
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/31 7 5 2/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Lan g b ein, F r a nk Cu r d , Mills, B. I., M a r s h all, Andr e w David a n d M a r t in, R alp h

Rob e r t 2 0 0 1. Recog nizing g eo m e t ric p a t t e r n s for b e a u tifica tion of r e con s t r uc t e d

solid m o d els. P r e s e n t e d a t : S MI 2 0 0 1 In t e r n a tion al Confe r e n c e on S h a p e Mo d eling

a n d Applica tions, Ge nova, I t aly, 7-1 1 M ay 2 0 0 1. P roc e e dings of t h e S MI 2 0 0 1

Int e r n a tion al Confe r e n c e on S h a p e Mo d eling a n d Applica tions. IEEE, p p. 1 0-1 9.

1 0.1 1 0 9/S MA.20 0 1.92 3 3 7 0

P u blish e r s p a g e:

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Recognizing Geometric Patterns for Beautification of

Reconstructed Solid Models

F. C. Langbein B. I. Mills A. D. Marshall R. R. Martin

Department of Computer Science, Cardiff University

PO Box 916, 5 The Parade, Cardiff, CF24 3XF, UK

Abstract

Boundary representation models reconstructed from 3D

range data suffer from various inaccuracies caused by noise

in the data and the model building software. The quality of

such models can be improved in a beautification step, which

finds regular geometric patterns approximately present in

the model and imposes a maximal consistent subset of con-

straints deduced from these patterns on the model. This pa-

per presents analysis methods seeking geometric patterns

defined by similarities. Their specific types are derived from

a part survey estimating the frequencies of the patterns in

simple mechanical components. The methods seek clusters

of similar objects which describe properties of faces, loops,

edges and vertices, try to find special values representing

the clusters, and seek approximate symmetries of the model.

Experiments show that the patterns detected appear to be

suitable for the subsequent beautification steps.

1. Introduction

Reverse engineering a physical object is the extraction

of information from the object that is sufficient for a par-

ticular purpose like reproduction or redesign. Depending

on the application, different representations of the object

are needed. For an overview see [13]. We are interested

in reconstructing a boundary representation (B-rep) model

of a particular engineering part from 3D range data, which

has all the desired geometric properties present in the orig-

inal, ideal design. Our ultimate goal is an automated, in-

telligent 3D scanning system suitable for naive users and

non-engineering applications as well as engineers.

We intend to reconstruct models with accurate geometric

properties for engineering parts with only planar, spherical,

cylindrical, conical and toroidal surfaces that either inter-

sect at sharp edges or are connected by fixed radius rolling

ball blends. Valid B-rep models approximating these ob-

jects can be generated by current reverse engineering sys-

tems [3]. However, the generated models suffer from vari-

ous inaccuracies created by sensing errors from the data ac-

quisition phase as well as approximation and numerical er-

rors arising from the reconstruction process. Improving the

precision of the sensing techniques and the reconstruction

methods could reduce the errors, but some errors will al-

ways remain. As our intention is to recreate an ideal model

for a physical object, we also have to consider additional er-

rors introduced by possible wear of the object and the par-

ticular manufacturing method used to make it. To ensure

that certain regular geometric patterns, like aligned cylin-

der axes or orthogonal planes, are present, they have to be

enforced at some stage of the reverse engineering process.

Previous approaches augment the surface fitting step by

constraint solving methods [14] such that, for instance, two

planes are fitted simultaneously under the constraint that

they are orthogonal. Another approach is to identify fea-

tures like slots and pockets whose approximate location and

type is provided by a human and use this information to

improve the results of the segmentation and surface fitting

phase [12].

In our approach we attempt to improve the B-rep model

initially created by the model building software in a sepa-

rate step which we call beautification. Improving the model

without further reference to the point data avoids the com-

putational expense of constrained fitting. An analyser is

employed to find a set of regular geometric patterns as con-

straints that are approximately present in the initially cre-

ated model. We aim to find a large set of possible con-

straints, which may contain inconsistencies. A maximal

consistent subset of likely constraints has to be enforced by

subsequent beautification steps to create an ideal model.

In this paper we discuss analysis methods to find com-

mon regular geometric patterns. We introduce the notion of

similarity as the fundamental concept for the patterns and

outline the results of a part survey identifying common pat-

terns. Then we present methods to find similarities related

to parameters, edge loops, directions, axes, positions and

surface types and a method to find approximate symmetries

of point sets derived from the model. Finally we discuss the

results of some experiments.

2. Geometric patterns as similarities

We use similarity as a concept to recognize certain ge-

ometric patterns that are approximately present in a B-rep

model. From a global point of view this leads to approxi-

mate symmetries, which are discussed in Section 9, as sim-

ilarity between subsets of the model or between isometric

images of the model. In the following sections we focus

on local similarities between properties of B-rep model el-

ements like faces, loops, edges and vertices, and similarity

between a property present in the model and a predefined

special value for this property. For instance, we find a set of

cylinders with similar radii, and detect if the average value

is close to a special value such as an integer.

We extract properties of B-rep model elements or groups

of these elements as typed feature objects and detect sim-

ilarities between them. The type of a feature object is de-

fined by the property it represents. For instance, the axis

of a cone or cylinder forms a feature object of the type axis.

Note that a single B-rep element can generate several differ-

ent feature objects of various types. Furthermore, additional

feature objects can be created from groups of feature objects

or groups containing feature objects and B-rep model ele-

ments. For example, axes may generate intersection points

as further feature objects.

Similarities between elements of a set of feature objects

X = {xl} of the same type are described by a similarity
measure δ : X × X → R

+

0 which depends on the type,

where δ is symmetric, non-negative, and x1 = x2 implies

δ(x1, x2) = 0. We call two objects x1, x2 ∈ X ε-similar if
δ(x1, x2) < ε, (ε ∈ R

+).

To find similar feature objects of the same type we use

a hierarchical clustering algorithm. The hierarchical struc-

ture can be used in the subsequent steps to decide which

constraints should be accepted for the ideal model. Note

that for clustering the similarity measure should be a met-

ric. We want to create a partition {Ck} of X where each

Ck is represented by a feature object ck and a tolerance tk

such that δ(ck, xl) < tk ≤ ta for all xl ∈ Ck, where ta is
a tolerance value limiting the maximum size of the clusters

and depends on the feature object type. Additionally we re-

quire Ck to be maximal, i.e. there is no xl ∈ X \ Ck that

is ta-similar to ck. Each Ck is partitioned further into sub-

clusters Sj in the same way as X . The sub-clusters have
to be sufficiently distinct from each other, i.e. for each pair

Sj1 , Sj2 , (j1 �= j2), the condition δ(sj1 , sj2)−tj1−tj2 ≥ td
has to be fulfilled for some tolerance td with 0 < td ≤ ta.
The sub-clusters are again partitioned if we can find further

subsets fulfilling a similar condition.

The feature object representing a cluster is computed by

an averaging method avg depending on the feature object

type. Given two ε-similar feature objects x1, x2 of the same

type representing clusters with ω1 and ω2 elements, the av-

erage xavg = avg(x1, ω1, x2, ω2) represents the union of
the two clusters such that δ(xavg, xl) < ε, (l = 1, 2).
A variety of solutions to the clustering problem ex-

ists [8, 16]. The most common approach is to start with the

smallest value of δ(cl, ck) and combine the two elements
with respect to the hierarchical structure to give a new ele-

ment ĉ which replaces cl and ck. This is repeated until only

one element remains or the distance between the elements

is too large. The brute force algorithm for this can be im-

proved by using a dynamic closest pair data structure which

partially sorts the distance values such that the clustering

can be done in O(n2) time and space [7].

3. Part survey and common patterns

We surveyed about 600 mechanical components to de-
termine common geometric patterns which are suitable for

beautification [11]. Various objects like small engine parts,

fittings and brackets for optical systems, plastic fittings,

caps and connectors, sliding fittings for cupboards and a

general selection of CAD displaymodels from online repos-

itories and company catalogs, and other part surveys were

reviewed. The parts chosen had low to medium complexity,

i.e. less than about 200 faces and their geometric properties
were significant for their application. They were also physi-

cally small enough to be put on a typical 3D scanner, which

means that they must fit inside a 50cm cube, and be light

enough to man-handle onto the scanner bed. The features

were large enough (bigger than about 5mm) to provide suf-

ficient data to be able to properly fit surfaces, and there were

no deep cavities that could not be probed by the scanner.

About 97% of the parts exhibited important geometric

patterns which could be classified using our similarity con-

cept. This justifies our approach trying to exploit such pat-

terns to improve the quality of reconstructed models. We

list common patterns for which we present analysis meth-

ods in Table 1. The number in the last column indicates how

common the particular geometric pattern is from 5 for being
nearly always present to 1 for rare as determined manually.
Our algorithm looks for similar parameters from surfaces

and edges such as lengths and angles, and tries to find spe-

cial values for those parameters, like integers. Special val-

ues might also depend on manufacturing and functional pur-

poses. We do not consider the former for the ideal model.

If a value is not a simple rational number and depends on

a functional purpose, this value is usually subject to a tol-

erance, which should be larger than the scanner tolerance

(∼ 20µm). If we choose a value within that tolerance, the
model should be usable. For applications where this is not

enough, specific methods have to be developed.

Further, we present a method to find similar edge loops

independent of a scaling factor. We also consider direc-

tions, like plane normals and axis directions. We seek par-

Parameters Equal parameters. 5

Special parameter values. 3

Loops Equal loops independent of scaling. 4

Directions Parallel directions. 5

Directions which have the same angle relative to a special direction. 4

Symmetrical arrangements of directions on planes. 3

Symmetrical arrangements of directions on cones. 4

Axes Aligned axes. 3

Axes intersecting in a point. 3

Positions Equal positions. 2

Equal positions under projection. 3

Surface Types Surface is approximately a plane or a cylinder. —

Complete Model Finite symmetry groups of special points. 4

Table 1. B-rep model elements with related geometric patterns and their estimated frequency.

Figure 1. Symmetrically arranged directions.

allel directions and look for special directions with respect

to which all directions in a set have the same angle forming

a plane or a cone. The directions in these sets might also be

arranged symmetrically (see Figure 1).

Associating directions with positions leads to axes. The

positions may be obtained from vertices, apices of cones,

and centres of spheres and tori, etc. We look for aligned

axes and their common intersection points. For positions

alone we seek equal positions and positions which are equal

when projected onto a special plane or line derived from the

main directions in the model.

We also consider changing surface types. For example,

a large radius cylindrical face may be similar to a planar

face and thus be classified incorrectly as planar. As this is

a problem of the model building software and not a regular

pattern of a real part, no frequency has been determined.

The majority of interesting global aspects turn out to be

strongly related to cubes, or at least to rectangular prisms.

The major symmetries involved are prismatic and pyrami-

dal of orders 2, 4 and 6, all of which can be produced by
decorating cubes. The only common exceptions are conic

and cylindrical symmetry. We extract special points like

vertices, surface centres, etc. and determine the finite sym-

metry groups of these point sets in an approximate sense.

This means we look for isometries mapping the original set

approximately onto itself.

4. Parameters and simple fractions

Parameters listed in Table 2(a) describe aspects of B-rep

model elements independently of their location and orienta-

tion. To avoid comparing obviously unrelated parameters

like the semi-angle of a cone with the radius of a cylin-

der, a type is assigned to each parameter (Table 2(b)). We

cluster parameters of the same type using the hierarchical

clustering algorithm. Since the values for angle and length

parameters are on different scales, the clustering tolerances

depend on the parameter type. We use t la and tld for lengths
and taa and tad for angles.

The resulting hierarchical clusters of similar parameters

of the same type are represented by average parameter val-

ues which should perhaps be replaced by special parameter

values. In the following we present a method to find simple

fractions close to a given parameter value.

Let w be a real number for which we search simple frac-
tions in the open interval (w − t, w + t) with the tolerance
t. We assume that integer values are always special for w
and that w is non-negative. Note that recognizing numerical
constants [2] is a well studied related problem, but assumes

that a rather exact approximation is required.

If 1/ (2t) < m, then more than one n/m for a fixed

m could be in the interval (w − t, w + t). To avoid this
ambiguity, we set the maximum allowed value for m to

M0 = floor (1/ (2t)), which should not be larger than some
Mmax, say 10. Also note that if t is larger than 1/2, we
would actually ignore the integers. Hence, we set a mini-

mumMmin forM0, which can optionally be larger than 1 if
we have to work with large t.

IfM0 is small, we could simply multiplyw by eachm ≤
M0 and check if |w − n/m| < t with n = round (wm) to
find special fractions. However, for largeM0, this becomes

expensive as we have to check many fractions for a large

Element (a) Parameter (b) Type (c) Direction

plane — — normal

sphere radius length —

cylinder radius length axis direction

cone semi-angle angle axis direction

torus major radius length axis direction

minor radius length

straight edge distance between end points length direction of the line between the

end-points

circular edge radius length normal of plane in which

angle of the circle segment angle the circle lies

elliptical edge — — normal of plane in which

the ellipse lies

Table 2. Parameters and directions.

set of real numbers w. We give a more efficient method
for larger M0 by combining the simple method with con-

tinued fractions in Algorithm 1. We start by approximat-

ing w by a0 + x0 where a0 = round (w). The error x0

is approximated by using the simple method recursively.

We call the method initially by rec frac(x0, a0, 1, (a0 >
w), M0). Starting with bl = 1 in recursion level l, we get
xl = bl/al + xl+1 for al = round(bl/xl) and error xl+1.

Additional approximations are obtained by increasing b l by

one, until al is larger than some limit M . The process is

repeated recursively for each error x l+1 until the error is

smaller than some tolerance trmin. Note that as functions
of the type b/x0− round (b/x0) are more likely to generate
small denominators for x0 ∈ (0.5, 1), we start the algorithm
with 1 − x0 if x0 < 0.5. Table 3 shows an example where
the special values generated are marked with an arrow.

To apply this method to an average parameter v of a pa-
rameter cluster with a tolerance ta (tla or taa), we have to
map the range of v on an appropriate range to get w. We
choose a family of functions fl : R → R which repre-

sents the scales on which we look for simple fractions. For

angle parameters we use the functions fπ : v �→ vπ and
ft : v �→ arctan(v). For length parameters the family is
defined by fKl

: v �→ vKl where the Kl are base units for

length measurements like 1.0, 0.1 or 2.54 (cm to inch con-
version). We then apply the algorithm to w l = f−1

l (v) for
each fl within a tolerance t. For linear fl : v �→ vKl we use

the tolerance t = ta/Kl. For ft, we use taa as tolerance with
the condition | |v| − π/2| > taa assuming that v ∈ [−π, π].

5. Similar edge loops

We seek approximately equal edge loops in the B-rep

model using the hierarchical clustering algorithm. Our cur-

rent method only considers flat loops with straight edges. A

more sophisticated system handling all loops as polygons

formed from the vertices but considering the geometries of

the edges could be built on this system. For each loop we

compute the first n Fourier coefficients of a function f rep-
resenting the polygon as defined below [4], which gives us a

complex vector u of Fourier coefficients with d components
uj . We compare two of these vectors u, v with the similar-

ity measure δ(u, v) =
∑d

j=1
| |uj | − |vj | |. The averaging

method is the usual weighted average of complex vectors.

To cluster the vectors we require two tolerances t loa and tlod.
This method is an efficient and simple way to compare poly-

gons and provides a natural similarity measure. Note that

by using the Fourier transform of f , we compare the loops
independently of scale.

There are various ways to define a function f represent-
ing a polygon. One basic idea is to define a curvature of

a polygon. Let αk be the angle at the k-th vertex vk of

the polygon with m vertices vk such that v0 = vm and

let lk be the length of the line segments from v0 to vk. In

our particular approach we use a distribution f of the form
f =

∑m−1

k=0
αkδk. δk is the Dirac distribution at 2πlk/lm

such that 〈δk, φ〉 = φ(2πlk/lm) for φ ∈ C
∞(T) where

C
∞(T) is the space of infinitely differentiable functions on

the unit circle T in the complex plane identified with the

infinitely differentiable, 2π periodic, complex functions on
R. For details see [5]. The Fourier coefficient of order j,
(j ∈ Z), of the distribution f is

uj =
1

2π
〈f, exp(−ij·)〉 =

1

2π

m−1∑

k=0

αk exp

(

−ij2π
lk
lm

)

.

(1)

Let p be the minimum of (lk+1 − lk) /lm, i.e. the small-
est ratio between an edge length and the circumference of

the polygon. If P is the minimum of the p of all relevant
polygons, then at least ceil (1/P) Fourier coefficients have

I. The function has been called as rec frac(x,n,m,neg frac,M) where x is the value which has to be approxi-
mated by a fraction, n,m are the two integers representing the fraction n/m found so far, neg frac indicates if x has
to be added or subtracted from n/m andM is the maximum denominator allowed at this recursion level.

II. Let b = 1.

III. While the denominator a = round (b/x) is not larger thanM :

1. If a > b:
A. Let r = x − b/a.

B. If r is negative, set neg r to true and r = |r|. Otherwise neg r is false.

C. If neg frac is true, then the new numerator is p = na − mb, otherwise p = na + mb.

D. The new denominator is q = ma.

E. If r < t, then add p/q to the list of special values, if it is not already in it.

F. If r > trmin and p/q was not already in the list of special values, call rec frac(r,p,q,neg r,M0M).

2. Let b = b + 1.

Algorithm 1. Recursive algorithm rec frac for finding simple fractions.

0.59 = 1/2 + 0.09
︸︷︷︸

= 1/11 [→ 13/22] − 0.000909
= 2/22 − 0.000909

= 2/3 − 0.076667
︸ ︷︷ ︸

= 1/13 [→ 23/39] − 0.000256
= 3/5 [→ 3/5] − 0.01

Table 3. Finding special values for 0.59 with t = 0.05, M0 = 5 and trmin = 0.01.

to be computed to ensure that all relevant frequencies are

considered. As the Fourier coefficients of f can be com-
puted exactly, only a small number of coefficients is suffi-

cient to characterize the shape of the polygon. Typically we

use the first 10 coefficients.
For an n-sided, regular polygon, the only non-zero coef-

ficients are those of order kn, (k ∈ Z). In the approximate

case the values of these coefficients are sufficiently larger

than the others, so that they can be used to identify special

polygons. It appears that this can also be used to find poly-

gons which are based on an n-sided, regular polygon, with
minor modifications like an additional or missing vertex.

6. Regularly arranged directions

We consider regular patterns of directions, like normals

of planes and directions of cylinder axes, arising from the

B-rep model elements (see Table 2(c)), as unit vectors and

identify opposite directions. This direction space is the real

projective plane P2, which can be represented by a sphere

with antipodal points identified.

Directions on a great circle of the sphere represent direc-

tions that are orthogonal to another direction and thus lie in

a plane, which we call an axis plane. Directions that are on

a small circle of the sphere represent directions on a cone,

which we call an axis cone. The arrangement of the direc-

tions in a plane or a cone may also be symmetric. We call

these planar or conical angle-regular (see Figure 1).

Directions that are approximately parallel correspond

to approximately equal points in P2. They can be de-

tected using the hierarchical clustering algorithm. The

small angle between two directions d1 and d2 defined

by ∠(d1, d2) = arccos(|d1
td2|) is a suitable similarity

measure for clustering. The average of two directions

d1 and d2 representing clusters of the size ω1 and ω2 is(
ω1d1 + sign(d1

td2)ω2d2

)
/ (ω1 + ω2). The two tolerance

values used for clustering are taa and tad defined earlier.
Clustering the directions as points in P2 yields a hierarchi-

cal structure of parallel directions. Even if the number of

directions extracted is large, we expect to find only a lim-

ited number of different directions.

6.1. Directions in planes and cones

A set of directions {dl} on a circle in P2 satisfies the

equation system |dl
tx| = a, where x ∈ P2 is the centre of

the circle. If a = 0, we have an axis plane with normal x.
If a ∈ (0, 1), we have an axis cone with axis x. Note that
for a plane, taking the absolute value of d l

tx is not required,
and we can drop it for a cone if we ensure that all directions

have the same orientation relative to x.

To find the sets of directions dl lying in an axis plane,

I. Compute the angles αlk between the directions dl and dk for l < k < m, wherem is the number of directions d l.

II. For all reference directions dj0 with j0 < m and for all angles αlj0 with j0 < l < m:
1. Find all candidate base angles βj0n0

= π/n0 for n0 ∈ N such that |βj0n0
− αlj0 | < taa. For each candidate base

angle do:

a. Add βj0n0
to the list of candidates for dj0 if there is no integer multiple βj0n of βj0n0

already in the list.

b. If βj0n0
has been added to the list, remove any βj0n from the list which is an integer multiple of βj0n0

.

III. For each reference direction dj0 with j0 < m − 1, consider the subset {dj0 , . . . , dm} and for each candidate βj0n with

n = 1, . . . , Nj0 :

1. For each dj with j0 < j ≤ m:
A. If for f = αlj0/βj0n, we have | round (f)βj0n − αlj0 | < ta, then do:

a. Record dj to be a round (f) multiple of the base angle. It is stored as a multiple round (f) under the
following conditions.

b. If there is already a directionD as the multiple round (f) andD is the parent of d j , then only replaceD
by dj if dj is sufficiently closer to the multiple as indicated by tpd.

c. If there is already a directionD as the multiple round (f) and dj is the parent ofD, then only replaceD
by dj if D is not sufficiently closer to the multiple as indicated by tpd.

d. If there is already a direction D as the multiple round (f) and d j is not related to it in the hierarchical

structure, then replaceD by dj if dj is closer to the multiple.

e. If there is no directionD as the multiple round (f), then make d j this direction.

2. If the arrangement in the angle-regular subset for β j0n is regular (see text), note it. In addition remove integer

multiples of βj0n from the base angle candidate lists for the reference directions d l which are in the current regular

subset.

Algorithm 2. Algorithm to find angle regularities.

we cluster the normals representing all axis planes gener-

ated from each pair of linearly independent directions. The

clustering is done in the same way as the clustering of par-

allel directions, but we employ the clustered parallel direc-

tions instead of all directions. This will not only reduce the

number of normals generated, but also avoids cases where

the directions are approximately linearly dependent.

A similar method is used to find axis cones. For each

triple d1, d2, d3 of linearly independent directions repre-

senting parallel direction clusters, we generate an axis cone

with axis in direction c and angle α by solving the linear

equation system dl
tx = 1, (l = 1, 2, 3). From this we

get the cone parameters as α = arccos(|xtd1|/‖x‖2) and
c = αx. As the dl are not exact, we avoid finding flat

axis cones which are actually axis planes, or axis cones

which represent parallel lines, by rejecting cones for which

α < taa or |π/2 − α| < taa.
The axis cones represented by pairs (cl, αl) are clustered.

For two cones (cl, αl), (l = 1, 2), the similarity measure for
clustering is defined by

√

∠(c1, c2)2 + (α1 − α2)2. The
averaging method for two cones generates an average cone

with the weighted average of the two directions as axis and

the weighted average of the angles as angle. The tolerances

used are taa and tad defined earlier.
Once we know the set of directions forming a regular

arrangement, the quality of the approximation can be im-

proved by solving the equation system |d l
tx| = a in a least

squares sense for the direction set.

6.2. Symmetrically arranged directions

Exploring axis planes and cones in more detail may

reveal symmetries in the arrangements of the directions.

Given a set of directions in a plane or a cone, we look for

subsets such that the angles between the directions in a sub-

set are integer multiples of a base angle β. The subsets may
be incomplete in the sense that not all multiples of β are
present. The main problem is to identify appropriate sub-

sets of multiples that approximately satisfy this condition.

Let {dj} be a set of directions in an axis plane and let
αlk be the angle between dl and dk. We call the directions

dj (approximately) planar angle-regular if there is an angle

β = π/n, (n ∈ N), such that there is an α ∈ {αlk} with
|α − β| < taa and the αlk are (approximate) integer mul-

tiples of β. Based on which multiples of β are present we
decide whether an angle-regular set represents a regular pat-

tern. To avoid too small base angles β, we set a maximum
Nmax for n, where Nmax should be smaller than π/ (2taa).
Given a set of m directions dj , we look for a mini-

mum number of subsets which are approximately planar

angle-regular. The algorithm for this consists of three main

steps (see Algorithm 2). First we generate all angles αlk

(l < k < m) between the directions dl and dk where a

column k in that matrix with elements below the diagonal
represents the angles to dk used as a reference direction for

the set {dk, . . . , dm}. We have to take care to choose an-
gles consistently to the right of the reference direction dk

with respect to the normal q of the axis plane (see Figure 2).
With v = q × dk we have

αlk =

{

arccos(dk
tdl) if vtdl ≥ 0,

π − arccos(dk
tdl) if vtdl < 0.

(2)

This also allows us to identify which of the kπ/n, k =
0, . . . , n − 1, directions is occupied by a particular direc-
tion, for some n ∈ N.

In the second step a set of possible base angles βj0n for

each reference direction dj0 is derived from the αlk . As we

look for approximate angle-regular arrangements, a single

αlj0 can generate more than one candidate β depending on
the tolerances. Base angle candidates which are multiples

of a smaller base angle candidate are eliminated.

In the third step we try to find planar angle-regular sub-

sets by checking the angles αlj0 for each reference object

dj0 and all base angle candidates βj0n. Before we accept an

angle-regular subset of directions as regular we also check

which multiples of βj0n are actually present. We accept it if

either all multiples, or at least every second one for n > 4
is present, or at least three consecutive directions are occu-

pied.

Finding conical angle-regular sets is very similar to find-

ing planar angle-regular sets. Before we can employ Al-

gorithm 2, the directions on the cone have to be projected

onto a plane orthogonal to the cone axis. Due to this projec-

tion, opposite directions in the plane cannot be considered

equal anymore and the base angles are 2π/n. Note that an
orthogonal system is a conical angle regularity.

7. Axes and positions

In this section we discuss regular geometric patterns re-

lated to axes and general positions in the B-rep model.

For directions associated with a position, i.e. which repre-

sent axes, we seek approximate intersections of axes, and

aligned axes. For cylinders, cones and tori we use the root

point of the surface as the associated position. The root

point of a cone is its apex and the root point of a torus is its

centre. The root point of a cylinder is an arbitrary point on

the central axis. For elliptical edges we choose the centre

of the ellipse and for straight edges we choose an arbitrary

point on the edge as the associated position.

Planar faces do not have an obvious root point, but we

can define such a root point by considering the boundary

loops. Suitable root points are the average of the vertex

positions for each loop and the centre of the convex hull of

each loop. Note that this defines multiple axes for a single

planar face. Other possibilities exist for defining root points

of planar surfaces and more general types of edges.

To seek intersecting axes, we compute the minimum dis-

tance between them. If it is smaller than t la, we say the axes

dj0
dj

v
1π

n

2π
n

3π
n

Figure 2. Planar angle-regular.

intersect and use the midpoint of the shortest line between

them as the approximate intersection point. These inter-

section points are clustered to find sets of axes intersecting

approximately in a point. For this we use actual axes and

not direction clusters. We only intersect axes that belong

to different direction clusters to avoid trying to intersect ap-

proximately parallel axes.

To detect approximately equal positions, we cluster po-

sitions of vertices, root points of surfaces and axis intersec-

tion points with tolerances tla and tld, the Euclidean distance
as similarity measure, and the weighted average between

points. In addition, we project the points on special planes

and lines through the origin to find partially equal positions.

The planes and lines are determined by the main directions

present in the model. If the model has one or more orthogo-

nal systems, we use planes orthogonal to the directions in

these systems and lines defined by the orthogonal direc-

tions. If the model has a main axis without an orthogonal

system, we use the line through the origin parallel to the

main axis and the plane orthogonal to this direction. Par-

tially equal positions are found by clustering the projected

points.

8. Surface types

For some surfaces, the surface fitting software might not

have found the correct geometric type. For example, a cone

with a small angle could be interpreted as a cylinder.

To determine if a surface geometry might need to be

changed, we have to check whether the piece of surface

present in the model could be well approximated by another

surface type. To derive a measure for this we use the cur-

vature of the surface, which is also used for determining

the surface type in our model building software [10]. This

measure is only valid if the piece of the surface is suffi-

ciently small. For planar, cylindrical, spherical and toroidal

surfaces the principal curvatures k1, k2 are constant. If√

k2
1 + k2

2 is approximately zero as indicated by some tol-

erance tc, it is approximately a plane. If only one k i is ap-

proximately zero, the surface is approximately a cylinder

with radius 1/kj , where kj is the second curvature.

We have to take special care for a cone, as one of the

principal curvatures is not constant. Let k2(p) be the non-

constant principal curvature at a point p on a cone. Coni-
cal faces for which the surface type can be changed do not

contain the apex and they are always finite, so k2 has a min-

imum and maximum. If k2(pmin) − k2(pmax) is approxi-
mately zero with respect to tc, then the cone is approxi-
mately a cylinder or a plane. It is a approximately a plane if

K = (k2(pmin) + k2(pmax)) /2 is approximately zero, oth-
erwise it is approximately a cylinder with radius 1/K .
Note that a cylinder might also be approximately a cone,

or a plane might be approximately a sphere, etc., but for

such cases, we do not have any indication of parameter val-

ues to use for the alternative surface. By setting up the sur-

face fitting software such that spheres, cones and tori are

preferred, these cases become less likely.

However, it is not enough to check only the curvature to

decide if a surface could be of a different type. It has to

be possible to change the surface within the topology of the

model. For this we check if all the boundary loops of the

surface are also approximately on the alternative surface.

9. Detecting finite symmetry groups

Finite symmetry groups formed by isometries mapping

the model onto itself are also symmetries of certain point

sets derived from the model. A finite model with an infi-

nite number of symmetries has the symmetries of a sphere,

a cylinder or a cone. For the type of models we con-

sider, these symmetries can be detected as equal and par-

tially equal positions, aligned axes and orthogonal direc-

tions. Here we outline a method to find approximate finite

symmetry groups of a point set. We can detect approximate

symmetries of the model with this by extracting appropri-

ate points like vertices, centres of spheres, cones and tori

from the model, and verifying if the symmetries found also

preserve the type of each point, the adjacency, and the ori-

entation information of the model.

See [1, 9, 15] for related approaches to detect approxi-

mate symmetries. The difficult cases in previous work are

related to problems in determining the existence of pre-

cisely the symmetry being looked for. Our method seeks

maximal symmetry and the associated tolerance without

predetermined choice of tolerances or symmetries.

In the first step of our algorithm all consistent clusterings

of the point sets are generated. In a second step each of the

clusterings is examined for symmetries.

We start by taking each point as a separate cluster with

a tolerance level of 0. All point pairs are stored in a pri-
ority queue based on distance between the points. In or-

der of increasing distance, point pairs are consecutively re-

moved from the queue until the queue is empty. When re-

moving a pair from the queue, the two clusters to which

the points belong are combined into a single cluster. The

distance between the points represents the current tolerance

level. Whenever combining two clusters yields a consistent

clustering, we check for symmetries of the centroids of the

clusters in the second step. We call a clustering consistent

if the distances between the remaining points on the queue

are larger than the current tolerance level, and for each clus-

ter, all distances between the points in the cluster have been

considered and removed from the queue.

In the second step we aim to determine symmetries of

the central points of each cluster. The set of symmetries of

these points is determined as permutations that preserve the

distances between them within their tolerance level. First

we compute a non-degenerate tetrahedron whose vertices

are the centroid of the point set, and three points on its con-

vex hull, chosen such that they are as far apart as possible

from the centroid and the other selected points. Instead of

an expensive check for all possible permutations represent-

ing the isometries, we do a limited depth-first search over a

tree of permutations.

The tree of permutations is formed by partial injections.

A partial injection is a list of point pairs where each point

appears at most once as first and at most once as second el-

ement of the pair. A pair indicates that the partial injection

maps the first point on the second point. A partial injection

is a permutation if each point is present exactly once as first

and exactly once as second element. The root of the permu-

tation tree is an empty list as partial injection. The children

of a partial injection are those obtained by appending one

more pair to the list of pairs. The leaves of this tree form

the permutations.

A partial injection is approximately distance preserv-

ing if, for each pair of points in the domain of the partial

injection, the absolute difference between the distance of

the two points and the distance between their images un-

der the partial injection is less than the tolerance. Only

approximately distance preserving partial injections, which

we call proto-symmetries, are candidates for valid permu-

tations representing symmetries. Their number is typically

much smaller than the complete tree of partial injections.

First a depth-first search to depth level four is performed

on the permutation tree, backtracking whenever a node is

not a proto-symmetry. Once a partial injection maps three

points in general position in a distance preserving fashion,

the fourth point can only be mapped to two possible lo-

cations and all subsequent points can only be mapped to

one. Using the centroid as the first point means that only

two points need to be mapped, since the centroid must be

mapped to itself. Thus, we only check partial injections in-

volving the three points of the tetrahedron on the convex

hull for being a proto-symmetry. This applies to zero toler-

ance levels and non-zero tolerance levels if the point set is

not too elongated. In order to find the unique match for the

rest of the points, each of the points is tried in turn for each

match in a direct approach.

(a) (b) (c) (d) (e)

P: 21 55 78 79 93
U: 1 8 9 5 18
M: 0 3 7 0 5

Figure 3. Test objects.

If the tolerance is non-zero, then the approximate dis-

tance to each of the first four points does not always iden-

tify a point uniquely. This problem occurs when the dis-

tance between two of the four points is small compared to

the distance from those points to the point being identified.

To avoid this problem the first four points are chosen to be

the centroid and three points on the convex hull as far from

the centroid and each other as possible. In this way no point

in the collection is further from the first four than they are

from each other.

By scanning only a depth of four points, a long collection

of points is seen as an approximately linear arrangement.

Such a point set can be modified by magnifying the distance

of each point radially from the central line. As this does

not affect rotational or mirror symmetries referred to that

line, the radially magnified point set is then analysed for

approximate symmetry in a second pass.

The algorithm has been tested on point sets. Experiments

with approximately symmetric point sets show that the al-

gorithm runs in a few minutes for examples of the complex-

ity arising in reverse engineering.

10. Experiments

The methods presented in this paper have been tested

with various engineering objects. By rotating and trans-

lating faces of exact models and generating a point cloud

from these perturbed objects we simulated noisy reverse

engineering data. From the point cloud we used reverse

engineering software provided by CADMUS to obtain re-

constructed models, which were then analysed by our algo-

rithms implemented on a GNU/Linux platform.

Some of our test objects are shown in Figure 3 ((d) and

(e) were obtained from [6]). They were all perturbed by

3 degrees and 0.3 length units. For (d) only the exterior
visible to a 3D scanner was considered. As the symmetry

detection algorithm has only been implemented for point

sets, it was not part of these tests. The tolerance values for

testing the methods were set to 5 degrees and 0.5 length

units. P is the total number of patterns found. U is the

number of unwanted patterns detected, where an unwanted

pattern is one that is not part of the design and conflicts with

the intended patterns.M is the number of important patterns

missed as identified by a human.

Analysing (a) resulted in a number of equal cylinder radii

with special values. As some of the radii in the exact model

were only 0.5 length units apart, they were unwantedly con-
sidered to be equal. The sets of axes formed by the main

cylinders and the holes in the bottom were detected to be

parallel. The axes of the opposite holes in the sides of one

cylinder were also found to be parallel and to be all in a

plane. The planar angle-regular algorithm detected their

symmetrical arrangement. The conical angle-regular algo-

rithm detected the orthogonal system created by the main

axes and the axes of the side holes. Using the information

about parallel axes, all the aligned axes were detected as

well. Further, the intersection points of the axes of the side

holes and the axes of these holes with the bottom holes were

found. Projecting the positions onto the plane defined by the

main axis revealed a number of partially equal positions.

Similarly most of the regular geometric patterns in the

other objects were detected. This includes the planar angle-

regular direction sets in (b) and (c) and the two conical

angle-regular sets of cylinder axes in (c). However, some

of the planar faces building the two angle-regular arrange-

ments in (b) were unwantedly considered to be approxi-

mately parallel, as the difference between the angles was

within the angular tolerance. In (c) this caused the detec-

tion of some unwanted conical angle-regular directions. In

(b) and (c) the intersection point of the axes generated from

the centre of the convex hulls of the side faces was not de-

tected correctly, as the perturbation of the side faces moved

some of the axes too far apart.

The main axes of (d) and (e) were found as parallel direc-

tions and aligned axes. Some parameter values of object (d)

were unwantedly considered to be equal. In object (e) the

algorithms detected the two planar angle regularities of the

faces orthogonal to the main axis with the base angle π/2

and the angle π/6 between them. Furthermore, a number of
close, but different, positions were considered to be equal.

The experiments showed that by choosing small toler-

ance values, only a few very accurate and thus also very

likely patterns are found and some patterns are missed. By

increasing the tolerance values more patterns are detected,

but at the same time the number of unwanted patterns in-

creases. While the tolerance values could be determined

by carefully analysing the errors introduced by the reverse

engineering process, the algorithms will still find unwanted

patterns if the exact model contains these approximately.

Further experiments showed that the number of un-

wanted patterns could be reduced by careful tolerance value

selection. At present, however, we aim to generate a large

number of possible patterns and leave the problem of choos-

ing a set of consistent constraints, which determine the orig-

inal design, to the subsequent beautification steps.

11. Conclusion

We have presented methods to find regular geometric

patterns in inaccurately reconstructed solid models based

on similarities. Tests with various perturbed objects were

satisfactory in the sense that important geometric patterns

were found in the parts and appear to be suitable for the

subsequent beautification steps.

In future work we will develop a system which tries to

find a maximal, consistent set of constraints containing the

main patterns to generate an ideal model.

Acknowledgements

This project is supported by the UK EPSRC Grant

GR/M78267. The authors would like to thank S. G. Schir-

mer from The Open University for invaluable comments,

and the Hungarian Academy of Sciences and CADMUS

Consulting and Development Ltd for providing reverse en-

gineering software.

References

[1] H. Alt, K. Mehlhorn, H. Wagner, and E. Welzl. Congruence,

similarity and symmetries of geometric objects. Discrete

and Computational Geometry, 3:237-256, 1988.

[2] D. H. Bailey and S. Plouffe. Recognizing numerical con-

stants. In Proc. Organic Mathematics Workshop. Simon

Fraser University, December 1995.

[3] P. Benkő, R. R. Martin, and T. Várady. Algorithms for re-

verse engineering boundary representation models. To ap-

pear in Computer-Aided Design, 2001.

[4] S. Berchtold, D. A. Keim, and H.-P. Kriegel. Using ex-

tended feature objects for partial similarity retrieval. The

VLDB Journal, 6:333-348, 1997.

[5] R. Dautray and J.-L. Lions. Mathematical Analysis and Nu-

merical Methods for Science and Technology, Functional

and Variational Methods, volume 2, pages 4-17. Springer,

Berlin, Heidelberg, New York, 1988.

[6] Drexel University. National design repository. <uri:

http://edge.mcs.drexel.edu/repository/>.

[7] D. Eppstein. Fast hierarchical clustering and other appli-

cations of dynamic closest pairs. In Proc. 9th ACM-SIAM

Symp. Discrete Algorithms, pages 619-628, January 1998.

[8] J. A. Hartigan. Clustering Algorithms. John Wiley & Sons,

New York, 1975.

[9] S. Iwanowski. Testing approximate symmetry in the plane is

NP-hard. Theoretical Computer Science, 80:227-262, 1991.

[10] G. Lukács, R. R. Martin, and A. D. Marshall. Faithful least-

squares fitting of spheres, cylinders, cones and tori for reli-

able segmentation. In H. Budkhadj and B. Neumann, edi-

tors, Proc. 5th European Conf. Computer Vision, volume 1,

pages 671-686, Freiburg, Germany, June 1998.

[11] B. I. Mills, F. C. Langbein, A. D.Marshall, and R. R. Martin.

Estimate of frequencies of geometric regularities for use in

reverse engineering of simple mechanical components. Sub-

mitted to Computer-Aided Design, 2000.

[12] W. B. Thompson, J. C. Owen, J. de St. Germain, S. R. Stark,

and T. C. Henderson. Feature-based reverse engineering of

mechanical parts. IEEE Trans. on Robotics and Automation,

15(1):57-66, 1999.

[13] T. Várady, R. R. Martin, and J. Cox. Reverse engineering of

geometric models – an introduction. Computer-Aided De-

sign, 29(4):255-268, 1997.

[14] N. Werghi, R. Fisher, C. Robertson, and A. Ashbrook. Ob-

ject reconstruction by incorporating geometric constraints in

reverse engineering. Computer-Aided Design, 31(6):363-

399, 1999.

[15] H. Zabrodski and D. Avnir. Measuring symmetry in struc-

tural chemistry. Advances in Molecular Structure Research,

1:1-31, 1995.

[16] J. Zupan. Clustering of Large Data Sets. Research Studies

Press, Letchworth, Hertfordshire, England, 1982.

