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Summary 

Tamoxifen has made a significant contribution in decreasing breast cancer 

related deaths for over 30 years and until recently was the gold standard for 

treatment of ER positive breast cancer (Fisher et al, 1998). Resistance to 

tamoxifen is however a considerable issue with cells utilising a number of 

molecular mechanisms to bypass the growth inhibition caused by blocking ER 

activity. This move towards an anti-hormone resistant state from an anti-

hormone responsive state is associated with the transition to a much more 

aggressive phenotype including increased proliferation and also invasiveness. 

Thus unfortunately, acquisition of tamoxifen resistance is not only associated 

with a recurrence of breast cancer, but this cancer is also much more 

aggressive in nature with fewer treatment options available than the initial 

cancer. 

This study has identified Lyn kinase as increased in tamoxifen resistant breast 

cancer cells compared to oestrogen-responsive breast cancer cells. Subsequent 

removal of Lyn kinase from tamoxifen resistant breast cancer cell lines using 

RNAi technology led to a significant decrease in cell proliferation, increased 

apoptosis and also a decrease in migration and invasion. A mechanism has 

been suggested whereby Lyn kinase is involved in a calcium dependent zinc 

wave which ultimately leads to the activation of tyrosine kinases. 

Metastasis to other sites in the body is ultimately responsible for fatalities due 

to breast cancer and so being able to block its action is key to treating breast 

cancer in the clinic. Therefore identifying Lyn kinase as a gene target that 

leads to the advancement of breast cancer to a more aggressive state provides 

a powerful tool for treating breast cancer in the clinic. 
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1.1 Cancer 

Cancer is the collective name for over 100 diseases characterised by loss of 

normal cell management leading to uncontrollable cell division and 

subsequent metastasis of cells to other tissues or organs. The World Health 

Organisation estimates that cancer was the cause of 7.9 million deaths 

worldwide in 2007 (WHO, 2007), accounting for around 13% of the total 

deaths recorded, with the five most frequently observed cancers being lung, 

stomach, liver, colon and breast cancer. In the UK, cancer has an incidence 

rate of 1 in 3 with around 245,300 new diagnoses in 2007, and over half of 

these new cases represented by the four most common UK cancers- breast 

accounting for 31% of cases in females, lung, colorectal and prostate 

accounting for 25% of new cases in males (Office for national statistics, 

2009). Age is by far the most significant factor when addressing cancer 

incidence in the UK, with 75% of new cancers occurring in people aged 60 

and over (Office for national statistics, 2009). Cancer survival in the UK has 

increased steadily in the past 20 years, mainly due to improved awareness and 

cancer prevention, earlier detection of cancer and also improved available 

treatments due to ongoing research in the field (CRUK statistics, 2008).  

1.2 Breast Cancer 

1.2.1 Incidence of breast cancer 

Breast cancer is the most frequent type of cancer in women in the world with a 

1 in 9 lifetime risk of being diagnosed and nearly 1 million new cases each 

year worldwide (Brekelmans et al, 2003). In 2006, almost 46,000 cases of 
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breast cancer were diagnosed in the UK with the majority (99%) of cases 

occurring in women (45,508 women compared to 314 men), and thus 

overtaking colorectal cancer as the most commonly diagnosed cancer in the 

UK. In 2007, 12,000 women and 92 men died from breast cancer (CRUK 

statistics, 2008), however mortality rates have shown a 25% decline since 

1987 largely due to improved, earlier, detection, notably the implementation 

of a national screening programme in 1987. This led to an increase in breast 

cancer incidence in women over fifty years old, with previously undetected 

cancers being diagnosed (figure 1.1), and also ongoing improvements in breast 

cancer treatments.  

Figure 1.1: Age standardised incidence and mortality rates, breast cancer, 

females, GB, 1975-2008. Figure taken from CRUK statistics, 2008.   

 

1.2.2 Risk factors associated with breast cancer 

0

20

40

60

80

100

120

140

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

R
at

e p
er

 1
00

,0
00

 p
op

ul
at

io
n

Year of diagnosis/death

incidence mortality



Chapter 1  Introduction 

4 
 

A number of risk factors are associated with development of breast cancer 

with the most significant (other than gender) being older age. 80% of cases 

occurred in women over the age of 50 years (Office for national statistics, 

2005).  Longer-term exposure to the steroid hormone oestrogen over a lifetime 

has been shown to increase the risk of breast cancer.  This can be through 

early age at menarche (Kelsey et al, 1993) with each 1 year delay in onset 

leading to a 5% decrease in risk of developing breast cancer later in life (Key 

et al, 2001), late age at menopause, or late age at first full-term pregnancy 

(Layde et al, 1989). Exogenous exposure to oestrogen, for example the use of 

oral contraceptives or hormone replacement therapy, is also associated with an 

increased risk of developing breast cancer: Studies have also shown that the 

use of oral contraceptives offers protection against both ovarian and uterine 

cancers (Schlesselman et al, 1998). The use of combined oral contraceptives 

leads to an increased risk of around 25% of developing breast cancer 

(Hankinson et al, 1998), however the risk declines significantly following 

cessation of treatment and returns to baseline levels 10 years after treatment 

(Key et al, 2001). The Million Women Study conducted in 2003 and focusing 

on the effects of hormone replacement therapy found that 10 years use of both 

combined and oestrogen only replacement therapy led to a significant increase 

in breast cancer risk (Beral, 2003) however the benefits of hormone 

replacement therapy in the form of a reduction in both heart disease and 

osteoporosis are currently felt to outweigh the increase in breast cancer risk 

when prescribing. Other modifiable risk factors for development of breast 

cancer relate to lifestyle and include alcohol consumption (Allen et al, 2009), 



Chapter 1  Introduction 

5 
 

diet, particularly consumption of saturated fat (Bingham et al, 2003), lack of 

physical activity (Monninkhof et al, 2007) and also high BMI (body mass 

index) (Reeves et al, 2007). It is not clear how these factors are involved in 

increased cancer risk however research has shown that alcohol consumption 

leads to an increase in sex hormones compared to those that do not consume 

alcohol (Rinaldi et al, 2006) and oestrogen levels have been shown to be 

reduced in postmenopausal women that exercise regularly (Chan et al, 2007).    

 The likelihood of developing breast cancer varies considerably around 

the world with the highest numbers seen in Western countries (North America 

and affluent European countries) and the lowest seen in developing countries 

like Africa and Asia. As countries with historically low levels of breast cancer 

become more ‘Westernised’, with changes in diet and lifestyle, the incidence 

of breast cancer gradually increases. Studies looking at the effect of migration 

from low-risk to high risk countries showed that the rates of breast cancer 

gradually increase in the migrant population and after two generations the 

levels are comparable to the native population (Key et al, 2001).  

Whilst eighty-five percent of patients diagnosed with breast cancer 

have no family history suggesting no inherited factor (Collaborative Group on 

Hormonal Factors in Breast Cancer, 2001), a number of genes have been 

identified as increasing the likelihood of developing familial breast cancer. 

Five per cent of all breast cancers are caused by mutations in the breast cancer 

susceptibility genes BRCA1 or BRCA2 (Shih et al, 2002).BRCA1 mutations 

also increase the likelihood of developing ovarian cancer. A patient with a 
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mutation in the BRCA1 gene has a 50% to 80% chance of developing breast 

cancer in her lifetime (Casey, 1997).  

 

1.3 Oestrogen  

Oestrogen is a sex steroid that is synthesised from cholesterol and secreted 

primarily by the ovaries in pre-menopausal women (Nelson and Bulun, 2001). 

In post-menopausal women, oestrogen is produced by aromatase in peripheral 

tissues and by breast tumours (Nicholson and Johnston, 2005). Oestrogen 

occurs naturally in three forms: estrone (E1), produced by the adrenal glands, 

estradiol(E2), produced by the ovaries and estriol(E3), which is the product of 

estrone and estradiol and is synthesised in the liver. These 3 naturally 

occurring forms of oestrogen are shown in figure 1.2.  In pre-menopausal 

women, estradiol is the most abundant oestrogen. After menopause, estradiol 

levels drop and estrone becomes the main form of oestrogen present. However 

the most common and most biologically important form of oestrogen is 17-

estradiol (E2) which is essential to the development and function of the female 

reproductive system and required for the proliferation and differentiation of 

healthy breast tissue (Lewis et al, 2005).  

1.3.1 Oestrogen receptor structure  

The oestrogen receptor (ER) has two forms: ER, which was first identified 

by Jensen in 1960 (Jensen and Jacobson, 1962) and ER, which was cloned 

from rat prostate and ovary tissues in 1996 (Kuiper et al, 1996). They are each 

produced by distinct genes on different chromosomes. The receptors display 

some homology however their distribution within tissues varies significantly.  
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ER is considerably larger than ER with 595 amino acids compared to 530 

amino acids (Fuqua et al, 1999). Both receptors have six domains labelled A-F 

(figure 1.3). The A/B domain at the N-terminus encodes a hormone 

independent activation function 1 (AF1). Domain C corresponds to the highly 

conserved DNA binding domain (DBD) and this is responsible for the binding 

of the receptors to specific EREs that are located upstream of oestrogen 

regulated genes. Region D is the hinge region between the DBD and the LBD 

(ligand binding domain) and Region E encodes activation function 2 (AF2) 
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Figure 1.2: The structure of the three forms of oestrogen 

 

and contains the LBD. The LBD consists of 12-helices and 5 of these form 

the hydrophobic pocket responsible for E2 or selective oestrogen receptor 

modulator (SERM) binding. The main difference between ER and ER is in 

the AF1. In ER, the AF1 domain is very active; however in ER there is 

negligible activity (Kuiper et al, 1997). This difference is thought to be the 

reason for the variation in responses to ligands seen between the two oestrogen 

receptors (Paech et al, 1997). The ER is distributed throughout the body, with 

ERα mainly expressed in breast, uterine and vaginal tissues, while ERβ is 

mainly expressed in the CNS, cardiovascular system and immune system.  
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Figure1.3: Structure of ER (A) and ER (B). 

 

1.3.2 Oestrogen receptor activation 

1.3.2.1 Classical oestrogen receptor signalling 

Prior to activation, the oestrogen receptor exists as an inactive molecule in the 

nuclei that is bound and inhibited by a complex consisting of heat shock 

proteins HSP90 and 70, and cyclophilin-40 and p23 (Pratt and Toft, 1997). In 

the classical mode of action for oestrogen, E2 diffuses into the cell, 

translocates to the nucleus, binds to the ER and activates it. This binding 

induces receptor homo- or hetero-dimerisation and phosphorylation as well as 

a conformational change in the ER. The heat shock proteins dissociate from 

the complex and the dimers then bind to Oestrogen Response Elements 

(EREs) in the promoter region upstream of the oestrogen responsive genes 

(Osborne and Schiff, 2005). Once bound to the DNA, the ER can recruit and 

A/B C D E F 

DBD                  LBD 

DBD                  LBD 

A/B C D E F 

A 

B 

ERα 

ERβ 

AF1 AF2 

AF1 AF2 

NH2 
COOH 

COOH NH2 



Chapter 1  Introduction 

10 
 

bind co activators that promote ER dependent gene expression or co repressors 

that repress ER dependent gene expression and this receptor complex can then 

regulate gene transcription by AF1 and AF2, acting synergistically to mediate 

positive regulation of gene expression (through gene activation/inactivation). 

Frasor et al  have shown that after treatment with E2 in MCF-7 breast cancer 

cells, many genes involved with transcription repression, growth suppression 

and apoptosis are down regulated, whereas genes that induce cell proliferation 

are up-regulated (Frasor et al, 2004).  

 

1.3.2.2 Non-classical oestrogen receptor activation 

Non-classical ER signalling occurs indirectly where ligand-bound ER forms 

protein-protein interactions with other transcription factors, for example c-fos 

and c-jun. This promotes the expression of genes containing the AP-1 

response element in their promoter region. This demonstrates how the ER can 

act as a co-activator for other transcription factors.  

 

1.3.2.3 Non-nuclear oestrogen receptor signalling 

In breast cancer cells, the ER has also been shown to be present in the 

cytoplasm or on the plasma membrane (Losel et al, 2003), explaining the term 

non-nuclear oestrogen receptor signalling. The response to oestrogen occurs 

within a matter of minutes following exposure (Gee et al, 2005) and so cannot 

be due to either the classical or non-classical genomic mode of oestrogen 

receptor signalling. In this type of signalling, the ER at the plasma membrane 
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activates growth factor signalling cascades such as the epidermal growth 

factor (EGFR) (Fildaro et al, 2000) that initiates a rapid response to hormone 

signalling (Levin, 2003; Gee et al, 2005). This in turn leads to the activation of 

mitogen activated protein kinase (MAPK) and serine/threonine protein kinase 

(Akt) signalling pathways.  

 

1.4 Treatment of Breast Cancers that are ER negative 

Patients with cancers that are negative for the ER have fewer treatment options 

as far as endocrine therapy is concerned than those with ER positive tumours. 

Blocking the action of the ER will have no effect on those tumours that are ER 

negative. However ER negative patients derive greater benefit from 

chemotherapy than those with ER positive tumours. In some cases, a patient 

may be ER/PR negative, but be HER-2 positive, in which case Herceptin may 

be a treatment option.  Herceptin (trastuzumab) is a monoclonal antibody 

(Carter et al, 1992) against HER-2 that has been licensed for the treatment of 

breast cancer since 1998 (Bange et al, 2001).  

 

1.5 Endocrine Therapy in ER positive patients 

Since the role of oestrogen in breast cancer is well established, with 

approximately 70% of breast tumours positive for ER expression (Muller-

Tidow 2004), blocking the action of oestrogen has long been used in the 

treatment of breast cancer. The earliest example of this was ovarian ablation. 
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The benefit of ovarian ablation in treating breast cancer was first appreciated 

by the Scottish physician George Beatson in 1896 where the removal of the 

ovaries in pre-menopausal women led to tumour regression in some 

premenopausal patients (Beatson, 1896).  In post-menopausal women the 

adrenal glands were removed to prevent the production of androgens. This was 

first achieved by Charles Huggins, a prostate cancer specialist in 1952. 

More recently, drugs have been used which either inhibit oestrogen 

binding (anti-oestrogen), prevent oestrogen synthesis by inhibiting aromatase 

(aromatase inhibitors (AIs)) or down-regulate ER protein levels (pure anti-

oestrogens). The use of endocrine drugs may be combined with surgery and/or 

chemotherapy or radiotherapy. The types of endocrine drugs available will be 

discussed in the following sections. 

 

1.6 Anti-oestrogen drugs. 

The first anti-oestrogen compounds were discovered in the 1950s. They were 

manufactured as fertility drugs, but the positive response of some breast 

cancer patients to treatment was noted (Kistner and Smith, 1960). An example 

of this was clomiphene (Clomid) which is still widely used as an infertility 

treatment. Anti-oestrogen drugs work either by competitively binding the ER 

or by causing the degradation of the ER in the cell. The two main classes of 

anti-oestrogen drugs currently used are SERMs (Selective oestrogen receptor 

modulators) and SERDs (Selective oestrogen receptor down-regulators).  
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1.6.1 Selective oestrogen receptor modulators 

SERMs show tissue selectivity in that they act as agonists in some tissues for 

example bone (Vehmanen et al, 2007), but antagonists in other tissues e.g. 

breast (Shang et al, 2002). Tamoxifen has been used as an effective treatment 

for ER positive breast cancer for over 30 years and is therefore the most well 

known, having first been approved by the Food and Drug Administration in 

the UK in 1977 for treatment of advanced breast cancers. Until recently 

tamoxifen was the gold standard for treatment of ER positive breast cancer 

(Fisher et al, 1998) and has made a significant contribution to the decrease in 

breast cancer related deaths with 5 years of therapy with tamoxifen preventing 

the recurrence of second primary tumours by 50%  (Gee et al, 2005).  

 

 

 

 

Figure1.4: Structure of Tamoxifen  

1.6.1. Action of tamoxifen 

N 
O 
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When ligands bind to the ER they are enveloped in a hydrophobic pocket that 

is closed by helix 12 in the ligand binding domain (Region E). The positioning 

of helix 12 is crucial for the recruitment of co-activators to the AF2 site and 

the following initiation of RNA polymerase activity (Lewis et al ,2005). X-ray 

structural work has demonstrated that when different ER ligands such as 

estradiol and tamoxifen (and other SERMs) interact with the ligand binding 

domain, different conformations of the ER are induced (Shiau et al, 1998). It 

is proposed that as a result of these different ligand-induced conformations, 

the ER is able to recruit different co-regulating proteins and thus various 

outcomes of gene expression are possible (Frasor et al, 2004). E2 seems to 

recruit transcriptional co-activators to the receptor, whereas SERMs seem to 

recruit co-repressors (Lavinsky et al, 1998). It is thought that this is the 

mechanism by which SERMs block the action of oestrogen. It is worth noting 

that tamoxifen does not inhibit the ER’s AF1 region, therefore it is only a pure 

antagonist of genes where AF2 is required for transcription (Santen et al, 

2003). 

 

1.7 Resistance to Tamoxifen 

Resistance to tamoxifen is of significant clinical importance. Resistance can 

be de novo or acquired.  The most common mechanism of de novo resistance 

is the absence of ER/PR expression. However 25% of ER positive breast 

cancer does not respond to endocrine therapy from the beginning (Honig, 

1996).  Acquired resistance occurs where ER positive breast cancer initially 
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responds to endocrine treatment, but then stops responding after long term 

treatment (Gee et al, 2005). Even though millions of people gain some benefit 

from tamoxifen treatment, 40% of patients receiving adjuvant tamoxifen 

therapy develop resistance (Schiff et al, 2003), and unfortunately almost all 

metastatic patients who have benefitted from endocrine therapy will 

eventually develop resistance to tamoxifen. This results in a relapse of the 

disease with worsened outlook.  

 

1.7.1 Mechanisms of tamoxifen resistance 

Acquired resistance to tamoxifen was originally thought to be due to loss or 

mutation of ER signalling (Ring and Dowsett, 2004). However it has recently 

been demonstrated that ER levels are maintained on acquisition of tamoxifen 

resistance in breast tumours (Bachleitner-Hofmann et al, 2002) and also in 

breast cancer cell lines (Hutcheson et al, 2003). It has also been noted that ER 

of patients showing loss of ER expression upon recurrence of the disease 

(Bachleitner-Hofmann et al, 2002). This is supported by the clinical 

observation that 2 out of 3 patients that display resistance to tamoxifen still 

respond to pure anti-oestrogens for example fulvestrant (Robertson, 2001) or 

aromatase inhibitors (Buzdar and Howell, 2001). Acquired resistance to 

tamoxifen and subsequent disease relapse in patients is often unfortunately 

associated with the development of a more aggressive, invasive type of breast 

cancer that ultimately leads to a poorer prognosis than before (Hiscox et al, 

2004).  
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 It has been proposed that tumours that acquire resistance to tamoxifen 

use an alternative growth regulatory pathway caused by the inappropriate 

activation of growth factor signalling cascades. This could either be through 

an increased supply of growth factor ligands or through up-regulation and 

increased activation of growth factor receptors or their downstream signalling 

elements (Ring and Dowsett, 2004). Of great significance in acquired 

tamoxifen resistance is the observation that growth factor receptors are up-

regulated, for example IGF-IR (Insulin-like growth factor receptor I) 

(Knowlden et al, 2005), HER2 (Human Epidermal growth factor Receptor 2) 

and EGFR, and thus their downstream kinases such as PI3K/Akt and MAP 

kinases (Gee et al, 2005; Nicholson et al, 2007) are also up-regulated.  The 

activation of signalling kinases results in the phosphorylation of the AF-1 

domain on the ER, activating the ER.  

A model of tamoxifen resistance has been developed at the Tenovus Centre for 

Cancer Research by exposing the MCF-7 breast cancer cell line to long term 

tamoxifen treatment. Briefly, MCF-7 cells were cultured in a growth medium 

supplemented with 100nM 4-hydroxytamoxifen for 6 months. At first, the 

MCF-7 cell growth rates were significantly reduced, but after 2 months’ 

exposure to the medium, cell growth gradually increased, indicating the 

development of a cell line resistant to the growth-inhibitory properties of 4-

hydroxytamoxifen. The tamoxifen resistant MCF-7 cell line (TamR) was 

maintained for a further 4 months prior to any cell characterisation studies 

beginning (Knowlden et al, 2003). 
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In this model, increased expression and activity of EGFR, HER2 and IGF-IR 

was observed, mirroring what is seen in the clinical setting. This effect has 

also been observed in other in vitro models of acquired tamoxifen resistance. 

 

1.7.2 Overcoming tamoxifen resistance 

Since 40% of patients develop resistance to tamoxifen, a number of strategies 

have since been tried in order to improve outcome in ER positive breast cancer 

patients. These strategies include developing new therapies to target the ER 

more efficiently and also therapies to target growth factor signalling cascades 

associated with tamoxifen resistance. 

 

1.7.2.1 Development of alternative SERMs 

Since the use of tamoxifen has proved highly successful in the treatment of ER 

positive breast cancer, many attempts have been made to synthesise newer 

SERMs with better efficiency. Unfortunately, the newer generation SERMs 

have proved to be no more effective than tamoxifen as a first line therapy in 

treating ER positive breast cancer . The International Breast Cancer Study 

Group (IBCSG) conducted two clinical trials, IBCSG 12-93 and IBCSG 14-93 

in which a comparison was made of 5 year tamoxifen treatment vs. 5 year 

toremifene treatment for early stage breast cancer.  The study concluded that 

both toremifene and tamoxifen yielded similar disease free and overall 

survival rates following five years of treatment with similar toxicity (IBCSG, 

2004).  In addition, patients who have developed resistance to tamoxifen have 
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also proved to be resistant to alternative SERMs, for example toremifene 

(Stenbygaard et al, 1993)  

 

1.7.2.2 Selective oestrogen receptor down regulators 

SERDs act by binding competitively to the ER with a similar affinity (89%) to 

that of oestradiol (Osborne et al, 2004).  The best known example of a SERD 

is fulvestrant, which is a steroidal analogue of 17β-oestradiol. The long 

alkylsulphinyl side-chain present (figure1.5), causes an abnormal 

conformational change of the ER protein, thus disrupting receptor dimerisation 

and inhibiting nuclear localisation. This complex of ER and fulvestrant is 

unstable and leads to the subsequent rapid degradation of ER (Osborne et al, 

2004). Since SERDs show no agonistic effects, they are termed ‘pure anti-

oestrogens’. Unfortunately, fulvestrant has not demonstrated an improvement 

on first-line treatment such as tamoxifen or aromatase inhibitors (AIs) in the 

treatment of advanced breast cancers (Robertson et al, 2003). Whereas 

tamoxifen only disrupts the AF2 ligand, fulvestrant disrupts the AF1 ligand 

also, thus fully-blocking transcription activation resulting in no E2-regulated 

gene expression. As a result, tamoxifen resistant breast cancer has been shown 

to respond to fulvestrant treatment in the clinic (Howell et al, 2000). Thus its 

use in the clinic following development of resistance to other anti-oestrogen 

therapies is beneficial (Ingle et al, 2006).  In contrast to tamoxifen, fulvestrant 

does not have an agonist effect on the endometrium since it is a pure anti-

oestrogen. As a result, the increased incidence of endometrial cancer 
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associated with tamoxifen use is not seen with fulvestrant use. (Addo et al, 

2002) 

 

Figure1.5. Structure of fulvestrant. 

 

1.7.2.3 Aromatase inhibitors (AIs) 

The cytochrome P450 enzyme (aromatase) is an enzyme responsible for the 

synthesis of oestrogen. In post menopausal women, the majority of circulating 

oestrogen is produced in the peripheral tissues such as adipose tissue. 

Oestrogen is also produced in breast tumours. Aromatase inhibitors suppress 

aromatase both in peripheral tissues and in the tumour itself (Nicholson and 

Johnston, 2005). Aromatase inhibitors currently in use in the clinic include the 

steroidal aromatase inhibitor exemestane (Aromasin), which binds to the p450 

site of the aromatase complex and the non-steroidal aromatase inhibitor 

anastrazole (Arimidex). The ATAC (anastrazole, tamoxifen and combination) 

clinical trial suggested that adjuvant anastrozole was superior to tamoxifen in 

terms of survival and recurrence of breast cancer in postmenopausal women 

with early ER-positive breast cancer (Howell et al, 2005), thus challenging the 
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current use of tamoxifen as the first-choice treatment. Anastrazole is now 

taking over from tamoxifen as a first-line therapy in post-menopausal women 

(Come et al, 2005), however, unfortunately, acquired resistance to aromatase 

inhibitors has been reported in both tamoxifen resistant breast cancer (when 

used as a second line therapy) and tamoxifen responsive ER-positive breast 

cancer patients, as well as in numerous experimental models (Nicholson and 

Johnston, 2005).  

 

1.7.2.4 Targeting growth factor signalling cascades 

As outlined in section 1.7.1, several growth factor signalling cascades have 

been associated with the development of tamoxifen resistance, both in the 

clinic and in vitro models of tamoxifen resistance notably EGFR and HER2. 

Using gefitinib (Iressa®), an EGFR specific tyrosine kinase inhibitor, 

the growth of TamR cells can be inhibited in a concentration dependent 

manner with 1µM gefitinib reducing cell proliferation by approximately 60% 

(Knowlden et al, 2003; Nicholson et al, 2004). The growth of TamR cells can 

also be reduced by the inactivation of the HER2 pathway following treatment 

with trastuzumab (Herceptin).  

 

1.8 The tyrosine kinase family 

Tyrosine kinases are a large, highly conserved, multigene family that include 

many growth factor receptors, cell cycle regulators and oncoproteins (Meric et 

al, 2002). They are enzymes which catalyse the phosphorylation of tyrosine 

residues and thus are involved in many processes, including cellular signalling 
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pathways and also regulate key cell functions such as proliferation, 

differentiation and anti-apoptotic signalling (Blume-Jensen and Hunter, 2001).  

91 tyrosine kinase genes and 5 pseudogenes have been identified. These 

consist of 59 receptor type that are divided into 20 subfamilies (Pawson, 2002) 

and 32 nonreceptor type that are divided into 8 subfamilies (Robinson et al, 

2000). At least 18 tyrosine kinases have been identified as oncogenes (Zwick 

et al, 2001). This oncogenic activation can involve point mutations and 

deletions, as well as overexpression (Blume-Jensen and Hunter, 2001). 

 

1.8.1 Receptor tyrosine kinases 

Receptor tyrosine kinases (with the exception of insulin-like growth factor 

receptors) exist in a monomer-dimer equilibrium (Zhang et al, 2010). They 

have an extracellular ligand binding domain, a transmembrane domain and an 

intracellular catalytic domain (Arora and Scholar, 2005). The transmembrane 

domain acts as an anchor for the receptor in the plasma membrane, while the 

extracellular domain binds growth factors (Schlessinger 2000). The kinase is 

activated by ligand binding to the extracellular domain, which induces 

receptor dimerisation (Pawson, 2002). They are then able to phosphorylate the 

tyrosine residues outside the catalytic domain. This stabilises the dimer, and 

also creates docking sites for proteins which transduce signals within the cell. 

Members of the receptor tyrosine kinase family include the ErbB family, 

consisting of EGFR, ErbB2, ErbB3 and ErbB4.  
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1.8.2 Non-receptor (cellular) tyrosine kinases 

Unlike receptor tyrosine kinases, non-receptor tyrosine kinases are located in 

the cytoplasm, nucleus or anchored to the plasma membrane because they do 

not possess a formal transmembrane domain (Abram and Courtneidge, 2000). 

There are eight families of non-receptor tyrosine kinases: SRC, JAK, ABL, 

FAK, FPS, CSK, SYK and BTK. These families have little in common 

structurally. SRC has some of the best characterised family members for 

example c-Src kinase and Lyn kinase (Abram and Courtneidge, 2000). BTK is 

involved in cell differentiation, particularly in β-lymphocytes (Mohamed et al, 

2009).  ABL are involved in growth inhibition (Colicelli 2010) and FAK 

activity is strongly associated with cell adhesion (Schlaepfer and Mitra 2003). 

Some members of the JAK family are involved in the cytokine receptor 

pathway that phosphorylates STATs (Rawlings et al, 2004). Thus receptor 

tyrosine kinases play an important role in biological processes. 

 

1.8.3 Tyrosine kinases and human disease 

In humans, tyrosine kinases have been shown to be significant in the 

development of many diseases including diabetes (Louvet et al, 2008) and 

almost all types of cancer (Arora and Scholar, 2005). Aberrations in tyrosine 

kinase signalling also exist in inflammatory diseases, by changing expression 

of the cytokines, which orchestrate both the duration and extent of 

inflammation (Page et al, 2009). And they have also been linked to a wide 

range of congenital disorders (Robinson, 2000). The ErbB family of receptor 
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tyrosine kinases in particular (which includes HER2 and EGFR, mentioned 

above) has been the subject of extensive research into the role they play in 

hormone dependent breast cancer (Dowsett, 2001).  

 

1.9 Src family kinases 

Src is a family of non-receptor tyrosine kinases consisting of nine members: 

Lyn, Hck, Lck, Blk, Src, Fyn, Yes, Fgr and Frk. They can be further grouped 

into two subfamilies, Lyn related (Lyn, Hck, Lck and Blk) and Src related 

(Src, Yes, Fyn and Fgr) (Parsons and Parsons, 2004). The Src kinase domain 

structure consists of 6 domains as in figure 1.6. All family members share 

significant homology both in sequence and structure. Each possess an N-

terminal SH4 (Src homology 4) region, a unique region (50-70 amino acids) 

that displays high variability among the members (Boggon and Eck, 2004), a 

50 amino acid Src homology 3 domain (SH3) (Koch et al, 1991), a 100 amino 

acid Src homology 2 (SH2) domain a Src homology 1 (SH1) domain or the 

kinase domain that is approximately 300 amino acids in length that is 

responsible for enzymatic activity (Ingley, 2007) and finally the C-terminal 

regulatory region. 

 

 

Figure 1.6: Src kinase domain structure.  
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The N-terminal SH4 domain is a region containing between 15 and 17 amino 

acid residues. It allows for permanent binding of a fatty acid called myristate. 

This allows the Src family kinase to bind to the plasma membrane (Tatosyan 

and Mizenina, 2000). 

The unique region, named because of its lack of sequence homology varies in 

size according to family member. The high degree of variance suggests that 

the region has different functions in each family member (Brown and Cooper, 

1996).  

The SH3 domain interacts with proline-rich sequences with the sequence 

PXXP (where X is any amino acid) (Boggon and Eck, 2004). It controls 

catalytic activity, protein localisation in the cell, and mediates physical 

association with protein targets (Ingley, 2008).  

The SH2 domain is responsible for the binding of the Src family kinase to 

specific amino acid sequences encoding phosphotyrosine. The preferred 

sequence for binding the SH2 is pYEEI, however this is not essential for SH2 

binding (Tatosyan and Mizenina, 2000).  

Three members of the Src family are ubiquitously expressed in humans, 

namely Src, Fyn and Yes, whereas the other family members are expressed 

differentially in different tissues. For example Lyn is present primarily in 

haematopoietic cells. Src has been shown to play a significant role in 

proliferation, migration and invasion and has been associated with numerous 

cancers including ovarian (Weiner et al, 2003), breast cancers (Verbeek et al, 

1996), and colon cancers (Mao et al, 1997), specifically in tumour progression 

and metastasis to other tissues and organs. TamR (tamoxifen resistant MCF-7) 
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cells display an increased growth and a significantly increased invasive 

phenotype compared to their parental MCF-7 cells and additionally have 

significantly greater levels of Src activity (as measured by phosphorylation at 

Y419) (Morgan et al, 2006) that was not due to increases in Src protein or 

mRNA. Further evidence for the role of Src kinase in the aggressive 

phenotype of these cells was found by treatment of TamR cells with the Src 

inhibitor AZD0530 which led to decreased invasion across a Matrigel 

basement membrane complex(Morgan et al, 2006). This inhibition of Src was 

also accompanied by a reduction in EGFR signalling, suggesting that Src plays 

a role in the invasive behaviour seen in TamR cells (Morgan et al, 2006).  

 

1.10 Zinc regulation and human disease 

Zinc is an essential mineral and is involved in many cellular processes. Zinc is 

needed for protein, carbohydrate and lipid metabolism and is a cofactor for 

more than 300 enzymes (Vallee & Falchuk, 1993), playing a role in the 

activity or the structural stability or both of the enzyme. It plays a major role 

in the stabilization of a huge number of proteins, including signalling enzymes 

at all levels of cellar signal transduction and transcription factors 

(Beyersmann, 2002). Zinc is essential for multiple aspects of the function of 

the immune system (Rink and Gabriel, 2000) including development and 

function of cell-mediating innate immunity, neutrophils, and natural killer 

cells (Wintergerst et al, 2007; Prasad, 2009). The control of gene transcription 

is zinc dependent (Blanchard and Cousins, 2000) since gene transcription and 

replication factors contain Zn-finger motifs (Rink and Gabriel, 2000). Zinc 
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regulation of gene expression involves a metal-binding transcription factor 

(MTF) and a metal response element (MRE) in the promoter of the regulated 

gene (King, 2011). The MTF acquires zinc in the cytosol or nucleus and then 

interact with the MRE to stimulate transcription (Mocchegiani et al, 2010). 

Depending on zinc status in the cells, MTF-1 is thought to regulate numerous 

genes either negatively or positively (Cousins et al, 2006). As a result of this, 

cell proliferation does not occur in the absence of zinc, making systems 

displaying high levels of cell proliferation particularly vulnerable to zinc 

deficiency, for example skin and intestinal cells.  

 Given the key roles played by zinc in many processes, zinc 

homeostasis is very important. It is controlled by metallothioneins (MT), a 

group of low-molecular-weight metal-binding proteins that have high affinity 

for zinc (Mocchegiani et al, 2010) and two families of zinc transporters 

(discussed below). MT is one of the strongest cellular zinc binding proteins 

and is capable of binding seven zinc molecules (King, 2011), with the β 

domain binding 3 zinc molecules and the α domain binding 4 zinc molecules 

(Cousins et al, 2006). Gene expression of MT is also regulated by zinc, 

suggesting that MT also provides a method of maintaining zinc reserves in 

cells (Coyle et al, 2002). 

 

 

1.10.1 Zinc deficiency in humans 

The essential role of zinc in humans is displayed by the number of disorders 

that result from zinc deficiency. These include poor cell-mediated immunity 
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leading to increased susceptibility to infections which is one of the early 

manifestations of zinc deficiency. Later manifestations include dermatitis, 

poor wound healing, severe diarrhoea leading to malnutrition (a particular 

problem in developing countries) and hair loss and alopecia (Maret and 

Sandstead, 2006).  

 Plasma zinc levels decrease with age, resulting in increased 

susceptibility of older people to infectious diseases, autoimmunity, and cancer 

(Haase and Rink, 2009). Decreased zinc levels are also associated with loss of 

cognitive function which in turn is also associated with ageing (Chasapis et al, 

2011). The decrease of zinc plasma levels with age has also been shown to 

contribute to cardiovascular disease in elderly people (Little et al, 2010). 

In addition, low zinc levels have been linked to various mood disorders such 

as depression. In cases of major depression treatment with zinc has been 

shown to have an antidepressant effect (Levenson, 2006). 

 Zinc is essential to β pancreatic cells for the formation of 

insulin crystals; zinc-insulin hexamers that are key to the storage and 

maturation of insulin (Kambe, 2011). Zinc deficiency in animals leads to a 

lack of insulin in β pancreatic cells (Rungby, 2010) and zinc metabolism is 

also altered in diabetes patients, with zinc supplementation proven beneficial, 

particularly in type 2 diabetes (Jansen, 2009). Array studies have shown that a 

polymorphism in the ZnT8 zinc transporter allele (discussed further below) 

leads to a 53% increased risk of developing diabetes (Rutter, 2010). 
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1.10.2 Excess zinc in humans 

Conversely, excessive zinc consumption has been shown to lead to zinc 

toxicity. Symptoms of this in humans include nausea, vomiting, loss of 

appetite, abdominal cramps, diarrhoea, and headaches (Trumbo et al, 2001). It 

has also been shown to reduce immune responses and in severe cases lead to 

organ failure and death (Bennet et al, 1997). A major consequence of excess 

zinc absorption is a decrease in plasma copper levels: Metallothionein 

expression is up-regulated by high dietary zinc, however metallothionein binds 

copper with a higher affinity than zinc. The resultant complex is excreted 

causing low plasma copper levels. These low copper levels have been shown 

to result in cardiac arrhythmia, an increase in LDL cholesterol and anaemia 

(Plum et al, 2010). 

Extracellular Zn metabolism is altered in Alzheimer’s disease. The 

development of Alzheimer’s disease is associated with formation of 

extracellular β-amyloid (Aβ) plaques in the brain and a high accumulation of 

zinc is found in the plaques indicating that zinc plays a role in the formation of 

plaques (Wang et al, 2010). Additionally, zinc chelating agents have been 

shown to inhibit plaque formation in mice adding further weight to the role of 

zinc in plaque formation in Alzheimer’s disease (Lee et al, 2004). 

 

1.10.3 Zinc in cancer 

Both plasma and tumour zinc levels have been shown to be abnormal in a 

number of cancers thus supporting a role for zinc in cancer development (John 

et al, 2010). A decrease in plasma zinc levels is observed in cervical cancer 
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patients (Cunzhi et al, 2003), gallbladder cancer (Gupta et al, 2005), lung 

cancer (Issell et al, 2006), head and neck cancer (Buntzel et al, 2007) and 

breast cancer patients (Schlag et al, 1978). However the data available appears 

contradictory, with some studies finding an increase in intracellular zinc to 

have an adverse effect, whilst others note that decreased plasma zinc is 

indicative of a worsened outcome. A possible explanation for this conflict is 

that biomarkers such as blood and plasma tend to be poor indicators of whole 

body zinc status (King, 1990) as they are indicative of short term zinc 

exposure. A preferable method of identifying levels of zinc is to use hair or 

toenail samples, since these are representative of longer term zinc exposure 

(Navarro-Silvera and Rohan, 2007). By measuring the level of zinc in specific 

tissues as opposed to plasma, zinc has been shown to be increased in both 

breast and lung tumours compared to the corresponding normal tissue 

(Margalioth et al, 1983). Conversely, skin cancers (John et al, 2010) and 

prostate cancers (Costello and Franklin, 2006) exhibit lower levels of zinc 

compared to the corresponding normal tissues. In prostate cancer, it has been 

shown that the lower tumour zinc concentration is due to the down-regulation 

of the zinc transporter ZIP1 (Franklin et al, 2005). Dietary supplementation 

with high doses of zinc have however been shown to increase the risk of 

developing prostate cancer 2.9 fold (Leitzmann et al, 2003). A possible 

explanation for this is that in high doses, zinc has a suppressive effect on the 

immune system (Bennet et al, 1997). 
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1.10.4 Zinc in breast cancer  

As previously mentioned, reported concentrations of plasma zinc in breast 

cancer patients have been contradictory, with some studies reporting an 

increase in plasma zinc concentrations and others reporting no change. 

However a number of studies report a decrease in plasma zinc in breast cancer 

patients (Schlag et al, 1978; Yucel et al, 1994). Zinc directly affects tumour 

cells through its regulatory role in gene expression and cell survival via 

tumour-induced alterations in zinc transporter expression. It also influences 

tumour cells indirectly by affecting the activation, function, and survival of 

immune cells (John et al, 2010). It has been shown to be increased by 

approximately 70% in breast tumours compared to its corresponding normal 

breast tissue (Margalioth et al, 1983). This increase is not influenced by 

dietary intake of zinc, with N-methyl-N-nitrosourea (MNU) induced breast 

cancer  rat models fed either a zinc deficient or a zinc adequate diet both 

displaying an increase in breast tumours regardless of dietary intake (Woo and 

Xu, 2002),  thus suggesting a role for zinc transporters in breast cancer. 

Another way in which zinc may directly influence tumour progression is 

through zinc dependent transcription factors such as SNAIL (John et al, 2010). 

SNAIL is responsible for epithelial-mesenchymal transition, a process where 

epithelial cells lose their polarity and are converted to a mesenchymal 

phenotype (Thiery, 2002). This process is important in many developmental 

processes. SNAIL causes loss of 

cell adhesion by reducing expression of adherence genes such 
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as E-cadherin (Peinado et al, 2007) and its deregulation in cancer cells can 

lead to tumour progression with an increase in cell motility and invasiveness 

(John et al, 2010). It follows that zinc could be involved in the transition of 

breast cancer to a more aggressive, motile state.  

 

 

1.10.5 Zinc transporters 

With both zinc deficiency and also zinc toxicity clearly detrimental to human 

health, the balance of cellular zinc levels is clearly vital. Since zinc cannot 

passively diffuse across cellular membranes, two families of zinc transporters 

maintain zinc homeostasis: ZnT (SLC30A) and ZIP (SLC39A). It is the 

mutual actions of these two families that maintain cellular zinc homeostasis.  

 

1.10.6 The ZnT family of zinc transporters 

 The ZnT family, also known as SLC30A (solute-linked carrier 30)  

consists of 10 members (ZnT1-10) and is responsible for the transport of zinc 

out of the cell (Palmiter and Huang, 2004). They have 6 trans-membrane 

domains and display histidine rich motifs located in the cytoplasmic loop 

between trans-membrane domains 4 and 5 (figure 1.7) that may bind metal 

during transport (Eide, 2006). 
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Figure 1.7: Structure of ZnT proteins 

 

1.10.7 The ZIP family of zinc transporters 

 The ZIP (Zrt- and Irt-like proteins), also known as SLC39A (solute-

linked carrier 39) is named after family is named after the yeast Zrt1 protein 

and the Arabidopsis Irt1 protein, the first identified members (Eide, 2006). It 

consists of 14 members (ZIP1-14) and is responsible for the transport of zinc 

into the cell (Eide, 2004). The ZIP family have 8 transmembrane domains, 

including a histidine rich region located in the cytoplasmic loop between 

trans-membrane domain 3 and 4 (figure 1.8).  

 

 

Figure 1.8: Structure of ZIP proteins 
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1.10.8 Zinc transporters and cancer 

 A number of zinc transporters have been linked to the development 

and progression of mammalian cancers.  

ZIP4 has been shown to be over-expressed in 94% of pancreatic 

adenocarcinoma samples compared to the normal tissues adjacent to it. In 

addition, affymetrix analysis revealed that ZIP4 mRNA expression is 

significantly higher in human pancreatic cancer cells than normal pancreatic 

cells (Logsdon et al, 2003). Over-expression of ZIP4 increased intracellular 

zinc levels 2-fold in vitro, and significantly increased tumour volume by 13-

fold in a nude mice model with subcutaneous xenograft compared with the 

control cells. Cell proliferation was also increased. (Li et al, 2004). These data 

indicate that aberrant ZIP4 up-regulation may contribute to the pancreatic 

cancer pathogenesis and progression and provides a possible target for future 

pancreatic cancer therapies. 

 ZIP1, ZIP2 and ZIP3 have all been demonstrated to be down-regulated 

in prostate cancer, displaying an important role in the unique ability of 

prostate cells to accumulate high cellular zinc levels (Franklin and Costello 

2007). The three transporters have been shown to be down-regulated in 

malignant prostate cells (Desouki et al, 2007). This is consistent with the 

lowering of tumour zinc concentration associated with prostate cancer 

(Costello and Franklin 2006). These data indicate a role for ZIP1, ZIP2 and 

ZIP3 as tumour suppressor genes in prostate cancer. ZIP6, also known a LIV-1 

has also been shown to be involved with prostate cancer by driving epithelial-

to-mesenchymal transition (EMT). When over-expressed in ARCaP cells 
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(androgen-refractory prostate cancer cells), a model of prostate cancer bone 

metastasis, ZIP6 promoted EMT irreversibly (Lue et al, 2011).  

In addition to prostate cancer, ZIP 6 has also been associated with 

breast cancer. It has been shown to be predominantly expressed in oestrogen 

receptor positive breast cancer (McClelland et al, 1998). MRNA expression of 

ZIP6 showed a highly significant association with the spread of breast cancer 

to the regional lymph nodes (manning et al, 1994). An explanation for the role 

of  ZIP6  in cancer spread is that ZIP6 is the downstream target of STAT3 and 

thus essential for the nuclear localization of another transcription factor, 

SNAIL, which causes loss of cell adhesion by reducing expression of 

adherence genes such as E-cadherin (Peinado et al, 2007). 

ZIP10 has also been shown to be associated with the metastasis of breast 

cancer to the lymph node and thus is involved in the invasive behaviour of 

breast cancer cells. Kagara et al have demonstrated that ZIP10 mRNA 

expression was higher in the invasive and metastatic breast cancer cell lines 

MDA-MB-231 and MDA-MB-435S than in less metastatic breast cancer cell 

lines, such as MCF7 and T47D. In support of this, the depletion of ZIP10 in 

MDA-MB-231 and MDA-MB-435S cells in vitro inhibited cell migration 

(Kagara et al, 2007) confirming the essential role of ZIP10 in metastatic breast 

cancer and providing a possible future treatment strategy.  

 Interestingly, a ZnT zinc efflux transporter has also been associated 

with breast cancer. Expression of ZnT1 is reduced by 55% in the MNU 

induced tumours in rats compared with normal tissue. Furthermore, zinc is 

also increased 12 times in same rat model compared to normal tissue (Lee et 
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al, 2003). In the same study, The mRNA and protein levels of metallothionein 

in tumours were 1.3 and 3.5 times of that in normal tissue, respectively (Lee et 

al, 2003). This suggests that aberrant expression of ZnT1 may contribute to 

breast cancer progression. 

 

1.10.9 The zinc transporter ZIP7 in TamR (tamoxifen resistant MCF-7) 

cells 

The zinc transporter ZIP7 (SLC39A7) has been shown to be located on 

the endoplasmic reticulum and transports zinc from intracellular compartments 

into the cytoplasm (Taylor et al, 2004).  TamR cells have double the levels of 

intracellular zinc compared to the hormone responsive MCF-7 cells (Taylor et 

al, 2008). Removal of ZIP7 using siRNA in TamR cells led to a reduction in 

EGFR, IGF-IR, Src and Akt (Taylor et al, 2008) all of which have been shown 

to contribute to the aggressive phenotype of TamR cells with increased 

growth, proliferation and cell motility (Knowlden et al, 2005; Gee et al, 2005; 

Nicholson et al, 2007; Morgan et al, 2006). This ZIP7 reduction by siRNA 

treatment also led to a decrease in zinc. In further support of this observation, 

transfecting wild type tamoxifen responsive MCF-7 cells with a construct 

expressing recombinant ZIP7 led to an increase in EGFR, IGF-IR and Src 

(Taylor et al, 2008). There was also a corresponding increase of zinc. 

 A mechanism of ZIP7 action has been proposed (Taylor, 2008b) based 

upon the above involvement of ZIP7 in TamR cells; the presence of a calcium-

dependent zinc wave in mast cells that leads to the inhibition of phosphatases 

by zinc that originates in the endoplasmic reticulum (Yamasaki et al, 2007) 
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where ZIP7 resides (Taylor et al, 2004); and also a proposed model for zinc 

management in cells whereby intracellular zinc is associated with a muffler in 

the cytoplasm, that allows zinc buffering and storage in the endoplasmic 

reticulum, before being released into the cytoplasm (Colvin et al, 2008). The 

role proposed for ZIP7 in intracellular zinc homeostasis is shown in figure 1.9 

where zinc enters the cell from outside and is buffered and absorbed within a 

muffler before being transferred to the endoplasmic reticulum. Zinc that enters 

the cytoplasm is transported by ZIP7 and released in the form of a zinc wave, 

leading to inhibition of phosphatases (Taylor, 2008b).  
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Figure 1.9: The predicted function of ZIP7. Reproduced from Taylor 

2008b: A distinct role in breast cancer for two LIV-1 family zinc transporters. 
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1.11 Aims 

The aim of this thesis is to identify novel therapeutic targets for the treatment 

of tamoxifen resistant breast cancer using the TamR model of tamoxifen 

resistance developed at the Tenovus Centre for Cancer Research. 

 

In order to achieve this, the following aims were pursued: 

 The use of affymetrix data analysis to identify tyrosine kinase genes 

that were up-regulated in TamR cells compared to MCF-7 cells as 

potential gene targets.  

 The confirmation of affymetrix data by PCR and subsequent selection 

of a short list of genes. 

 The identification of a single gene target and investigation into the role 

of the gene target in proliferation, apoptosis, migration and invasion of 

TamR cells using siRNA technology to silence gene translation.  
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2. Materials and Methods 

 

MATERIAL MANUFACTURER, LOCATION 

0.2µm Supor membrane VacuCap 60 filter 

unit 

Gellman Laboratory Pall, Ann 

Arbour, USA 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide (MTT) 

Sigma-Aldrich, Poole, Dorset, UK 

Acrylamide/bis-acrylamide (30% solution 

(v/v), 29:1 ratio) 

Sigma-Aldrich, Poole, Dorset, UK 

Activated charcoal Sigma-Aldrich, Poole, Dorset, UK 

Agarose Bioline Ltd, London, UK 

Alpha Digidoc RT Densitometry Software Alpha Innotech Corp. California, USA 

Ammonium persulphate (APS) Sigma-Aldrich, Poole, Dorset, UK 

Amphotericin B (Fungizone) Invitrogen, Paisley, UK 

Antibiotics (penicillin/streptomycin) Invitrogen, Paisley, UK 

Anti-rabbit/Anti-mouse EnVision™+ 

System, Peroxidase (DAB) kits 

DAKO, Cambridgeshire, UK 

Aprotinin Sigma-Aldrich, Poole, Dorset, UK 

Aspiration pump Gardner Denver Alton Ltd, Alton, UK 

Bijou tubes (5ml) Bibby Sterilin Ltd., Stone, UK 

Bio-Rad DC Protein Assay (Reagents A, B 

and S) 

Bio-Rad Laboratories Ltd, HERTS, 

UK 

Bovine serum albumen (BSA) Sigma-Aldrich, Poole, Dorset, UK 

Bovine Trypsin Lorne Laboratories Ltd, Reading, UK 

Bromophenol blue (BPB) BDH Chemicals Ltd, Poole, UK 

Cecil CE 2041 Spectrophotometer CECIL, Cambridge, UK 

Cell culture medium: RPMI 1640 and 

Phenol-red-free RPMI 1640 

Invitrogen, Paisley, UK 
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Cell scrapers Greiner Bio-One Ltd, Gloucestershire, 

UK 

Class II biological safety cabinet MDH Intermed Airflow from 

Bioquell, Andover, UK 

Corning Standard Transwell® inserts   

(6.5mm diameter, 8µm pore size) 

Fisher Scientific, Leicestershire, UK 

Coulter Counter counting cups and lids Sarstedt AG and Co., Nümbrecht, 

Germany 

Coulter Multisizer II Beckman, High Wycombe, UK 

Crystal violet Sigma-Aldrich, Poole, Dorset, UK 

Denly BA852 Autoclave Thermoquest Ltd, Basingstoke, UK 

DharmaFECT Transfection Reagents 1-4 

Thermo Scientific, Loughborough, 

UK 

Di-butylpthalatexylene (DPX) Raymond A Lamb Ltd, Eastbourne, 

UK 

Dimethyl sulphoxide (DMSO) Sigma-Aldrich, Poole, Dorset, UK 

Di-potassium hydrogen orthophosphate 

anhydrous (K2HPO4) 

Fisher Scientific UK Ltd, 

Loughborough, UK 

Disposable Cuvettes Fisher Scientific UK Ltd, 

Loughborough, UK 

Di-thiothreitol (DTT) Sigma-Aldrich, Poole, Dorset, UK 

dNTPs (dGTP, dCTP, dATP, dTTP; 

100mM) 

Amersham, Little Chalfont, UK 

Eppendorf tubes Eppendorf, Hamburg, Germany  

Ethidium bromide (EtBr) Sigma-Aldrich, Poole, Dorset, UK 

Ethylene diamine tetraacetic acid (EDTA) Sigma-Aldrich, Poole, Dorset, UK 

Fibronectin (from Human Plasma; 1mg/ml 

in 0.05M TBS; pH 7.5) 

Sigma-Aldrich, Poole, Dorset, UK 

Filter Paper (No. 4), Filter Paper (grade 3; 

460 X 370mm) 

Whatman, Maidstone, UK 
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Foetal calf serum (FCS) Invitrogen, Paisley, UK 

GeneQuant RNA/DNA Calculator Biochrom Ltd Cambridge, UK 

General laboratory glass- and plasticware Fisher Scientific UK Ltd, 

Loughborough, UK 

Gilson Pipettes (1-10µl, 5-50µl, 20-200µl, 

100µl-1000ml and 500µl-5ml) 

Gilson, Luton UK 

Glacial Acetic Acid Fisher Scientific UK Ltd, 

Loughborough, UK 

Glass coverslips (thickness no. 2, 22mm2) BDH Chemicals Ltd, Poole, Dorset, 

UK 

Glass slides Fisher Scientific UK Ltd, 

Loughborough, UK 

Glycerol Fisher Scientific UK Ltd, 

Loughborough, UK 

Glycine Sigma-Aldrich, Poole, Dorset, UK 

Hamamatsu C4742-96 digital camera Hamamatsu Photonics UK Ltd, 

HERTS, UK 

Hoffman Condenser Leica Microsystems Imaging 

Solutions Ltd, Cambridge, UK 

HyperCassette™ developing cassette Amersham, Little Chalfont, UK 

Hyperladder™ I and Hyperladder™ IV Bioline Ltd, London, UK 

IBM Personal Computer IBM, UK  

IEC Micromax RF Micro-centrifuge Thermo Electron Corporation, 

Hampshire, UK 

Improvision OpenLab V4.04 software Improvision, Coventry, UK 

Isoton® II azide-free balanced electrolyte 

solution (sodium chloride at 7.9g.l-1, 

disodium hydrogen orthophosphate at 

1.9g.l-1, EDTA disodium salt at 0.4g.l-1, 

sodium dihydrogen orthophosphate at 

0.2g.l-1 and sodium fluoride at 0.3g.l-1) 

Beckman Coulter Ltd, High 

Wycombe, UK 
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Jouan C312 Centrifuge Thermo Fisher Scientific Inc., MA, 

USA 

Labconco Purifier PCR Enclosure GRI, Rayne, UK 

Leica DM-IRE2 inverted microscope Leica Microsystems Imaging 

Solutions Ltd, Cambridge, UK 

Leupeptin Sigma-Aldrich, Poole, Dorset, UK 

L-glutamine Invitrogen, Paisley, UK 

Lipofectamine 2000 Transfection reagent Invitrogen, Paisley, UK 

Lipofectamine RNAiMAX Invitrogen, Paisley, UK 

Liquid DAB+ substrate chromogen system DAKO, Cambridgeshire, UK 

Lower buffer for SDS-PAGE Gels               

(Tris 1.5M, pH 8.8) 

Bio-Rad Laboratories Ltd, HERTS, 

UK 

Magnesium chloride (MgCl2) Sigma 

Magnetic Stirrer Fisher Scientific UK Ltd, 

Loughborough, UK 

Matrigel Basement Membrane Matrix BD Biosciences, Oxford, UK 

Methyl green Sigma-Aldrich, Poole, Dorset, UK 

Micro-centrifuge tubes (0.5ml and 1.5ml) Elkay Laboratory Products, 

Basingstoke, UK 

Mini-Protean ® 3 electrophoresis apparatus BioRad Laboratories Ltd 

(Hertfordshire, UK) 

Molony-murine leukaemia virus (MMLV) 

reverse transcriptase 

Invitrogen, Paisley, UK 

MXB Autoradiography Film (Blue 

Sensitive; 18 X 24 cm) 

Genetic Research Instrumentation 

(GRI), Rayne, UK 

N,N,N’,N’-tetramethylene-diamine 

(TEMED) 

Sigma-Aldrich, Poole, Dorset, UK 

Nikon Eclipse TE200 Phase Contrast 

Microscope 

Nikon, Kingston-upon Thames, UK 

Nitrocellulose membrane BA85(0.45µM) Schleicher and Schuell, Dassell, 
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Germany 

Olympus 8mp Digital Camera Olympus, Oxford, UK 

Olympus BH-2 phase contrast microscope Olympus, Oxford, UK 

Olympus DP-12 digital camera system Olympus, Oxford, UK 

Perbio Chemiluminescent Supersignal® 

West Pico, Dura and Femto 

Pierce and Warriner Ltd, Cheshire, 

UK 

Phenol/Chloroform/Isoamyl (25:24:1) Sigma-Aldrich, Poole, Dorset, UK 

Phenylarsine oxide Sigma-Aldrich, Poole, Dorset, UK 

Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich, Poole, Dorset, UK 

Pipette Tips Greiner Bio-One Ltd, Gloucestershire, 

UK 

Platform Rocker STR6 Stuart Scientific, Bibby Sterilin Ltd. 

(Stone, UK) 

Polyoxyethylene-sorbitan monolaurate 

(Tween 20) 

Sigma-Aldrich, Poole, Dorset, UK 

PowerMAC G5 computer Apple Computer Inc., CA, USA 

Powerpac 1000 power pack Bio-Rad Laboratories Ltd, HERTS, 

UK 

Powerpac Basic™ power pack BioRad Laboratories Ltd 

(Hertfordshire, UK) 

Proteinase-K Sigma-Aldrich, Poole, Dorset, UK 

PTC-100 thermocycler MJ Research Ltd, Massachusetts, 

USA 

Rainbow protein size markers (10-250 

kDa) 

Amersham, Little Chalfont, England 

Random hexamers (RH) Amersham, Little Chalfont, UK 

RNase-free H2O Sigma-Aldrich, Poole, Dorset, UK 

RNasin® ribonuclease inhibitor Promega, Southampton, UK 

Roller Platform Stuart Scientific, Bibby Sterilin Ltd. 

(Stone, UK) 
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Sanyo 950W Microwave Sanyo Europe, Loughborough, UK 

Sanyo MCO-17AIC incubator Sanyo E&E Europe BV, 

Loughborough, UK  

SMARTpool siRNA 

Thermo Scientific, Loughborough, 

UK 

Sodium Acetate (NaOAc) Sigma-Aldrich, Poole, Dorset, UK 

Sodium chloride (NaCl) Sigma-Aldrich, Poole, Dorset, UK 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich, Poole, Dorset, UK 

Sodium fluoride (NaF) Sigma-Aldrich, Poole, Dorset, UK 

Sodium molybdate (Na2MoO4) Sigma-Aldrich, Poole, Dorset, UK 

Sodium orthovanadate (NaVO4) Sigma-Aldrich, Poole, Dorset, UK 

Solvents (acetone, chloroform, ethanol, 

formaldehyde, isopropanol and methanol) 

Fisher Scientific UK Ltd, 

Loughborough, UK 

Sterile disposable pipettes (5ml, 10ml and 

25ml), Falcon tubes (50ml), Coulter 

Counter lids and cups 

Sarstedt AG and Co., Nümbrecht, 

Germany 

Sterile Falcon tubes (15ml and 50ml) Sarstedt AG and Co., Nümbrecht, 

Germany 

Sterile phosphate buffered saline (PBS) Invitrogen, Paisley, UK 

Sterile Syringe Needles (BD 

microbalance™ 3 characteristics: 25 G5/8 

(0.5 X 16) 

Becton Dickinson (BD) Biosciences 

Ltd, Oxford, UK 

Sterile universal containers (30ml) Greiner Bio-One Ltd, Gloucestershire, 

UK 

Sterile, disposable serological pipettes 

(5ml, 10ml and 25ml) 

Sarstedt AG and Co., Nümbrecht, 

Germany 

Sub-cell® Agarose Electrophoresis System Bio-Rad Laboratories Ltd, HERTS, 

UK 

Sucrose Fisher Scientific UK Ltd, 

Loughborough, UK 
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Syringes (5ml and 10ml) Sherwood Medical Davis and Geck, 

Gosport, UK 

Tissue culture plasticware (24, 96-well 

plates, filter flasks, 35mm, 60mm and 

100mm dishes) 

Nunc Int., Roskilde, Denmark 

TRI-Reagent Sigma-Aldrich, Poole, Dorset, UK 

Tris HCl Sigma-Aldrich, Poole, Dorset, UK 

Triton X-100 Sigma-Aldrich, Poole, Dorset, UK 

Trizma (Tris) base Sigma-Aldrich, Poole, Dorset, UK 

Upper buffer for SDS-PAGE Gels                  

(Tris 0.5M, pH 6.8) 

Bio-Rad Laboratories Ltd, HERTS, 

UK 

UV Transilluminator Alpha Innotech Corp. California, USA 

Vacuum flask Gardner Denver Alton Ltd, Alton, UK 

VectorShield Mounting Medium 

Vector Laboratories Inc, 

Peterborough, UK 

Western Blocking Reagent Roche Diagnostics, Mannheim, 

Germany 

White 96 well qPCR plates and caps Bio-Rad Laboratories Ltd, HERTS, 

UK 

X-O-graph Compact X2 x-ray developer X-0-graph Imaging System, Tetbury, 

UK 

 

 

 

 

 

 

 



Chapter 2  Materials and Methods 

47 
 

2.1 Maintenance of cell lines  

Wild-type (tamoxifen responsive) MCF-7 breast cancer cells, a gift from 

AstraZeneca (Macclesfield, UK), were cultured in phenol-red RPMI  with 5% 

(v/v) fetal calf serum plus 200 mM glutamine, 10 U/ml penicillin, 10 µg/ml 

streptomycin, and 2.5 µg/ml Fungizone. Tamoxifen resistant (TamR) cells 

were cultured in phenol-red-free RPMI  with 5% (v/v) charcoal stripped fetal 

calf serum plus 200 mM glutamine, 10 U/ml penicillin, 10 µg/ml 

streptomycin, 2.5 µg/ml Fungizone and 100nM 4-hydroxytamoxifen. 

TAM/TKI-R  (gefitinib resistant TamR) cells were cultured in phenol-red-free 

RPMI  with 5% (v/v) charcoal stripped fetal calf serum plus 200 mM 

glutamine, 10 U/ml penicillin, 10 µg/ml streptomycin, 2.5 µg/ml Fungizone, 

100nM 4-hydroxytamoxifen and 1µM gefitinib. Cells were maintained for a 

maximum of 25 passages before being replaced by cells with a lower passage 

number from frozen stocks. Cell-culture was conducted in a MDH Class II 

laminar-flow safety cabinet (BIOQUELL UK) under sterile conditions.  The 

cell culture equipment and consumables were sterilized using an autoclave or 

purchased already sterile. Cells were stored and maintained in 75cm2  flasks at 

37oC in a humidified 5% CO2 atmosphere. Medium was replaced every 3-4 

days and cells were passaged by trypsinisation at 80-90% confluency as 

determined using a Nikon Eclipse TE200 phase-contrast microscope. 

Passaging cells in a 75cm2 flask involved the removal of growth medium and 

addition of 10ml of 0.05% trypsin/0.02% EDTA in PBS for 5 minutes at 37oC 

to disrupt the cell monolayer and subsequent neutralisation of the trypsin using 

10ml of medium containing serum. The cells were then pelleted by 
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centrifugation at 1000rpm for 5 minutes, the supernatant decanted and the cell 

pellet re-suspended in the relevant growth medium. For routine cell 

maintenance, the cells were seeded into new 75cm2 flasks at a 1:10 dilution.  

To accurately seed cells for experimental work, the cell number was counted 

using a Coulter counter (Beckman Coulter UK Ltd, UK) by adding a 50µl 

aliquot of cell suspension to 10ml of Isoton solution prior to seeding the 

required number of cells onto new plates or dishes. 

 

2.2 Generation of TamR cells 

TamR cells were generated in-house at the Tenovus Centre for Cancer 

Research following long-term exposure of MCF-7 cells to tamoxifen. MCF-7 

cells were cultured in phenol-red-free RPMI  with 5% (v/v) charcoal stripped 

fetal calf serum plus 200 mM glutamine, 10 U/ml penicillin, 10 µg/ml 

streptomycin, 2.5 µg/ml Fungizone and supplemented with 100nM 4-

hydroxytamoxifen. The cells were continuously exposed to this treatment 

regimen for 6 months, with the medium being replaced every 3-4 days and the 

cells passaged by trypsinisation after 80-90% cell confluency was reached 

(approximately once a week). At first, the MCF-7 cell growth rates were 

significantly reduced, but after 2 months’ exposure to the medium, cell growth 

gradually increased, indicating the development of a cell line resistant to the 

growth-inhibitory properties of 4-hydroxytamoxifen. The TamR cells line was 

maintained for a further 4 months prior to any cell characterisation studies 

beginning (Knowlden  et al, 2003). 
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2.3 Generation of gefitinib resistant TamR cells (Tam/TKI-R) 

The TamR cell cultures were washed with PBS and continuously exposed to 

gefitinib (1µM) and 100nM 4-hydroxytamoxifen in phenol-red-free RPMI  

with 5% (v/v) charcoal stripped fetal calf serum plus 200 mM glutamine, 10 

U/ml penicillin, 10 µg/ml streptomycin and 2.5 µg/ml Fungizone which was 

replaced every 4 days. Initially, TamR cell numbers were dramatically reduced 

and during the following 3 months the surviving cells were passaged 

approximately every 14 days with a seeding ratio of 1:2. Cell proliferation 

slowly increased to passage every 10 days with the seeding ratio increasing 1:4 

over the next 2 months. A stable growth rate was reached after a total of 6 

months with routine maintenance of the TAM/TKI-R cells involving passage 

every 7 days with a seeding ratio of 1:10 of the confluent cell number (Jones et 

al, 2004). 

 

2.4 Treatment of TamR cells with growth factors or growth inhibitors 

Where TamR cells were treated with growth factors or growth inhibitors, the 

concentrations used are shown in table 2.1. Since duration of treatment varied 

between experiments from 24 hours to several days, this information has been 

included in the figure legends of the individual experiments.       
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Table 2.1: Details of treatments and concentrations used                                                                                                    

Treatment Concentration Target  

17-Oestradiol 1nM ER 

4-hydroxytamoxifen 100nM ER 

Fulvestrant  100nM ER 

Gefitinib  1µM EGFR 

SU6656 5µM Src and Lyn 

   

2.5 Experimental cell culture and cell treatments with siRNA 

TamR cells were seeded into the appropriate cell culture dishes at 2 x 105 /cm2 

and maintained in phenol-red-free RPMI  with 5% (v/v) charcoal stripped fetal 

calf serum plus 200 mM glutamine, 10 U/ml penicillin, 10 µg/ml 

streptomycin, 2.5 µg/ml Fungizone and supplemented with 100nM 4-

hydroxytamoxifen until 70% confluent. The use of SMARTpool siRNA meant 

that each siRNA preparation was in fact a pool of 4 distinct siRNA 

preparations each targeting the same gene. Since it is possible that silencing 

with siRNA may produce unwanted off-target effects, using a pool of siRNA 

minimises the effect that this will have since it is unlikely that all 4 will cause 

the same off-target effect. For each siRNA transfection, both the siRNA (final 

concentration 100nM) and the transfection lipid were diluted in phenol-red-

free RPMI medium containing 200mM glutamine and 4-hydroxytamoxifen 

without serum, antibiotics or fungizone. The diluted siRNA and transfection 

lipid were mixed together within 5 minutes of dilution and left for an initial 
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serum free incubation period of 20 minutes at room temperature that allowed 

sufficient time for the siRNA and transfection lipid to form complexes. 

Phenol-red-free RPMI  with 5% (v/v) charcoal stripped fetal calf serum plus 

200 mM glutamine and 100nM 4-hydroxytamoxifen without antibiotics and 

Fungizone was added after to the cells after 20 minutes and the complex of 

siRNA and transfection lipid was then added drop-wise to the cells whilst very 

gently moving the plate to ensure even distribution of the complex. The 

amount of lipid and siRNA used varied according to the size of cell culture 

dishes used, and is detailed in table 2.2. An initial comparison of six 

transfection lipids (section 3.5.1) resulted in the selection of Lipofectamine 

RNAiMAX for subsequent experiments. The same concentration of reagents 

was used regardless of type of transfection lipid.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2  Materials and Methods 

52 
 

Table 2.2: Variation of lipid and siRNA for cell culture dish. 

Type of cells culture 

dish used 

Chamber 

Slides 

12-well plates 35 mm dishes/ 

Coverslips/ 

6 well plates 

60mm dishes 

SiRNA (tube A) 20pmol 

(1l) 

100pmol  

(5l) 

200pmol 

(10l) 

550pmol 

(27.5l) 

Serum free medium 

(tube A) 

25l 125l 250l 687l 

Transfection lipid 

(tube B) 

0.4l 2l 4l 11l 

Serum free medium 

(tube B) 

25l 125l 250l 687l 

Medium containing 

serum added to cells 

150l 750l 1.5ml 4.125ml 

Final concentration 

of siRNA on cells 

100nM 100nM 100nM 100nM 

 

 

2.6 RNA extraction 

Medium was removed from cells in a tissue culture dish and the cells were 

washed 3 times in ice cold PBS. 1ml of TRI® Reagent RNA Isolation Reagent 

per 10cm2 area of culture dish was added, cells were incubated for 5 minutes 

before scraping into 1.5ml centrifuge tubes. The cells were then stored at -

80oC overnight (in order to increase RNA yield) before addition of 0.2ml per 

10cm2 of chloroform agitating for 15 seconds and incubating at room 

temperature for 15 minutes. Centrifuging at 12,000 x g for 15 minutes at 4oC 

caused the mixture to separate into a (lower) phenol-chloroform phase and an 
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(upper) aqueous phase. The RNA was contained in the upper phase which was 

removed into a centrifuge tube before 0.5ml of iso-propanol per 1ml of 

isolation reagent was added and the solutions mixed and incubated at room 

temperature for 5-10 minutes. This was then centrifuged at 12,000 x g for 15 

minutes at 4oC. The supernatant was removed, and the pellet washed in 1ml of 

70% ethanol per 1ml of isolation reagent before centrifuging at 7,500 x g for 5 

minutes at 4oC. The ethanol was removed and the pellet was air-dried for 10 

minutes (taking care not to over-dry which makes resuspending difficult) 

before re-suspending in sterile RNAse free water. 

 

2.7 RNA quantitation  

RNA was diluted 4µl in 1ml of sterile RNAse free water and quantified on a 

spectrophotometer at 260nm and 280nm. 260nm is the wavelength for RNA 

and 280nm is the wavelength for DNA. The ratio of RNA to DNA 

(260nm:280nm) was calculated in order to ascertain if the RNA was 

contaminated with DNA. Total RNA has a ratio of 1.6-1.8. A sample with a 

ratio outside of these values would be discarded. 

RNA yield was calculated using the formula: 

Absorbance (260nm) X Dilution (250) X 40 = µg/ml 

 

2.8 Identification of tamoxifen induced tyrosine kinase genes using 

Affymetrix microarrays 

Triplicate preparations of RNA were isolated from experimental cultures of 

wild-type MCF-7 cells, tamoxifen resistant (TamR) cells (see 2.2) and 
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gefitinib resistant TamR cells (Tam/TKI-R (2.3)) using the RNA extraction 

method and qualified/quantified as described in section 2.8. To ensure the 

absence of genomic DNA contaminants the RNA was treated with DNase1 for 

30 minutes and passed through RNeasy Mini Columns. The triplicate samples 

were sent to the Cardiff University Central Biotechnology Services and used 

to generate biotinylated cRNA which was then hybridised to cDNA 

oligonucleotides on an Affymetrix U133A GeneChip. The U133A GeneChip 

contains probes representing 14,500 well-characterized human genes and also 

array controls. A separate cell sample was used for each GeneChip. The arrays 

were then scanned and Microarray Suite 5.0 software (Affymetrix, UK) used 

to generate fluorescence output data per probe. The RNA expression data was 

formatted to allow analysis using Microsoft Excel software. Data for each cell 

line was uploaded into the software package GeneSifter (www.genesifter.net) 

then normalised and log transformed using the software to allow accurate 

analysis. The Affymetrix probe set ID number for each of the 86 human 

tyrosine kinase genes on the U133A chip numbers were inputted into 

GeneSifter to enable a series of comparisons of tyrosine kinase gene 

expression data between the three cell lines. The data output from GeneSifter 

is in the form of a heat map where red represents gene up-regulation, black 

represents no change in gene expression and green represents down-regulation 

compared to the control. A number of genes had more than one probe on the 

U133A chip. In this instance, the probe data for each gene was compared to 

ensure that the expression profiles were reproducible. If they were not 

reproducible, that particular gene was discounted from further analysis.  
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2.9 Reverse Transcription (RT)  

RNA is reverse transcribed into its complementary DNA (cDNA) that is 

necessary for the subsequent amplification by PCR. 

1g of RNA was used per reaction in a total volume of 7.5l. This was added 

to 11l of a master mix solution containing 625M each of dNTPs (dGTP, 

dCTP, dATP and dTTP), 1 X PCR reaction buffer (Bioline), 2.5mM MgCl2, 

10mM DTT (Dithiothreitol) and 10M Random Hexamers. The solution was 

denatured at 95oC for 5 minutes in a PCR machine then cooled rapidly on ice 

for 5 minutes. 1l of MMLV (reverse transcriptase enzyme) and 0.5l RNAse 

inhibitor was added to give a final volume of 20l.  

RNA was transcribed using PCR programme: 

Room temperature for10 minutes (22oC), reverse transcribed at 42oC for 42 

minutes then the reaction was terminated by 95oC denaturation for 5 minutes. 

 

2.10 PCR (per reaction) 

The cDNA generated by reverse transcription is amplified by PCR. 

1l of cDNA was added to a master mix solution made of 1X PCR reaction 

buffer (Bioline), 2.5mM MgCl2, 0.1mM dNTPs, 10 pmol forward primer, 10 

pmol reverse primer and 0.125U of Taq polymerase made up to a total volume 

of 24l using RNAse/DNAse free water. 

The details of the forward and reverse primers used and number of cycles used 

are listed in table 2.3. Where actin was used, 2 pmol of each primer was also 

added to the mix.  

 cDNA was amplified in a PCR machine using the programme: 
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Denature for 2 minutes at 95oC, amplification step of 95oC for 1 minute, 60oC 

for 30 seconds and 72oC for 1 minute for 28 cycles, before a final denaturation 

at 94oC for1 minute then final extension time of 72oC for 5 minutes.   

 

Table 2.3: Details of primers used for PCR reactions.  

PRIMER PRIMER SEQUENCE No. Of 

Cycles 

SIZE(bp) 

STAT3 FWD 5'- AGACCGAGGTGTATCACCAAGGTCTCAAGA-3' 32 311 

STAT3 REV 5'- TGTGATCTGACACCCTGAGTAGTTCACACC-3' 32  

EGFR FWD 5’- CAACATCTCCGAAAGCCA-3’ 35 636 

EGFR REV 5’- CGGAACTTTGGGCGACTAT-3’ 35  

LAMIN FWD 5’-CCTCTCACTCATCCCAGACACAGG-3’ 27 429 

LAMIN REV 5’-ACTTGCCAATTGCCCATGGACTGG-3’ 27  

EPHB3 FWD 5’- ACATCTCATCCAGAAAGTGG-3’ 28 237 

EPHB3 REV 5’- GAAGAGGTTGAAGGTCTCCT-3’ 28  

PTK2B FWD 5’- CTGGGAAGAACTTCAAACTG-3’ 30 241 

PTK2B REV 5’- TGAAGGTCATACCTCCACTC-3’ 30  

PTK7 FWD 5’-CTACCAATGGTTCCGAGATG-3’ 30 378 

PTK7 REV 5’-GACCCGTTGGCAAACACTGTG-3’ 30  

LYN FWD 5’-CTTGAGTGACGATGGAGTAG-3’ 29 230 

LYN REV 5’-CGTGGAGAGATGTAATAGCC-3’ 29  

TYRO3 FWD 5’-GAACCTGTTACCATTGTCTGG-3’ 35 463 

TYRO3 REV 5’-CTAGACCCTTGGTCTGAAAGG-3’ 35  

SRC FWD 5’-CAGTGTCTGACTTCGACAAC-3’ 33 433 

SRC REV 3’-CTCCTCTGAAACCACAGCAT-5’ 33  

-actin FWD 5’-GGAGCAATGATCTTGATCTT-3’ 27 204 

-actin REV 3’-CCTTCCTGGGCATGGAGTCCT-5’ 27  
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2.11 Agarose Gel Electrophoresis 

A 2% (w/v) agarose gel was made supplemented with 1µl ethidium bromide 

(10mg/ml stock solution) in TAE buffer (Appendix I). A 20 well plastic comb 

was inserted and allowed to set for approximately 20 minutes. The agarose gel 

was assembled into a Bio-Rad gel electrophoresis kit and the tray filled with 

TAE buffer. 10l of PCR amplification product was mixed with 5µl of 2X 

bromophenol blue loading buffer (Appendix II) and pipetted into individual 

wells. 10l of a Hyperladder IV 1Kb marker (Bioline) was also added to one 

well. The gel was run for 50 minutes at 90V or until the Hyperladder IV 1Kb 

marker had separated sufficiently to allow accurate determination of band size. 

The gel was visualised under ultraviolet light using a trans-illuminator and the 

fluorescent image captured with a camera for densitometry.  The intensity of 

each band was determined by multiplying band intensity (OD) with area 

(mm2).   

 

2.12 Cell lysis for Western blotting 

Cells were washed three times in ice cold PBS, scraped into centrifuge tubes 

and lysed for 1 hour at 4oC using ice cold lysis buffer (5.5mM EDTA/0.4% 

Nonidet P40/ 10% mammalian protease inhibitor cocktail (Sigma-Aldrich) in 

Krebs-Ringer HEPES buffer) (Taylor 2003). Cells were centrifuged at 

13,000rpm for 15 minutes at 4oC and the supernatant containing protein was 

removed into a new centrifuge tube and the pellet was discarded. Protein was 
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quantified using the DC assay kit (Bio-Rad Laboratories) which is a 

colorimetric assay based on the Lowry protocol (Lowry OH et al, 1951). A 

standard curve of known BSA concentrations between 0 and 1.45mg/ml was 

used to calculate the concentration of protein samples. Protein was 

subsequently aliquoted into 30g ready for Western blotting and stored at -

80oC. 

 

2.13 SDS-PAGE 

The Bio-Rad Mini-Protean III apparatus (Bio-Rad Laboratories Ltd, HERTS, 

UK) was used following the instructions provided by the manufacturer. Glass 

plates provided with the apparatus were cleaned thoroughly with 70% ethanol 

and assembled according to instructions. A 12% (w/v) SDS-polyacrylamide 

resolving (lower) gel was prepared according to the recipe in table 2.4 and the 

TEMED was added just prior to pouring the gel carefully between the glass 

plates, leaving approximately 2cm for the stacking gel. A thin layer of water 

was added by pipette to prevent the gel from drying out, before being left to 

set at room temperature for approximately 30 minutes. The layer of water was 

then carefully removed using blotting paper and a 4% (w/v) SDS-

polyacrylamide stacking (upper) gel (table 2.5) was mixed and poured on top 

of the resolving gel. A plastic comb was immediately inserted between the 

glass plates into the stacking gel and the gel was left to set for approximately 

45 minutes at room temperature. 2X loading buffer (Appendix III) was added 

to 30g total protein and this was denatured at 100oC for 5 minutes in a 

heating block. The comb was removed from the stacking gel, the apparatus 
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assembled with SDS-PAGE running buffer (Appendix IV) and the samples 

loaded into the wells along reserving one lane for a protein molecular weight 

marker. The proteins were separated by electrophoresis at 180V for 

approximately 1 hour or until the loading buffer dye had reached the required 

distance towards the bottom of the gel. 
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Table 2.4: 12% resolving gel recipe 

REAGENT VOLUME 

Lower Buffer 3.75ml 

Sterile water 6ml 

30% acrylamide 4.95ml 

SDS (10% in water)  150µl 

APS (10% in water) 150µl 

TEMED 15µl 

 

 

 

Table 2.5: 4% stacking gel recipe 

REAGENT VOLUME 

Upper Buffer 2.5ml 

Sterile water 6.1ml 

30% acrylamide 1.3ml 

SDS (10% in water)  100µl 

APS (10% in water) 50µl 

TEMED 10µl 

 

 

 

 



Chapter 2  Materials and Methods 

61 
 

 

2.14 Western blotting 

 In order to perform Western blotting after SDS-PAGE, the apparatus was 

disassembled, the glass plates were separated and the gel was assembled into 

the plastic cassette according to the manufacturer’s instructions. Briefly, 2 

pieces of blotting paper, 1 piece of 0.45µM pore size nitrocellulose membrane 

and 2 Teflon sponges per polyacrylamide gel were soaked in transfer buffer 

(Appendix V) and then assembled according to the diagram in figure 2.2. 

taking care to minimise the occurrence of air bubbles since this inhibits the 

transfer onto blotting paper. The plastic housing was then placed into the 

apparatus along with an ice block to prevent over-heating and filled with 

transfer buffer and transferred at 100V for 1 hour. 

 

 

Figure 2.2: Assembly of Western blotting apparatus  

 



Chapter 2  Materials and Methods 

62 
 

The nitrocellulose was carefully removed from the apparatus and the protein 

bands were visualised using Ponceau S solution (0.1% in 5% acetic acid) and 

washed off using water before the available proteins were blocked for 1 hour 

in 5%  (v/v) skimmed milk in Tris-buffered saline with tween (TBST- 10mM 

Tris Base, 100mM NaCl, 0.1% Tween20). The nitrocellulose was washed in 

TBST and incubated for at least 3 hours in primary antibody made in TBST 

containing 1% (v/v) skimmed milk. If primary antibody was to be kept at 4oC 

and reused for a period of time then 0.05% (w/v) (final concentration) sodium 

azide was added to prevent the milk spoiling. Primary antibodies and the 

concentrations used are listed in table 2.5.  The nitrocellulose was washed five 

times for 5 minutes each in TBST by gentle rocking before being incubated in 

either mouse or rabbit (see table 2.5 for the correct animal for each primary 

antibody) horseradish-peroxidase-linked secondary antibody 1/10,000 in 

TBST containing 1% (v/v) skimmed milk for 1 hour.  The nitrocellulose was 

washed a further eight times for 5 minutes in TBST before protein detection 

by luminol/peroxide based chemiluminescence reagent (Super Signal West 

Dura, Femto or Pico chemiluminescent substrate). 250µl of 

chemiluminescence reagent made according to manufacturer’s instructions 

was applied to the nitrocellulose for five minutes and then exposed to X-ray 

film for 10 seconds to overnight exposure depending on the signal strength or 

amount of a particular protein present. 
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Table 2.5: Details of primary antibodies used for Western blotting 

Epitope Concentration Animal 

Lyn Y396 1/1000 Rabbit 

T-Lyn 1/5000 Mouse 

Src Y418 1/2000 Rabbit 

T-Src 1/1000 Rabbit 

EGFR Y1068 1/1000 Rabbit 

T-EGFR 1/1000 Rabbit 

ERK 1/2 T202/Y204 1/1000 Rabbit 

T-ERK 1/2 1/1000 Rabbit 

AKT S473 1/2000 Rabbit 

FAK Y397 1/1000 Rabbit 

T-FAK 1/1000 Rabbit 

T-AKT 1/1000 Rabbit 

T-ZIP7 1/10,000 Rabbit 

PARP 1/1000 Rabbit 

β-actin 1/20,000 Mouse 

 

 

 

 

 

 

 



Chapter 2  Materials and Methods 

64 
 

2.15 Determination of MIB-1 proliferation index 

Cells were seeded and grown onto cover slips, these were fixed using acetone 

at -10oC to -30oC for 10 minutes then allowed to air dry. 10% normal goat 

serum in phosphate buffer solution (PBS) was applied to cover slips for 10 

minutes and the excess removed before addition of primary antibody DAKO 

Ki67 antibody (1/100 in PBS) for 45 minutes at room temperature. Cover slips 

were washed 3 times in PBS before application of secondary antibody Dako 

Goat anti-mouse immunoglobulins (1/25 in PBS) for 30 minutes. Cover slips 

were again washed 3 times in PBS. Dako Mouse PAP 1/250 in PBS was added 

for 30 minutes and cover slips were washed 3 times in PBS. Chromagen 

(Dako DAB) was applied for 8 minutes and then washed in distilled water 3 

times before final addition of 0.5% aqueous methyl green for 5 minutes or 

longer to ensure counterstaining of cells. Cover slips were washed in distilled 

water to remove excess methyl green solution before air drying and mounting 

onto glass slides using DPX mounting medium and allowed to set at room 

temperature for 12 hours. Cells in 10 randomly selected fields of view were 

assessed as positive (showing MIB-1 staining) or negative (no staining for 

MIB-1).  The number of cells positively stained for MIB-1 was expressed as a 

percentage of the total cell count in order to give the MIB-1 proliferation 

index. 

 

2.16 FACS (Fluorescence-activated cell sorting) 

Cell cycle stage was assessed using CycleTESTTM PLUS Reagent Kit (Becton 

Dickinson). Solution A, B, C and buffer used were provided in the reagent kit. 
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Cells were treated with 0.05% trypsin/0.02% EDTA in PBS for 5 minutes at 

37oC to disrupt the cell monolayer and the trypsin was then neutralised by the 

addition of an equal amount of medium containing serum. The cells were then 

pelleted by centrifugation at 300 x g for 5 minutes, the supernatant decanted, 

1ml of buffer solution was added and the cells resuspended by gentle 

agitation. The process of pelleting and resuspending in buffer was repeated 

twice. 5x105 cells were used per reaction as measured by Coulter counter as 

described below. Once counted and aliquoted to give the correct number, cells 

were pelleted by centrifugation at 400 x g for 5 minutes and the supernatant 

removed. 250µl of solution A (trypsin) was added to the cell pellet, it was 

mixed gently and left at room temperature for 10 minutes. 200µl of solution B 

(RNAse A and trypsin inhibitor) was added, mixed gently and left at room 

temperature for 10 minutes. 200µl of cold (4oC) solution C (propidium iodide) 

was added and left for 10 minutes on ice in the dark. Samples were then 

filtered through 35µm cell strainer caps into appropriate tubes for FACS 

analysis. Analysis was performed on a FACS Calibur machine connected to an 

Apple Macintosh computer and data was analysed using CellQuest software.  

 

2.17 Determination of cell number by Coulter counter 

Cells were treated in a 24 well plate.  The medium was removed and 

trypsin/EDTA was added for 5 minutes at 37oC. 1ml of Isoton II solution was 

added and cells were drawn up into a syringe through a 25G needle. The wells 

of the plate were then washed with a further 2ml of Isoton II solution which 
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was taken up into the syringe. The cell-isoton mixture was added to a counting 

cup containing 6 ml of Isoton II solution to give a total volume of 10ml.  

 Cells were counted twice using a Coulter counter (Luton, UK) and the 

average reading taken. Each condition was measured in triplicate and the cell 

number was then expressed as mean cells per well. 

 

2.18 Migration studies 

TamR cells underwent treatment before being grown for 24 h in phenol red 

free DCCM medium with 4-hydroxytamoxifen. Trypsin dispersion of cell 

monolayers and cell counting using a Coulter counter (Luton, UK) followed. 

All experiments were performed in triplicate. The migratory capacity of the 

cells following siRNA knockdown was measured using a modified Boyden 

chamber as previously described by Hiscox et al (Hiscox et al, 2006). Briefly, 

a porous membrane was coated with fibronectin (10g/ml in phenol red free 

RPMI (no supplements)) by submerging the inserts in the fibronectin solution 

and incubating for two hours at 37C and allowing to air-dry before seeding 

5X104 TamR cells in phenol-red-free RPMI with 5% (v/v) charcoal stripped 

fetal calf serum plus 200 mM glutamine, without fungizone or antibiotics and 

supplemented with 100nM 4-hydroxytamoxifen onto each insert. The cells 

were allowed to migrate through the porous membrane for 24 hours at 37oC. 

The medium was removed from the inserts and cells that had not migrated 

through the porous membrane were removed using a cotton bud in order to 

prevent staining of non-migratory cells. Cells that had migrated through the 

membrane were fixed in 3.7% (v/v) formaldehyde for 10 minutes and then 
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washed in PBS before staining with crystal violet and counting using a X10 

microscope lens on a Leica DM-IRE2 fluorescent microscope at 320nm. 10 

fields of view were counted and the mean of these taken. 

 

2.19 Invasion studies 

Using a modified Boyden chamber, the invasive capacity of TamR cells was 

measured. The inside of the inserts were coated with 50µL Matrigel (12mg/ml 

diluted 1 in 3 with ice cold phenol-red-free RPMI), which mimics the 

intracellular matrix and the inserts were placed at 37oC for 2 hours to allow the 

Matrigel to set. The cells were seeded onto the inserts at a density of 5 X104 

TamR cells in phenol-red-free RPMI  with 5% (v/v) charcoal stripped fetal 

calf serum plus 200 mM glutamine, without fungizone or antibiotics and 

supplemented with 100nM 4-hydroxytamoxifen and allowed to invade through 

the porous membrane for 72 hours. Non-invasive cells were removed with a 

cotton bud and those cells that had invaded through the membrane were fixed 

in 3.7% (v/v) formaldehyde for 10 minutes, washed in PBS, and the porous 

membrane containing the invaded cells removed from the plastic insert using a 

scalpel and mounted onto a microscope slide using Vectashield mounting 

medium (Vector laboratories) with 1.5 µg/ml DAPI (4, 6- diamidino-2-

phenylindole) to stain the nucleus and counted at X20 on a Leica DM-IRE2 

fluorescent microscope at 320nm. 
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2.20 Fluorescent microscopy 

0.17mm cover slips containing cells were fixed in 3.7% formaldehyde in PBS 

for 15 minutes, washed twice in PBS and permeablised in BSA buffer (1% 

bovine serum albumen with 0.4% saponin in PBS) for 15 minutes if cell 

permeablisation was required. Cover slips were blocked in 10% goat serum for 

15 minutes, incubated in primary antibody (1/1000) for 1 hour then washed 

three times in BSA buffer and incubated in 1/10,000 secondary antibody 

conjugated to Alexa Fluor 594 or 488 for 30 minutes. For zinc imaging, the 

cells were loaded with 5µM Fluozin-3 and 25µM Zinquin for 30 min at 37oC 

in darkness and kept in dark conditions from then on prior to fixing with 3.7% 

formaldehyde in PBS.  Cover slips were then assembled onto slides using 

Vectashield (Vector laboratories) mounting medium with 1.5 µg/ml DAPI (4, 

6- diamidino-2-phenylindole) to stain the nucleus. The cover slip edges were 

sealed using clear nail varnish and  these were stored in the dark at 4oC. 

All fluorescent images were captured using a Leica DM-IRE2 inverted 

microscope (Leica Microsystems Imaging Solutions Ltd, Cambridge, UK) and 

a 63x oil immersion lens. Images were acquired using a multiple bandpass 

filter set to the appropriate wavelength for the reagent being visualised i.e. 

DAPI, 488nm (green) or 594nm (red). The microscope was fitted with a 

Hamamatsu C4742-96 digital camera. Three pictures were taken at each 

wavelength (0.5µm apart) so that one round of deconvolution could be 

performed to minimise background. The camera was attached to an Apple 

MAC computer running OpenLab software (Improvision). Further image 
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analysis was performed using Paint Shop Pro (Corel) to enhance image 

contrast and brightness. 

 

2.21 Statistical analysis 

Analysis of the statistical significance of data was performed using Anova and 

student t-tests. Data were considered statistically significant when P value was 

less than 0.05. Error bars are standard deviation with at least n = 3 different 

experiments.  
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3.1 Identification of potential gene targets for siRNA knockdown 

The aim of this stage of investigations was to identify a gene target that could 

be carried forward for siRNA knockdown. In order to achieve this, a high 

throughput microarray technique was utilised, focusing on the tyrosine kinase 

(TK) family. 

The decision to focus the microarray investigation and comparison of cell 

lines on tyrosine kinases was taken for a number of reasons. It was necessary 

to limit the number of genes assessed and focusing on a particular family of 

genes was a way of achieving that. Over-expression of tyrosine kinases has 

been implicated in the development of almost all cancers. Of particular note 

within the family are the Ephrins and Eph receptors which have been shown to 

be over-expressed in many cancers including lung, colon, head and neck and 

breast cancers. The complex relationships between Ephrins and their receptors 

and a summary of their role in various cancers are reviewed in detail by 

Pasquale (Pasquale, 2010). Significantly, several have been implicated in the 

transition of breast cancer from a tamoxifen responsive to a tamoxifen 

resistant state via up-regulation of growth factor receptors including IGF-IR 

(Knowlden et al, 2005), HER2 and EGFR, and thus their downstream kinases 

such as PI3K/Akt and MAP kinases (Gee et al, 2005; Nicholson et al, 2007). 

Based on the well established role of these genes in both breast cancer and 

specifically tamoxifen resistance, it was felt that focusing on the tyrosine 

kinase family would prove productive. 

The size of the human tyrosine kinase family (91 known human 

tyrosine kinase genes) and also the complexity of relationships between family 
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members and sub-families within the group meant that analysis of affymetrix 

data was utilised as a means of identifying a number of robust gene targets to 

be carried forward for further investigation. The U133A Gene Chip contained 

a total of 139 tyrosine kinase probes that represented 86 of the 91 human 

tyrosine kinase genes. This meant that some genes were represented multiple 

times on the array by distinct probes.  

There were a number of advantages to using a high throughput 

microarray technique. These included the assessment of gene behaviour of 

thousands of genes simultaneously since the U133A Gene Chip contains 

14,500 human genes. This technique also allowed gene expression analysis to 

be performed across several different cell lines for comparison. Even 

focussing on the 86 tyrosine kinase genes, as opposed to the 14,500 human 

genes on the U133A Gene Chip, it would not have been possible to compare 

gene expression across several cell lines using other techniques with the same 

speed as was afforded by microarray use. 

The preparation of samples and hybridisation to the GeneChip is 

described in chapter 2. The arrays were scanned and Microarray Suite 5.0 

software (Affymetrix, UK) used to generate fluorescence output data for each 

probe. The RNA expression data was formatted to allow analysis using 

Microsoft Excel software. Data for each cell line was uploaded into the 

software package GeneSifter (www.genesifter.net) then normalised and log 

transformed. GeneCard software was used to identify the Affymetrix probe set 

ID number for each of the 86 tyrosine kinase genes present on the U133A 

array. These ID numbers were then entered into GeneSifter to allow pair-wise 
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comparisons of the tyrosine kinase genes in the cell lines investigated. The cell 

lines studied compared in this study were wild type hormone responsive breast 

cancer cells (MCF-7), tamoxifen resistant MCF-7 cells (TamR), and gefitinib 

resistant TamR cells (TAM/TKI-R). 

3.1.1 Identification of genes showing increased expression in tamoxifen 

resistant breast cancer cells compared with tamoxifen responsive cells. 

A pair-wise comparison of MCF-7 vs. TamR gene expression of all the 

tyrosine kinase gene probes present on the GeneChip was conducted and the 

resultant heat map is displayed in figure 3.1. In total, 50 probes were increased 

in TamR cells compared to MCF-7 cells, 29 probes were unchanged in TamR 

cells compared to MCF-7 cells and 60 probes were down-regulated in TamR 

cells compared to MCF-7 cells. Since the aim of this project was to investigate 

the role of selected tyrosine kinase genes in TamR cells by using siRNA 

knockdown, the work presented focuses on the 50 probes that were induced in 

TamR cells compared to MCF-7 cells. These probes represented 42 tyrosine 

kinase genes that were induced in TamR cells. To simplify data, interpretation 

where multiple probes represent the same gene, each of the 50 probes has been 

designated a number from 1 to 50 as detailed in table 3.1 
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Table 3.1. The 50 probes that are upregulated in TamR compared to 

MCF-7 along with affymetrix probe number 

 Gene name Probe number  Gene name Probe number 

1 RET 211421_s_at 26 TYRO3 211431_s_at 

2 TEK 206702_at 27 TEC 206301_at 

3 PDGFRA 203131_at 28 EPHB1 211898_s_at 

4 TYRO3 211432_s_at 29 MUSK 207632_at 

5 EPHA7 206852_at 30 LCK 204890_s_at 

6 LYN 202625_at 31 EPHA1 205977_s_at 

7 PTK7 207011_s_at 32 ZAP70 214032_at 

8 PTK2B 203110_at 33 RYK 214172_x_at 

9 EGFR 201984_s_at 34 MERTK 206028_s_at 

10 BLK 206255_at 35 JAK3 207187_at 

11 YES1 202933_s_at 36 PTK2 208820_at 

12 LMTK2 206223_at 37 MATK 206267_s_at 

13 STYK1  221696_s_at 38 EPHA5 215664_s_at 

14 LYN 210754_s_at 39 TIE1 204468_s_at 

15 FGFR4 211237_s_at 40 HCK 208018_s_at 

16 MUSK 207633_s_at 41 CSK 202329_at 

17 ROR1 205805_s_at 42 ERBB3 202454_s_at 

18 EPHB3 1438_at 43 PTK2B 203111_s_at 

19 EPHB3 204600_at 44 ERBB4 206794_at 

20 KIT 205051_s_at 45 JAK2 205842_s_at 

21 TTK 204822_at 46 RYK 216976_s_at 

22 FGFR3 204379_s_at 47 FGFR1 211535_s_at 

23 EGFR 201983_s_at 48 AXL 202685_s_at 

24 SRC 221284_s_at 49 MERTK 211913_s_at 

25 TNK2 203838_s_at 50 LYN 202626_s_at 

 

The 50 probes that were induced in TamR cells compared to MCF-7 cells and 

U133A GeneChip probe number. Each probe was assigned a number from 1 to 

50 with 1 being the most induced and 50 the least induced. 
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Figure 3.1: Regulation of 139 tyrosine kinase probes in TamR cells 

compared to MCF-7 cells. 

 

 

 

MCF-7  TamR Gene name Description
1 RET ret proto-oncogene 
2 TEK TEK tyrosine kinase, endothelial 
3 PDGFRA platelet-derived growth factor receptor, alpha polypeptide
4 TYRO3 TYRO3 protein tyrosine kinase
5 EPHA7 EPH receptor A7
6 LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog
7 PTK7 PTK7 protein tyrosine kinase 7
8 PTK2B PTK2B protein tyrosine kinase 2 beta
9 EGFR epidermal growth factor receptor 

10 BLK B lymphoid tyrosine kinase
11 YES1 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
12 LMTK2 lemur tyrosine kinase 2
13 STYK1 serine/threonine/tyrosine kinase 1
14 LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog
15 FGFR4 fibroblast growth factor receptor 4
16 MUSK muscle, skeletal, receptor tyrosine kinase
17 ROR1 receptor tyrosine kinase-like orphan receptor 1
18 EPHB3 EPH receptor B3
19 EPHB3 EPH receptor B3
20 KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
21 TTK TTK protein kinase
22 FGFR3 fibroblast growth factor receptor 3 
23 EGFR epidermal growth factor receptor 
24 SRC v-src sarcoma
25 TNK2 tyrosine kinase, non-receptor, 2
26 TYRO3 TYRO3 protein tyrosine kinase
27 TEC tec protein tyrosine kinase
28 EPHB1 EPH receptor B1
29 MUSK muscle, skeletal, receptor tyrosine kinase
30 LCK lymphocyte-specific protein tyrosine kinase
31 EPHA1 EPH receptor A1
32 ZAP70 zeta-chain (TCR) associated protein kinase 70kDa
33 RYK RYK receptor-like tyrosine kinase
34 MERTK c-mer proto-oncogene tyrosine kinase
35 JAK3 Janus kinase 3
36 PTK2 PTK2 protein tyrosine kinase 2
37 MATK megakaryocyte-associated tyrosine kinase
38 EPHA5 EPH receptor A5
39 TIE1 tyrosine kinase with immunoglobulin-like and EGF-like domains 1
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Figure 3.1: Regulation of 139 tyrosine kinase probes in TamR cells 

compared to MCF-7 cells continued. 

 

 

 

40 HCK hemopoietic cell kinase
41 CSK c-src tyrosine kinase
42 ERBB3 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)
43 PTK2B PTK2B protein tyrosine kinase 2 beta
44 ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian)
45 JAK2 Janus kinase 2 (a protein tyrosine kinase)
46 RYK RYK receptor-like tyrosine kinase
47 FGFR1 fibroblast growth factor receptor 1
48 AXL AXL receptor tyrosine kinase
49 MERTK c-mer proto-oncogene tyrosine kinase
50 LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog
51 LTK leukocyte tyrosine kinase
52 TNK1 tyrosine kinase, non-receptor, 1
53 JAK3 Janus kinase 3 (a protein tyrosine kinase, leukocyte)
54 LCK lymphocyte-specific protein tyrosine kinase
55 EGFR epidermal growth factor receptor 
56 EPHB4 EPH receptor B4
57 ITK IL2-inducible T-cell kinase
58 YES1 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
59 KDR kinase insert domain receptor
60 EPHB1 EPH receptor B1
61 INSR insulin receptor
62 SYK spleen tyrosine kinase
63 FYN FYN oncogene related to SRC, FGR, YES
64 MET met proto-oncogene (hepatocyte growth factor receptor)
65 FYN FYN oncogene related to SRC, FGR, YES
66 FGFR2 fibroblast growth factor receptor 2
67 NTRK1 neurotrophic tyrosine kinase, receptor, type 1
68 ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
69 ROS1 v-ros UR2 sarcoma virus oncogene homolog 1
70 TNK2 tyrosine kinase, non-receptor, 2
71 CSF1R colony stimulating factor 1 receptor
72 RET ret proto-oncogene 
73 PDGFRB platelet-derived growth factor receptor, beta polypeptide
74 FGFR2 fibroblast growth factor receptor 2
75 MET met proto-oncogene (hepatocyte growth factor receptor)
76 SYK spleen tyrosine kinase
77 DDR1 discoidin domain receptor family, member 1
78 FGFR4 fibroblast growth factor receptor 4
79 DDR discoidin domain receptor family, member 1
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Figure 3.1: Regulation of 139 tyrosine kinase probes in TamR cells 

compared to MCF-7 cells continued. 

 

 

 

80 PTK2 PTK2 protein tyrosine kinase 2
81 FGFR3 fibroblast growth factor receptor 3
82 EPHB2 EPH receptor B2
83 NTRK2 neurotrophic tyrosine kinase, receptor, type 2
84 AXL AXL receptor tyrosine kinase
85 ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
86 RET ret proto-oncogene 
87 MST1R macrophage stimulating 1 receptor
88 DDR1 discoidin domain receptor family, member 1
89 FYN FYN oncogene related to SRC, FGR, YES
90 INSRR insulin receptor-related receptor
91 FGFR1 fibroblast growth factor receptor 1
92 STYK1 serine/threonine/tyrosine kinase 1
93 FES feline sarcoma oncogene
94 DDR1 discoidin domain receptor family, member 1
95 EPHB6 EPH receptor B6
96 EPHB2 EPH receptor B2
97 FER fer (fps/fes related) tyrosine kinase
98 RYK RYK receptor-like tyrosine kinase
99 NTRK3 neurotrophic tyrosine kinase, receptor, type 3

100 BTK Bruton agammaglobulinemia tyrosine kinase
101 EGFR epidermal growth factor receptor 
102 FGFR2 fibroblast growth factor receptor 2
103 ALK anaplastic lymphoma kinase (Ki-1)
104 NTRK3 neurotrophic tyrosine kinase, receptor, type 3
105 FLT1 fms-related tyrosine kinase 1
106 SRC v-src sarcoma
107 NTRK3 neurotrophic tyrosine kinase, receptor, type 3
108 NTRK3 neurotrophic tyrosine kinase, receptor, type 3
109 ABL2 v-abl Abelson murine leukemia viral oncogene homolog 2
110 EPHA3 EPH receptor A3
111 ROR2 receptor tyrosine kinase-like orphan receptor 2
112 EPHB2 EPH receptor B2
113 BMX BMX non-receptor tyrosine kinase
114 EPHB4 EPH receptor B4
115 DDR2 discoidin domain receptor family, member 2
116 ALK anaplastic lymphoma kinase (Ki-1)
117 NTRK3 neurotrophic tyrosine kinase, receptor, type 3
118 ABL1 v-abl Abelson murine leukemia viral oncogene homolog 1
119 LMTK1 lemur tyrosine kinase 1
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Figure 3.1: Regulation of 139 tyrosine kinase probes in TamR cells 

compared to MCF-7 cells continued. 

 

Heat map of all available tyrosine kinases showing up/down regulation of 

genes in TamR cells compared to wild type MCF-7 cells. The 50 up-

regulated genes are summarised in table 3.1. 

  MCF-7     TamR  

 = Up-regulated in TamR vs. MCF-7 

 = Down regulated in TamR vs. MCF-7 

 

 

 

 

 

120 TNK1 tyrosine kinase, non-receptor 1
121 FLT3 fms-related tyrosine kinase 3
122 TYK2 tyrosine kinase 2
123 FLT4 fms-related tyrosine kinase 4
124 EPHA3 EPH receptor A3
125 MET met proto-oncogene (hepatocyte growth factor receptor)
126 FGR Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog
127 FRK fyn-related kinase
128 EPHA2 EPH receptor A2
129 FGFR2 fibroblast growth factor receptor 2
130 JAK2 Janus kinase 2
131 INSR insulin receptor
132 RAVER2 ribonucleoprotein, PTB-binding 2
133 LTK leukocyte tyrosine kinase
134 TXK TXK tyrosine kinase
135 IGF1R insulin-like growth factor 1 receptor
136 IGF1R insulin-like growth factor 1 receptor
137 PTK6 PTK6 protein tyrosine kinase 6
138 FGFR2 fibroblast growth factor receptor 2
139 EPHA4 EPH receptor A4
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Among the 42 genes that were identified as induced in TamR cells compared 

to MCF-7 were EGFR and Src kinase. Their role in tamoxifen resistance has 

been well documented in the literature (see Chapter 1). This result therefore 

adds some weight to the gene screening method used, since one would expect 

to see these genes up-regulated in TamR cells. It is also noteworthy that when 

the 42 induced genes are mapped to the tyrosine kinase family tree (a 

phylogenetic tree that shows how kinases relate to each other) as in figure 3.2, 

a distinct cluster of induced genes is seen around the Src family, with five out 

of the seven family members (Src, Yes-1, Lyn, Lck and Hck) induced in 

TamR cells compared to MCF-7 cells.  
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Figure 3.2: Phylogenetic tree of the 86 tyrosine 
kinase genes represented on the U133A Gene Chip.  

Tyrosine kinases induced in TamR compared 
to MCF-7 as shown in the heat map in figure 
3.1 and summarised in table 3.1. are 
highlighted in with } 
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3.1.2 Further selection of genes induced in tamoxifen resistance 

When considering a gene suitable for siRNA removal in TamR cells, an ideal 

target would be a gene whose expression is not driven by the EGFR, and is 

induced following anti-hormone treatment. The reasons for this ‘ideal’ profile 

are two-fold: A number of agents have been developed in recent years that 

target the Erb family (including EGFR) and are being trialled in the clinic. 

These include the monoclonal antibody to HER2 (trastuzumab), the small-

molecule TK inhibitors (TKIs) of the adenosine triphosphate binding site of 

EGFR (gefitinib), and the dual TKI of both EGFR and HER2 (lapatinib) 

(Cleator et al, 2009). Studies are also in progress investigating the use of these 

agents in conjunction with tamoxifen (Osborne et al, 2011). As EGFR 

inhibitors are currently in use in the clinic, the selection of a non-EGFR driven 

target was an attempt to select a novel therapeutic target that was not currently 

targeted by available therapies. In addition, treatment with gefitinib in lung  

cancer can lead to initial poor response in the clinic implying mechanisms 

exist that lead to de novo resistance to gefitinib (Fukuoka et al, 2002) or the 

acquisition of resistance after an initial period of growth suppression and 

increased reliance on IGF-1R for growth (Jones et al, 2004). These data 

implied that alternative, non-EGFR driven pathways contribute to the growth 

of tamoxifen resistant breast cancer that have yet to be discovered and 

targeting said pathways may provide an improved therapy following 

acquisition of tamoxifen resistance in breast cancer. In order to identify genes 

that could be are involved in the initial response to anti-hormone therapy 
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genes that were induced following early anti-hormone treatment were selected. 

Thus they could be targeted at the point of initial anti-hormone therapy in a 

dual treatment, as opposed to a gene that is only induced following the 

development of resistance to anti- hormone therapies.  

In order to identify a gene displaying the ideal profile, a three-pronged 

strategy of identification was taken as summarised in figure 3.3 
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Figure 3.3: Summary of gene identification strategy 
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By studying the response of the 42 up-regulated genes to treatment with the 

EGFR inhibitor gefitinib for 10 days and also their expression in Tam/TKI-R 

cells (dual tamoxifen/gefitinib resistant cells) it was possible to identify genes 

that were up-regulated following acquisition of tamoxifen resistance, and 

whose growth was independent of the EGFR. 

A project was created in GeneSifter to facilitate the side-by-side comparison 

of the induced TamR cells (control), gefitinib treated TamR cells and the 

Tam/TKI-R cells (figure 3.4). Those genes whose growth is not EGFR driven 

should be induced following gefitinib treatment. If these genes continue to be 

induced in the Tam/TKI-R cells, this shows that the genes continue to be 

involved in long term gefitinib resistance and thus are not driven by EGFR. 6 

genes (TYRO3, EPHB3, LCK, RYK (2 probes), PTK2, LYN) were induced in 

both gefitinib treated TamR cells and also the Tam/TKI-R cells. This result 

indicates that their initial growth is not driven by EGFR and they are not 

involved in gefitinib resistance. 7 genes (TYRO3, LYN (2 probes), TTK, 

FGFR3, EGFR, ERBB3, JAK2 were induced in gefitinib treated cells but 

showed no change or were down regulated in the Tam/TKI-R cells. This 

suggests that their growth is not EGFR driven. 5 genes showed no change with 

gefitinib treatment, of which 3 were up-regulated (PTK2B, ERBB4, AXL), 1 

was unchanged (TNK2) and 1 was down regulated (PDGFRA) in the 

Tam/TKI-R cells. 6 genes were down regulated in gefitinib treated cells and 

subsequently up-regulated in the TamR/TKI-R cells (TEK, PTK7, PTK2B, 

FGFR4, EPHB3 (2 probes), MATK) suggesting they are involved in long term 

resistance to gefitinib. 1 gene, KIT, was down regulated in gefitinib treated 
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cells and showed no change in the Tam/TKI-R cells, suggesting that it is 

driven by EGFR. All other probes were down regulated in both the gefitinib 

treated cells and also the TamR/TKI-R cells. This indicates that their growth is 

driven by EGFR.  

The response of the TamR induced genes to 10 days of anti-hormone 

treatment was studied in order to ascertain if the gene induction begins early 

during response or whether it only occurs at the time of resistance. The 42 

induced genes were studied by looking at affymetrix results for oestradiol, 

tamoxifen and fulvestrant treatment and comparing them to the 10 day MCF-7 

cells (-E2). The heat maps of the genes induced in TamR cells with early anti-

hormone (tamoxifen and fulvestrant) and E2 treatments, are shown in figure 

3.5 with a summary of the heat map data in table 3.2.  

 

Using this identification strategy, only one gene, namely Lyn was identified as 

fulfilling the ‘ideal’ gene profile. It was felt that limiting gene selection to this 

extent was at this early stage was not the best strategy, and so a short-list of 5 

genes was carried forward: EphB3, PTK2B, TYRO3, PTK7 and LYN. These 

all fulfilled the following criteria: 

 A tyrosine kinase 

 Increased in tamoxifen resistant breast cancer cells compared to 

tamoxifen responsive breast cancer cells 

 Not induced by the EGFR 
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Figure 3.4: Response of genes induced in TamR compared to MCF-7 to 

TKI treatment and development TKI resistance.   

        TAMR    TKI   TTR 

1.   RET 

2.   TEK  

3.   PDGFRA 

4.   TYRO3 

5.   EPHA7 

6.   LYN 

7.   PTK7 

8.   PTK2B 

9.   EGFR 

10.  BLK 

11.  YES-1 

12.  LMTK2 

13.  STYK1 

14.  LYN 

15.  FGFR4 

16.  MUSK 

17.  ROR1 

18.  EPHB3 

19.  EPHB3 

20.  KIT 

21.  TTK 

22.  FGFR3 

23.  EGFR 

24.  SRC 

25.  TNK2 

26.  TYRO3 
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Figure 3.4: Response of genes induced in TamR compared to MCF-7 to 

TKI treatment and development TKI resistance continued. 

27.  TEC 

28.  EPHB3 

29.  MUSK 

30.  LCK 

31.  EPHA1 

32.  ZAP70 

33.  RYK 

34.  MERTK 

35.  JAK3 

36.  PTK2 

37.  MATK 

38.  EPHA5 

39.  TIE1 

40.  HCK 

41.  CSK 

42.  ERBB3 

43.  PTK2B 

44.  ERBB4 

45.  JAK2 

46.  RYK 

47.  FGFR1 

48.  AXL 

49.  MERTK 

50.  LYN 

Heat maps of the gefitinib treated and Tam/TKI-R with TamR as the control 

where TKI = gefitinib treated cells and TTR= Tam/TKI-R. Legend:  

-2                           0                          2 
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Table 3.2 Response of genes induced in TamR cells to anti-hormone or 

oestradiaol treatment. 

 TREATMENTS   

 OESTRADIOL TAMOXIFEN FULVESTRANT 
RET U U U 

YES1 U U U 

TTK U U U 

RYK U U U 

PTK2 U U U 

HCK U U U 

JAK2 U U U 

MATK U U D 

RYK U U - 

TEK U D U 

BLK U D U 

SRC U D U 

PDGFRA U D D 

MUSK U D D 

FGFR4 U D - 

PTK2B U - - 

LCK U - - 

AXL U - - 

LYN D U U 

LYN D U D 

LYN D U - 

EGFR D D U 

EPHB1 D D U 

EPHA5 D D U 

PTK7 D D D 

EGFR D D D 

ROR1 D D D 
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Table 3.2 Response of genes induced in TamR cells to anti hormone or 

oestradiol treatment continued. 

 TREATMENTS   
 OESTRADIOL TAMOXIFEN FULVESTRANT 

KIT D D D 

FGFR3 D D D 

TNK2 D D D 

TYRO3 D D D 

EPHA1 D D D 

JAK3 D D D 

ERBB3 D D D 

ERBB4 D D D 

EPHB3 D D - 

ZAP70 D - D 

STYK1  D - - 

EPHA7 - U U 

LMTK2 - U U 

MUSK - D U 

TYRO3 - D D 

TEC - D D 

TIE1 - D D 

PTK2B - D D 

FGFR1 - D D 

EPHB3 - D - 

MERTK - D - 

CSK - - - 

MERTK - - - 

 

Summary of response of 42 genes induced in TamR cells to 10 days oestradiol 

or anti-hormone treatment (tamoxifen or fulvestrant) as seen in the heat maps 

of figure 3.1.3.  

Legend: U=up-regulated D=down-regulated, - = no change  

 



Chapter 3  Results 

90 
 

Figure 3.5 Response of TamR induced genes to early anti-hormone or 

oestradiol treatment. 

                    MCF   E2   TAM FAS 
1.  RET 
2.  TEK 
3.  PDGFRA 
4.  TYRO3 
5.  EPHA7 
6.  LYN 
7.  PTK7 
8.  PTK2B 
9.  EGFR 
10.  BLK 
11.  YES1 
12.  LMTK2 
13.  STYK1 
14.  LYN 
15.  FGFR4 
16.  MUSK 
17.  ROR1 
18.  EPHB3 
19.  EPHB3 
20.  KIT 
21.  TTK 
22.  FGFR3 
23.  EGFR 
24.  SRC 
25.  TNK2 
26.  TYRO3 
27.  TEC 
28.  EPHB1 
29.  MUSK 
30.  LCK 
31.  EPHA1 
32. ZAP70 
33. RYK 
34. MERTK 
35. JAK3 
36. PTK2 
37. MATK 
38.  EPHA5 
39.  TIE1 
40.  HCK 
41.  CSK 
42.  ERBB3 
43.  PTK2B 
44.  ERBB4 
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Figure 3.5 Response of TamR induced genes to early anti-hormone or 

oestradiol treatment continued. 

45.  JAK2 
46.  RYK 
47.  FGFR1 
48.  AXL 
49.  MERTK 
50.  LYN 

 
Heat maps showing response of TamR induced genes to treatment with either 

oestradiol, tamoxifen or fulvestrant. Ideally, genes would be induced 

following anti-hormone treatment and down regulated following oestradiol 

Legend: 
-2                     0                       2 
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3.2 Selection of gene target 

3.2.1 PCR verification of genes identified by analysis of affymetrix data. 

Following identification of the five potential gene targets EphB3, PTK2B, 

PTK7, LYN and TYRO3 by analysis of affymetrix data, primer pairs were 

designed to target the short-listed genes and PCR was used to further 

investigate the genes in TamR cells compared to MCF-7 cells. Fresh mRNA 

was obtained as a result of cell culture and RNA extraction as detailed in 

chapter 2. Triplicates of MCF-7 and TamR mRNA were obtained from three 

distinct cell preparations and each extraction was performed using cells of a 

different passage number. The aim was to confirm that the results obtained 

during affymetrix analysis were reproducible using new preparations of 

mRNA before proceeding with further analysis of each of the five genes. 

3.2.1.1: EphB3 

EphB3 mRNA (Figure 3.6A), was significantly increased in TamR cells 

compared to MCF-7 cells. Levels of EphB3 in TamR cells showed a greater 

than two-fold increase compared to those seen in MCF-7 when the of the 

mean values derived from the triplicate preparations was measured. This 

densitometric representation is shown in figure 3.6B.    

3.2.1.2: PTK2B 

Despite not showing as great a difference as EphB3, PTK2B mRNA was also 

significantly increased in TamR cells compared to MCF-7 cells (Figure 3.7A). 

The triplicate densitometric values were normalised to β-actin and the mean 

for each cell line is displayed in figure 3.7B. This shows a 50% increase in 

PTK2B mRNA in TamR compared to MCF-7. 
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3.2.1.3: PTK7 

The primer designed to PTK7 mRNA amplified 2 variants of PTK7 hence the 

double band seen in figure 3.8A. It is noteworthy that amplification of the 

larger band is only seen in MCF-7 and not TamR. PTK7 was significantly 

increased by 100% in TamR cells compared to MCF-7 cells as represented by 

figure 3.8B showing the mean levels of PTK7 mRNA in both cell lines.  

 

3.2.1.4: Lyn 

Lyn (Figure 3.9) was confirmed to be significantly increased in TamR cells 

compared to MCF-7 cells following PCR analysis. Whilst the 35% increase in 

TamR cells was not as high as the previous three genes, it was still statistically 

significant and so Lyn kinase remained a viable gene target for further 

investigation. Interestingly, Lyn kinase displayed the greatest increase in 

TamR compared to MCF-7 cells of all five genes in this section following 

analysis of the affymetrix data (section 3.1), showing that the PCR analysis in 

this section does not necessarily exactly echo the results seen with the 

affymetrix.  
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Figure 3.6 EphB3 is increased in TamR cells compared to MCF-7 cells 
 
A         MCF-7                    TamR 
   

  
 
 
B 
 
                                                         p=0.002 

 
 
A: EphB3 was amplified in triplicate preparations of MCF-7 and TamR 

mRNA by PCR. β-actin was included as a reference gene allowing 

densitometric analysis  

B: Levels of MCF-7 cells compared to TamR cells as determined by 

densitometry. Blots were normalised to β-actin levels. Statistical significance 

was determined using Student’s t-test (n=3). 
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Figure 3.7 PTK2B is increased in TamR cells compared to MCF-7 cells 

A 

 

 

 
 

B 

                                                            p=0.003 

 
 

 

A: PTK2B was amplified in triplicate preparations of MCF-7 and TamR 

mRNA by PCR. β-actin was included as a reference gene allowing 

densitometric analysis  

B: Levels of MCF-7 cells compared to TamR cells as determined by 

densitometry. Values were normalised to β-actin levels. Statistical significance 

was determined using Student’s t-test (n=3). 
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Figure 3.8 PTK7 is increased in TamR cells compared to MCF-7 cells 

A 

 
 
 

 
 
 
B                                                          p=0.0023 
 

 
 
A: PTK7 was amplified in triplicate preparations of MCF-7 and TamR mRNA 

by PCR. β-actin was included as a reference gene allowing densitometric 

analysis. 

B: Levels of MCF-7 cells compared to TamR cells as determined by 

densitometry. Densitometric values were normalised to β-actin levels. 

Statistical significance was determined using Student’s t-test (n=3). 
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Figure 3.9 Lyn is increased in TamR cells compared to MCF-7 cells 

 

A 

 

 

 
 

 

 

B                                                        

                                                           p=0.004 

 
 

A: Lyn was amplified in triplicate preparations of MCF-7 and TamR mRNA 

by PCR. β-actin was included as a reference gene allowing densitometric 

analysis. 

B: Levels of MCF-7 cells compared to TamR cells as determined by 

densitometry. Densitometric values were normalised to account for β-actin 

levels. Statistical significance was determined using Student’s t-test (n=3). 
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3.2.1.5: TYRO3 

The final gene, TYRO3 did not show a significant increase (figure 3.10). In 

fact, TYRO3 levels in TamR cells were repeatedly lower or equal to those in 

MCF-7 cells though this difference was not statistically significant. This was 

despite extensive PCR optimisation using multiple primer pair and PCR 

conditions. Figure 3.10 is representative of results obtained with all primer 

pairs/ conditions.  Therefore TYRO3 was not carried forward as a viable target 

to the next stage of analysis. This result demonstrates the importance of 

confirming the data obtained by affymetrix before proceeding with the gene 

analysis.  

 

Summary of section 

This step of PCR verification of the five selected genes led to the discounting 

of one of the genes: TYRO3 since its increase in TamR cells compared to 

MCF-7 cells could not be verified by PCR despite a promising affymetrix 

profile. The other four genes: EphB3, PTK2B, PTK7 and Lyn remain as viable 

targets and so will be investigated further. 
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Figure 3.10 TYRO3 levels do not change significantly in TamR cells 

compared to MCF-7 cells 

A 

 

 

 

 

B 

 

 
 

A: TYRO3 was amplified in triplicate preparations of MCF-7 and TamR 

mRNA by PCR. β-actin was included as a reference gene allowing 

densitometric analysis as shown in  

B: Levels of MCF-7 cells compared to TamR cells as determined by 

densitometry. Densitometric values were normalised to account for β-actin 

levels. Statistical significance was tested using Student’s t-test (n=3). 
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3.3 Review of available literature of four remaining gene targets 

With four genes remaining as possible targets for knockdown in TamR cells: 

(EphB3, PTK2B, PTK7 and Lyn), a review of available literature was 

conducted to determine whether there was any prior knowledge of the role of 

the genes, with particular emphasis on established roles in cancer, and also 

roles in metastatic disease. The aim in conducting this review was to assist in 

the selection of one of the remaining four genes for further analysis of its role 

in tamoxifen resistant breast cancer in conjunction with the affymetrix data 

obtained in chapter 3.1.  

 

3.3.1 EphB3 

Eph receptors (Erythropoietin-producing human hepatocellular carcinoma) 

represent the largest family of PTKs with 16 members (Heroult et al, 2006). 

Eph receptors and their corresponding ephrin (Eph family receptor interacting 

proteins) are classified into A and B subfamilies (Gale et al, 1996). Expression 

of this family has been associated with the development of many types of 

human cancer, including breast, lung and prostate cancers, melanoma and 

leukaemia.  

EphB3 binds to both ephrin B1 and ephrin B2 and is widely expressed 

in tissues. A particular role for EphB3 has been described in the development 

of the vascular system, with EphB3 knockout mice displaying deficiencies in 

vascular development (Wang et al, 1998). A number of studies have identified 

increased EphB3 expression in cancer, including breast cancer. 
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Hafner et al studied the differential expression of Eph receptors in four 

human cancers: lung, liver, colon and kidney compared to benign tissue. 

EphB3 was increased 1.8 fold in lung cancer, 2.9 fold in liver cancer and 1.5  

fold in colon cancer. It was down-regulated 3.4 fold in kidney cancer (Hafner 

et al, 2004).  

The role of EphB3 in invasive breast cancer was investigated using 

MCF-10A cells to represent normal breast tissue, MCF-7 cells to represent 

non invasive breast cancer and MDA-MB-231 cells to represent invasive 

cancer. EphB3 was found to be down-regulated in both MCF-7 and MDA-

MB-231 cells compared to MCF-10A cells (Fox and Kandpal, 2004). This 

suggested that down-regulation of EphB3 contributes to the invasiveness of 

breast cancer cells.  

EphB3 was over-expressed in eight colon carcinoma cell lines 

compared to HUVEC (human umbilical vein endothelial cells). It was also 

present in colon cancer patient specimens suggesting that EphB3 plays a role 

in the progression of colon carcinoma (Liu et al, 2002). Conversely, other 

studies have indicated that EphB3 is down-regulated in colon cancer. Batlle et 

al showed that EphB3 is silenced in colorectal cancer suggesting a tumour 

suppressor role (Batlle et al, 2005). EphB3 over-expression in HT-29 human 

colon cancer cells led to growth inhibition in vitro. The cells also displayed 

changes consistent with MET (mesenchymal-to-epithelial transition) (Chiu et 

al, 2009). 
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3.3.2 PTK7 

PTK7 is also known as CCK4 (colon cancer kinase 4) and is a pseudokinase. 

Pseudokinases form approximately 10% of the tyrosine kinase family and 

were originally predicted to be catalytically inactive since they were unable to 

phosphorylate ligands, however research suggests that many pseudokinases 

play important roles in cellular processes (Boudeau et al, 2006). Four splice 

variants  of PTK7 have been identified (Jung et al, 2002). PTK7 is thought to 

be involved in the signalling mechanisms during developmental stages since 

mouse embryos expressing a truncated form of PTK7 die perinatally (Lu et al, 

2004).  

PTK7 expression has been shown to be increased in mouse foetal 

colon but not in human adult colon tissues suggesting a role in colon 

development but subsequent down-regulation in normal adult colon (Kobus 

and Fleming, 2005). It was first identified in colon cancer cell lines in 1995 

(Mossie et al, 1995). Serial analysis of gene expression (SAGE) technology 

was used to identify expression of mRNA corresponding to genes in colorectal 

cancer. Two gene libraries of normal colonic tissues, two of primary colorectal 

cancers and one of metastatic colorectal cancer were compared. PTK7 was 

increased in the metastatic colorectal cancer tissues compared to both the 

normal colonic tissue and also the primary colorectal cancer (Saha, S et al, 

2001). Since the primary cause of death from colorectal cancer is metastasis to 

the liver, this suggested that PTK7 is involved in cell migration and may also 

be a marker for worsened prognosis in colon cancer. 
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 In melanoma cells lines, PTK7 expression progressively decreased or 

was lost in advanced melanomas. Of the melanoma cell lines tested, PTK7 

was undetectable in 50% of lines and the cell lines that did express PTK7 were  

those from early melanoma lines (Easty et al, 1997). This suggests that loss of 

PTK7 expression might lead to tumour progression in melanoma. 

 

3.3.3 PTK2B 

PTK2B is also known as PYK2 (proline rich tyrosine kinase 2) and FAK2 

(focal adhesion kinase 2). Along with FAK (focal adhesion kinase), PTK2B 

belongs to a unique subfamily of tyrosine kinases. While FAK is expressed in 

most tissues, PTK2B is highly expressed in the nervous system and 

hematopoietic cells and is therefore tissue specific. FAK and PTK2B share 

high sequence homology. PTK2B has been shown to be involved in cell 

adhesion (Litvac et al, 2000) and cytoskeletal reorganisation at focal adhesion 

sites (Avraham et al, 2000).  

PTK2B expression in prostate cancer was inversely correlated with the 

degree of malignancy exhibited meaning it progressively disappeared in 

increasingly high grade adenocarcinoma until disappearing completely in 

anaplastic undifferentiated cancer (Stanzione et al, 2001). This indicated that 

PTK2B acts as an onco-suppressor gene in prostate, therefore loss of PTK2B 

activity correlates with a more aggressive phenotype in prostate cancer. Loss 

of PTK2B was also been linked to increased motility in prostate cells. It was 

proposed that PTK2B recruits Src which in turn activates ERK1/2 leading to 

increased motility (De Amicis et al, 2006).  
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 In the T47D human breast cancer cell line, PTK2B phosphorylation by 

heregulin stimulation lead to the formation of a complex consisting of PTK2B, 

c-Abl, paxillin, p130cas and p190 RhoGAP. These proteins are associated 

with functions such as cytoskeleton reorganisation and cell migration. Over-

expression of wild-type PTK2B in T47D cells led to an increase of  

approximately 65% in cell migration. In addition, over-expression of two 

different catalytically inactive mutants of PTK2B inhibited the T47D cell 

migration suggesting that formation of this complex in breast cancer cell lines 

contributes to cell migration (Zrihan-Licht et al, 2004).  

 

3.3.4 Lyn  

Lyn is a member of the Src family tyrosine kinases. It has been shown to have 

a broad range of functions ranging from cytoskeletal reorganisation to the 

induction of apoptosis. It is predominantly expressed in haematopoietic cells 

(Yamanashi et al, 1987) and is most often associated with B- and T-cell 

immune responses The Lyn kinase domain is activated by phosphorylation of 

Tyr396 and inhibited by phosphorylation of Tyr508.  

Most of the current available research centres on Lyn’s role in 

leukaemia. In chronic myeloid leukaemia (CML), the Bcr-Abl1 gene is 

expressed. Lyn kinase forms signalling complexes with Bcr-Abl1 and is 

subsequently activated. Historically, Imatinib, the Abl tyrosine kinase 

inhibitor has been used to treat CML, however resistance to Imatinib is a 

serious problem in the clinical setting. Using siRNA to achieve a 90% 

knockdown of Lyn at the mRNA level in a myeloid cell line lead to apoptosis 
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of primary CML blast cells while leaving normal hematopoietic cells 

unaffected (Ptasznik et al, 2004). This suggested that targeting Lyn in CML 

may be advantageous, particularly in Imatinib resistant leukaemia. A dual Bcr-

Abl/Lyn tyrosine kinase inhibitor was designed called NS-187. This was 

shown to be 10 times more effective than Imatinib at inhibiting tumours 

positive for Bcr-Abl1 (Kimura et al, 2008). These results suggest that 

targeting Lyn as a first line therapy may be advantageous in treating CML.  

CD44 is over-expressed in colon cancer compared to normal colon 

tissues and has been associated with aggressive tumour behaviour. In the colon 

cancer cell line LIM 1863, CD44 was shown to trigger a signalling pathway 

that lead to resistance to chemotherapy. Activation of this signalling pathway 

involved the recruitment of Lyn by CD44 and subsequent activation of 

PI3K/Akt which has been well documented as a mediator of cell survival 

(Bates et al, 2001). This interaction between CD44 and Lyn and subsequent 

activation of Akt has also been documented with regard to cell 

motility/migration in another cell line called SW620 where a model has been 

proposed where the association of CD44 and Lyn leads to the up-regulation of 

cofilin and thus cell migration (Subramaniam et al, 2007).  

In pancreatic acinar cells (secretory cells), Lyn has been shown to play 

a central role in signalling by many gastrointestinal hormones and growth 

factors that alter cell functions (Pace et al, 2006). In particular, a role for Lyn 

in the activation of MAP kinase by the digestive hormone CCK 

(cholecystokinin) has been suggested. In PANC-1 pancreatic cells, cell growth 

and invasion was inhibited by the negative regulation of Lyn kinase by CHK 
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(Csk homologous kinase) phosphorylation of Tyr507 (the inhibitory tyrosine) 

of Lyn (Fu et al, 2006). Thus inhibition of Lyn kinase suppressed pancreatic 

cell invasion.  

Lyn is over-expressed in 95% of human prostate cancers compared to 

normal prostate epithelial cells. Lyn removal by siRNA in prostate cancer cell 

lines in vitro led to a dramatic loss of cell proliferation (Park et al, 2008) 

suggesting a role for Lyn in the growth of prostate cancer. Inhibition of Lyn 

by a peptide inhibitor in hormone refractory prostate cancer (HRPC) cell lines  

led to inhibition of cell proliferation in vitro. In vivo, treatment of nude mice 

bearing explants of HRPC tumours with the Lyn inhibitor led to tumour 

regression and apoptosis (Goldenburg-Furmanov et al, 2004). This result was 

particularly significant since early prostate cancer can respond to hormone 

therapies, however most metastatic prostate cancers become resistant 

(hormone refractory) (Gopalkrishnan et al, 2001). This HRPC eventually 

results in death since there is no effective treatment. 

 

Summary of chapter 3 

Following appraisal of the roles of the four remaining genes in human disease 

and particularly cancer, it was clear that any of them could have been 

legitimately carried forward as a siRNA target in TamR cells. Each has been 

shown to play key roles in the development and progression of human cancer. 

Lyn kinase was eventually selected as a likely candidate for further 

investigation due to a number of factors. Firstly, when the genes that were 

induced in TamR cells were mapped to a phylogenetic tree of the tyrosine 
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kinase family tree, a distinct cluster of induced genes was seen around the Src 

family, with five out of the seven family members (Src, Yes-1, Lyn, Lck and 

Hck) induced in TamR cells compared to MCF-7 cells. TamR cells have been 

shown to have significantly greater levels of Src activity (as measured by 

phosphorylation at Y419) compared to MCF-7 cells (Morgan et al, 2006) that 

was not due to increases in Src protein or mRNA. Furthermore, treatment of 

TamR cells with the Src inhibitor AZD0530 led to decreased invasion 

suggesting that Src plays a role in the invasive behaviour seen in TamR cells 

(Morgan et al, 2006). Since Src has been shown to play such a significant role 

in the tamoxifen resistant phenotype, whether another family member, namely 

Lyn, was also associated with the tamoxifen resistant phenotype was of 

interest. 

Also of particular relevance with regards to Lyn kinase was its over-

expression in 95% of human prostate cancers compared to normal prostate 

epithelial cells. Breast and prostate cancers share many biological similarities 

such as hormone dependent growth (Risbridger et al, 2010) and as such both 

can be treated successfully with anti-hormone therapies but unfortunately both 

prostate and breast cancer patients treated with these therapies will eventually 

develop resistance resulting in the recurrence of tumour growth. Numerous 

studies have shown a correlation between Lyn expression and tumour cell 

proliferation in prostate cancer. SiRNA removal of Lyn in prostate cancer cell 

lines in vitro led to a dramatic loss of cell proliferation (Park et al, 2008) and 

also inhibition of Lyn by a peptide inhibitor in hormone refractory prostate 

cancer cell lines led to inhibition of cell proliferation in vitro (Goldenburg-
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Furmanov et al, 2004). In vivo, treatment of nude mice bearing explants of 

hormone refractory prostate cancer tumours with the Lyn inhibitor led to 

tumour regression and apoptosis (Goldenburg-Furmanov et al, 2004). This 

result was particularly significant since early prostate cancer can respond to 

hormone therapies, however most metastatic prostate cancers become resistant 

(hormone refractory) (Gopalkrishnan et al, 2001) as is also seen in breast 

cancer.  This hormone refractory prostate cancer eventually results in death 

since there is no effective treatment. Assessing the similarities between both 

breast and prostate cancer it is therefore conceivable that Lyn may also play a 

significant role in hormone resistant breast cancer. 
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4.1 Lyn kinase protein is increased in TamR compared to MCF-7 cells.    

Analysis of microarray data has provided an accurate and fast way to identify genes 

of interest, in our case genes that are up-regulated in tamoxifen resistant cells 

compared to tamoxifen responsive cells. However all of the data gathered up to this 

point has been at the RNA level. In order to be able to study and elucidate the effects 

these interactions may have within TamR cells, it is essential that these differences 

between TamR and MCF-7 cells are also seen at the protein level. Lyn kinase exists 

in two isoforms: p56 and p53 (sometimes referred to as lynA and lynB respectively). 

They were first identified in 1991 by Yi in mouse haematopoietic cells (Yi et al, 

1991) and are due to alternative splicing of a 21 amino acid region located in the 

unique region of Lyn. Figure 4.1 shows the 63 base pair difference between the p56 

and p53 isoforms. It also shows the location of the two Lyn phosphorylation sites: 

Phosphorylation at Y396 activates Lyn kinase activity whereas phosphorylation at 

Y507 represses Lyn kinase activity. 
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Figure 4.1: Schematic of Lyn kinase domains showing differences between p56 

and p53 and also the location of Lyn phosphorylation sites. 
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4.1.1: Total Lyn kinase protein is increased in TamR cells 

Protein was lysed from both TamR cells and MCF-7 cells and probed for un-

phosphorylated (total) Lyn protein using SDS-PAGE and Western blotting in figure 

4.2.A Un-phosphorylated Lyn was significantly increased two-fold in TamR 

compared to MCF-7 cells. The double band obtained by the total Lyn antibody was 

due to recognition of both the p53 and p56 isoforms of Lyn.  

 

4.1.2: Activated Lyn kinase protein is increased in TamR cells 

Protein was lysed from both TamR cells and MCF-7 cells and probed for activated 

Lyn (Y396) using SDS-PAGE and Western blotting. Y396 is located in the kinase 

domain of Lyn, SH1. Lyn (Y396) was significantly increased in TamR cells 

compared to MCF-7. Again, both isoforms of Lyn were recognised (figure 4.2B).  

  A significant increase in both un-phosphorylated Lyn and activated Lyn 

(Y396) in TamR cells echoes the data previously obtained by the analysis of 

microarray data and also that seen following mRNA extraction and subsequent PCR. 

Lyn therefore remains a viable target for further study in tamoxifen resistance.  
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Figure 4.2. Comparison of total Lyn and activated Lyn (Y396) levels in TamR 

and MCF-7 cells.  

A 

 

B 

 
 

A: Duplicate MCF-7 and TamR protein lysates run on SDS-PAGE and probed 

for total-Lyn and actin to show equal loading. 

 

B: MCF-7 and TamR cells lysed in duplicate run on SDS-PAGE and probed for 

phosphorylated Lyn (Y396) and actin to show equal loading. 
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4.2: Optimisation of a protocol for siRNA knockdown of Lyn. 

Following the identification of Lyn as a possible gene of interest in tamoxifen 

resistant breast cancer cells, further research into its role in TamR cells was 

required.  In order to begin to explore the role that Lyn was playing in TamR 

cells, a strategy to remove Lyn from TamR cells using siRNA and study the 

effects was devised. In order to achieve the highest siRNA knockdown of Lyn 

possible, the manufacturer’s protocol for transfection of cells was optimised 

specifically for Lyn removal. A number of different conditions were optimised 

to specifically target Lyn including choice of transfection lipid and harvest 

time for RNA. 

 

4.2.1 Comparison of lipids for siRNA transfection. 

In order to deliver siRNA into a cell, a cationic (positively charged) 

transfection lipid is required. The cationic lipid consists of a positively 

charged head group and two hydrocarbon chains (Liu et al, 2003). It is this 

positive charge that allows the formation of a siRNA/lipid complex. The lipid 

facilitates the uptake of siRNA into the cell in two ways. The positive charge 

of the complex interacts with the phosphate backbone of the nucleic acid, 

leading to DNA condensation and also allows the siRNA to interact with the 

negatively charged cell membrane and enter the cell by endocytosis (Rao, 

2010).  

A number of problems exist with using transfection lipid delivery of 

the siRNA to the cell, most notably cytotoxicity. The transfection lipids 
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selected were however shown by the manufacturers to be compatible with the 

parental MCF-7 cells from which the TamR cells are derived.  

Four DharmaFECT transfection reagents manufactured by Dharmacon were 

investigated.  The remaining two reagents were manufactured by Invitrogen. 

These were Lipofectamine 2000 transfection reagent which had been used to 

successfully transfect TamR cells at the Tenovus Centre for Cancer Research 

for a number of years, however had not been formulated for use with siRNA 

and Lipofectamine RNAiMAX, which had been designed specifically for use 

with siRNA and claimed to lead to more successful gene knockdown with less 

off target effects than Lipofectamine 2000.  

In order to compare the Lyn kinase knockdown achieved using the 

different transfection reagents, TamR cells were transfected with siRNA 

targeting Lyn (siLyn) for 48 hours using each transfection reagent, in 

triplicate, with cells left untreated as a control. The mRNA was then extracted, 

quantified, reverse transcribed and a PCR for Lyn performed.  

Figure 4.2 shows the knockdown of Lyn by siRNA using the six 

different transfection reagents discussed above. The levels of Lyn knockdown 

were expressed as % of Lyn mRNA compared to the untreated control cells. 

A significant reduction of between 68% (Lipofectamine 2000) and 91% 

(Lipofectamine RNAiMAX) Lyn mRNA was seen compared to the untreated 

control. The four DharmaFECT reagents led to a reduction of between 73% 

and 89% of Lyn kinase mRNA with DharmaFECT 2 giving the greatest 

reduction. All six transfection reagents produced a statistically significant 

reduction of Lyn kinase, with Lipofectamine RNAiMAX and DharmaFECT 2 
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treatment both resulting in a knockdown that was significantly lower than the 

established transfection lipid Lipofectamine 2000. Since cytotoxicity is a 

significant problem when using lipids to transfect oligonucleotides into cells 

and it was noted prior to mRNA extraction after 48 hours that cell apoptosis 

was higher in cells treated with DharmaFECT 2 compared to Lipofectamine 

RNAiMAX treated cells. This resulted in much lower yields of mRNA, 

therefore the Lipofectamine RNAiMAX reagent was selected and used for all 

subsequent transfections. 
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Figure 4.2 Comparison of Lyn siRNA knockdown achieved using 

different transfection reagents 

 

 

 

 

 

 

 
 

 

Lyn kinase mRNA expressed as % of Lyn mRNA following 48hr Lyn 

siRNA treatment using various transfection lipids. Where 

control=untreated TamR cells, D1-D4=Dharmafect lipid 1-Dharmafect 

lipid 4, L2000=Lipofectamine 2000 and RNAiMAX= Lipofectamine 

RNAiMAX. Statistical significance was determined using a one-way 

Anova test (n=3).   
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4.2.2 Does siRNA uptake affect gene knockdown in TamR cells? 

To investigate whether the differences between lipids seen in Figure 4.1 were 

due to differences in uptake of siRNA, TamR cells were treated for six hours 

using each different transfection lipid and siGlo Lamin A/C siRNA, an siRNA 

targeting the filament protein lamin, a component of cell nuclei. This was 

tagged with a red fluorescent label to allow visualisation of lamin siRNA 

uptake into the cell using a fluorescent microscope. Transfections were 

performed at 37oC in dark conditions in order to maintain fluorescence. Cells 

were fixed using 3.7% formaldehyde (v/v) in PBS and the nuclei stained with 

DAPI as described in chapter 2. Data were expressed as % uptake calculated 

as number of cells positive for siGlo uptake/ total number of DAPI stained 

cells. Figure 4.3 demonstrates that the four DharmaFECT transfection lipids 

showed significantly increased uptake of siRNA compared to Invitrogen’s 

Lipofectamine RNAiMAX and Lipofectamine 2000. This was interesting 

because in section 4.1 it was demonstrated that RNAiMAX and DharmaFECT 

2 yielded the highest levels of Lyn knockdown in TamR cells. This result 

suggests that the uptake of siGlo (siRNA) into TamR cells does not affect the 

ability for Lyn mRNA knockdown. 

Since 6 hour uptake of siRNA into cells does not affect subsequent 

mRNA knockdown, the decision to use Invitrogen’s Lipofectamine 

RNAiMAX in subsequent experiments was based on figure 4.3 where 

RNAiMAX transfection led to the greatest removal of Lyn mRNA whilst 

causing the least amount of cell apoptosis.  
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Figure 4.3 Uptake of siGlo into TamR cells following treatment with 

transfection reagents 

 

 
 

 

SiRNA uptake following 6hr siGlo fluorescent siRNA treatment using 

different transfection lipids.  TamR cells were treated with siGlo: a red 

tagged siRNA targeting Lamin for 6 hours at 37oC in dark conditions 

Cells were fixed using 3.7% (v/v) formaldehyde in PBS, DAPI stained and 

visualised under a fluorescent microscope. Data was expressed as % 

uptake calculated as number of cells positive for siGlo/ total DAPI stained 

cells Where D1-D4=Dharmafect lipid 1- 4, L2000=Lipofectamine 2000 

and RNAiMAX= Lipofectamine RNAiMAX.  
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4.2.3 Optimal harvest time for siRNA transfection 

Once RNAiMAX had been identified as the most effective transfection 

reagent for knockdown of Lyn kinase, the optimal time to harvest the cells to 

maximise gene knockdown was investigated. A time-course between 24 and 

120 hours was investigated, then mRNA was extracted and Lyn mRNA levels 

were measured by PCR. Future experiments may require a varying 

transfection period in order to investigate the role of Lyn in TamR cells. This 

provided a further reason for investigating siRNA transfection and subsequent 

knockdown over a period time. 

Figure 4.4 demonstrates that a harvest time of between 48 and 72 hours 

produces the highest gene knockdown. It is encouraging that a knockdown of 

Lyn kinase mRNA is seen at all time-points compared to the controls. At 24 

hours there is a 50% reduction in Lyn mRNA, increasing to 

85% and 90% at 72 hours and 48 hours respectively. A 75% reduction is 

apparent at 96 hours post-transfection and after 120 hours, a 60% reduction in 

Lyn mRNA is still achieved. These results mean that siRNA could confidently 

be used to study endpoints of up to 5 days.  
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Figure 4.4 Lyn siRNA treatment time course  

 

 

 
 

                 TC            SiC         Lamin        siLyn 

 

 

Cells were treated with siRNA targeting Lyn kinase for between 24-

120hrs and then Lyn mRNA levels were assessed by PCR. TC=lipid 

control, SiC=non-targeting siRNA control, Lamin=siRNA targeting 

housekeeping gene lamin and siLyn=siRNA targeting Lyn kinase.  
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4.2.4 Removal of Lyn protein using siRNA. 

Following optimisation of Lyn mRNA knockdown using siRNA, it was 

investigated whether a similar reduction in Lyn protein was achievable using 

RNAiMAX lipid in TamR cells. Cells were transfected with a complex of 

RNAiMAX and siRNA targeting Lyn kinase for 72 hours. The cells were then 

lysed for protein and Lyn kinase protein levels were measured using SDS-

PAGE and Western blotting.  

 Figure 4.5 shows a significant 70% reduction in un-phosphorylated 

(total) Lyn protein following 72 hour treatment with siRNA compared to the 

controls. This result demonstrated that siRNA can be used to successfully 

knockdown Lyn protein in TamR cells. 

Figure 4.6 demonstrated that a 95% reduction in active Lyn kinase 

protein (Y396) was achieved using RNAiMAX lipid and a harvest time of 72 

hours, whilst there was no effect on either the transfection control or the 

siRNA control. This reduction was statistically significant compared to the 

controls.  

 

 

4.2.5 Is Lyn siRNA specific? 

Lyn is a member of the Src family. The family consists of eight members 

which all share significant homology both in sequence and structure, 

especially in the region of the active site (Boggon and Eck, 2004). Since 

accurate removal of Lyn kinase was critical for the completion of further 

experiments into the role Lyn plays in tamoxifen resistance, it was important 
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that a robust method of Lyn kinase removal was established. It was therefore 

necessary to ascertain that Lyn kinase could be targeted specifically without 

affecting the other family members so that observed changes or effects 

following Lyn knockdown could be attributed to Lyn alone.  

In order to investigate Lyn siRNA specificity, cells were treated for 48 

hours with siRNA targeting either Lyn or Src kinase. The levels of the Src 

family members Fyn and Yes-1 were assessed by PCR following mRNA 

extraction and are shown in Figure 4.7. Treatment with siRNA targeting Lyn 

or Src kinase only led to a reduction in Lyn and Src respectively, it did not 

lead to a reduction in either of the other two Src family members. Thus despite 

family members showing a great deal of similarity, siRNA provides an 

effective, robust but also specific down regulation of Lyn kinase. 
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Figure 4.5 Knockdown of total Lyn protein in TamR cells 

 

 
          TC                    SiC                   siLyn 

 

 

Cells were treated with siRNA targeting Lyn kinase for 72hrs, protein 

harvested and SDS-PAGE and Western blotting using total Lyn antibody 

and β-actin as a loading control.  TC=lipid control, SiC=non-targeting 

transfection control, siLyn=siRNA targeting Lyn kinase.  
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Figure 4.6 Knockdown of active Lyn protein (Y396) in TamR cells 

 

 

 

            TC                            SiC                        siLyn 

 
 

 

Cells were treated with siRNA targeting Lyn kinase for 72hrs, protein 

harvested and SDS-PAGE and Western blotting using p-Lyn (Y396) 

antibody and β-actin as a loading control.  TC=lipid control, SiC=non-

targeting transfection control, siLyn=siRNA targeting Lyn kinase.  
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Figure 4.7 Is Lyn siRNA specific? 

 

 
       TC           Lamin      siLyn        siSrc    

 

 

TamR cells were treated with siRNA targeting Lyn (siLyn), Src (siSrc), or 

Lamin for 48hrs. mRNA was amplified using primers targeting Fyn, Src, 

Yes-1 and Lyn kinase. TC=lipid control, SiC=non-targeting transfection 

control. 
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4.3 Effect of siRNA knockdown of Lyn and Src in TamR cells. 

This results chapter has so far focussed on identifying a viable tyrosine kinase 

gene target for siRNA knockdown in TamR cells. It has been established 

previously that Lyn kinase is a viable target for further study, following array 

analysis (chapter 3) and subsequent confirmation of this at the mRNA level. 

The two-fold increase in both total and activated Lyn protein in TamR cells 

compared to MCF-7 cells also confirms that Lyn is a good candidate for 

further study. The optimisation of a protocol for the specific targeting and 

knockdown of Lyn at both the mRNA and the protein level by siRNA 

demonstrated that siRNA is both an effective and accurate tool for Lyn down-

regulation in TamR cells.  

Since Lyn kinase can now be accurately removed from TamR cells it was 

possible to begin to study the effects of removing Lyn from TamR cells on 

clinically important endpoints including growth, apoptosis and invasion. In 

this section siRNA targeting both Lyn and Src were used. This was in order to 

identify if there are any significant advantages to targeting Lyn instead of Src 

in tamoxifen resistance, especially in view of the roles Src is known to play in 

tamoxifen resistance (Chapter 1). Despite demonstrating that 72 hour siRNA 

treatment provided the greatest knockdown of Lyn mRNA, an extra day of 

siRNA treatment was utilised in order to make sure the full effects of the 

knockdown could be measured since these series of experiments were looking 

at functional endpoints. As established in figure 4.4, 96 hour treatment still 

provided a significant 75% knockdown. 
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4.4 Cell growth following siRNA knockdown  

The transition of tamoxifen responsive MCF-7 cells to tamoxifen resistant 

TamR cells was accompanied by a 200% increase in growth rate (Knowlden et 

al, 2003). Increased growth rate was therefore an important feature in the 

development of tamoxifen resistance. In order to begin to identify a role for 

Lyn kinase in the growth of TamR cells, a number of growth endpoints were 

measured following Lyn knockdown including the proliferation marker MIB-

1, growth by Coulter counter and DNA synthesis. In addition to removing Lyn 

using siRNA, Src was also removed since its role in TamR cells has been well 

characterised at the Tenovus Centre for Cancer Research. Src was also 

included in order to ascertain if Lyn might prove a more worthy gene target 

than Src.  

 

4.4.1 Assessment of TamR proliferation using MIB-1. 

The proliferation marker MIB-1 was used in order to see whether removal of 

Lyn kinase affected the proliferation of TamR cells. The MIB-1 antibody 

recognises the Ki-67 protein which is only present in proliferating cells. Tam-

R cells were treated with siRNA targeting Lyn or Src for 4 days. They were 

fixed with 3.7% (v/v) formaldehyde in PBS, stained for the proliferation 

marker MIB-1 and counter stained with methyl green as seen in Figure 4.8A. 

MIB-1 positive cells were counted and expressed as % of cells positive for 

MIB-1 (Figure 4.8B).   

A significant decrease in MIB-1 was observed following removal of 

both Lyn kinase (p=0.004) and Src kinase (p=0.009) compared to the 
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transfection control. A slight increase in the siRNA control (SiC) occurred, 

however this was not statistically significant. This decrease in proliferation 

following Lyn knockdown suggests that it plays a role in the growth of TamR 

cells.  
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Figure 4.8 Assessment of TamR proliferation using MIB-1 

A     

   B 

 
  

MCF-7 and Tam-R cells were treated with siRNA targeting Lyn or Src for 4 
days, fixed and stained for the proliferation marker MIB-1 and GAR594, and 
1/10 DAPI and positive cells counted and expressed as % of cells positive for 
MIB-1. TC=lipid control, Lamin=siRNA targeting housekeeping gene Lamin, 
siLyn=siRNA targeting Lyn kinase and siSrc=siRNA targeting Src kinase. Error 
bars represent standard deviation. Statistical significance was determined using 
a one-way Anova test (n=4). 
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4.4.2 Cell growth measured by Coulter counter 

Next the effect of Lyn and Src siRNA treatment on cell growth was 

investigated by Coulter counter. TamR cells were treated with siRNA for 4 

days then trypsinised and counted by Coulter counter and expressed as number 

of cells per well in Figure 4.9.  

Both Lyn and Src kinase removal led to a significant decrease in cell 

growth with a decrease of 39% (p=0.002) and 31% (p=0.0035) respectively 

compared to the transfection control. Transfection of the cells with an siRNA 

targeting the housekeeping gene lamin for the same period did not result in a 

change in cell growth by Coulter counter. Whilst removal of Lyn kinase 

caused a greater decrease in cell growth than removal of Src kinase, this 

difference was not significant suggesting that Lyn and Src kinase may be 

inhibiting growth via the same mechanism. 

 

4.4.3 Effect of Lyn and Src on DNA synthesis 

 Cell cycle stage was assessed by FACS analysis following Lyn kinase and Src 

kinase removal. The percentage of cells in S (synthesis) phase was taken as a 

measure of cell growth since it is during S phase in the cell cycle that DNA 

replication occurs. TamR cells were treated with siRNA for 4 days, then the 

number of cells in S phase at the time of harvest was measured using the 

cycleTEST Plus kit (BD Biosciences) by FACS.  

Removal of Lyn and Src in TamR cells (Figure 4.10) led to a significant 

decrease of 52% (p=0.02) and 50% (p=0.02) respectively in DNA synthesis 

whereas removal of Lamin as a control did not affect DNA synthesis. This 
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result suggests that Lyn and Src do play a role in DNA replication in TamR 

cells.  
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Figure 4.9 Growth of TamR cells  

 

 

 

 

Tam-R cells were treated with siRNA for 4 days then trypsinised and 

counted by Coulter counter and expressed as number of cells per well.  

TC=lipid control, Lamin=siRNA targeting housekeeping gene Lamin, 

siLyn=siRNA targeting Lyn kinase and siSrc=siRNA targeting Src kinase 

Statistical significance was determined using Student’s t-test (n=4).  
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Figure 4.10 Number of cells in S phase following siRNA treatment 

 

 

 
Tam-R cells were treated with siRNA for 4 days, then the number of cells 

in S phase at the time of harvest was measured using the cycleTEST Plus 

kit (BD Biosciences) by FACS. Output data was then analysed using the 

software Winmidi and cyclered. TC=lipid control, Lamin=siRNA 

targeting housekeeping gene Lamin, siLyn=siRNA targeting Lyn kinase 

and siSrc=siRNA targeting Src kinase (n=4). 
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4.5 The effect of Lyn and Src knockdown on apoptosis in TamR cells  

Apoptosis is a type of genetically controlled programmed cell death. Defects 

in the apoptotic pathways have been associated with many types of cancer 

(Thompson, 1995). These defects can include loss of gene function or 

mutations in the genes that control apoptosis.  The effect of Lyn and Src 

removal on apoptosis of TamR cells was therefore an important factor for 

investigation. Apoptosis was assessed by a number of means including 

measuring the number of cells in sub G0, and mitochondrial membrane 

potential.  

 

4.5.1 Effect of Lyn and Src on cells in sub G0/G1 

Cells enter the sub G0/G1 phase of the cell cycle when they are not in a 

position to progress beyond G1 phase into S phase to divide, for example due 

to a lack of growth factors or nutrients. This phase is characterised by a loss of 

DNA in cells. Sub G0/G1 measured by FACS analysis identifies cells with a 

late stage cell death phenotype. This measurement was used to determine 

identify TamR cells undergoing apoptosis. The TamR cells were treated with 

siRNA for 4 days, then the number of cells in sub G0/G1 phase at the time of 

harvest was measured using the cycleTEST Plus kit (BD Biosciences) by 

FACS in Figure 4.11 TPEN was included as a positive control for apoptosis. 

 

 

 

 

 



Chapter 4  Results 

136 
 

Figure 4.11 Effect of Lyn and Src on cells in sub G0/G1 

 

 

 

 
 

 

Tam-R cells were treated with siRNA for 4 days, then the number of cells 

in sub G0/G1 phase at the time of harvest was measured using the 

cycleTEST Plus kit (BD Biosciences) by FACS. Output data was then 

analysed using the software Winmidi and cyclered and expressed as % of 

transfection control. TC=lipid control, Lamin =siRNA to Lamin, 

siLyn=siRNA targeting Lyn kinase and siSrc=siRNA targeting Src kinase 

(n=4). 
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No statistical difference (as measured using Student’s t-test) in number of cells 

in sub G0/G1 was observed following removal of Src or the control gene 

lamin. Removal of Lyn led to a significant 78% increase in cells in sub G0/G1 

(p=0.011) suggesting that cells that had Lyn removed were unable to progress 

further into the cell cycle and undergo cell division.  

 

4.5.2 Mitochondrial membrane potential following Lyn knockdown  

Mitochondria are the primary source of energy in human cells. They produce 

ATP via oxidative phosphorylation and the citric acid cycle. Mitochondrial 

membrane potential was therefore used as a measure of cellular viability, since 

it was indicative of hydrogen ions crossing the cell membrane during oxidative 

phosphorylation. Mitotracker is a mitochondrial stain which localises to 

mitochondria in live cells and its accumulation is dependent upon 

mitochondrial membrane potential (as measured by intensity of fluorescent 

staining). Live cells stain highly with mitotracker (intense red) whereas 

dead/dying cells will display lower intensity of staining. Cells were treated 

with siRNA targeting Lyn or Src for 72 hours, incubated with the 

mitochondrial dye mitotracker (592nm) for 30 minutes, fixed with 3.7% (v/v) 

formaldehyde in PBS. The nuclei were stained using DAPI and Lyn was 

stained using pLyn (Y396) and Alexafluor goat anti-rabbit 488 secondary 

antibody. The cells were then visualised using a Leica microscope. 

Following Lyn and Src removal a decrease in mitotracker intensity was 

observed compared to the controls (Figure 4.12). A greater decrease in 
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mitochondrial membrane potential was observed following Lyn removal 

compared to Src. This result indicated that both Lyn and Src kinase play a role 

in cell death.  
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Figure 4.12 Mitochondrial membrane potential following Lyn knockdown 

 

 

 

Cells were treated with siRNA targeting Lyn or Src for 4 days, incubated 

with the mitochondrial dye mitotracker (592nm) for 30 minutes, fixed and 

stained using pLyn (Y396) and Alexafluor GAR 488 and 1/10 DAPI then 

visualised using a Leica microscope. 
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following Lyn removal compared to Src suggests that Lyn may play a greater 

role in apoptosis in TamR cells than Src. 

 

4.6 Cell migration following siRNA knockdown.  

Migration levels following removal of Lyn kinase and Src kinase were 

investigated by measuring the migration of cells across a modified Boyden 

chamber coated in fibronectin. Src had been shown previously to play an 

important role in cell migration, but Lyn kinase had not been investigated. 

TamR cells were treated with siRNA for 72 hours or SU6656 for 24 hours 

then seeded onto a porous membrane coated with fibronectin and the cells 

were allowed to migrate through the porous membrane for 24 hours. The cells 

that had migrated through the membrane were stained using crystal violet and 

counted using a X20 microscope lens. The combined period of siRNA 

transfection and migration through the porous membrane was 96 hours which 

was longer than previous experiments. Since Lyn knockdown of 75% was 

detected 96 hours post-transfection , this extended experimental time was not a 

concern. Representative pictures showing the fluorescent stained migratory 

cells are shown in Figure 4.13.  

Removal of Src kinase led to a significant reduction of over 50% in the 

migratory capacity of TamR cells (p=0.003). Lyn kinase removal gave a 65% 

reduction in migratory capacity (p=0.001); however the difference between 

Lyn kinase and Src kinase was not statistically significant. Cells treated with 

SU6656 showed a 61% decrease in migration (p=0.001). The low number of 

migratory cells seen, even under control conditions can be explained in part by 
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the effect of siRNA transfection reagents on TamR cells. Following siRNA 

transfection, a lag period of approximately 2 days is seen before the cells 

begin to grow again.  

 

4.7 The effect of siRNA knockdown on the invasive capacity of the cells.  

As with migration, the important role of Src on the invasive capacity of TamR 

cells has been well documented but a similar role for Lyn has not been 

investigated. The invasive capacity of cells was investigated by measuring the 

invasion of cells across a modified Boyden chamber coated in Matrigel (an 

artificial basement membrane). TamR cells were treated with siRNA for 72 

hours to ensure a sufficiently high level of gene silencing or SU6656 for 24 

hours then seeded onto a porous membrane coated with Matrigel. The cells 

were allowed to invade through the porous membrane for 72 hours then the 

cells that had invaded through the membrane were fixed using 3.7% (v/v) 

formaldehyde in PBS. The nuclei were stained using DAPI and counted at 

X20 on a fluorescent microscope at 320nm. These conditions meant that the 

total length of the experiment was 6 days. This period extends beyond those 

investigated previously however 5 days post-transfection, an siRNA 

knockdown of 60% is still observed, therefore it was felt that the 24 hour 

extension was justified to allow the cells sufficient time to migrate. 

Representative pictures of a DAPI stained control and a siLyn treated well are 

shown in Figure 4.14. Treatment with the non-targeting siRNA control SiC led 

to a significant decrease in the invasive capacity of the cells compared to the 

TC. This showed that an off-target effect from siRNA transfection may have 
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occurred.  A significant decrease of over 90% in the invasive capacity was 

observed following Lyn kinase (p<0.001) and Src kinase (p<0.001) removal 

and also treatment with SU6656 (p<0.001) compared to the transfection 

control (TC). Invasion of Lyn siRNA treated, Src siRNA treated, and SU6656 

treated cells were still significantly decreased compared to the SiC (p<0.001). 

This result demonstrates the importance of running several controls when 

using siRNA. Very similar levels of inhibition of invasion were observed 

following Lyn and Src siRNA treatment and also SU6656 treatment, 

suggesting that the Src family members may all play a similar role in invasion 

within TamR cells.  
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Figure 4.13 Cell migration following siRNA knockdown 

 

 

 
Tam-R cells were treated with siRNA for 4 days or SU6656 for 24 hours 
then seeded onto a porous membrane coated with fibronectin. The cells 
were allowed to migrate through the porous membrane for 24 hours then 
the cells that had migrated through the membrane were stained using 
crystal violet and counted using a X20 microscope lens. SiC= a control 
non-targeting siRNA, siLyn= siRNA to Lyn kinase, siSrc= siRNA to Src 
kinase and SU= Src inhibitor SU6656 (5µM) (n=4). 
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Figure 4.14 Cell invasion following siRNA knockdown 

                  

 
 

 
Tam-R cells were treated with siRNA for 4 days or SU6656 for 24 hours then 
seeded onto a porous membrane coated with matrigel. The cells were allowed to 
invade through the porous membrane for 72 hours then invaded cells were fixed, 
the nuclei stained using DAPI and counted at X20 on a fluorescent microscope at 
320nm. TC= transfection control, SiC= a control non-targeting siRNA, siLyn= 
siRNA to Lyn, siSrc= siRNA to Src and SU= Src inhibitor SU6656 (5µM) (n=4). 
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Summary of Chapter 

In this chapter it was demonstrated that removal of Lyn kinase and Src kinase 

by siRNA leads to significant decreases in TamR cell growth, migration and 

invasion, and leads to an increase in cell apoptosis. Significantly removal of 

Lyn kinase proved to have a greater anti-proliferative effect on TamR cells 

than Src kinase removal. Also observed when Lyn kinase was removed was a 

significant increase in apoptosis compared to controls whilst apoptosis 

following Src removal remained at levels consistent with the controls. Since 

these data suggest that Lyn and Src may be acting via different signalling 

pathways, further characterisation of the Lyn pathway was required.
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Chapter 5: A role for Lyn in zinc transport in TamR cells? 

TamR cells have increased intracellular zinc compared to the hormone 

responsive MCF-7 cells and also show an increase in expression of the zinc 

transporter ZIP7 (Taylor et al, 2008). ZIP7 is located on the endoplasmic 

reticulum (Taylor et al, 2004) and has been shown to be capable of increasing 

intracellular zinc levels. The important role that zinc and zinc transporters play 

in breast cancer and specifically anti-hormone resistant breast cancer is 

becoming increasingly apparent. A calcium-dependent zinc wave in mast cells 

that leads to the inhibition of phosphatases by zinc has been described. 

(Yamasaki et al, 2007). It has been proposed that a similar phenomenon 

occurs in TamR cells with the ZIP7 zinc transporter playing a key role 

(Taylor, 2008b). 

Mast cells play a central role in the development of allergic 

inflammatory reactions (Kopec et al, 2006), and play an essential role in 

regulating innate and adaptive immune responses (Galli et al, 2005).  Mast 

cells express a high-affinity receptor (FcεRI) for the Fc region of IgE (Prussin 

and Metcalfe, 2003) and are activated by the interaction of an allergen with the 

specific IgE bound to the FcεRI expressed on the surface of mast cells (Kopec 

et al, 2006). This initiates a signalling cascade that includes activation of 

tyrosine kinases. Several Src family kinases including Lyn, Fyn, and Hck are 

highly expressed and have been shown to have distinct functions in this 

signalling cascade (Lee et al, 2011). Lyn was the initial focus of early studies 

of the Src family kinases in mast cells since it was found to be associated with 

FcεRI, and thus numerous studies have focussed on Lyn’s role in mast cell 
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activation. This role of Lyn in mast cell signalling is further supported by the 

observation that cells that express a mutant form of Lyn display impaired 

function (Poderycki et al, 2010). Lyn negatively regulates mast cell growth 

and maturation in part by regulating the activation of PI3K/AKT via the p85α 

regulatory subunit of PI3K (Ma et al, 2011). Lyn kinase is activated by 

stimulation of the IL-3 receptor (Torigoe et al, 1992). 

The activation of these signalling pathways leads to mast cell degranulation, 

the process by which mast cells release antimicrobial cytotoxic molecules 

including histamine, proteases, and proteoglycans from secretory vesicles 

called granules (Yamasaki et al, 2005). This mast cell degranulation occurs in 

two ways: the calcium dependent pathway where granules translocate to the 

plasma membrane in which Lyn has been shown to play a crucial role and the 

calcium independent pathway that includes fusion of the granule with the 

plasma membrane and exocytosis (Nishida et al, 2005). 

Lyn kinase is crucial to the calcium dependent activation of mast cells 

(Yamasaki et al, 2005) and we have shown that it is significantly increased in 

TamR cells. Since a similar pathway has been proposed for the release of zinc 

from the endoplasmic reticulum in TamR cells, which contain increased zinc 

and ZIP7 (Taylor et al, 2008b), a hypothesis was proposed whereby Lyn was 

also involved in the release of zinc from the endoplasmic reticulum in 

tamoxifen resistant breast cancer cells in a role similar to that which it plays in 

mast cells with the ZIP7 zinc transporter playing a key role (Taylor, 2008b). 

 

5.1: ZIP7 knockdown in TamR cells 
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Since the method for siRNA knockdown in TamR cells was optimised in 

chapter 4 using Lyn, it was essential to demonstrate that it was also a robust 

method for the removal of ZIP7 in TamR cells since all subsequent 

experiments in this section are reliant on the down regulation of ZIP7. TamR 

cells were treated with transfection lipid alone (TC), siRNA targeting the 

housekeeping gene lamin or siRNA targeting ZIP7 (siZIP7) for 48 hours and 

the mRNA was harvested, reverse transcribed and amplified by PCR.  

The two controls, TC and Lamin showed no change in ZIP7  levels whereas 

the siZIP7 showed a large, statistically significant decrease in ZIP7 (p=0.063). 

A representative gel is shown in figure 5.1.  

 

5.2:  Lyn does not decrease following treatment with siZIP7 

To see if ZIP7 removal influenced Lyn, TamR cells were treated with siRNA 

targeting ZIP7 (siZIP7), or Lyn (siLyn) for 48hrs and treated with  20µM zinc 

(including siRNA treated cells) for 20 minutes prior to harvest (figure 5.2).  

The addition of zinc was in order to initiate a zinc wave in the endoplasmic 

reticulum. It has also been shown, however that the addition of EGF and 

ionophore can also trigger this zinc release without the addition of exogenous 

zinc (Yamasaki et al, 2007) and so an EGF treatment arm was also included. 

MRNA was amplified using primers targeting Lyn. 

 Both EGF and zinc treatment led to an increase in Lyn mRNA 

compared to basal levels of Lyn in TamR cells.  To perform densitometry on 

agarose gels, it is necessary to produce a figure that is not saturated in order to 

accurately measure mRNA amounts. Therefore to achieve a quantifiable band 
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following zinc treatment, the large increase in Lyn following zinc treatment 

makes the basal levels of Lyn appear very low compared to those observed in 

chapter 4. Following dual Lyn knockdown and zinc treatment, a decrease of 

90% of Lyn was observed, to a level below the basal level, suggesting that 

Lyn may be needed for the effect seen by zinc treatment. Removal of ZIP7 

using siRNA does not appear to influence Lyn mRNA levels in TamR cells 

with levels remaining comparable to zinc treated control cells. Since ZIP7 

removal does not affect Lyn kinase but Lyn removal affects ZIP 7, this implies 

that Lyn may be upstream of ZIP7 in the initiation of the zinc wave from the 

endoplasmic reticulum. 

 

5.3:  ZIP7 decreases following treatment with siLyn 

To see if Lyn removal influenced ZIP7 levels, TamR cells were treated with 

siRNA targeting Lyn or ZIP7 for 72hrs (figure 5.3).   

Zinc treatment led to an increase in ZIP7 protein levels compared to basal 

levels of ZIP7 in TamR cells. A decrease in ZIP7 following siZIP7 treatment 

is observed thus the siRNA knockdown method is also effective in removing 

ZIP7 protein in addition to mRNA as displayed in figure 5.1. Following Lyn 

knockdown, a decrease of 60% of ZIP7 protein is observed, a greater decrease 

than that observed with siZIP7. As with siZIP7, the levels are greater than 

those observed in non-zinc treated cells. The combined data shown in figures 

5.2 and 5.3, indicating that Lyn removal leads to a decrease in ZIP7, however 

ZIP7 removal does not affect Lyn suggests that Lyn may be upstream of ZIP7 

in the zinc wave. 
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Figure 5.1 siRNA can remove ZIP7 in TamR cells 

A 

 

 

 

B 

 

A: TamR cells were treated with siRNA targeting ZIP7 (siZIP7), for 48hrs and 

mRNA was amplified using primers targeting ZIP7. TC= Lipid control, 

Lamin=positive control targeting housekeeping gene Lamin, siZIP7=siRNA 

targeting ZIP7. β-actin was included as a loading control allowing 

densitometric analysis  

B: Levels of ZIP7 in TamR cells treated with siRNA as determined by 

densitometry. Densitometric values were normalised to account for β-actin 

levels. Statistical significance was determined using Student’s t-test (n=3). 
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Figure 5.2 Lyn does not decrease following treatment with siZIP7 

A 

 

 

B 

 

 

A: TamR cells were treated with siRNA targeting ZIP7 (siZIP7), or Lyn 

(siLyn) for 48hrs and 20µM zinc (including siRNA treated cells) for 20 

minutes prior to harvest.  mRNA was amplified using primers targeting Lyn.  

SiLyn= siRNA targeting Lyn, siZIP7=siRNA targeting ZIP7. β-actin was 

included as a loading control allowing densitometric analysis  
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B: Levels of ZIP7 in TamR cells treated with siRNA as determined by 

densitometry. Densitometric values were normalised to account for β-actin 

levels. Statistical significance was determined using Student’s t-test (n=3). 

5.4 Zinc activates Lyn in TamR cells 

To begin to dissect the relationship between Lyn and zinc in TamR cells, cells 

were treated with 20µM zinc and 40µM sodium pyrithione (ionophore) or left 

untreated for 20 minutes and then fixed and stained with either total Lyn or 

pLyn (Y396) antibody conjugated to Alexa Fluor 594 then visualised at X63 

on a fluorescent microscope at 594nm (figure 5.4).  

An increase in activated Lyn as measured by fluorescent staining of Lyn 

following 20 minutes zinc treatment was observed. The total Lyn antibody 

also showed an increase in Lyn following zinc treatment. Whilst inactivate 

Lyn should not be increased following zinc treatment, it is due to the total Lyn 

antibody also picking up the activated Lyn. The same increase in activated Src 

has also been reported in response to the zinc wave (Taylor et al, 2008). This 

increase is likely to be due to the inhibition of phosphatases by zinc release 

and subsequent activation of tyrosine kinases including Lyn and Src. The 

activated Lyn is located on the plasma membrane. A corresponding western 

blot confirming these fluorescent microscopy data is shown in figure 5.5. 

Whilst activated Lyn kinase shows a greater increase following zinc treatment, 

levels of total Lyn are also shown to be increased.  

 

5.5 Lyn activation following zinc treatment 

 Following a 4 day siRNA treatment, TamR cells were exposed to 

20µM zinc and 40µM sodium pyrithione for either 5 or 20 minutes then 
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stained using p-Lyn (Y396) and Alexa Fluor 594 and visualised at X63 briefly 

to avoid bleaching on a Leica microscope (figure 5.6).  

Zinc treatment led to an increase in Lyn activation within 5 minutes as seen in 

the transfection control (TC). Lyn removal meant that there was no increase in 

Lyn activation by zinc at both the 5 and 20 minute time points. Src removal 

did not affect this zinc mediated activation of Lyn, suggesting that Src does 

not play a role in this mechanism. A reduction in Lyn activation was observed 

following ZIP7 removal at 20 minutes and to a lesser extent 5 minutes zinc 

treatment. This later influence of ZIP7 removal on zinc mediated activation of 

Lyn implies that Lyn’s role may be in initiating the zinc wave in TamR cells 

upstream of zinc release from the endoplasmic reticulum. It is this zinc release 

that would then inhibit phosphatases resulting in tyrosine kinase activation.  

 

5.6 Lyn is required for zinc wave 

Lyn, Src and ZIP7 were removed from TamR cells for 4 days using siRNA. 

The cells were then exposed to 20µM zinc and 40µM sodium pyrithione for 

20 minutes and either 30 minutes Fluozin-3 (figure 5.7A) or 30 minutes 

zinquin (figure 5.7B) and visualised at X63 with care to avoid bleaching on a 

Leica microscope. Fluozin-3 and zinquin are zinc specific fluorescent dyes 

and both of these dyes were utilised since Fluozin-3 has a high affinity for zinc 

with a Kd of approximately 15nM whereas zinquin has a Kd of approximately 

100nM for zinc and may therefore not detect more subtle changes in zinc.  
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Figure 5.3 ZIP7 decreases following treatment with siLyn 

A 

 

 

B  

 

 

 

A: Cells were treated with siRNA targeting Lyn or ZIP7 for 72hrs, treated 

20µM zinc (including siRNA treated cells) for 20 minutes prior to protein 

lysis and SDS-PAGE and Western blotting using ZIP7 antibody and β-actin as 

a reference gene allowing densitometric analysis  

B: Levels of ZIP7 in TamR cells treated with siRNA as determined by 

densitometry. Densitometric values were normalised to account for β-actin 

levels. Statistical significance was determined using Student’s t-test (n=3). 
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Figure 5.4 Zinc treatment increases Lyn in TamR cells 

 

 

 

 

TamR cells were treated with 20µM zinc or left untreated for 20 minutes and 

then fixed and stained with total or pLyn (Y396) antibody and Alexafluor 594 

then visualised at X63 on a fluorescent microscope at 594nm. 
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5.5 Zinc treatment increases Lyn protein in TamR cells. 

 

 

 

 

 

 

 

 

TamR cells were treated with 20µM zinc or left untreated for 20 minutes prior 

to protein lysis and SDS-PAGE and Western blotting using activated or total 

Lyn antibody and β-actin as a reference gene. 
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Zinc treatment led to a large increase in zinc in TamR cells at 5 and 20 

minutes in the transfection lipid control as measured by Fluozin-3 due to the 

ZIP7 mediated zinc release from the endoplasmic reticulum. Cells where Lyn 

had been removed by siRNA treatment did not show this same increase in 

zinc. The increase in zinc was also prevented, but to a lesser extent by removal 

of ZIP7 from cells and was more prominent following 20 minutes compared to 

5 minutes. Removal of Src did not prevent the increase in zinc following 

treatment, showing comparable levels to the control. This result again suggests 

that Src does not play a role in the generation of a zinc wave in TamR cells in 

contrast to Lyn. The higher zinc levels following ZIP7 removal compared to 

Lyn removal can be explained by the presence of Lyn in the siZIP7 arm, 

meaning that activation of the zinc wave still occurred but to a lesser extent 

than the control. This is further evidence that Lyn is upstream of ZIP7 in the 

zinc wave suggesting a distinct role for Lyn in TamR cells that has not been 

previously reported. The high level of Fluozin-3 zinc staining seen in the 20 

minute TC arm, suggests that an excess of zinc was present at that time point. 

The two zinc dyes both shown the same pattern of zinc release following 

treatment. Subtle differences observed between the two can be explained by 

the difference in the affinity of each compound for zinc since Fluozin-3 can 

detect zinc in much smaller amounts than is possible using zinquin and so 

more subtle changes in zinc levels may be observed.  
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Figure 5.6 Effect of siRNA and zinc on Lyn activation 

 

 

TamR cells were treated with transfection lipid (TC), siLyn, siSrc or siZIP7 

for 4 days, exposed to 20µM zinc and 40µM sodium pyrithione for 20 minutes 

then stained using p-Lyn (Y396) and Alexafluor 594 and visualised at X63 on 

a Leica microscope 
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Figure 5.7 A Zinc levels following siRNA and 5 or 20 minute zinc 

treatment measured by Fluozin 3 . 

 

 

TamR cells were treated with lipid only (TC), siLyn, siSrc or siZIP7 for 4 

days, loaded with Fluozin-3 for 30 minutes then exposed to 20µM zinc and 

40µM sodium pyrithione for 20 minutes and visualised at X63 on a Leica 

microscope. 
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Figure 5.7 B Zinc levels following siRNA and 5 or 20 minute zinc 

treatment measured by zinquin. 

 

 

TamR cells were treated with transfection lipid (TC), siLyn, siSrc or siZIP7 

for 4 days, loaded with zinquin for 30 minutes then exposed to 20µM zinc and 

40µM sodium pyrithione for 20 minutes and visualised at X63 on a Leica 

microscope. 
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Summary of chapter 

Initial experiments using fluorescent microscopy revealed that Lyn kinase is 

located on the plasma membrane and activated following treatment with zinc. 

Src kinase was also activated, mirroring what had been published previously 

in response to the zinc wave (Taylor et al, 2008b). The likely conclusion from 

this result is that zinc release leads to the inhibition of phosphatases and thus 

activation of tyrosine kinases. 

Removal of Lyn by siRNA led to a decrease in the zinc activation of Lyn that 

was previously witnessed.  A reduction in Lyn activation was observed 

following ZIP7 removal at 20 minutes and to a lesser extent 5 minutes zinc 

treatment. This later influence of ZIP7 removal on zinc mediated activation of 

Lyn implies that Lyn kinase’s role may be in initiating the zinc wave in TamR 

cells upstream of zinc release from the endoplasmic reticulum. It is this zinc 

release that would then inhibit phosphatases resulting in tyrosine kinase 

activation. 

Src removal did not affect this zinc mediated activation of Lyn, suggesting 

that Src does not play a role in this mechanism. It also adds weight to the 

theory that the results seen are not due to zinc inactivation of phosphatases, 

since all tyrosine kinases including Src would be affected were this occurring. 

This alternative mechanism displayed may also explain the differences seen 

between Src and Lyn in the previously studied endpoints in chapter 4. 
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Chapter 6: Discussion 

 

The problem of tamoxifen resistance 

Tamoxifen has made a significant contribution in decreasing breast cancer 

related deaths for over 30 years and until recently was the gold standard for 

treatment of ER positive breast cancer (Fisher et al, 1998). It still remains the 

most widely used anti-oestrogen drug (Ring and Dowsett, 2004). Resistance to 

tamoxifen is however a considerable issue with cells utilising a number of 

molecular mechanisms to bypass the growth inhibition caused by blocking ER 

activity. This move towards an anti-hormone resistant state from an anti-

hormone responsive state is associated with the transition to a much more 

aggressive phenotype including increased proliferation and also invasiveness. 

Thus unfortunately, acquisition of tamoxifen resistance is not only associated 

with a recurrence of breast cancer, and this cancer is also much more 

aggressive in nature with fewer treatment options available than the initial 

cancer. Acquisition of resistance has also proved to be a significant concern 

with subsequent anti oestrogen therapies such as fulvestrant and aromatase 

inhibitors 

EGFR has been shown to mediate the alternative growth of tamoxifen resistant 

cells in both our TamR model (Knowlden et al, 2003) and also other models 

of tamoxifen resistance (Vendrell et al, 2005; Cleator et al, 2009). Vendrell et 

al have developed two tamoxifen resistant cell lines derived from the MVLN 

human breast carcinoma cell line called CL6.8 and CL6.32 (Vendrell et al 

2005). Both tamoxifen resistant cell lines displayed the development of 
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agonist activity of tamoxifen on cell proliferation and also resistance to 

tamoxifen induced apoptosis as is seen in our model of tamoxifen resistance. 

They also displayed an increase in MAPK activity, and over-expression of 

several genes coding for EGFR, and numerous ErbB-specific ligands and also 

increased MAP kinase activity (Vendrell et al, 2005). This suggests the 

involvement of such events in the development of tamoxifen resistance, again 

supporting that which is observed in our TamR cells. A number of molecular 

differences were observed between the two tamoxifen resistant cell lines 

despite being developed at the same time. This further highlights the 

complexity of tamoxifen resistance development. 

Interestingly, inhibition of EGFR, shown to mediate the alternative growth of 

tamoxifen resistant cells, using the EGFR specific tyrosine kinase inhibitor 

gefitinib, lead to an initial decrease in proliferation, however cell growth 

recommences within months (Knowlden et al, 2005). The IGFR (insulin like 

growth factor receptor) signalling also plays an important role in tamoxifen 

resistance, facilitating EGFR signalling (Gee et al, 2005). An added shortfall 

was that many patients display intrinsic resistance to gefitinib and so cannot 

gain any initial benefit from treatment (Bianco et al, 2005).  

 

Advances in treatment options for breast cancer 

In addition to endocrine therapies, including tamoxifen, fulvestrant and 

aromatase inhibitors, detailed in chapter 1, a number of other treatment 

options are currently being investigated for the treatment of ER positive breast 

cancer. These may be used as single agents or used in combination with other 
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therapies to provide improved treatment options. These include growth factor 

inhibitors, such as gefitinib, the small molecule EGFR inhibitor as mentioned 

above (Gee et al, 2003). Despite disappointing results when used as a single 

agent, it is currently being investigated as part of a dual therapy, to see if it can 

improve outcomes when combined with aromatase inhibitors (Davies and 

Hiscox, 2011). Another treatment option currently being investigated is the 

use of mTOR inhibitors. Mammalian target of rapamycin (mTOR) is a kinase 

that functions as a master switch between catabolic and anabolic metabolism 

(Faivre et al, 2006). It has been identified as a key kinase acting downstream 

of the activation of PI3K. The phosphatidylinositol 3-kinase (PI3K)/AKT 

kinase cascade, is responsible for cell growth and proliferation. Additionally, 

mTOR has been shown to regulate apoptotic cell death, which is dictated by 

the downstream targets including p53. The PI3K/Akt pathway is often up 

regulated in cancers and as such mTOR is a target for the design of anticancer 

drugs, with rapamycin having initially improved the survival of  patients with 

advanced renal cancer (Faivre et al, 2006). In ER positive breast cancer, later 

incarnations of rapamycin, particularly everolimus (Satheesha et al, 2011) are 

being investigated both as single agents and also in combination with other 

therapies (Davies and Hiscox, 2011). Unfortunately, as with other therapies, 

such as EGFR inhibitors, mTOR inhibitors have thus far proved less 

successful in cancer clinical trials than might be hoped from the importance of 

the molecular pathways involved due to either intrinsic or acquired resistance 

(Satheesha et al, 2011). Thus a deficit remains in therapeutic options for the 

treatment of ER positive breast cancer, reinforcing the need for further 
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characterisation of anti hormone resistant breast cancer and identification of 

novel therapeutic targets.  

 

Identification of new therapeutic targets 

This deficit in available treatment for tamoxifen resistant breast cancer in the 

clinical setting despite a significant contribution to the resistant phenotype 

meant that there was an opportunity for the identification of novel gene targets 

to facilitate the development of new therapies. Thus a strategy was devised 

using available microarray data in order to identify novel gene that could 

potentially be targeted either alone or in conjunction with other therapies and 

is summarised in figure 6.1. 
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Figure 6.1: Summary of gene identification strategy 
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A problem of this method of selection using affymetrix that became apparent 

during later experiments was that the growth of the genes selected may still be 

driven by the EGFR. This became clear in chapter 6, when treatment with the 

epidermal growth factor (EGF) was able to induce Lyn expression. A more 

suitable method at this stage of selection would have been to select genes that 

were unchanged following EGFR treatment and also subsequently unchanged 

in the tamoxifen/gefitinib model rather than genes that were induced following 

treatment. An additional step of repeating the treatments used on the 

microarray samples and subsequent Western blotting would have provided a 

more robust method of identifying genes whose growth was truly independent 

of the EGFR. Despite this, microarray analysis allowed the identification of 

Lyn kinase as a potential therapeutic target in tamoxifen resistant breast 

cancer. 

 

Lyn kinase in tamoxifen resistant models 

In chapter 4 we demonstrated that removal of Lyn kinase affects the growth, 

cell death, invasive and migratory capacity of TamR cells. Of particular 

significance is the fact that Lyn removal and Src removal yielded different 

endpoints, suggesting that they may be playing distinct roles in TamR cells. 

This agrees with work carried out in mast cells, where members of the Src 

family have been shown to have unique and distinct roles in activation (Ma et 

al, 2011).  With unique roles emerging for Src family members in specific 

tissues and also other cancers (Saito et al, 2010; Bilal et al, 2011), it is 
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possible that results were due to other Src family members including Lyn 

kinase.  

 

Lyn kinase and zinc signalling 

A calcium dependent zinc wave has been described in mast cells that leads to 

the inhibition of phosphatases and thus activation of tyrosine kinases 

(Yamasaki et al, 2007). It was proposed that this zinc wave initiates in the 

endoplasmic reticulum and is therefore likely to be due to ZIP7 mediated 

release of zinc.  In addition, a model for zinc handling within cells has been 

proposed where  intracellular zinc is associated with a muffler in the 

cytoplasm such as metallothionein that allows it to be strongly buffered and 

subsequently distributed into a deep store to be released into the cytoplasm 

(Colvin et al, 2008). In TamR cells, a similar phenomenon based upon these 

two models has been proposed with the ZIP7 zinc transporter playing a key 

role (Taylor et al,  

2008). 
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Figure 6.2: The predicted function of ZIP7. Reproduced from Taylor 

2008b: A distinct role in breast cancer for two LIV-1 family zinc transporters. 
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Lyn kinase and not Src kinase has been identified as playing a crucial role in 

the calcium dependent activation of mast cells (Nishida et al, 2005). With zinc 

signalling the new emerging mechanism driving cell growth in TamR cells a 

role for Lyn has been suggested due to its role in mast cells. The activation of 

EGFR by zinc in tamoxifen-resistant breast cancer cells was demonstrated to 

be Src dependent and zinc levels as low as 20 μM were able to partially 

reverse the inhibition of invasion by use of the Src inhibitor SU6656 which 

also inhibits Lyn (Taylor et al, 2008b). It is therefore possible that this 

activation of EGFR by zinc in tamoxifen-resistant breast cancer cells may 

have been due to Lyn inhibition, especially since this study has demonstrated 

that ZIP7 removal using siRNA did not affect Src kinase activation, it does 

however affect Lyn kinase activation. This difference could also explain the 

differences seen in apoptosis following Lyn and Src removal and suggest a 

distinct role for Lyn compared to Src. In chapter 5 (figures 5.2 and 5.3) Lyn 

removal by siRNA lead to a decrease in ZIP7, however ZIP7 removal did not 

affect Lyn. This observation suggests that Lyn kinase is upstream of ZIP7 in 

the zinc wave in TamR cells. A proposed position for Lyn in relation to the 

zinc wave is presented in figure 6.3 
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Figure 6.3 Proposed hierarchical position of Lyn and ZIP7 
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Despite Lyn being thought to be expressed primarily in haematopoietic cells, it 

is not unprecedented for tissue specific genes to be activated in cancers. For 

example, Yes-1, another member of the Src kinase family which is usually 

only expressed in epithelial cells of the renal proximal tubules in human adults 

(Krueger et al, 1991), is over-expressed in basal-like breast cancers (Bilal et 

al, 2010). This fact demonstrates a flaw in the initial selection process of 

potential target genes, since some genes were discounted for further 

investigation due to their tissue specificity, whereas genes have been shown to 

be over-expressed in cancers despite not being expressed ubiquitously in 

normal cells. Despite the exact role of Lyn in tamoxifen resistance not being 

clear, targeting Lyn kinase may be a means of specifically targeting zinc 

levels, particularly since it is not ubiquitously expressed in normal (non-

cancerous) cells.  

Excitingly, recent discoveries have led to a much greater understanding of the 

role of zinc signalling in breast cancer. CK2 is a protein kinase that has been 

shown to regulate multiple oncogenic pathways including EGFR-regulated 

pathways, Akt and WNT signaling cascades, NF-κB transcription, 

angiogenesis, Hsp90 chaperone pathway and the DNA damage response 

(Siddiqui-Jain et al, 2010). Elevated levels of protein kinase CK2 have long 

been associated with increased cell growth and proliferation both in normal 

and cancer cells (Trembley et al, 2009). It can also act as a suppressor of 

apoptosis thus playing an important role in many cancers since deregulation of 

both cell proliferation and apoptosis are among the key features of cancer cell 

biology (Trembley et al, 2009). Down regulation of CK2 leads to induction of 
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apoptosis in cancer cell models, hence the development of CK2 inhibitors for 

use in clinical trials. CX-4945, a potent and selective orally bioavailable small 

molecule inhibitor of CK2 has been developed (Siddiqui-Jain et al, 2010). 

CX-4945 displayed anti-proliferative activity and led to cell-cycle arrest. It 

also selectively induced apoptosis in cancer cells relative to normal cells and 

caused a decrease in PI3K/Akt signalling (Siddiqui-Jain et al, 2010). CX-4945 

is currently in clinical trials for the treatment of cancer (Pierre et al, 2011).  

 It has been demonstrated that ZIP7 can be activated by phosphorylation by 

CK2 (Taylor et al, 2012). CK2 phosphorylates ZIP7 leading to the release of 

zinc ions into the cytosol. This then activates the kinases Akt and Erk 1/2 that 

are involved in cell proliferation and growth (Taylor et al, 2012). A schematic 

of this, reproduced from Taylor et al, (Taylor et al, 2012b) is shown in figure 

6. 4. Previous studies using the CK2 inhibitor DMAT led to the caspase-

mediated killing of tamoxifen resistant breast cancer cells while failing to kill 

parental MCF-7 cells (Yde et al, 2007). This in combination with the 

discovery of a potential role for CK2 in the control of ZIP7 in tamoxifen 

resistant breast cancer provides a novel means of targeting zinc in breast 

cancer.  
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Figure 6.4: Schematic of second messenger signalling pathway for zinc. 

Reproduced from Taylor et al, 2012b 

 

Schematic illustration of the second messenger signaling pathway proposed for Zn2+. 
Various external stimuli cause protein kinase CK2 to phosphorylate endoplasmic 
reticulum (ER)-located zinc transporter ZIP7, which causes the gated release of Zn2+ 
stored within the ER through the ZIP7 channel to create a cytosolic “zinc wave.” 
After phosphorylating its target, CK2 dissociates from ZIP7 and may move into the 
nucleus. We postulate that elevated Zn2+ within the cytosol may selectively inhibit 
tyrosine phosphatases, leading to prolonged tyrosine kinase activation and an 
observed downstream increase in pERK and pAKT, resulting in cell proliferation and 
migration. These events, representing a short-term second messenger activity 
for Zn, completing within a 20 min time period, are thus temporally separated from 
established transcriptional impact of zinc ions, which is mediated by metal 
transcription factor-1 (MTF-1) and is known to regulate metallothionein (MT), 
glutamylcysteine synthetase (GCS) and ZnT1 (SLC30A1). 
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Lyn in basal-like breast cancer 

 Since commencement of this research and selection of Lyn kinase as a 

potential therapeutic target for further study, a number of other groups have 

also identified Lyn as potentially important in breast cancer. Of particular 

significance is the identification of Lyn as a key player in the basal-like breast 

cancer phenotype (triple negative- ER, PR and HER2 negative). 

Unfortunately, fewer treatment option are available for basal-type breast 

cancers, with fewer targeted therapies available (Hochgrafe et al, 2010). The 

therapies available include poly (ADP-ribose) polymerase (PARP) inhibitors. 

PARP is responsible for the regulation of the DNA base-excision–repair 

pathway. Use of PARP inhibitors in combination with chemotherapy are 

currently in phase III trials for the treatment of metastatic triple negative breast 

cancer (O'Shaughnessy et al, 2011).  mTOR inhibitors as mentioned earlier in 

this chapter are being trialled as a combination therapy for the treatment of 

triple negative breast cancer (Davies and Hiscox, 2011). In addition the BCR-

Abl and Src inhibitor Dasatinib is investigated as a single therapy and also as a 

combination therapy in triple negative breast cancer. Dasatinib is a small 

molecule tyrosine kinase inhibitor. Among the most sensitive dasatinib targets 

are ABL, the SRC family kinases (SRC, LCK, HCK, FYN, YES, FGR, BLK, 

LYN, and FRK), and the receptor tyrosine kinases c-KIT, platelet-derived 

growth factor receptor (PDGFR) a and b, discoidin domain receptor1 (DDR1), 

c-FMS, and ephrin receptors (Montero et al, 2011).  

In an independent study, Lyn has been identified as a mediator of EMT 

(epithelial-mesenchymal transition) (discussed previously), which leads to cell 
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metastasis in breast cancer cell lines (Choi et al, 2010). It was associated with 

much shorter overall survival in the clinic and correlated with the basal-like 

phenotype (Choi et al, 2010). Basal breast cancer cells are characterized by 

elevated tyrosine phosphorylation of Met, Lyn, EphA2, epidermal growth 

factor receptor (EGFR), and FAK. RNAi knockdown of Lyn in these triple 

negative basal type cell lines blocked invasion but not cell proliferation (Choi 

et al, 2010). It is studies such as these which identify new therapeutic targets 

that lead to more treatment options for breast cancer patients with the triple 

negative phenotype. 

Treatment of basal-type breast cancer cell lines with dasatinib also blocked 

invasion but not proliferation as with siRNA targeting Lyn treatment (Choi et 

al, 2010). In hormone receptor–positive breast cancer, trials using 

combinations of dasatinib with anti-hormonal therapies are ongoing (Montero 

et al, 2011). The role of Lyn kinase in EMT as described by Choi et al may 

explain the significant decrease in migration/invasion observed following Lyn 

kinase removal by siRNA in TamR cells, however the observation that 

proliferation is unchanged following siRNA or dasatinib treatment is in 

contrast to our findings in TamR cells. This suggests a different or additional 

role for Lyn kinase in TamR cells. Lyn kinase has been identified as a viable 

therapeutic target for the treatment of tamoxifen resistant breast cancer. Our 

findings are also supported by the observations of other groups of Lyn kinase 

playing a key role in the progression of breast cancer (Choi et al, 2010, 

Montero et al, 2011). It is this progression of breast cancer to a more invasive 

state that leads to metastasis in the clinic with Lyn kinase shown to play a key 
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role. Metastasis to other sites in the body is ultimately responsible for fatalities 

due to breast cancer and so being able to block its action is key to treating 

breast cancer in the clinic. Therefore identifying Lyn kinase as a gene target 

that leads to the advancement of breast cancer to a more aggressive state 

provides a powerful tool for treating breast cancer in the clinic. 

This study is unique in TamR cells in that it is the first time, that the roles of 

individual Src kinase family members have been investigated which may 

ultimately lead to a better understanding of the complex acquisition of 

tamoxifen resistance and also improved treatment due to more specific gene 

targeting.  

 

Conclusion 

In this work we have shown that Lyn plays an important role in the phenotype 

associated with resistance to tamoxifen in breast cancer. Lyn removal lead to a 

decrease in cell migration, invasion and proliferation.  Of particular 

significance were the differences observed between Lyn and Src following 

gene knockdown on apoptosis in TamR cells.  Lyn removal and not Src 

removal led to a significant reduction in apoptosis, suggesting that Lyn and 

Src operate via different mechanisms in tamoxifen resistance. It is significant 

that we have shown a link between Lyn kinase activity and the release of zinc 

from the endoplasmic reticulum in TamR cells, based upon a similar role 

played by Lyn in the calcium dependent activation of mast cells. The vital role 

played by zinc and the zinc transporter ZIP7 in TamR cells is becoming 

increasingly apparent.  Thus therapies that are able to target the zinc release 
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and subsequent increase in phosphatase activity leading to tyrosine kinase 

inhibition in TamR cells provide an exciting, novel opportunity for therapeutic 

drug development. Our data proposes that Lyn lies upstream of ZIP7 and the 

zinc release from the endoplasmic reticulum suggesting that targeting Lyn as a 

therapy for breast cancer may prove productive.  This could either be 

following acquisition of tamoxifen resistance or alternatively in conjunction 

with anti-hormone therapies such as tamoxifen or aromatase inhibitors as an 

upfront dual therapy for breast cancer. 
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6.1 Appendix I: 50X Tris-Acetate-EDTA (TAE) Buffer  

 

 Per litre Final concentration 

Tris Base 242g 2M 

Glacial acetic acid 57.1ml 1M 

EDTA (0.5M, pH 8.0) 100ml 0.05M 

 

 

 Adjust pH to 8.3 

 Make up to 1 litre with distilled H2O 

 Dilute 1:50 with distilled H2O for use 
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6.2 Appendix II: Loading buffer for gel electrophoresis 

 

 To give 10ml Final concentration 

Sucrose 6g 60% (w/v) 

Bromophenol blue 0.025g 0.25% (w/v) 

 

 Make up to a volume of 10ml with distilled, RNase free H2O 

 Filter in a 0.2μM syringe to remove any remaining bromophenol blue 

crystals 
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6.3 Appendix III: 3X loading buffer 

 

 For 10ml Final concentration 

SDS 0.6g 2% (w/v) 

Glycerol 3ml 10% (v/v) 

Tris base 3.6ml (0.5M stock) 60mM 

H2O To give 10ml  

Bromophenol blue 0.003g 0.001% (w/v) 
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6.4 Appendix IV: SDS-PAGE running buffer 

 

 For 1 litre Final concentration 

Tris base 3.03g 0.25M 

Glycine 14.4g 1.92M 

SDS 1g 0.1% (w/v) 

H2O 1 litre  

 

 Use 5M HCl to adjust pH to 8.3 before use 
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6.5 Appendix V: Western blot transfer buffer 

 

 For 1 litre Final concentration 

Tris base 3.03g 0.25M 

Glycine 14.4g 1.92M 

Methanol 200ml 20% (v/v) 

H2O 800ml  

 

 


