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Overview

The first genome-wide association study (GWAS, ‘ jē’

wŏs ’) of age-related macular degeneration appeared

in 2005 (Klein et al. 2005). Since then, nearly 400 GWAS

articles have been published in the National Human

Genome Research Institute (NHGRI) GWAS Catalog

(www.genome.gov/26525384, accessed 20 September

2009). The GWAS approach has been exceptionally

successful in identifying common genetic variants that

predispose to a variety of complex human diseases

and biochemical and anthropometric traits and was

named the ‘breakthrough’ of 2007 by the journal

Science. Indeed, the GWAS method has performed

beyond expectations.

Although the GWAS approach is relatively new,

many excellent reviews of various components of the

GWAS method have already been published. Indeed,

the GWAS review literature is of such singular quality

that another review would be redundant. Therefore,

instead of another review, our aim is to provide a

primer, an annotated overview of the entire approach

with particular reference to psychiatric genetics. Our

aim is dissemination of information about this meth-

odology in order for a motivated reader to become

more expert. We dissect the GWAS methodology into

its components and, for each component, provide a

brief description and citations and links to reviews

that cover the topic in detail (Table 1).

An introduction to GWAS methodology

Basic principles in genetics

It is beyond the scope of this review to cover funda-

mental topics in genetics, but some useful starting

points are shown in Table 1.

Definition

A GWAS for a disease is usually a variant of a cross-

sectional case-control study, the study design that is

the familiar workhorse in biomedicine and epidemi-

ology (Schlesselman, 1982). Another term for GWAS is

whole-genome association study (WGAS, ‘dŭb’ @l-yōō

găs ’). Cases are defined as individuals who meet life-

time criteria for a disease, for example Crohn’s

disease, type 2 diabetes mellitus (T2DM), or schizo-

phrenia. Controls should have never met criteria for

the disease and, ideally, be through the period of risk.

Moreover, for case-control comparisons to be as un-

biased as possible, controls should be drawn from the

same population as cases, particularly with respect to

exposure to any potentially relevant risk factors

(Rothman, 1986). Each individual in the sample is as-

sayed (i.e. genotyped) for a comprehensive set of

genetic markers scattered across the genome. The

genetic markers are single nucleotide polymorphisms

(SNPs, ‘snips ’), which are relatively straightforward

to assay. The two major current GWAS technological

platforms contain 906000 (Affymetrix 6.0) and 1199187
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Table 1. Further primer information by topic

Topic Citation Comment Link

Genetics fundamentals – NHGRI glossary of genetic terms www.genome.gov/10002096

– NHGRI genetics education resources www.genome.gov/10000464

– Genetics fundamentals, from Nature www.nature.com/nrg/series/fundamental/index.html

Strachan & Read, 2003 Introduction to genetics and human genetics www.garlandscience.co.uk/textbooks/0815341822.asp

Nussbaum et al. 2007 Medical genetics introductory text www.elsevier.com/wps/find/bookdescription.

cws_home/711519/description#description

Attia et al. 2009 a Brief introduction to key concepts www.ncbi.nlm.nih.gov/pubmed/19126812

GWAS basics Hardy & Singleton, 2009 Excellent GWAS review www.ncbi.nlm.nih.gov/pubmed/19369657

McCarthy et al. 2008 Excellent GWAS review www.ncbi.nlm.nih.gov/pubmed/18398418

<unpublished> NHGRI GWAS catalog, frequently updated www.genome.gov/GWAStudies

Chanock et al. 2007 Standards for replication in GWAS www.ncbi.nlm.nih.gov/pubmed/17554299

Barrett et al. 2008 Meta-analysis example (Crohn’s disease) www.ncbi.nlm.nih.gov/pubmed/18587394

Psychiatric – PGC web site http://pgc.unc.edu

GWAS PGC, 2009 a Provides a framework for interpreting PGC findings www.ncbi.nlm.nih.gov/pubmed/19002139

Consortium PGC, 2009 b Describes history and rationale of PGC www.ncbi.nlm.nih.gov/pubmed/19339359

Phenotypic issues Craddock et al. 2007 Phenotypic complexity within psychoses www.ncbi.nlm.nih.gov/pubmed/17329738

PGC Cross Disorder Group, 2009 Describes PGC approaches to phenotypic complexities www.ncbi.nlm.nih.gov/pubmed/19648536

Kendler, 2006 Review of issues in phenotypic definitions for genetics www.ncbi.nlm.nih.gov/pubmed/16816216

Schulze & McMahon, 2004 Empirical approaches to phenotypic complexity www.ncbi.nlm.nih.gov/pubmed/15812169

Genotyping – Description of current Affymetrix GWAS platform www.affymetrix.com/products_services/arrays/

specific/genome_wide_snp6/genome_wide_snp_6.affx

– Description of current Illumina GWAS platform www.illumina.com/pages.ilmn?ID=335

Scherer et al. 2007 Copy number variation, background www.ncbi.nlm.nih.gov/pubmed/17597783

Cook & Scherer, 2008 Copy number variation in neuropsychiatry www.ncbi.nlm.nih.gov/pubmed/18923514

GWAS quality control McCarthy et al. 2008 Excellent GWAS review, including QC steps www.ncbi.nlm.nih.gov/pubmed/18398418

WTCCC, 2007 Superb example of GWAS QC in practice www.ncbi.nlm.nih.gov/pubmed/17554300

Neale & Purcell, 2008 Review of GWAS QC www.ncbi.nlm.nih.gov/pubmed/18500721

Attia et al. 2009 b Assessing the validity of a GWAS www.ncbi.nlm.nih.gov/pubmed/19141767

Bioinformatics Konneker et al. 2008 SLEP, web search engine for psychiatric genomics http://slep.unc.edu

Allen et al. 2008 SZGene, genetic studies of schizophrenia www.schizophreniaforum.org/res/sczgene

Pathway analysis Hong et al. 2009 Comparison of pathway analysis methods www.ncbi.nlm.nih.gov/pubmed/19408013

Holmans et al. 2009 Description of one method (ALIGATOR) www.ncbi.nlm.nih.gov/pubmed/19539887

Meta-analysis de Bakker et al. 2008 GWAS meta-analysis www.ncbi.nlm.nih.gov/pubmed/18852200

Follow-up Ioannidis et al. 2009 Follow-up of GWAS findings www.ncbi.nlm.nih.gov/pubmed/19373277
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SNPs (Illumina 1M) spaced across the 22 autosomes

(chr1–chr22), the sex chromosomes (chrX and chrY)

and the mitochondrial genome (chrM).

The key analysis in a GWAS for a disease is logistic

regression with the dependent variable case-control

status (1=case, 0=control) and a SNP genotype as an

independent variable [coded as the number of copies

of the minor or less frequent allele, 1 degree of free-

dom (df)]. The output of a logistic regression is ident-

ity of the reference allele and an odds ratio with its

standard error (or confidence intervals) along with a

statistic and a p value that tests whether the odds ratio

differs from unity.

Standard of evidence

In a GWAS, logistic regressions are done for every

SNP (i.e. a total of y1 million regression models).

Given the number of statistical tests, p values that are

very small by traditional standards are to be expected

merely by the play of chance (e.g. 10 p values

<0.00001 and 100 p values <0.0001). Thus, the stan-

dard of evidence that has emerged for a compelling

GWAS finding is rigorous : (a) a strong association in

an initial sample, (b) precise replication in one or more

independent samples (i.e. the same SNP, allele, and

direction of association), and (c) a cumulative p value

<5r10x8 (Chanock et al. 2007). The 5r10x8 threshold

is akin to a Bonferroni correction of the traditional 0.05

Type 1 error level for 1 000 000 statistical tests (although

the full argument is more complex as some of these

tests are not independent because of linkage dis-

equilibrium) (Pe’er et al. 2008). p values that are smaller

than expected by chance and that replicatewell in other

samples highlight a genomic region associated with a

disorder (and potentially causal).

Statistical power

Because of the requirement to adjust for the large

number of statistical tests to control Type 1 error, ad-

equate statistical power (to minimize Type 2 error) is

crucial, particularly given the small genetic effect sizes

typical for human GWAS findings (discussed later).

Fig. 1 shows power curves for four different sample

sizes. Given the large number of statistical tests and

because the genetic effects are likely to be subtle,

power is inadequate unless very large numbers of

cases and controls are studied.

GWAS statistics

We illustrate here some properties of published

GWAS in biomedicine from the NHGRI GWAS

Catalog (accessed 20 September 2009). Of 396 pub-

lished GWAS, there were 238 studies reporting 693G
W

A
S
cr
it
ic
is
m
s

C
ro
w
,
20

09
C
ri
ti
ci
sm

o
f
co
m
m
o
n
v
ar
ia
n
t
m
o
d
el

(p
lu
s
re
sp

o
n
se
s)

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
18

42
30

75

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
18

59
05

80

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
18

53
30

57

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
18

57
88

99

G
o
ld
st
ei
n
,
20

09
A
n
ar
ti
cu

la
ti
o
n
o
f
th
e
‘s
o
w
h
at
’
ar
g
u
m
en

t

(p
lu
s
ad

d
it
io
n
al

p
er
sp

ec
ti
v
es
)

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
19

36
96

60

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
19

36
96

61

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
19

36
96

56

M
it
ch

el
l
&

P
o
rt
eu

s,
20

09
M
u
lt
ip
le

ra
re

v
ar
ia
n
t
m
o
d
el
,
ex
cl
u
si
v
is
t
p
o
si
ti
o
n

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
19

62
60

23

R
es
p
o
n
se

b
y
S
u
ll
iv
an

&
G
ej
m
an

,
in

p
re
ss

E
L
S
I

A
rr
an

z
&

K
ap

u
r,
20

08
P
h
ar
m
ac
o
g
en

et
ic
s

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
18

75
33

06

L
u
n
sh

o
f
et

al
.
20

08
P
ri
v
ac
y
ve
rs
u
s
o
p
en

n
es
s
in

g
en

et
ic

te
st
in
g

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
18

37
95

74

K
ay

e,
20

08
R
eg

u
la
ti
o
n
o
f
d
ir
ec
t-
to
-c
o
n
su

m
er

g
en

et
ic

te
st
in
g

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
18

85
22

08

R
o
th
st
ei
n
,
20

05
Im

p
li
ca
ti
o
n
o
f
b
eh

av
io
ra
l
g
en

et
ic
s
re
se
ar
ch

w
w
w
.n
cb
i.
n
lm

.n
ih
.g
o
v
/
p
u
b
m
ed

/
16

13
60

76

G
W

A
S
,
G
en

o
m
e-
w
id
e
as
so
ci
at
io
n
st
u
d
y
;
E
L
S
I,
et
h
ic
al
,
le
g
al

an
d
so
ci
al

im
p
li
ca
ti
o
n
s
;
P
G
C
,
P
sy
ch

ia
tr
ic

G
W

A
S
C
o
n
so
rt
iu
m

;
W

T
C
C
C
,
W

el
lc
o
m
e
T
ru
st

C
as
e
C
o
n
tr
o
l
C
o
n
so
rt
iu
m

;

N
H
G
R
I,
N
at
io
n
al

H
u
m
an

G
en

o
m
e
R
es
ea
rc
h
In
st
it
u
te
;
Q
C
,
q
u
al
it
y
co
n
tr
o
l.

GWAS primer 1065



SNP associations with p<5r10x8. These associations

were for 59 human diseases and 61 other quantitative

traits. The diseases with the greatest number of associ-

ations were Crohn’s disease, T1DM, T2DM, prostate

cancer, and rheumatoid arthritis. The top quantitative

traits were height, lipid levels [triglycerides, high

density lipoprotein (HDL) and low density lipoprotein

(LDL) cholesterol], QT interval, and body mass index.

Fig. 2 a shows the temporal trends in the publication

dates for these studies. Fig. 2 b illustrates some of the

properties of the findings from the literature. Note that

only about 15% of the SNP–disease associations are

detectible with 90% power, with a sample of 1000

cases and 1000 controls, whereas only about 4%would

not be detected with 25 000 cases and 25 000 controls

(the estimated number of GWAS samples available for

schizophrenia and bipolar disorder by 2014). This is

an important point : based on power calculations and

empirical findings for other disorders, ‘ failure ’ to de-

tect an association is meaningful only if the sample

size is very large.

Several intriguing trends were evident in these data

on human diseases. First, with few exceptions [e.g.

Alzheimer’s disease and the apolipoprotein E gene

(APOE)], the regions implicated by GWAS were not

previously known. Candidate genes based on prior

knowledge of pathophysiology or intuition have

usually not been identified. Second, the majority of

these findings (90%) were not in the coding region of a

gene, and only 8% were non-synonymous variants

(i.e. DNA variants that change the amino acid se-

quence of the corresponding protein). Indeed, 43%

were not in a known gene and 23% were not within

20 000 bases of a known gene. Common variation

underlying complex human diseases is dissimilar to

that underlying Mendelian diseases where major

changes to proteins are typical.

Meta-analysis

Given the requirement for historically large sample

sizes, it has become typical for primary studies to band

together to form meta-analytic consortia. This has

proven to be a crucial step in achieving sufficient

statistical power. For example, two primary T2DM

GWAS were unremarkable individually and yet, after

meta-analysis, multiple highly significant and rep-

licated findings emerged (Saxena et al. 2007 ; Scott et al.

2007).

GWAS for psychiatric disorders

Multiple GWAS for psychiatric disorders have been

published, are in progress, or are planned. The dis-

orders include anorexia nervosa, attention deficit

hyperactivity disorder (ADHD), autism, bipolar dis-

order, drug use disorders (smoking behavior and

alcohol dependence), major depressive disorder,

obsessive–compulsive disorder, and schizophrenia.

There are more than 50 primary samples, mostly in

subjects of European ancestry but with increasing

numbers of subjects of African and East Asian ances-

try. Prominent examples of GWAS findings for psy-

chiatric disorders are described in Table 2. This area is

expanding rapidly, and additional findings are known

to be in the publication pipeline.

The Psychiatric GWAS Consortium (PGC) was

formed in 2007 to conduct a ‘mega-analysis ’ of indi-

vidual genotype and phenotype data, and is described

in detail elsewhere (Cross-Disorder Phenotype Group

of the Psychiatric GWAS Consortium, 2009; Psy-

chiatric GWAS Consortium, 2009 a, b). GWAS data for

ADHD, autism, bipolar disorder, major depressive

disorder and schizophrenia from European subjects

are being analyzed as of this writing in September
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Fig. 1. Statistical power in a genome-wide association study (GWAS) for four different sample sizes assuming a discrete trait

with lifetime prevalence of 0.01 (similar to schizophrenia, bipolar disorder or anorexia nervosa), a log additive genetic model,

and a genotypic relative risk of 1.25 (typical for GWAS for human complex diseases), and two-tailed a=5r10x8. The x axis

shows minor allele frequency and the y axis statistical power.
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2009. To our knowledge, this study of >59 000 inde-

pendent cases and controls and >7700 family trios

will be the largest biological experiment conducted in

psychiatry.

The PGC has two major aims. The first is to conduct

five separate GWASmega-analyses forADHD, autism,

bipolar disorder, major depressive disorder, and

schizophrenia. The second comprises cross-disorder

mega-analyses with two components. The ‘nosologi-

cal ’ subaim takes cases as defined by DSM-IV criteria

and looks for SNPs that are compellingly associated

with two or more disorders and effectively searches

for genomic regions with pleomorphic effects. The

‘heterogeneity ’ subaim reclassifies subjects according

to prespecified phenotypic characteristics (e.g. subjects

with bipolar disorder with two manic episodes and

many depressive episodes should be more major de-

pression-like than bipolar-like). This is a convenient

segue to the next issue: are psychiatric phenotypes

qualitatively different from other biomedical diseases?

Genetic models

One of the major unknowns for psychiatric disorders

is the nature of the genetic models by which variation

at the DNA level increases risk for the clinical pheno-

type. For Mendelian disorders, a genetic model can be

hypothesized by examination of pedigrees (e.g. domi-

nant, recessive or sex-linked) and knowledge of preva-

lence. For psychiatric diseases, we assume complex
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inheritance (allowing for mixtures of genetic and

environmental effects along with diagnostic im-

precision). Two genetic models have received par-

ticular attention : that complex traits are caused by

common versus rare genetic variation. In the former,

psychiatric disease results from the cumulative effect

of many genetic variants, each of which is common in

the population and confers subtle genetic risk [the

common disease/common variant model (CDCV)]. In

the latter, psychiatric disease results from many dif-

ferent mutations, each of which is rare but of powerful

effect [the multiple rare variant model (MRV)].

Some commentators hold extremist views, for

example that psychiatric diseases arise only from an

MRV model (see the Controversies section below).

However, empirical results to date are consistent with

a place for both MRV and CDCV models. For schizo-

phrenia, bipolar disorder and autism, the data are

consistent with the presence of multiple common vari-

ants of subtle effect in some patients and rare variants

in others. More examples are likely to emerge with

improved technologies and larger sample sizes.

One fascinating empirical development has been

the emergence of the ‘profile score ’ concept, an ex-

treme form of the CDCV model. In a recent Nature

paper (International Schizophrenia Consortium, 2009),

the authors developed a list of approximately 30 000

SNPs and their risk alleles in one large schizophrenia

case-control sample. This list can be used to compute a

risk profile for each person in independent samples

(i.e. the number of schizophrenia risk alleles). The

score from the initial sample significantly predicted

schizophrenia risk in three independent samples

(p values 2r10x28, 5r10x11, and 0.008), bipolar risk

in two independent samples (p values 1r10x12 and

9r10x9), and, importantly, was not associated with

risk of six non-psychiatric biomedical disorders

(Crohn’s disease, T1DM, T2DM, coronary artery dis-

ease, hypertension and rheumatoid arthritis). These

data strongly support the CDCV model and also

suggest genetic overlap between schizophrenia and

bipolar disorder.

From these basic models, multiple elaborations are

possible. For example, different genetic variants in

the same gene could be associated with a disease in

different populations.

As an example of MRV, copy number variation

(CNV) has emerged as a rare but powerful risk factor

for neuropsychiatric disorders. CNVs are segments

of the genome >1000 bases where the number of

copies of this segment is different from the expected

number. Down’s syndrome is an example where three

copies (instead of two) of chr21 are present. The

chr22q11 hemi-deletion (one copy of chr22 from

17.3–20.3 million bases) is another example, and has

been associated with multiple neuropsychiatric dis-

orders. GWAS chips also contain many CNV probes,

leading to increasing interest in this topic.

The phenotype

The most important issue in a case-control study is

how to define cases and controls, and this is particu-

larly so in psychiatric genetics. This is more difficult

to define and measure than for most non-psychiatric

disorders. Furthermore, we have less knowledge of

the causes and mechanisms of pathogenesis. Our

current official classification systems, DSM and ICD,

are descriptive systems that were developed to have

clinical utility and acceptable reliability, but with no

expectation that the categories represented valid en-

tities with respect to etiology. Although these pheno-

type definitions are moderately to highly heritable and

hence sensible starting points for genetic research, it

is generally agreed that the most useful biological

categories and/or dimensional definitions and

measures are still unknown. The strikingly high level

of co-occurrence of different diagnoses within the

same individual (‘co-morbidity ’) almost certainly re-

flects a substantial overlap in the underlying biology

Table 2. Notable psychiatric GWAS findings (as of September 2009)

Disease Citation Locus Subjects

MAF

(OR)a Best SNP and p value

Autism Wang et al. 2009 CDH10-CDH9 intergenic 12 834 0.38 (1.19) rs4307059, 2r10x10

Bipolar disorder Ferreira et al. 2008 ANK3 10 596 0.05 (1.45) rs10994336, 9r10x9

CACNA1C 10 596 0.32 (1.18) rs1006737, 7r10x8

Schizophrenia O’Donovan et al. 2008 ;

International Schizophrenia

Consortium, 2009 ; Shi et al. 2009 ;

Stefansson et al. 2009

MHC-NOTCH4 region 47 536 0.85 (1.15) rs3131296, 2r10x10

MHC-histone cluster 47 536 0.87 (1.19) rs6913660, 1r10x9

NRGN 47 536 0.83 (1.15) rs12807809, 2r10x9

TCF4 47 536 0.06 (1.23) rs9960767, 4r10x9

ZNF804A 20 142 0.59 (1.12) rs1344706, 2r10x7

a Illustrative minor allele frequency (MAF) in controls and odds ratio (OR).

1068 A. Corvin et al.



of currently defined syndromes. This is further

evidenced by family studies demonstrating shared

familial liability across diagnostic boundaries (e.g.

schizophrenia and bipolar disorder) (Lichtenstein et al.

2009). It is interesting to note that some of the strongest

association signals to emerge from GWAS of schizo-

phrenia and bipolar disorder show an overlap across

traditional disorder categories (International Schizo-

phrenia Consortium, 2009).

In view of these observations, it can be expected that

a range of approaches to the clinical phenotype may be

required to maximize the potential from molecular

genetic studies. This includes analyses across the tra-

ditional illness categories (‘ lumping’) and analyses of

clinically meaningful subsets within a category or set

of categories (‘splitting’). It is also possible to use ap-

proaches that are not based on any specific prior

model of the clinical phenotype and to seek clinical

entities (whether they are categories or dimensions)

that would ‘make more sense’ from a genetic perspec-

tive. For example, for a highly significant and consist-

ently replicated genetic association, cases with and

without the genetic variant can be investigated in an to

attempt to identify the phenotypic consequences of the

variant : do cases with the variant have earlier onset,

more severe symptoms, worse response to treatment,

or alter brain structure or function? This is also know

as ‘reverse phenotyping’ or ‘phenotype refinement ’.

Another analytic possibility, which will be particularly

valuable if there is a high degree of polygenicity (i.e.

hundreds or thousands of susceptibility alleles of

small effect), will be to consider a large set of polymor-

phisms and use aggregate measures of their overall

contribution to phenotypic susceptibility to seek to

define ‘signatures ’ of genetic variants, the patterns of

which could be compared across phenotypes.

Molecular genetics will certainly not provide a

simple, gene-based classification of psychiatric illness.

However, it can be expected that establishing the

relationship between genotypes and psychiatric

phenotypes will inform understanding of psychiatric

nosology and move psychiatry towards a diagnostic

classification that is much closer to the underlying

pathophysiology than are the current descriptive

classifications. This may well be a relatively early and

clinically important ‘pay-off’ from the major research

investment in molecular genetic research in psy-

chiatry.

GWAS genotyping

Source of DNA

DNA samples are readily obtainable from multiple

sites although most studies use peripheral blood

lymphocytes from venous samples. Some studies use

samples from the oral cavity (buccal scrapings or epi-

thelial cells in saliva) but these samples can be plagued

by smaller DNA quantity, inferior DNA quality, and

interference of DNA from oral microbial flora. Some

samples are derived from lymphocytes transformed

by Epstein–Barr virus into immortalized cell lines but

such samples can have artifacts that complicate some

analyses (e.g. trisomy 12 in copy number analyses).

Although some investigators advocate using DNA

pooling due to lower cost (i.e. genotyping aggregated

cases and aggregated controls), this approach can have

serious issues with accuracy and reliability and has

not entered wide usage.

Genotyping

The cost of genotyping has decreased by a factor of

2000 in the past decade with the development of

reliable, robust and highly multiplexed genotyping

systems (meaning that many genetic markers are

genotyped simultaneously) and because of compe-

tition between multiple companies. As of this writing

in mid-2009, Affymetrix and Illumina are the main

suppliers of GWAS genotyping platforms. Each uses

different technologies and each has advantages and

disadvantages in regard to genotyping accuracy,

genomic coverage, ease of use, and total cost. Both

platforms genotype a predefined set of SNPs, an

important reason why cost has decreased. SNPs are

genotyped as they are relatively common in the

human genome and relatively straightforward to

assay.

For each platform, genotyping takes 3 or 4 days

per sample, and most laboratories run tens or even

hundreds of samples simultaneously. Such high

throughput means that even large-scale projects can

be completed in under a year. In practice, there are

always numerous issues to resolve, such as subjects

whose stated sex does not match patterns of chrX

and chrY SNPs or samples that are unexpectedly

identical.

Genotype calling

For each SNP, GWAS platforms assess each of the two

possible alleles with independent assays that can be

viewed as a scatter plot. Fig. 3 a depicts a scatter plots

for two SNPs in a GWAS. The scatter plots show the

intensity values for one SNP allele plotted by the in-

tensity values for the other SNP allele with each point

corresponding to one subject. In the scatter plot on the

left of Fig. 3 a, the points fall into three well-defined

clusters, and individuals in each cluster are ‘called’ as

having the same genotype for that SNP (i.e. GG, AG or
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AA). A genotype calling algorithm is used to assign

these clusters into genotypes for each subject. The

scatter plot on the right shows an example of poor

cluster separation, and this SNP should be excluded

from analysis.

GWAS analysis

Quality control (QC)

One of the most important and time-consuming steps

in conducting a GWAS is QC, the removal of SNPs and

subjects with unreliable data plus assessment of biases

that might lead to spurious results. Excellent reviews

of GWAS QC are available (McCarthy et al. 2008 ;

Neale & Purcell, 2008 ; Attia et al. 2009 b).

Individual SNPs are removed for any of the fol-

lowing reasons :

� Imprecise mapping to the genome (some SNPs map

to multiple places).

� Excessive disagreement among duplicated samples.

� Excessive missing genotypes on subjects (e.g.>5%).

� Low minor allele frequency (e.g. <1%).

� Observed genotype frequencies deviate markedly

from expectations (e.g. Hardy–Weinberg equilib-

rium p<1r10x6).

After SNP removal, subjects are dropped for any of

the following:

� Disagreement between chrX/chrY genotypes and

phenotypic sex (usually indicating an unreliable

link between genotype and phenotype data).
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Fig. 3. Images important for assessing a genome-wide association study (GWAS). These figures are from different studies.

(a) The allele intensity plots for two single nucleotide polymorphisms (SNPs) from which SNP genotype calls are generated.

(b) A quantile–quantile plot in which the observed p values are plotted against the p value distribution expected by chance

(on xlog10 scale). (c) A Manhattan plot. (d) An expanded set of findings in the region of neuregulin 1 (NRG1). See text

for more detailed description.
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� Excessive missing data (e.g. >5%).

� Inadvertent sample duplication or close relation

(monozygotic twin or first- or second-degree rela-

tive) to some other subject.

� Ancestry outlier.

Bias

As there are hundreds of thousands of SNPs per sub-

ject, relatives are readily identified and excluded as

their presence can lead to inflation of Type 1 error.

Similarly, genome-wide data allow identification and

control for the most infamous bias of a case-control

study, inflation of Type 1 error due to population

stratification. This occurs when cases and controls

are mismatched by ancestry and disease prevalence

differs by ancestry, and has been responsible for

numerous false-positive findings in the literature.

With genome-wide SNP data, it is possible to identify

individuals with divergent ancestry (even within

a continental population) ; these individuals can be

excluded or a statistical method used to control for this

bias.

In addition, important bias can be introduced if

samples from cases and controls are handled differ-

ently ; for example if samples from cases are older, if

DNA has been extracted with a different method from

controls, or if cases are genotyped at a different place

and time from controls. Careful assessment of these

and other sources of bias is crucial to understanding

the impact of a range of method artifacts.

Statistical testing

Using the SNPs and subjects that passed QC, in-

vestigators generally use logistic regression with case-

control status as the dependent variable and a single

SNP as the predictor. The SNP is coded as 0, 1 or 2

(i.e. the number of copies of one of the two alleles) for

an additive test with 1 df. This analysis is repeated

for each SNP for a million or more statistical tests.

Some investigators include covariates in the logistic

regression model such as age, sex or indicators of an-

cestry. In some instances, alternative genetic models

are used (e.g. recessive or dominant) but most studies

use a 1 df additive test as the primary statistical test.

Multiple testing

A typical GWAS for one disease includes one logistic

regression per SNP, or at least 500 000 statistical tests.

These tests are not all independent as SNPs that are

located close to one another can be correlated because

of linkage disequilibrium. Even so, with 105–106 stat-

istical tests, very small p values by conventional stan-

dards are expected by chance. As noted earlier, p

values <5r10x8 (akin to a Bonferroni correction of

the traditional 0.05 Type 1 error level for 1 000 000

statistical tests) (Pe’er et al. 2008) are generally re-

quired for significance. Experience suggests that find-

ings more significant than this threshold tend to

replicate well across studies. However, unless power

is exceptional, it is generally incorrect to exclude a

SNP from consideration if does not exceed this

threshold. Indeed, some SNPs that are unimpressive

in an initial study (e.g. p=0.001) can eventually repli-

cate well and exceed the critical threshold. As em-

phasized above, replication is essential.

Visualization

The scale of a GWAS can be overwhelming, and many

find it helpful to use graphics to depict certain results.

Fig. 3 b shows a quantile–quantile plot, a scatter plot of

the p values observed in a GWAS versus that expected

by chance. To spread the graph out, the points are

transformed using xlog10(p value) (e.g. 0.0001 or 10x4

becomes +4.0). In this instance, the plot shows that

the observed p values conform closely to the expected,

suggesting that no finding is individually impressive

after accounting for multiple comparisons. Fig. 3 c

shows a ‘Manhattan plot ’ (to some eyes, this re-

sembles the night skyline of the Manhattan borough of

New York City viewed from across the Hudson River),

a depiction of all small p values by genomic position.

These results (from a different study than in Fig. 3 b)

suggest that genomic regions on chromosomes 4, 6, 7,

10 and 12 exceed genome-wide significance. Fig. 3 d

(again from a different study) shows an expanded

view of a genomic region of interest [neuregulin 1

(NRG1)]. The region of maximum signal on the right-

hand side of the graph is quite far from the region

suggested as a risk factor for schizophrenia (on the far

left-hand side of the figure).

Imputation

Samples from the HapMap project have been geno-

typed for a very large number of SNPs. Under the

assumption that these samples (e.g. the northern

European subset) are comparable to members of a

case-control collection, the combination of these data-

sets can be used to estimate (impute) genotypes in the

case-control collection by treating it as a missing data

problem. Thus, it is possible to increase the number of

available genotypes from, for example, 500 000 di-

rectly assessed SNPs to 2 million directly genotyped

and imputed SNPs. A major use of imputation is to

allow direct comparison of case-control studies that

were genotyped using different GWAS platforms. For

GWAS primer 1071



many of the Affymetrix and Illumina platforms, the

number of SNPs directly genotyped on both platforms

is <20%. Imputation is often an essential precursor

for meta-analysis.

Bioinformatics

Two web resources for investigating psychiatric gen-

etics findings are shown in Table 1 (Allen et al. 2008 ;

Konneker et al. 2008). GWAS analyses described above

take an agnostic approach to GWAS data. Experience

gleaned from other diseases indicates that SNPs

identified and confirmed by replication are not

necessarily those with the smallest p values in an in-

itial study. Bioinformatics approaches can be useful

in annotating and organizing GWAS SNP data to

identify SNPs for replication. SNPs may be prioritized

based on many additional types of information : pre-

vious genetic association data ; by location in exons,

putative functional regions of the genome, or in brain-

expressed genes ; or on the basis that the identified

SNP allele has an effect on gene expression in brain

(Xu & Taylor, 2009).

Pathway analysis

Pathway analysis represents an alternative analytical

approach to interrogating GWAS data. Several formal

pathway-based analytical methods have been de-

scribed (Hong et al. 2009). Essentially, these methods

attempt to establish whether SNPs mapping to genes

in a pathway show more evidence of association with

a disorder than other SNPs in the GWAS, or SNPs

mapping to other pathways. Pathway refers to groups

of genes that are similar in some way, for example

highly expressed in a tissue such as prefrontal cortex,

or crucial to a biological process such as neuronal dif-

ferentiation. The approach can be applied to test for

involvement of specific pathways, to perform a hy-

pothesis-free test of many different pathways, or to

investigate whether pre-identified risk genes may be

involved in the same molecular pathway or process.

Investigating at the level of molecular pathways rather

than individual risk variants may offer several poten-

tial advantages by being robust to the effects of genetic

heterogeneity or in reducing the total multiple testing

burden in analysis. However, this approach is depen-

dent on the quality of annotation of the pathways be-

ing investigated (which can be uncertain) and assumes

that risk variation falls within genes. As mentioned in

our description of GWAS for human diseases, a large

subset of identified genetic risk variation (43%) fell

outside gene boundaries. Arguably the principal

advantage of this approach is to establish additional

information relating to function over and above the

statistical SNP GWAS data. Implicating a molecular

pathway in a disease process is likely to be more

biologically informative than interpreting evidence

of involvement of an anonymous genetic marker.

Meta-analysis

Conducting a meta-analysis, the combined analysis of

summary results from multiple primary studies, is

now known to be crucial in the identification of robust

genetic signals. This general principle has been ident-

ified on multiple occasions, as evidenced by studies of

Crohn’s disease, T1DM and T2DM (Barrett et al. 2008,

2009 ; Zeggini et al. 2008). As discussed earlier, the

PGC is conducting such analyses for psychiatric dis-

orders.

However, a high-quality meta-analysis must con-

front and surmount numerous conceptual and tech-

nical issues. These issues include : the comparability of

samples and phenotype definitions ; quality control ;

imputation to a common genotype set with attention

to strand and allele issues ; statistical methods to

combine data ; visualization; bioinformatics ; and fol-

low-up strategies. de Bakker et al. (2008) provide a

practical treatment of these issues.

Follow-up strategies

Assuming that a GWAS identifies a highly re-

producible and consistently replicated association

with a genomic region : what next? The implications

are discussed in the next section (ELSI) and additional

follow-up experiments are described here (Ioannidis

et al. 2009). The fundamental idea is to design exper-

iments to develop a detailed understanding of how

changes at the genetic level act and interact with the

environment to alter risk of a psychiatric disorder.

These experiments should be at multiple levels : DNA,

RNA, protein, biological process, cell, local cell sys-

tems, organ, organ system, organism, and community

levels are all potentially relevant.

These associations could be direct (i.e. the identified

variant is the causal variant) but are more likely to be

associated indirectly in that the identified variant is

correlated with some other genomic variant. For in-

direct association, the causal variant could be some

other SNP, a set of interacting SNPs, a haplotype, an

insertion/deletion polymorphism, a CNV, or a more

complex type of genetic variant. It is also wise to leave

open the possibility of a causal genetic mechanism that

is currently unknown. The genetic effects are highly

likely to be subtle and probabilistic (and even con-

ditionally dependent on external influences) rather

than deterministic as with classical Mendelian dis-

orders.
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DNA

Broadly, genetic follow-up aims to validate and refine

notable SNP associations to identify underlying causal

variants and map their relationship to clinical pheno-

types. One approach, beyond simple replication, is to

investigate an implicated genomic region at higher

marker density to refine the association signal (fine-

mapping). For other complex diseases this approach

has met with mixed results, suggesting that in many

cases the impact of risk variants on common disease

phenotypes is complex and not necessarily related to

obvious effects on gene function, such as alteration of

protein structure. This may relate to the limited

coverage achieved by these studies, but it has been

estimated that by direct genotyping and imputation a

large percentage (>85%) of common SNP variation is

already being assayed by GWAS, although this can

vary markedly by genomic region.

Many investigators would conduct regional ‘deep’

resequencing of large numbers of cases and controls to

discover previously unknown genetic variants. The

emerging technology of genome resequencing has

shown that there is usually an array of undiscovered

genetic variants. A more detailed understanding of

genetic variation in human populations will soon be

available through the 1000 Genomes Project

(www.1000genomes.org), which is performing geno-

mic resequencing of >1000 people from around the

world. This is likely to prove very informative in

guiding fine-mapping studies and potentially un-

tangling more complex effects on phenotype.

Alternative genetic mechanisms may also contrib-

ute to disease, and disruption of the same genes or

molecular pathways by different mechanisms is likely

to be relevant to the consequent phenotype. Follow-up

strategies are increasingly using GWAS results to test

other genetic risk mechanisms such as involvement of

CNV, the cumulative impact of CNV burden (e.g. the

number of CNVs), and the cumulative impact of hun-

dreds or thousands of SNP genotypes. In addition,

investigators are actively working to assess the

cumulative impact of individually rare risk alleles and

epigenetic phenomena such as methylation.

RNA

A potentially useful gene annotation is whether a

genetic variant leads to changes in RNA abundance or

structure. This so-called quantitative trait loci (QTL)

approach is in its early stages, but refinement and

larger studies could give investigators a useful set of

initial hypotheses should an associated region be

shown to alter messenger RNA for a nearby gene.

These data can also be used to answer the question : to

what gene does an associated SNP ‘belong’?

Investigators usually assume that a SNP exerts its im-

mediate effect on a gene it is in or near. In general, this

assumption may be reasonable, but there are examples

where this assumption is incorrect (e.g. lactase per-

sistence is due to MCM6 intronic variation, y14 kb

from the lactase gene). Moreover, 23% of GWAS hits

are >20 kb from known genes. Fascinating examples

include the 8q24 ‘gene desert ’ (30–500 kb from MYC)

that is robustly associated with multiple different

cancers and a 5p14 region with replicated associations

with autism but y1 Mb from the nearest gene.

Molecular and cellular biology

There are many powerful technologies that could be

brought to bear. These approaches are too numerous

to describe succinctly and their choice depends on the

details of a genomic variant. In many instances, use of

transgenic manipulation (knock-out or humanizing

knock-in approaches) of non-human model organisms

(mouse or worm in particular) might be used to gain

greater understanding of the impact of a genomic

variant.

Clinical

Risk variants identified by GWAS are individually

likely to be of modest effect, which poses challenges

for clinical follow-up studies. These are not insur-

mountable, but are at present dependent on the avail-

ability of detailed phenotypic information from

subjects involved in GWAS or the ability to recontact

subjects for additional studies. Recent efforts in schizo-

phrenia demonstrate the application of a phenotype

refinement approach, in this case identifying a dis-

turbed neural connectivity phenotype in carriers of the

risk allele at ZNF804A using a neuroimaging approach

(Esslinger et al. 2009). If disorders are highly polygenic

it might be possible to group participants into classes

based on total burden of risk variation or contribution

from different functional pathways. Such groupings

could than be used within a disorder, or across current

diagnostic boundaries, to investigate clinical profiles,

cognitive functioning, drug response or clinical out-

come. By extension, such approaches could also be

applied to investigate gene–environment interaction

in risk. The optimum approach would be integration

of genetic and epidemiological research to investigate,

prospectively, the effects of risk genes and gene–

environment interaction in prospective studies or

within high-risk groups.

GWAS primer 1073



Controversies

GWAS efforts have been subject to multiple criticisms,

both for the method generally and with respect to

psychiatric disorders. Criticism has been welcomed,

particularly when it is based on empirical data and not

opinion. One initial criticism – that GWAS will not

work in the sense of identifying any replicable as-

sociations – has been robustly disproved, as GWAS

clearly ‘works’ for a broad range of biomedical dis-

orders. The crucial question for our field is whether

GWAS will ‘work’ for psychiatric disorders (as dis-

cussed above, there is positive evidence that it has).

Common criticisms of GWAS are listed below. All

have been articulated at length and strong counter-

arguments are available (see Table 1 for citations).

� Phenotype criticisms: the clinically derived DSM

and ICD systems are merely descriptive. The dis-

orders are too heterogeneous and imprecisely de-

fined; that is investigating ‘schizophrenia ’ is like

studying ‘cancer ’ or ‘ fever ’.

� Genetic model criticisms. The vast majority of

GWAS use perhaps the simplest conceivable model,

a test for the additive effect of a single, relatively

common SNP variant on the phenotype. Some have

argued that this model is completely wrong, that

risk for psychiatric disease is entirely something

else, that is risk is entirely due to rare variants, epi-

genetic modifications, etc.

� The ‘so what ’ criticism. Some have argued that

robust GWAS findings cannot contribute to in-

dividualized medicine and thus do not matter.

� An empirically based criticism of GWAS is that the

current genotyping technologies miss potentially

important genetic variation (e.g. a subset of com-

mon variants, a large proportion of rare variants,

non-SNP genetic variants such as insertion–deletion

polymorphisms, and are not optimal for CNV

detection).

Ethical, legal and social implications (ELSI)

Major scientific advances in the molecular genetic

understanding of psychiatric illness are associated

with important ethical issues that must be con-

sidered carefully. Although many issues in psychi-

atric genetics are no different from those for other

complex disorders, this combination of genetics and

mental illness justifiably receives close scrutiny of

ethical and psychosocial issues. It is well known that

behavior genetics research has been misused in the

past, most notoriously to support Nazi claims of

racial superiority, which had an important role in

the Holocaust. It is therefore extremely important

that relevant issues are considered and debated as

early as possible and, where appropriate, ethical

guidance and legal frameworks put in place to pro-

tect individuals and society against potential misuse

of the new technologies and data. In recognition of

its major importance, ELSI was an integral compo-

nent of the Human Genome Project from its incep-

tion.

Key ethical issues under current debate include the

need for new approaches to informed consent for

large-scale genetic studies and consideration of the

legal issues relating to confidentiality and use of gen-

etic data. For example, under what circumstances (if

any) might it be useful or appropriate to use genetic

data in a court case to support an argument about

responsibility for a behavior? Should insurance

companies or employers have access to genetic data

that inform risk of mental illness? How can we pre-

vent genetic results being used to reify racist, sexist

or other stigmatizing biases? Quite apart from these

potential non-medical uses of genetic data, there is the

important question of whether and when genetic tests

may be useful clinically : to help in confirming diag-

nosis ; to direct management in a patient with signs of

illness ; or to predict risk in a person without signs of

illness. At present, risk variants have not been robustly

established that would provide clinically useful indi-

vidual predictive power and it may well be many

years in the future before this is possible. Nonetheless,

we need to think through the issues in advance of the

scientific and technical reality. It is highly desirable

that the clinical usefulness of any genetic test is

demonstrated before it is made widely available.

‘Direct to consumer’ genetic tests of spurious clinical

usefulness are already available commercially so there

is an urgent need to develop frameworks and guide-

lines for best practice.

In addition to the continuing public debate, con-

sultation and education on these issues, there is a need

for scrupulous integrity by scientists in the way they

present research findings. Reports should be appro-

priately cautious, balanced and free from ‘hype’,

‘ spin’ or commercial bias.

The exciting challenge for psychiatry in the coming

years is to ensure that a revolution in understanding of

the biology of mental illness is translated into a revol-

ution in clinical care. The important challenge for so-

ciety is to ensure that new knowledge and powerful

technologies are not misused.
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