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Abstract

As the incidence of obesity is reaching ‘epidemic’ proportions, there is currently widespread interest in the impact of dietary components

on body-weight and food intake regulation. The majority of data available from both epidemiological and intervention studies provide

evidence of a negative but modest association between milk and dairy product consumption and BMI and other measures of adiposity,

with indications that higher intakes result in increased weight loss and lean tissue maintenance during energy restriction. The purported

physiological and molecular mechanisms underlying the impact of dairy constituents on adiposity are incompletely understood but may

include effects on lipolysis, lipogeneis and fatty acid absorption. Furthermore, accumulating evidence indicates an impact of dairy constitu-

ents, in particular whey protein derivatives, on appetite regulation and food intake. The present review summarises available data and

provides an insight into the likely contribution of dairy foods to strategies aimed at appetite regulation, weight loss or the prevention

of weight gain.
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Introduction

In addition to being a high-quality protein source, milk and

dairy products represent important sources of Ca, iodine,

riboflavin and B12, providing 60, 55, 52 and 150 % of the

adult reference nutrient intakes in the UK for these nutri-

ents, respectively(1). In recent years, attention has focused

on the macronutrient composition of dairy products and

the potential effects of dairy consumption on the risk of

chronic diseases such as CVD, and more recently, obesity

and its associated metabolic disorders such as the meta-

bolic syndrome and type 2 diabetes. The present review

specifically examines the evidence from epidemiological

studies and intervention trials that have investigated the

relationship between dairy product consumption and diet-

ary Ca, and measures of adiposity. Furthermore, potential

mechanisms underlying the possible relationship between

dairy constituents and body-weight regulation, and in

particular appetite, are explored. The review commences

by detailing current and predicted trends in obesity inci-

dence, and worldwide consumption patterns of milk and

other dairy products.

Obesity prevalence and projections

The prevalence of excess body weight has reached epi-

demic proportions, with more than 1·6 billion adults being

overweight (BMI $ 25 kg/m2) worldwide of which 400

million are clinically obese (BMI $ 30 kg/m2)(2). Table 1

illustrates the current and predicted future prevalence of

overweight and obesity in various parts of the world. The

UK obesity rates are the third highest in Europe, with the

prevalence of overweight individuals (including obese)

being 61·9 % for females and 65·7 % for males and 24·2 %

and 21·6 % classified as obese, respectively(3).

*Corresponding author: Dr Anne M. Minihane, email a.minihane@uea.ac.uk

Abbreviations: CCK, cholecystokinin; CLA, conjugated linoleic acid; GLP-1, glucagon-like peptide-1; 1,25(OH)2D3, 1,25 dihydroxyvitamin D3; UCP2,

uncoupling protein-2.
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WHO projections suggest that by 2015, approximately

2·3 billion adults will be overweight and more than 700

million obese (Table 1). In the UK, it is projected that within

this time frame, 67·7 % of adults will be overweight(3).

Dairy consumption patterns worldwide

Per capita consumption of dairy products is generally

higher in the majority of developed countries relative

to less developed countries(4). The average per capita

consumption of dairy products in the European Union

(twenty-five countries) is 92·6 litres for milk, 18·4 kg for

cheese and 4·2 kg for butter per annum(5). Comparable

consumption patterns are evident in North America, with

annual per capita consumption of 94·7 and 83·9 litres of

milk, 12·2 and 16·0 kg of cheese and 3·3 and 2·1 kg of

butter in Canada and the USA, respectively(5). The most

recent estimates of dairy product consumption in the UK

from the Department for Environment, Food and Rural

Affairs’ Family Food Survey in 2008 indicate that total

milk consumption has decreased by 15 % whilst yoghurt

and cheese have increased by 34 and 10 % during the

last decade(6). Comparable changes in dairy consumption

patterns are evident throughout the European Union and

North America(7–9).

Although dairy products undoubtedly represent the

major source of dietary Ca, there is recognition that for

a subgroup of individuals dietary supplements make a

significant contribution to their total intake, although at

a population level the contribution is likely to be relatively

minor. For example, in a 2009 report detailing supplement

use in nine European countries dietary supplements were

reported to contribute 0·1–5·1 % and 1·3–8·5 % of total

intake in male and female adults, respectively(10). In reality

this may be an overestimation, with many individuals

purchasing supplements but consuming them on an

infrequent basis.

Scope of the review and an overview of the strengths and
limitations of available evidence

The association between dairy product/Ca consumption

and body weight regulation has been widely investigated

with data from epidemiological and intervention studies

in both adults and children summarised in numerous

recent reviews(11–22). In a number of studies reporting on

the association between dietary Ca and adiposity and its

regulation, no distinction is made between dairy and

non-dairy Ca sources, making it difficult to establish

whether the beneficial component is likely to be Ca or

an alternative milk bioactive component whose intake is

highly correlated with total Ca intake.

To our knowledge, no recent review has examined the

impact of dairy products on both body composition and

appetite, which represents the primary focus of the present

review. Relevant articles were abstracted through the

PubMed database, Google Scholar, and the cited references

of these reports using the following key words: ‘dairy’,

‘milk’, ‘BMI’, ‘weight’, ‘body composition’, ‘appetite’, ‘sati-

ety’ and ‘calcium’. These key words produced 4716 hits.

Articles available only in abstract form or not published

in English were excluded. Studies conducted in children

and adolescents were not included in the present review.

All observational or intervention studies which exclusively

examined the impact of Ca supplements were not

reviewed since the focus is dairy products and not Ca

per se. However, where a direct comparison between the

impact of dietary or dairy Ca and supplemental Ca is made

the data are included, as it provides a valuable insight into

the potential bioactive components in dairy products.

Using these criteria a total of 118 articles, which examined

the impact of milk, milk products, or dietary Ca (which is

mainly derived from dairy sources) on adiposity and its

regulation in adults, were considered. This number does

not include the mechanistic studies in cells or animals

that are mentioned in the mechanistic section of the

present review.

The initial evidence to indicate an association between

dairy consumption was derived from cross-sectional

studies. However, it is recognised that this type of study

design is receptive to inverse causation bias, meaning

that the presence of adiposity in individuals may affect

dairy consumption habits. Prospective studies represent

a more robust design. Unless otherwise stated in the text,

it is assumed that the associations between dairy and

adiposity cited in the text have been adjusted for the

main confounding factors such as age, sex, physical

activity, smoking status, alcohol consumption, fibre

intake and energy intake. The validity of the adjustment

of association models for total energy intake needs to

be carefully considered when interpreting study results

and conducting cross-study comparisons. Given the

high degree of correlation between total energy intake

and adiposity, adjustment for total energy intake appears

Table 1. Current and projected age-standardised estimates for over-
weight and obesity by country for both sexes, aged 15–100 years*

BMI. . . $25 to , 30 kg/m2 $30 kg/m2

2005 2015 2005 2015

Country
Prevalence

(%)

Predicted
prevalence

(%)
Prevalence

(%)

Predicted
prevalence

(%)

Argentina 38·2 34·7 31·2 44·1
Australia 43·1 44·1 24·3 33·4
Brazil 37·0 39·3 13·5 24·1
Canada 37·6 37·5 23·5 27·8
China 27·2 40·8 1·7 7·6
Greece 42·4 41·5 26·1 30·6
South Africa 32·3 33·0 21·0 23·5
UK 40·9 40·6 22·9 27·1
USA 34·9 29·4 39·2 53·0

* Calculated from data based on WHO factsheets(3).
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appropriate(23). However, given that the beneficial impact

of dairy constituents may be through an impact on appetite

and food intake and therefore energy regulation, the

adjustment for total energy intake may be misleading due

to correction of the model for the mediator of the effect.

Yet, the majority of the cross-sectional and prospective

studies adjust their models for energy intake.

Intervention trials represent the most ‘robust’ source of

data and are the most appropriate to support a cause–

effect relationship.

In addition to reviewing the published literature, the

present review includes a novel meta-analysis of eighteen

epidemiological studies, in an attempt to summarise the

relationship between dietary Ca intake and BMI, after

correction for trial effects. Further details of the data anal-

ysis methods employed and the selection criteria for the

inclusion or exclusion of individual studies are given later.

Throughout the text ‘Ca’ or ‘total Ca’ refers to both

‘dietary Ca’ (Ca derived solely from the total diet) and Ca

consumed as supplements, whilst ‘dairy Ca’ refers to the

Ca derived solely from dairy product consumption.

Epidemiological evidence of the effects of dairy product
consumption on body composition

Evidence from cross-sectional studies

Several cross-sectional studies have indicated an inverse

relationship between dairy consumption and body

weight (Table 2). Mirmiran et al.(24) showed that the

number of dairy servings was inversely correlated with

BMI (r 20·38; P,0·05) (Fig. 1)(24). Similar results were

observed by Varenna et al.(25) in early postmenopausal

women. However, no association was observed in lean

young Japanese women with low mean habitual dairy con-

sumption (40 g dairy products/1000 kJ)(26), and a low mean

BMI (20·8 kg/m2), which is suggestive of a possible thre-

shold level for either body weight or dairy consumption

below which no associations are observed.

Two studies have also examined the relationship

between dairy product consumption and the prevalence

of central obesity. Azadbakht et al.(27) showed that dairy

consumption is inversely associated with the prevalence

of an enlarged waist circumference (defined as . 102 cm

in men and . 88 cm in women), with OR by quartile of

1, 0·89, 0·74 and 0·63 (P,0·001) (Fig. 1), with a more

recent study from the same group confirming the earlier

associations between dairy and central adiposity(28).

A limited number of studies have examined the impact

of ‘type’ of dairy product on the associations between

dairy consumption and body composition. However, some

inter-study inconsistencies in the findings are evident.

Two studies, which observed no overall association

between total dairy consumption and adiposity, reported

that low-fat dairy consumption was either positively

associated with BMI and waist circumference(29) or was

inversely associated with waist-to-hip ratio(30). In the

studies of Snijder et al.(29) and Beydoun et al.(31) cheese

was positively associated with the prevalence of obesity

and central obesity. In contrast, milk and yoghurt were

negatively related to adiposity in Beydoun’s analysis,

while in Snijder’s study there were no significant inverse

associations (Table 2). However, both authors do state

that due to the fact that obese individuals often consume

low-fat dairy products in an attempt to lose weight,

cause–effect relationships are often difficult to explore in

cross-sectional studies. Marques-Vidal et al.(32) observed a

modest but significant negative relationship between milk

intake and BMI in men (r 20·10; P,0·001) and women

(r 20·04; P,0·001), which is consistent with the findings

of Dicker et al.(33). In contrast, Lawlor et al.(34) reported

that 2·8 % of the 4024 women who reported never drinking

milk had a lower BMI than those who drank milk. How-

ever, this subgroup probably includes lactose-intolerant

women and it is not representative of any meaningful

group within the general population. Therefore, overall,

the cross-sectional data suggest that ‘lower’-fat dairy

products such as milk and yoghurt are associated with

lower adiposity, with cheese having the opposite effect.

As far as Ca is concerned, numerous studies have

showed inverse associations between dietary Ca, and the

prevalence of obesity(33,35–39), central adiposity(28), body

weight(40,41) and sagittal abdominal diameter(42). To date,

seven studies have evaluated the association of dietary

Ca with adiposity according to sex or ethnicity(43–49),

with stronger associations evident in females relative to

males and in white women compared with black

women(43,44,49). However, due to the numerous differences

in the diet and overall lifestyles between men and women

and ethnic groups, the results regarding the impact

of sex and race on Ca–adiposity associations remain

controversial.

Evidence from baseline data in prospective studies
examined in a cross-sectional manner

Baseline data of cohorts from several prospective studies

with CVD, hypertension or type 2 diabetes incidence as

primary outcomes were used to examine associations

between dairy consumption and body composition

(mainly BMI)(50–57). Often, as adiposity measures did not

represent a primary outcome, these analyses have not

controlled for important confounding factors including

energy intake. However, their distinct strength is the size

of the cohort, ranging in size from 2245 to 110 792 parti-

cipants. The results from studies that examined dairy

consumption, dietary Ca and total Ca are summarised sep-

arately below. Briefly, among seven studies that examined

dairy consumption(27,55,56,58–61), two studies(27,58) showed

a statistically significant negative association and one

study(61) showed a positive association between increased

dairy consumption and BMI as demonstrated in Fig. 2.
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Table 2. Cross-sectional studies of dairy consumption and measures of adiposity

Study Study details Results and conclusion Adjustments

Mirmiran et al. (2005)(24)* The Tehran Lipid and Glucose
Study, 223 men, 239 women
(aged . 16 years)

A significant inverse relationship between BMI and servings
of dairy consumption per d. OR for being overweight were 0·78
(95 % CI 0·43, 0·92) and 0·89 (95 % CI 0·53, 0·95) for men and
women, respectively, with equivalent OR for obesity of 0·73
(95 % CI 0·40, 0·83) and 0·69 (95 % CI 0·34, 0·80), respectively,
when comparing Q1 and Q4

Age, intake of total energy, carbohydrate, fat,
protein, dietary fibre and physical activity

Varenna et al. (2007)(25)* 1771 early-postmenopausal
Italian women

An inverse relationship between dairy intake and BMI (Q1,
BMI 24·1 (SD 3·4) kg/m2 v. Q4, 23·2 (SD 3·4) kg/m2; P¼0·001)

Age, age at menopause, smoking

Murakami et al. (2006)(26) 1905 Japanese women
(aged 18–20 years)

No significant relationship between BMI and dairy consumption Residential block size of residential area, smoking,
alcohol, physical activity, experience of dieting,
intentional dietary change, rate of eating,
protein, fat and dietary fibre intake

Azadbakht et al. (2005)(27)* 375 men and 470 Tehranian
women (aged 18–74 years)

A significant inverse relationship between dairy consumption
and WC (OR by quartile: 1, 0·89, 0·74, 0·63; P,0·001)

Age, total energy, percentage of energy from fat,
BMI, use of blood pressure and oestrogen
medication, smoking and physical activity

Azadbakht & Esmaillzadeh
(2008)(28)*

926 Tehranian women
(aged 40–60 years)

Dairy consumption was negatively associated with WHR
(r 20·2; P,0·05)

Age, physical activity, depression, smoking,
coffee consumption, menopausal status,
marriage, parity, age, medication use and BMI

Snijder et al. (2007)(29)* The Hoorn Study, 852 men
and 1044 Dutch women
(aged 50–75 years)

No significant association between dairy consumption and BMI
(b 0·06 (SEM 0·04); P¼0·17) and WC (b 0·07 (SEM 0·11);
P¼0·51). Cheese was positively related to BMI (b 0·15
(se 0·08); P¼0·04)

Age, sex, total energy intake, fibre, physical
activity, alcohol, smoking status, income,
educational level and antihypertensive
medication use

Brooks et al. (2006)(30)* The Bogalusa Heart Study,
505 men, 801 women
(aged 20–38 years)

No significant relationship between dairy consumption and BMI
or WHR. Significant negative relationship between low-fat dairy
consumption and abdominal obesity in white males (P¼0·008)

Energy intake, age, physical activity outside
of work

Beydoun et al. (2008)(31) 7652 women and 6966 US
men (aged . 18 years)

Each serving of cheese was associated with a higher prevalence
of obesity (OR 1·14; 95 % CI 1·08, 1·21) and central obesity
(OR 1·11; 95 % CI 1·05, 1·17) while each serving of yoghurt was
inversely related to obesity (OR 0·51; 95 % CI 0·36, 0·71) and
central obesity (OR 0·51; 95 % CI 0·37, 0·70)

Age, sex, ethnicity, socio-economic status
(education and poverty income ratio),
energy intake and physical activity

Marques-Vidal et al. (2006)(32)* The Portuguese Health Interview
Survey, 17 771 men, 19 742
women (aged $ 18 years)

A significantly inverse relationship between BMI and milk
consumption (men: r 20·11, P,0·001; women: r 20·06;
P,0·001), with the strongest relationships in men and
premenopausal women

Age, number of meals, smoking, educational
level, usual activity at work and leisure time
physical activity

Dicker et al. (2008)(33) The Israeli National Health and
Nutrition Survey, 1371 men,
1411 women (aged 25–64 years)

Daily milk consumption was higher in normal-weight subjects (103·4
(SD 147·5) g) compared with overweight (85·7 (SD 122·3) g)
and obese subjects (84·5 (SD 135·1) g) (P,0·01)

Not stated

Lawlor et al. (2005)(34)* The British Women’s Heart and
Health Study, 4024 women
(aged 60–79 years)

Milk drinkers had higher BMI compared with non-milk drinkers
(BMI 27·6 and 26·4 kg/m2, respectively; P¼0·03)

Age

Rosell et al. (2004)(42) 301 Swedish men
(aged 63 years)

An inverse relationship between dairy fat consumption and
SAD in under-reporters (r 20·36; P¼0·001) and not in
non-under-reporters (r 20·04; P¼0·59)

Not stated

Q, quartile; WC, waist circumference; WHR, waist-to-hip ratio; SAD, sagittal abdominal diameter.
* Studies used post hoc analysis.
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Among six studies that examined dietary Ca(51,57,62–65),

four showed a negative association with BMI, with the

difference between the highest and lowest dietary Ca con-

sumption being 20·3 kg/m2 (P,0·01)(62), 20·6 kg/m2(51),

20·8 kg/m2 (P,0·001)(57) and 21·3 kg/m2 (P,0·001)(65).

One study showed no difference(64) and one(63), which

observed no overall group effect, reported an effect of

sex with men having higher (þ0·2 kg/m2) and women

lower (20·3 kg/m2) BMI between quintile 5 v. quintile 1

of dietary Ca intakes without the level of significance

being reported. Finally, two studies(52,66) also showed

a negative association between total Ca intake and

BMI (with differences between quintile 5 v. quintile 1 of

21·0 kg/m2 in the Iowa Women’s Health study(51) and

20·2 kg/m2 (P,0·001) in the Health Professionals

Follow-up Study(66)).

Only two studies have examined associations between

milk consumption and BMI, with a significant negative

association found in the Caerphilly study (P,0·001)(54),

whilst no significant difference (P¼0·50) was observed in

a prospective study by Ness et al.(50).

In conclusion, there are inconsistent results from

the baseline data of prospective studies examined in a

cross-sectional manner regarding the relationship between

dairy product consumption and BMI. This inconsistency

might be due to the fact that the data analysis conducted

has often not controlled for energy intake, therefore mask-

ing the potential impact of dairy consumption on adiposity.

Evidence from prospective studies

A number of prospective studies have observed that regu-

lar dairy consumption is inversely associated with weight

gain and abdominal obesity (Table 3)(67–71). For instance,

results of The Coronary Artery Risk Development

In Adults (CARDIA) 10-year study(70) showed a 19·7 %

lower incidence of obesity between quintile 5 (intake

frequency $ 35 times/week) and quintile 1 (0 to , 10

times/week) of dairy intake (milk, cheese, sour cream,

cream and yoghurt) in adults with a BMI $ 25 kg/m2

at baseline.

Two studies have specifically evaluated the association

between changes in consumption of dairy products and

long-term weight gain (9–12 years)(72,73). Rosell et al.(73)

analysed a cohort of middle-aged perimenopausal

Dairy product intake (servings/d)
1·6 1·9 2·6 3·5

O
R

0·5

0·6

0·7

0·8

0·9

1·0

1·1

1·2

1·3

Fig. 1. Risk for being overweight, obese and having an enlarged waist

circumference in relation to the daily intake of dairy products. (X), Men OR

for being overweight(24); (W), women OR for being overweight(24); (P), men

OR for being obese(24); (L), women OR for being obese(24); (B), OR for

enlarged waist circumference.
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Fig. 2. The association between BMI and dairy consumption, with the data derived from cross-sectional analysis of available baseline data from large prospective

cohorts. (p), Azadbakht et al.(27): The Tehran Lipid and Glucose Study; 21·8 kg/m2 (P,0·01). ( ), Choi et al.(56): The Health Professionals Follow-up Study;

þ0·3 kg/m2. (n), Liu et al.(55): The Women’s Health Study; þ0·2 kg/m2. (o), Alonso et al.(58): The University of Navarra Follow-up Study; 20·3 kg/m2 (P¼0·01).

( ), Engberink et al.(59): The Monitoring Project on Risk Factors for Chronic Diseases; þ0·4 kg/m2. ( ), Engberink et al.(60): The Rotterdam Study; 20·1 kg/m2.

( ), Toledo et al.(61): The PREDIMED study; þ0·4 kg/m2 (P¼0·04).
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Table 3. Prospective studies of dairy consumption and body composition

Authors Details Results and conclusion Adjustments

Newby et al. (2003)(67,68)* The Baltimore Longitudinal Study of Aging;
219 women, 240 men (aged 30–80 years),
14-year follow-up

A dietary pattern rich in low-fat dairy products and
high-fibre foods was associated with a smaller
increase in BMI and waist circumference (P,0·05)

Age and sex

Drapeau et al. (2004)(69) The Québec Family Study; 136 women and
112 men ($18 years), 6-year follow-up

A dietary pattern rich in whole fruit, skimmed and
partly skimmed milk was associated with less
body-weight gain and adiposity (b 2 0·20
(SE 0·09); P¼0·06)

Age and baseline body-weight indicators

Pereira et al. (2002)(70) The CARDIA study; 3157 men
(aged 18–30 years), 10-year follow-up

There was a 19·7 % reduction in incidence of obesity
between quintile 5 and 1 of dairy consumption in
adults with BMI $ 25 kg/m2 at baseline (P,0·001)

Age, sex, race, energy intake, study centre and
baseline BMI

Rajpathak et al. (2006)(72)* The Health Professionals Follow-Up Study;
19 615 men (aged 40–75 years),
12-year follow-up

Dairy consumption is not related to lower long-term
weight gain in men

Age, baseline weight, smoking, alcohol intake,
physical activity, glycaemic load, and intakes
of energy, total fat, cereal fibre, whole grains,
fruit and vegetables, caffeine, trans-fat, and
low- and high-energy soft drinks

Rosell et al. (2006)(73)* 19 352 perimenopausal women
(aged 44–55 years), 9-year follow-up

Differences in subjects’ BMI and type of dairy product
influence the association between weight change
and dairy consumption

Age, baseline height and weight, education, parity,
intakes at baseline of energy, fat, carbohydrate,
protein, fibre and alcohol, the absolute change
in intakes of these nutrients during follow-up
(quartiles), and the studied categories of
change in intake of the other four dairy products
presented in the table

Vergnaud et al. (2008)(74)* The SU.VI.MAX Study; 1245 men and
1022 women (aged . 45 years),
6-year follow-up

Milk (P,0·05) and yoghurt (P,0·05) were inversely
associated with 6-year weight and WC changes
in OW only men. Milk (P¼0·08) was positively
associated with WC changes in OW women.

Age, intervention group, baseline value of the
outcome, educational level, smoking, physical
activity, alcohol, energy intakes and mean
adequacy ratio

Snijder et al. (2008)(75)* The Hoorn Study; 1124 subjects
(aged 50–75 years), 6·4 year change
in weight

Higher dairy consumption was not associated with
changed in body weight, fat distribution or other
components of the metabolic syndrome (P.0·05)

Age and sex, total energy intake, baseline value
of the outcome, alcohol intake, smoking and
physical activity

CARDIA, Coronary Artery Risk Development In Adults; SU.VI.MAX, SUpplémentation en VItamines et Minéraux AntioXydants; WC, waist circumference; OW, overweight.
* Studies used post hoc analysis.
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women and reported that the type of dairy product and

the subject’s BMI at baseline influenced the association

between dairy consumption and body weight and abdomi-

nal obesity. Women with a constant $ one serving/d of

cheese and whole/sour milk consumption had a lower

risk of gaining $ 1 kg/year over 9 years, compared with

those with an intake of , one serving per d (for cheese

OR 0·85 (95 % CI 0·73, 0·99) and for whole/sour milk

OR 0·70 (95 % CI 0·59, 0·84))(73). When the analysis was

conducted based on BMI status, only normal-weight

women with a constant $ one serving/d of cheese and

whole/sour milk consumption had lower risk of

gaining $ 1 kg/year over 9 years. Vergnaud et al.(74)

showed inverse relationships between milk and yoghurt

intake and body weight only in overweight men. Two

studies also showed that baseline dairy consumption was

not related to weight gain during 6·4 years and

12 years(72,75). However, after stratification by BMI, Snijder

et al.(75) showed that higher dairy consumption was signifi-

cantly associated with an increase in BMI, waist and weight

only in normal-weight subjects. Therefore, overall, three

prospective studies(70,74,75) showed that overweight and

obese subjects could benefit more regarding body-weight

regulation with dairy consumption.

Regarding dietary Ca, results of a 23-year prospective

study(76) indicated no association between dietary Ca

intake and BMI. As the authors stated, in this cohort this

may be due to the high average intake of dietary Ca in

the Dutch population, suggesting a threshold of Ca intake

of approximately 800 mg/d above which no further benefit

is observed. Other studies have suggested a threshold of

500–600 mg/d(20) and 600–700 mg/d(29,47,77). A number

of prospective studies(72,74,75) also failed to show an

inverse association between a wide range of dietary Ca

intakes and body composition, even when further analysis

is conducted in subjects that consumed below the

suggested threshold of 700 mg Ca/d. These data support

the hypothesis that the observed associations appear to

be specific to dairy sources and that dairy components

other than Ca may be responsible as highlighted in the

next section.

Meta-analysis using the epidemiological evidence

A mixed-model regression analysis was conducted using

mean data reported in the above epidemiological studies

in an attempt to summarise the relationship between diet-

ary Ca intake and BMI after correction for trial effects(78).

The advantage of this methodology compared with

simple regression models is that it corrects the relationship

between BMI and the fixed effect of dietary Ca intake for

random effects of individual trials. Generally, there are

differences in measurement methods, in experimental

units, in observations and in the accuracy of measurement

across the studies. Thus, adjusting the regression for the

trial effect reduces type II error and the bias in the esti-

mation of the intercept and slope(78).

Studies were selected based on the following criteria:

(a) prospective and cross-sectional studies which exam-

ined the association between dairy products or dietary Ca

and BMI; (b) included cohorts where data are presented

as quartiles or quintiles of either dairy products or dietary

Ca. Due to the different methods of presenting the results

and different definitions of the serving portions of dairy

products among the studies it was impossible to transform

all the available data into meaningful forms of accurate

estimation of dairy product consumption. Thus, despite

the fact that the focus of the review was dairy products

and not Ca, dietary Ca was the only accurate measurement

of dairy intake.

A total of twenty-five studies were identified, with

four(43,52,66,72) excluded on the basis of reporting intakes

of total Ca (both dietary and supplemental Ca in combi-

nation) and three(39,56,61) on the basis that data on dairy,

but not Ca intake, were published. Thus, in the final model

eighteen studies were included (Fig. 3). There were no

significant effects of sex or type of study (prospective or

cross-sectional) on the relationship between Ca intake

and BMI. The relationship between the ‘adjusted BMI’

and dietary Ca intake for the eighteen trials is presented

in Fig. 3 with an overall linear regression equation of:

Predicted BMI ¼ 26·0 þ ð20·00111 £ mean Ca

intakeÞ kg=m2ðP ¼ 0·004Þ:

Based on this equation, at 400 mg Ca/d (low dietary Ca

intake), a BMI of 25·6 kg/m2 is predicted, while for

1200 mg/d a BMI of 24·7 kg/m2 is predicted. In other

words, an increase in Ca intake of 800 mg/d is associated

with a decrease in BMI of 1·1 kg/m2.

Similar results were obtained when in the above model

of the eighteen studies (Fig. 3) the four studies that exam-

ined both dietary and supplemental Ca in combination

were also included (data not shown). When only the

four studies(43,52,66,72) that used total Ca (both dietary and

supplemental Ca) were analysed, the relationship between

Ca and BMI was not significant (P¼0·65), which highlights

the influence of different Ca forms. There is no doubt that

dietary Ca intake is not equivalent to dairy consumption,

although both are closely related, and dairy products still

remain the major source of dietary Ca. However, other

components in dairy products could play a beneficial

role in body-weight regulation, as discussed later.

Evidence from intervention trials of the effects of dairy
product consumption on body composition

There have been relatively few randomised intervention

trials examining the effect of dairy products on body

weight and other measures of adiposity, and generally
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bone health or blood pressure, rather than adiposity, has

represented the primary outcome. Although the published

studies differ greatly in many aspects of study design

(length of intervention, type of dairy product introduced),

they all had a parallel rather than cross-over intervention

approach. The order that the trials are discussed in the

present review is based on energy intake, with the clinical

trials without and with energy restriction presented

separately.

Evidence from intervention trials without energy
restriction

Numerous studies have been conducted in adults without

energy restriction(79–88) and with body composition

being the primary endpoint of six studies(79,86–90). Only two

trials showed weight gain(79,80). Barr et al.(79) showed that

both women and men who were in the increased milk

group gained body weight (0·6 kg and 0·5 kg, respectively;

P,0·01). However, the increase in weight was less than

predicted (2·5 kg) from the 1046 kJ/d added energy of

milk consumption (600 ml). Only a 418 kJ/d increase

in total energy intake was observed, implying a partial

compensatory effect of milk on energy balance. Lau et al.(80)

also showed that women in the milk supplementation

group (50 g milk powder/d), compared with the control

group, gained body weight (0·52 v. 20·26 kg; P,0·01)

and fat mass (0·42 v. 20·14 kg; P,0·01).

Conversely, seven trials(81–86) showed no significant

difference in body weight with milk supplementation or

dairy treatment, four of which were specifically designed

to assess bone health(81–84) and one blood pressure(85).

Thus, although weight is a very robust outcome to

measure, the studies should be interpreted with caution

due to the possible lack of statistical power needed to

detect significant differences in body weight.

Two studies(86,90) that were primarily designed to exam-

ine the effect of dairy consumption on abdominal obesity

failed to detect differences among the treatments.

For example, Wennersberg et al.(90) conducted a 6-month

randomised parallel study in middle-aged overweight

subjects with low habitual dairy intake (# two servings/d)

and traits of the metabolic syndrome. There were no

differences in BMI, body weight, waist circumference,

sagittal abdominal diameter, body fat mass and proportion

of body fat between the high dairy group (three to five

servings/d) and the control group (# two servings/d).

However, a post hoc analysis based on baseline Ca intake,

which divided the participants into two groups, above or

below the suggested threshold level of 700 mg Ca,

showed that subjects in the high dairy group, who had

a baseline Ca intake less than 700 mg, had lower waist

circumference (P¼0·003) and sagittal abdominal diameter

(P¼0·034) compared with those in the control group at

the end of the study. These findings further support the

evidence from epidemiological studies suggesting the

possible threshold effect of dietary Ca above which no
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Fig. 3. Data derived from cross-sectional analysis of baseline data from eighteen large prospective cohorts showing the association between BMI and total dietary

Ca intake adjusted for trial effects excluding the trials that reported only milk consumption. ( ), Van der Vijver et al.(51), men; ( ), Van der Vijver et al.(51), women;

( ), Abbott et al.(57); ( ), Engberink et al.(59); ( ), Djousse et al.(212); ( ), Liu et al.(55); ( ), Umesawa et al.(63) men; ( ), Umesawa et al.(63) women; ( ), Alonso

et al.(58); ( ), Wang et al.(213); ( ), Mirmiran et al.(24) men; ( ), Mirmiran et al.(24) women; ( ), Murakami et al.(26); ( ), Snijder et al.(29); ( ), Liu et al.(65);

( ), Azadbakht et al.(27); ( ), Jacqmain et al.(47) men; ( ), Jacqmain et al.(47) women; ( ), Eilat-Adar et al.(45) Strong Heart Study; ( ), Eilat-Adar et al.(45) Third

National Health and Nutrition Examination Survey; ( ), Van Dam et al.(64); ( ), Engberink et al.(60); ( ), Umesawa et al.(62); ( ), linear (overall),

y ¼ 20·001x þ 26·01 (P¼0·004).
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additional benefit of increased dietary Ca intake with

respect to body weight is evident.

Zemel et al.(88) conducted two intervention trials in

African-American adults, with adiposity being the primary

endpoint. The first 26-week randomised parallel trial was

a weight-maintenance study and findings indicated that

high dairy (three servings/d) compared with low dairy

(,one serving/d) consumption decreased total body fat

(22·158 v. 0·169 kg; P,0·01) and trunk fat (21·026 v.

20·357 kg; P,0·01) despite the fact that there was no

significant change in body weight. Recently, Zemel

et al.(89) conducted a 9-month study, of which the first

3 months were the weight-loss phase and months 4 to 9

the weight-maintenance phase when the high- or low-dairy

intervention was introduced. During the weight main-

tenance, there were no differences in weight and body

composition between the high dairy diet group (. three

servings/d) and the low dairy group (,one serving/d).

However, the high dairy diet group consumed 1038 kJ/d

(P,0·05) more energy for the first half of maintenance

and 837 kJ/d (P,0·05) more for the second half of

maintenance relative to the low dairy group. Thus, there

was no treatment effect on weight and body composition

in spite of the higher energy intake in the high dairy

group, where the additional energy would have been

expected to contribute to weight gain.

One 12-month study(86) included an intervention with

Ca derived from both dairy and supplemental sources

and no differences on body fatness and weight were

observed. However, in a 6-month follow-up, Eagan

et al.(87) demonstrated that the mean Ca intake, mainly

from dairy products, during the period of 18 months

predicted a negative change in fat mass (P¼0·04) when

the model was adjusted for baseline BMI. According to

their regression model, a Ca dose of 1200 mg/d predicted

0·631 kg fat mass loss while a dose of 500 mg/d predicted

a fat mass gain of 1·26 kg over 18 months in normal-

weight young women.

Overall, data from the majority of the studies reviewed

predict that body weight does not change due to increased

consumption of dairy products. Thus, consumption of

the recommended amount of dairy products could be

incorporated into weight-maintenance diets without caus-

ing potential body weight loss. Although the inclusion of

dairy products may have resulted in some undefined

energy compensation, there was a trend for individuals

in the dairy group to have an overall higher energy

intake(89,90), which may override any potential beneficial

effect attributable to their bioactive components.

Evidence from intervention trials with energy restriction

Five studies have explored the relationship between dairy

product consumption and alterations in fat mass and body

weight in an overweight and obese population during

energy restriction(77,88,91–93), with body composition

being the primary endpoint of four studies(77,88,91,92).

In the second 24-week trial of Zemel et al.(88), twenty-

nine subjects on an energy-restricted regimen (2092 kJ/d

below requirement) were assigned to a low-dairy (,one

serving/d) or high-dairy (three servings/d) diet. The data

suggested that high-dairy diets promote greater weight

and fat loss (211 and 29 kg, respectively; P,0·01) relative

to low-dairy diets (29 and 24 kg, respectively; P,0·01),

and in particular promoted abdominal fat loss (2-fold

greater loss in the high dairy v. the low dairy group;

P,0·01). High dairy intake also seemed to protect against

the loss of lean body mass during energy restriction(88).

Similar results were obtained when a diet rich in fat-free

yoghurt (three 170 g servings/d) was provided to obese

subjects during 3 months of energy restriction (2092 kJ/d

deficit). There was an 81 % (P,0·001) greater reduction

in trunk fat loss on the yoghurt diet v. the control diet

(#one dairy serving/d, no yoghurt)(91).

In contrast, three studies showed no evidence that a diet

high in dairy products enhanced weight loss by overweight

and obese individuals during periods of energy restric-

tion(77,92,93). In a 12-month study with 2092 kJ energy

deficit per d, fifty-four obese subjects were assigned to

either a high-dairy diet (1400 mg Ca) or a low-dairy diet

(about 700 mg Ca)(92). Body weight and fat loss did not

statistically differ between the high-dairy diet and the low-

dairy diet (weight loss: 9·6 kg and 10·8 kg (P¼0·56) and fat

loss: 9·0 kg and 10·1 kg, respectively). Similarly, Thompson

et al.(77) failed to show a difference in body weight

loss among three energy-restricted diets with 2092 kJ

energy deficit per d. Participants lost 11·8 kg in the high-

dairy (four servings/d) diet, 10 kg in the moderate-dairy

(two servings/d) diet and 10·6 kg in the high-fibre diet.

Based on the review of these studies the apparent discre-

pancy may be attributed to the possible threshold effect of

600–800 mg of dietary Ca above which weight loss is

enhanced. A lack of effect of dairy products on weight

loss as part of an energy-restricted diet was also reported

by Bowen et al.(93), although bone turnover was the primary

endpoint.

As far as Ca is concerned, three studies showed an

inverse association between Ca intake and weight

gain(94–96) and two studies(97,98), which included an

exercise intervention, concluded that diets rich in Ca may

contribute to weight maintenance in either normal-weight

or obese populations.

In summary, although there are inconsistent results

among the studies regarding the promotion of weight loss

with high-dairy diets, it is worth noting that inclusion of

dairy products as part of an energy-restricted diet did not

adversely affect weight loss. Future work needs to be con-

ducted in order to compare effects of high dairy consump-

tion with moderate and low dairy consumption on weight

loss under energy restriction. Finally, further research is

needed on the effect of the recommended dairy consump-

tion on body composition during exercise interventions.
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Intervention trials: dairy products v. dietary
and supplemental calcium

Two studies with body composition as their primary out-

come have included energy-restricted intervention with

both dietary Ca and supplemental Ca at comparable

doses, thereby allowing a direct comparison(94,99). As indi-

cated in Fig. 4, Zemel et al.(94) reported more effective

weight and body fat loss in obese subjects who were

under energy restriction (2092 kJ/d below requirement)

and received Ca as dairy products compared with a Ca

supplement. Those findings were further supported in

a recent multi-centre 12-week clinical trial conducted

in 106 overweight and obese subjects under the same

energy restriction (2092 kJ/d below requirement)(99).

The data suggested that a high-dairy diet promotes greater

fat loss (24·43 kg; P,0·0025) relative to high and low

supplemental Ca (22·23 and 22·69 kg, respectively;

P,0·0025), in particular trunk fat loss (P,0·05) and

waist circumference (P,0·025). However, it is noticeable

that no differences were observed in weight loss in the

second study(99). The authors suggested the low adherence

of subjects at one centre and consequently the loss of

statistical power as an explanation for the discrepancy.

No differences in BMI and weight were also observed in

a 12-month maintenance study(100) in postmenopausal

women who were randomly assigned to a high-dairy

diet (1200 mg Ca plus 7·5mg vitamin D3 daily), a high-

supplemental Ca diet (1200 mg Ca) and a control diet

(usual diet). However, the high-dairy diet resulted in a

greater loss of leg fat (P¼0·025) and a lower increase in

the sum of skinfolds thickness (P¼0·042) compared with

the high supplemental Ca. The greater effect of dietary

Ca v. supplemental Ca was also observed by Ochner &

Lowe(95), who showed an inverse effect of dietary Ca

and no effect of supplemental Ca consumption on

weight regain 12 months after control of energy intake

for 6 months (P¼0·048 for FFQ and P¼0·025 for food

records).

Summary of the evidence based on epidemiological
and intervention studies

Although inconsistencies between studies certainly exist,

the overall assessment of the epidemiological evidence

is suggestive of a modest negative association between

dairy consumption and body weight. The overall linear

regression analysis, based on the eighteen trials that exam-

ined dietary Ca (with the majority of dietary Ca derived

from dairy products), indicates that an increase in Ca

intake from 400 to 1200 mg/d would be associated with a

decrease in BMI from 25·6 to 24·7 kg/m2. Evidence derived

from intervention studies without energy restriction does

not predict any effect of dairy products on either weight

loss or weight gain. During energy restriction, although

the results are still inconsistent, there are indications of

a possible beneficial effect of dairy products in weight-

loss treatments whilst maintaining lean tissue in an over-

weight population. There is a possible threshold effect

of 600–800 mg of dietary Ca above which fat loss is

augmented. A stronger effect of equivalent Ca intakes as

dairy v. the supplemental form is indicative that dairy

components other than Ca may in part mediate the

beneficial impact on body weight and composition.

Mechanism underlying the impact of dairy
constituents on body-weight regulation

The potential mechanisms underlying the impact of dairy

constituents on the regulation of energy metabolism,

body weight or body fat have not been clearly elucidated.

The most highly cited plausible mechanisms refer to

dietary Ca and its effects on intracellular Ca, and sub-

sequent impact on adipocyte lipid metabolism and fatty

acid absorption from the gastrointestinal tract(101). How-

ever, a number of dairy constituents such as protein, fat

and their metabolites have also been widely reported to

play a potential role in weight regulation (Fig. 5).
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Fig. 4. The impact of dietary Ca consumption on adiposity. The effect of

three different diets (low in supplemental Ca (Low-Ca; 430 (SE 94) mg Ca/d);

high in supplemental Ca (High-Ca; 1256 (SE 134) mg Ca/d); high in dairy

Ca through high dairy product consumption (High-Dairy; 1137 (SE 164) mg

Ca/d)) on (a) 6-month body weight loss (P,0·01) and (b) 6-month body fat

change (P,0·01) in obese individuals under an energy-restricted interven-

tion. Values are means, with their standard errors represented by vertical

bars (adapted from Zemel et al.(94)).
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Mechanisms underlying the impact of calcium
on body composition

Effects of calcium on adipocyte lipid metabolism. Zemel

et al.(36,102) were the first to explore the association

between low Ca intake and fat accumulation. The authors

suggested that intracellular Ca2þ promotes energy storage

due to the stimulation of de novo lipogenesis through the

regulation of fatty acid synthase and inhibition of lipolysis

through the activation of phosphodiesterase 3B(103). The

concentration of intracellular Ca2þ in human adipocytes

is increased by the stimulation of Ca-regulating hormones

such as parathyroid hormone and 1,25 dihydroxyvitamin

D3 (1,25(OH)2D3)
(104). Low dietary Ca intake increases

blood concentration of calcitropic hormones (parathyroid

hormone and 1,25(OH)2D3) and intracellular Ca influx,

thereby decreasing lipolysis and increasing lipogenesis,

leading to increased TAG storage.

In addition to these functions, decreased 1,25(OH)2D3

may increase the expression of uncoupling protein-2

(UCP2) via the nuclear vitamin D receptor in white adipose

tissue and hence may contribute to improved thermo-

genesis (Fig. 5)(105,106). However, there are animal(107)

and human(108,109) studies showing no alterations of

UCP2 and consequently no differences in diet-induced

thermogenesis. Thus, the role of UCP2 is still not

clear, and other unknown mechanisms may lead to this

thermogenic effect.

The regulation of both UCP2 and intracellular Ca2þ by

calcitriol hormone appears to modulate apoptotic cell

death via a dose-dependent mechanism(110,111). Further-

more, some additional mechanisms have been proposed

by Zemel & Sun(110) who suggested that decreased

1,25(OH)2D3 (which is associated with higher Ca intakes)

down-regulates 11b-hydroxysteroid dehydrogenase type I

expression and decreases the concentration of glucocorti-

coid which consequently decreases the size of the adipose

fat deposit(112) (Fig. 5). In addition, the potential impact

of 1,25(OH)2D3 on adiposity includes effects on adipocyte

differentiation and proliferation via the regulation of

reactive oxygen species and inflammatory cytokines

(Fig. 5)(113). Finally, a low level of calcitriol has been

shown to decrease the expression of pro-inflammatory

factors (TNF-a and IL-6) and increase the expression

of anti-inflammatory factors (IL-15 and adiponectin) in

visceral fat(114).

Although the adipocyte fat metabolism hypothesis has

gained support from both cell-culture and rodent studies

as detailed above, recent human studies failed to show

an effect of dairy Ca on adipocyte and whole-body lipid

metabolism(108,115,116). Bortolotti et al.(116) have highlighted

potential flaws of the above hypothesis, including an

observation of a relationship between obesity with low

vitamin D and 1,25(OH)2D3 concentrations(117,118) and

highlight that de novo lipogenesis is likely to make a

minor contribution to fat accumulation in humans on a

typical mixed Western diet. Since there is currently a pau-

city of data from human trials, further research is required

to explore the effect of Ca on human adipocyte fat

metabolism.

↑ Dairy product
consumption

Gut

↑ Absorbed Ca

↑ Dairy protein

↑ CLA

↑ MCFA

↓ Circulating 1,25(OH)2D3

↓ Circulating PTH

↓ FAS

↓ Lipogenesis

↑ Fat oxidation

↑ Energy expenditure

↑ Thermogenesis ↑ Lipolysis↓ Appetite

↑ UCP2

 ↓ [Ca2+]i
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ACE

Angiotensin II

↓ Fat absorption

↑ Fatty acid excretion

Soap formation

↑ Insulin

Lactokinin release
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↓ Adipogenic genes
↓ PPAR-γ

↑ Apoptosis
↓ ROS generation
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↓ 11β-HSD expression
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Fig. 5. Proposed mechanisms underlying the effect of dairy intake on body adiposity (adapted from Scholz-Ahrens & Schrezenmeir(214)). " , Increase; MCFA,

medium chain fatty acids; # , decrease; CLA, conjugated linoleic acid; PTH; parathyroid hormone; 1,25(OH)2D3, calcitriol; GLP-1, glucagon-like-peptide-1; CCK,

cholecystokinin; GIP, glucose-dependent insulinotropic polypeptide; ACE, angiotensin-converting enzyme; 11b-HSD, 11b-hydroxysteroid dehydrogenase type I;

ROS, reactive oxygen species; UCP2, uncoupling protein-2; [Ca2þ]i, intracellular Ca; FAS, fatty acid synthase.
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Evidence of calcium effects on fat oxidation. Melanson

et al.(119) were the first to examine any association between

Ca intake and whole-body fat oxidation. Their results

suggest a positive correlation between total acute Ca

intake and 24 h (r 0·38; P¼0·03) and sleeping fat oxidation

(r 0·36; P¼0·04). However, a limitation of this study is the

fact that no correction for differences in protein intake was

made, with protein previously shown to have an effect on

weight regulation and thermogenesis(120,121). Therefore,

conclusions cannot be drawn from this trial regarding the

independence of the impact of Ca intake on fat oxidation.

A subsequent study by the same group(122) showed that a

high dairy Ca intake increased 24 h whole-body fat

oxidation by 28 % (P¼0·02) under a regimen with a combi-

nation of energy restriction (2510 kJ/d below requirement)

and exercise, with the latter being the main stimulus of the

fat oxidation. Several additional studies have examined the

effect of Ca or dairy consumption on fat oxidation and

energy expenditure, but the results are controversial

(Table 4)(89,108,109,115,116,123–125). Furthermore, the mech-

anism by which dietary Ca may mediate fat oxidation

requires further investigation, although an increase in

UCP2 associated with increased Ca intake may be

involved(105).

Evidence of calcium effects on fatty acid absorption and

postprandial fat metabolism. As previously mentioned,

an alternative mechanism that has been suggested to

be responsible for the effect of Ca and dairy product

consumption on body adiposity is reduced fat absorption

from the gastrointestinal tract (Fig. 5). This mechanism is

attributed to the capability of Ca(101) to increase faecal

excretion of fat via the formation of insoluble fatty acid

soaps in the gut or by binding of bile acids, which weakens

the formation of micelles(124,126–128). It is generally

accepted that high-Ca diets increase fat excretion

(Table 5)(126–129). In a recent meta-analysis conducted by

Christensen et al.(130) which examined the impact of Ca

intervention, both as dairy and supplemental Ca, a 0·99

increase of standardised mean difference in faecal fat

excretion (95 % CI 0·63, 1·34; P,0·0001) was observed

which corresponds to about 2 g/d with a moderate

heterogeneity among the studies (I 2 ¼ 49·5 %). However,

when only dairy trials were analysed, there was no hetero-

geneity and results indicated that dairy Ca consumption

of 1241 mg increased faecal fat excretion by 5·2 g/d (95 %

CI 1·6, 8·8) compared with low dairy Ca consumers

(,700 mg/d). Based on the authors’ estimates, this fat

excretion would translate into 1·9 kg body fat or 2·2 kg

Table 4. Studies evaluating the effect of calcium on fat oxidation

Authors Details Results and conclusion

Zemel et al. (2008)(89) A 9-month randomised trial; 338 subjects (obese)
Diets: (a) LD (,one serving/d); (b) HD (. three servings/d)

During the weight-maintenance phase (3–9 months),
the HD group had a greater RMR (P,0·08) and
increase in fat oxidation (P,0·01)

Cummings et al. (2006)(109) A within-subject randomised trial; six men and two women
(overweight)

Diets: (a) LDCa (176 mg); (b) HNDCa (calcium citrate)
(575 mg); (c) HDCa (532 mg)

HDCa and HNDCa subjects increased postprandial
fat oxidation rate compared with LDCa subjects
(mean change in 6 h fat oxidation from the fasting
state was 3·3 (SEM 2·5), 2·9 (SEM 2·3) and 26·5
(SEM 2·2) g/6 h, respectively)

Boon et al. (2005)(115) A randomised cross-over trial; twelve men, 3 £ 1 week,
24 h fat oxidation

Diets: (a) HCa/HD (1259 mg/d); (b) HCa/LD (1259 mg/d);
(c) LCa/LD (349 mg/d)

Fat oxidation of 108 (SE 7) g/24 h for HCa/HD 105
(SE 9) g/24 h for HCa/LD and 100 (SE 6) g/24 h for
LCa/LD. No statistically significant difference.
No influence on expression of genes that are
closely related to fat metabolism and are regulated
by serum 1,25(OH)2D3

Bortolotti et al. (2008)(116) A randomised cross-over trial; seven women and three men,
2 £ 5 weeks, 7 h fat oxidation

Diets: (a) dairy Ca (800 mg/d) with maltodextrin;
(b) maltodextrin

Ca supplementation had no effect on plasma PTH
concentration, on resting energy expenditure (250·6
(SE 12·6) or 249·4 (SE 13·3) kJ/h) and on fat
oxidation (58·4 (SE 2·2) or 53·8 (SE 2·2) mg/min)
compared with the placebo diet

Gunther et al. (2005)(123) A parallel randomised trial; nineteen women, 1-year
intervention

Diets: (a) LCa, dietary (,800 mg/d); (b) HCa dietary
(1000–1400 mg/d)

There was increased whole-body fat oxidation and
decreased PTH concentration with a diet rich in
dietary Ca, mainly from dairy food (P,0·05)

Jacobsen et al. (2005)(124) A randomised cross-over trial; eight women and two men,
3 £ 1 week, 24 h fat oxidation

Diets: (a) LCa/NP (500 mg Ca, 15 E% protein); (b) HCa/NP
(1800 mg Ca, 15 E% protein); (c) HCa/HP (1800 mg Ca,
23 E% protein)

No effect of Ca consumption on fat oxidation, 24 h EE
but 2·5-fold increase in faecal fat excretion during
the HCa/NP, LCa/NP and HCa/HP diets (14·2, 6·0
and 5·9 g/d, respectively; P,0·05)

Teegarden et al. (2008)(125) A parallel randomised trial; twenty-four women, 12 weeks
Diets (all under 2092 kJ/d energy deficit): (a) placebo

(,800 mg Ca/d); (b) 900 mg CaCO3/d; (c) three
servings of dairy products per d to achieve 900 mg Ca/d

Only the Ca-supplemented group had increased
fat oxidation (1·5 (SD 0·6) g/h; P¼0·02) during the
12-week intervention. No effects on total energy
expenditure were observed by all groups

LD, low dairy; HD, high dairy; LDCa, low in dairy Ca; HNDCa, high in non-dairy Ca; HDCa, high in dairy Ca; HCa, high Ca; LCa, low Ca; 1,25(OH)2D3, 1,25 dihydroxyvitamin
D3; PTH, parathyroid hormone; NP, normal protein; HP, high protein; E%, percentage of energy; EE, energy expenditure.
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body-weight loss over a year. However, due to the small

number of studies and the small number of participants

on each study, a dose–response relationship could not

be established. The importance of faecal fat excretion

on body-weight regulation remains to be confirmed by

long-term studies with more robust designs.

Furthermore, Jacobsen et al.(124) and Boon et al.(108)

(Table 5) implied that the impact of Ca on fat absorption

may be protein dependent. The authors suggested that

Ca is bound by dietary protein, especially caseins, and

that Ca–protein complexation may reduce the amount

of Ca available for the formation of fatty acid soaps(124),

and therefore may in part negate the impact of Ca on fat

absorption.

Lorenzen et al.(131) recently investigated the effect of

high Ca consumption from dairy products or supplemental

Ca on postprandial fat metabolism. Four isoenergetic meals

were used containing high (172 mg/1000 kJ), medium

(84 mg/1000 kJ) or low (15 mg/1000 kJ) amounts of Ca

from dairy products and a calcium carbonate supplement

(183 mg/1000 kJ). According to their findings, high Ca

intake from dairy products decreased postprandial lipae-

mia compared with the low Ca intake (adjusted area

under the curve about 19 % lower) and compared with

the supplementary Ca (about 17 % lower). The differences

between dairy v. supplemental Ca could be explained

by the differences in the chemical form of Ca (calcium

phosphate in dairy products being more soluble than

the calcium carbonate in the supplement(132)), a difference

in pH and in other bioactive components in dairy

products, which may have had an impact on the postpran-

dial lipaemic response.

Mechanisms and evidence of conjugated linoleic acid
effects on body composition

As already mentioned, data suggest that Ca from dairy

products has greater effects on body-weight regulation

than supplemental Ca(94,133), which would lead to the

hypothesis that dairy foods can influence body adiposity

by Ca-independent mechanisms. Conjugated linoleic acid

(CLA) is a potential group of bioactive components

which may have an impact, with dairy products,

beef and lamb representing the almost exclusive dietary

sources(134). Although the impact of CLA on body

fat mass and topography has been repeatedly demon-

strated in rodent models, the results of human trials are

equivocal(135). A recent review by Plourde et al.(136) indi-

cated that the differences in results may arise from the

different experimental design, age, sex, energy intake

and CLA metabolism of the participants, and the dose and

chemical form of the CLA isomer administered. The predo-

minant isomer of CLA in natural foods is the cis-9,

trans-11-CLA ‘rumenic acid’ which accounts for more than

90 % of the total CLA intake. However, it is strongly

suggested that other isomers, such as trans-10, cis-12-CLA,T
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may influence body-weight and fat changes(137). Thus,

it is questionable whether physiological doses of CLA,

consumed as dairy products, can have any meaningful

impact on body-weight regulation in humans. Further-

more, potential underlying mechanisms are poorly

understood, with proposed mechanisms suggesting

that CLA can inhibit fatty acid synthase and stearoyl-CoA

desaturase-1(137), enhance fat oxidation and thermogen-

esis and reduce lipogenesis and preadipocyte differen-

tiation and proliferation(138).

Effects of medium-chain fatty acids on
body composition

Dairy products are a source of medium-chain TAG of

which 6 : 0 (capronic acid), 8 : 0 (caprylic acid) and 10 : 0

(capric acid) collectively constitute 4–12 % of all fatty

acids in bovine milk, with 12 : 0 (lauric acid) comprising

2–5 %(139). Animal trials have shown decreased lipogenesis

and TAG synthesis with increased medium-chain fatty

acid intake(140). Likewise, clinical trials in human subjects

have revealed that diets rich in medium-chain fatty acids

are associated with a reduction in body fat in human sub-

jects(139,141–144). Tsuji et al.(143) assigned volunteers to diets

providing 9213 kJ/d and 60 g total fat/d, 10 g of which were

either medium-chain TAG or long-chain TAG, for 12

weeks. A reduction in body weight (medium-chain TAG:

26·12 kg; long-chain TAG: 24·78 kg) and body fat

(medium-chain TAG: 24·57 kg; long-chain TAG: 23·61 kg)

was observed in both groups, with greater effects in the

medium-chain TAG group, and particularly among subjects

with BMI $ 23 kg/m2. These findings were in general

agreement with another study(144) that provided 5 g of

medium-chain TAG, which is lower than the typical level

of medium-chain TAG intake (15 g)(145), and highlight the

potential role of medium-chain TAG in the putative

impact of dairy products on body composition.

Medium-chain fatty acids are transported directly via

the portal vein to the liver, increase postprandial thermo-

genesis and are rapidly oxidised to ketones via b-oxidation

rather than incorporated into adipose tissue TAG(146).

In addition, medium-chain fatty acids may contribute to

a reduction in fat mass through down-regulation of adi-

pogenic genes and PPAR-g(139), an essential transcription

factor of adipogenesis whose activation is stimulated by

the binding of lipophilic ligands(147).

Effects of proteins on body composition

Dairy products contain a number of bioactive peptides that

may act synergistically or independently with Ca to regu-

late body adiposity(148). The milk proteins casein(149) and,

particularly, whey are rich sources of potentially bioactive

peptides (casokinins and lactokinins, respectively) that

have been shown to inhibit angiotensin-converting

enzyme, and consequently inhibiting the production of

the angiotensin II hormone(148). In addition to the role of

angiotensin II in the regulation of vascular smooth

muscle function, vascular tone and blood pressure, it has

been shown to up-regulate fatty acid synthase expression,

resulting in adipocyte lipogenesis (Fig. 5)(150).

Milk proteins have also been shown to stimulate insulin

secretion, and whey proteins proved to be more insulino-

tropic compared with caseins or other animal and plant

proteins(151). This insulin secretion may directly affect food

intake regulation by suppressing appetite and, as a conse-

quence, indirectly affect body weight. Furthermore, dairy

proteins contain a high proportion (about 21–26 %)(152)

of the three branched-chain amino acids leucine,

isoleucine and valine with their unique role in stimulating

protein synthesis and in sparing lean body mass during

weight-loss regimens(153).

Mechanism underlying the impact of dairy constituents
on appetite regulation

There is accumulating evidence to suggest that specific

dairy product components affect body weight through

their effects on food intake regulation and satiety(154).

Food intake regulation

The peripheral and central nervous systems are involved

in both short-term and long-term regulation of food

intake by mechanisms and pathways that are distinct, yet

act synergistically to either stimulate or suppress food

intake(155).

Long-term regulation of food intake. The arcuate

nucleus in the hypothalamic region is where the major inter-

actions of the appetite-regulator hormones occur(156). The

hypothalamus plays a critical role in the long-term regulation

of food intake and is activated in response to hormones that

enter or are produced in the central nervous system(155,157).

The adipocyte-derived leptin and pancreatic insulin are the

two major anorexigenic (appetite-suppressing) hormones

involved in the long-term regulation of appetite(158) and

resistance in the brain to their actions causes stimulation

of appetite(159,160).

Ghrelin is theonlyknownorexigenic (appetite-stimulating)

hormone, which is produced primarily in the stomach, and

it has recently been suggested to contribute not only to the

short-term but also to long-term regulation of food

intake(161). Leptin and insulin, as regulators of feed intake,

increase the secretion of anorexigenic neuropeptides and

decrease the secretion of orexigenic neuropeptides

(Table 6), while ghrelin has the opposite effects(155).

Short-term regulation of food intake. Satiation refers to

the physiological factors that promote meal termination

while satiety refers to the events that influence the time

interval between meals. Hence, satiation and satiety regu-

late meal size and frequency, respectively(162). Both are

included in the short-term regulation of food intake,
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which involves peptides primarily found in the enteric

nervous system and entero-endocrine cells of the

gastrointestinal tract(163). The gastrointestinal tract, which

includes the stomach, endocrine pancreas, proximal small

intestine, distal small intestine and colon(156), initiates a

variety of satiety signals that act mainly through the brain-

stem. The brainstem is the principal centre that receives

and transmits neural (by vagal afferents) and hormonal

(by gut peptides) signals from the gastrointestinal tract(157).

A number of gut peptide hormones that have effects on

appetite and food intake have been indentified to date,

including cholecystokinin (CCK), glucagon-like peptide-1

(GLP-1), peptide tyrosine tyrosine, oxyntomodulin(164),

bombesin and ghrelin (Table 6)(165). The secretion and

regulation of these gut hormones depend not only on

the macronutrient composition of the diet but also on

neuroendocrine factors(164). Additionally, dietary bioactive

peptides such as the opioid-like peptides (casomorphins

and caseinomacropeptide) are detectable in blood follow-

ing the digestion of casein and may also induce satiety.

The bioactive peptides can act as satiety hormones them-

selves or can stimulate the gut hormones(166). Insulin and

leptin, although major long-term regulators of food

intake, are also involved in short-term regulation by

increasing the actions of peripheral satiation signals such

as CCK(167,168).

In summary, appetite is influenced by a number of pep-

tides and hormones derived from the adipose tissue, gas-

trointestinal tract and pancreas, which, through their

actions on the hypothalamus, the brainstem and the ner-

vous system, regulate long- and short-term food intake

(Table 6).

Dairy components and appetite regulation

Effects of dairy proteins. Among the dairy components,

the proteins have the greatest putative role in appetite

control. The satiating attributes of dietary protein relative

to carbohydrate and fat are well recognised, and diets high

in protein content are more satiating than low-protein

diets(120,169). It has been proposed that the effect of protein

in short-term food regulation is associated with the increased

plasma concentrations of gut peptide hormones known to

reduce gastric emptying, gut motility and appetite(170). This

effect is related to the source of protein(171). The major pro-

tein groups present in bovine milk are whey proteins (for

example, b-lactoglobulin and a-lactalbumin) and caseins

(as1-casein, as2-casein,b-casein and k-casein) which consti-

tute approximately 20 and 80 %, respectively(172). Whey

proteins emerge as potential regulators of body weight

and have been shown to have more potent effects on

appetite and anorexic gut peptide concentrations than

caseins(173–175). In contrast, Bowen et al.(176) showed no

differences between casein and whey proteins or among

whey, soya protein and gluten on ad libitum food

intake(177). Nevertheless, ghrelin and insulin concentrations

were significantly decreased whilst CCK and GLP-1 was

increased after whey, soya and gluten consumption com-

pared with glucose. Additionally, a reduction in ad libitum

energy intake of approximately 10 % (P,0·05) was

measured 3 h after casein and whey protein consumption

compared with glucose consumption(176,177). However,

a recent study by the same group revealed no impact of

whey protein consumption on ad libitum intake 4 h

after consumption compared with fructose and glucose

beverages(178). Diepvens et al.(179) showed that, although

milk protein had greater stimulatory effects on the

proposed satiety hormones CCK and GLP-1, this was not

correlated with self-reported satiety, implying that satiety

biomarkers do not always guarantee the highest satiety.

The fact that there is no mathematical association between

anorexigenic hormone responses and satiety is further sup-

ported by Veldhorst et al.(169). These discrepancies among

the studies of food intake may be due to different method-

ologies, possible interactions among the different macro-

nutrients, and due to the different time periods for which

food intake was assessed. Moreover, none of the above

studies except Anderson et al.(174) used a no-energy con-

trol preload; thus the effect of the preload consumption

on food intake suppression was not assessed.

Although both whey and casein proteins induce satiety,

they lead to different effects on appetite regulation(171).

Based on their contribution to protein synthesis and

their effects on plasma amino acid concentrations, whey

proteins have been classified as fast proteins and

caseins have been classified as slow proteins(180). This

classification represents the greater effect of whey on sup-

pressing food intake at 90 min and casein at 150 min after

meal consumption(181). Both caseinomacropeptide and

Table 6. Major hormones and neuropeptides that regulate food intake

Name Origin
Effect on

food intake

Long-term
Leptin Adipose tissue #

Insulin Pancreas #

Pro-opiomelanocortin Hypothalamus #

a-Melanocyte-stimulating hormone Hypothalamus #

Corticotrophin-releasing hormone Hypothalamus #

Thyrotropin-releasing hormone Hypothalamus #

Ghrelin GI tract "

Neuropeptide Y Hypothalamus "

Agouti-related protein Hypothalamus "

Melanin-concentrating hormone Hypothalamus "

Orexins Hypothalamus "

Short-term
Cholecystokinin GI tract #

Glucagon-like peptide-1 GI tract #

Peptide tyrosine tyrosine GI tract #

Oxyntomodulin GI tract #

Bombesin Stomach #

Opioids Dietary BAP #

Leptin Adipose tissue #

Insulin Pancreas #

Ghrelin GI tract "

# , Suppression; GI, gastrointestinal; " , stimulation; BAP, bioactive peptides.
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casomorphins, released upon the digestion of caseins,

interact with opioid receptors and slow gastrointestinal

motility contributing to the longer transit time(154). More-

over, whey (a by-product of cheese production)(181)

rich in glycomacropeptide (GMP) has been found to

have a greater effect on pancreatic and gastrointestinal hor-

mone secretion than whey alone or whey without

GMP(169,182,183). Veldhosrt et al.(183) recently showed that

subjects who consumed a breakfast containing whey with-

out GMP had a higher energy intake at lunch compared

with subjects who ate a breakfast containing whey with

naturally present 21 % GMP (3208 kJ and 2877 kJ, respect-

ively; P,0·05).

Effects of dairy carbohydrates. Carbohydrate intake

also contributes to satiety and appetite regulation(184).

Short-term studies (#1 d) have demonstrated that low-

glycaemic index foods increase satiety and reduce energy

intake by affecting the blood glucose concentration

and therefore the insulin response (glucostatic theory),

and by stimulating gut peptides such as CCK, GLP-1 and

peptide tyrosine tyrosine (PYY)(185,186). However, the

association between postprandial glycaemic response and

satiety is still an issue of debate(187,188).

Lactose, which is the only carbohydrate found in

milk(189), is traditionally classed as a low-glycaemic index

carbohydrate (glycaemic index of lactose 46) and may

contribute to the satiating impact of milk and dairy pro-

ducts. Bowen et al.(176) compared the acute postprandial

effect of whey and casein proteins, lactose and glucose

on energy intake and appetite hormones (ghrelin, GLP-1,

CCK and insulin) in overweight men. The energy intake

was 10 % lower and acute appetite was also lower after

the lactose and protein preloads comparing with glucose

and this was consistent with differences in plasma ghrelin

concentration.

Effects of dairy fats. Although fat is the least satiating

macronutrient(190), it may be one of the milk and dairy

product components that contributes to satiety(191). Similar

to proteins and carbohydrates, the type and the structure

of fatty acids, their chain length(192), and their degree

of saturation are characteristics that have an impact on

appetite(193). A recent review revealed that fat increases

gastrointestinal transit time, stimulates the secretion of

many gastrointestinal hormones (CCK, GLP-1, peptide

tyrosine tyrosine) and suppresses appetite and energy

intake as a result of fat digestion into NEFA(194). Haug

et al.(195) suggested that full-fat milk and fermented milk

further delayed gastric emptying compared with semi-

skimmed milk in favour of glycaemic regulation. Similarly,

Schneeman et al.(196) showed that there were greater CCK

responses after the ingestion of a dairy relative to non-dairy

fat source or a high-fat meal (38 % of energy) compared

with a low-fat meal (20 %), although that was not related

to greater satiety. However, any inhibitory effect of dairy

fat consumption on appetite and consequently body-

weight regulation may be inconsequential when the

higher energy intake that whole milk products provide is

considered.

Effects of calcium. Whether Ca plays a role in the

regulation of food intake remains to be determined. The

idea of a Ca-specific appetite control was first proposed

by Tordoff(197) who suggested that low concentrations of

Ca in the diets may promote a desire to eat or choose

foods rich in Ca content. A number of studies conducted

in rodents support the hypothesis(198–200). Paradis &

Cabanac(199) showed in a 6-week intervention that the

Ca-deprived group of rats chose a high-CaCl2 drinking

solution whilst the control and Ca supplemental group of

rats chose a low-CaCl2 solution.

However, in human subjects, only two studies have

examined the effect of either dairy or supplementary

Ca on appetite or food choice(131,201). A recent energy-

restricted study indicated that Ca and vitamin D sup-

plementation enhanced fat loss in women who were low

Ca (#600 mg/d) consumers (P,0·01). The difference in

fat and body-weight loss was highly correlated with a

reduction in lipid intake at an ad libitum buffet-type

lunch, implying that Ca may influence macronutrient

preferences. The authors speculated that since fats and

Ca tend to occur together in many foods, Ca-deficient

individuals might inadvertently, but preferentially, choose

to consume high-fat foods, such as cheese, as a conse-

quence of this association between nutrients, in order to

obtain dietary Ca. In contrast, Lorenzen et al.(131) showed

no significant effect of high dairy and supplementary Ca

consumption on appetite sensation, on the secretion of

appetite-regulator hormones, and on the subsequent

energy intake of the ad libitum meal.

Currently there is a lack of a plausible mechanisms link-

ing Ca with appetite, and a lack of understanding whether

any suggested evidence of an association between Ca

deficiency and appetite is due to Ca or a lack of other

dietary components that co-exist in Ca-rich foods. Further

studies are warranted to show how and if Ca deficiency,

which is commonly observed during energy-restriction

diets, can increase hunger, impair compliance and influ-

ence weight-loss outcomes.

Evidence of dairy product effects on appetite regulation.

There are relatively few studies that have examined the

effect of milk or individual milk products as whole foods

on appetite and satiety (Table 7)(202–210). To our know-

ledge, the first study that showed the higher satiety

response of yoghurt and cheese compared with similar

and energy-matched foods (1000 kJ) was by Holt

et al.(211). Their results indicated that consumption of

foods rich in protein, fibre and water content could poten-

tially reduce energy intake and promote weight loss. In a

cross-over study(206), where fifty-eight subjects consumed

either low (,one serving/d) or high (. three serving/d)

dairy products for 7 d, no significant difference in subjec-

tive appetite ratings was evident, although there was an

increase in energy intake by 874 kJ (P,0·05) during the
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Table 7. Studies of dairy consumption and their effect on food intake and appetite

Study Details Results and conclusion

Soenen & Westerterp-Plantenga (2007)(202) A within-subjects design
Study A: fifteen women and fifteen men
Study B: twenty women and twenty men
Stimuli: 4 £ 800 ml drinks containing no energy or 1·5 MJ from

sucrose, HFCS or milk

No differences in satiety and energy balance were observed 50 min after
consumption of HFCS, sucrose or milk preloads; 170 % mm (AUC)
VAS changes

Almiron-Roig & Drewnowski (2003)(203) A within-subjects design; fourteen men and eighteen women
Stimuli: orange juice, low-fat milk (1 %), regular cola and sparkling

water

The inclusion of orange juice, regular cola and low-fat milk (1 %) with a
lunch showed no significant differences in hunger, satiety and energy
intake in a lunch 2 h after ingestion

Harper et al. (2007)(204) A randomised cross-over study; twenty-two men
Stimuli: 500 ml cola or chocolate milk (900 kJ) was ingested 30 min

before an ad libitum lunch

No difference on ad libitum energy intake (3145 (SD 1268) kJ and 3286
(SD 1346) kJ after chocolate milk and cola, respectively) but chocolate
milk resulted in a significantly greater satiety and fullness 30 min after
their consumption (P,0·001)

Tsuchiya et al. (2006)(205) A within-subjects design; sixteen men and sixteen women
Stimuli: a semi-solid peach yoghurt (378 g), the same yoghurt in a

drinkable homogenised form (378 g), a peach-flavoured dairy
beverage (400 ml) and a peach juice beverage (400 ml)

Higher satiety following the two yoghurts (no difference between them)
compared with the beverages and no differences among them were
observed in energy intake 90 min after their consumption

Hollis & Mattes (2007)(206) A randomised cross-over study; twenty-eight men and thirty women
Stimuli: one portion of dairy/d or three portions of dairy/d for 7 d

No differences on subjective appetite ratings, although energy intake was
increased by 874 kJ/d (P,0·05) during the high-dairy consumption
period

Ruijschop et al. (2008)(207) A randomised cross-over study; forty-three women
Stimuli: 150 ml, 1·0 MJ of a fermented dairy beverage, non-

fermented dairy beverage (placebo) and a non-fermented
dairy beverage with 0·6 % Ca(C2H5OO)2

Fermented dairy beverage resulted in higher fullness (F ¼ 4·21; P¼0·02),
less hunger (F ¼ 4·49; P¼0·02) and less desire to eat (F ¼ 5·34;
P¼0·006). No differences were observed in energy intake 25 min after
the dairy beverage consumption

Dove et al. (2009)(208) A randomised cross-over study; thirteen men and thirty-four women
Stimuli: a fixed breakfast with either 600 ml skimmed milk or 600 ml

fruit juice (1062 kJ) provided 4 h before an ad libitum lunch

The mean energy intake at lunch was 2432 (95 % CI 2160, 2704) and 2658
(95 % CI 2386, 2930) kJ after consumption of the skimmed milk and fruit
juice, respectively, with the mean difference being 8·5 % (P,0·05)

Potier et al. (2009)(209) A within-subjects design; twenty-seven women
Stimuli: a cheesy snack containing 22 g protein (casein) (836 kJ),

a cheesy snack (whey þ casein, 2:1) (836 kJ) ingested 60 min
before an ad libitum lunch

The energy compensation at lunch was 83·1 (SEM 9·4) and 67·0 (SEM 16·4)
% for whey þ casein and casein cheese, respectively, and 121·6
(SEM 36·5) and 142·1 (SEM 29·7) % for whey þ casein and casein
cheese, respectively, considering the daily energy intake

Sanggaard et al. (2004)(210) A randomised cross-over study; eight men
Stimuli: 1·4 litres of milk or 1·4 litres of fermented milk plus 15 g

lactose

The gastric emptying was slower after the fermented milk than milk
(P,0·001) probably due to higher viscosity although there were
no significant differences in appetite

HFCS, high-fructose corn syrup; AUC, area under curve; VAS, visual analogue scale.
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high-dairy consumption period. The intake of dairy protein

was between 2·3 and 14·3 g/d, while in relevant studies that

observed a satiating effect of proteins, the intake of protein

was between 45 and 50 g/d(173,174). Thus, a possible

threshold level of dairy protein intake was not reached

and in combination with the short intervention time and

small sample size may explain the results. Furthermore,

whether fermented dairy products have a stronger effect

on appetite and satiety than non-fermented dairy remains

to be clarified(207,210).

Although in the majority of the above studies no

subsequent difference in energy intake at the ad libitum

meal was observed, not all of the studies have been

primarily powered to detect differences in energy intake.

In contrast, two recent studies, with energy intake as

their primary outcome, identified differences in energy

intake (Table 7)(208,209). Dove et al.(208) showed that satiety

was increased and energy intake at the ad libitum lunch

decreased 4 h after the consumption of skimmed milk

compared with an isoenergetic fruit drink in overweight

men and women. Potier et al.(209) also concluded that

the regular consumption of a moderate-energy cheese

snack (836 kJ) would not result in weight gain due to the

compensation observed not only at the ad libitum lunch

but also on the whole-day energy intake.

Further, longer-term and adequately powered studies

are required to investigate if habitual dairy product con-

sumption has an effect on appetite regulation and, as a

consequence, subsequent energy intake.

Conclusions

The incidence of obesity is increasing dramatically

worldwide. Dairy products are an integral part of the

Western diet. There is accumulating epidemiological data

based on cross-sectional (five studies) and particularly

prospective studies (seven studies) that show a modest

but significant inverse association between dairy product

consumption and body-weight gain. Only one study has

reported weight gain with consumption of dairy products,

indicating that dairy foods can be consumed as a major

source of nutrients during weight maintenance. Evidence

from intervention studies not involving energy intake

restriction is inconsistent regarding body-weight change

(Table 8), although nine studies out of twelve showed no

effect of dairy consumption specifically on weight loss.

During energy restriction, the data are also still inconsist-

ent. The interpretation of the relevant evidence is compli-

cated by the ability of humans to regulate energy intake.

Future studies that examine the relationship between

dairy products and body composition should use dairy

consumption both with and without adjustment for

energy intake. There is currently a paucity of evidence

regarding the impact of the type of dairy product on

the association between dairy consumption and body

composition.

Considering Ca, numerous epidemiological studies and

especially intervention trials with energy restriction

strongly support that dietary Ca is negatively associated

with measures of adiposity, highlighting its potential

beneficial effects as a component of weight-loss treat-

ments in overweight and obese individuals, in particular

individuals with a low habitual Ca intake (,700 mg/d)

(Table 8). A greater effect of dairy Ca than the supple-

mental form is suggestive that dairy bioactive components

other than Ca may also be involved.

Numerous plausible mechanisms underlying the

beneficial effect of dairy products on body-weight regu-

lation have been proposed. Currently the greatest strength

of evidence is available for Ca as a principal bioactive

Table 8. Studies that examined the association between dairy product consumption and dietary calcium* and measures of body composition

References Main conclusions

Cross-sectional studies
24, 25, 27, 28, 32, 33*, 35*, 36*, 37*, 38*, 39*,
40*, 41*, 42*, 43*, 44*, 47*, 49*

Inverse association between dairy products and measures of body composition

26, 29, 30, 45*, 46* No association
34, 48* Positive association

Prospective studies examined in a cross-sectional manner
27, 50*, 51*, 52*, 54, 57*, 58, 59, 62*, 65* Inverse association between dairy products and measures of body composition
50, 53*, 56, 64* No association
55, 56, 60, 61 Positive association

Prospective studies
67, 68, 69, 70, 71, 73, 74 Inverse association between dairy products and measures of body composition
72, 75, 76* No association

Intervention trials
Without energy restriction

87, 89 Inverse association between dairy products and measures of body composition
81–86, 88, 90, 100 No association
79, 80 Positive association

With energy restriction
88, 91, 94, 95*, 96*, 97*, 98* Inverse association between dairy products and measures of body composition
77, 92, 93, 99 No association

* Studies that examined dietary Ca.
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component with a proposed effect on adipocyte lipid

metabolism, lipogenesis and lipolysis, fat oxidation and

fat absorption. Additionally, dairy constituents such as

lactose, protein (in particular whey proteins) and their

peptide derivatives may have an effect on body weight

through the regulation of food intake and appetite.

Although the impact of individual dairy constituents on

food intake and appetite has been investigated to some

degree, there is a paucity of evidence from well-designed

intervention studies that examine the impact of dairy

product consumption, as whole foods, or the effect of

individual products on appetite and overall energy intake.

In conclusion, epidemiological data support the notion

of a benefit of dairy product consumption for weight

maintenance. However, there is an urgent need for well-

designed, long-term randomised intervention studies,

with adequate replication and with body-weight changes

and measures of adiposity as their primary outcomes,

in order to verify the potential benefits of specific dairy

products on weight regulation and weight and fat loss

and provide an insight into the underlying physiological

mechanisms.
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