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Abstract

Reverse engineering allows the geometric reconstruction

of simple mechanical parts. However, the resulting models

suffer from inaccuracies caused by errors in measurement

and reconstruction so such models do not have the exact

congruences, symmetries and other regularities the original

designer intended. We wish to impose such regularities in

a beautification process. This paper discusses the particu-

lar problem of detecting approximate congruences between

parts (e.g. a pair of handles) of a reconstructed B-rep

model, so that a subsequent step can enforce them exactly.

A practical detection algorithm is given for models defined

using planes, spheres, cylinders, cones and tori. Analysis of

the algorithm and experimental results show that expected

congruences are detected reasonably quickly.

Keywords: Approximate Congruence Detection; Beautific-

ation; Reverse Engineering; Geometric Modelling.

1. Introduction

Reverse engineering the shape of a 3D object entails re-

constructing a geometric model of the object from meas-

ured data [22, 23]. Our goal is to create a system that re-

constructs B-rep models of simple engineering objects with

a minimum of human interaction, usable by naive users

as well as engineers. For maximum utility, the generated

model should have all the intentional geometric regularities

present in the original, ideal, design of the part.

This paper considers objects made from planar, spher-

ical, cylindrical, conical and toroidal surfaces that either

meet at edges, or are connected by fixed-radius rolling ball

blends. It has been shown [14, 19] that a wide range of

mechanical components can be described solely using these

surfaces; algorithms are available that reliably determine

such faces from point clouds [15]. We assume here that

the blends are represented as edge attributes in the initial

model. Thus, they are derived from primary surfaces in a

final model building step, and so can be ignored in the rest

of the paper.

In reverse engineering, numerical errors occur in the re-

construction algorithms, and noise is present in measured

data. Additional errors may arise due to wear of the object,

and the manufacturing method used to make it (e.g. added

draught angles). Reverse engineering practice usually fits

each face independently of the other faces in the model.

However, we wish to recover a geometric model of the ideal

object that the designer conceived. We propose to improve

the reconstructed B-rep model by adjusting it in a separate

beautification post-processing step [11, 12, 13, 18, 19].

To be able to enforce desired regularities on the model,

they must first be detected. Here, we consider the problem

of detecting approximate congruences between parts of the

object (‘features’). This will allow us to make features ex-

actly congruent where before they were only approximately

congruent, and also align features in special relative orient-

ations where before they were only approximately aligned.

For simplicity, we assume that all faces are of the correct

type, e.g. a large radius cylinder is not mistakenly represen-

ted as a plane. We also assume that the topology of congru-

ent parts is the same (e.g. that one of them does not have

very small faces or edges where the other does not). Al-

lowing for such errors could easily be incorporated into the

framework described here, at a relatively small extra cost.

Merging adjacent points caused by small topological errors

when looking for symmetries is addressed in [19]; a similar

approach is applicable here.

This paper considers detection of congruences; complete

object symmetries are studied elsewhere [18]. A given fea-

ture may be symmetric itself, or a set of congruent features

may be arranged on a symmetric pattern. Sometimes an ob-

ject symmetry may be incomplete, but we still wish to find

congruences between parts. Finding incomplete symmetry

is harder than complete symmetry, but finding congruences

can provide some hints.

When we detect a congruence, we also want the iso-

metry (transformation mapping) relating the congruent fea-

tures, as we not only wish to make each copy of the feature

identical, but we also wish to arrange them in the model in

a beautified relationship.

Our overall strategy is to identify sets of congruent fea-



tures, and the isometries relating them. We also check if

each feature posseses an approximate symmetry, and if the

set of features is related by an approximate symmetry; this

processing is not described further in this paper.

Our problem can be seen as a generalized registration

problem between sets of discrete, identified points. Regis-

tration algorithms in computer vision [5] are related, but op-

erate on large amounts of data. Our models have relatively

few points, so such algorithms are not directly useful. (Also

in computer vision, the correspondences between points to

be registered are generally not known in advance.)

Our method seeks all sets of approximately congruent

features of a model; a feature is defined as some set of

connected faces. The number of detected congruence sets

should be minimal in the sense that none of the elements of

one set is approximately congruent to an element of another

set. The features should be maximal in the sense that if two

features are congruent, it is not possible to extend them by

adding further connected faces, while retaining congruence.

For example, the model in Plate 1(a) comprises three cu-

bical bosses located on top of a octahedron; the bosses are

identical except that the left hand boss also has a cylindrical

pocket in it. Our algorithm finds the following information:

(i) The approximate congruences between the side faces of

the octahedron—the 8 red faces in Plate 1(a). They posses

8-fold approximate symmetry. (ii) The approximate con-

gruences between the three object parts each composed of

the four side faces of one of the blocks—the 12 red faces

in Plate 1(b). These parts each have a 4-fold approximate

symmetry. (iii) The approximate congruence between the

five faces of the two right-hand bosses—the 10 red faces

in Plate 1(c), also having 4-fold approximate symmetry.

2. Previous work

Exact congruence between polyhedra has been studied

extensively. Alt et al [2] and Atkinson [4] present optimal

O(n log n) algorithms for geometrical congruence (n is the

number of vertices). Akutsu [1] presents a randomised al-

gorithm taking O(n(d−1)/2 log n) time for determining the

congruence of point sets in d-dimensions. The above al-

gorithms calculate the transformation between two point

sets in O(n log n) time, but can be hard to implement.

Checking exact congruence is much easier than checking

approximate congruence, because in the exact case we only

need check if two things are exactly the same. In the ap-

proximate case, two things may match within tolerance, but

this matching is no longer unambiguous: matching cannot

be done sequentially. For example, given lengths 1, 2, 3, 4,

if we try to match them with 2, 3, 4, 1 in turn, with toler-

ance 1.5, then we notice only in the last step that 4 does not

match 1. We must try other matchings to find the solution.

For approximate congruence detection between two sets

of n points, Alt et al. [2] present an O(n8) algorithm.

Schirra’s [20] approximate congruence algorithm takes

O(n4) time to test ε-congruence in the plane, while Hef-

fernan [9] presents an O((ε/δ)6n3) approximate congru-

ence algorithm for point matching, where ε is a tolerance,

δ is a positive real number smaller than ε. Ambuhl et al [3]

describe an O(n8.5) algorithm for computing approximate

congruence of largest point sets. All these algorithms are

based on distance checking using a given tolerance ε.

Our approximate congruence algorithm has O(n4.5)
time complexity, given certain assumptions concerning the

nature of the object being analysed. It finds congruent parts

of a single object, and is capable of handling a wider range

of models than point sets and polyhedral objects. As well

as finding congruences, it also reports the isometric map-

ping(s) relating congruent features. Our algorithm does not

need a predetermined tolerance, but automatically chooses

a tolerance level. The way in which the tolerance is chosen

allows a greedy approach to matching which is the basic

reason for the good performance.

3. Congruence of faces from a set of points

One main step in our algorithm determines if two faces

are congruent. This can be done by ensuring that the faces

are portions of surfaces with the same defining parameters

(e.g. radii) and patch boundaries (edge loops). The bound-

aries can only match if they are made up of correspond-

ing congruent curves. The curves are congruent if and only

if they represent the same portion of the same space curve

with the same parameters.

If the underlying faces are compatible (see Sections 5.3),

then we choose a set of characteristic points according to

the type of face. These are sufficient to guarantee that if the

characteristic points have a given congruence, so do the un-

derlying faces; we must do the same for the curves forming

the face boundaries as part of this process.

In certain special cases, e.g. two complete circles of the

same radius, no points at all are needed to check congru-

ence. However, when we later perform tests on groups of

faces, we still need a representative point for e.g. a circular

face with such a boundary, as described later.

We now consider congruence of edges and faces, ex-

plaining which characteristic points are used, and briefly

justifying that these are sufficient. We first consider edges,

as congruent faces must have congruent edges.

3.1. Congruent edges

For straight line segments, we take both end points as

the characteristic points. For circular arcs of equal radii, we

take end points and the mid-point of the arc. Any 3 points

define a unique circle; the mid-point allows us to choose



(a) (b)

Figure 1. Characteristic points of straight

lines, circular arcs and elliptical arcs

between the longer and shorter arc with given end points.

Complete circles are congruent if they have the same radii;

we use their centres as characteristic points when compar-

ing groups of faces. See Figure 1(a).

For elliptical arcs of the same major and minor radii, we

take 5 points which are the end points and points 1
4 , 1

2 , 3
4

of the way around the arc—see Figure 1(b). Five points

define an ellipse, and can disambiguate between the larger

and shorter arc. Complete ellipses of the same radii are con-

gruent; we use the centre and the 4 points where the prin-

cipal axes meet the ellipse as the characteristic points when

comparing groups of faces.

We assume that freeform edges are represented as

NURBS curves. Control points give suitable characteristic

points for matching using algorithms like those in [7, 10,

16]. As the curves may come from different sources, such as

intersection routines or fitting procedures, degree elevation

and / or reparametrisation may be needed before they are

comparable. To match free-form curves with lines, circles,

or ellipses, they must be converted to NURBS form first.

3.2. Congruent faces

For a plane, at least 3 points are needed to uniquely

define it; 4, 5, 6, and 7 points are needed for a sphere, cyl-

inder, cone, and torus respectively [6].

We initially determine possible congruence of any two

faces having matching face types by checking if their

boundary edge loops are congruent. We then compare suf-

ficient identified points to determine the underlying surface

uniquely. These points come from the face boundary, and

in the case of closed underlying surfaces, we also include

a point inside each face: a boundary splits a closed surface

into two finite pieces, and we need to select the correct one.

The inner point is chosen as the centre of the face.

In detail, for planar faces, at least 3 points are needed; we

normally take the end points of each edge in the boundary

of the face. However, if only 1 closed edge bounds the face,

we take points at the start, 1
3 , and 2

3 of the way around the

edge; if 2 edges form the edge loop, we take the end and

(a) (b)

Figure 2. Characteristic points of planar faces

mid-points for each edge. See Figure 2.

For spherical faces, at least 4 points are needed including

the centre of the face. The other 3 are normally the ends of

the edges bounding the patch. If there are less than 3 edges,

we proceed as in the planar case to obtain sufficient points.

For cylindrical, conical and toroidal faces, we use the same

general principles, noting whether they are open or closed

underlying surface types.

Many special cases may arise, and must be carefully

handled. A few examples follow. A further planar case is

a face bounded by two loops, an inner and outer loop, each

having only one edge. Not all 5-tuples of points serve to

define a cylinder, so we must be careful to choose a generic

set of 5 points. Given a circular edge with no vertices on

it, we must be careful to choose three representative points

which are in the same relative positions to the surrounding

faces—we must consider more than just the edge itself.

4. Algorithm outline and example

Our algorithm aims to find approximate congruences

between parts of an input 3D B-rep model; the output is

a list of approximate congruences, together with the iso-

metries which relate the congruent features. A single pair

of features may be related by more than one isometry if

the features themselves have an approximate symmetry [2].

E.g. the two right-hand bosses in Plate 1 may be aligned in

more than one way because of their symmetry.

We look for seed congruences within the model, then

use a region growing approach to grow congruences from

the seeds. The top level of the algorithm checks for

approximate congruence between every compatible face

pair in the model using the congruence method. The

compatible method quickly eliminates pairs which can

not be congruent. For each congruent face pair found and

not already used, the main algorithm calls expand in an

attempt to extend this congruence to include adjacent faces,

then their neighbours, and so on. Again compatible and

congruence are used.

In expand, for each initial pair of congruent faces, two

lists are set up, each containing one of the faces. Further

pairs of faces are then considered, each being a neighbour
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list1=(1)
list2=(6)

list1=(1 4)
list2=(6 9)

list1=(1 3 4)

list2=(6 8 9)

Figure 3. Illustration of finding approximate

congruent faces

of some face in each list respectively. If the two new faces

are congruent, then we try adding them to the lists which

they neighbour, and see if a congruence still exists between

the extended lists. If so, the new lists are retained, otherwise

the new pair of faces is discarded. This process is repeated

until there are no pairs of faces neighbouring the lists left to

consider, resulting in a maximal congruence of two sets of

adjacent faces.

As each such congruence is found, it is entered into a res-

ult list, together with the related mapping(s). After all con-

gruences have been found, this list is rationalised to merge

common congruences.

A simple example is used to demonstrate the algorithm.

Suppose there are two cubical features at either end of an

object (see Figure 3(a)). Suppose the front faces (1, 6) of

the two cube features (see Figure 3(b)) are considered as a

pair. Firstly, we call compatible to check whether con-

gruence of the two faces is possible. They are both planar

faces with one external edge loop comprising four straight

edges of unit length, so compatible returns true for this

pair of faces. This causes a call to congruence using the

coordinates of the characteristic points of each face. These

faces are congruent, so the algorithm calls expand to ex-

tend the congruence to neighbouring congruent face pairs.

In expand, from the initial face pair, we put face (1) in

list1 and face (6) in list2. Suppose we next find that

bottom face (0) is adjacent to list1, and bottom face (5)

is adjacent to list2. We call compatible to check pos-

sible congruence of the faces (0 5). They can not be congru-

ent because the circle radii of their internal edge loops are

not equal. These two faces are ignored. We might then find

face (2) to be adjacent to list1 and face (7) to be adjacent

to list2. They are also not compatible and are ignored.

Continuing, we might find that face (4) is adjacent

to list1 and face (9) is adjacent to list2. The

compatible and congruencemethods show that faces

00: find congruences(body)

01: INPUT: body

02: OUTPUT: list of congruence lists,

03: list of mapping lists

04: integer n = number of faces(body)

05: global array of faces f[n]

06: f[1..n] = get faces(body)

07: array of integers checked[n, n]

08: checked[1..n, 1..n] = 0

09: //-1 means not congruent

10: // 0 means not checked

11: // 1 means congruent

12: // 2 means already added

13: list of congruence lists = {},

14: list of mapping lists = {},

15: FOR i = 1 to n

16: FOR j = i + 1 to n

17: IF checked[i, j] != 2 THEN

18: IF checked[i, j] == 0 THEN

19: checked[i, j] = compatible(f[i], f[j]) &&

20: congruence(f[i], f[j])

21: IF checked[i, j] == 1 THEN

22: result = expand(i, j)

23: congruence lists = append(result.face lists)

24: mapping lists = append(result.map list)

25: END FOR

26: END FOR

27: rationalise(congruence lists, mapping lists)

28: RETURN congruence lists, mapping lists.

Figure 4. The main algorithm

(4 9) are congruent. We add face (4) to list1 and face (9)

to list2. We then call congruence on the two lists,

list1 = (1 4) and list2 = (6 9). They are congruent

(see Figure 3(c)), so faces 4 and 9 are kept in these lists.

In a similar way, faces (3) and (8) are added to list1 and

list2 (see Figure 3(d)).

No further adjacent congruent face pairs can be found

for those faces in the face lists. Thus, the faces (1 3 4)

in list1 form a feature which is congruent to the feature

comprising faces (6 8 9) in list2. This fact is then stored

in the result list as ((1 3 4) (6 8 9)); the corresponding iso-

metry is also stored.

The algorithm continues processing all further face pairs.

Any other congruent face groups are also found.

5. Algorithm details

5.1. The main algorithm

The main algorithm is shown in Figure 4. The top level



of the algorithm finds congruent face pairs as seeds, and

then tries to expand them to congruent adjacent face groups.

First, the array f collects all faces of the B-rep model

(line 6). A global integer array, checked (line 8), is set

up to describe the congruence state of each possible pair of

faces (see later). Then (lines 15–26), in two FOR loops,

the algorithm checks all face pairs. Any pair which has

already been output as part of a congruent group of faces

(checked = 2) is skipped.

If congruence has not yet been decided for the pair

(checked = 0), we check if the pair is potentially con-

gruent using the compatible method. If so, we call

congruence to decide if they are related by an approx-

imate congruence. If this face pair is congruent and has not

yet been used (line 21), we call expand to expand this pair

to include congruent adjacent face pairs, which gives two

lists of congruent adjacent sets of faces which are as large

as possible (line 22). Two face lists (face lists) repres-

enting the two congruent features, and a list giving their iso-

metric mapping(s) (map list), are returned by expand.

These are added to the list of congruences found, and the

list of mappings (lines 23–24).

Congruences may be related. For example, suppose that

face set A is congruent to face set B, and furthermore that

face set B is congruent to face set C. We should merge the

congruence pairs (A, B) and (B, C) to give the overall con-

gruence list (A, B, C), and the mapping list must also be

kept in step. Line 27 carries out this merging. Finally, line

28 returns the list of congruences and associated mappings.

In the main algorithm, and in expand, checking con-

gruence of two faces is done frequently, and the result for

any face pair may be needed repeatedly. To avoid repeat-

ing the computation, the results are cached. A global array

checked is used to mark the status of each face pair; it

is used by both the main algorithm and expand. A value

of −1 means the two faces are not congruent. 0, the initial

value for all face pairs (line 8), means the face pair has not

yet been checked. 1 means the two faces have been checked

and are congruent. 2 means the two faces are congruent and

they have already been used as part of some face group in

a congruence. Only if a face pair has not already been con-

sidered (line 18), is it checked: if the checked value is

still 0, the congruence of the face pair is determined and

the result is written to the checked array (line 19). If the

checked value of the face pair is 1, i.e. the face pair is

congruent but not yet used, we call expand to expand this

congruent face pair to adjacent congruent face pairs. If the

checked value of the face pair is −1, this pair is ignored

and is not processed by expand.

The expandmethod is shown in Figure 5. The input is a

congruent face pair and the output comprises two approxim-

ately congruent features, as face lists, and a list of isometric

mappings relating them. The initial face pair is expanded

00: expand(i, j)

01: INPUT: face pair indices i, j,

02: OUTPUT:face lists and mapping list

03: list of faces list1 = list(f[i])

04: list of faces list2 = list(f[j])

05: list of faces list3 = f-f[i]-f[j]

06: WHILE an unused neighbour f[m] of list1 remains

07: list3 = list3 - f[m]

08: WHILE an unused neighbour f[n] of list2 remains

09: IF checked[m, n] == 0 THEN

10: checked[m, n] = compatible(f[i], f[j]) &&

11: congruence(f[i], f[j])

12: IF checked[m, n] == 1 THEN

13: list of faces lista = list1 + f[m]

14: list of faces listb = list2 + f[n]

15: IF congruence(lista, listb) THEN

16: checked[m, n]=2

17: list1 = list1 + f[m]

18: list2 = list2 + f[n]

19 list3 = list3 - f[n]

20: BREAK

21: END WHILE

22: END WHILE

23: result.face lists = list(list1, list2)

24: result.map list = map list

25: RETURN result

Figure 5. The expand method

to include all their neighbours which preserve congruence,

then the neighbours’ neighbours, and so on.

5.2. The expand method

The two initial faces are put into two separate lists (lines

3–4), and these lists are expanded. Faces are added to each

of the two lists such that (i) each list is a connected group of

faces, (ii) each list is related by a congruence to the other,

and (iii) each list is as large as possible.

The two WHILE loops process all congruent face pairs

(lines 9–11) neighbouring each list, as each list grows.

If face f[m] is adjacent to list1, f[n] is adjacent to

list2, and f[m] and f[n] are related by an unused ap-

proximate congruence (line 12), we create two temporary

lists: lista = f[m] + list1 and listb = f[n]

+ list2 (lines 13–14). We then call congruence to

determine if lista and listb are congruent (line 15).

If so, we permanently add f[m] and f[n] to list1 and

list2 respectively (lines 17–19). We repeatedly add fur-

ther such pairs to list1 and list2 until no more ad-

jacent congruent face pairs exist in the face list (lines 6–

22). The checked array is used for efficiency as explained

earlier. As face pairs are added to list1 and list2, their



checked values are set to 2 to avoid being considered fur-

ther (line 16). list1 and list2 are returned in a res-

ult list (line 23). The list of isometries is also returned;

it comes from a global variable set by the congruence

method (line 24).

5.3. The compatible method

Both the main algorithm and expand call

congruence to find an approximate congruence between

two sets of points if any exists. The congruence method

is expensive, especially for complex faces. Thus, we

use the compatible method to decide quickly if a

pair of faces can potentially be congruent before we run

congruence. For example, if one face is planar and the

other face is cylindrical, the two faces cannot be congruent.

The principles used by the compatible method are that

faces can only be congruent if they satisfy the following

requirements (within tolerances where appropriate):

Faces must have the same face type (planar, cylindrical,

etc.). Cylinders, cones, spheres and tori must have the same

convexity or concavity. Radii of cylinders, cones, spheres

and tori must agree. Semi-angles of cones must agree.

Faces must have the same number of edge loops. Corres-

ponding loops must agree in type (loops may be external,

internal or end loops). Corresponding loops must have the

same number of edges. Corresponding edges must agree

in length. Corresponding vertices must have the same num-

ber of edges around them. Face types around corresponding

vertices must be consistent.

If two faces meet all the above requirements, they may

be a congruent face pair. If any one of the above tests fails,

we do not continue checking the others, and mark the face

pair as non-congruent.

5.4. The congruence method

The congruence method decides if two sets of faces

are congruent. Its input comprises two face lists. Its output

is a boolean variable indicating whether the two face sets are

congruent or not. If they are, the global variable map list

is set to the list of isometries relating the two face sets.

First, the characteristic points are collected from each

face. If there is at least one transformation which maps the

corresponding characteristic points in the two face sets, the

two face sets are congruent. A pair of corresponding tet-

rahedra are sufficient to determine an isometry. Thus, to

try to find the transformation, we compute a special tetra-

hedron from each point set, and find the mapping relating

the tetrahedra, if it exists—if not the sets are not congruent.

We then simply have to test if this mapping correctly maps

the rest of the points in the two sets. This is much quicker

than using all points to find the isometry; a similar method

00: congruence(ls1, ls2)

01: INPUT: two face lists

02: OUTPUT: boolean congruent and mapping(s)

03: list p = get characteristic points(ls1)

04: list q = get characteristic points(ls2)

05: integer n = length(p)

06: bool congruent = false; global list map list = {}

07: point cp = centroid(p); point cq = centroid(q)

08: real tol = min(mini6=j(d(pi, pj)), mini6=j d(qi, qj))/2

09: real max length = 0; point t1

10: FOR i = 1 to n

11: IF max length < d(cp, pi) THEN

12: max length = d(cp, pi); t1 = pi

13: END FOR

14: real max area = 0; point t2

15: FOR i = 1 to n

16: IF max area < area(cp, t1, pi) THEN

17: max area = area(cp, t1, pi); t2 = pi

18: END FOR

19: real max volume = 0; point t3

20: FOR i = 1 to n

21: IF max volume < volume(cp, t1, t2, pi) THEN

22: max volume = volume(cp, t1, t2, pi); t3 = pi

23: END FOR

24: IF max volume ≈ 0 THEN return plane cong(ls1,ls2);

25: map list = {}

26: FOR i =1 to n

27: IF |d(cpt1) − d(cqqi)| < tol THEN

28: FOR j = 1 to n, j != i

29: IF |d(cpt2) − d(cqqj)| < tol &&

30: |d(t1t2) − d(qiqj)| < tol THEN

31: FOR k = 1 to n, k != i, k != j

32: IF |d(cpt3) − d(cqqk)| < tol &&

33: |d(t1t3) − d(qiqk)| <tol &&

34: |d(t2t3) − d(qjqk)| < tol THEN

35: transf = calculate matrix(cp, t1, t2, t3, cq, qi, qj , qk)

36: IF pointset isometric(transf) &&

37: face mapping(transf) THEN

38: append(map list, transf)

39: congruent = true;

40: END FOR

41: END FOR

42: END FOR

43: RETURN congruent

Figure 6. The congruence method

is used in Mills’ symmetry algorithm [17]. (The tetrahedra

may not be unique, leading to multiple mappings, as noted

earlier.) See Figure 6.

Lines 3–4 get the characteristic points for the faces in

each face set. We then compute the special tetrahedron for

one point set (lines 7–23). Ideally we would like to use the



largest non-degenerate tetrahedron formed by the point set.

This is expensive to compute, so instead we find the tetra-

hedron with initial vertex the centroid of the point set (line

7), together with those points in the set which maximise the

length (lines 9–13), area (lines 14–18) and volume (lines

19–23) of the simplices formed as the second, third and

fourth points are added. Line 8 sets the tolerance for match-

ing points after transformation to half the smallest distance

between any pair of points in either set; this ensures that the

wrong points are not matched.

The whole point set is two dimensional if the com-

puted tetrahedron volume (line 24) is approximately zero, in

which case we call a similar plane congmethod (omitted

here) to return the congruence of the two planar faces.

In lines 25–42, we try to map the tetrahedron of the first

point set to all suitable tetrahedra from the second point set

(there may be more than one), and then check if the dis-

tances between all corresponding points between the two

point sets are preserved. If they are, we also check that the

transformation has mapped the correct face types into each

other to guarantee this is a correct congruence.

Lines 26–34 identify points from the second set which

form a tetrahedron matching the tetrahedron from the first

set. Line 35 determines the transformation by solving a

linear system relating the mapped points of the tetrahedra.

Lines 36–37 check that the mapping preserves distances

from centroids for corresponding points in the two sets, and

preserves face types. If so, lines 38–39 add the transforma-

tion matrix for the congruence to the list of mappings, and

set the result to true.

6. Algorithm analysis

We now consider the running time of the algorithm. For

simplicity, we use n to interchangeably denote the number

of faces, edges, and vertices; doing so is justified by Euler’s

formula which is a linear relation between these quantities.

Furthermore, while it is possible to construct objects where

a few faces have many vertices, and most faces have just a

small number, such objects are uncommon in engineering

practice, so we will also assume that there is approximately

a limited number (i.e. bounded by a constant) of vertices

and edges per face. This assumption means that n is pro-

portional to the number of characteristic points for the ob-

ject. It also means that each face has a bounded number of

neighbours. Thus, each face has at most m characteristic

points, and each face has at most j neighbours where m
and j are small constants. While it is possible to construct

objects which do not meet these assumptions, many objects

which are being reverse engineered will meet them, at least

approximately. Thus, what follows is not an analysis of the

worst case performance of our algorithm, but a discussion

of how well it might perform in practice.

The main algorithm runs over all face pairs, and tests if

the pair is congruent using the congruence method. For

each congruent face pair, it calls expand to expand the pair

to a list of adjacent congruent faces.

Suppose the congruence checker is called on two sets

of p points. Lines 3–23 take time O(p2) because of line

8. Lines 26–35 find mapped tetrahedra, taking O(p3) time.

However, there are no more than O(p1.5) matches pos-

sible [8]. Lines 36–37 call pointset isometric and

compatible; each takes time O(p2). Thus overall, the

congruence method takes time O(p3.5).
Let us now examine the overall algorithm. We will do so

by considering three cases, the third of which is worst.

Case one: the object has no congruent features. Only

O(n2) pairs of faces with m points each are checked for

congruence; no expanding of lists occurs. Each call to the

congruence checker takes time O(m3.5) = O(1). Thus the

overall algorithm is O(n2).
Case two: there are n/2 separate congruences, and each

congruent face pair has no neighbouring congruent faces.

Each call to the congruence checker takes time O(m3.5),
as no face pairs are expanded; there are n/(2m) such calls.

Again, in this case, the algorithm takes time O(n2).
Case three: there is a single congruence between the

two halves of the object. Starting with a candidate face pair,

expand is only called once. There are many repeated calls

to congruence as the face lists are expanded. We make j
calls at each stage, on sets of m, 2m, . . . , n/2 points. This

takes time O(n2) + j
∑n/2−1

i=1 O((mi)3.5) = O(n4.5)
Case three is the worst case under the assumptions

we have made, which may not hold in practice—for ex-

ample, if the object parts have a lot of symmetries, then

the congruence checker may be called more often. How-

ever, such are not normally likely to arise. Thus, overall, we

expect the running time to be somewhere between O(n2)
and O(n4.5), assuming that each face has a bounded num-

ber of neighbours.

7. Experimental results

7.1. Test objects

Various objects were used to validate the congruence de-

tection algorithm. Objects 1 to 4 are simple models with a

variety of features. Although Tate’s algorithm was designed

to detect partial symmetry rather than feature congruence,

we also compare some of our results with hers. Objects 5

and 6 are two models from her thesis [21].

Object 1 is a hexagonal block with a cubic pocket

(Plate 2(a)). Object 2 is a hexagonal block with two con-

gruent toroidal “handles”, two congruent cylindrical faces,

two congruent hexagonal bosses, a cubical boss, two con-

gruent spherical bosses and a spherical pocket, as shown in



(Plate 2(b)). Object 3 is an octahedral block with three cu-

bical bosses, one of which has a cylindrical hole (Plate 1).

Object 4 is an octahedral block with two congruent cyl-

indrical faces, two congruent hexahedral bosses, one cu-

bical boss, two congruent spherical bosses, and a spher-

ical pocket (Plate 3(a)). Object 5 is a cylinder with a

hole (Plate 4); it is symmetric. Object 6 is a piston head

(Plate 3(b)).

7.2. Congruences detected

Table 1 shows the algorithmic results. Column 3 is the

number of approximate congruences detected between parts

of the object. Column 4 is the time taken by our algorithm

in seconds. Column 5 lists the number of partial symmetries

detected by Tate’s algorithm. Column 6 is the time taken by

Tate’s algorithm in seconds.

In tests 1 to 5 our algorithm found all congruences which

we expected from a manual analysis. For object 1, two

congruent sets of side faces were found. For object 2, the

congruences found were: the two hexagonal bosses, two

toroidal surfaces, two cylindrical surfaces, two spherical

bosses, and the sides of the cubical boss. For model 3,

the congruences found are shown in Plate 1. For model

4, some of the congruences found are shown in Plate 3(a).

Altogether they were: two hexagonal bosses, two spherical

pockets, the side faces of the cubical boss, the side faces of

the main octahedron, and the faces of the two cylindrical

bosses. For test object 5, three congruences were found, re-

lating planes 1 and 3, planes 6 and 7, and cylindrical faces

2 and 4 (Plate 4). For object 6, twenty approximate con-

gruences were found. (Some congruent features containing

freeform surfaces, were not found, as these were outside the

scope of our algorithm.)

7.3. Running time

We performed further tests on the time taken by the al-

gorithm on a 450MHz Pentium III GNU/Linux machine

with 256Mb of RAM, using ACIS as the modeller, to ana-

lyse a variety of objects, including Objects 1–6 and others;

some are shown in Plate 5.

The averaged timings for several runs in each test case,

and the number of approximate congruences found, are

given in Table 2. A nonlinear analysis was then performed

to find the best fit to the timing data of the form t = k×nx,

where t was the time taken and n was the number of faces.

This gave an empirical performance for the algorithm of

time O(n3.24), see Figure 7.

This experimental performance lies between the sugges-

ted limits of O(n2) needed to consider all pairs of faces,

and the limiting case suggested of O(n4.5). More data is

needed before final conclusions can be drawn about the time

20 40 60 80 100 120
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20

40
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80

100

120

Time

Figure 7. Algorithm performance

Number of Number of Time taken

faces congruence groups (seconds)

7 3 1.30

10 3 4.00

13 2 2.40

14 5 8.00

14 3 2.09

14 3 1.98

18 3 2.13

18 3 2.63

19 23 2.95

23 3 2.61

28 5 4.62

28 4 6.32

33 7 6.81

33 10 10.40

50 8 18.55

66 3 26.11

68 10 34.52

70 20 21.19

87 10 109.31

93 8 81.11

Table 2. Test results

needed in ‘typical’ cases. However, we observe from our

testing that: (i) For objects with similar numbers of faces,

objects with a large number of small congruences are usu-

ally analysed more quickly than those with a small number

of large congruences. This is because of the repeated calls

to compatible and congruence in expand in the lat-

ter cases. (ii) The time taken increases as the objects get

larger, but not as badly as our limiting case analysis would

suggest. Although it is hard to claim that our small test set

are representative of ‘typical’ engineering objects, they do

illustrate some congruences which might be found in prac-

tice. The times taken for these test objects are low, lead-

ing us to conclude that the algorithm can analyse moder-

ately complex objects (of say 200 faces, such as might be

encountered in practical reverse engineering) within a few

minutes.



Test Number Our algorithm Tate’s algorithm

object of faces Detected con-

gruences

Time

(seconds)

Detected sym-

metries

Time

(seconds)

1 13 2 2.20

2 38 5 9.88

3 33 5 10.40

4 27 3 5.45

5 7 3 1.43 4 3

6 70 20 21.19 14 25

Table 1. Algorithm results on test objects
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(a) (b) (c) (a) (b)

Plate 1. Test object 3 and its approximate con­

gruences

Plate 2. Test objects 1 and 2 and some of

their congruences

(a) (b)

Plate 3. Test objects 4 and 6 and some of their
congruences

Plate 4. Test object 5 and some of its con­
gruences

Plate 5. Sample test models used in the experiments


