Centennial-scale variability of the British Ice Sheet: Implications for climate forcing and Atlantic meridional overturning circulation during the last deglaciation

Paul C. Knutz,1,2 Rainer Zahn,3 and Ian R. Hall4

Received 28 March 2006; revised 29 September 2006; accepted 23 October 2006; published 15 February 2007.

1. Introduction

The last glacial was marked by a series of abrupt climate shifts that contrast the relative stability of Holocene climates. Most notable are the rapid Dansgaard-Oeschger temperature oscillations found in ice cores from the Greenland ice sheet [Dansgaard and Oeschger, 1989; Grootes and Stuiver, 1997; Johnsen et al., 1972] which are also recorded in a range of climate archives including deep marine sediments [Bond and Lotti, 1995; Goni et al., 2002] and terrestrial environments [Allen et al., 1999; Clemens, 2005; Genty et al., 2003]. The peak cooling conditions culminated in major collapses of the Laurentide Ice Sheet (LIS) that resulted in the deposition of prominent “Heinrich” layers of ice-rafted debris (IRD) across the northern North Atlantic [Broecker et al., 1992; Heinrich, 1988; Ruddiman, 1977]. A mechanism involving changes in the Atlantic meridional overturning circulation (MOC) driven by freshwater perturbation [Bond et al., 1993; Ganopolski and Rahmstorf, 2001] has frequently been highlighted but the cause and trigger for northern hemisphere ice sheet instabilities remains to be established. External climate forcing has been suggested as a modulator for Holocene ocean-climate change [Bond et al., 2001] but the significance of such forcing on glacial climate is controversial.

Icebergs coming from the LIS are viewed as the principal contributor to IRD and meltwater during the Heinrich events (HE). However, several studies have suggested that other ice sheets in Scandinavia, Iceland and the British Isles fluctuated at a much faster pace than the 5000–7000 year intervals between HE [Bond and Lotti, 1995; Elliot et al., 1998; Fronval et al., 1995; Knutz et al., 2001; Peck et al., 2006]. A key question is whether iceberg discharges from these smaller ice sheets occurred sporadically as a result of internal glacial dynamics, or in response to regional climate variability in the millennial-centennial frequency band. Here we present fine-scale paired paleoceanographic records of IRD flux, polar planktonic foraminiferal abundance and stable isotopes from the northeast
Atlantic Drift with present summer sea surface temperatures climatology at this location is dominated by the warm North water depth [2–3 km [McCartney, 1992]. The dashed arrow represents Norwegian Sea Overflow Water, which enters the northeast Atlantic across the shallow sills between Iceland and Scotland [Ellett and Roberts, 1973; New and Smythe-Wright, 2001]. RB, Rockall Bank; RT, Rockall Trough; W-T, Wyville-Thomson Ridge. Contours represent 200, 1000, 2000, and 3000 m water depth.

Atlantic that cover the period 10–27 kyr B.P. at typically multidecadal resolution. The records are derived from a sediment core located close to the margin of the last British Ice Sheet (BIS) that formed the southwest sector of the larger Eurasian Ice Sheet during the last glacial [Knutz et al., 2002] (Figure 1). The records allude to the interaction between Atlantic MOC and ice sheet dynamics and depict in fine detail the sequence of events that occurred at the end of the glacial period leading to the sequential breakup of the BIS.

2. Oceanographic Setting

Core DAPC2 (58°58.10′N, 09°36.75′W, 1709 m water depth) was obtained by the Danish vessel R/V Dana from a contourite drift developed around the southern flank of the Rosemary Bank, Rockall Trough (Figure 1). The site is presently under the influence of Northeast Atlantic Deep Water that enters the Rockall Trough as part of a northern boundary current trailing the European margin at 2–3 km water depth [McCartney, 1992]. A subsidiary contribution from direct overflow across the Wyville-Thomson Ridge may contribute to the deep water circulation in the northern end of the trough [Ellett and Roberts, 1973]. Surface ocean climatology at this location is dominated by the warm North Atlantic Drift with present summer sea surface temperatures (SSST) of around 12–13°C. During the last glacial the core site was proximal to the BIS which during stages of maximum advancement extended to the Hebrides shelf margin [Stoker and Holmes, 1991] and to within ~200 km to the southeast of the core site (Figure 1). Core DAPC2 therefore is well suited to document the variability of the BIS during the last glacial, which in turn, due to the proximity of the glacial polar front and to the pathway of the North Atlantic Drift current was likely positioned close to the climatic limit of ice sheet stability. Such a glacial configuration would have led to the BIS being particularly sensitive to changes in Atlantic MOC and its associated northward heat advection.

3. Methods

The core was sampled at 2 cm intervals using plastic syringes containing volumes of 5–6 cm³. All samples were weighed before and after drying at 40°C and subsequently sieved using mesh sizes of 63, 125, and 250 μm. IRD and planktonic foraminifera were counted from the >250 μm size fraction. In most samples the entire lithic content >250 μm was counted. In samples where lithic grain numbers exceeded 800, counting was performed on a split fraction of 300–400 grains. The total IRD content and its subcomponents fractured quartz, detrital carbonate and basalt were determined for each sample. A detailed petrological examination was carried out for samples representing prominent IRD peaks.

The relative percentage of the polar foraminifera Neogloboquadrina pachyderma sinistral (Nps) was determined in the size fraction >125 μm. Nps percent as a paleoproxy is sensitive to upper ocean and atmospheric temperatures and has been used previously to indicate the presence of polar surface waters and to semiquantitatively reconstruct SST variability in the North Atlantic region [Bond et al., 1993; Johannessen et al., 1994]. The remaining faunal components in DAPC2 mainly consist of the temperate to subpolar species Globigerina bulloides and Turbo totalita quinqueloba. Oxygen isotopes were measured on 20–30 Nps (250–350 μm size fraction) and 3–6 specimens of the epifaunal benthic species Cibicidoides wuellerstorfi (Cw). Oxygen isotope measurements were performed on a Thermo-Finnigan MAT 252 mass spectrometer coupled online to a fully automated CARBO Kiel sample preparation device. External precision of the δ18O determination was better than ±0.06‰ and are reported on the V-PDB scale. The δ18O values of Cw were corrected for seawater disequilibrium effects by +0.64‰ [Shackleton and Opdyke, 1973].

An initial chronology for DAPC2 was established using the Nps δ18O record in conjunction with 21 AMS 14C dates from monospecific planktonic foraminiferal samples with weights ranging from 5 to 10 mg (Table 1). AMS 14C measurements were performed at the Radiocarbon Laboratory, University of Aarhus. The 14C dates were subsequently converted into calendar years using CALIB5 assuming a constant 400 year marine reservoir correction [Stuiver and Reimer, 1993; M. Stuiver et al., CALIB Execute version 5.0.2, 2005, available at http://radiocarbon.
Table 1. Chronological Data for DAPC2

<table>
<thead>
<tr>
<th>Core Depth, cm</th>
<th>Lab Number</th>
<th>14C Age, years B. P.</th>
<th>Error, ±1σ</th>
<th>CALIB Age, years B. P.</th>
<th>GISP2 Age, years B. P.</th>
<th>Age Shift, years</th>
<th>ΔMR, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>AAR-6103</td>
<td>3740</td>
<td>55</td>
<td>3672</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>AAR-5209</td>
<td>8590</td>
<td>90</td>
<td>9138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>AAR-5210</td>
<td>10830</td>
<td>90</td>
<td>12336</td>
<td>11788</td>
<td>958</td>
<td>799</td>
</tr>
<tr>
<td>96</td>
<td>AAR-6104</td>
<td>11380</td>
<td>110</td>
<td>12931</td>
<td>12774</td>
<td>1394</td>
<td>563</td>
</tr>
<tr>
<td>126</td>
<td>AAR-7990</td>
<td>10910</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>AAR-6105</td>
<td>13410</td>
<td>130</td>
<td>15367</td>
<td>15288</td>
<td>1878</td>
<td>565</td>
</tr>
<tr>
<td>154</td>
<td>AAR-7991</td>
<td>14400</td>
<td>110</td>
<td>16679</td>
<td>15846</td>
<td>1446</td>
<td>1234</td>
</tr>
<tr>
<td>160</td>
<td>AAR-5211</td>
<td>14900</td>
<td>110</td>
<td>17424</td>
<td>15973</td>
<td>1073</td>
<td>1684</td>
</tr>
<tr>
<td>171</td>
<td>AAR-7992</td>
<td>15330</td>
<td>100</td>
<td>17673</td>
<td>16206</td>
<td>876</td>
<td>1947</td>
</tr>
<tr>
<td>178</td>
<td>AAR-7993</td>
<td>15390</td>
<td>130</td>
<td>17832</td>
<td>16354</td>
<td>964</td>
<td>1868</td>
</tr>
<tr>
<td>199</td>
<td>AAR-6106</td>
<td>15400</td>
<td>170</td>
<td>18307</td>
<td>16798</td>
<td>1398</td>
<td>1436</td>
</tr>
<tr>
<td>209</td>
<td>AAR-5212</td>
<td>15560</td>
<td>140</td>
<td>18524</td>
<td>16961</td>
<td>1401</td>
<td>1457</td>
</tr>
<tr>
<td>269</td>
<td>AAR-7994</td>
<td>16430</td>
<td>130</td>
<td>19203</td>
<td>17865</td>
<td>1435</td>
<td>1554</td>
</tr>
<tr>
<td>352</td>
<td>AAR-8755</td>
<td>17310</td>
<td>130</td>
<td>20042</td>
<td>19429</td>
<td>2119</td>
<td>999</td>
</tr>
<tr>
<td>387</td>
<td>AAR-8756</td>
<td>17870</td>
<td>130</td>
<td>20672</td>
<td>20091</td>
<td>2221</td>
<td>981</td>
</tr>
<tr>
<td>481</td>
<td>AAR-8757</td>
<td>19730</td>
<td>140</td>
<td>22825</td>
<td>22394</td>
<td>2664</td>
<td>831</td>
</tr>
<tr>
<td>504</td>
<td>AAR-8758</td>
<td>20280</td>
<td>150</td>
<td>23394</td>
<td>23003</td>
<td>2723</td>
<td>791</td>
</tr>
<tr>
<td>519</td>
<td>AAR-9338</td>
<td>20450</td>
<td>170</td>
<td>23836</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>536</td>
<td>AAR-8759</td>
<td>21410</td>
<td>200</td>
<td>23997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>562</td>
<td>AAR-8760</td>
<td>21860</td>
<td>190</td>
<td>25000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>576</td>
<td>AAR-9339</td>
<td>23660</td>
<td>210</td>
<td>25606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>588</td>
<td>AAR-8761</td>
<td>23950</td>
<td>220</td>
<td>26241</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a*Previously published 14C datings from Knutz et al. [2002] are shown in italics.
*b*Including constant marine reservoir (MR) age of 400 years.
*c*Based on linear interpolation between tie points displayed in Figure 3.
*d*Difference between fit-to-GISP2 ages and uncorrected 14C values.
*e*Difference between CALIB ages excluding 400 yr MR correction, and fit-to-GISP2 ages.
*f*Dating omitted due to age inversion.

The downcore AMS 14C age distribution displays a noticeable inflection in the age-depth function at 170 cm indicating the transition from a glacial stage high sediment deposition regime with sedimentation rates of 60–70 cm kyr$^{-1}$ to one of more moderate rates, 20–30 cm kyr$^{-1}$, into the deglaciation (Figure 2). Three 14C ages between 171 and 199 cm are virtually identical within their error bars, 15.33–15.40 14C kyr B.P., corresponding to 17.67–18.31 calendar kyr B.P., implying extremely high sedimentation rates or instantaneous deposition of this interval (Table 1 and Figure 2a). The lithology and sediment composition does not reveal any evidence for the presence of a turbidate layer or other mass transportation event. Rather the interval corresponds to a strong meltwater and IRD pulse associated with HE1 and therefore the plateau in the age/depth function is most likely related to changes in the marine inventory of dissolved radiocarbon [Bard et al., 1993]. Similar 14C plateaus across Heinrich events have been observed at other North Atlantic core sites [Andrews et al., 1999]. In order to eliminate the suspected meltwater artefact we discarded the two 14C dates at 171 and 178 cm from the age model. We next established a calendar year timescale using the CALIB5 conversion routine.

Comparing the record of Nps percent variation in DAPC2 on the calibrated 14C timescale with the layer counted 18O record from the Greenland GISP2 ice core [Grootes and Stuiver, 1997] displays a striking similarity between the two profiles (Figure 3). This resemblance confirms the tight coupling between atmospheric temperatures over Greenland and North Atlantic SST that has been demonstrated in previous studies from the northern and midlatitude North Atlantic [Shackleton et al., 2000; van Kreveld et al., 2000; Voelker et al., 1998]. Temporal offsets in structure between the marine and ice core records are particularly prominent (up to 1500 years) prior to the major cooling associated with HE1 and confirm the possibility of a strong overprint on the 14C age scale from changes in the local surface layer 14C reservoir. Therefore we chose to refine the 14C derived age model by maximizing the correlation between the downcore variability of Nps percent and the GISP2 18O record (Figure 3). Tie points were, for instance, the high-amplitude Nps percent changes in DAPC2 that mirror the Bølling-Allerød to Younger Dryas climate swings seen in GISP2 (Figure 3). The series of rapid Nps percent oscillations in the lower section of the marine record likewise are well correlated to similar 18O oscillatory structures in the Greenland record. Peak Nps abundances, in excess of 90%, coincide with IRD maxima (including dolomitic carbonate) indicating the incursion of HE1 and HE2. The abrupt warming that followed these events is displayed by stepwise decreases in Nps abundance to values of <30%.

Comparing the refined age model with the 14C-AMS derived timescale suggests marine reservoir age shifts of...
800–900 years across the LGM and up to 2000 years during the peak of HE1 (Table 1 and Figure 2a). Marine radiocarbon age shifts on this order are in accordance with earlier observations [Waelbroeck et al., 2001] and are supported by a comparison of age discrepancies between DAPC2 and core PS2644 from the Greenland Sea [Voelker et al., 1998] (Figure 2b) that experienced similar magnitudes in 14C age excursions in the interval 14 to 23 14C kyr. Increases in marine reservoir ages of up to 800 years during the Younger Dryas have been explained by a combination of reduced ocean ventilation and increased sea ice cover [Bard et al., 1994; Stocker and Wright, 1996]. In addition to these factors...
Figure 3. Correlation of proxies from DAPC2 with the GISP2 climate record. (a) Planktonic δ¹⁸O record from DAPC2 on an independent calendar timescale. (b) Relative abundance of *Neogloboquadrina pachyderma* sinistral (Nps) from DAPC2 on an independent calendar timescale. (c) Nps percent matched to the high-resolution oxygen isotope data (δ¹⁸O SMOW) from the Greenland Summit GISP2 ice core (http://depts.washington.edu/qil/datasets/gisp2_main.html) [Grootes and Stuiver, 1997] (d). The tie points to GISP2 are demarcated by thin vertical lines. Positions of AMS ¹⁴C ages are indicated by arrows along the upper age axis. The calendar timescale (Figures 3a and 3b) is based on calibrated AMS ¹⁴C dates (CALIB5) and, for samples older than 23 kyr, by linear extrapolation of sedimentation rates. The GISP2 timescale (Figures 3c and 3d) is based on layer counting according to Meese et al. [1997]. GISP2 δ¹⁸O data were filtered by Gaussian interpolation at a bandwidth of ~70 year to obtain a similar temporal resolution as in DAPC2.
input of nonradiogenic carbon from meltwater (i.e., a “hard water” effect) may have contributed to the apparently large marine reservoir ages observed during the early deglaciation.

Glacial sedimentation rates based on the GISP2 tuned timescale generally vary between 20 and 65 cm kyr$^{-1}$ (Figure 2a), yielding a mean time step of 70 ± 58 yrs at a data point interval of 2 cm along the proxy records. In the high-resolution interval between 15.5 and 20.5 kyr time steps are typically 30–40 years. Reduced sedimentation rates, 8–10 cm kyr$^{-1}$, during the Bolling interstadial at ~14.5 kyr and the Holocene interval probably reflect a combination of more intense bottom currents and lower terrigenous sediment supply to the core site. Because of the potentially large, but essentially unknown, meltwater influence on the marine 14C reservoir, and for age model consistency on an interhemispheric scale, we have chosen to present the proxy data on the GISP2 timescale. This preference has no influence on the main conclusions drawn from the sequence of events in the proxy records or the inferred cyclicity (see section 5.3).

4.2. IRD and Oxygen Isotopes

Marine climate indicators from DAPC2 for the interval 10–27 kyr B.P. display the familiar succession of events across the LGM and leading up to the last deglaciation (Figures 4 and 5). HE1 and HE2 stand out by the maximum abundance of Nps, in excess of 90%, and by IRD reflecting the incursion of maximum cooling and peak iceberg drift. The population of IRD in these sections contains pale yellow dolomitic carbonate (Figure 4e, see also 4.3) that was previously identified as being derived from Paleozoic limestone underlying the LIS in the Hudson Bay region [Andrews and Tedesco, 1992; Bond et al., 1992]. Both events are marked by coeval negative excursions in planktonic 18O by 0.4–0.8‰ (Figure 4c) signaling the enhanced meltwater incursions that went along with these events. As shown in earlier studies, depletions in planktonic foraminifera abundance occur not only during the Heinrich events but some thousand years prior to these events [Hemming, 2004], a feature that is also displayed in the foraminiferal abundance pattern around the HE intervals in DAPC2 (Figure 4b).

A prominent negative planktonic 18O shift of ~0.8‰ at ~16.3 kyr B.P. (Figure 4c) coincides with the main deglacial phase of the Fennoscandian Ice Sheet recorded in the Norwegian Channel [Lehman et al., 1991] and on the North Sea Fan [Lekens et al., 2005]. This shift is accompanied by a sharp negative 34S overshoot, suggesting an additional meltwater pulse likely derived from a local source on the British margin [Knutz et al., 2002]. The step change in planktonic 18O at 16.3 is followed by a prominent depletion peak, also of ~0.8‰, between 15.8–15.5 kyr B.P. corresponding to the HE1 event. The benthic 18O signal displays a more consistent decrease of 1.3‰ from about 16.3 kyr and throughout the HE1 interval, thus with an onset that leads the DC peak by 400–500 years. This transition in benthic oxygen isotope values was previously observed (though at a lower resolution) on the Feni Drift by Jansen and Veum [1990] and referred to as termination 1A. The combined benthic and planktonic 18O records from these nearby sites suggests a rapid transfer of the deglacial signal to intermediate depths in the Rockall Trough, conceivably by brine exclusion during sea ice formation [Dokken and Jansen, 1999]. From ~12 kyr a second negative shift in benthic 18O is observed, which corresponds to termination 1b leading into the Holocene [Jansen and Veum, 1990].

Positive correlation between Nps percent and 18O on centennial to subcentennial scales reflects transient ocean temperature changes that are particularly well developed across the LGM and early deglaciation (Figure 5). Oxygen isotope amplitudes during these events are in the range 0.2–0.5‰ suggesting SST changes of up to 2°C, possibly even larger considering that low 18O meltwaters could be involved in some of the cold episodes. Cold-to-warm temperature transitions during these events occur within a single sample step, corresponding to about 30 years according to our age model. This is similar to the rates of change seen in the Greenland ice cores reinforcing the contention of a tight coupling between atmospheric oscillations and surface ocean variability at the core site.

The IRD record likewise shows subcentennial-scale variability (Figure 5a). Both HE1 and HE2 are preceded by recurrent peak IRD events that are multidecadal in duration and superimposed on a background of increasing IRD flux (Figures 4d and 5a). Similar “precursor” events have been reported from other core sites across the North Atlantic and inferred to originate from sudden Icelandic and European glacial surges [Bond and Lotti, 1995; Grousset et al., 2000; Scourse et al., 2000]. Two additional intervals with increased IRD flux of multidentennial duration are observed across the LGM, 23–19 kyr, with intermittent peaks correlating with smaller-scale cooling/freshening events indicated by increases in Nps percent and planktonic 18O (Figure 4). Finally, a sharp IRD peak occurs near the end of the Younger Dryas period and coincides with maximum cooling that is evident from the brief period of maximum Nps percent. This event mirrors the HE0 [Andrews, 1998] that is preceded in our record by two minor lithic increases at the termination of the Allerød warming.

The prominent short-lived (<100 years) maxima in IRD deposition prior to HE1 and HE2 coincide with increased Nps percent and variable degrees of planktonic 18O depletion indicative of marine cooling associated with meltwater discharge (gray bars in Figure 5). This pattern is best developed for the events preceding HE1, while in particular the 18O depletions prior to HE2 appear largely subdued, most likely reflecting colder temperatures and lower melting rates during the full glacial conditions surrounding HE2. In contrast, a positive correlation between 18O and IRD is observed for the events centered at 22.0 and 20.3 kyr (Figures 5a and 5c) suggesting that iceberg discharges during LGM were accompanied by a low meltwater production.

4.3. Lithic Petrology

In order to assess possible iceberg sources we evaluated the petrological composition of the series of IRD peaks observed in core DAPC2 (Figure 6 and Table 2). Across the IRD maxima quartz is the dominant component in most samples, generally around 70%, followed by...
Figure 4. Stratigraphic correlation between marine parameters from DAPC2 and oxygen isotope data from the GISP2 Greenland ice core (a) 10–27 kyr B.P. (b) Relative abundance of *Neogloboquadrina pachyderma* sinistral (Nps). (c) Planktonic (blue line) and benthic oxygen isotope values (black squares) reported as $\delta^{18}O$ V-PDB. (d) Total IRD flux. Note scale break on y axis. (e) Relative abundance of detrital carbonate. Orange indicates pale yellow carbonate grains, Gray indicates dark carbonate grains. Open diamonds along lower age axis indicate 36Cl rock exposure ages from Ireland [Bowen et al., 2002]. The typical error for 36Cl ages (not shown) is in the range of ±1–2 kyr. Younger Dryas (YD), Bolling-Allerød (B-A), Heinrich events 1–2 (H1, H2), and Last Glacial Maximum (LGM) are indicated. Slanted arrows demarcate sequences of discrete centennial-scale peaks superimposed on a gradual increase in background IRD. The chronology for DAPC2 is based on visually matching centennial-scale warmings (cooling for YD) between Nps percent and GISP2 $\delta^{18}O$ (Figure 3).
subordinate amounts of acidic igneous and metamorphic grains. Pale yellowish dolomitic carbonate grains, typically associated with Paleozoic formations underlying the central parts of the LIS, are present with concentrations of up to 10% indicating that LIS icebergs drifted far into the northeast Atlantic during HE1 and HE2 (Figure 4e and Table 2). A separate type of dark gray detrital carbonate is observed in significant amounts (up to 8%) immediately prior to HE2 (Figure 4e and Table 2). Basalt generally occurs in trace amounts (<5%) throughout the core with the exception of IRD peak 13 which contains 30% of dark olivine rich grains.

The Younger Dryas IRD peak (1 in Figure 6) contains up to 11% of brown glassy tephra shards, presumably an ice-rafted component of North Atlantic ash zone 1 previously identified in cores from the Hebrides margin [Austin and Kroon, 1996].

5. Discussion

5.1. IRD Provenance and Timing With BIS Variability

A striking feature of the HE1 and HE2 intervals in DAPC2 are the sequences of brief centennial-scale IRD

Figure 5. Detailed view of paleoclimatic parameters from the northeast Atlantic, Greenland, and Antarctica across the LGM and early deglaciation (15–23 kyr B.P.). (a) IRD flux (number cm$^{-2}$ yr$^{-1}$) in DAPC2, based on grain abundance of fractured quartz >250 μm, bulk density and linear sedimentation rates. HE1 is defined by the presence of detrital carbonate (5–10% out of total IRD). Red line indicates July insolation at 65°N. (b) Relative abundance of Neogloboquadrina pachyderma sinistral in DAPC2 (as in Figure 4). (c) Oxygen isotope data from DAPC2 (as in Figure 4) with range of analytical error indicated by blue bar. (d) Orange curve, GISP2 oxygen isotope data, and green curve, oxygen isotope data ($\delta^{18}O$ SMOW) from the Antarctic Byrd ice core. Estimated uncertainty of the Byrd age model relative to GISP2 is ±300 years [Blunier and Brook, 2001]. Thin black line represent a mean global insolation curve (average 65°N and 90°S). Gray vertical bands highlight correlation between short-lived IRD events, Nav percent and planktonic $\delta^{18}O$ in DAPC2 across the early deglaciation. Slanted arrows (Figure 5c) illustrate warming trends following the first deglacial warming response marked by white arrow (Figure 5d).
peaks occurring up to a few thousand years before the detrital carbonate layers. The occurrence of minor IRD peaks prior to Heinrich events observed by Bond and Lotti [1995] were considered to represent discharges from ice shields in Greenland, Barents Sea or Scandinavia. Similar “precursor” peaks were identified in subsequent studies where application of radiogenic isotopes [Grousset et al., 2000] and sedimentary petrology [Knutz et al., 2002; Peck et al., 2006; Scourse et al., 2000] of ice-rafted material suggested a more distinct European provenance.

The origin of individual IRD deposition events obviously has implications for the mechanism of ice sheet disintegration associated with HE sequences. The proximity of DAPC2 to the glacial stage BIS and the high IRD fluxes within the events leading up to HE2 and HE1, where in the latter instance fluxes are on occasion greater than under full Heinrich conditions, suggests this ice sheet as a potential source for icebergs. In addition to local sources IRD may have been supplied by a southward drift of icebergs from Scandinavia emanating from the Norwegian Channel. Although the coarse fraction is largely dominated by quartz grains, which limits the identification of specific source regions, some intervals reveal more distinctive sedimentary components. The dark gray carbonate that contributes to the IRD peak prior to HE2, at ~25 kyr, differs markedly from the pale yellow dolomitic carbonate typical of the HE2 layer that follows it. The most likely source terrain for the dark gray carbonate are the carboniferous limestone formations in western and central Ireland [Sevastopulo, 1981]; an inference that is supported by the presence of debris flow deposits rich in dark gray limestone clasts on the Irish continental slope [Hall and Scourse, 2005].

Basalt eroded from the Tertiary provinces in western Scotland and northern Ireland has been identified as a lithic tracer in cores MD95-2006 on the Barra Fan [Knutz et al., 2001] and MD02-2461 in the Porcupine Seabight [Peck et al., 2006]. The small amount of ice-rafted basalt in DAPC2 suggests that either the core site was not in the primary drift

![Figure 6](image)

Figure 6. IRD abundance >250 μm, on a depth scale. Numbers refer to lithic peaks where the total petrological composition was determined (Table 2).

Table 2. Petrological Composition of IRD Peaks (<250 μm) in DAPC2

<table>
<thead>
<tr>
<th>IRD Peak</th>
<th>Core Depth, cm</th>
<th>Number of Lithics >250 μm</th>
<th>Percent Fractured</th>
<th>Percent Rounded</th>
<th>Percent Other</th>
<th>Percent DC</th>
<th>Percent Basalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>557</td>
<td>12</td>
<td>71</td>
<td>11 (4)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>144</td>
<td>487</td>
<td>14</td>
<td>60</td>
<td>17</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>363</td>
<td>22</td>
<td>50</td>
<td>14</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>173</td>
<td>480</td>
<td>17</td>
<td>52</td>
<td>26</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>197</td>
<td>583</td>
<td>14</td>
<td>58</td>
<td>23</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>255</td>
<td>222</td>
<td>10</td>
<td>61</td>
<td>27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>465</td>
<td>541</td>
<td>26</td>
<td>48</td>
<td>22</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>258</td>
<td>2400</td>
<td>22</td>
<td>48</td>
<td>24</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>530</td>
<td>2222</td>
<td>31</td>
<td>41</td>
<td>13</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>556</td>
<td>1230</td>
<td>29</td>
<td>38</td>
<td>21</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>564</td>
<td>1200</td>
<td>23</td>
<td>40</td>
<td>33</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>572</td>
<td>756</td>
<td>27</td>
<td>42</td>
<td>27</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>584</td>
<td>500</td>
<td>24</td>
<td>27</td>
<td>20</td>
<td>-</td>
<td>29</td>
</tr>
</tbody>
</table>

* See Figure 6. Percent other represent unspecified igneous and metamorphic fragments except for peak 1 which also contains 11% of brown tephra. DC, detrital carbonate.

* Dark gray carbonate.
path of icebergs emanating from the central part of the BIS, or if these icebergs drifted over the core site they did not experience major melting. An exception is a brief IRD event at the onset of the sequence leading up to HE2 (∼26 kyr), which contains abundant olivine basalt (Figure 6 and Table 2).

[21] A comparison with 36Cl exposure ages from glacial boulders and smoothed bedrock in Ireland [Bowen et al., 2002] adds further constraints to establish a connection between the IRD deposition events in DAPC2 and BIS variability. 36Cl exposure ages (open diamonds in Figure 4e) cluster in 2 groups indicating phases of ice sheet retreat in the western British Isles during the LGM and early deglaciation. Single point 36Cl ages suggest that decay of continental ice also occurred in the course of HE2 and HE1 and during the late deglaciation (Allerod and Younger Dryas). The timing of ice sheet retreat suggested by the 36Cl ages agrees particularly well with the centennial IRD events prior to HE1. The two IRD maxima during the LGM overlap with a 36Cl age center clustered around 21.8 kyr B.P. that according to Bowen et al. [2002] reflects an early phase of ice sheet retreat immediately after the BIS reached its maximum LGM size. From this tight correlation between the timing of glacial retreat on the British Isles, reflected in 36Cl ages, and the occurrence of lithic peaks in DAPC2 we conclude that the northern Rockall Trough received a dominant supply of IRD flux from the BIS.

5.2. Sequencing Events Leading Into the Last Deglaciation

[22] The high temporal resolution in DAPC2 during the early deglacial and the LGM, 15–23 kyr, enables a detailed comparison of the data profiles with the sequence of events displayed in ice core records (Figure 5). Atmospheric temperature records, on their methane synchronized timescales [Blunier and Brook, 2001], from Greenland (GISP2 [Grootes and Stuiver, 1997]) and west Antarctica (Byrd [Johnsen et al., 1972]) document an onset of warming in both hemispheres between 21.3–20.5 kyr B.P. (Figure 5d). Warming at ∼22 kyr, by some ∼6°C over a few decades, is also recorded in the Siple Dome δD profile located some 500 km from Byrd [Taylor et al., 2004]. An early warming trend is likewise apparent in planktonic δ18O from DAPC2 that steadily decreases from 21.5 kyr B.P. for some 1000 years (Figure 5c). This trend is mirrored by a decrease in Nps percent (Figure 5b) that mimics the structure of the GISP2 δ18O record at that time. The decrease is terminated abruptly by an IRD event centered at 20.3 kyr B.P. (Figure 5a), coincident with a cold episode in GISP2 that is not displayed in the Byrd δ18O record. The trend of decreasing planktonic δ18O is then re-established at ∼20.2 kyr B.P. and proceeds for another 1000 years until halted once more by a further abrupt cold episode at 19 kyr B.P. This cold reversal is best displayed by the abrupt increase of Nps percent in DAPC2 and is also seen in the Byrd δ18O record. The two periods of northern hemisphere warming between 21.5 and 19 kyr B.P. in our view represent the initial phase of global deglaciation that is clearly visible in the Byrd and other Antarctic ice core records but was aborted twice in the North Atlantic by episodes of enhanced iceberg drift from the initial stages of the disintegrating North Atlantic ice sheets. The cooling at ∼19 kyr B.P. therefore heralds the onset of an increasing and sustained climatic divergence between the hemispheres reflecting widespread cooling in the North Atlantic region.

[23] While deglacial warming proceeds in the south, Nps percent and planktonic δ18O in DAPC2 and δ18O in GISP2 show that glacial conditions continued and intensified in the North Atlantic region for another 4000 years. Over this period an enhanced iceberg productivity, reflected by a trend of increasing IRD flux suggests a progressive disintegration of the North Atlantic ice sheets (Figure 5a). The associated meltwater runoff appear to have impinged directly on the vigor of the Atlantic MOC [Clark et al., 2004] by suppressing the northward advection of oceanic heat and thereby prolonging glacial conditions in the wider North Atlantic region. The position of DAPC2 close to the former western BIS, and notably the direct linking of IRD events along the core with phases of glacial retreat in the British Isles, suggests that the breakup of the BIS contributed to this climatic pattern. Marine records from the southern Norwegian slope, documenting massive deposition of plumes and IRD between 18 and 21 kyr [Lekens et al., 2005], further suggest that this initial phase of ice sheet decay affected the Eurasian Ice Sheet beyond the British Isles. The direct impact of an early ice sheet disintegration on the Atlantic MOC is demonstrated by 231Pa/230Th records from DAPC2 [Hall et al., 2006] showing an onset of MOC slow down between 1.2 and 1.3 kyr prior to the deposition of HE1. It was not until the end of IRD deposition and the ensuing meltwater surge that the MOC intensified and the North Atlantic region abruptly warmed during the Bolling period at 14.7 kyr B.P. [Clark et al., 2004; Weaver et al., 2003].

5.3. Mechanisms for Rapid Ice Sheet Instability

[24] The series of short-lived IRD events that are recorded in DAPC2 prior to HE1 and HE2 document recurrent episodes of iceberg discharges lasting some 80–100 years. The events likely represent periods of abrupt destabilization of marine based segments of the BIS. The collapse of ice shelves that buttress major ice sheets today have alluded to the role of ice shelf thinning and their subsequent collapse in initiating rapid ice flow leading to enhanced iceberg production [Scambos et al., 2000; Shepherd et al., 2003; Vaughan and Doake, 1996]. Such a mechanism has been proposed as a modern analogue for the events leading up to the sudden collapse of the LIS and the occurrence of Heinrich events [Hulbe et al., 2004]. The rapid “precursor” IRD events seen in DAPC2 may indeed represent the sedimentological footprint of collapsing ice shelves fringing the BIS that resulted in sudden and high-volume production of debris laden icebergs [Hulbe et al., 2004]. The fast SST oscillations inferred from faunal and stable isotope proxies in DAPC2 support such an ice shelf mechanism for the short-lived IRD events in that they are consistent with episodes of surficial (atmospheric-driven) and basal (ocean-driven) melting that play lead roles in precondition-
ing ice shelves toward thinning and collapse [Hindmarsh and Jenkins, 2001; Vaughan and Doake, 1996]. Northward advection of heat and moisture associated with these abrupt ocean climate warmings would further exert a critical control on glacial mass balances in NW Europe [Boulton et al., 2001; Siegert and Marsiat, 2001] potentially reinforcing the dynamic response to ice margin instabilities.

[25] A mechanism involving an oscillating ice margin around the BIS is supported by geological evidence from the Hebrides margin and the Celtic Sea. On the west Shetland shelf a series of overlapping morainal ridges interdispersed with glaciomarine muds (Otter Bank sequence) document progressive ice sheet retreat during the final stage of the last glacial period [Stoker and Holmes, 1991]. Sonar data show that these sequences and the entire shelf margin at 200–500 m water depth is crosscut by iceberg plough marks [Masson, 2001] indicating periods of iceberg calving along a wide glacial marine margin. Similar submarine features in the Celtic sea [Belderson et al., 1973], and the observation of deformed sill deposits on the south Irish coast [Cofaigh and Evans, 2001], is indicative of a major Irish Sea ice stream draining the southwest sector of the BIS. If at their distal ends these marine based glacial outlets were anchored on the continental shelf this would have left them particularly vulnerable to small increases in sea level and ocean temperature. Following the disintegration of their buttressing section along marine grounding lines additional production of icebergs would ensue from fast flowing ice streams draining the central ice dome.

[26] Correlation between increasing IRD flux between 19 and 15 kyr B.P. and rising 65°N insolation suggests a linkage between the early disintegration of the BIS and a gradual but sustained increase in solar radiative forcing during this period (Figure 5a). Solar forcing has been suggested previously as an underlying external factor for millennial-scale climate change [Bond et al., 2001; Braun et al., 2005] and a range of decadal to centennial-scale modes observed in 14C productivity records have likewise been linked to solar variability [Drazin and King, 1992; Stuiver and Braziunas, 1989]. Gaussian band-pass filtering of the IRD quartz flux from DAPC2 (Figures 7a–7d) suggests that the pattern of recurrent IRD peaks across the early deglaciation falls within the de Vries-Suess solar band of a primary 180–220 year cyclicality [Wagner et al., 2001]. This relationship is observed for both the tuned GISP2 age scale and the untuned calibrated 14C chronology, hence it appears to be a robust feature of the DAPC2 IRD flux record. Solar forcing of BIS instability cannot be confirmed unambiguously because proxy profiles of solar variability such as cosmogenic 10Be along the Greenland ice cores [Beer et al., 2000, 2002] do not currently resolve variability between 19 and 15 kyr at sufficient temporal resolution. Nonetheless, the Greenland 10Be record resolves a de Vries cyclicity in the interval 25–50 kyr B.P. where temporal resolution is high [Wagner et al., 2001], suggesting that solar radiation indeed varied within the de Vries-Suess periodicity band. The assertion that the centennial IRD cycles in DAPC2 are related to external forcing rather than internal ice sheet dynamics, is reinforced by evidence of similar duration cycles in other Northern Hemisphere sedimentary archives, notably lake records from Alaska [Hu et al., 2003], the Dead Sea rift [Prasat et al., 2004], and the Guliya ice core from western Tibet [Thompson et al., 1997]. High-amplitude δ18O oscillations in the Guliya ice core occur with an apparent periodicity of 200 years during the glacial

Figure 7. The 200 year sine wave compared to (a) the quartz IRD flux and (b) band-pass-filtered quartz IRD flux from core DAPC2 on the GISP2 timescale. (c) and (d) Equivalent flux comparisons on the DAPC2 Calib5 timescale. Gaussian band-pass filtering was performed using AnalySeries [Paillard et al., 1996] at a central frequency of 0.005 years and bandwidth of 0.0005 years. Differences in IRD flux amplitude between Figures 7a and 7b and Figures 7c and 7d reflect the difference in accumulation rates determined by the two age models (Figure 2a).
interval (15–33 kyr) suggesting a possible linkage with solar proxies in the Greenland ice cores. These studies, combined with our records, lend credence to the contention that a de Vries-Suess type cyclicity may have contributed to glacial climate variability through its interference with ocean climatology and ice sheet stability. Relatively small changes in solar radiation budgets may influence climate through their perturbing impact on planetary waves that modulate, for instance, the index state of the Arctic/North Atlantic Oscillation (AO/NAO) [Hu et al., 2003; Shindell et al., 2001]. Model experiments in conjunction with observations [Shindell et al., 2001] suggest a direct control by AO/NAO on the flux of moisture to the high latitudes and terrestrial climate. Such changes may thus have acted as amplifiers and transmitters of weak insolation forcing on midlatitude marine-based ice sheets.

[27] Recurrent collapses of the BIS at the onset of the last deglaciation may serve as a past analogue for the dynamic response of a mobile and metastable ice sheet under the influence of climate warming. The West Antarctic and Greenland ice sheets currently experience accelerated flow of several of their ice streams and enhanced loss of ice volume which have been linked with warming and thinning of regional glaciers [Hanna et al., 2005; Luckman et al., 2006; Rignot and Kanagaratnam, 2006; Shepherd et al., 2003; Zwally et al., 2002]. The BIS response to global warming during the last deglaciation suggests that these current glaciological patterns may represent but one of a sequence of future transient instability events, each multicentennial scale to century duration. The marine-based West Antarctic ice sheet is particularly sensitive as its margins are exposed directly to changing ocean climatology and sea level changes that further add to the detrimental influence of atmospheric warming on ice sheet stability.

6. Conclusions

[28] Core DAFC2 from the northeast Atlantic margin reveals a detailed, multidecadal series of paleoceanographic proxies representing the late glacial and the last deglaciation, 10–27 kyr. Our proxy records show evidence of oceanographic changes that correspond to northern hemisphere climate oscillations, as known from the Greenland ice cores, and regional ice sheet variability in northwest Europe.

[29] We find evidence that the BIS progressively disintegrated 19–16 kyr B.P. generating abrupt iceberg and meltwater discharges starting some 2000 years prior to HE1. Peak sediment deposition from icebergs were short lived (80–100 years) and occurred at 180–220 year intervals, plausibly involving breakup of glacial tidewater margins and fringing marine ice shelves. A similar pattern of centennial-scale iceberg pulses is observed prior to HE2, 26–24 kyr B.P., suggesting repeated instabilities of marine-based glacial margins in the northeast Atlantic. The apparent ~200 year periodicity suggests a possible linking with de Vries-Suess insolation cycles.

[30] Comparisons of paleoclimate records indicate a global onset of early warming between 21 and 22 kyr B.P. associated with increased insolation and seasonal temperature contrast. Superimposed on the long-term insolation driven climate forcing we observe a series of rapid multi-decadal sea surface warmings across the LGM and early deglaciation that likely contributed to the instability of the BIS. A direct response to increasing insolation during the early deglaciation points to an inherently metastable BIS promoted by a persistent influence from marine heat and moisture. Through its proximity to convection centers in the northern North Atlantic recurrent meltwater surges directly impacted on the Atlantic MOC and made the BIS an essential component in regional climate and bipolar climate asymmetry. A prominent consequence of this ice-ocean interaction was to maintain cold glacial climates in the North Atlantic beyond the initial synchronous onset of deglaciation in both hemispheres. The ice-ocean-climate coupling that we identify in the northeast Atlantic did not occur in isolation but was amplified by buoyancy forcing from much larger ice sheets, notably the Laurentide Ice Sheet during the Heinrich events.

[31] An early response of the BIS, and possibly of other parts of the Eurasian Ice Sheet, alludes to their role as an amplifier and transmitter of centennial-scale climate forcing. If so, these patterns of ice-ocean interaction may serve as a past analogue for the current and prospective future response of modern ice sheets to a warming climate, such as the marine-based West Antarctic Ice Sheet or the Greenland Ice Sheet.

[32] Acknowledgments. P.C.K. acknowledges support through a fellowship from the Danish Research Agency, I.H. and R.Z. acknowledge support from NERC (grant NER/A/S/2001/00485) and the Ministerio de Educación y Ciencia, Spain (grant REN2002-01958CL1). We thank Mark Siddall and an anonymous reviewer for their helpful reviews. Comments by Peter Ditlivesen on an early version of the manuscript were highly appreciated.

References

Hall, I., and J. Scourse (2005), Sequencing ocean-ice interaction, MD141 Cruise Report, 20 pp., Cardiff Univ., Cardiff, U.K.

