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There is an ever-increasing body of literature examining gene–environment interactions in psychiatry, reflecting

a widespread belief that such studies will aid identification of novel risk factors for disease, increase understanding

about underlying pathological mechanisms, and aid identification of high-risk groups for targeted interventions. In

this article we discuss to what extent studies of gene–environment interactions are likely to lead to any such benefits

in the future.
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Introduction

The processes underlying most psychiatric disorders

are probably extremely complex. Studying how the

combined effects of genes and environment impact

upon risk of disease seems an intuitively attractive

approach, and there is an ever-increasing body of

literature examining gene–environment interactions

(GrE) in psychiatry.

There are three main arguments put forward as

to why studies of GrE may be helpful : (1) they may

make it easier to identify novel genetic or environ-

mental risk factors for disease, (2) they may increase

our understanding about underlying pathological

mechanisms of disease, and (3) they may aid identifi-

cation of high-risk groups that might benefit from

targeted interventions. In this article we discuss

whether or not the study of GrE is likely to lead to any

of these potential benefits. Although we focus mainly

on gene–environment interactions, the arguments we

present hold equally well for studies of gene–gene or

environment–environment interactions.

Measuring interaction

Within epidemiology, the term interaction is used to

describe the situation where the association between

one exposure (risk factor) and disease varies according

to the presence or absence of another exposure.

Where one exposure has an opposite effect on

disease risk according to the presence or absence of

another exposure (a qualitative interaction), then the

discovery of such an interaction is important as this

can indeed lead to all of the potential advantages de-

scribed above. For example, it has been reported that,

in the presence of high paternal antisocial personality

(ASP) traits, the risk of child conduct problems in-

creases the more time the father lives with the child,

but with an opposite effect if paternal ASP traits are

low, such that the risk of child conduct problems de-

creases the more time the father lives with the child

(Jaffee et al. 2003 ; Blazei et al. 2008). Findings such as

this can potentially have important implications for

finding risk factors, understanding aetiology and

identifying high-risk groups. However, such qualitat-

ive interactions have only rarely been observed in

medicine and are not the main focus of the discussions

that follow. Most interactions that have been described

in the psychiatric literature are less extreme ones, and

the potential advantages from identifying such quan-

titative rather than qualitative interactions are much

less clear.

To study how exposure to two risk factors in com-

bination affects disease risk, we compare data to pre-

dictions from statistical models. Statistical interaction

occurs when the risk of disease if exposed to both

factors A and B is different from that predicted by the

statistical model being used. These predictions are

usually modelled on either additive or multiplicative

scales, and it is important to appreciate that interac-

tions under these models mean different things.

Statistical interaction is therefore model dependent

and, as demonstrated below, it is meaningless to speak
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of interactions without specifying the statistical model

to which they refer.

For example, in a study of risk differences or dif-

ferences between means, the model is on an additive

scale. The null hypothesis for statistical interaction in

this model is that the joint effect of being exposed to

both A and B is additive (Table 1). Departure from this

(less than or greater than an additive effect) will pro-

vide evidence of statistical interaction. A hypothetical

example of an additive relationship is given in Table 2.

However, if ratio measures (such as risk ratios or

odds ratios) are used to study the association between

exposures and disease, these are modelled on a multi-

plicative scale, for example using logistic regression.

The null hypothesis for statistical interaction in this

model is that the joint effect of being exposed to both

A and B is multiplicative (Table 1). Departure from

this (super- or submultiplicativity) will provide evi-

dence of statistical interaction. A hypothetical example

of a multiplicative relationship is given in Table 3.

Note that the data in Table 2 show evidence of

statistical interaction if risk ratios are examined

(multiplicative model), although there is no statistical

interaction if risk differences are studied (additive

model). Table 3, however, shows no evidence of stat-

istical interaction if risk ratios are examined but shows

statistical interaction if risk differences are studied.

Statistical interaction is therefore both present and

absent in each of the two hypothetical examples given

in Tables 2 and 3, depending on whether the data

in each example are analysed under an additive or a

multiplicative model. With the exception of qualitative

interactions, statistical interaction is therefore model

dependent, and does not have any clear biological

meaning (Clayton & McKeigue, 2001). If a study is

adequately powered, evidence of statistical interaction

can always be found by looking at both risk differ-

ences and risk ratios within the same data.

Is there a ‘correct ’ model to use?

Under the sufficient-component-cause model of dis-

ease it can be argued that risk factors co-participating

as causal components in any one causal model of

Table 1. Examples of statistical models used to study interactions

Statistical model Null hypothesis

Additivea Risk (A and B)=Risk (A only)+Risk (B only) xRisk

(neither A nor B)

Multiplicative Risk ratio (A and B)=Risk ratio (A only)rRisk ratio (B only)

a Although beyond the scope of this article, methods have been developed to

calculate a more valid measure of synergism (Darroch, 1997) that are also modelled

on an additive scale.

Table 2. Hypothetical 1-year cumulative incidence of

schizophrenia (per 10 000) given an additive relationship between

heavy cannabis use and COMT rs4680 valine allele on risk of

schizophrenia

Risk of schizophrenia

No cannabis Cannabis

Valine absent 1 10

Valine present 5 14

Risk difference (RD) for cannabis use is 9 where valine is

absent (10 – 1), and is also 9 where valine is present (14 – 5) ;

RDs equal� no additive interaction. However, the risk ratio

(RR) for cannabis use is 10 where valine is absent (10/1)

but is 2.8 where valine is present (14/5) ; RRs unequal�
multiplicative interaction. Note that where RDs for cannabis

are the same whether people have the valine allele or not,

the RRs will be different.

Table 3. Hypothetical 1-year cumulative incidence of

schizophrenia (per 10 000) given a multiplicative relationship

between heavy cannabis use and COMT rs4680 valine allele

on risk of schizophrenia

Risk of schizophrenia

No cannabis Cannabis

Valine absent 1 10

Valine present 5 50

Risk difference (RD) for cannabis use is 9 where valine is

absent (10–1), but is 45 where valine is present (50–5) ; RDs

unequal� additive interaction. However, the risk ratio (RR)

for cannabis use is 10 where valine is absent (10/1) and is also

10 where valine is present (50/5) ; RRs equal�no multipli-

cative interaction. Note that where RRs for cannabis are the

same whether people have the valine allele or not, the RDs

will be different.
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disease will show departure from additivity

(Greenland et al. 2008). This concept is sometimes re-

ferred to as ‘biological interaction ’ but we will avoid

using this term as it can be ambiguous, often being

misinterpreted as though it tells us something about

pathological mechanisms. It does not ; it tells us only

that both risk factors A and B played a causal role

in those particular cases of disease, and that some

individuals only experienced the disease because they

were exposed to both risk factors A and B (i.e. they

would not have developed the disease if either A or B

were absent) (Greenland et al. 2008). It is important to

understand that neither interaction under an additive

model nor under a multiplicative one is likely to tell us

anything about the underlying biology or pathology

beyond that from the study of main effects only

(except perhaps where qualitative interactions occur)

(Thompson, 1991).

Consider an example (taken from Rothman &

Greenland, 2005) of an elderly person who falls and

fractures their hip, where other factors contributing

to the fall include disturbed balance resulting from a

childhood head injury, the icy weather, the type of

shoes they were wearing, their body weight, and the

strong wind at the time. If any of these component

causes had been absent, that person would not have

broken their hip, and there will be interaction on an

additive scale between all of these factors. Within

epidemiology, such non-additivity is perhaps what

we might expect for most risk factors acting on any

disease of complex multifactorial aetiology, where risk

factors are neither necessary nor sufficient to bring

about disease. As Greenland et al. (2008) note, we

would rarely expect to observe additivity between

risk factors as it is very unlikely that risk factors never

co-participate in any causal models of disease.

In the absence of any strong theoretical grounds

upon which to base our null hypothesis for interaction,

this expectation that most risk factors combine non-

additively seems a reasonable assumption to make.

Indeed, empirical evidence suggests that, where the

combined effect of two risk factors on disease has been

examined, findings in general tend to support a

multiplicative (or at least greater than additive)

pattern of joint risk, both in other fields of medicine

(Godsland et al. 2000 ; Morgan et al. 2004; JBS,

2005 ; Wraith & Mengersen, 2007) and in psychiatry

(Cougnard et al. 2007 ; van Os et al. 2008 ; Clarke et al.

2009). We recently examined the patterns of schizo-

phrenia risk for pair-wise combinations of five risk

factors for schizophrenia (cannabis use, lower IQ

score, other psychiatric diagnoses, poor social adjust-

ment, and disturbed behaviour) in the 1969 Swedish

conscript cohort (personal communication). Of 10

possible combinations, we observed statistical evi-

dence of super-additivity in seven of these, with weak

evidence in two others.

These findings, in conjunction with observations

from other areas of medicine, suggest that multipli-

cative models may represent a better fit than additive

models for data describing the combination of risk

factors on disease. However, irrespective of the choice

of the most appropriate model to use, perhaps the

important question that remains is : how useful is it to

study interactions?

Why study interactions?

Let us now consider the three main reasons put for-

ward as arguments as to why evidence of interaction

may be helpful.

First, study of interactions may allow us to find

evidence of risk factors for disease that would not

be found if only main effects of exposures were

examined. As an example, let us imagine that we want

to examine whether the valine (Val) allele of Val158Met

(rs4680) within the catechol-O-methyl transferase gene

(COMT) is a risk factor for psychosis, and that this

genetic effect varies according to whether or not

someone uses cannabis.

Some of the hypothetical patterns of risk whereby

interactions may occur are depicted in Fig. 1. Note that
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Fig. 1. Hypothetical interactions between COMT rs4680 valine allele (V+ where valine allele present, Vx where absent)

and cannabis use (C+ where cannabis exposure present, Cx where absent) on risk of psychosis.
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in Fig. 1a, the Val allele is a risk factor for psychosis in

both cannabis users and non-users, although it is more

strongly associated in users. In this example, the av-

erage effect in the whole population (regardless of

cannabis use status) will be that the Val allele increases

psychosis risk, and therefore the study of interactions

here will not greatly benefit identification of COMT

variation as a risk factor for psychosis. In Fig. 1b,

however, the average effect of the Val allele on psy-

chosis risk in the population may be minimal if most

people in the population do not use cannabis. In this

case, stratification of the effect of COMT variation by

cannabis use may allow identification of the Val allele

as a risk factor for psychosis in cannabis users. In

Fig. 1c (a qualitative, cross-over interaction), the aver-

age effect of the Val allele on psychosis risk in the

population may be zero if there are equal numbers of

cannabis users and non-users in the population. In this

case, stratification of the effect of COMT variation

by cannabis use would allow identification of the Val

allele as a risk factor for psychosis in cannabis users,

but a protective factor in non-users.

In the original report of this putative interaction

(Caspi et al. 2005), cannabis use was associated with

a 10-fold increase in risk of psychosis in Val homo-

zygotes, but with no increase in risk in those without

the valine allele (pattern similar to Fig. 1b). If such an

interaction effect size was correct, however, then we

might expect main effects to be observed for both ex-

posures without the need to study interactions given

the frequencies of the Val allele and of cannabis use in

the population.

Of the three patterns described above, Fig. 1a seems

the most plausible biologically, whereas Fig. 1c seems

the least plausible (though not impossible). Patterns of

interaction as seen in Fig. 1b can be seen in single gene

disorders (e.g. phenylketonuria), but it seems unlikely

such a pattern would be observed for epidemiological

studies of multifactorial complex diseases given that

risk factors are neither necessary nor sufficient to

cause disease. Given the rather extreme interactions

required therefore for studies of GrE to help identify

novel risk factors for disease [i.e. patterns similar to

Fig. 1(b or c)], it seems unlikely that studies of interac-

tions will contribute substantially to the identification

of novel risk factors for disease (Munafo et al. 2009).

The second reason put forward for studying inter-

actions is that this may lead to an increased under-

standing of disease aetiology. However, as discussed

above, statistical interaction under an additive model

(and lack of statistical interaction under a multiplicat-

ive model is compatible with this) simply tells us

that both risk factors are component causes of a causal

model of disease, and nothing about pathological

mechanisms (Thompson, 1991 ; Greenland et al. 2008).

For example, if a greater than additive relationship

between stressful life events (SLEs) and variation

within the serotonin transporter locus (5-HTTLPR)

were found, it would be incorrect to interpret this as

evidence that SLEs increase depression risk through

effects on the serotonergic system. In reality, this

might be true, and evidence for this could be obtained

from other studies, but it would be incorrect to deduce

this on the basis of an additive (or indeed a multi-

plicative) interaction between SLEs and 5-HTTLPR.

Studies of environment–environment interactions

(ErE) have been ongoing for decades within epi-

demiology, and as yet there has been little evidence

that studying interactions has benefited understand-

ing of the pathogenesis of the diseases examined

(Clayton & McKeigue, 2001). It is possible that more

extreme interactions (e.g. super-multiplicative) may be

informative about disease aetiology, but in the main it

is probably only qualitative interactions that will in-

crease understanding of biological mechanisms be-

yond that gained from studying main effects only

(Thompson, 1991). Such interactions are important to

find, if present, although evidence to date suggests

they are very uncommon.

The third reason put forward for studying interac-

tions is that they may allow for specific targeting of

interventions in high-risk groups. Targeted interven-

tions are often an inefficient approach at a population

level, given that most individuals who develop a dis-

ease are not usually in the targeted high-risk groups

(Rose, 2005), but such a strategy can be important at an

individual level.

In fact, where the relationship between two risk

factors is greater than additive, the largest reduction in

absolute risk of disease will always be obtained from

interventions targeted at those exposed to both factors.

Evidence of additive interaction would therefore sup-

port an approach of targeting high-risk groups, but

seems unnecessary given that, as discussed earlier, the

relationships between risk factors for multifactorial

complex diseases are unlikely to be truly additive at an

epidemiological level. Indeed, the programme of in-

terventions aimed at reducing cardiovascular disease

by specific targeting of high-risk groups is based upon

the assumption of multiplicative models of combined

effects on risk (JBS, 2005). Where very strong interac-

tions occur (e.g. patterns similar to Fig. 1b), the case for

selective interventions may be strengthened, but it is

where qualitative interactions occur that clearly has

the most important implications for targeting high-

risk groups.

The practical implications, therefore, from studying

GrE are likely to be limited for epidemiological
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studies, although they might be greater for studies of

pharmacokinetics and more direct studies of cell or

system biology.

Costs of studying interactions

The possible advantages of studying interactions have

to be weighed up against the potential costs. The main

problem of studying interactions is that of multiple

testing (Colhoun et al. 2003; Hunter, 2005 ; Sullivan,

2007 ; Flint & Munafo, 2008), particularly now with the

availability of vast arrays of genotypes from genome-

wide studies that can potentially be used in studies of

GrE. Even where studies aim to replicate tentative

interactions reported, multiple testing is a common

problem as tests are often carried out under different

genetic models, using multiple measures of environ-

mental exposures, using multiple outcomes, or exam-

ining subgroups. This problem could be reduced if :

(a) all interactions reported were treated as highly

tentative and most likely to be due to chance (regard-

less of strength of statistical evidence or biological

plausibility) ; (b) strict criteria for claiming replication

were observed, with use of the same statistical and

genetic models, the same (or very similar) environ-

mental measure, and the same outcome, without

addition of further (e.g. three-way or four-way) inter-

actions (i.e. avoiding further subgroup analyses) ; and

(c) all interaction tests performed were reported and

published to reduce publication bias.

Studies of GrE in psychiatry frequently violate

these criteria. Perhaps this is best exemplified by

claims of replicated evidence of an interaction be-

tween 5-HTT and SLE on risk of depression (Moffitt

et al. 2005 ; Rutter et al. 2006 ; Uher & McGuffin, 2008).

Most of the apparent replication studies use different

statistical models, only report findings in subgroup

analyses, or report qualitatively different patterns of

interaction to the original findings (Zammit & Owen,

2006; Munafo et al. 2009 ; Risch et al. 2009).

Problems of studying interactions also include

lower statistical power (Munafo et al. 2009) and re-

duced precision compared to study of main effects,

and problems related to misclassification of exposures

and confounders that are more complex than those for

the study of main effects (Greenland, 1993).

Lack of appreciation of the different interpretation

of interaction results under different statistical models

and the erroneous assumption that evidence of inter-

actions tells us anything about underlying pathologi-

cal mechanisms have led to much misunderstanding

of how findings in this field should be interpreted.

Any gains from studying interactions are therefore not

only likely to be somewhat limited but also to come at

a cost ; studying interactions in the context of the

common errors and misunderstanding highlighted

above wastes valuable (and limited) time and re-

sources. Problems of poor methodology and incorrect

interpretation of results are of course common to all

areas of research. However, these are likely to be more

common in the study of interactions because of the

increased complexity involved. Furthermore, and of

greater concern, is that this lack of understanding

means that reports of putative interactions have the

potential to start impacting, inappropriately, upon

clinical practice (Wilhelm et al. 2009).

Conclusions

Although providing evidence of interaction without

specifying the underlying model is clearly meaning-

less, the choice of which is the most appropriate model

to use is less clear. Empirical evidence supports the

view that it seems unlikely that risk factors for multi-

factorial complex diseases will combine additively and

not ever co-participate in any causal models of disease.

Given this, it follows that subjects with co-exposure to

risk factors will benefit the most from targeted inter-

ventions, and studies of interactions will rarely add

anything of value to such an approach. Furthermore,

irrespective of the model used, it is unlikely that

evidence of interaction will increase understanding of

pathogenesis, often advocated as one of the benefits

potentially arising from studying interactions. The

only exception is where qualitative interactions occur,

and such interactions have only rarely been described

in epidemiology. Other putative benefits, such as in-

creased power to detect novel risk factors, are also

likely to occur only in uncommon circumstances, and

any potential gains need to be balanced against the

substantial problems such as multiple testing and

publication bias inherent in such studies.

There has been a recent increase in the development

of research projects around GrE and funding of re-

search in this area. Gains from such studies will only

accrue if studies are set within a clear understanding

of what is being studied, and where results from stat-

istical interactions examined are interpreted appro-

priately.
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