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Abstract

This paper considers computation of visibility for two-

dimensional shapes whose boundaries are C1 continuous

curves. We assume we are given a one-parameter family of

candidate viewpoints, which may be interior or exterior to

the object, and at finite or infinite locations. We consider

how to compute whether the whole boundary of the shape

is visible from some finite set of viewpoints taken from this

family, and if so, how to compute a minimal set of such

viewpoints. The viewpoint families we can handle include

(i) the set of viewing directions from infinity, (ii) viewpoints

on a circle located outside the object (for inspection from a

turntable), and (iii) viewpoints located on the walls of the

shape itself.

We compute a structure called a visibility chart, which si-

multaneously encodes the visible part of the shape’s bound-

ary from every view in the family. Using such a visibility

chart, finding a minimal set of viewpoints reduces to the

set-covering problem over the reals. Practical algorithms

are obtained by a discrete sampling of the visibility chart.

For exterior visibility problems, a reasonable approach is

to compute an almost-optimal solution (in terms of num-

ber of viewpoints), which can be done in almost-linear time.

For interior visibility problems, or when a more correct so-

lution is required, we solve the general set-covering prob-

lem, guaranteeing an optimal solution but taking exponen-

tial time. In either case, conservative solutions are obtained,

ensuring that no part of the curve remains invisible from

some viewpoint. Examples are given to illustrate our algo-

rithm.

1. Introduction

This paper considers external and internal visibility for

2D shapes whose boundaries are continuous curves, rep-

resented, for example, as NURBS. Given a one-parameter

family of candidate viewpoints, which may be interior or

exterior to the object, and at finite or infinite locations, we

show how to determine whether the whole boundary of the

shape is visible from any finite set of viewpoints from this

family, and if so, how to compute a minimal set of such

viewpoints. This general formulation encompasses various

important families of viewpoints, such as (i) the set of view-

ing directions from infinity, (ii) viewpoints on a circle lo-

cated outside the object (e.g. for inspecting an object placed

on a turntable), and (iii) viewpoints placed on the walls of

the shape itself.

Visibility calculations of this type have various appli-

cations in such areas as mold design, inspection planning,

and security. To make an n-piece mold for manufacturing,

a shape requires a minimal set of n external viewing di-

rections to be determined (if such exists) so that the ex-

terior boundary of the shape is completely visible from

these directions [10]. In vision-based inspection planning,

the goal is to inspect the exterior surface of an object, effi-

ciently [25, 26]. Typically, each viewing direction has some

set-up cost (in terms of time, etc.) associated with it. If the

inspection plan is to be used many times on a production

line, it is important to find a minimal set of viewing di-

rections. An idealized security application requires a set of

cameras to be placed around a building so that the whole

of the interior or exterior may be guarded—many problems

of this type, so-called art-gallery problems, have been de-

vised and solved by computational geometers for objects

with polygonal boundaries [23].

A somewhat related (and well-studied) problem in com-

putational geometry is the computation of the so-called vis-

ibility complex of a collection of objects [24]. This problem

deals with the creation of a data structure that encodes all

visibility relations between objects in the collection, and can

answer visibility queries efficiently. The objects are usually

polygons or have low-complexity descriptions, and the re-

spective structure is maintained in a space dual to that of the

objects. In the current work we deal with smooth curves in

the plane, and use a completely different approach.

The rest of the paper is organized as follows. Section 2

describes related work in various fields. Section 3 explains



our approach to computing a set of visibility directions (or

viewpoints) and gives appropriate algorithms. Various ex-

amples illustrating the method are given in Section 4. Fi-

nally, conclusions and suggestions for future work are given

in Section 5.

2. Background

We first summarize existing related research and discuss

how the ideas in this paper are applicable to various prob-

lems. Section 2.1 presents their relevance to mold design.

Visibility analysis in the context of inspection is considered

in Section 2.2, and in the context of security, in Section 2.3.

Visibility determination is also a fundamental question in

computer graphics, which we briefly discuss in Section 2.4.

Various other papers have treated visibility computations

in general, rather than targeted a specific application; we

do likewise. Thorough treatment of methods for computing

Gauss maps can be found in [12, 27], for example.

2.1. Mold Design

Design-for-manufacturing requires CAD systems to

be able to verify that the designed models can be manu-

factured, and to generate manufacturing plans. Two-piece

molds are used in manufacturing processes such as in-

jection molding and die casting [3, 16]. Various pa-

pers have considered two-piece mold separability [1, 7, 17]:

can a two-piece mold be found with a corresponding op-

posing pair of separation directions such that the mold

may be cleanly removed from the object without interfer-

ence? Typically, these papers use heuristics to select some

candidate directions which are then verified for separa-

bility. The resulting algorithms are not complete, in the

sense that they cannot guarantee that a valid two-piece

mold will be found in every case in which one exists. Al-

though Ahn et al. [1] gave a complete algorithm, the method

they implement in practice again falls back on heuristi-

cally verifying chosen directions, because of the high

complexity of the complete algorithm.

A previous paper by Elber [15] considered the problem

of determining the existence of a valid two-piece mold for

a designed solid model whose boundary is represented as

a NURBS surface with C3 continuity, and finding such a

mold if it exists. While that work considered 3D objects,

and we consider only 2D cases here, that work is more re-

stricted in other ways: it only considered the question of

whether a pair of viewing directions is sufficient to see the

entire boundary of the object. Here, we consider cases in-

volving more than two viewing directions.

2.2. Inspection

Many types of manufactured goods require inspection,

either of a sample, or of every part manufactured. Clearly,

the inspection plan should be derived with the aid of the

CAD model [21] and visibility analysis [22]. When parts

made in large numbers are subject to a high sampling rate or

even 100% inspection, the efficiency of the inspection pro-

cess becomes significant. Much previous work has consid-

ered viewpoint planning [13, 25, 30]: the problem of choos-

ing a set of suitable viewpoints.

In [6], the Gaussian sphere is used to determine the set

of directions one needs to cover an entire model for in-

spection and machining applications. Other work that at-

tempts to reason about visibility using surface normal maps

over the Gaussian sphere was discussed in [12, 27], for in-

stance. However, simply working in the normal space over

the Gaussian sphere fails to take the general hidden surface

problem into account—it ignores the fact that certain parts

of the object may occlude others.

Certain formulations of the three-dimensional view plan-

ning problem are NP-complete [29], if the sensor is allowed

to be placed at arbitrary positions and orientations, and we

allow for characteristics and setups of real sensing devices.

Also significant is that the quality of acquired sensor data

may be an important consideration to trade off against the

number of viewpoints. As a result, most work in this area

has not tried to find an optimal inspection plan, but merely

a good one. As is also the case for mold separation, most pa-

pers are based on a generate-and-test approach, rather than

using optimization to determine viewpoints; an exception is

the work by Tarabanis [28].

Most inspection research discretizes either the object de-

scription (if the object is not initially assumed to be polyhe-

dral), e.g., [4, 28], or the viewpoint space, e.g., [29], or both.

Consequently, some of these approaches, such as aspect

graphs [4], are almost never used for objects with smooth

curved boundaries due to their inherent complexity. Also,

for simplicity, the viewpoints are often assumed to lie on

a sphere of some fixed radius, e.g., [29]. (In this paper, we

also discretize a continuous search space).

Much work in this field targets the case where the ob-

ject being inspected is not available as a CAD model, or at

least, the object under inspection differs significantly from

the model. In such cases, the problem devolves to the one

of finding the “next-best-view,” given what has already been

determined [8].

In summary, the recent survey by Scott et al. [26] noted

that view planning is still an open problem despite two

decades of research. The novelty of our work lies in han-

dling objects described by continuous NURBS boundaries,

albeit in 2D, and in a systematic search for the solution,

rather than using a hypothesize-and-test approach.
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Figure 1. Given a curve C(t) and viewpoint V (a), the silhouette points, SV
C

, from V are computed in
(b), the prime occluders, OV

C
, are detected in (c), and the visible regions (thick lines) of C from V , V V

C
,

are computed in (d) via ray casting. From these we get the visibility map of C(t) from V . For clarity,

only the visible silhouette points are presented.

2.3. Security

The class of art gallery problems is much-studied in the

computational geometry literature [23]. The basic idea is

that an unusually-shaped room has many paintings on the

walls, and a minimal number of guards must be positioned

inside the room so as to be able to see all the paintings. This

type of problem is usually posed in theoretical terms, where

the room is a polygon—art gallery theorems rarely consider

more complex geometry.

The main difference between such problems, and mold-

ing and inspection problems, is that interior visibility is usu-

ally considered, rather than external visibility. Nevertheless,

an exterior version of the art gallery problem exists, and has

been dubbed the fortress problem [23].

The method we give in this paper is equally valid for se-

lection of viewpoints lying inside or outside a 2D shape, be-

ing based on the definition of candidate views as belonging

to a one-parameter family of viewing points or directions.

2.4. Computer Graphics

Finally, we point out that the problem of determining

what is visible from a single viewpoint, given a three-

dimensional model, is the well known hidden surface prob-

lem in computer graphics. Many algorithms exist both for

polyhedral objects [2] and continuous surfaces [11]. We

simply note here that our problem is clearly related to hid-

den surface determination, but the latter is also clearly just a

first step in the current process. Thus, in this work, we build

our visibility chart, as will be demonstrated, using hidden

surface removal tools.

3. Selecting Viewpoints

We start by stating the problem to be solved, and then ex-

plain our algorithm for solving it.

Let V(·) be a one-parameter family of viewpoints, V :
IR → IR2. Members of V(·) can be at finite positions or

at infinity; in the latter case they may also be referred to

as viewing directions. Informally, the problem is, given a

tangent-continuous curve C, to find a minimal set of dis-

crete viewpoints lying on V(·) such that every point on C

can be seen from at least one of these views.

Viewpoints and viewing directions are handled slightly

differently in the following.

3.1. Single Viewpoints

We start by considering a single viewpoint. Given a sin-

gle viewpoint (or viewing direction), we wish to compute

the visibility map of the curve C from the viewpoint V ,

i.e., to identify the part of the curve that is visible from that

viewpoint. We do so using a similar approach to that taken

in the quantitative invisibility hidden-line removal scheme

for polygonal geometry [2] and free-form surfaces [11] in

IR3. The geometry is first split into contiguous regions such

that each region is either entirely visible or invisible; each

region’s visibility is then determined by shooting a ray from

the viewpoint (or in the viewing direction) towards the re-

gion in question.

We use silhouette points in 2D as our starting point to

solve this visibility problem.

Definition 1 Given a viewpoint V in the plane and a C1-

continuous planar curve C (see Figure 1(a)):

1. The silhouette points SV
C

comprise the set of points on

C whose curve normals are perpendicular to the line

between such a point and V (see Figure 1(b)).

2. The prime occluders OV
C

comprise the set of points on

C computed by shooting a ray from V through each sil-

houette point, and finding the first point the ray strikes

anywhere else on C, if any (see Figure 1(c)).



(a) (b)

Figure 2. Visible sections (thick gray line) of a curve (thin black line) computed for various view-
points at infinity (a) and finite viewpoints (marked with asterisks) (b).

3. C is split at SV
C

and OV
C

into sections. The visible sec-

tions of C, VV
C

, comprise the parts of C that are visi-

ble when viewed from V , and that are not occluded by

other parts of C (See Figure 1(d)).

Examples are shown in Figure 2(a) for viewpoints at in-

finity and in Figure 2(b) for finite viewpoints.

Given a viewing direction V from infinity, the silhou-

ette points, SV
C

, may be readily computed by finding all the

roots of

C′(t) × V = 0, (1)

where C(t) is a parametric representation of C.

Let tis ∈ SV
C

be a silhouette point from V . The prime oc-

cluders due to C(tis) (again with a viewing direction from

infinity) can be determined by finding the roots of

(C(tis) − C(r)) × V = 0, (2)

for all silhouette points tis ∈ SV
C

. A point C(r) that satisfies

Eqn. (2) lies on the ray in the viewing direction through the

silhouette point C(tis). We ignore the trivial solution tis = r,

and sort such points along the ray to find the OV
C

prime oc-

cluder locations where the curve disappears behind the sil-

houette points C(tis).
Splitting the curve C at all silhouette locations and all

prime occluder locations produces curve segments that are

either completely visible or completely invisible. Rays are

shot from V toward the middle of each such curve segment

to decide its visibility. A segment is visible if and only if the

first point the ray hits lies within the the curve segment.

Minor modifications are needed to the above computa-

tions in the case of a finite viewing point at V = p. Silhou-

ette points are found by solving

C′(t) × (C(t) − V) = 0, (3)

and the prime occluders due to the silhouette point C(tis)
are found from the roots of

(C(tis) − C(r)) × (C(tis) − V) = 0. (4)

Solutions to Eqns. (1)–(4), as well as other constraints

presented in this work, are sought using a multivariate

solver presented in [14].

3.2. A Family of Viewpoints

So far, given a single viewpoint, we have seen how to

compute the visible part of the curve from that viewpoint,

using a classical hidden-line algorithm. We now generalize

this idea. We combine the visibility maps for C(t) for all

possible viewpoints from a one-parameter family parame-

terized by θ, giving a single structure we call a visibility

chart. It is a bivariate function of θ and t.

Let V(θ) denote all possible viewpoints in the fam-

ily. For example, given viewing points located on a circle,

θ ∈ [0, 2π], parameterizes the unit circle S1. In the case

of viewpoints lying on the circle at infinity, we may rewrite

Eqns. (1) and (2) in the form

C′(t) × V(θ) = 0, (5)

(C(t) − C(r)) × V(θ) = 0. (6)

More generally, for any one-parameter family of finite

viewpoints V(θ), we may replace Eqns. (3) and (4) by

C′(t) × (C(t) − V(θ)) = 0, (7)

(C(t) − C(r)) × (C(t) − V(θ)) = 0. (8)

These pairs of equations, either Eqns. (5) and (6), or

Eqns. (7) and (8), in three variables, prescribe the visible

portion of C for each θ. Hence, one can plot the visible

regions of C as ranges of t as a function of θ—see Fig-

ure 3, for example. The left-hand side of each plot in Fig-

ure 3 shows a planar curve to be analyzed. The visibility

chart is shown on the right, using a family of viewing di-

rections from infinity. One viewing direction on each curve

and each chart is also highlighted.

As the viewing direction changes, so does the visible

portion of the curve. The visibility chart encodes the parts

of the curve that are visible from each viewing direction.

Such visibility charts have several properties that are cru-

cial to our discussion:

• For a C1 continuous closed curve C(t), the visibility

chart is periodic along its vertical axis t.

• For a periodic family of viewpoints parameterized as

V(θ), the visibility chart is periodic along its horizon-

tal axis θ.
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Figure 3. Visibility charts of free-form planar curves. The charts show the visible parameter ranges t

of the curve in grey as a function of θ, which parameterizes the family of viewpoints (viewing direc-

tions from infinity in this figure). One specific viewing direction for each curve, from the left in (a)
and from below in (b) and (c), is highlighted in black in these plots.

• A curve C(t) is completely visible externally if and

only if there exists a connected path within the visi-

ble portion of the visibility chart from the bottom of

the chart to the top. Stated differently, if there exists

any t such that C(t) is not visible from any θ, the vis-

ibility chart is disconnected at that t level.

The fundamental question we will answer in the next

section is how to find a minimal set of views that covers

the entire domain of the curve. We show that, with the aid

of visibility charts, this question can be reduced to the set-

covering [9] problem over the reals.

3.3. The Minimal Set of Viewing Directions

We now wish to compute a minimal set of viewing direc-

tions, using the visibility chart.

Given a visibility chart, any vertical line for a particular

θ spans some interval or intervals of t. We must thus choose

a set of values of θ such that the union of these intervals in

t covers the whole t domain; we wish to find a minimal set

containing the fewest number of discrete θ values.

The discrete set-covering problem is NP-complete [9,

p. 974] in the general case. A greedy algorithm, which

at each step chooses a set that maximizes the number of

newly-covered elements, provides a solution whose approx-

imation factor (in terms of the number of covering sets) is

proportional to the logarithm of the largest set [18, 20].

The situation is more favorable when the domain to be

covered is an interval I on the real line, and the family of

subsets of the domain consists of single real intervals too. It

is well known that a greedy algorithm efficiently provides

the optimal solution, working as follows. First, sort all in-

tervals according to their right endpoints. Among all inter-

vals that contain the left endpoint of I pick the interval I1

whose right endpoint is furthest to the right. Then, among

all intervals that contain the right endpoint of I1 pick the

interval I2 whose right endpoint is furthest to the right. At

any stage, if the right endpoint of the last interval is not

contained in any other interval, the algorithm halts and re-

turns “failure.” Otherwise, the procedure terminates when

the right endpoint of I is covered, returning the set of cho-

sen intervals. The simplicity of the problem is not altered

when the domain is cyclic, as in our case.

This algorithm requires O(n log n) time for n intervals.

Clearly, the presorting takes O(n log n) time, and then there

are O(n) steps, each of which takes O(log n) time, us-

ing standard data structures for searching and updating the

queue. In a sense, this running time is optimal. If we refine

the problem so that a minimum number of intervals is re-

quired to cover the interval I or a maximum portion of it

(in cases where the entire I cannot be covered), an easy re-

duction from the sorting problem shows a matching lower

bound on the running time of the algorithm.

Figure 4 provides an example. In this case, three viewing

directions are sufficient, as shown, both on the curve itself

(Figure 4 left) and on the visibility chart (Figure 4 right).

Note that due to the periodicity of the shape in t, two of the

selected intervals (the dotted-dashed and the dashed) span

the top (≡ bottom) border of t = 1 (≡ t = 0). Only one in-

terval in each view is used. The other, unused, intervals are

marked by solid black. Horizontal arrows in the visibility

chart shown in Figure 4 depict the interval Ii+1 that con-

tains the rightmost (≡ topmost in the visibility chart of Fig-

ure 4) endpoint of Ii, so that the interval of Ii+1 is farthest

to the right (≡ top).

For many exterior visibility problems, assuming each

subset has one interval and then solving the problem in al-

most linear time as above may be a reasonable trade-off be-

tween computation and quality of answer, if we are not too

concerned about the possibility of finding a slightly subopti-

mal solution in terms of number of viewpoints. However, if

an inspection chart were to be used many times, we might be

prepared to expend more computation to correctly select a

truly optimal set of viewpoints. This requires us to take into

account that the part of the curve visible from a given view-

point can be composed of multiple intervals; the resulting

NP-complete general set-covering problem [19] takes expo-

nential time to solve. (This may still be feasible if the num-

ber of viewpoints in the minimum set is fairly small: e.g., an
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Figure 4. Searching the visibility chart us-

ing single intervals to find the minimal set of

views covering a curve. Three views suffice.

exhaustive search for a 5-viewpoint solution over a few hun-

dred views can take a few minutes on a modern PC.).

We are, therefore, offering two approaches to solve the

visibility covering problem. If only a single interval in the

domain of the curve is visible from some view location

and/or direction, or if we are willing to consider only one

such interval, even if more can exist, a simple, almost lin-

ear, solution has been shown to be tractable. We now con-

sider the possibilities in the general, multi-interval case,

from each view.

It is common to represent the set-covering problem us-

ing a graph in which each subset is a vertex and two ver-

tices are connected by an edge if the intersection of the two

respective subsets is not empty. There are several known re-

sults for instances of the covering problem based on prop-

erties of the respective graphs. For example, upper bounds

on the size of the minimum cover are known for trees and

triangle-free graphs [19], and for r-partite graphs [5]. Our

graphs unfortunately do not possess any such special prop-

erties. Thus, to solve our covering problem we use a prac-

tical approach: we discretize the search space and perform

an iterative search, where the iteration is on the cardinal-

ity of the covering set.

Firstly, however, we note that it is simple to test whether

any finite set of directions is sufficient for viewing the com-

plete 2D object, or whether the object has some parts that

are not visible from any view (for example, given a set of

viewpoints at infinity, it is clearly impossible to see all of

the curve in Figure 2 due to its highly convoluted nature). It

is important to carry out such a test to avoid exhaustively

searching all of the exponentially-many subsets of view-

points, as we seek solutions which progressively use more

and more viewpoints. We perform this test as follows.

If some point C(t) on the object is not visible from

any view, then a horizontal line in the visibility chart cor-

responding to the parameter value t does not intersect any

gray region in the chart. We can quickly test if such horizon-

tal lines exist. We simply compute the maximum and min-

imum values of t corresponding to each separate gray re-

gion in the visibility chart, giving an interval of t covered

by that region. We compute the union of these intervals for

all gray regions. If the union does not cover the entire t do-

main of the curve, then some points on the object are not

visible from any direction. In such a case we report “fail-

ure” and terminate the algorithm. Examples are shown in

Figures 3(b) and 3(c). While much of these two curves can

be seen from suitable viewing directions from infinity, there

are clear gaps corresponding to parts of the interior of the

concavity in each case which are not visible from any out-

side view. Such parts correspond to two small gaps in Fig-

ure 3(b) and to one large gap in Figure 3(c).

We now return to the case where all parts of the object

can be seen from at least one view. We first discretize the

visibility chart in θ at some desired resolution. Clearly, the

higher the resolution, the more time the algorithm will take,

while the lower the resolution, the higher the chance that

we will find a suboptimal solution, and, for example, re-

port that four viewing directions are needed when three will

do.

The primitive object in our covering problem is one or

more t-intervals of C (a so-called slice), as seen from one

discrete viewing direction θ. We now perform a two-level

iterative search. At the outer level of the search we enu-

merate the cardinality of the set of view directions, starting

from i = 2 and going up. At the inner level of the ith outer

level of the search we iterate over all possible sets of i dis-

tinct viewing directions. For each such set S we compute

the union of the respective slices. The process stops when

it finds a set whose union covers the entire parametric do-

main of the curve.

Directly implementing this in a straightforward way

would be very time-consuming, especially if a fine angu-

lar resolution were used. We, therefore, use two further

ideas which typically speed this process up:

1. Before the search commences, we compare each slice

to the slices on either side of it. If the intervals of the

curve in a slice are completely contained in the inter-

vals of the curve in either neighbor, we can discard

this slice: all of the curve that can be seen from this

viewpoint, and more, can be seen from the neighbor-

ing viewpoint. This pruning process is repeated until

no such subsumed slices are present. This helps to re-

duce the size of the search space.

2. Generally, viewpoints that see more of the curve are

more useful in constructing solutions than those view-

points that see a smaller part of the curve. Thus, we al-

ways give higher priority (that is, consider first in the

search) viewing directions whose slices cover a larger

amount of parameter t.

The latter heuristic is essentially a greedy approach,

merely controling the order in which the algorithm consid-



(a) Rational cubic, 7 control points (b), Quadratic, 7 control points (c) Quadratic, 12 control points

(d) Cubic, 37 control points (e) Quadratic, 26 control points (f) Quartic, 100 control points

Figure 5. Several examples of planar curves and their decompositions into subcurves that can be

seen using a minimal set of viewing directions.

ers the slices, in an attempt to find a solution more quickly.

The theoretical complexity of the search is unchanged: it

still has to consider an exponential number of cases in the

worst case. In any case, we still find a solution if one def-

initely exists, as eventually all possibilities will be consid-

ered.

In order to be able to guarantee that we find a correct so-

lution, given that we have discretized the visibility chart, we

must be careful in our handling of the intervals. When two

viewing directions are sufficient, these two views must be

from antipodal directions, complementing each other. When

three or more views are necessary, in all likelihood, the

views will share overlapping regions of the curve. Hence, in

practice, we expand the domain of each interval by a small

portion when we conduct the single-interval set-covering

search. If only two views are found necessary, we make sure

these views are made precisely antipodal and then verify the

solution with the original intervals. For three or more views,

we verify the detected solution using the original intervals,

expecting the overlaps between adjacent views to compen-

sate for the added portion. Small perturbations of the view-

points could also be applied, in either case.

4. Examples

We now provide some further examples. Figure 5 shows

several C1-continuous planar curves of varying complex-

ity, decomposed according to the appropriate minimal sets

of external viewing directions. These solve the so-called

fortress problem where we have viewpoints located on the

circle at infinity.

In Figures 5(a) and 5(b), two simple cases are presented,

where two (antipodal) viewing directions are sufficient to

cover the entire curve. Figures 5(c) and 5(d) present two

cases where three viewing directions are necessary and suf-

ficient, whereas in Figure 5(e) four views are required.

While the curve in Figure 5(e) requires four views, these

views are not monotone with respect to each other around

the shape. This nonmonotonicity has no effect if the appli-

cation of the algorithm is inspection. Nonetheless, it would

make mold-assembly design for this object more complex.

Figure 5(f) is a highly complex quartic curve with 100 con-

trol points that requires six viewing directions to cover the

shape. All these viewing directions were computed using

the visibility charts and the single-interval set-covering so-

lution in slightly worse than linear complexity in the num-

ber of discrete viewing directions sampled.

The examples in Figure 5 were computed on a modern

PC using between 72 and 720 viewing direction samples,

with 72 for Figures 5(a) and 5(b), and 720 for Figure 5(f).

The entire computation took from a fraction of a second in

simple cases such as Figures 5(a) and 5(b) to a little over a

minute for the most complex case of Figure 5(f).

Figure 6 presents the visibility chart of another shape.

Four views are necessary to cover the entire curve in this
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Figure 6. Covering set example with the visi-

bility chart. Four views are necessary and are
shown on both the curve regions (left) and

the chart (right).

case. The four views are marked on both the curve itself and

on the visibility chart. The union of the four intervals cov-

ers the entire domain of the curve. Note that again we only

consider the central, largest interval in each view, in our set-

covering search for efficiency.

As already mentioned, we are able to place the view-

points along any univariate path. Specifically, we may place

them along the interior walls of the curve, building a visi-

bility chart which allows us to solve the (interior) art gallery

problem in the continuous domain. Figure 7 shows two such

examples where the viewpoints are placed on the curve it-

self, using V(θ) = V(t), and we restrict viewing to only

consider directions pointing into the curve’s interior. Note

that these visibility charts are symmetric along the diago-

nal as they portray which curve parameters are visible from

which other curve parameters.

An interesting observation can be made by considering

Figure 7(a). The viewpoint marked is at a concave curve lo-

cation and from that point nothing can be seen in the local

neighborhood. That is, if C(t0) is a point in a concave re-

gion, there exists a small δ > 0 neighborhood of C(t0) such

that the region [t0 − δ, t0 + δ] \ {t0} is invisible to a guard

at C(t0)! In contrast (see Figure 7(b)), if the view location

is placed at a convex region C(t1), there is a small ε > 0
neighborhood such that the region [t1 − ε, t1 + ε] is visi-

ble.

Unfortunately, the single-region set-covering solution

cannot be used to resolve the art gallery problem. The gen-

eral set-covering solution must be employed, with an expo-

nential time complexity in the number of guards allowed.

Figure 8 presents several results of our automatic solution

to the art gallery problem for smooth and continuous closed

shapes. The original curve is drawn in thick gray whereas

the visible region for each guard is differently offset and

differently dotted/dashed. The solution for this general set-

covering problem is exponential in the number of views ex-

amined. Here, one hundred different views were used to find

the (two or three) proper guard positions, in less than a sec-

ond, on a modern PC, in Figure 8(a) to 8(c). Figures 8(d)

and 8(e) are more involved and again using one hundred dif-

ferent views, the positions of the five necessary guards were

found in less than a minute.

5. Conclusions and Future Work

We have presented a two-dimensional structure called a

visibility chart, and have shown how it can be used in al-

gorithms for choosing a minimal, or nearly minimal, set of

viewing directions for inspection of an object whose bound-

ary is a tangent-continuous curve. The algorithms use a set-

covering search over a discrete set of intervals to compute

the desired viewing directions. We have also demonstrated

practical examples showing the solutions we found.

Our tests have shown that, for the fortress problem, a

single-interval set-covering solution in slightly worse than

linear time can often produce good results quickly. How-

ever, the single-interval approach is only an approximation

and one could envisage cases where allowing multiple in-

tervals from each view could reduce the number of views

necessary. In other cases, such as the art gallery problem, a

general NP-complete set-covering algorithm must be used

to find the optimal solution; this might also be appropriate

where an inspection plan is to be used many times, and the

time savings during use may warrant an expensive search

for a minimal solution.

Note that for the purpose of mold design, the part of the

curve seen from each viewing direction must be connected,

and hence the single-interval approach is the proper one to

use, whereas for inspection, multiple intervals from a single

viewpoint are admissible. See, for example, the highlighted

view in Figure 3(a) with three disjoint visible regions.

When determining the visibility of each curve region,

during the construction of the visibility chart, we cast rays

toward each segment (see Figure 1(d)). In [11], it was sug-

gested that since the adjacent region possesses different

quantitative invisibility, once can employ adjacency coher-

ence and reduce the number of rays we are required to cast.

If a region is visible, its two neighbors must be invisible

(but not necessarily the reverse). A visibility propagation

tool, similar to that of [11] could be utilised here as well.

The algorithms presented sample the visible region at a

discrete set of locations along a univariate function as V(θ)
or as V(t) along the curve itself. Needless to say, this one-

parameter family of viewpoints could follow any univariate

path in the plane. A nontrivial extension would also sup-

port visibility charts of viewpoints that are defined using a

two-parameter family of views. Let (θ, r) span the plane us-

ing polar coordinates. The computed visibility chart will be

a volume which prescribes the visibility at curve parameter

t as a function of θ and r. Then, we could also consider, for
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Figure 7. The art gallery problem. Visibility charts for viewpoints along the walls of the shape itself

are presented. One viewpoint, is highlighted with the visible region on the curve and in the chart

presented in black. Note the view is limited to inspection from inside the shape.

example, guards in the interior of the art gallery and not just

along its walls. Similarly, the extension of the presented so-

lution to surfaces in IR3 is highly desirable but also highly

complex.

Some manual control over the precise split regions might

aid the end-user in his or her design and allow other con-

straints to be imposed. In particular, for any case involv-

ing more than two views, the regions visible from adjacent

viewpoints are likely to overlap. The precise location of the

split points along the overlapping region could be decided

by the end-user, taking into account other constraints, such

as distance from the guard, best relief angles in the mold

design, etc. Alternatively, the end-user could be allowed to

make minor adjustments to the viewpoints used from the

viewpoint family, again as long as the shifted region for that

viewpoint continues to overlap those of its neighbors and no

topological changes occur.

Clearly, a desirable extension to the method presented is

to cover the case in which the curve is not tangent continu-

ous, but may have corners. It should be a relatively straight-

forward addition to include corners as silhouette points for

appropriate ranges of viewpoints (or directions). These C1

discontinuities should be analyzed to identify the span of

directions from which these singularities are also silhou-

ette points, based on the incoming and outgoing tangents,

at each discontinuity.

In addition, certain problems require 3D visibility com-

putations rather than 2D ones, and we intend to examine the

extension from 2D to 3D of the ideas presented here.
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