real web-based malware. It also uses simple 

statistical algorithms to illustrate the common states that can be gleaned from the state 

machine signatures such as how many web-based attacks start by writing a file or establish a 

network connection in the end of the chapter. 

Chapter 5 describes the idea of using a clustering algorithm with the state machine signatures. 

The use of FP-Growth clustering algorithm to build the clustering model using state machine 

signatures is described. 

Chapter 6 presents the last model involved in our web-based behaviour system, which is the 

prediction model. The prediction model is based on the Hidden Markov Model (HMM) and is 
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used to predict the potential future behaviour of malicious web pages in a multi-stage manner. 

This chapter discusses how we designed the prediction model, its implementation and finally 

gives a classification model that can help to find the correct behaviour group for a given state 

machine signature faster than the clustering algorithm. 

Chapter 7 evaluates the proposed web-based behaviour system and shows our experimental 

results and findings. 

Chapter 8 concludes the dissertation by discussing the contributions it has made to the 

literature and possible future work that could be conducted to improve its findings. 

The novelty of this research is the contributions to the security field in two main areas. The 

first contribution allows to group web-based attacks according to their common behaviour. 

This new grouping system outputs specific types of groups adapted to web attacks, which are 

different than local attack groups such as virus and worm. It can cluster the malicious web 

pages based on their behaviours but not based on their signatures as most of the available 

security approaches. Furthermore, the model produces a label for each group that shows the 

common behaviours held in that group. Their label can be used to identify similarities 

between attack groups as well as to merge them into one common behaviour group. The 

clustering model and experiments are discussed in details in chapter 5. The second 

contribution is the prediction of the malicious behaviour of web pages in real time. The 

prediction model works by finding attacks with similar behaviour to the current stage of the 

web-based interaction. Moreover, it calculates the possibilities of future activities for current 

web-based attacks based on similar state machine signatures. If the prediction is accurate, our 

system blocks further interaction with the external server, thereby limiting the effect of 

potential malicious activities. It also saves the new state machine signature to the malware 

database to speed up the prediction process in the future. The prediction model is described in 

details in chapter 6. 

 

1.6 Publications 
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This paper shows the benefits of client honeypots as well as the use of an automated state 

machine in conjunction with a client honeypot. The state machine provides a powerful 

framework to organize monitoring of malware activity and record the results. The automated 

state machine, when it is applied to a client honeypot as described in this paper, gives 

honeypot technology a number of benefits when analysing malware and tracing the details of 

malware steps. 
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Web-based malware overcomes signature-based detection by modification of the code or 

using zero-day exploits. In this paper, we propose a malicious activity detection method using 

Hidden Markov Models (HMM) alongside a client honeypot system. Our algorithm is able to 

detect the potential malicious behaviour of a web server based on current and past interactions 

between the web client and the server and can also predict possible future behaviours. The 

prediction algorithm learns from previously scanned behaviours recorded by a client honeypot 

system. We group such behaviours in order to enable common characteristics to be 

investigated across these groups. 

 

Alosefer, Y., Rana, O.F., "Predicting and Analysing Client-Side Honeypot Behaviours", 

2012, The International Journal of Computer Information Systems and Industrial 

Management (IJCISIM), Accepted. 

The client honeypot is useful for analysing malware behaviours with a low false positive rate. 

From a security point of view, this method is better than traditional malicious activity 

detection (signature-based), such as used by anti-virus products. The prediction model 

described in this paper is able to detect previously known and unknown malicious web 

behaviours at run time as well as provide a useful way to block web sites without the need to 

analyse malware signatures. Furthermore, our model is able to detect and analyse web-based 

malware behaviour in both testing and end-user environments. 
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Chapter 2 

 

Background 

 

There are many countermeasures that can help end-users and organisations stop some of the 

attacks on their computers and networks. These countermeasures include firewalls and 

intrusion detection systems (IDS). These products can reduce risk but not eliminate it. They 

have a high potential for false positives and false negatives, which makes it difficult for the 

security team to analyse them for the detection of true attack attempts. The numbers required 

for this kind of work are also rather high. However, a new method focuses on the collection 

of data, compared to traditional security technologies [136][137]. This data has high value 

and can reduce the numbers of false positives and negatives; this method is termed the 

Honeypot. In this chapter, section 2.1 introduces and discusses web-based malware as well as 

its sources, types, behaviours and tools. Section 2.2 defines a Honeypot and gives an 

overview of the technology. Section 2.3 describes the active Honeypot (client Honeypot), its 

types and its tools.  

2.1 Web-based Malware 

Most attacks today can be successfully defended by using security technologies such as 

Firewalls, IDS and anti-virus software, so the attackers have developed new methods to 

spread their malicious code by using web pages, which can affect many more victims. The 

attackers now use these websites to threaten users without the user’s knowledge or 
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permission. The defence of websites is less effective than traditional security products. 

Therefore, the attackers have the advantage of targeting a greater number of users. 

Provos et al. [81] define a malicious webpage as one that attempts to cause the automatic 

installation of software without the owner of the computer or authority knowing. The 

malicious web page tries to launch an attack on the user’s system, which only a highly skilled 

user is able to detect.  

Attackers have preferred client-side attacks in recent years because server-side attacks have 

been made difficult by the improvement of a wide range of security measures, such as 

Firewalls and IDS. Therefore, attackers (Blackhats) are attracted to client-side attacks 

because of the general lack of security measures. The goal of the attacker is to place malware 

into a user’s environment and then collect important information, such as credit card data. 

The attackers are able to detect vulnerabilities in a user’s application by just a single visit by 

the user to a malicious web page. They then exploit this vulnerability to get control of the 

user’s machine. This type of attack is also called drive-by-download. Polychronakis et al. [82] 

define the drive-by-download attack as “a malicious web page exploiting a vulnerability in a 

web browser, media player or other client software to install and run malware on the 

unsuspecting visitor’s computer.” This kind of attack uses web application technology to 

pose its threats. There are several ways to deliver malicious code, but first a vulnerability 

must be found within the user’s machine. Examples are a vulnerability within the web 

browser (Internet Explorer, Firefox), or in client software which can interact with the web 

browser, such as media players (Windows Media Player, Real Player) and office applications 

(Microsoft Office), or in other applications, such as Adobe Acrobat reader or WinZip. The 

malicious web page can affect end-users in a number of ways. A user can click on a link of 

spam email that will allow the attacker to exploit his machine. Drive-by download attack is a 

method to attack the user via HTTP/HTTPS requests in a number of possible ways. Hence, 

drive-by-download refers to a series of possible ways in which a client machine can be 

attacked from a remote server. For example, it can redirect the user from a benign web page 

to an exploit server where the malicious code is sent to the victim’s machine. According to 

OWASP [139], the second of the top 10 web security risks is Cross-site scripting (XSS), 

which can be used by the attacker to redirect the user to malicious web page in order to affect 

his machine by drive-by download attack.   
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After the attacker identifies a vulnerability within the user’s client application, they can 

exploit this in order to install malicious software, run new processes, change existing files or 

add new files to the system.  Fig 2-1 below shows that a survey conducted by the Verizon 

RISK team in cooperation with the United States Secret Service (USSS) [130], which in 2010 

contributed a few hundred of their breach cases to the study, found that the web application 

attacks were responsible for 54% of breaches by hacking and for 92% of records breaches. 

 

Fig 2-1: the attack pathways from the 2010 data-breach investigations report [130]. 

2.1.1 Malware sources 

Attackers will try any possible way to deliver their malware onto a user’s machine. However, 

there are some common techniques that lead to attacks on larger numbers of people than 

others. According to Provos et al. [81], an experiment was conducted to analyse web-based 

malware, which found that there are four main aspects that could result in attacks. 

 Advertising: A site’s webmasters are always looking for ways to optimise the benefits 

of their website and earn funds for the owners. The webmaster has to put their trust in 

the company advertising to display non-malicious code within the banner. Meanwhile, 

the company advertising will try to display non-malicious code in their banners with the 

aim of getting more websites subscribed to their services without damaging their 

reputation. The implementation of the advertisement is by the webmaster adding 

JavaScript code, from the company advertising, into their web pages. That JavaScript 

code generates a banner every time the page is reloaded, so that each visitor will see 

different banners. This method could be used in a bad way; for example, the website or 

company advertising could be attacked by malicious code being placed by the attackers 

within the banner to adversely affect large numbers of visitors without anyone ever 

knowing. 
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 Third-party widgets: The idea of third-party widgets is that a website’s owner will try 

to add more functionality from a third-party developer such widgets may be free or may 

be paid for. The widgets could include a weather data or internet speed tests. The 

website owner embeds these widgets in their website using JavaScript. These widgets 

can be targeted by attackers, and their own malicious code can be embedded within the 

widgets, resulting in an attack on all the website’s visitors by attacking the third party’s 

widgets which are embedded in the registered website. 

 User contributed content: In recent years, user-contributed content has been growing. 

It connects people with one another within a given website, such as a social network, 

forum or blog. These websites target more people and visitors, which might lead the 

attacker to focus on them, as they have a large number of people using them. For 

example, the attacker can perform a phishing attack through Facebook which can then 

easily spread to other members of the Facebook community through sharing or liking. 

 Web server security: Web servers are an important target for attackers. Web servers, 

such as Apache HTTP server, and their security, along with web programming 

languages, such as PHP or ASP, can all be vulnerable to direct attack. In the case of 

attacking the website from the server, the attacker can attack the visitor’s website easily 

as they have full control of the server and are able to embed any malicious codes or files 

into their web pages. 

2.1.2 Malware types 

Malware code and scripts affects programs as well as operating systems. Malware can be 

defined as “a set of instructions that run on your computer and make your system do 

something that an attacker wants it to do” [83]. Once a malicious web page attacks the user’s 

system, then it is able to download malware including the following, as described by Provos, 

et al. [81] and [84]: 

 Virus: This is the traditional kind of malware and takes many different forms. However, 

it requires user interaction to download, and it is not able to propagate through a network 

by itself. Viruses are able to harm a system in many ways, from changing a user desktop 

wallpaper to formatting hard drives. 
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 Worm: A worm is similar to a virus but it is also able to self-propagate, and can attack 

other systems through the network and removable devices. 

 Rootkit: A rootkit is the most dangerous type of malware. It attempts to modify the 

operating system files and applications and to perform activities on behalf of the attacker, 

such as hiding malware files, processes and network traffic. 

 Trojans: The unique aspect of a Trojan is that the user is required to download benign 

software that has malicious code embedded in it without the user’s knowledge. When the 

user installs the software, then the malicious software is installed as well. 

 Adware: Displays advertisement banners on a user’s machine. These advertisements 

might be displayed on the user’s desktop as a pop-up, or redirect the user’s web browser 

to unwanted websites. 

 Spyware: Spyware software tries to collect information about a user’s browsing 

behaviour, such as their web browsing history, cookies, their most-visited websites or 

even their search keywords. These are then sent to the attacker. 

2.1.3 Web-based malware tools 

Web-based malware can also include tools that give the attacker more advanced control and 

wider options. Web-based attack tools are easy to use and can have significant effect upon the 

victim’s machine. According to Seifert [85], there are at least three different web-based 

exploitation tools, which are not available for general download but can be bought on the 

underground market. 

 WebAttacker: This was one of the first web-based exploitation tools. It originated at the 

beginning of 2006. 

 MPack: The second web-based exploitation tool was developed by the Dreamcoders 

team. The tool was released in June 2006. Fig 2-2 shows an Mpack screenshot [85]. It 

shows the attacker has the ability to view how many users are affected, and provides such 

statistics as their web browser, operating system, country and the previous referrer’s 

URL. 
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Fig 2-2: Screenshot of MPack [85]. 

 IcePack: The IcePack tool was written by the IDT group and was released in July 

2007.  

 

2.2 Honeypot 

A Honeypot is defined as a “security resource whose value lies in being probed, attacked or 

compromised” [5]. The aim of the Honeypot is to collect high-value data by monitoring the 

state of an existing operating system or services. Alternatively, it can emulate them to detect 

traffic that could come to a server. Because the Honeypot is a provision made by the owner of 

the system, the Honeypot should not receive any internet traffic from the network or the 

outside world. Therefore, any traffic that comes to the Honeypot could be an attempt to attack 

or scan the system. The log files for this traffic have high value for the security team and 

owner of the network because they reveal the traffic about the attacker without any false 

positives. Using the Honeypot can reduce the effort required to analyse the log files from 

other security techniques. According to the Honeynet project [86], the information collected 

by Honeypots is explained and used differently by each organisation. For example: 

 Academic institutions: The data collected by a Honeypot can help them with their 

research into viruses, worms and attackers’ techniques. 
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 Security organisations: These organisations use the Honeypot to detect malicious 

activity and to try to understand them in order to build security defences for them by, 

for example, creating signatures for new viruses. 

 Government organisations: A Honeypot can help them halt attacks and discover 

where they originate. 

The Honeypot has advantages and disadvantages which are summarised in the following 

points. The advantages of using Honeypots are: 

 Collecting and logging high value data for the security team and owner of the network 

because they reveal the traffic of the attacker. 

 Few false positives and false negatives compared to a firewall or an Intrusion 

Detection System [136] [137]. 

 High value of the data to avoid the effort required to analyse the log files from other 

security techniques. 

On the other hand, the disadvantages of using Honeypots are: 

 The risk of compromising the system, leading to attacks on other systems on the 

network or beyond it. The Honeypot is an easy target for the attackers and therefore 

they can focus on compromising the system and this will result in new attacks to the 

network and the internet.  

 The need for highly skilled people and plenty of time to operate and analyse the data. 

Our work operates without the use of highly skilled people and is able to analyse the 

collected data from Honeypot automatically by using our three models, state machine, 

clustering and prediction. 

Honeypots can be implemented in different ways on a real computer, as a service, operating 

system emulated, service emulated or unused IP address on the network. This technique can 

bring some risks to the network as well as benefits, so it should be used carefully. Generally, 

the Honeypot approach covers two main types: passive Honeypots and active Honeypots 

(Client Honeypots) [87]. 
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When implementing a Honeypot system on a production network, such as a company 

network, the implementation team should think about the different issues in implementing the 

Honeypot in order to mitigate the risk of Honeypots, as mentioned earlier in section 2.2. 

As Mokube and Adams [88] suggest, when a Honeypot is being used the legal and privacy 

issues need to be looked at as some countries and cities have their own laws about 

implementing Honeypots in production networks as they might cause a risk to networks. 

Examples of the legal issues that must be considered while implementing a Honeypot are: 

entrapment, privacy and liability. The attacker could take over the Honeypot system and then 

use it as a starting point to attack other systems on the network or internet. This action by 

attackers is called uplink liability. Therefore, there should be a focus on the legal and liability 

issues when implementing a Honeypot as well as strategies for how to respond in the case 

when the Honeypot system is compromised.  

Most of the Honeypot’s disadvantages and risks can be mitigated and avoided by the correct 

configuration and implementation of a Honeypot in the network. Experts suggest separating 

the Honeypot from the production network to avoid risks such as uplink liability [88]. In this 

work, we are focusing on active Honeypots, not passive Honeypots; therefore, our scanning 

engine does not suffer from all these risks as described in the next section. We will only 

monitor the web browser while it is interacting with the target malicious web page and then 

block or limit the outgoing connections. Furthermore, we can benefit from cloud technology 

by implementing the Honeypot in the cloud and pushing any monitoring activities from the 

production network to the cloud while having the scanning on the network. The amounts of 

data transferred to the cloud are only the changes made by the web based malware on the 

victim’s system where the analysing and detection models are in the cloud. 

2.3 Active Honeypots (Client Honeypots) 

In recent years attackers have mainly been targeting client applications, such as web browsers 

or media players, whereas before they used to threaten servers. Therefore, there have to be 

ways to determine methods of attack and to capture malicious scripts and tools to improve 

security. The active Honeypot is a new concept and is quite different from the passive 

Honeypot. Instead of building a Honeypot and passively waiting for attackers, the active 

Honeypot will go and search for attackers. The client Honeypot acts as a client and interacts 

with the server to study it and determine if an attack has happened. The client Honeypot can 
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interact with websites using the HTTP protocol, as well as other protocols, such as SMTP and 

FTP. The active Honeypot has convincing names that are accepted publicly as client 

Honeypots and Honeyclients. 

2.3.1 Client Honeypot architecture 

The client Honeypot architecture is divided into three main parts: the queuing system, the 

client and the analysis engine. Each part is necessary for the smooth operation and correct 

performance of the client Honeypot. The following points below help to describe each part: 

1. The queuing system: is responsible for creating the list of servers for the client to 

interact with. There are several techniques used to create the server list: 

 Search Engine: there are common malicious websites that use popular keywords or 

website content to target large numbers of visitors, such as those containing Music, 

Adult and News content. 

 Blacklists: a number of organisations publish malicious websites; examples of these 

organisations are www.mvps.com and www.stopbadware.org. 

 Gather links from phishing and spam messages: there are public archives of spam 

messages on sites such as www.untroubled.org/spam. 

 Typosquatting domains: typosquatting refers to mistakes in domain names such as 

goole.com instead of google.com, the real domain name. 

 Monitoring instant messaging: most instant messaging services such as MSN 

Messenger suffer from spam. Malware infects the victim and sends malicious URLs 

to their contact list. Therefore, we can monitor these services and collect malicious 

URLs for scanning and analysing. 

2. The client: the client is the component that is able to make requests and interact with the 

servers collected by the queuing system. 

3. The analysis engine: the analysis engine is responsible for checking the state of the client 

Honeypot system to determine if an attack has occurred or not. Fig 2-3 shows the client 

Honeypot architecture. 
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Fig 2-3: Client Honeypot architecture. 

Client Honeypots are divided into two main types based on their level of interaction: low-

interaction and high-interaction client Honeypot. 

2.3.2 Low-interaction client Honeypot 

The low-interaction client Honeypot simulates a client used for interacting with a server 

without using a real system, and instead using a lightweight simulation. The aim of this is to 

discover malicious code present within the server by interacting with it and then examining 

the reply that is sent to the client, which ultimately results in the detection of malicious code 

within the page. The examination of the reply is made by checking the string in the source 

page for attack-related code. The disadvantage with this type of client Honeypot is that it 

cannot detect unknown malware because it uses a signature database to match them with the 

response from the server. However, the low-interaction client Honeypot also has some 

advantages, such as its ease of use and deployment, and the speed of the generated report. 

2.3.3 High-interaction client Honeypot 

On the other hand, the high-interaction client Honeypot is the most advanced type and uses a 

real operating system to examine malicious servers. The basic concept behind this is that the 

operating system itself acts as a client, browsing a server which has been identified 

previously via the queuing system, just like a human browsing the website. After a visit to the 

website has been made by the client, the analysis engine checks for the presence of malicious 

code. Table 2-1 shows an example of Mpack malware state changes [85]. Several operating 

system components need to be monitored while visiting and scanning each web page: 

 Processes will be monitored for new processes being run or any default processes 

being killed.  

 Windows Registry will be monitored for any added, deleted, or modified registry 

values.  
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 File system will be monitored for any changes, such as adding, deleting or modifying 

files or folders.  

 TCP and UDP ports will be monitored to detect if any ports are opened or closed, as 

these ports could be used as a backdoor by the attacker.  

Monitor Action Actor Action parameter 

file Write C:\Program Files\Internet 

Explorer\IEXPLORE.EX

E 

C:\syswcon.exe 

process Created C:\Program Files\Internet 

Explorer\IEXPLORE.EX

E 

C:\syswcon.exe 

file Write C:\syswcon.exe C:\WINDOWS\system32\drivers\uzcx.exe 

process Created C:\syswcon.exe C:\WINDOWS\system32\drivers\uzcx.exe 

process Terminated C:\Program Files\Internet 

Explorer\IEXPLORE.EX

E 

C:\syswcon.exe 

registry SetValueKey C:\WINDOWS\system32\

drivers\ uzcx.exe 

HKCU\Software\ewrew\uzcx\main\cid 

file Write C:\WINDOWS\system32\

drivers\ uzcx.exe 

C:\Documents and Settings\cseifert\Local 

Settings\Temporary Internet 

Files\Content.IE5\OPUJWX63\benupd32[1].

exe 

Table 2-1: Example of Mpack malware state changes [85]. 

There are several advantages and disadvantages of using high-interaction client Honeypots. 

The advantages are: 

 More effective in detecting unknown attacks. 

 The ability to use different clients to interact with the server, such as different web 

browsers (e.g. Internet Explorer, Firefox and Safari). 

 Using real operating systems and services to interact with the target server, allowing 

more resources to understand and analyse threats. 

On the other hand, there are also disadvantages of using high-interaction Honeypots: 

 The performance of the operating system could be reduced after the effects of the 

attacks. 

 The analysis time and the examination of the state of the operating system and 

applications are longer. 
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 The attacker might detect the presence of the virtual environment if the Honeypot is 

run under such an environment. 

2.3.4 Low-interaction client Honeypot tools 

A number of tools exist for low-interaction client Honeypots. They are listed below, along 

with their descriptions: 

 HoneyC: is an open source low-interaction client Honeypot developed by Christian 

Seifert [89]. The tool is written in the Ruby scripting language. This tool uses the three 

components mentioned above: first, it creates a list of websites by using the search 

engine Yahoo!; secondly, the website is identified and the page downloaded to be 

examined; finally, the web page code is analysed with Snort, an IDS tool that contains a 

database of signatures of malicious strings. 

 SpyBye: is a low-interaction client Honeypot written by Niels Provos [90]. The tool 

looks superficially like HoneyC, but, instead of using the Snort signature database to 

check the web page, the ClamAV anti-virus engine is used. 

 Monkey-Spider: is a low-interaction client Honeypot developed by Ali Ikinci et al. [91] 

at the University of Mannheim. This tool is available under a GPL licence and is free to 

use. Their approach detects malicious web pages on the internet, by crawling and 

collecting web pages from different sources such as search engines or spam emails, and 

then scans them to detect any malicious behaviour in the web page code. They use 

signature-based detection such as Clam-AV, F-Prot and Avast, and behaviour based 

detection by using CW-Sandbox. They do not analyse the behaviour of malicious web 

pages, but their approach only detects malicious code.  

2.3.5 High-interaction client Honeypot tools 

 Capture-HPC: is an open source high-interaction client Honeypot developed at 

Victoria University, Wellington [36]. The tool is capable of interacting with servers 

through different types of HTTP applications, such as Internet Explorer, Opera and 

Firefox, in addition to media players and office applications. Capture-HPC has several 

advantages, for example, the tool is fast at detecting any changes in the operating 

system, since it monitors processes, the registry and the file system. In addition, the tool 

uses client-server methods so that it has server control over clients and saves all the log 
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data within the server. Lastly, the tool allows the creation of more than one client 

Honeypot and controls all of the clients from the server. Figs 2-4 and 2-5 show the 

Capture-HPC architecture and the Capture-HPC client inside the operating system [36]. 

Capture-HPC uses VMware virtual machine [45] to create the clients and control them 

from the host system. It creates a number of virtual machine clients and controls them 

by using VMware API as shown in Fig 2-4, which can help to start or restore the system 

as well as getting the malicious behaviour from the clients in real time. Fig 2-5 shows 

how Capture-HPC is installed inside the operating system of the client, where it can 

monitor the system calls in the kernel mode and log any changes made to I/O Manager, 

Process Manager or Registry Manager. 

 
Fig 2-4: The Capture-HPC architecture [36]. 

 
Fig 2-5: The Capture-HPC client inside the operating system [36]. 
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 HoneyMonkey: is a high-interaction client Honeypot produced by Microsoft [92]. This 

tool simply uses Internet Explorer to visit servers and monitors processes, the registry 

and files. It is focused on finding 0-day attacks against Internet Explorer. HoneyMonkey 

is not available for download and is only used by Microsoft. The function of this tool 

are summarised below: : 

 First, the tool utilizes a vulnerable version of Internet Explorer to visit servers on the 

internet. 

 Secondly, if there are any attacks or attempts on the system, the system stops the current 

interaction and re-visits the previous website with a fully-patched version of Internet 

Explorer. 

 Finally, after visiting the malicious website with the fully patched Internet Explorer, the 

attacks and attempts will be saved for further analysis. 

 UW Spycrawler: is a high-interaction client Honeypot developed at the University of 

Washington by Moshkchuk et al. [93]. It is   based on the Mozilla web browser. As with 

other high-interaction client Honeypots, the UW Spycrawler monitors the state of the 

operating system by monitoring the file system, processes and the registry. The tool also 

detects other changes such as crashes by the web browser. This tool is not available for 

download. 

2.3.6 High-interaction client Honeypot challenges 

The technology and ideas behind the high-interaction client Honeypot help security 

researchers and other organisations to study web-based malware, their techniques and 

motivations. There are still challenges left to solves listed below. 

 IP tracking: This technology is used widely in web-based tools to track the IP 

addresses of visitors; one major exploitation tool using this is the MPack web-based 

application. According to Seifert [85], MPack provides the capacity to track a visitor’s 

IP address and affects the visitor only after a number of visits have been made. If the 

client Honeypot visits the malicious website running Mpack for the first time, then no 

malicious behaviour will be detected and it will assume the site is clean. However, if the 

client Honeypot makes a number of visits, then malicious behaviour will be seen. 
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Therefore, the first challenge is to solve this problem to achieve a better result without 

false negatives. 

 Geolocation-dependent: This feature affects only visitors from certain countries and 

behaves normally with visitors from others. This feature is provided by malware web-

based malware tools. 

 Obfuscation: This involves hiding code within the web page. The malicious code is 

encoded in such a way that the signature database will not detect it. Fig 2-6 shows an 

example of obfuscating malicious code [85], it is able to avoid detection as it is 

encrypted and it will decrypt itself in runtime and effects the visitors of the web page 

<script 

language=javascript>document.write(unescape("%3CScript%20Language%3D%27JavaScript%27%3Edocument.write%

28 

%20unescape%28%27%253C%2573%2563%2572%2569%2570%2574%253E%25 

... 

%252A7Khtzsyjw%252A7Knsij%257D3umu%252A77%252A8J%252A8H%252A7Knkwfrj%252A8J5%27%29%3B%

3C/Script%3E"))</script> 

Fig 2-6: Example of obfuscating malicious code [85]. 

Fig 2-7 summarises the two types of client Honeypots along with their advantages, 

disadvantages and tools that support each type. 

 
Fig 2-7: the two types of client Honeypots, their advantages, disadvantages and tools. 
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Chapter 3 

 

Literature review 

In this chapter, we discuss and present other approaches in the area of malware analysis and 

detection, we also describe how our approach differs from them. 

3.1 Malware analysis 

Malware is a short form for malicious software and “malicious  code  is  any  code  added,  

changed,  or  removed  from  a  software  system  in  order  to  intentionally  cause  harm  or  

subvert  the  intended  function  of  the  system” [7]. The goal of the attacker is to place 

malware into a user’s environment and then collect important information, such as credit card 

data, usernames and passwords. The malware analysis needs to understand how the malware 

under consideration works and then develop a patch in order to protect against that malware. 

There are two main types of malware analysis: static and dynamic analysis.  

3.1.1 Static analysis 

This type involves analysis of the malware without executing it. The analysis starts firstly by 

collecting information from the malware such as disassembling the code and collecting 

header and body data from the malware portable executable format (PE). This will give a 

complete view to the malware code while analysing it. One of the first approaches to detect 

malware is to compare an infected application against a clean copy of the same application or 

a formal specification to detect the malicious code [8] [9]. Lo et al. [10] developed a tell-tale 

sign that will be raised when the target application matched pre-defined actions such as a 
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malware writing an EXE file, which they stated that linkers and compliers could only 

perform such action. However, the attackers use encryption and obfuscation to hide their 

malicious code and make it harder to analyse it by automated applications or security experts. 

Christodorescu and Jha [11] proposed a framework and built a tool called SAFE (a Static 

Analyzer For Executables) that is able to find malicious patterns in EXE files. They have also 

developed an obfuscator for executable code which supports transformations such as code 

transposition or instruction substitution. Christodorescu et al. [12] have developed their  

approach further by building the tool on top of IDA Pro [13] disassembler  to get the flow 

graphs and produce an intermediate representation which produces a template for the code to 

pass it to the malware detector algorithm, and then developed their approached further [14] 

[15]. 

Other approaches used data mining with static analysis to detect malware. Matthew et al. [16] 

proposed a framework based on data mining that found malicious patterns in known malware 

by using automated static analysis techniques. They then detected new malware based on the 

previously discovered malicious patterns. The data mining techniques with static analysis are 

divided into four main categories [17] [18]: 

 N-grams: it involves a sequence of hexadecimal strings extracted from an executable 

file. Various literature reports such work, e.g. [19] [20] [21].  

 Assembly Instructions: Involves assembly instructions extracted from the executable 

disassembled file [22]. 

 API/System Calls: the application programming interface (API) is a specific method 

that a service provides to communicate with other applications. In this type, the 

system calls by the application are collected and then determine any malicious actions 

by looking for patterns. There are various research works in this area such as [23] 

[24]. 

 Hybrid features: involves using more than one feature to collect data about the code 

such as: assembly instructions, DLL usage or n-grams, such as [25] [26] 

There are a number of publications that show the obfuscation of executable files make it 

harder to disassemble them such as [27] [28] [29]. Furthermore, malware are able to change 
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the application by using polymorphic and metamorphic techniques such as [30] [31]. As 

Kaspersky [32] stated that recent malware uses server-side polymorphism which changes 

some sections of the code whenever pre-defined executions are reached. Finally, based on 

these limitations of static analysis, we base our work on dynamic analysis which monitors the 

behaviour/actions of the malware on the system without a need to decrypt the file. 

3.1.2 Dynamic analysis  

This type is different from static analysis as the code is analysed while executing. The code is 

executed in a controlled environment and then its behaviour is monitored in real-time. These 

changes and behaviour are then analysed and not the program code. This is one of the 

benefits of dynamic analysis as it is able to monitor the code even if it used obfuscation or 

self-modifying techniques.  

The scenario of dynamic analysis is that it firstly executes the program in a virtual machine 

that emulates a real operating system and then monitors the system in real-time to detect any 

changes caused by the program such as File system changes, running or killing a process or 

establishing a new network connection. After a pre-defined time-out, the system will shut 

down and restore to its clean state. There are two types of controlled environments: virtual 

machine and PC emulator. A virtual machine only simulates some parts of the operating 

system and shares some of the host resources, such as CPU, whereas a PC emulator simulates 

the whole hardware architecture and operating system. There are a number of Honeypot 

systems that are able to execute malware and then monitor its behaviour, for example 

CWSandbox [33], Norman [34], Threat Expert [35], Capture-HPC [36] and Anubis [37]. We 

have used Capture-HPC to scan the most critical part of the system such as File system, 

Process, Registry and Network. However, our malware behaviour analysis tools can be 

applied to any existing client Honeypot system and can generate state machine signatures and 

then pass these to our clustering and prediction algorithms. However, most Honeypot tools 

suffer from a limitation in that malware can take advantage of them and behave differently 

while scanning. One way they can do this is through a single path of execution, which means 

that some malware behaves differently in different environments or at different times; this 

cannot be identified as most Honeypot systems scan and extract the malware behaviour just 

once. Therefore, Moser et al. [38] proposed multi-path executions which explore different 

execution paths while scanning the malware. Furthermore, virtual machine-based Honeypots 
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suffer from anti-VMware techniques [39] [40] [41] [42] by which attackers can detect 

malware running under a virtual machine environment, and so change their behaviour to a 

benign one. This can be solved by the correct implementation and by configuring the virtual 

machine environment to hide its fingerprint. In addition, Sun et al. [43] introduced an 

automated technique to discover the malware trying to hide detection from a virtual machine, 

even if the malware is packed. In this work, we make the assumption that our scanning 

engine, Capture-HPC, is already implementing those techniques, as Sun et al. [43] who 

proposed a solution to extract the real behaviour of the malware. 

One of the first approaches to use dynamic analysis in a controlled environment was that of 

Bailey et al. [44]. They firstly scan the malware in a VMware virtual machine [45] with a 

BackTracker system [46], a system developed by King and Chen which is able to trace 

malware activity in the system along with its activities in a dependency graph and most 

importantly differentiate it from the benign activities undertaken by the operating system or 

other applications. Furthermore, they then represent malware behaviour activities in a special 

representation that groups the total number of processes, file system, registry and network 

activities by malware. Finally, they use a hierarchical clustering algorithm to group similar 

malware together based on their behaviour to build up behaviour groups for malware. Our 

work differs from this approach by demonstrating   how malware behaviour is encoded and 

the clustering model used. We used state machine, as described in chapter 4, which is able to 

encode more malware behaviours such as the behaviour action, source and destination of the 

change. This data is essential in order to understand what malware actually changes on the 

victim’s system, as well as to help other algorithms such as clustering to group malware 

based on the behaviour collected and encoded. The clustering model we used is based on FP-

Growth, as discussed in chapter 5, which is able to group malware based on its repeated 

behaviour. Therefore, it can group more malware as evaluated in chapter 5 comparing it to 

the hierarchical clustering approach. 

Rieck et al. [47], scan malware behaviour in a sandbox environment called CWSandbox [33], 

a Honeypot environment which is able to execute malware on a real operating system, and 

then monitor its system calls and produce a log file for the malware behaviour. After 

receiving the report from CWSandbox, they developed a malware representation called MIST 

(Malware Instruction Set) that converts the CWSandbox to its hash code, which includes a 

collection of hashes which represent malware behaviour with the source and destination of 
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the activity. Furthermore, they passed this malware behaviour in MIST representation to a 

classification and clustering model to group them into behaviour groups using the same 

clustering algorithm as Bailey et al.’s [48] hierarchical clustering algorithm with complete 

linkage as the distance measure, where the grouping is based on the maximum distance 

between items of each cluster. 

Lee and Mody [49] introduce one of the first approaches of dynamic analysis, they introduce 

a behaviour-based classification model centred on machine learning. They scan malware in a 

sandbox environment and then produce an ordered sequence of malware behaviour; this 

includes the activity state, kernel function and action parameters. They use classification and 

clustering algorithms to analyse malware and group them based on the malware’s behaviour. 

Their classification is based on CBR (Case Based Reasoning) as well as   the addition of a 

clustering algorithm to scale it. The clustering is based on K-medoid algorithm which 

produces k clusters, where k is the number of output clusters.  

Predisci et al. [50] presented a framework that is able to analyse malicious HTTP traffic and 

then automatically generate network signatures to detect activities of the malware. They 

differ from the previous dynamic analysis approaches as they collect more features from the 

HTTP traffic such as the total number of POST and GET requests and the average length of 

URLs. They use a single-linkage hierarchical clustering algorithm to group similar malicious 

HTTP traffic together in behaviour groups. One issue that faced Predisci et al. [50] as well 

other researchers using hierarchical clustering algorithm is that the clustering algorithm 

builds up a tree that starts from each cluster with one malware behaviour and then groups 

similar clusters together until they merge into one cluster. They need to adopt a cluster 

validity analysis which can determine the right number of clusters and then stop the clustering 

to output the most compact and well separated clusters [50]. They used Davies–Bouldin 

(DB), a clustering evaluation algorithm presented by Davies and Bouldin [135], as the cluster 

validity index. 

Christian et al. [51] proposed a new method for clustering malware based on dynamic 

analysis. The motivation behind their clustering approach was to analyse local malware in 

Indonesia to help them gain a better understanding of the current local malware types and 

behaviours. They used two algorithms to cluster similar malware based on 

behaviours/characteristics. The clustering algorithms they used are K-means and Self-
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Organizing Map (SOM). Their approach starts by scanning malware within a sandbox 

environment and then extracting malware features as XML output from the sandbox. Then 

they used the Weka data mining framework [52] to apply the clustering algorithm to the 

malware and to visualize the results using the self-organising map algorithm. 

These data mining algorithms have been in use for more than 10 years to analyse malware 

based on dynamic and static analyses; they provide automatic methods for a better 

understanding of malware behaviour, types, classes and detection. An approach that used data 

mining with a dynamic analysis was taken by Gurutxaga et al. [53], who proposed using an 

unsupervised learning method to cluster malware through Hierarchical Agglomerative 

Clustering (HAC). They tested different distance measures to cluster malware based on 

dynamic analysis and found that average-linkage is the best distance. 

Wang et al. [54] suggest using a clustering approach to cluster worms by using dynamic 

program execution. They use two classification algorithms: Naive Bayes and Support Vector 

Machine. First they scan a large number of malware executables (worms) and benign 

executables on a virtual machine and then they record and trace the system calls for each 

worm. They then apply the classification algorithms to the data collected from the system 

calls made by each worm to learn and understand the malicious behaviour of the worms. 

They then used the classification knowledge to detect the worms online. 

Another approach for clustering and detecting malware is to use an Artificial Neural Network 

(ANN) algorithm. Stopel et al. [55] proposes a new classification method for worms based on 

ANN. Their approach starts by scanning the worms in a sandbox environment where they 

gather data such as calls to the TCP/IP or UDP/IP layers. Then they use ANN to cluster the 

worms based on their behaviour as well as using two other data mining algorithms, K-Nearest 

Neighbours and Decision Tree for comparison. They identified that the ANN approach is 

faster when detecting real-time worms and also had the ability to detect unknown worms. 

Another study that uses ANN is conducted by Linda et al. [56], who propose an intrusion 

detection system using ANN for critical infrastructures such as SCADA (Supervisory Control 

And Data Acquisition) and nuclear plants. Their approach is to cluster the normal behaviour 

using two neural network learning algorithms – the Levenberg-Marquardt and Back-

Propagation algorithms – and then to use these normal behaviour clusters to detect abnormal 

behaviour. They stated that the ANN clustering approach used overcame most of the common 
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problems of other clustering approaches, such as how to choose the maximum number of 

clusters or how to initialise the centres of gravities of clusters [56]. 

Sequeira and Zaki [57] developed a new system called Anomaly-based Data Mining for 

Intrusions (ADMIT) which acts as an IDS system. First they monitor the UNIX shell 

command data to create user profile behaviour and then use K-means as the clustering 

algorithm to group user behaviour. Their system aims to detect intrusions in real time with 

host-based data collection and processing. 

Another approach using data mining in malware analysis is to create profile behaviour for 

malware which are then fed into an Intrusion Detection System (IDS). Generally, the types of 

IDS are misuse and anomaly detections. In misuse detection, the IDS builds a data set of 

known attack signatures and then compares with other data to detect attack signatures. 

Anomaly detection defines the behaviour of normal traffic and detects any abnormal 

behaviour. The IDS is able to detect malware if it knows its signature, and these signatures or 

normal behaviour need to be manually fed into the IDS in order for it to be able to detect 

malware. Therefore, data mining is used to automatically analyse new malware and then 

generate a behaviour profile to update the IDS database to detect new malware. For example, 

Sequeira and Zaki [57] use K-means algorithm to detect abnormal behaviour based on default 

user profile behaviour. The IDS is able to detect malware through its signatures, and then 

alert the network administrator to react, or through another method called an Intrusion 

Prevention System (IPS), which acts the same as an IDS but is also able to block malware 

automatically without the need to alert the network administrator. Fig 2-1 shows an overview 

of malware analysis approaches, the numbers in Fig 3-1 show the reference number for each 

approach. 
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Fig 3-1: an overview of malware analysis approaches. 

The right side of Fig 2-1 shows the different approaches used in static analysis, while the left 

shows dynamic analysis, which is what this work is based on. Dynamic analysis needs to be 

analysed by behaviour scanning tools such as Capture-HPC and CWSandbox, as shown in 

Fig 2-1. In order to cluster and analyse malware behaviour, we need to encode it in a defined 

manner. It can then be passed to different advanced algorithms, such as clustering, to analyse 

the results without needing to re-encode the data for each algorithm separately. Each scan 

engine such as Capture-HPC, as shown in Fig 4-7, or CWSandbox have their own 

representations and we need to have defined encoding that shows most of the behaviour 

characteristics. Therefore, we can use different algorithms to analyse the same defined 

encoding which is created from different scan engines. Our representation is based on the 

state machine, as described in chapter 4; other approaches, including MIST (Malware 

Instruction Set) [50] and Bailey et al. [44], are described in the next section. Finally, FP-

Growth clustering is compared with the other clustering approaches used to analyse and 

group behaviour of malware using dynamic analysis. Table 3-1 shows a comparison between 

different clustering algorithms and the FP-Growth approach. 

Name Analysis type Algorithm 

Bailey et al. [44] Clustering - Hierarchical Single-linkage 
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Predisci et al. [50] Clustering - Hierarchical Single-linkage 

Gurutxaga et al. [53] Clustering - Hierarchical Average-linkage 

Lee and Mody [49] Clustering - Partitioning K-medoid algorithm 

Christian et al. [51] Clustering - Partitioning K-means 

Sequeira and Zaki [57] Clustering - Partitioning K-means 

Linda et al. [56] Clustering - Artificial Neural 

Networks 

Levenberg-Marquardt and Back-

Propagation 

Stopel et al. [55] Clustering - Artificial Neural 

Networks 

Levenberg-Marquardt 

Wang et al. [54] Classification Naive Bayes and Support Vector 

Machine 

Our work Clustering FP-Growth 

Table 3-1: a comparison between different clustering algorithms and FP-Growth approach. 

Our approach based on FP-Growth clustering differs from all existing approaches for 

dynamic behaviour analysis. Most of the previous clustering methods used HAC, we have 

tested it previously with state machine and found that it suffers from a number of limitations. 

One of the limitations is that malware might make some changes amongst some of its 

behaviour in order to mislead the analysis engine (clustering algorithms) thereby group is 

similar malware in different behaviour groups. 

 By using FP-Growth we can detect similar state machine signatures and group them based 

on the common sequence behaviour states which enables us to detect similar malware 

behaviour, even in different parts of the state machine signature. FP-growth has the ability to 

mark each behaviour group with a label and can deal with an arbitrary length state sequence. 

The label represents frequent states within each group. By using this label, we can identify 

similarity between groups and then use the label to match with new data. Each sub-group will 

have a label to identify the common states within each group, which indicates why each sub-

group state machine is similar. By using this clustering approach, we can add new behaviour 

groups to the already discovered groups. The benefit is we will only need to re-cluster and 

match the new and old group labels, and not have to re-cluster the entire data set.  

Furthermore, most of the clustering approaches identified previously in Fig 2-1 are good at 

grouping similar attack sequences that have one or a few malware behaviours. However, our 

clustering model is able to identify several aspects of the state machine, such as the behaviour 
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sequences that are responsible to exploit a web browser by using a particular vulnerability, or 

a series of states that are similar from one web-based malware to another. While developing 

the clustering model for malicious web pages, we know that this type of attack is different 

from traditional attacks such as virus or Trojan horse, as they first need to exploit a 

vulnerability on the web browser or operating system to gain permission to access the system 

and enable the attacker to install and execute different malware. The state machine 

representation helps by detecting these sequences of changes in real-time and in order and 

can therefore distinguish between the different types of malicious behaviour, such as 

exploiting  web browser vulnerability, installing and running one or more malware on the 

system or monitoring the traces of  malware behaviour. Furthermore, the clustering model 

uses these benefits of the state machine representation by grouping them according to 

common sequences, and can therefore detect practical web browser exploits, Trojan horses, 

viruses or other malicious techniques being used by a 0-day exploit. We describe and discuss 

the benefits and methodology of the clustering model in detail in chapters 5. 

 

3.2 Malware modelling and representations 

Schneier [58] stated:  

“What we need is a way to model threats against computer systems. If we can 

understand all the different ways in which a system can be attacked, we can 

likely design countermeasures to thwart those attacks. And if we can 

understand who the attackers are — not to mention their abilities, motivations, 

and goals — maybe we can install the proper countermeasures to deal with the 

real threats”.  

The security community has been researching the most suitable method to identify attacks in 

order to show their exploit methods and behaviour for many years. The basic idea behind 

modelling an attack is to show the attack trace, such as methods that the attack uses to exploit 

the system, including the use of network, application and operating system. In general, there 

are two main types of attack models: Tree and Graph structures [59] [60] [61]. Furthermore, 

there are a number of modelling techniques which fall under these two types; these are 

discussed below. However, some researchers have not used modelling to encode and model 
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the attack behaviours and methods [44] [47]. We believe that the benefits of using attack 

modelling within the framework for analysing attacks is an important and efficient way to 

understand the structure of the attacks. It also helps to have pre-defined coding from different 

scan engines which can then pass to other algorithms by different formats, compared to 

textual representation of attack steps that does not offer such advantages and benefits. The 

main types of attack models are shown below:  

1. Attack tree: this is a hierarchical structure in which the upper level of each stage is 

responsible for actions below it; the top level of the tree is the start of the attack and then 

the tree draws the steps of the attacks under the cause of that action. Every tree starts with 

one action, and then each node of the tree represents one step in the attack. Furthermore, 

OR or AND logical operations can be attached to each node, as well as a value or 

probability [59]. This approach was first presented by Schneier [58], who wanted to build 

a model that could show all the steps in an attack as well as measure the risk and cost 

from a practical attack. After the idea was proposed by Schneier, many researchers 

adopted the attack tree methodology and it has since been used widely. One of the 

approaches is conducted by Ten et al. [62], who used the attack tree to model the 

supervisory control and data acquisition (SCADA) to detect vulnerabilities in an 

embedded system. The attacker is able to control the electrical power system remotely 

using supervisory privileges, and they use these to attempt to detect these kinds of 

vulnerabilities. As the previous approach shows, the use of an attack tree is able to define 

a complex system, such as an electrical power system, and has also been used to test the 

security of nuclear digital instrumentations by Khand [63]. He presented a methodology 

that uses the attack tree to counter the measure of the security adopted by the nuclear 

digital Instrumentation and Control (I&C); any breaches of this could cause catastrophic 

impacts to the employees and to the environment [63].  

2. Attack graph: this presents attacks in a sequential order that begins with the start state 

representing the exploit of a vulnerability and attack. Then, each state in the series 

represents a step in the attack; the attack transfers from one state to the next through a 

transition that is caused by the previous state, leading to the effect seen in the next state; 

the final state shows the end of the attack. The attack graph orders the attack steps based 

on the time at which they were caused. Many studies have used and extended this method 

as it shows attacks in a simple way. Most malware can be presented using this method. An 
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example of this method is the use of the state machine model to show web-based 

behaviour as discussed in chapter 4.  

Finally, there are other approaches that analyse and detect malware and vulnerabilities using 

their own unique representations of attacks. Bailey et al. [44] propose a representation that 

shows malicious behaviour, their encoding involves combining the total number of changes 

on the test machine such as the total number of changes to processes, file system, registry and 

network. The representation is mainly focused on the number of total changes on the system 

but not the events and transitions between the states of malware activity.  

Another approach which represents malicious behaviour is called MIST (Malware Instruction 

Set) proposed by Rieck et al. [47]. They have used a hash representation that show malware 

behaviour in a sequence of hashes which represent the system calls as shown in Fig 3-2. The 

hash representation needs to be specified by the algorithms in order to group them correctly 

based on the meaning and order of the encoding, while the human analyst cannot read and 

understand what malware behaviour is without linking between the hashes and the system 

call terms. Our state machine encoding is suitable for use in automatic algorithms as well as 

the human analyst to read the behaviour sequence and understand what the malware intends 

to change without explanation of system calls. 

 

Fig 3-2: MIST representation [47] 

Previous approaches of encoding and representations of malicious behaviour involve a 

sequence of strings that represent the actual changes such as writing a new file or inserting a 

new value to the registry. However, our state machine model is event driven as at any time 

during the interaction with web based malware it will be in a state and event. Furthermore, 

the model will save the change details in each state and when a change occurs it will trigger 

an event, which will lead to a state change. Also, the automated state machine encodes 

malicious activity in real-time and builds the state machine signature for the web-based 

malware, making it easy for the end-user to get an overview of the behaviour as well as the 
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ability to use it with a complex algorithm such as clustering and prediction algorithms. There 

are several intrusion detection systems that use the state machine as a way to encode 

behaviour of attacks [64][65][21]. 

The state machine is different to a simple string comparison. The state machine is an 

encoding model that converts the client Honeypot log file to the state machine graph 

representation that shows the behaviour of the web-based malware. The state machine itself is 

driven by the malicious web page causing a state transition (through an event). Our model is 

able to represent changes caused by web-based malware in an ordered sequence of malicious 

behaviour as shown in chapter 4.  

3.3 Malware detection 

The malware detector helps by preventing malware from the end-user system. Malware 

detectors differ in their ability as some are able to detect both known and unknown malware, 

while others are only able to detect known, previously-seen malware. Generally, there are 

three main types: Signature, Anomaly and Specification based detection [66] [67]. Each type 

of malware detector offers Static, Dynamic or Hybrid detection.  Static detection mainly 

involves identifying malware based on the properties of the malicious file, such as assembly 

instructions or n-grams (as discussed in section 2.1). On the other hand, dynamic detection is 

based on the behaviour of malware, such as the activities and changes it makes to the file 

system or network. In our study, we focus on the dynamic approaches for each detection 

method as we think that it provides better detection than signature, such as detecting 

unknown malware, and most of the static techniques can be overcome through obfuscation 

and encryption which makes it hard to unpack and analyse malware. The three types are 

explained below. 

1. Dynamic anomaly-based detection: The detection engine starts in the training phase in 

order to learn the behaviour of the program and to build normal behaviour. It can then 

monitor the program during execution and compare it to the normal behaviour; through 

that it can detect abnormal behavior, which might be malicious behaviour or activities. 

There are different approaches concerning which parts of the program are monitored to 

build a normal behaviour template for the anomaly based detection system. One of the 

first approaches was conducted by Hofmeyr [68], who built an anomaly detection 
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approach that is able to detect abnormal behaviour in privileged processes. He stated that 

using privileged processes is a better method of detection compared to the user-mode, as 

most privileged processes have a short and predictable sequence of system calls, unlike 

the unpredictable behaviour of user-mode processes. He examined short sequences of 

system calls from the privileged processes in order to determine normal behaviour. 

Furthermore, in order to detect similarities between the new sequences and the pre-

defined ones, he measured them using the minimal Hamming distance [68]. A similar 

approach to this was taken by Wang and Stolfo [69], who proposed using payload-based 

anomaly detection which involves building normal behaviour by scanning the application 

payload of the network traffic. Their detection tool is called PAYL (payload-based 

anomaly detector). In their unsupervised training phase they create a “normal profile” 

from the byte frequency distribution of application payload on the network, and then they 

use the Mahalanobis distance [69] to measure the similarity between the incoming data 

(unknown) from the application during detection against the pre-defined profiles and then 

flagging an alert if it exceeds the threshold. Furthermore, they use a clustering approach 

to find two similar profiles using the Manhattan distance. 

Mahoney [70] developed a Network Traffic Anomaly Detector (NETAD) that is able to 

identify malicious behaviour in network traffic. He stated that the first few packets are 

important in order to detect most attacks against systems and so filters incoming IP 

packets using the first 48 bytes from the packet, starting with the header. First the model 

uses the most common network protocols, such as FTP, TCP and HTTP and then it 

compares these to the incoming 48 bytes to detect any unusual behaviour and will raise an 

alarm if necessary. 

2. Dynamic specification-based detection: this detects malicious behaviour by 

determining similarity during execution against a pre-defined set. It differs from the 

previous detection method (anomaly) as it is able to discover malicious behaviour once it 

matches a pre-defined set of behaviour rules. Masri and Podgurki [71] developed a tool 

called Dynamic Information Flow Analysis (DIFA) to detect intrusions and attacks 

against application software. They specified flow signatures for known attacks and found 

that the tool is able to detect these attacks. Furthermore, they also used automatic cluster 

analysis alongside their tools in order to detect unknown attacks. Their tool is designed 

to detect attacks against Java applications.   
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Another approach is used by Sekar et al. [72] who introduced a new translation language 

called ASL (Auditing Specification Language). They converted known vulnerability and 

attack behaviour to ASL and then into C++ class definitions; this C++ class is then added 

to the detection system in order to monitor the application system calls just before they 

are passed to the operating system kernel. These are then compared against the pre-

defined ASL specification to detect any malicious behaviour.  

Another specification-based detection was developed by Ko et al. [73], who proposed a 

method to detect exploitation of vulnerabilities found in privileged processes. Their 

detection method monitors privileged processes through audit trails and then compares 

them to known specifications of vulnerabilities within such processes. They have 

demonstrated their detection method on a Unix environment and proved that their 

approach works well in detection of these kinds of malicious behaviours, except for some 

privileged processes that use authentication, such as login and rlogin. 

Finally, there is another specification-based detection used in cross-site scripting (XSS). 

Krida et al. [74] presented a new tool called Noxes, which is a Windows-based service 

that runs in the background of a user’s system. It acts as a web proxy and so will receive 

all the HTTP connections to the web browser and then pass or block the connections 

based on the policy of the tool. The policy is simply a specification of pre-defined XSS 

attack behaviours. Noxes aims to protect against XSS on the client-side, as most current 

solutions to protect against XSS are server-side, which might suffer from delays in fixing 

them and so might harm the users (visitors).  

3. Dynamic signature-based detection: This detection method relies on using real 

signatures of malicious applications in order to detect them. Signature-based detection is 

one of the oldest methods used to detect malware, and used by the majority of security 

products. Ilgun et al. [75] presented a detection system called State Transition Analysis 

Tool (STAT) which is able to detect malicious behaviour by comparing the monitoring 

behaviour to a pre-defined STAT (known attacks in the format of a STAT).  Table 3-2 

below shows a comparison between the three malware detection systems [76] [67]. 
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Detection type Detect unknown attacks Regularly updates False alarm 

Signature no yes low 

Specification no yes low 

Anomaly yes no high 

Table 3-2: a comparison between the three malware detection systems [76] [67]. 

3.3.1 Hidden Markov Model (HMM) for malware analysis and detection 

HMM has been used in malware analysis and detection research tools for the last few years. 

Some approaches use it for clustering similar malware, while others use it as a classification 

tool to match the new pattern (i.e. from applications or algorithms) with pre-defined patterns.  

One of the first approaches using HMM was proposed by Le [64] who presents an anomaly-

based detection system able to learn normal behaviour through a Markov chain model using a 

Basic Security Model (BSM). The BSM is an extension for monitoring activities on the 

Solaris operating system. The BSM generates 284 different audit event types while 

monitoring the system and so a Markov chain model can be built of the temporal behaviour 

by building a transition probability matrix from the normal audit events generated previously 

[64]. Le conducts an experiment to distinguish between normal and attack behaviours and 

stated that his approach successfully distinguishes between the two types of traffic with a rate 

of 100%. 

An interesting study was conducted by Radosavac and Baras [65], who proposed a detection 

model based on HMM classification that encodes attack behaviour in a finite state machine 

(FSM), in the same way as our approach represents web-based malware, as described in 

chapter 4. Their model is only able to detect known attacks and so they encoded several 

buffer overflow attacks into their finite state machine encoding and classify them using 

HMM. They use the BSM on the Solaris operating system to monitor the behavior and record 

this in a log file. Furthermore, they filter the log files to get malicious behaviour by dividing 

each attack into 100 sequences and then using a sliding window approach to filter out normal 

behavior from malicious one. As stated previously, their approach is only able to detect 

known attacks they have modelled previously and so their algorithm cannot detect unknown 

attack behaviour in the BSM log file. In the classification phase, they use the HMM to 

classify buffer overflow attacks FSM representation into a group. If the classification 
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algorithm is not able to find a full match between the current attack and previous attacks then 

it will calculate the highest likelihood for the whole attack behaviour in order to find a 

relevant group. They assume that the attacker cannot change their  behaviour by adding 

normal behaviour between malicious actions in order to avoid detection. However, we 

disagree with them as there are many methods the attacker can use to mislead their 

classification approach, as described in section 2.1; the attacker can mislead the classification 

and clustering behaviour using obfuscation, such as changing the order of malicious 

behaviour, adding unwanted behaviour between actual malicious behaviours or adding 

normal or abnormal behaviour to mislead the classification process. We use the FP-Growth 

clustering approach which is able to identify malicious behaviour even when the attacker uses 

some obfuscation techniques. Furthermore, our work differs from their approach in that our 

HMM model is used for prediction, as discussed in chapter 6, not for classification. The 

benefit of this is that the prediction algorithm is able to expect the likely next activity of the 

attacks, even if the attacks are unknown, while their implementation of HMM is only able to 

classify known malicious buffer overflow attacks.  

Another interesting approach that uses HMM with a finite state machine is developed by 

Radosavac et al. [21]. They propose modelling the buffer overflow attacks in a FSM and then 

using HMM to detect such attacks. Their approach is only able to detect buffer overflow 

which have similar behaviours between attacks. The method of a buffer overflow attack is to 

pass extra data to the maximum buffer value [21], and so they face the problem of 

misclassification of buffer overflows, as most of the attacks share similar behaviour and their 

classification model has a very low rate for detecting attacks which share similar behaviour. 

The basic idea of the main and sub behaviour groups in our approach is that we are able to 

have a main group for similar buffer overflows and then use sub-groups that are able to 

distinguish between similar attacks. Furthermore, their approach is only able to detect known 

buffer overflow attacks; it cannot detect unknown or obfuscated buffer overflow attacks, a 

limitation not found in our approach. 

A recent work that is close to our research is proposed by Lee et al. [77], who propose an 

intrusion detection system based on multi-stage determination. The basic idea behind their 

approach is that after each stage of the intrusion signal, the HMM algorithm attempts to 

identify the current malicious sequence against the pre-defined ones in its database. They 

apply the HMM determination algorithm to the anomaly intrusion detection to detect network 
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intrusion. Furthermore, their determination algorithm, based on the HMM, is similar to our 

prediction algorithm; however, our prediction algorithm is different because it predicts the 

next activity from the current state, and is not restricted to identifying similar sequences only. 

An intrusion might have a different sequence from a pre-defined one and so we calculate the 

probability of the next state of the intrusion behaviour. Therefore, we are able to base 

predictions on similar state machines in the database, even if they are at different positions in 

the state machine sequence. We believe that by comparing such representations using HMM, 

our prediction model provides better identification of similar state machine signatures in the 

database. Moreover, if the prediction detects an unknown signature, it will try to identify its 

behaviour group by passing it to the FP-Growth clustering model which is able to find greater 

similarity between the state machine signatures or build a new behaviour group in case it is 

new malware to the database 

Xiuqing et al. [78] proposed a novel intrusion detection technique that uses misuse and 

anomaly detection and is based on HMM. They use a Fast Adaptive Clustering Algorithm 

(FACA) to update the HMM dynamically with new attacks in the case of misuse detection 

and then update the misuse detection engine with normal and abnormal signals. After 

clustering using FACA, the Davies-Bouldin (DB) index is used to measure the distance 

between the clusters and then merge them if they are small and similar, which represents 

normal behaviour, or detect abnormal behaviour if the distance is larger. The system uses the 

clustering output to build the HMM and uses it with the anomaly detection system to detect 

abnormal behaviour. 

Another approach towards using FACA algorithm is used by Xiuqing et al. [79], who propose 

an intrusion prevention system for network attacks based on the HMM (HMM-IPS). The 

system is different from the previous approach of Xiuqing et al. [78], as it is a prevention 

system and so is able to block abnormal behaviour. Furthermore, the system uses the FACA 

clustering approach to add new attacks to the HMM and the Kullback Libler (KL) distance 

measure is a measure between two determined probability distributions [128], to combine 

clusters if the minimum distance is reached. Finally, HMM is used in the prevention detection 

system to detect abnormal behaviour using the KL distance measure and then calculate the 

size of the sliding window to detect if the incoming sequence is malicious or not. 
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Another approach to using HMM was used by Tsai et al. [80]; they proposed an intrusion 

detection system that sniffs from multi-agent sensors on the network and analyses the normal, 

intrusion and misuse signals with a multi-dimensional HMM. In their system they have three 

different main models: the detection, expert and console models. The detection model is 

responsible for detecting intrusions using a fuzzy inference rule; the expert model is focused 

on analysing the data detected based on HMM and using cross-correlation and 

autocorrelation measurement to detect the normal, intrusion and misuse traffic; finally, the 

console model is responsible for controlling the whole system performance and controlling 

the agents and sensors for monitoring and generating reports.  

An improvement to the previous approach is proposed by Tsai and Hung [19] who presented 

a similar intrusion detection system which was based on the multi-dimensional HMM, and 

had the same three models: the monitor, track and analysis models. However, in this 

approach they have used a Honeynet deployment for their system instead of the multi-agent 

sensors used in the previous approach. They stated that the Honeynet adds benefits of 

tracking and recording the exact behaviour and accessing trails of the intrusions. They then 

used the ant colony algorithm with the deposit of different pheromones to analyse the 

intrusion traversal. In their deployment they collected all the data from security monitoring 

tools, such as Firewall, antivirus and SQL queries, and then passed them to an analysis 

model. They used the multi-dimensional HMM and used cross-correlation and 

autocorrelation measurement to integrate and advance analysis. Finally, as in the previous 

approach, they used a fuzzy inference rule to identify and recognise intrusions. 

In our work we are using the HMM to predict the next activities of a given malicious 

behavior sequence. This section has examined the different uses of HMM in malware 

detection such as [65] [21], and shown that most of them use HMM as a detection model to 

compare between a given attack sequence and pre-defined attack sequences in a database. 

Lee et al. [77] proposed using multistage detection and run HMM in every stage of attack to 

determine similar attack sequences. In our use of HMM, we employ an algorithm for 

prediction of future behaviour of a given state machine sequence based on the previously 

known information from the state machine sequences in a database. Therefore, it is able to 

predict future activities of a given web-based malware attack sequence in each stage of the 

attack.  
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Moreover, our HMM prediction model uses an FP-growth clustering algorithm to help detect 

web-based malware. The HMM will pass the unknown state machine signature to the 

clustering model to find more relationships between the given web-based state machine and 

the others in the database. It can therefore group it into a similar main or sub-behaviour 

group, or create a new behaviour group if it is a new attack sequence; this will improve 

detection in the future. Finally, it re-trains the prediction and classification models each time 

it adds a new state machine to the database in order to improve its performance. 
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Chapter 4 

 

The web-based behaviour system has been developed based on malicious behaviours by 

generating a state machine signature from a malware’s behaviour and then grouping these 

signatures into main and sub-behaviour groups. The future behaviour for a running web page 

is then predicted, based on the relationships and knowledge of behaviour groups, and how 

each malicious web page is similar to others. Our objectives from this model can be 

summarised as follows: 

1. Monitor the web-based malware behaviour and generate a signature for its behaviour in 

the victim’s system. 

2. Visualise the behaviour of the malicious web page in a way that is easy for humans, as 

well as the ability to use it in automatic or data mining algorithms to reveal more 

information and allow more understanding about malicious activities. 

3. Group the web-based malware into behaviour groups based on the similarities in their 

malicious behaviour on the victim’s system. 

4. Get more similarities and relationships for each behaviour group by creating sub-groups 

that will show a greater number of relationships between the malicious web pages that 

cause similar malicious behaviour. 

5. Predict future behaviour for any given malicious web page, and then block it from causing 

risk to the end-user’s system. In addition, use the prediction state to get more knowledge 

about malicious behaviour by using the clustering model to reveal greater understanding, 

such as in which behaviour group it belongs or what the other possible risks it might 

cause to the end-user’s machine by comparing it to malicious web pages in the same main 

and sub-behaviour groups. 
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Fig 4-1: Web-based behaviour system. 

 

Automated State Machine 

This chapter describes the automated state machine that was built to encode malicious web 

page behaviour as a sequence of activities. Client Honeypots visit and interact with suspect 

web sites in order to detect and collect information about malware. Furthermore, each 

malicious web page is able to perform a number of activities on the victim’s system. This 

chapter will show the benefits of using an automated state machine in conjunction with a 

client Honeypot. The automated state machine, when applied to a client Honeypot as 

described here, adds to the Honeypot technology a number of benefits when analysing 

malware, and tracing the details of malware steps. The state machine provides a powerful 

framework for analysing malware activity and encoding the results. 
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The state machine creates a unique signature for each malicious web page behaviour. These 

states describe malware behaviour in detail, from the state, such as File system, Registry or 

Process, to the source and destination of the change. By using the state machine signature, 

different malicious web page behaviours can be compared and analysed to find their 

similarities and differences.  

Section 4.1 describes the state machine concept and the theory of how it is used. Section 4.2 

discusses the use of the client Honeypot with the state machine and how they can be 

integrated. Section 4.3 shows the monitoring and detection tools. Section 4.4 provides an 

overview of the drive-by download attack, while Section 4.5 gives an example of such an 

attack. Section 4.6 gives an example of the automated state machine, and how a state machine 

signature can be created for any malicious web page. Section 4.7 evaluates the automated 

state machine. 

4.1 web-based attack behaviour models 

The attacker’s aim is to compromise the victim’s machine and steal valuable data, or use it as 

a machine to attack others on the local network or the Internet. One of the most successful 

methods of attack nowadays is a web-based attack. As Wüest [104] stated, there are more 

than 600 known vulnerabilities identified per year across all browsers; this opens the door for 

attackers to compromise the end-user’s system through drive-by download attacks. Drive-by 

download attacks increased by 93% in 2010, and in my opinion, they will increase further in 

the next few years, because many of the new production tools are web-based, and this 

increases the use of web browsers, which have exploitable plugins and extensions. The drive-

by download attack scenario is more effective and easier to carry out, as the attackers only 

need a way to send malicious web pages to the victims. When the victim accesses the 

malicious web page, the attacker’s code checks his web browser, plugins and operating 

system vulnerabilities and reports these to the attacker. Section 4.2.3 shows an example of a 

drive-by download attack that exploits the IE vulnerability, CVE-2005-0553 [105].  

4.1.1 The motivation of web based attacks 

The attacker targets the web browsers and if successfully exploited, takes control of the 

system and may change the state of the system to a malicious state. In general, the web-based 

attack is divided into a series of steps and actions, and in the end the attacker will be able to 
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take control of the victim’s system. Our aim in modeling a web-based attack is to build a 

structure that demonstrates the steps of malicious web pages as states, and the order in which 

the states occurred. Furthermore, within each state, the model will save the state’s behaviour, 

demonstrating, for example, the source and types of changes. There are a number of 

advantages to this model: 

1- It provides a standard format to describe the actions of web-based attacks and their 

timelines. 

2- It distinguishes the states responsible for exploiting the web browser vulnerability 

from the payload and the malicious activities after the system is compromised. 

3- It supports the ability to store each behaviour type and action within the 

corresponding state, as well as the ability to adopt new system states to the model. 

4- It provides a comparison between two or more web-based attack models, which 

reveals new relationships between them. 

5- It helps in understanding the state’s sequences and which ones are likely to be the next 

state, in real time, using a prediction algorithm. 

4.1.2 The state order 

A malicious Web page represents an ordered set of behaviour sequences, which preforms 

specific actions on the users system. This behaviour sequence is ordered by time and usually 

starts with steps to exploit a vulnerability on the victim systems. It then conducts exploit 

payload, the attack actions, to affect and change the system state. However, there are a 

number of times that the order of the behaviour sequence can possibly be changed: 

 Software fault: The malicious Web page is monitored by a high-interaction client 

Honeypot system. At some time, the monitoring system cannot detect all changes in 

real time or log some of the changes in a different order, causing errors in the 

analysis.  

 Avoid detection: The attacker can change the order of the exploit to avoid detection 

from a signature-based software, so the changes can cause the same actions but in a 

different order. Further, they can cause unwanted behaviour between the exploit steps 

to avoid detection. 
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It is not easy to determine if changes to the state order would result in the performance of the 

same behavioural actions. This adds a level of challenge for malware analysis that aims to 

determine whether there are states that perform the same malicious behaviour (impact on the 

victim’s system) on different orders. We focus on finding the key malicious states involved in 

the attacks, in order to determine which states are exploiting vulnerabilities in order to affect 

systems, and which states are responsible for delivering attack payloads. Attackers could 

potentially change the order of a state to interfere with the analysis of an attack, which would 

add limitations to our model. In our work, we base our monitoring and logging on a high-

interaction client honeypot system (Capture-HPC), and assume that the monitoring software 

logs all of the behavioural steps in real time without any errors, and that the state order is 

correct.  

4.1.3 The challenges 

The modeling of web-based attacks is useful for understanding attack types and methods. 

However, there are a number of problems and challenges facing the modeling of such attacks. 

The web-based attack that we are aiming to model is the attack that compromises the victim’s 

system by exploiting the operating system, web browser and its plugin, through the web 

browser. One of the challenges is that web-based attacks contain a number of activities, and 

each series of steps and activities is responsible for a different malicious behavior. These 

malicious behaviours might begin by exploiting the system through a known or unknown 

vulnerability, and then carry out other malicious activities, and might install malware on the 

victim’s system. Furthermore, the web-based attack affect not only one part of the system, 

such as the file system or the network, but it attacks different parts of the system, and these 

parts need to be monitored and scanned. In case of buffer overflow vulnerability, the attack 

will first exploit the vulnerability from the memory, and then it might move to the processes 

in order to launch a malicious file or insert malware into the file system. Therefore, we have 

to understand which parts of the system need to be monitored in order to detect any web-

based attacks. Moreover, in each part of the system, there are a number of actions that might 

occur, for example an attacker might insert, delete or modify a file in the file system.  

Finally, we need to understand how the malicious web page operates and behaves, and 

therefore detect and predict its malicious activities before or while it is attempting to attack 

the victim’s machine. Huang et al. [107] have summarised the general steps of attacking the 
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user through drive-by download attacks in Fig 4-2. It shows four main steps of attacking 

visitors: Firstly, they generate the malicious URL for visitors on different web sites for 

example Facebook or Twitter, secondly, when the visitor visits the malicious web page this 

will exploit their web browser from the attacker’s exploiting server. Thirdly, the attacker 

inserts malware into the visitor’s system and finally the attacker is able to take over the 

visitor’s system. 

The next sections describes the methods of modeling web-based attacks, as well as how we 

solve the previous challenges and problems to build a model that describes and demonstrates 

web-based attacks in a simple but detailed  manner. 

 

Fig 4-2: the drive-by download attack scenario [107]. 

 

4.1.4 web-based modeling methods 

There are a number of modeling methodologies that assist modeling the structure and 

methods of web-based attacks. These models help to understand the possibility of the threats, 

as well as measuring the risk, cost and attacks. As mentioned earlier, in Section 2.2, there are 

different modeling methods, such as attack trees, Petri nets and UML, and most of them can 

help to present and model complex attacks that involve modeling different attack paths and 

scenarios. In our work, we are going to model web-based attacks, and therefore we need to 
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fully understand what we are going to model in order to apply and select the best modeling 

technique to model our target, which is malicious web page behaviour. As discussed before, 

the malicious web page attacks the end-user’s system through a web browser in stages, and 

each stage causes a transition from one stage to another. 

Furthermore, the malicious behaviour steps should be ordered over time, in order to 

understand how it works and which state is responsible for causing the change to the next 

activity. Therefore, we needed to choose an attack graph, as discussed in section 2.2 in 

chapter 2 to enable us to visualise the steps in each web-based attack scenario. Furthermore, 

we based our model on a state machine, as this provides a simple way to represent and save 

the behaviour data in states, starting with the first state, which is the beginning of the attack, 

and from then it is event driven; any change should trigger an event within the current state 

and cause it to transfer to the next node, which represents another malicious activity on the 

system. The state machine provides a simple and easy way to model the activities of 

malicious web pages in sequential order. In addition, it helps us to easily extract the 

behaviour from the node for use with automatic analysis techniques, such as clustering and 

prediction algorithms. The state machine model has already been used widely as an attack 

and vulnerability model, as we discussed in Chapter 2. 

Finally, our state machine model is  a defined format of malicious web page behaviour and it 

provides the base for other complex algorithms and processes in order to derive more 

relationships from the database of the state machine signature , such as clustering and 

prediction algorithms. 

4.2 State Machine  

To summarise our automated state machine model, as described in Chapter 3; first, the model 

is divided into pre-defined malicious states, such as file system, registry and network. For 

each state, the model will save the action of the change, such as adding a new value to the 

registry, as well as the source and destination of the change. The transitions between the 

states are driven by malicious activity; for example, the state can be changed from the process 

state to the network state when the malicious web page opens a new network connection.  

As mentioned earlier, there are several issues to discuss concerning the finite state machine, 

as well as the client Honeypot, in order to gain a better understanding. Some of these are: the 
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system states to be monitored, the transitions from one state to the next, the information 

saved with each state, and the tools for monitoring changes in each system state. The next 

section discusses the types of state machines and why we chose the finite state machine to 

model web-based attacks. 

 

4.2.1 State Machine types 

The state machine has been used widely to model different data, such as hierarchical finite 

state machines with multiple concurrency models [107], abstract State Machine Language for 

Attack Scenario Specification [108], and detecting Denial of service (DOS) attacks on VoIP 

systems by state machines [109]. There are different types and methods of using state 

machines, as mentioned in Chapter 3. However, we are going to model web-based attacks, 

therefore we need to select the appropriate type to model and present all of the steps and 

paths of malicious web page behaviours. 

Web-based attacks compromise the system and change the state of the system via web 

browsers. The parts of the system are limited and finite and therefore they need to be 

monitored in real time in order to detect any change that may occur due to a malicious web 

page. Therefore, we are going to use a finite state machine, as it models a finite number of 

states and these states are known to us.  

4.2.2 Finite state machine modeling for web-based attacks 

A state machine is divided into a series of states and transfers from one to another through 

transitions generated by events. An example of an event is a user turning on the system: the 

system transfers from the “off” state to the “on” state. A state machine cannot be in two states 

at the same time, which makes it easy to query the state of the state machine. The basic idea 

of this model is to generate the state machine automatically according to the system state, and 

to build up a sequence  of the system’s states from the first interaction between the Honeypot 

and the server until the end of the session. 

The benefits of using an automated state machine with a high-interaction client Honeypot are: 

1. The state machine is generated automatically according to the system’s states while it is 

working. 
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2. The state machine generated includes each action performed by any malware and saves 

the action along with its parameters. 

3. For each client Honeypot scan, the state machine is generated afresh. 

4. Each state machine contains all the system states while interacting with the external 

server, which helps to review the system states at a later time. 

5. The map of the state machine for each interaction helps in analysing the malware and 

identifying its processes in order to develop a patch for it. 

We used the finite state machine to encode finite and limited parts of the system. These are 

the four main states that are monitored. A diagram of the state machine is shown in Fig 4-3. 

This finite state machine can also be illustrated with a 5-tuple as: 

A = {S, Σ, δ, S0, S5} 

Where 

 The Σ alphabet input includes the finite number of events {e1, e2, e3 …, e18}. 

 S is the non-empty set of finite states, S = {S0, S1, S2, S3, S4, S5}. 

 S0 is the initial state. 

 S1 is the File system state. 

 S2 is the Process state. 

 S3 is the Registry state. 

 S4 is the Ports state. 

 S5 is the final state. 

 δ is the transition function to states, δ: S × Σ  S 
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Fig 4-3: the state machine diagram. (Circles indicate states and arrows represent transitions) 

The state machine includes four main states that will be monitored through the 18 possible 

transitions between the states. The finite state machine can be described by a state table, 

which shows the possibility and direction of each transition to/from a state, these transitions 

are shown in Table 4-1. 

 e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 

S0 
S1, S2,  

S3, S4,  

S5 

θ θ θ θ θ θ θ θ 

S1 θ S1 S2 θ θ θ θ θ θ 

S2 θ θ θ S1 S2 S4 θ θ θ 

S3 θ θ θ θ θ θ θ θ θ 

S4 θ θ θ θ θ θ S2 S4 S3 

S5 θ θ θ θ θ θ θ θ θ 

 e 10 e 11 e 12 e 13 e 14 e 15 e 16 e 17 e 18 

S0 θ θ θ θ θ θ θ θ S5 

S1 θ θ θ S3 θ θ θ S4 S5 

S2 θ θ θ θ θ S3 θ θ S5 

S3 S4 S3 S1 θ S2 θ θ θ S5 

S4 θ θ θ θ θ θ S1 θ S5 

S5 θ θ θ θ θ θ θ θ θ 

Table 4-1: the state transitions table of the finite state machine in Fig 4-1. 
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Table 4-1 explains the transitions between states, because the state machine is not like a 

sequential workflow where you can predict which transition will flow from/to which state. In 

a state machine, it is necessary to make a transition for every possible event that may occur. 

For example, Table 4-1 shows that the transition (e 14) will transfer the state machine from 

state S3 to S2, which can also be seen in Fig 4-1. In other words, the system will remain in 

state S3, which is the state representing the Registry, until the malware tries to add a new 

process or kill an existing one. In this case, using transition (e 14), the automated state 

machine will transfer from the Registry state (S3) to the Process state (S2). From this it is 

possible to identify all malware actions. All 18 transitions cover all the possible actions that 

can be performed by a malware. 

4.2.3 A client Honeypot with a state machine 

In simple terms, a state machine is a model that indicates the different states of a task being 

performed. By planning a strategy in advance such that each state gets defined by its time and 

resources, the probability of completing a task on time increases and workflows become 

smoother. A workflow is defined as “a series of steps, decisions, and rules needed to 

complete a specific task” [83]. There are essentially two types of workflow: Sequential and 

State Machine Workflow. 

We will use the state machine to encode the attacks from malicious sources. The main 

advantages of the state machine are that the transition from one state to another is not 

predictable, and that movements are driven by outside events (malicious activities). It also 

encodes malicious behaviour into a state machine signature format, which we can use.   

The previous section described the state machine and its benefits for modelling web-based 

malware behaviour. In order to use a state machine with a client Honeypot to encode its 

logged behaviour into a state machine signature, we first have to answer some questions to 

make it clear how they can be integrated. The first question is: “What are the monitored 

system states?” To answer this question, the system states during infection by malware, as 

well as any other benign states, have to be understood. The system state can be changed by 

adding a registry value, running a new process, or inserting a new cookie. The tools that can 

be used to monitor each change also have to be looked at. The system states that will be 

monitored while interacting with a target server are described in section 2.3.3. 
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The second question is “How does each state transfer to the next state?” Each of the four 

states listed above will have transitions to another state. Each transition is responsible for 

transferring from the current to the next state, or even returning to the same state. For 

example, malware could add a new file, which would transfer the system state to the file 

system state. If Malware adds another file while it is in the file system state then the state 

machine remains in the same state, but logs the new information such as action, source and 

destination of the new change to build the state machine signature. 

The third question is: “What information will be saved for each state?” In each state, there are 

several pieces of information that can be saved to show what the web-based malware changes 

and activities on the victim system are. The data saved with each state are as follows: 

1. Type: This field saves the action, which can be different for each state. Table 4-2 

shows each state with its types. 

2. Action: This field saves the action parameters, such as the target file created or the 

registry value inserted. 

3. Source: This field describes the source causing the changes. 

4. Destination: This field saves the file, process or value that has been changed. 

5. Time: this field holds the time for each change to make up the state machine map 

ordered by time. 

State Type 

File system Add, modify or delete 

Registry Add, modify or delete 

Processes New or kill 

ports Open or close 

Table 4-2: the state types. 

4.2.4 Monitoring and detection tools 

Open source and free security tools have been developed over the last few years for the 

Windows environment and have led to the improvement of Windows security. Consequently, 

there are many security tools now available for Windows, which will be the host operating 

system for client Honeypot. Table 4-3 shows each monitored activity along with the relevant 

tools. Involved the Capture-HPC client Honeypot [36], for instance can be used to monitor 

most of the system parts of the system as presented in section 2.3.3. This could be used as a 
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basis and combined with other tools to capture activity that Capture-HPC does not support, 

such as monitoring of ports. 

activity File system Registry Process Ports 

tools 

FileMon [94] 
RegMon 

[95] 

 

Process 

Monitor [96] 

 

FileSystemWa

tcher [97]   
 

Capture-HPC [36] 
Winsock 

Control [98] 
Table 4-3: each monitored activity along with the relevant tools. 

 

4.2.5 An example of drive-by download attack 

It is necessary to understand how this attack works, because it is the main type that a client 

Honeypot will face when interacting with servers. 

1. The vulnerability: is in Internet Explorer, which is the default internet browser on the 

Windows operating system. The vulnerability is a DHTML Object Memory Corruption, 

caused by race conditions on the memory management routines in DHTML objects, in IE 

version 5.01, 5.5 and 6. The result of this vulnerability is that an attacker is able to 

execute malicious code remotely, via his malicious web page, as well as sending a 

hazardous email with HTML capability. The vulnerability is called CVE-2005-0553 

labelled as CVE ID [105] and MS05-020 [110] in the Microsoft security bulletin. 

According to Microsoft [110], the vulnerability is a remote code execution, “If a user is 

logged on with administrative user rights, an attacker who successfully exploits this 

vulnerability could take complete control of an affected system. An attacker could then 

install programs; view, change, or delete data; or create new accounts with full user 

rights. Users whose accounts are configured to have fewer user rights on the system could 

be less impacted than users who operate with administrative user rights.” 

2. The experiment: The vulnerability was tested in a virtual environment, to reduce the risk 

of a successful and damaging exploitation. The test operating system was Windows XP 

Service Pack 2, running Internet Explorer 6 with default settings. The experiment was 

monitored manually with different security tools available. The tools used were: 
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 Active Ports 1.4 [111]: this tool displays the open ports on the machine and their 

operating software in a graphical user interface (GUI). 

 Process Monitor v2.03 [96]: this tool is a real-time monitor, which can show each 

process and its operation. The processes can be filtered to check Internet Explorer 

(IE) activities. The tool also shows all the changes of IE from the registry or file 

system.  

 Process Explorer v11.33 [112]: this tool is an advanced graphical interface used to 

monitor real-time processes. It helps to monitor the state of the processes exploiting 

the vulnerability to see if there are any new processes or even run some new ones 

within IE. 

3. The exploit: The scenario is centred on the user making a single visit to a malicious web 

page with their vulnerable Internet Explorer (5.01, 5.5 and 6). The user will not notice 

anything unusual; instead, they will just see a blank page. The malicious code will exploit 

the vulnerability in the background; a shell code is responsible for opening a backdoor for 

the attacker. The exploit is publicly available at [113]. The shell code can do much more 

than just open a backdoor; it can also install malicious code on the victim’s machine, such 

as a virus or rootkit. 

4. The result: By monitoring the state of the processes while opening the malicious web 

page, it is possible to identify a process that runs for just a few seconds before killing 

itself. That process has the name rundll32.exe, which is a part of the Windows operating 

system and helps to execute some command line functions. Fig 4-4 shows the process 

monitor in action. 
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Fig 4-4: the processes monitor in action. 

After a successful exploitation from the attacker’s point of view, the users will notice no 

difference on their computer or Internet Explorer. However, port 28876 will be open for the 

attacker to connect remotely to the user’s machine. The use of the Active Port scanner shows 

that the port was opened by iexplore.exe which is the process name for Internet Explorer. Fig 

4-5 shows the port in action after the exploitation of the vulnerability on the user’s machine. 

 

Fig 4-5: Port activity after the exploitation of the vulnerability on the user’s machine. 
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The result of this attack scenario can also be shown in the state machine diagram, to show 

clearly how the automated state machine could be applied in the high-interaction client 

Honeypot. To summarise the previous attack, in order to understand its stages so that we can 

use it in the state machine, the steps are shown below in time order. Fig 4-6 shows the 

automated state machine of the CVE-2005-0553 exploit. 

 The exploit is transferred with the source page to the user’s vulnerable browser. 

 The attack is initiated by starting a new process called rundll23.exe, which was not run 

from the default processes. 

 The TCP port 28876 is opened from the new process running process. 

 

Fig 4-6: the automated state machine of the CVE-2005-0553 exploit. 

The diagram shows the automated state machine applied to the CVE-2005-0553 exploit. 

There are four states that summarise the exploit and the machine’s states. The states’ steps are 

illustrated below: 

 S0: The first state is the initial state, starts with (e 1) transition, which is responsible for 

transferring the machine state from the first state (default state) to the S2 state by adding 

a new process. 

 S2: The “Processes” state, according to the automated state machine in Fig 4-3, shows 

the new action, which is to run the ‘rundll32.dll’ process. Transition (e 7) transfers the 

machine to the S4 state. 

 S4: The “Ports” state, as described in Fig 4-3. This state is the result of the transition (e 

7) and indicates that there is a new port open: TCP port 28876. Transition (e 18) caused 

a change to the S5 state. 

 S5: This is the final state, which ends the exploit activity and its effects on the system. 

As mentioned above, using the automated state machine allows us to save the whole 

sequence of changes for an exploit and malicious software within the client Honeypot. The 

automated state machine saves each exploit with its state machine sequence for further 
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analysis. One such effect is that most malicious activity is started by adding a new process 

and editing a particular file and finishes by opening a particular port. 

4.2.6 Implementation and Evaluation 

The evaluation section focuses on testing the state machine concept, as applied to a real client 

Honeypot, to see the benefits of this idea in a real situation and to determine how it can be 

improved in future. The evaluation section is divided into three sub-sections, which are: 

 The client Honeypot: describes the client Honeypot that will be used with the state 

machine and how it can be integrated. 

 The state machine: describes the state machine specification and its implementation. 

 The evaluation experiment and result: shows the results of the state machine as 

applied to the client Honeypot. 

The state machine will build on Capture-HPC log files. There is a need to understand the 

structure of these files so that the state machine may be built. Fig 4-7 shows a snapshot of a 

Capture-HPC log file.  

 file","Nov 11, 2007 2:50:50 PM","C:\Program Files\Internet 

Explorer\IEXPLORE.EXE","Write","C:\WINDOWS\TEMPmbroit.exe" 

"process","Nov 11, 2007 2:50:50 PM","C:\Program Files\Internet 

Explorer\IEXPLORE.EXE","terminated","C:\WINDOWS\TEMPmbroit.exe" 

"registry","Nov 11, 2007 2:50:50 

PM","C:\WINDOWS\TEMPmbroit.exe","SetValueKey","HKLM\SYSTEM\ControlSet001\Control

\Session Manager\PendingFileRenameOperations" 

Fig 4-7: snapshot of Capture-HPC log file. 

The snapshot shows that three changes have been detected: write a file, terminate a process 

and insert a new registry value. For each change there are five elements which have to be 

detected: 

 The state: the location of the change: File system, Process or Registry. 

 The time: the time of the change. 

 The source: the source of the change. 

 The type: the type of change, which differs from one state to another. File change 

types are: Write, Delete or Create. Process changes are: Created or Terminated. 

Registry changes are: Set or Delete value. 
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 The destination: shows the destination of the effect caused by the source file, which 

can be a file, process or registry value. 

The state machine is built using Windows Workflow Foundation [114]. The architecture 

shown in Fig. 4-8 represents the states and transitions as presented in Fig. 4-3 and Table 4-1. 

Each box represents a state, such as S0 as the start, S1 as the file system, S2 as the process, 

S3 as the registry, and S4 as the complete state. Within each box, there is a driving activity 

that transfers from one state to another as we have described in detail in Table 4-1. 

 

Fig 4-8: the state machine states in Windows Workflow Foundation. 

After building the state machine and choosing Capture-HPC to be our base monitoring tool, 

the tool must now be tested and used to gather results. Each of the 26 different log files 

received shows a scan result for a different malicious web page. The state machine tool can 

be configured from an external configuration file to convert each Capture-HPC log file to a 

state machine version; the configuration file can also set the folder name for the conversion 

process. Fig 4-9 shows the state machine result files. 
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Fig 4-9: the file produced by the state machine tool. 

The state machine file is output.txt, which contains all the state changes. At the end of the file 

are two state machines; the first shows the states of the log file with repeated values, while 

the second shows the states without repetition, which makes it easier to determine malware 

changes to the system. The machine signature without repeated values is the 

state_det_short.txt file in Fig 4-8. Most malware will try to make changes more than once to 

ensure it achieves its aims. The state machine signature also includes the change type, as well 

as the source and destination. A state machine signature example is shown in Fig 4-10 below: 

S0--->S1W1=2--->S1W1=3--->S2N1=3--->S3S3=4--->S2K1=3--->S4 

Fig 4-10: example of a state machine signature. 

The state machine above shows the state and type of change in each stage, the states listed 

above are the same states described in Fig 4-4, while the characters after each state name are 

described in Table 4-4 below: 
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State Character / Describe 

File system (S1) 

W Write 

D Delete 

C Create 

Process (S2) 
N New 

K Kill 

Registry (S3) 
S Set 

D Delete 

Table 4-4: the state’s characters and descriptions. 

The evaluation experiment was to convert all the client Honeypot log files into state machine 

files and then to use an analysis engine to process the log files. All 26 log files were 

converted to the state machine version as shown in Fig 4-9. The Weka data mining software 

was then used [52], to get an overview of the 26 state machine files in a graphical format and 

to understand some properties of the data to help the analyser. The Weka software supports 

formats such as ARFF (Attribute-Relation File Format) files. The state machine tool 

produced a Weka state machine signature that was fed to a pre-defined ARFF template. Fig 

4-11 shows the graphical output of all 26 state machine files, with some modifications to 

make the results clearer. It demonstrates that there are six stages for the 26 state machine 

signatures; the first three stages can be described as follows: 

1. First stage: the malicious web pages start writing files to the file system. 

2. Second stage: twenty-three web-based attacks involve writing another file to the file 

system where another three are running a new process. 

3. Third stage: two malicious web pages write a new file, twenty-three run a new 

process and one web-based attack adds a new value to the registry. 

The analysis shown below is useful in understanding how a group of Web-based attacks is 

performed and what the common types of behaviour for such groups are. The analysis can be 

used as a way to group similar Web-based attacks that affect the end-user system similarly by 

using clustering algorithms. Further, it can be used to determine the malicious Web pages 
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attacking a particular network, and thus develop corresponding security protection to 

safeguard against the highest system parts attacked by such exploits. For example, by using 

the above analysis, network security can determine that most of the attacks in the first and 

second steps write new files to the file system. Therefore, there is a need to install file system 

protections tools and to trace the path of the Web browser vulnerabilities that cause this type 

of exploit. 

 

 

Fig 4-11: Weka graphical output of the 26 malicious web pages. 
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4.3 Summary and Discussion 

In this chapter we discovered how web-based attacks work to exploit the victim’s machine. 

The attack scenario requires the user to visit a malicious web page, which in turn exploits the 

vulnerabilities of the web browser, its plugins and the user’s operating system. We discussed 

how we could monitor web-based attacks from the client’s side, as the attack scenario 

changes the behaviour for some aspects of the system, such as the file system or processes.   

 

We also introduced the state machine in order to model the behaviour of web-based attacks. 

We described the different approaches for modeling web-based attacks, such as attack trees, 

Petri nets and UML. As we have previously seen, a malicious web page attacks the end-

user’s system through a web browser in stages. The steps in the malicious behaviour should 

be ordered over time, in order to understand how it works and which state is responsible for 

the transition to the next activity. Therefore, we chose an attack graph to enable us to 

visualise the steps in each web-based attack scenario. We based our model on a finite state 

machine, as this provides a simple way to represent and save the behaviour data in the states, 

starting with the first state, where the attack begins, and from that point tracing the event-

driven process; any change should trigger an event within the current state and cause it to 

transfer to the next state, which represents another malicious activity. The model was based 

on the FSM because the parts of the system that needed to be monitored were limited. The 

state machine signature allows security researchers and automatic tools to understand and 

follow the steps of the web-based attacks.  

 

This chapter introduced the first part of our behaviour model, which shows the state machine 

modeling the behaviour of web-based attacks. In the next chapter, we explore the clustering 

model and how it can group similar malicious web page behaviours together into one main 

behaviour group, as well as creating sub-groups for those malicious web pages that have a 

greater similarity between them.  
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Chapter 5 

 

Clustering model 

This chapter discusses how we group web-based malware based on   their behaviour by using 

clustering algorithms. Client Honeypots visit and interact with suspect websites in order to 

detect and collect information about malware. Interactions with malicious web sites may cause 

changes to the properties of a victim’s system, often without the system owner being aware 

that this is occurring. The activities performed by web-based malware can be used to group 

them according to their effects on a victim’s system. We use a state machine based 

representation to encode log data from a client’s system, as discussed previously in Chapter 4, 

subsequently grouping this data based on the “types” of activities that were performed on the 

machine (referred to as malware behaviour). 

The structure of this chapter is as follows: Section 5.1 describes the idea of using the 

clustering algorithm with the state machine signature; Section 5.2 discusses the use of the FP-

Growth to group the behaviours of web-based malware. 

5.1 Clustering model overview 

As previously outlined, our state machine encodes the sequence of events that occur during an 

interaction between a client and a web server.  The state sequence derived from multiple 

interactions can be clustered to identify common patterns between them. Table 5-1 shows 

examples of some state machine signatures, the state’s characters and descriptions are 

presented previously in table 4-2 in chapter 4. 
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S1W1=13,S1W1=14,S2N1=14,S1W1=15,S3S14=16,S1W14=17 

S1W1=18,S1W1=14,S2N1=14,S1W1=15,S1W14=17,S3S14=16 

S1W1=2,S1W1=3,S2N1=3,S2K1=3,S3S3=4 

S1W1=13,S1W1=14,S2N1=14,S1W1=15,S3S14=16,S1W14=17 

Table 5-1: example of state machine signatures. 

One way to solve this is to group the state machine signatures using data mining techniques, 

particularly clustering algorithms. The term clustering covers a number of different techniques 

used to group similar items together and can be defined as "the process of organizing objects 

into groups whose members are similar in some way" [99]. Clustering can help us with our 

state machine files by: 

1) Grouping state machine files that are the same, which can be used to group different URLs 

that use the same web-based malware. 

2) Grouping similar state machine signatures to build behaviour families of web-based 

malware, containing malware that use similar techniques or attacks, which could lead to a 

better analysis of the relationships between the state machine activities. 

3) Reducing the analysis time, thus providing the researcher with groups of web-based 

malware to analyse; previously, each log file would have to be analysed separately to 

understand the behaviour of the web page scanned. 

5.1.1 The motivation of web based attacks clustering 

In the first three months of 2011, there was an average of 73,000 new malware strains found 

daily according by PandaLabs [104], an increase of 26% from the same period in 2010. 

Meanwhile there is still a large amount of old malware affecting thousands of computers 

worldwide. These numbers raise the challenge of how to analyse these attacks automatically, 

particularly as the traditional method involves a human analysing the malware, which clearly 

is time consuming and requires a lot of effort. Client Honeypots visit and interact with 

suspect web sites in order to detect and collect information about malware. Malicious 

websites may cause a number of activities to be performed on a victim’s system; each activity 

is performed in different stages. We use a state machine, as discussed in the previous chapter, 

to represent the activities performed by the malicious web page into pre-defined states. These 

states can be used to summarise interactions with malicious web pages using the same state 

machine structure. The states are then passed to a clustering algorithm to group similar 
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malicious web page exploits in order to better understand how software can be developed to 

better respond to such attacks. The outputs of the clustering algorithm are categorised to build 

up groups of similar states that represent the malicious activities performed on the victim’s 

system. The benefit of using this process is to build families of malicious web pages with 

similar behaviours (behaviour families) leading to the development of common approaches to 

deal with such exploits. 

5.1.2 Clustering methodology types 

As discussed in Chapter 2, there are many different approaches used to cluster and group 

attacks that exploit browser and operating system vulnerabilities. A summary of the 

previously mentioned approaches is given next. HAC has been widely used to cluster similar 

attacks. Rieck et al. [47] use HAC with complete linkage as the distance measurement for 

malware clustering based on MIST format; MIST is a string that represents malware 

behaviour in a hash file format. While Gurutxage et al. [115] use the same clustering 

approach, but with average linkage as the distance measurement instead of complete linkage. 

Moreover, Sequeira and Zaki [57] use still another clustering approach, based on K-means, 

which clusters the user behaviour in order to use it with an anomaly-based detection 

technique for detecting abnormal behaviour in real time in a UNIX shell. Christian et al. [51] 

use a hybrid approach, which combines K-means and Self-Organising Maps to cluster and 

visualise malware behaviour. Finally, there are more approaches that can be used for malware 

clustering based on behaviour, such as the artificial neural network used in the work 

conducted by Linda et al. [56] and Stopel et al. [55].  

Our clustering approach is based on FP-Growth clustering, which differs from all of the 

existing clustering algorithms for dynamic behaviour analysis. Most of the previous 

clustering approaches have used hierarchical clustering. We have used HAC with a state 

machine, and found that it suffers from a number of limitations. One of them is  that malware 

might make some changes to some of its behaviour in order to deceive the analysis engine 

(clustering algorithms) into grouping similar malware into different behaviour groups. By 

using the FP-Growth algorithm, we can detect more malicious web pages and group them 

based on their common behaviour states by comparing them to HAC; this then allows similar 

malware behaviour to be detected, even in different parts of the state machine’s signature. 
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Furthermore, most of the clustering approaches identified previously present acceptable 

performance when grouping similar attack sequences that have one or several malware 

behaviours. However, our clustering model is able to identify several aspects of the state 

machine, or the behaviour sequence, of web-based malware. While developing the clustering 

model for malicious web pages, we already knew that this type of attack is different from 

traditional attacks, as they first need to exploit a vulnerability in the web browser or operating 

system to gain permission to access the system and open the door for the attacker to install 

and run different malware. Therefore, the state machine representation helps by detecting the 

sequence of changes in real-time and in time order, and can therefore distinguish between the 

different types of malicious behavior, such as exploiting a web browser vulnerability, 

installing and running one or more malware codes on the system, or monitoring the traces of 

malware behaviour. Furthermore, the clustering model uses these benefits of the state 

machine representation by grouping them according to common states and can therefore 

detect the practical web browser exploits, Trojan horses, viruses or new malicious techniques 

being used by a 0-day exploit. 

5.1.3 Clustering model based on FSM 

The previous chapter discussed our web-based behaviour model, the finite state machine, and 

how it represents the behaviour of web-based attacks in a complete and easy way. The 

clustering model used our finite state machine model to understand web-based attacks and 

then group similar attacks based on the behaviours. The state machine model represents web-

based attacks as a sequence of changes that make it easy for data mining algorithms, such as 

FP-Growth, to read the states and group similar states. In the case of our clustering model, 

which is based on the FP-Growth algorithm, it groups similar web attacks based on the 

common states from each state machine sequence. Therefore, the use of the state machine 

model assists the clustering model in processing and clustering the behaviour of malicious 

web pages quicker and easier, while also making it readable for a human. Furthermore, the 

clustering model creates sub-groups that show similar states within each main behaviour 

group. The next sections discuss the use of the FP-Growth clustering algorithm and how they 

create the behaviour groups based on the state machine model that represents malicious web 

page behaviour. 
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5.2 Clustering model 

To summarise the benefits of the clustering model, HAC provides a good clustering algorithm 

that can group the state machine signatures into behaviour groups; However, some limitations 

exist within the HAC clustering approach, such as: (a) each state machine has to be of the 

same length, requiring insertion of null states, (b) the web-based behaviour groups produced 

by the clustering algorithm do not provide a label for each group. The label for each group 

shows how the state machine signatures are grouped (the common state sequences are 

repeated within each group’s files). For example, Table 5-2 below shows three state machine 

signatures and the group’s label, which is the underlining statement: S1W1=2, S1W1=3, 

S2N1=2. 

S1W1=2,S1W1=3,S2N1=2,S362=4,S2N1=2 

S1W1=2,S1W1=3,S2N1=2,S2N1=3,S2N1=2,S3R2=4 

S1W1=2,S1W1=3,S2N1=2,S3R2=4,SSN2=5 

Table 5-2 shows three state machine signatures and their label underlined. 

Therefore, each group has an identifier that represents a behaviour group, and can 

subsequently be compared with other groups; (c) to add additional behaviour groups, it is 

necessary to re-cluster the entire data set, which is a time consuming process.  

 

5.2.1 FP-growth clustering model 

The frequent pattern growth (FP-growth) based clustering approach uses an FP-tree (extended 

tree) to store the database and groups data according to the frequency of occurrence of a 

specific behaviour. By using the FP-growth algorithm we can detect more similar malicious 

web pages and group them based on their common behaviour states. Through this we can 

detect similar malware behaviour, even in different parts of the state machine signature. FP-

growth has the ability to mark each behaviour group with a label and can deal with arbitrary 

length state sequences. The label represents frequent states within each group. By using this 

label, we can identify similarities between groups and then use the label to match with new 

data. Each sub-group will have a label to identify the common states within each group which 

indicates why each sub-group state machine is similar. Using this clustering approach we can 

add new behaviour groups to the already discovered groups. The benefit of this is that we will 
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only need to re-cluster and match the new and old group labels, and not have to re-cluster the 

entire data set. The next section will describe the clustering algorithm in detail, as well as 

discussing the benefits of using the FP-growth clustering algorithm as the basis for our 

clustering model.   

 

5.2.2 FP-growth clustering methodology 

FP-growth has the ability to mark each behaviour group with a label and can deal with a state 

sequence of arbitrary length. The label represents frequent states within each group. Using this 

label we can identify similarities between groups and then use the label to match new data. 

Each sub-group has a label to identify the common states within each group, which indicates 

how each sub-group is similar. Using this clustering approach we can add new behaviour 

groups to the already discovered groups. The benefit of this is that we will only need to re-

cluster and match the new and old group labels, and will not have to re-cluster the entire data 

set in case we have similarities in the labels. The FP-growth based clustering approach is 

shown in Fig. 5-1. 

 

Fig. 5-1: FP-growth clustering 
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The FP-growth clustering algorithm receives the web-based malware behaviour from the 

Capture-HPC as log files and encodes them into a state machine representation, as mentioned 

in Chapter 4. Then the model loads the state machine signatures and runs FP-growth 

algorithms to find the main behaviour group. The process starts by creating a list that will have 

all the state machine signatures and then attempts to find the most commonly occurring 

behaviours across the various state machine representations. The longest common represents 

frequent states among the state machine signatures which identifies the similarities between 

them. It then eliminates those state machine signatures that have the longest common state 

sequences from the list and groups them into a main behaviour group. Furthermore, the 

algorithm will re-cluster the other state machine signatures from the list until it groups all of 

them. The second stage of the model is responsible for creating sub-groups in each main 

behaviour group. This process is the same as the first FP-growth clustering process, but it will 

create sub-groups within each main behaviour group and then move to the next one. The 

benefit of creating the sub-groups is to find more similarities within each main behaviour 

group’s files. The next sections describe the FP-growth algorithm and groups in detail. 

 

5.2.3 FP-growth clustering algorithm 

The algorithm benefit is to find the similar state machine signatures. We work with a set of 

state machine signatures N={N1,N2,N3, …, Nn}, where each Ni identifies a set of states, such 

as Ni={S1,S2,S3,…, Sm}. It is important to note that each state           represents a 

malicious behaviour in the victim system. The set N can work a number of states where each 

state represents a behaviour that might either be similar to or differ from other containing 

states. The clustering algorithm pseudo-code is shown in Listing 5-1. 
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1. Load(Ni) 

2.  Build(A,Ni) 

3.  While A != 0 

4.    Begin       

5.     For i=0 to n  

6.         Begin 

7.        For j=1 to m  

8.          begin 

9.            L=max(Ni,Nj)     

10.      End for 

11.    End For 

12.       Group(Np,L)  

13.       Eliminate(Np) 

14. End While 

Listing 5-1: the clustering algorithm pseudo-code. 

 

The algorithm loads all n states Ni and builds an array A that includes all n states Ni to create 

groups of similar states. Furthermore, the algorithm finds the longest similar states S among 

the set of states Ni; i<n. A number of state machine signatures with the longest sequence L are 

identified by creating a behaviour group for all the Ni states with the longest similar states S; L 

identifies the longest similar states among Ni. In the last stage the algorithm eliminates L from 

the data set A by deleting those Ni states with the longest similar states from A. An example 

of applying the clustering algorithm is giving in the next section by grouping three of Trojan 

Apher [118] family. 

 

5.2.4 FP-growth clustering groups 

The clustering model outputs two behaviour group types: main and sub-groups. The main 

group contains similar state machine signatures that share the same sequence of states. This is 

helpful for grouping similar web-based attacks together, such as grouping attacks that 

download executable files and change specific registry values or attacking the web browser 

using a specific exploit. However, within each main group some of the web-based behaviour 

attacks might share other similarities. The sub-group is responsible for further refining each 

group. This stage can provide more information within each group, such as finding additional 

similarities in each behaviour group, or showing that these sub-groups can help better 
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characterise each piece of recorded behaviour. An example of the main and sub-group is a 

Trojan called “Trojan.Apher” [118]; it downloads files via the Internet without the user’s 

knowledge or consent. The Trojan’s size may vary in the family, but once executed it 

downloads other files from the Internet and then deletes itself. Table 5-3 shows the scan 

results of the three Trojans from VirusTotal [131]. For example, Trojan-

Downloader.Win32.Apher.ad has been detected by 39 anti-virus products out of 43. 

Virus name MD5 Hash No of detections 

Trojan-Downloader.Win32.Apher.ad e7d4ab448872b52b3d52d29c4ff5949d 39/ 43 (90.7%) 

Trojan-Downloader.Win32.Apher.am 812a95a8fa42d7f5fb086f7d35bf517b 36/ 43 (83.7%) 

Trojan-Downloader.Win32.Apher.ab ce7e908614c5bf549a2c3094ee35c459 33/ 43 (76.7%) 

Table 5-3: Scan result of the Trojan.Apher family. 

We scan these three Trojans by using Capture-HPC to monitor and log their behaviours. Then 

we encode their log files as state machine signatures, as presented in Table 5-4. It shows that 

all the three Trojans start with the same 18 states, which are responsible for changing the 

browser proxy settings to download other files from a pre-defined malicious server. 

Name State machine signature 

Apher.ad 

S2N1=2,S2N2=3,S3S2=4, S3S2=5, S3S2=6, S3S2=7, S3S2=8, S3S2=9, S3S2=10, 

S3S2=11, S3S2=12, S3S2=13, S3S2=14,S3R2=15, S3R2=16, 

S3R2=17,S3S2=18,S3S2=19 

Apher.am 

S2N1=2,S2N2=3,S3S2=4, S3S2=5, S3S2=6, S3S2=7, S3S2=8, S3S2=9, S3S2=10, 

S3S2=11, S3S2=12, S3S2=13, S3S2=14,S3R2=15, S3R2=16, 

S3R2=17,S3S2=18,S3S2=19, S3S2=20, S3S2=21, S3S2=22,S4T2=23 

.Apher.ab 

S2N1=2,S2N2=3,S3S2=4, S3S2=5, S3S2=6, S3S2=7, S3S2=8, S3S2=9, S3S2=10, 

S3S2=11, S3S2=12, S3S2=13, S3S2=14,S3R2=15, S3R2=16, 

S3R2=17,S3S2=18,S3S2=19, S3S2=20, S3S2=21, S3S2=22, 

S4T2=23,S1W2=24,S4T2=25, S2N2=24,S2K1=2 

Table 5-4: three Trojans state machine signatures. 

We then use our clustering model to group the three Trojans based on the methodology 

described earlier in Fig 5-1. The clustering algorithm finds one main behaviour group that has 

all three Trojans, because all of them share the first 18 states, which are the longest similar 

state sequences found. The algorithm also finds one sub-group, which contains the 

Trojan.Apher.am and Trojan.Apher.ab signatures and their longest similar states are in red in 

Table 5-3. Fig. 5-3 shows the main and sub-behaviour groups of the Trojan.Apher family. 
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Fig 5-2: main and sub-behaviour group of the Trojan.Apher family. 

 

5.2.5 FP-growth evaluation 

To validate our clustering model that is based on the FP-Growth algorithm, we conducted two 

experiments that both used the same data set of 110 state machine signatures collected from 

public malware blacklists [116] [117]. The experiment’s methodology is to pass the 110 state 

machine signatures to the FP-Growth and HAC clustering algorithms so that they can be 

grouped and group behaviour can be outputted. As mentioned in Chapter 2, most of the 

current malware clustering approaches use HAC, so we also chose HAC clustering approach 

to validate FP-Growth.  

The first step is to group the experiment malicious Web pages by using FP-Growth, as 

mentioned earlier. FP-Growth can cluster based on the common sequence of states. The 

experiment uses the same methodology as described previously in Fig. 5-1, in which it starts 

to bypass all experiment state machine signatures to FP-Growth and then output the main 

behaviour. Further, in each main behaviour group, the algorithm attempts to find sub-groups. 

The result of the first experiment that used FP-Growth is shown in Table 5-5. The findings 

show that FP-Growth found 27 behaviour groups in total, with the largest group having 34 

state machine signatures. 

Group Group label Number of State machines 

1 S1W1=5, S1W1=19,S2N1=19 34 

2 S1W1=70,S2N1=71 15 

3 S1W1=31,S2N1=31,S3S31=32 8 

4 S1W1=8,S2N1=8 9 
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5 S1W1=115,S2N1=115, 

S3S115=9, S2N115=61, S1W115=116, 

5 

6 S1W1=51,S2N1=51 4 

7 S1W1=3,S2N1=3 4 

8 S1W1=64,S2N1=64, 

S3S64=40,S3S64=41,S3S64=42,S3S64=43 

3 

9 S1W1=54, S1W56=57, S1W56=58 3 

10 S1W1=104,S2N1=104 3 

11 S1W1=45,S2N1=45,S3S47=49, S3S47=50 2 

12 S2N1=71 5 

13-27 1 in each group 1 

Table 5-5: the behaviour groups output from FP-Growth clustering. 

The second experiment grouped the same data set from the first experiment by using the HAC 

clustering algorithm. The hierarchical agglomerative clustering (HAC) algorithm can group 

clusters (each state machine signature is one cluster) into one major cluster by combining them 

together in different stages. The technique used in the hierarchical agglomerative algorithm to 

group similar clusters is called ‘distance measures’, which has three different types: 

 Single linkage clustering: the minimum distance between items in each cluster 

 Complete linkage clustering: the maximum distance between items in each cluster 

 Average linkage clustering: the mean distance between items in each cluster 

Using the above three distance measures, the hierarchical agglomerative algorithm can 

calculate the distance between clusters in order to merge similar clusters together and to build 

a truss of similarity. The purpose is to help identify similar state machine signatures and 

combine them to build an automated analysis engine for state machine signatures, as well as to 

build families of similar Web-based malware (behaviour families). 

The experiment starts by passing the 110 state machine signatures to HAC. We used the 

average distance measure as it shows from our tests that it is the best distance measure in 

grouping the files into the behaviour group. Table 5-6 show the experiment results. HAC 

found 77 behaviour groups, with the largest group having 8 state machine signatures. 
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Group  Log files Group  Log files Group Log files 

1 3 4 8 7 6 

2 3 5 6 8 4 

3 7 6 2 9 3 

10 2 11-77 1 in each 

group 

 

Table 5-6: The experiment behaviour groups by HAC. 

We tested both FP-Growth and HAC clustering algorithms and applied them to the 

experimental data discussed here. The experiment shows that the HAC algorithm identified 77 

groups. The FP-Growth algorithm had 27 behaviour groups, with the largest group having 34 

state machines. Hence, FP-Growth found additional similarities between state machines. Table 

5-7 compares the results of the HAC and FP-Growth clustering algorithms. 

 HAC FP-growth 

Number of behaviour groups 77 27 

Highest behaviour group items number 8 34 

Sub group option no Yes 

Highest sub group items number none 11 

show the frequent state repeated no Yes 

Table 5-7: a comparison between FP-Growth and HAC. 

5.3 Summary and Discussion 

The previous chapter introduced the state machine model, which is a way to encode and model 

the behaviour of web-based attacks in an ordered sequence of states. In this chapter, we 

focused on the second part of the web-based malware behaviour, which is the clustering 

model. This model was introduced to a group of similar web-based attacks based on their 

behaviour. These behaviour groups showed that similar behaviour has been used in different 

or identical, web-based attacks. This will help security companies and researchers study the 

different tricks used by the same exploit, and develop a security patch or detection mechanism 
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against this type of attack by identifying the common behaviour among malicious web pages 

in the same behaviour group. 

This chapter began with an explanation of the benefits of using the clustering model to group 

similar behaviour of web-based attacks and discussed many of the advantages of applying it. 

One of the advantages is that we need a way to group similar web-based attacks into one 

group, which makes it easy for security researchers to investigate and study this particular type 

of attack, and this knowledge can be applied to anti-malware software in order to build static 

or dynamic signature for detecting this type of attack.  

In Chapter 2, and at the beginning of this chapter, we mentioned the other approaches used to 

group attacks in general and we have selected the most familiar approach, HAC, which has 

been used widely to cluster attacks and exploit security vulnerabilities. However, some 

limitations exist within the HAC clustering approach, such as: (a) each state machine has to be 

of the same length, requiring the insertion of null states; (b) the web-based behaviour groups 

produced by the clustering algorithm do not provide a label for each group; (c) to add 

additional behaviour groups, it is necessary to re-cluster the entire data set, which is a time-

consuming process. Therefore, we use the FP-Growth clustering approach to overcome the 

previous limitations. The use of FP-Growth has been discussed in Section 5.2.2 and showed 

that we were able to acquire the behaviour groups, as well as sub-groups, from the state 

machine signatures. 

In the next chapter we are going to discuss how we can extend the use of clustering and state 

machine models by using a prediction model.  It works with the clustering and state machine 

models to build a complete web-based behaviour system. The prediction model enables us to 

discover the potential future behaviour for a given state machine signature, and using the 

classification and clustering models, we will be able to decide whether to allow an interaction 

or to block it and add it to the malware database 
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Chapter 6 

 

Prediction model 

The last two chapters discussed the state machine and clustering models. The prediction 

model aims to determine the future behavior for a given state machine signature, based on the 

state machine modeling of previously scanned web-based malware.  

A summary of malware detection approaches as presented in Chapter 2 is given next in order 

to present what are the other approaches of detecting malware compared with our model. The 

dynamic malware decoction types are anomaly, specification and signature. The dynamic 

anomaly detection starts in the training phase in order to learn the behaviour of the program 

and to build normal behaviour. It can then monitor the program during its execution and 

compare it to normal behaviour; by doing this it can detect abnormal behaviour, which might 

be malicious behaviour or activities. Hofmeyr [68] used an approach that detects abnormal 

behaviour in privileged processes based on the system calls. Wang and Stolfo [69] created 

PAYL (the payload-based anomaly detector), which involves building normal behaviour by 

scanning the application payload of the network traffic. They used the Mahalanobis distance 

[69] to measure the similarity between the incoming data (unknown) from the application 

during detection against the pre-defined profiles and then flagging an alert if it exceeds the 

threshold. 

The dynamic specification detects malicious behaviour by determining the similarity during 

execution against a pre-defined set. It differs from the previous type as it has a pre-defined set 

of rules where it detects the malicious behaviour if it matches these rules. Masri and Podgurki 
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[71] developed Dynamic Information Flow Analysis (DIFA) to detect intrusions and attacks 

against Java applications by specifying flow signatures for known attacks and blocking the 

intrusions when they matched. Krida et al. [74] presented Noxes, which is a Windows-based 

service that acts as a web proxy and receives all the HTTP connections and then passes or 

blocks the connections based on the policy of the tool. The policy is a specification of pre-

defined XSS attack behaviours. Finally, dynamic signatures rely on using real signatures of 

malicious applications in order to detect them. Signature-based detection is one of the oldest 

methods used to detect malware, and is used by the majority of security products. An 

example of this type was presented by Ilgun et al. [75] and is called the State Transition 

Analysis Tool (STAT), which is able to detect malicious behaviour by comparing the 

monitoring behaviour to a pre-defined STAT (known attacks in the format of a STAT). 

Radosavac et al. [21] proposed modelling the buffer overflow attacks in an FSM and then 

using HMM to detect such attacks. Their approach is only able to detect buffer overflows that 

have similar behaviours between attacks. On the other hand, Lee et al. [77] proposed an 

intrusion detection system based on multi-stage determination. Their method states that, after 

each stage of the intrusion signal, the HMM algorithm attempts to identify the current 

malicious sequence out of the pre-defined ones in its database.  

Xiuqing et al. [78] proposed the use of the Fast Adaptive Clustering Algorithm (FACA) to 

update the HMM dynamically with new attacks in the case of misuse detection and then 

update the misuse detection engine with normal and abnormal signals. After clustering using 

FACA, the Davies-Bouldin (DB) index is used to measure the distance between the clusters 

and then merge them if they are small and similar, which represents normal behaviour, or 

detect abnormal behaviour if the distance is larger. The system uses the clustering output to 

build the HMM and uses it with the anomaly detection system to detect abnormal behaviour. 

Tsai and Hung [19] presented an intrusion detection system based on the multi-dimensional 

HMM, and had three models: the monitor, track and analysis models. They used a Honeynet 

deployment for their system instead of the multi-agent sensors used in the previous approach. 

They stated that the Honeynet adds the benefits of tracking and recording the exact behaviour 

and accessing trails of intrusions. They then used the ant colony algorithm with a deposit of 

different pheromones to analyse the intrusion traversal. In their deployment they collected all 

the data from security monitoring tools, such as Firewall, antivirus and SQL queries, and then 

passed them to an analysis model. They used the multi-dimensional HMM and used cross-
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correlation and autocorrelation measurement to integrate and advance the analysis. Finally, as 

in the previous approach, they used a fuzzy inference rule to identify and recognise 

intrusions. 

In our work we are using the HMM to predict the next activities of a given malicious 

behaviour sequence. Lee et al. [77] proposed using multistage detection and running HMM in 

every stage of attack to determine similar attack sequences. In our model of HMM, we 

employ an algorithm to predict the future behaviour of a given state machine sequence based 

on the previously known information from the state machine sequences in a database. 

Therefore, it is able to predict future activities of a given web-based malware attack sequence 

in each stage of the attack. Moreover, when the malicious web page is new (0-day exploit) 

then we can predict potential future behaviour based on similar state machine sequences in 

the database.  

Furthermore, our HMM prediction model uses an FP-growth clustering algorithm to help 

detect web-based malware. The HMM will pass the unknown state machine signature to the 

clustering model to find more relationships between the given web-based state machine and 

the others in the database. It can therefore group it into a similar main or sub-behaviour 

group, or create a new behaviour group if it is a new attack sequence; this will improve 

detection in the future. 

6.1 Prediction model overview 

As we have discussed previously in section 2.3, there are different methods of using our 

prediction algorithm, HMM, in order to detect the attacks. Some of the approaches used 

HMM as a matching method between the attack behaviour against the HMM models of 

previous attacks in the database, whereas other approaches used HMM as a way of clustering 

approach to cluster similar attacks behaviour. In our work, we used it as a prediction and 

detection algorithm to detect web-based malware.  

Before describing our model in detail, it is important to summarise our web-based behaviour 

system which used different models to process malware behaviour before passing it to the 

prediction algorithm. Firstly, the state machine model, as presented in chapter 4, monitors the 

client Honeypot state while interacting with target malicious web pages and then generates a 

state machine signature which shows all the web-based malware behavior ordered by time. 
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The state machine signature has rich data about the relationships of the behaviour states. 

Furthermore, it then passed the state machine signatures FP-growth clustering which clusters 

them based on the common behaviour between the state machine signatures. Therefore, it 

builds the web-based behaviour groups and includes the similar state machine into one 

behavior group. Finally, the web-based behavior model monitors the state of the client 

Honeypots and generates state machine signature in real-time, and sends it to the prediction 

model in real-time in order to predict possible malicious future behaviour. 

The prediction model works by attempting to predict the next missing value of the given state 

machine based on entries in the database. In every stage of prediction, it will search for 

similar states between current malicious web page behaviour against the pre-scanned 

malicious behaviour and then calculate the highest possibilities for the next activity.  

6.1.1 Prediction model methodology  

The prediction algorithm will scan the current web page and then try to predict future 

behaviour to determine if it is malicious or benign.  The prediction algorithm uses its 

knowledge based on previously-seen web-based malware behaviour to understand how they 

operate and which types of malicious web pages are related to which behaviour group. The 

prediction model is able to operate in two different modes: 

A. Predict the next state: in this method, the prediction algorithm will try to predict the next 

state based on the most frequently seen next state. This will calculate all related state 

machine signatures and then select the highest probability for the next state. 

B. Predict the behaviour signature: the algorithm will predict the whole state machine – 

using successive use of approach (A) above.  

We have built a model that can be used with a client Honeypot to predict web-based malware 

behaviour. Fig. 6-1 provides an overview of the prediction model. 
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Fig 6-1: the prediction model overview 

The prediction model starts by encoding web-based behaviour into a state machine as 

described in chapter 4. The malware database contains a number of main and sub behaviour 

groups which have been scanned and grouped together previously. Each behaviour group 

contains state machines with similarities.  

The next stage is to select similar state machine signatures from our malware database 

according to the current interaction. Listing 6-2 shows how we select the similar state 

machine signatures from the malware database. Similar state machines are selected in 

accordance with the initial states of the input state machine. Therefore, the prediction 

algorithm uses the selected state machines to identify and predict the next state for the input 

state machine. The highest probability for the next state is calculated and selected as the 

predicted state. In Listing 6-1 we explain how the similar state machines are selected. In the 

first step, similar state machines with associated change operations are identified (source and 

destination of the change), while the second step finds similar state machines excluding 

change operations (only using the state of change i.e. file system or registry). 
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  {             }          {             }                  

1. First step:           {             }                  

{             }                

2. Second step:           {             }     
         

     
 {                }     

    
    

     

Listing 6-1: how we select the similar state machine signatures from the malware database 

An example of selecting the most likely next state is shown in Fig. 6-4 using the example of a 

web-based state machine for which the signature is “S1W1=2, S2N1=2”. The algorithm 

needs to predict the third state or activity the web-based malware might perform. In order to 

predict the next activity, similar state machine signatures are selected from the malware 

database, and then the highest probability for the next state of the similar state machine is 

calculated. Therefore, the predicted next state in our example is “S3S2=3” because both 

similar state machines have this as the next state, as shown in Fig. 6-2 below. 

 
Fig 6-2: an overview idea of the prediction algorithm. 

 

After selecting the next state machine, the algorithm is able to add the predicted next state to 

the state machine and then predict the next state, until the whole state machine signature has 

been predicted. Subsequently, it is passed to the clustering algorithm based on the FP-growth 

algorithm (as discussed in section 5.2 in chapter 5). After predicting the behaviour signature 

of the current malicious web page, the prediction model attempts to link it to pre-defined 

behaviour groups using our clustering model. The prediction model has two options: (a) find 

similar behaviour activities between the current malicious behaviour signatures and others in 

the same behaviour group; or (b) create a new behaviour group if no similarities are found. 
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The malware database contains the web-based malware behaviour group by using the FP-

growth clustering model. The output of the behaviour families need to be stored in an 

organised database. The database contains all the state machine signatures, path table, the 

groups’ labels and the behaviour groups obtained from the clustering algorithm. The path 

table contains the absolute path of the source and destination of malware changes in the 

victim’s system. When a file system changes, it saves the MD5 of the files sent to the system. 

It is used by prediction and classification models to identify state machine signatures or 

predict future behaviour from similar state machine signatures. The database is updated 

regularly by FP-growth in case it adds a new state machine or creates a new behaviour group 

from new attack sequences. 

6.1.2 Prediction algorithm 

In this algorithm we work with a set of malicious behaviour activities encoded within various 

state machines. These behaviour activities are associated with a malware M. Using a 

mechanism of probabilities we try to identify the next possible behaviour activity that a 

malware M can perform. We work with a set of state machines N={N1,N2,N3, …, Nn}, 

where each Ni identifies a set of states such as Ni={S1,S2,S3,…, Sm}. It is important to note 

that each state  represents malicious behaviour in the victim system. The 

prediction algorithm pseudo-code is shown in Listing 6-2. 

1.For i=o to n 

2. Begin 

3.       capture(b,M) 

4. encode(b,S,N) 

5. state_prediction(S,L) 

6. For S=0 To L 

7. Begin 

8.  retrieve(Si) 

9.  predict(Si,P) 

10.  add(P) 

11. End For 

12. End For 

Listing 6-2: the prediction model pseudo-code. 
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The algorithm starts capturing a number of behaviour activities from malware M by 

generating the state machine N while monitoring the malware in real-time. The set 

N={N1,N2,N3, …, Nn} contains various state machines where each Ni identifies a set of 

states such as Ni={S1,S2,S3,…, Sm}. At the next step we convert all the behaviours from the 

malware to the state machine version S and set the number of state prediction L. By looping 

through the states we retrieve similar state machine sequences and obtain similar state 

machines from the database that share similar states and calculate the highest possibility of 

the next state P. Furthermore, the predicted state P is added to the state machine N.  

 

We make use of the Hidden Markov Model (HMM) to fit the data within a certain tolerance 

threshold and the Baum-Welch learning algorithm for discrete density. The HMM uses the 

initially defined sequences as the input variable and returns a number of symbols. We work 

with a transitions matrix for this model which contains the number of transition probabilities 

as value. Furthermore, we calculate the most likely sequence of hidden states that produces 

the given observation sequence in relation with a sequence of observations and the optimized 

state probability. More specifically, given the HMM M = (A, B, pi) and the observation 

sequence   {             }, the most likely sequence of hidden states Si that produced 

this observation sequence O can be calculated. In the final stage the algorithm predicts the 

next states that will occur after a given observation sequence. 

The Baum-Welch learning algorithm is used to compute the discrete density Hidden Markov 

Models. The Baum-Welch learning algorithm computes the forward and backward 

probability matrices for a given observation referenced by its index in the input training data. 

The index identifies the index of the observation in the input training data and the output 

resides in a matrix containing the computed backward probabilities. The Baum-Welch 

learning algorithm works with an array of observation sequences to train the model and 

returns the average log-likelihood for an observation after the model has been trained. More 

specifically, given some training observation sequences   {             } and the 

general structure of HMM (numbers of hidden and visible states), it determines the HMM 

parameters M = (A, B, pi) that best fits the training data. In the final stage the observations in 

the training data and the probability matrix are used to update the probability distributions of 

the next states. Listing 6-3 shows how we calculate the possibilities based on forward and 

backward algorithm. 
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     {              }                    {             }         

     . 

1. Forward/Backward algorithm:            

2. Forward:                 

3. Backward:                     

Listing 6-3: the forward and backward probability algorithm. 

6.1.3 Implementation 

The prediction algorithm was developed using the .NET programming language and used the 

Accord.NET Framework [119]; Accord.NET is a C# framework that includes many 

algorithms, such as the Bayesian regularisation for Neural Network training, K-Means and 

Hidden Markov Models. Fig 6-3 shows the prediction model interface. 

 

Fig. 6-3: the prediction model interface. 

The interface provides a ranking for each state machine signature based on its impact on the 

end-user’s system. The ranking system has three different categories:  

1. Green: when the web page does not attack or harm the end-user’s system and only 

performs benign actions such as inserting cookies.  
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2. Yellow: when the web page tries to attack the end-user’s system by installing files on 

the system but does not execute them. In this case, the ranking system will give it a 

yellow colour as it does not attack the end-user’s system  immediately, but might do if 

it executes certain malicious behaviour (e.g. changes such as changing  the user’s files 

or edits the registry).  

3. Red: shows that the web page exploits the end-user’s system by installing and 

executing malware, deleting files, establishing network activities or editing the 

registry by adding or deleting values without the user’s permission. 

As shown in Fig 6-6, the application is invoked with a known first state: “S1W1=2”. The 

application then finds a similar state machine signature from its malware database. It passes 

the input state (S1W1=2) along with similar state machines, of which there are three in our 

example to the prediction algorithm. The prediction algorithm then calculates the highest 

probability for the next state. From Fig. 6-4 there are two possibilities ordered according to 

their likelihood, starting with (S1W1=3) and followed by the most likely next state 

(S1W1=6). 

 

Fig 6-4: the user interface showing prediction outcomes 



Page 92 of 147 

 

6.2 Classification 

A classification model is used to match a given behaviour to a group formed using the 

clustering approach discussed previously. The classification model can be used with an initial 

set of states as interaction with a web server is progressing, or by passing a whole state 

machine signature to find a similar behaviour group after predicting it, in case it cannot find 

the behaviour group; then it will pass it to the FP-growth clustering algorithm, which is able 

to find a similar group or create a new one in case it has new attack sequence.   

 

Fig. 6-5: classification model. 

The classification model, as shown in Fig. 6-5, is the one we use to apply to the state machine 

groups. First, the model will receive the state machine groups from the clustering algorithm, 

based on the FP-growth clustering algorithm. Then a state machine is passed to the 

classification model from the prediction model, which is used to identify the state machine 

behaviour group. The model can operate in two modes: 

1. State machine signature: to identify the malware group for the malicious web page after 

scanning is completed; that is, after the entire interaction with an external web page has 

been completed. 
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2. During monitoring in order to identify the malware group while scanning the malicious 

web page: that is, while the interaction is in progress. The model will add one state at a 

time to the state machine and then try to identify the group. 

If the classification model cannot identify a relevant group, the state machine is forwarded to 

the clustering algorithm, although it takes more time to find any similarities between it and 

our state machine group’s database. If it cannot find any similarities then it will be identified 

as a new group.  

6.3 Summary and Discussion 

We have completed our web-based behaviour system which we believe is one of the first of 

its type that is able to analyse and predict drive-by download attacks based on malware 

behaviour. The system is able to encode web-based malware behaviour from the client 

Honeypot, by the state machine model and then detects any changes by dynamic anomaly 

detection as it profiles all benign behaviour of the operating system and applications, and 

then detects any malicious behaviour based on the pre-scanned web based malware 

behaviour. When it detects malicious behaviour from the target web page, it will then 

generate the state machine corresponding to the actual change on the client Honeypot system. 

Therefore, the system will use the prediction model, HMM, to predict the possible malicious 

future behaviour from the initial malicious states in multi-stage processes, therefore, the 

model will predict the possible next state while monitoring  malicious web pages in real-time. 

Moreover, when it predicts future behaviour successfully, by matching the predicted state 

with the monitored state from the malicious web page in multi-stage processes, then it will 

attempt to predict the state machine signature and pass it to the clustering model. Our 

clustering model is based on FP-growth which is able to find the common states between the 

given state machine signature against the previously discovered one in the database. When 

the state machine finds the behaviour group of the given malicious web page, it will include it 

within its behaviour group and perform the sub-group clustering phase which aims to find 

more similarities between state machine signatures of the same group. On the other hand, 

when the clustering model fails to find a similar behaviour group for the given malicious web 

page behaviour, then it assumes it is unknown behaviour and creates a new behaviour group 

for it. 
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The next chapter presents the evaluation to test our web-based behaviour system to detect, 

analyse and predict real web-based malware that causes risk to users just by visiting those 

web pages. Furthermore, we demonstrate a hybrid system that can combine dynamic and 

static malware analysis methods together. We propose a system that uses our web-based 

behaviour system which is able to detect malware dynamically with a low interaction client 

Honeypot tool called Honeyware, which is able to detect malicious web pages by using static 

signature-based detection. 
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Chapter 7 

 

Evaluation and Usage 

This chapter evaluates the proposed web-based behaviour system which contains three main 

parts: state machine encoding, clustering and prediction models. The system has two main 

methods: the first method scans the malicious web pages offline and models their behaviour 

using a state machine as described in chapter 4. These state machine signatures are then fed 

into the clustering model which is able to build behaviour groups which contain similar web-

based attack behaviour. The second method is the online mode which monitors the system 

state while interacting with a web page in real time, and detects any present and future 

malicious behaviour using the malware database which contains the previously-scanned web-

based attacks organized into behaviour groups. 

This chapter has two main sections. The first section discusses the use of the low-interaction 

client Honeypot by creating a tool called Honeyware. The main reason for developing this 

tool is to improve the accuracy of malicious Web page detection as our scanning engine, 

Capture-HPC, cannot detect all types of malware. Therefore, we used Honeyware as a 

signature-based detection scheme to find malicious codes within the target server. The high-

interaction client Honeypot which we used can detect attacks, such as drive-by download 

attacks. However, it cannot detect some malicious Web pages, such as when there is a need to 

interact with a malicious Web page in order to trigger the malicious behaviour or to 

download an executable file in order to affect the end-user system. Therefore, we propose the 

use of both low- and high-interaction client Honeypots to detect Web-based attacks. The 

second section shows the experiments used to evaluate Web-based behaviour system by 
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scanning and monitoring real Web-based attacks. Finally, we demonstrate how the proposed 

hybrid system works by combining both low- and high-interaction client honeypots to 

improve the accuracy of detecting web-based attacks by signature- and behaviour-based 

detection. 

7.1 An overview of Honeyware 

Honeyware is a low interaction client honeypot; the aim is to combine it with our web-based 

behaviour model in order to build a hybrid system that is able to detect malware based on its 

behaviour and to use anti-malware products to detect the malicious code statically. It 

combines the benefit of web-based tools, which run on local or remote servers, with the 

ability to access the tool from a web browser, which is important for many different devices, 

such as PCs or mobiles. Another important function of this tool is to give the user the ability 

to test the target server with many of the available web browsers and to scan the target with 

five different scan engines. Honeyware is written in PHP and is an open source tool. It was 

developed to solve some of the problems and challenges in low-interaction client Honeypots. 

Its features are: 

1. Web browsers: Honeyware has the ability to simulate different web browsers including 

Internet Explorer, Firefox, Opera, Chrome, Safari and Konqueror. 

2. The Scan engine: Honeyware has the ability to scan target files with different scan 

engines to determine whether the target has malicious code or not. Some scan engines are 

able to detect viruses and malware that other products cannot. The scan engines that 

Honeyware supports are: AVG 7, F-Prot 5.2.1.4252, Avast 1.3, ClamAV 0.95.2 and 

AntiVir 7.8. An example of the benefits of using different scan engines is the exploit 

CVE number CVE-2007-5601. This vulnerability is in RealPlayer software [121]. This 

vulnerability was scanned with five different scan engines but only AVG and Avast out of 

the five scan engines detected it. 

3. Crawling: Honeyware supports search engine crawling to obtain URLs to scan. 

Honeyware supports two main search engines: Yahoo! and MSN. 

4. Honeyware Client: Honeyware implements an important client tool that can interact with 

the target server to return the files downloaded to Honeyware and examine them. This 

feature is very important for solving geolocation-dependent problems. 
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7.1.1 The motivation for using Honeyware 

Client Honeypots visit and interact with suspect web sites in order to detect and collect 

information about malware to protect users from malicious websites or to allow security 

professionals to investigate malicious content. We present the idea of using web-based 

technology and integrating it with a client Honeypot by building a low interaction client 

Honeypot tool called Honeyware. Honeyware is able to detect known malicious web pages 

and it is able to detect more known attacks than the high interaction client Honeypot as 

shown in the experiment section 7.3. It checks all the HTML files returned and can detect the 

presence of malicious code or malware which high interaction systems cannot, because such 

attacks require interaction with the users, such as downloading a file or clicking on a web 

page. In a hybrid system, the idea is to pass all URLs to a high interaction client Honeypot, 

which is the basis of our web based behaviour system, then pass suspicious URLs to 

Honeyware to validate the results and to provide another layer of analysis. In theory, this 

technique will be quite slow, as it needs it download the Web page files first and then scan 

them by using a number of anti-virus products. However, it will detect more malicious Web 

pages at a cost of the detection speed. 

7.1.2 Overcoming client Honeypot challenges 

Honeyware was built to solve some of the challenges inherent in a low-interaction client 

Honeypot, as discussed in section 2.4.6. Attackers take advantage of these problems to 

prevent their detection by client Honeypot tools and so deliver malicious binaries to a wide 

range of people. There are already some tools available for low-interaction client Honeypots, 

but it is hoped that Honeyware will improve upon these. 

The first challenge is the use of IP tracking to delay malicious code according to the number 

of website visits. There are two possible ways to solve this. 

1. Visit the website multiple times to give the malicious web page an appearance of 

usual human visitor behaviour. This way, the client Honeypot will need to download 

the target files and delete them. This method is not reliable as it requires more time to 

perform and causes more traffic. 

2. Visit the target web page as a web spider, which connects to the target web page and 

makes an HTTP request to the target but does not save the target response files to the 
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Honeypot machine. This would be much faster than the first method and it could also 

send multiple web spider requests simultaneously. 

However, with both methods the malicious web page will detect the multiple requests to the 

web page and could block the Honeypot or behave as if it were benign. One way to solve this 

is to use a client with a different IP address, to make multiple requests and then to use the 

Honeyware tool to scan the target machine again. In this scenario, Honeyware would be able 

to compare both results and check if the web page used any techniques to mask its malicious 

behaviour. This scan would take some time to complete as it would need to request the web 

page twice, once through Honeyware and once through the client. The client would need to 

request the web page multiple times using a Wget tool in spider mode, using the web spider 

method of interaction with the target and not saving any response to the local machine. Fig 

7-1 shows the IP tracking scenario using Honeyware. 

 

Fig 7-1: IP tracking scenario using Honeyware. 

The second challenge is the use by attackers of geolocation to target visitors from certain 

countries. The Swiss security blog [122] conducted an experiment using a Honeypot to find 

sites that collected FTP credentials from different victims by attacking them first from a 

malicious website and then exploiting vulnerability on the victim’s PC to capture the FTP 

credentials and send them to a control server. The results showed the top country attacked 

was the USA. The Honeyware operator could therefore install a client in the USA, even if the 

main Honeyware server is elsewhere. 
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Using this technique, Honeyware can successfully detect websites that use geolocation-

dependent features provided by tools such as MPack [123]. It does this by placing 

Honeyware clients in locations that appear to be of high value to the attackers and then 

linking them to the Honeyware tool to perform different scans from different locations, 

comparing the results to check if there are any changes and then detecting whether a 

malicious web page used a geolocation-dependent feature. 

7.1.3 Honeyware architecture 

Honeyware is able to scan any target server with a valid URL. The user can choose the web 

browser that Honeyware will simulate by using user agent strings as described in Table 7-1. 

The benefit of this is that some attackers use web-based tools such as MPack [123] to attack 

only visitors using a certain browser, or even a certain version of a browser. For example, 

Internet Explorer version 6 suffers from a remote code extension vulnerability (CVE-2006-

5579 and MS06-072) [124], [125]. The attacker can therefore check the visitor’s web browser 

version and then only infect them if they use the same vulnerable web browser version. 

Honeyware is able to scan any target server with a valid URL by file or by crawling. The file 

feature lets the user take advantage of blacklists produced by security or non-profit 

organisations such as www.stopbadware.org, or the user can make a file with valid URLs on 

each line and then choose from it. Honeyware will upload the blacklist file (.txt) to a 

temporary folder and then extract all the URLs to check whether they are valid or not. If the 

URLs are valid, it will scan each URL and, after interacting and scanning, it will continue to 

the second URL until interactions with all URLs in the file have been made. After choosing 

the target server, the user will be able to choose the web browser that Honeyware will 

simulate and then interact with the target server as the specific web browser. The benefit of 

this is that some web-based Malware tools, such as MPack, give the attacker the ability to 

target visitors who use Internet Explorer or Firefox, or they may choose to exploit a version 

of Internet Explorer, such as version 6 as discussed in Microsoft Security Bulletin MS06-072. 

The attacker can exploit this to check the visitor’s web browser version and then only infect 

them if they use this one. Honeyware can simulate the web browser by using a specific user 

agent string for each web browser supported. The user agent is a string sent first to the target 

server in order to visit it. The user agent includes important information such as the web 

browser name, version and name of the host operating system. Honeyware supports most of 
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the available web browsers that attackers might try to infect, with additional web browser 

products also available to give the user the ability to test various targets. Honeyware supports 

six popular web browsers, along with some of the versions of popular web browsers that are 

targeted by attackers for known vulnerabilities. Table 7-1 shows the web browsers supported 

by Honeyware along with their user agent strings.  

 The browser The user agent 

 Internet explorer 5 Mozilla/4.0 (compatible; MSIE 5.0; Windows NT 5.1; .NET CLR 

1.1.4322) 

 Internet explorer 6 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 

1.1.4322) 

 Internet explorer 7 
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1) 

 Internet explorer 8 
Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0) 

 Firefox 2 Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.8.1.6) 

Gecko/20070725 Firefox/2.0.0.6 

 Firefox 3 Mozilla/5.0 (Windows; U; Windows NT 6.0; en-GB; rv:1.9.0.6) 

Gecko/2009011913 Firefox/3.0.6 

 
Safari Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) 

AppleWebKit/528.16 (KHTML, like Gecko) Version/4.0 Safari/528.16 

 Google Chrome 
Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) 

AppleWebKit/525.19 (KHTML, like Gecko) Chrome/1.0.154.48 

Safari/525.19 

 
Opera 

Opera/9.00 (Windows NT 5.1; U; en) 

 
Konqueror Mozilla/5.0 (compatible; Konqueror/4.1; Linux) KHTML/4.1.2 (like 

Gecko) 

Table 7-1: Web browsers supported by Honeyware with each user agent string. 

For example, the user agent can be used to detect the browser and operating system of a 

visitor and then redirect that user to an exploit that works specifically against their system, 

which is a method used by MPack web-based exploit tool version 0.90 [123]. Fig 7-2 shows 

MPack’s method of attack using the browser’s product and version. It shows how MPack 

reads the visitor user agent and determines the browser product and version; based on this it 

will redirect the page to a corresponding exploit file that is able to compromise a known 

vulnerability in the visitor’s web browser. For example, Mpack exploits vulnerability (MS06-

044 [132]) if the visitor is using Internet Explorer version 5. 
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Fig 7-2: Mpack attack methods. 

7.1.4 Honeyware design 

Honeyware is designed and presented in a way that makes it easy to understand and uses 

some default options to make it easy for both professionals and end users to operate. 

Honeyware is also able to save all scan and crawling results into a database to create archives 

for easy data storage and provides the ability to delete the scan or crawling results. Fig 7-3 

shows the Honeyware architecture. It shows that Honeyware starts by receiving the URL of 

the target web page, which can by inserted as an individual web page or a list, or by crawling 

search engines using specified search terms. The next stage is to emulate a specific web 

browser by using each browser’s user agent while interacting with the external server. The 

user also has the ability to select the anti-virus products to use to scan the downloaded files. It 

also supports downloading all the website files or only to download custom file extensions, 

such as executable files (exe). The number of downloads is responsible for setting how many 

times the website is downloaded; previous versions are deleted in order to detect any changes 

in the version by the external server, which might affect the visitor in different ways 

according to the number of visits to ensure the visitor is human and not an automatic tool. 

When using the Honeyware client, a scan request will be sent which will perform the 

download and the files will be sent back to Honeyware; alternatively it will download the 

files using the same tool and then scan them using the selected anti-virus tools. Finally, it will 

present the result to the user, as shown in Fig 7-3. 
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Fig 7-3: Honeyware design. 

The main page, shown in Fig 7-5, has two main parts, the scan form and the archive. A user 

is able to scan by completing the form and changing the default settings, such as the web 

browser or scan engine. The scan archive displays the name of the scan and additional 

information, such as the web browsers and scan engines used. The user can delete any scan 

from the main page or from inside each scan. Fig 7-4 shows the scan results given by 

Honeyware. It shows the example of downloading a JavaScript file by emulating IE 5 from 

the local system. It is then scanned using the five supported anti-virus tools (AVG, F-Prot, 
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Avast, ClamAV and AntiVir). The result indicates that it has been detected as a malicious file 

by only one anti-virus tool (Avast). 

 

Fig 7-4: Honeyware results page. 
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Fig 7-5: The Honeyware main page. 
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7.1.5 The Honeyware client  

Honeyware provides a new and powerful feature for low-interaction client Honeypots. As 

previously discussed, the MPack tool allows visitors from specific countries to be targeted 

[85]. To overcome this, the Honeyware client, which can be set up in different locations, was 

created. The structure of the Honeyware client is simple; it is a single PHP file and an empty 

directory.  

A client will interact with Honeyware via the web server on port 80, and this port has to be 

open so a connection can be established between Honeyware and its clients. However, the 

targeted malicious server can easily scan the visitor’s port address. Because the normal end-

user does not need to open port 80, if the port is open then the malicious server may assume it 

to be a Honeypot and so interact safely with the visitor. There is an easy solution for this, 

which is implemented while installing the Honeyware client. It uses iptables [133], a free and 

open source tool that is shipped with most major Linux distributions. Iptables can be 

configured to only allow connections from the IP address of the Honeyware server and to 

reject any other attempts to connect, thus preventing the attacker scanning port 80 to see if 

the Honeyware client exists. Fig 7-6 shows the communication between Honeyware and its 

clients. 

 

Fig 7-6: Communication between Honeyware and its clients. 
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7.2 Web-based behaviour model evolution overview 

This section will evaluate our Web-based behaviour system, which has three main models: 

state machine and clustering and prediction models, which all work together to detect and 

predict malicious Web page behaviour. The evaluation covers the three models, first by 

collecting the malicious Web pages and then scanning them using Capture-HPC. Second, log 

files are used to encode them to state machine signatures before they are passed to the 

clustering model to build the malware database. Finally, based on HMM, we conducted a 

number of experiments to validate the prediction model to detect 10 malicious Web pages by 

predicting their potential malicious behaviour. 

7.2.1 Data collection 

The scenarios in our experiments are based on real web-based attacks available online; not on 

offline attacks tested in the lab. This provides a more reliable method to test our proposed 

system in the real world and to validate our assumptions. The data consists of a set of online 

malicious websites that are able to attack a user just by them visiting a web page; this is 

called a drive-by download attack [82]. The malicious URLs have been collected from public 

sources that provide lists of known malicious URLs and IP addresses. We used two main 

public sources to collect the malicious web page URLs and IP addresses [116] [117]. In 

addition, we have an updated list that includes all the malicious URLs that have been 

attacking Cardiff University systems. The list is provided by Mr Damian Southard, a security 

engineer at Cardiff University, who helped our research from the beginning by providing 

malicious URLs and the IP address of attacks on Cardiff University. We were able to select 

120 live malicious URLs that we could use to test our system. The problem, as mentioned in 

the previous section, is that it is hard to find live malicious web pages as they regularly 

change their URLs and IP addresses to hide from blacklists and security companies; 

therefore, we found that hundreds of the known malicious websites were down and not 

available to test.  

7.2.2 Experiment methodology 

The aim of this experiment is to evaluate our web-based behaviour system to model, group 

and predict malicious web pages in order to protect the end user against this type of attack. 

The experimental data will be based on the URLs identified in the previous section and then 
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separated into two parts: 110 URLs with which to create the malware database, and 10 URLs 

of malicious web pages for testing in order to detect their malicious behaviour and match 

them to the behaviours stored in the database. Generally, the experimental methodology has 

two stages: the first stage is to build up the malware database by scanning malicious URLs 

collected using high-interaction client Honeypots and the state machine model. The second 

stage of the experiment is to monitor malicious web pages online and to attempt to predict 

their future malicious behaviour, based on their actions on the system’s state. Firstly, each of 

the experimental URLs is scanned using Capture-HPC, together with the state machine 

model, in order to visualise and encode the behaviour of the malicious web pages and to build 

the malware database. The malicious web page is loaded into the client, which is a default 

installation of Windows XP Service Pack 2 with Capture-HPC client software. Capture-HPC 

will load the URL into Internet Explorer version 6, monitor the system to detect any changes 

made by the malicious web page and then send it to the Capture-HPC server. The state 

machine also receives the changes made on the client by the web-based attack and visualises 

them in the security analyser, as shown in Fig 7-8. It shows that the state machine has 3 main 

states (File system, Process, Registry) as well as the Start (S0) and End (S5) states. Secondly, 

in each change to the system state, the prediction model measures the similarity between the 

applied changes and the malware database, as illustrated in Listing 6-2. If the model detects 

any malicious behaviour in any stage of scanning, it then blocks the interaction with the 

malicious web page, passing it on to a sandbox environment to determine more about its 

behaviour – without harming the user’s system. If known malicious similarities are found, 

then it predicts the possible future malicious behaviour of the current web page and reports 

this back to the system. 

7.2.3 Experiments 

Our experiments start by building a malware database which includes the state machine 

signatures grouped into main and sub behaviour groups. First, we pass each URL to our scan 

engine, Capture-HPC, and then generate a state machine signature based on the behaviour of 

the web-based attack. Fig. 1-1 (in Chapter 1) and 7-7 show how the state machine is 

generated in this experiment. 
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Fig 7-7: the state machine model while interacting with malicious web page. 

As mentioned in section 7.2.2, the URLs are collected from online sources and we are going 

to use 110 out of 120 to build up the malware database and the other 10 to test the system. 

Table 7-2 below shows a snapshot of the URLs collected for this experiment: 

Malicious URL 

http://www.jcreator.com/forums/lofiversion/index.php?t2983.html 

http://www.threadless.com/profile/1042485/Word_Unscrambler 

http://www.ssynth.co.uk/~gay/anagram.html 

http://www.onlinegames4all.com/Flash/2/word-unscrambler.html 

http://www.all-nettools.com/forum/archive/index.php/t-4324.html 

http://www.download3k.com/Antivirus-Report-Word-Unscrambler.html 

http://www.fileheap.com/download-the-unscrambler-7578.html 

... 
Table 7-2: number of malicious URLs used in our experiment 

http://www.fileheap.com/download-the-unscrambler-7578.html
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An experiment was conducted to show how the state machine is generated as well as to 

demonstrate how both signature and behaviour-based detections differ. A piece of malware 

called Poison Ivy, which is a Remote Administration Tool (RAT), is used by attackers to 

access victims’ systems remotely. Posion Ivy is a well-known backdoor malware and 

therefore it is detected by most anti-malware products by using signature-based detection 

(based on known hash). The scan results of the Poison Ivy malware are shown in Figs 7-8. 

 

Fig 7-8: the scan results of Poison Ivy on http://vscan.novirusthanks.org. 

Furthermore, we used a type of packer software (publicly available) which was able to 

encrypt malware in order to avoid the detection by anti-malware products. The basic idea was 

to change the code of the malware involved as the signature-based detection only attempts to 

match the known signatures against the malware code. This is a problem as, if no matches are 

found, then the anti-malware software will not detect malware even if it is the same malware 

(before encryption) with a slight change in its coding. The scan results of the encrypted 

Poison Ivy malware are shown in Figs 7-9.  
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Fig 7-9: the scan results of the encrypted Poison Ivy on http://vscan.novirusthanks.org/. 

As shown in the scan results in the aforementioned figures, there are 9 anti-malware products 

which failed to detect the same malware (Posion Ivy) which had been encrypted. However, it 

should be noted that we scanned the behaviour of both the clean and the encrypted versions 

of the Poison Ivy. The same behaviour for these two versions is evident in Figs 4 and 5; 

therefore, we can conclude that by using behaviour-based detection, we will be able to detect 

malware even if it is encrypted, as distinct from the signature-based detection which cannot 

detect most forms of encrypted malware or those forms using packers.  

The state machine poison ivy clean version: 

S0, S2N1=2, S3S2=3, S4 

The state machine poison ivy encrypted version: 

S0, S2N1=2, S3S2=3, S4 
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The state machine URL table: 

ID URL/ Path 

1 C:\WINDOWS\explorer.exe 

2 C:\Documents and Settings\Yaser\Desktop\o\trj\trojan_encode.exe 

3 HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\rr 

Table 7-3: the path table of poison ivy. 

we 

After we successfully encode the 110 URLs as state machines, as described in section 4.2.2, 

we pass their state machine signatures into the FP-Growth clustering model. FP-Growth then 

searches for common behaviours between the state machine signatures and builds behaviour 

groups based on these common behaviours, as illustrated in the pseudo-code in Listing 5.1 in 

Chapter 5.    

The outputs of the previous clustering model are the main and sub behaviour groups for the 

110 URLs in which the sub groups show greater similarities, as shown in the results in section 

7.2.3. After building the malware database of the behaviour groups, we use the prediction 

model shown in Listing 6.1 to identify any possible malicious future action while interacting 

with a malicious web page. The prediction uses the malware database we have built; therefore, 

the more data we have in the database, the more accurately we are able to predict future 

malicious behaviour. The prediction model, based on the HMM algorithm, finds similarities 

between the current web page and the malicious behaviours stored in the malware database. 

We use the system to scan ten live malicious web pages, through which we are able to scan the 

system while interacting with the malicious web page and then predict its future behaviours, as 

discussed in Section 7.2.3. There are two possible outcomes from the prediction model: 

 Match: it then predicts the next two states and re-matches them with malicious web 

page behaviour from the sandbox, and if they match then it will stop and block 

interaction with the malicious web page, and the model will then predict the possible 

future behaviour based on the length of similar state machine signatures to generate its 

state machine, and pass it to the classification and clustering models to group it in the 

database. 
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 Does not match: it will re-select other similar state machines and predict the next state 

and then re-match it; in the case it matches it will follow the process described 

previously. However, if this too does not match then the model will stop the interaction 

and generate a state machine signature from the actions collected from the malicious 

web page. 

Finally, the model sends the state machine signature to the classification and clustering models 

which feed it into the malware database to speed up the process and accuracy.  

 

7.2.4 The results 

The total number of state machines generated by scanned the malicious webpages as explained 

in Section 7.2.3 was 110, an example of the state machine signatures is given Fig 7-10 below: 

… S1W1=31,S2N1=31,S1W1=29,S1W1=19 … 

Fig 7-10: one state machine signature from the malicious web page experiment. 

Fig 7-10 shows one state machine signature that was generated from a malicious web page 

taken from the experiment URL. An explanation of the first state in Fig 7-10 is given below: 

1. S1W: indicates that there is change in the file system involving the insertion of a new 

file into the end-user’s file system. 

2. 1: is the source of the change, and it indicates the file number in the path table; the file 

is Internet Explorer (C:\Program Files\Internet Explorer\IEXPLORE.EXE). 

3. 31: the result of the change, which was a new file being inserted in the system 

(C:\WINDOWS\TEMPwn10039.exe). The file is a Trojan horse, trojan-

clicker.win32.spywad.b, for the Windows platform and it displays notification 

messages for the user and hides other system notifications, such as anti-virus 

messages.   

After modelling the behaviour of the experiment URLs, we pass them into the FP-Growth 

clustering algorithm to group similar behaviours into groups. We show how the clustering 

algorithm works in section 7.2.2. We firstly group the state machines based on the most 

frequently-occurring items. We also apply the same algorithm to each of the state machines in 
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order to identify the behaviour sub-groups. These show the similarities in the relationships 

between each of the main groups. This similarity measure, as presented in Listing 6.2, is used 

to build a rule for each main group and to identify a label (as described previously). Tables 7-

4, 7-5 and 7-6 show the main group and the sub-groups formed. 

Group Group label Number of State machines 

1 S1W1=5, S1W1=19,S2N1=19 34 

2 S1W1=70,S2N1=71 15 

3 S1W1=31,S2N1=31,S3S31=32 8 

4 S1W1=8,S2N1=8 9 

5 S1W1=115,S2N1=115, 

S3S115=9, S2N115=61, S1W115=116, 

5 

6 S1W1=51,S2N1=51 4 

7 S1W1=3,S2N1=3 4 

8 S1W1=64,S2N1=64, 

S3S64=40,S3S64=41,S3S64=42,S3S64=43 

3 

9 S1W1=54, S1W56=57, S1W56=58 3 

10 S1W1=104,S2N1=104 3 

11 S1W1=45,S2N1=45,S3S47=49, S3S47=50 2 

12 S2N1=71 5 

13-27 1 in each group 1 

Table 7-4: the FP-growth experiment results. 

Group 1:  Group label: S1W1=5, S1W1=19, S2N1=19  (34 state machines)                           

Sub group Group label numbers 

1.1 S1W1=18, S1W1=19, S1W19=21,S3S19=20 11 

1.2 S1W1=19, S1W1=23, S1W19=21,S3S19=20 9 

1.3 S1W1=5, S1W1=19, S1W1=22,S2N1=19 8 

1.4 S1W1=19, S1W1=29, S1W19=21,S3S19=20 6 

 

Table 7-5: the third sub-groups from the FP-growth clustering experiment 

Group 3:  Group label: S1W1=31, S2N1=31, S3S31=32 (8 state machines) 

Sub group Group label numbers 

3.1 S1W1=31,S2N1=31,S3S31=32,S3S31=33 4 

3.2 S1W1=22, S1W1=31,S2N1=31,S3S31=32 2 

3.3 S1W1=19, S1W1=29, S1W1=31,S2N1=31, 2 
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S1W11=31,S3S31=32 
 

Table 7-6: the third sub-groups from the FP-growth clustering experiment 

For instance, group 3.2 has two state machine signatures and has the group label:  

S1W1=22, S1W1=31, S2N1=31, S3S31=32 

The group label means that each state machine in the group does the following: 

 S1W1=22: Write a file called xp.exe from Internet Explorer to the Desktop.  

 S1W1=31: Write a file called xp3.exe from Internet Explorer to C: drive.  

 S2N1=31: Execute an Internet Explorer xp3.exe executable file. 

 S3S31=32: Insert a registry value for 

“HKCU\Software\Microsoft\Windows\CurrentVersion\ Run\con” from the process 

xp3.exe.  

An example of the behaviour groups can be seen in Group 1 in table 7-4, which has a label and 

a state machine. These items can be described as follows: 

 Label: this field shows the states that are present in the state machine and demonstrates 

similarity between each state machine. The label is “S1W1=5, S1W1=19,S2N1=19”, 

which means that all 34 state machine signatures in this group contain this sequence of 

states, which starts by writing a file (a.exe), then running it and writing another file 

(b.exe). 

 The state machine: this shows the state machine identifier stored in the database. Examples 

of the state machine signatures that are grouped together in the first main group, “group ID 

1”, are presented in Fig 7-11 below: 

S1W1=23, S1W1=5, S1W1=19,S2N1=19,S3S19=20,S1W19=21 

S1W1=23, S1W1=5, S1W1=19,S2N1=19,S3S19=20,S1W19=21 

S1W1=29, S1W1=5, S1W1=19,S2N1=19,S1W19=21,S1W1=5 

S1W1=22, S1W1=5, S1W1=19,S2N1=19,S1W1=5,S3S19=20 

Fig 7-11: four state machine signatures from Group ID 1 in Table 7-2. 

The malware database includes groups of clustering outputs which form the basis of the 

prediction model when interacting with a web page and are used to detect and predict 

malicious behaviour as well as to detect the behaviour group of current web-based attacks. 
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The table below shows the variations for each state, indicating the diversity that exists across 

the scanned web pages. Table 7-7 indicates that there were 47 possible states in stage 1, 40 in 

stage 2, etc. The possible states are the different states the database has for each state 

machine; for example, if we have a state machine signature such as: S1W1=2. Then the next 

state can be one of 40 possible states for the second stage. This number reduces as similar 

state machine signatures are selected. 

stage Variation of states 

1 47 

2 40 

3 45 

4 63 

Table 7-7: the variation of states for each malicious stage. 

The experiment methodology involves taking random state machine signatures representing 

ten real malicious web pages and then predicting the second state for each state machine. 

Given the first state, the prediction algorithm selects the most similar state machine 

signatures and calculates the probability of occurrence each second state. Table 7-8 shows all 

the experiment results. It shows ten state machine signatures and predicts their second state 

by looking at the first state only. The calculation of the next state is based on a HMM model 

which uses Baum-Welch algorithm (Forward-backward probabilities) [119], as illustrated in 

Listing 6.3. For example, for the second state machine (ID 2), the algorithm found 9 similar 

state machine signatures and then found four possible predicted states for the second state, 

ordered according to the highest possible state. Another example is the state machine 

signature ID 4, which has 14 similar state machine signatures, all of which start with the state 

“S1W1=70” which is the same as that in the first state machine ID 4. HMM calculated the 

possible next states and found 4 different states for the second state: S2N1=71, S1W1=156, 

S1W1=71 or S2N1=157. When the prediction algorithm does not find any similar state 

machine signatures for a given malicious web page, it estimates the most likely state based on 

the contents of the database. Overall, we were able to predict the second states (behaviours) 

with 80% accuracy and failed to predict the correct second state for state machine IDs 6 and 

8. 
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Web 

page 

ID 

No. similar state 

machine signatures 

No. of possible next 

states 

First state Predicting the 

second state 

1 3 5 S1W1=15 Success 

2 9 4 S1W1=23 Success 

3 2 4 S1W1=64 Success 

4 14 4 S1W1=70 Success 

5 4 6 S1W1=29 Success 

6 3 5 S1W1=2 failed 

7 3 4 S1W1=153 Success 

8 4 3 S1W1=24 failed 

9 1 1 S1W1=14 Success 

10 10 5 S1W1=131 Success 

Table 7-8: Demonstrating the variations in the next state given the current state and the contents of the 

behaviour database 

Table 7-7 shows the state variations for the first 4 stages in all the state machine signatures in 

our experiment’s malware database, which the prediction model uses to select similar state 

machine signatures. This is useful as it demonstrates how our malware database has different 

states which are used to conduct the experiments. The first experiment is to validate how well 

the system predicts the next state by using ten malicious web page behaviours from the 

malware database, which has 110 malicious web pages grouped using the FP-Growth 

clustering algorithm. It shows that when passing the first state of each of the 10 experiment 

state machine signatures, it is able to predict 80% successfully while it has 20% error rate. 

The next experiment uses the same 10 state machine signatures as those shown in Table 7-8. 

We assume that each of the 10 experiment URLs has been loaded into the end-user’s browser 

and moved into the sandbox as they are malicious. In each malicious web page, the prediction 

model will get the first state from the web-based attack and attempt to predict the next three 

states. It first estimates the next three states only, without the changes in parameters (File 

system, Process, Registry or Networks states), and in the second test it attempts to predict the 
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next three states with changes in parameters (source and destination of the change, based on 

similar state machine signatures in the malware database).  

This is a real scenario in which the prediction model will be used on the end-user’s system 

along with other models to build a malware database, as discussed previously in section 7.2.4. 

The experiment starts by feeding the first state to predict the second, and if it matches we 

predict the next two states in order to match them with the behaviour of the web-based attack, 

and then the attack group and potential malicious behaviour. The experimental scenario is 

demonstrated in Fig 7-12 below: 

Pass Predict The future three states 

S1 --------------> S2,S3,S4 

Fig 7-12: the prediction scenario for the second experiment. 

We begin by passing the first state of the attack to the prediction model. Then, in each test the 

system attempts to predict the next three activities for the current web-based attack. In the 

experiment we conduct two tests: the first tests the possibilities of the next three states, such 

as file system or process, without being concerned with the source or destination.  

The second tests the next three states, including the source and destination of the change. 

Experimental results are shown in Table 7-9, which shows that the model is able to predict 

86% of the states for the next three states. This means that the model is able to understand the 

relationships between similar web-based attacks based only on the current one. Based on 

these similarities, it is then able to predict the possible next states. The tests also show that 

the model is correctly able to predict 60% of the next three activities, including the sources 

and destinations of the changes. The error rate of the two tests was 23%, and we assume that 

this decrease occurs because most attackers change their malicious actions slightly in order to 

avoid detection; for example, by changing the rootkit or key logger type for each attack after 

a number of attacks. We are therefore able to benefit from both tests in the prediction model, 

as predicting the state without the source and destination of the change can help in writing 

behaviour rules that work in the same way as IDS. For example, to write a detection rule for 

group ID 1-1 in Table 7-5, it has a label of S1W1=18, S1W1=19, S1W19=21, S3S19=20, and 

the rule is as presented in Listing 7-1. It shows the suggested behavior rule created from the 

group label for detecting when an ordered sequence of states is identified in the list of state 

machine signature. After the identification, the associated malicious web page is then blocked 
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and matched to its group. In the listing example 7-1, the elements {X,Y,Z,P,Q} are the 

changes operations (source and destination of the change) where {S1W,S3S} are the 

associated states. 

       {                            }   {   }  

Listing 7-1: an example of behaviour rule to detect malicious web page 

Therefore, by applying these rules we can improve detection efficiency, even if the attacker 

changes the MD5 signature of the executable files or the process, registry names and values. 

Web page 

ID 

Next 3 states without 

change parameters 

Next 3 states with 

change parameters 

1 100% 100% 

2 66% 66% 

3 100% 100% 

4 66% 33% 

5 66% 33% 

6 100% 66% 

7 66% 66% 

8 100% 33% 

9 100% 66% 

10 100% 66% 

Total = 86% 63% 

Table 7-9: Predicting the next three states experiment results 

7.3 Hybrid system 

Honeyware can be used to detect known malware and simulates operating systems or services 

(as explained in Section 7.1). On the other hand, a high-interaction client Honeypot like 

Capture-HPC is able to detect known and unknown attacks. Capture-HPC is the scan engine 

we have used in our state machine model to encode the behaviour collected from web-based 

attacks; it takes about 17 seconds to scan each URL whereas Honeyware takes an average of 

one minute because it downloads the web page first and then scans it using its scan engine. 
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To validate Honeyware, an experiment was conducted to compare its effectiveness as a low-

interaction client Honeypot used to scan a collection of malicious and benign web pages 

against Capture-HPC [36]. The experimental scenario involved 94 web pages collected from 

public malware blacklists [116] [117], of which 84 were malicious and 10 benign. As 

previously mentioned,  

The experiment’s methodology involves scanning experimental URLs by using two scan 

methods: Honeyware and Capture-HPC. First, we passed each URL to Honeyware, which 

downloaded the URL’s files and then scanned them, using signature-based detection. 

Honeyware uses anti-virus software to scan a web page after it has been downloaded and 

considers a web page to be malicious if one or more of its antivirus programs detect 

malicious codes or files in the page. Secondly, we passed each URL to Capture-HPC, 

scanning pages by using behaviour-based detection and checking if any malicious activity 

had occurred by analysing its log files manually. Capture-HPC loads a URL to the default 

browser, Internet Explorer version 6, and monitors the system’s state and logs any activities 

for 30 seconds. Figures 7-13 and 7-14 show the experiment’s results.  

Honeyware detected 83 of the 84 malicious web pages and failed to detect 1 web page. After 

the antivirus software was updated, the test was conducted again on 8/11 and Avast Anti-

Virus detected the web page it failed to detect the first time. On the other hand, we used 

Capture-HPC to scan the same 94 based on their behaviour. It was able to detect 62 of the 

malicious web pages, while incorrectly classifying 22 malicious web pages as benign. 
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Fig 7-13: Experiment results on 4 November. 

 

Fig 7-14: Experiment results on 8th November. 

Honeyware is only able to detect known attacks as it uses antivirus software as the scan 

engine, and this needs to be updated regularly to achieve valid results. This was shown in this 

experiment when the Avast antivirus software later detected the new web page, which had 

not previously been detected. On the other hand, Capture-HPC failed to detect 22 malicious 
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web pages and classified them as benign. We believe that in Capture-HPC detection is 

triggered by visiting a web page, but not based on subsequent interaction with a user, to 

ensure the user was human and not a client Honeypot. Other web pages try to fool the user 

into downloading a malicious application by pretending to be a useful benign application. 

Capture-HPC can only detect the behaviour of a web page scanned without any interaction, 

but Honeyware is able to download all the files and links that point to other sources, so it can 

download html pages, executable applications and other extensions that can be customised by 

the analyst. Fig 7-15 shows how well each antivirus program performed in the experiment. 

 

Fig 7-15: the antivirus detection results. 

The experiment showed that Honeyware was able to detect all the malicious web pages, but 

took a long time to finish scanning all the pages and returning the results to the investigator, 

while Capture-HPC scanned all 94 web pages in about 30 minutes. The idea of a hybrid 

system is that it should combine high and low-interaction client Honeypots. The benefit of 

this hybrid system is that Capture-HPC is fast enough to scan web pages and is able to detect 

unknown malicious websites, while Honeyware can detect web pages that need some 

interaction from an end-user and so cannot be detected by Capture-HPC. The hybrid system 

starts by scanning all web pages with Capture-HPC and then forwarding all web pages   

classified as benign by Capture-HPC to Honeyware to be scanned. This hybrid system would 

be fast and would detect all our experimental web pages, as Capture-HPC detects the 62 web 
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pages quickly and then forwards the benign and false-negative web pages, of which there 

were 32, to Honeyware. Fig 7-16 shows the idea behind the hybrid system. 

 

Fig 7-16: the hybrid system. 

7.4 Summary and Discussion 

In this chapter we have shown a validation of the web-based behaviour system by conducting 

experiments to show how the three main models of the system function; state machine, 

clustering and prediction. The evaluation experiments show how the malware database, 

which is the basis of the prediction model, is built by scanning known web-based attacks and 

then generating the state machine signature for each web-based attack behaviour. The 

clustering model is a novel grouping mechanism used to cluster malware based on common 

behaviour. This has a number of advantages, as mentioned in chapters 2 and 3, such as the 

ability to group web-based attack behaviours even if they use obfuscation such as changing 

the order of the attack sequence and steps. Our experiments show how the prediction model 

works against real web-based attacks. 

The experiment results show that we were able to detect malicious Web pages by predicting 

their behaviour as illustrated in Section 7.2.4. The first experiment was conducted to test the 

capability of predicting the second state when the first state is given. It shows that we were 

able to achieve 80% accuracy when predicting the second state of each state machine 

signature. The second experiment was conducted to simulate the proposed scenario on the 

end-user system, in which the user visited a Web page, and our system detected malicious 

behaviour from the visited server. The malicious Web page was moved to a sandbox, 

obtaining the first malicious behaviour, and then predicting the next three states to validate 
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this. We were able to achieve 63% accuracy when predicting the next three states without a 

change in operations (source and destination of the change). Further, we were able to achieve 

55% accuracy when detecting the next three states in predicting the states with a change in 

operations. 

We learned from our experiment that we were able to detect and predict web-based attacks 

based on its behaviour, detecting both known and unknown attacks, unlike signature-based 

detection, which can only detect known and non-encrypted attacks. Examples are blocking 

the interaction with malicious Web pages when detecting their malicious behaviour to predict 

the user system and learning what methods the target server uses to affect the user system 

even if it did not complete its attack by predicting the possible actions from the attacks. We 

also learned that the use of the common state clustering approach is helpful in detecting 

similar Web-based attacks as it attempts to determine the similarity in different parts of its 

state machine signature. However, one of the challenges in the clustering approach is the 

order of states and how a change in the order of states can be dealt with, which in turn 

preforms the same action but in a different order. One of these solutions is to improve the 

clustering model to understand these changes and to obtain the common states that preform a 

particular action even if the order is changed. This can be a limitation of the monitoring 

software or an attacker intending to fool the clustering model. 

We note that because we used a high-interaction client Honeypot as the basis for generating 

the state machine model for the behaviour of Web-based attacks, it might not detect all kinds 

of Web-based attacks. Therefore, we propose the use of Honeyware, a low-interaction client 

Honeypot, alongside a high-interaction Honeypot in order improve accuracy. We found that 

by using signature-based detection (Honeyware) alongside behaviour detection (Capture-

HPC), we can provide rich data on the Web-based attacks. We can conduct a behaviour scan 

of the Web page as well as obtain MD5 signatures and malware types by using Honeyware 

and the associated anti-virus system it make use of. 
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Chapter 8 

 

Conclusion and future work 

The internet is an ideal place for many different kinds of people to pursue their various 

interests. However, there is one group of people who use the internet to attack end-users and 

the originations. The goals and behaviour patterns of these people (‘attackers’) can be 

categorised into two groups. The first group aims to assault as many computers as possible by 

using attack tools and scripts. These people tend not to have high IT skills and therefore 

attack any computer which could belong to end-users or an organisation, rather than targeting 

specific computers. The second group comprises of highly-skilled attackers whose main goal 

is to attack particular computers of high value to them. The second group’s motivations tend 

to be political, religious or financial. Both these groups are equally dangerous because they 

each pose a serious threat to our computers. Web-based attacks can be detected by a number 

of methods, including blacklists, signature or behaviour detection. Most web security 

protection approaches are based on signature detection. This type of detection is only able to 

detect known web-based attacks which do not change their malicious code or use 

obfuscation.  However, behaviour detection is able to detect known and unknown malicious 

web pages and is more accurate as it detects web-based attacks even if they change their 

methods or codes. Behaviour detection involves understanding how web based attacks work; 

therefore, we propose a state machine to model the behaviour of web-based attacks using a 

predefined structure that can then be used for analysis. 

This thesis proposes a web-based behaviour system that is able to analyse, learn and predict 

web-based attacks by combining three main models: state machine, clustering and prediction. 

Our proposed system is able to understand web-based attacks and detect known and unknown 

attacks based on a malware database which is built using behaviour groups. Our system is 
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intended to protect end user systems from the risk of drive-by download attacks that use the 

web browser. The rest of this chapter summarises the key contributions presented in this 

thesis and possible future work we believe would be valuable to improve the analysis and 

detection of web based attack behaviors.  

8.1 Evaluating research hypothesis 

In Section 1.3 the research hypothesis for this thesis was presented. The core part of the 

hypothesis is reiterated below as a reminder for the reader:  

The hypothesis of this research is that monitoring behaviour is a more efficient, safer and 

accurate approach to detecting web-based malware than a signature-based approach.  

The research conducted in this thesis and the approach documented in Chapters 4, 5 and 6 

tested this hypothesis to the point where it is possible to say that it does indeed hold true. The 

three models used in this research have been developed together in order to build a web-

based behaviour system which can encode, analyze and detect malicious web pages based on 

their behaviour. Firstly, we based our analysis on the behaviour of malicious web pages and 

we used Capture-HPC as the basis of our scanning engine as previously discussed in detail in 

Chapter 4. The high-interaction client Honeypot provided us with the relevant data regarding 

behaviour of the running malicious web pages in real time in order to encode it using a state 

machine model. Our state machine model encoded malicious web page behaviour and it 

provided the analytical base for other complex algorithms and processes in order to derive 

more relationships, such as clustering and prediction algorithms, from the database of the 

state machine signatures. Secondly, in order to detect malicious web pages based on their 

behaviour, we introduced a malware database which contained the previously scanned web-

based attacks categorised into both main and sub-behaviour groups in order to aid our system 

in detecting malicious web pages. Therefore, we developed a clustering model based on the 

FP-Growth algorithm that was able to find similarities between state machine signatures 

based on their common states. Finally, we developed a prediction model to detect malicious 

web pages based on behaviour as described in detail in Section 6.1.1. As shown from the 

experimented results in Section 7.2.4, we were able to detect malicious web pages through 

two means: through a match to a specific web-based attack in a group; or by creating a 

different behaviour group by using the clustering models discussed in chapters 5 and 6.  
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8.2 Answers to the Research Questions and Problems 

In this Section the four research questions identified in Section 1.4 will be discussed in 

relation to the research undertaken in this thesis in Sections 8.2.1 – 8.2.3. In each Section, the 

research question will be repeated and the relevant models which have been implemented 

will be discussed. In addition, the analysis performed to demonstrate the added capabilities 

will also be discussed, along with the new knowledge that has consequently been delivered. 

8.2.1 Behaviour states 

Question 1: How does the security analyst, network administrator and end-user interpret the 

behaviour of a malicious web page? 

Malicious websites may cause a number of activities to be performed on the victim’s system; 

each activity is performed in different stages. These changes are performed in order to 

damage and change the victim’s system in certain way. We use our monitoring engine to get 

the behaviour of the malicious web pages. The Honeypot will monitor the machine state and 

log all the malicious behaviour and send it to an analysis server. There are a number of 

modeling methodologies that assist representing the structure and methods of web-based 

attacks. These models help to understand the possibility of the threats, as mentioned in 

chapter 2, there are different modeling methods such as attack trees, Petri nets and UML. 

Most of them can help to present and model complex attacks that involve modeling different 

paths and scenarios. In our work, we need to model web-based attacks, in which a malicious 

web page attacks the end-user’s system through a web browser in stages, and each stage 

causes a transition from one stage to another. The malicious behaviour steps should be 

ordered over time, in order to understand how it works and which state is responsible for 

causing the change to the next activity. Therefore, we needed to choose an attack graph, as 

discussed in section 2.2 in chapter 2 to enable us to visualise the steps in each attack scenario.  

The steps in the malicious behaviour should be ordered over time. We chose an attack graph 

to enable us to visualise the steps in each web-based attack scenario. We based our model on 

a finite state machine, as this provides a simple way to represent and save the behaviour data 

in the states, starting with the first state, where the attack begins and from that point tracing 

the event-driven process; any change should trigger an event within the current state and 

cause it to transfer to the next state, which represents another malicious activity. The model 
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was based on the (FSM) because the parts of the system that needed to be monitored were 

limited. The state machine signature allows security researchers and automatic tools to 

understand and follow the steps of the web-based attacks. 

Finally, the experiment in section 4.2.4 shows how we can get the web-based malicious 

behavior from the Honeypot. It shows that we were able, by using Weka data mining toolkit, 

to extract relationships from the state machine signatures that can assist the security analyst, 

network administrator and end-user to understand what the web-based attacks performs.  

8.2.2 Grouping web-based attacks 

Question 2: How can the relationships between different malicious web pages be 

analysed and displayed, based on their behaviour within the end-user’s system? 

We use a state machine, as discussed in the previous chapter, to represent the activities 

performed by the malicious web page into pre-defined states. These states can be used to 

summarise interactions with malicious web pages using the same state machine structure. The 

clustering model was introduced to group similar web-based attacks based on their behaviour. 

These behaviour groups showed that similar behaviour has been used in web-based attacks. 

This will help security companies and researchers to study the different tricks used by the 

same exploit and develop a security patch or detection mechanism against this type of attack. 

In Chapters 2 and 5 we mentioned the other approaches used to group attacks in general and 

we have selected the most familiar approach, Hierarchical Agglomerative Clustering (HAC), 

which has been used widely to cluster attacks and exploit security vulnerabilities. However, 

some limitations exist within the HAC clustering approach, such as: (a) each state machine has 

to be of the same length, requiring the insertion of null states; (b) the web-based behaviour 

groups produced by the clustering algorithm do not provide a label for each group; (c) to add 

additional behaviour groups, it is necessary to re-cluster the entire data set, which is a time-

consuming process. Therefore, we use the FP-Growth clustering approach to overcome the 

previous limitations. The use of FP-Growth has been discussed in Section 5.2.2 and showed 

that we were able to acquire the behaviour groups, as well as sub-groups, from the state 

machine signatures. 

There are two main benefits of our clustering model, the model is able to mark each behavior 

group with a label and can deal with arbitrary length state sequence. The label represents 
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frequent states within each group. By using this label, we can identify similarities between 

groups and then use the label to match with new data. Each sub-group will have a label to 

identify the common states within each group which indicates why each sub-group state 

machine is similar. Using this clustering approach we can add new behaviour groups to the 

already discovered groups. The second benefit is that we are able to output two behaviour 

group types: main and sub-groups. The main group contains similar state machine signatures 

that share the same sequence of states. This is helpful for grouping similar web-based attacks 

together, such as grouping attacks that download executable files and change specific registry 

values or attacking the web browser using a specific exploit. However, within each main 

group some of the web-based behaviour attacks might share other similarities. The sub-group 

is responsible for further refining each group. This stage can provide more information within 

each group, such as finding additional similarities in each behaviour group, or showing that 

these sub-groups can help better characterise each piece of recorded behaviour. 

Finally, we have evaluated our clustering model by comparing it to the most wildly used 

clustering approach HAC in Section 5.2.5, we have used the same data set with the two 

clustering approaches. The experiment shows that the HAC algorithm was only able to 

identify 77 groups. On the other hand, the FP-growth algorithm had 27 behavior groups and 

the largest group had 34 state machines. Hence, FP-growth was able to find additional 

similarities between the state machines. In terms of security, FP-Growth, as the basis of our 

clustering model, identifies the behaviour sequence responsible for exploiting vulnerability in 

a victim’s machine, analyze this behaviour to learn its technique and methods, and then 

develops a path for a 0-day exploit. It is also able to trace common attack behaviours in 

different web-based attacks and identify them and learning how a group of web-based attacks 

use the same exploit in different formats. 

8.2.3 Predicting malicious behaviour 

Question 3: How can the future behaviour of a running web page be predicted based on 

its past behaviour? 

The prediction algorithm will scan the current web page and then attempt to predict future 

behaviour to determine if it is malicious or benign.  The prediction algorithm uses knowledge 

from previously-seen web-based malware behaviour to understand how they operate and 

which types of malicious web pages are related to which behaviour group. The current web 
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page is monitored using high interaction client Honeypot to get its behaviour in real-time and 

send them to the analysis server. On the server side, the state machine firstly will encode the 

behaviour to state machine signature and then pass this to a prediction model to calculate the 

potential future malicious behaviour based on the malware database. 

This model uses a state machine to encode malicious behaviour as discussed in chapter 4. 

Hidden Markov Model (HMM) is used Baum-Welch learning algorithm that computes the 

forward and backward probability matrices for a given observation referenced by its index in 

the input training data, as described in details in chapter 6.  

 

8.3 Contributions and novelty 

In this section we will discuss our contributions to the security field and how we have built 

and developed our models in order to achieve the research aims and objectives. 

8.3.1 Common behaviour clustering approach 

As discussed in chapter 2, there are different approaches to clustering and grouping similar 

malware automatically. A number of studies have used the HAC clustering approach [49] 

[53] to group similar malware while others use algorithms such as K-means [51]. We propose 

a novel clustering approach, based on FP-Growth, which is able to cluster the behaviour of 

web-based attacks based on the common behaviour between different attacks. The proposed 

clustering model is able to group web-based attacks into behaviour groups based on state 

machine signatures, and can also form sub-groups which include attacks that similar. The 

model produces a label for each behaviour group which shows the common behaviours held 

in that group. The label can be used to identify similarities between attacks types as well as to 

merge new web attacks based on their label. The experiment and evaluation results show that 

FP-Growth is more effective when compared to other approaches such as HAC, as shown in 

Chapters 5 and 7.  

8.3.2 Predicting malicious behaviour 

There are a number of different approaches and methods to detect malware either 

dynamically or statically, such as anomaly or signature-based detection. Our proposed 

detection model is based on two main principles: an anomaly behaviour detection system and 
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a prediction algorithm. The web-based behaviour system uses a high-interaction client 

Honeypot, Capture-HPC, which defines the benign behaviours of systems and then 

categorises these as normal behaviour. Once it detects any abnormal behaviour then it   

encodes these into a state machine model and uses our prediction model to detect the 

malware’s future behaviour. Furthermore, the model predicts the possible future behaviours 

of the current web-based attack. 

The prediction model bases its process on the malware database built using the clustering 

model. The malware database includes the behaviour of web-based attacks grouped into main 

and sub behaviour groups. The prediction model works by finding attacks with similar 

behaviour to the current stage of the web based interaction. Moreover, it calculates the 

possibilities of future activities for current web-based attacks based on similar state machine 

signatures. In the case of a successful match with predicted future behaviour, the model 

blocks interaction with the web-based attack and returns a result to the system, which 

includes the type of web-based attack and its possible future malicious activities. It also saves 

the new state machine signature to the malware database to speed up the prediction process in 

the future. Experimental results in the previous chapter show that we were able to detect 70% 

of the future activity for 10 real web-based attacks. This shows that the prediction model 

helps to protect users from malicious web pages using drive-by download attacks. The web 

browser is the gateway for this type of attack and it is increasing every year as many 

applications move to the cloud, meaning users are using web browsers to access these 

services and other websites. 

 

8.4 Future Work 

In this section we describe work not yet conducted, but one that would be a valuable 

contribution to this research in the future.  

8.4.1 Improvement of the scan engine 

The current scan engine we are using, Capture-HPC, is only able to monitor and detect 

changes to Processes, the File system, the Registry and the Network. However, attacks can 

also target the memory such as buffer overflow. We therefore suggest adding a memory 
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detection mechanism as this would improve the ability to detect even more web-based 

attacks.  

The state machine signature could be easily adapted to include memory in the model, 

alongside the other four types. The model is able to create a state for memory changes and 

define the change types, such as read and overwrite. We believe that by adding a memory 

detection component to the state machine model, we would be able to discover more web-

based attacks and understand how changes in memory could affect changes to other parts of 

the system. 

 8.4.2 Clustering obfuscation 

Malware are using obfuscation and encryption to avoid detection and hide their malicious 

behaviour from security and analysis tools. We faced the problem of obfuscation at the 

beginning of our clustering research, as attackers inserted unwanted behaviours before or 

after the malicious behaviour. This can easily lead to similar web-based attacks being 

grouped into different behaviour groups as most clustering approaches attempt to find 

similarities between the behaviours of web-based attacks from the beginning of the behaviour 

stream. Therefore, we propose a clustering model that is able to find the main malicious 

behaviour sequences in any part of a behaviour sequence of a particular web-based attack. 

This can group similar web-based attacks even if they use obfuscation methods by inserting 

unwanted behaviours or changing the position of the main malicious behaviour in its 

behaviour sequence.  

While our proposed clustering model is able to overcome the obfuscation technique 

mentioned previously, there are other techniques used to avoid detection and analysis, we 

suggest that they also need to be explored and solved to build a more accurate grouping 

model. For example, the attacker could change the order of some behaviours in order to avoid 

clustering and analysis to find its group and family. We suggest that we use the impact of the 

behaviour sequence where it calculates the effect and results of a given behaviour sequence, 

even if the order of states are different from one web based attack to another.  

8.4.3 Client-server model 

Currently in our web-based behaviour system, the prediction model runs within the end user 

and testing systems in order to predict and detect web-based attacks. This is a good solution 

for users; however, it suffers from a number of limitations, such as the small number of state 
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machine signatures in the malware database. As the users would need to update the malware 

database in order to speed up the process of detection, and the system might be slow 

depending on the user's system capabilities. These and other disadvantages might discourage 

users from using our system; therefore, we suggest the use of a client-server model for our 

system. The basic idea behind this is that the server would sit in the cloud and have one 

central malware database that is dynamically updated by all the users in many different 

places.  

The prediction model could also be deployed on the server, but we suggest that we would 

install a lightweight monitoring system on the user's system which would be able to detect 

changes in the system state from the web browser and send these behaviours to the cloud in 

real time to detect and predict any malicious behaviour. By using this methodology, we could 

remotely predict and detect malicious web pages, thereby providing features such as 

improving speed of detection, a central database of known malicious state machine signatures 

and the ability to use the prediction model on different platforms, such as PCs or mobiles. 

8.5 Web-based Malware Framework 

The web-based malware framework aims to detect, analyze and predict malicious activities 

from web-based malware. Its objective is to protect the end-user’s machine from attacks on 

the client application based on dynamic analysis, which has a number of benefits, such as 

detecting the encrypted and obfuscation malware. Our framework has a number of 

advantages as follows: 

1. Ability to monitor any malicious web pages and model malicious actions in real-time. 

2. Analyze different malicious websites and group them into behaviour groups by 

finding the similarities between them based on the common states approach as 

discussed in Chapter 5. 

3. Protect the end-user’s system and prevent malicious web pages from attacking the 

system by predicting and blocking malicious behaviour before it can harm the end-

user’s system. 

On the other hand, our system suffers from the following disadvantages: 
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1. It is able to detect the malicious main actions in different parts of the system while 

grouping them, but it cannot detect them if the states have exchanged their order. 

Instead, it performs the same malicious actions. 

2. It is only able to protect the system from client-side attacks, and this includes drive-by 

download attacks. However, it cannot detect other web attacks, such as SQL 

injections or XSS. 

8.6 Lessons Learned 

This section describes the lessons learned during research on the Honeypot, web security and 

data mining. To be precise, we describe the problems and challenges we faced as well as how 

we overcame and solved them. 

Malicious websites: an attacker usually changes their malicious web page’s URL in order to 

avoid detection by security applications, which would add the malicious site to a blacklist. 

Therefore, we found that it is difficult to find working malicious web pages as most of the 

public ones are down or inactive. We learned that in order to test our framework on the 

malicious web pages, we should test it directly and collect the data without waiting to test 

large numbers as the sites frequently change their URLs and their behaviour from malicious 

to benign in order to avoid detection. 

Monitor the malicious website: this is different from scanning a single malware, such as a 

worm. As a malicious website may affect different parts of a system, we need to monitor the 

whole system in order to collect the actions and changes to the system. We have used the 

client Honeypot in order to perform system monitoring. Still, we also need to use other 

detection tools, such as monitoring the memory and detecting attacks, such as buffer 

overflow. 

Grouping similar attacks: clustering algorithms and approaches helps to find any 

similarities between sequences and groups them into similar families. In order to group 

similar malicious websites, we compared the malicious activities for each web-based 

malware to find any similarities between them. We discovered that there are a number of 

obfuscation techniques used by attackers to avoid detection and link attacks to their family. 

Therefore, we had to extensively learn these methods. In doing so, we found that most of the 

attacks move the order of important malware actions to different parts of the attack and insert 
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unwanted actions to avoid detection. We were able to detect these methods by using the 

common states clustering approach as described in Chapter 5. 

8.7 Concluding Remarks 

The thesis has researched and analysed web-based attacks based on behaviour. We have 

proposed a number of approaches to achieve our hypothesis, which focuses on detecting 

malicious web pages based on behaviour, and not signature, to protect the user from web-

based attacks. We learned from the experiments in Section 7.2 that by using behaviour 

detection, we were able to achieve between 86% to 63% accuracy. These values show that we 

can detect known and unknown malicious Web pages by using a behaviour-based strategy, 

unlike the use of a signature-based strategy in which the attacker can avoid detection by using 

encryption but causing the same malicious behaviour without detection as illustrated in 

Section 7.2.3. We have based our proposed system on the behaviour scanning approach using 

a high-interaction client Honeypot. We believe that our system can improve this technology 

by adding the capability to detect additional attacks, saving scanning time and improving the 

performance in capturing attacks.  
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