
Chapter 24

HEURISTICS FOR LARGE STRIP PACKING
PROBLEMS WITH GUILLOTINE PATTERNS:
AN EMPIRICAL STUDY

————–

Christine L. Mumford-Valenzuela 1, Pearl Y. Wang ∗2, Janis Vick 2

1Department of Computer Science, Cardiff University, UK

christine@cs.cf.ac.uk

2Department of Computer Science, George Mason University, USA

pwang@cs.gmu.edu

Abstract In this paper we undertake an empirical study which examines the effec-
tiveness of eight simple strip packing heuristics on data sets of different
sizes with various characteristics and known optima. We restrict this ini-
tial study to techniques that produce guillotine patterns (also known as
slicing floorplans). Guillotine patterns are important industrially. Our
chosen heuristics are simple to code, have very fast execution times,
and provide a good starting point for our research. In particular, we
examine the performance of the eight heuristics as the problems become
larger, and demonstrate the effectiveness of a preprocessing routine that
rotates some of the rectangles by 90 degrees before the heuristics are ap-
plied. We compare the heuristic results to those obtained using a good
genetic algorithm (GA) that also produces guillotine patterns. Our
findings suggest that the GA is better on problems of up to about 200
rectangles, but thereafter certain of the heuristics become increasingly
effective as the problem size becomes larger, producing better results
much more quickly than the GA.

Keywords: Strip packing, heuristics, genetic algorithm.

∗Partially supported by the NASA Goddard Space Flight Center (NAG–5–9781)

2

1. Introduction

We undertake an empirical study in which we compare the perfor-
mance of some well-known strip packing heuristics and a good genetic
algorithm on a range of two-dimensional rectangular packing problems.
We restrict our study to problems involving guillotine patterns which
are produced using a series of vertical and horizontal edge–to–edge cuts.
Many applications of two-dimensional cutting and packing in the glass,
wood, and paper industries are restricted to guillotine patterns. Packing
heuristics that produce these patterns are generally simple to code and
fast to execute.

The packing problem under consideration involves the orthogonal
placement of a set of rectangles into a rectangular strip (or bin) of given
width and infinite height so that no rectangles are overlapping. The
goal of this strip packing problem is to minimize the height of the pack-
ing. We compare the performance of our GA, adapted from [Valenzuela
and Wang, 2001; Valenzuela and Wang, 2000], with the performance of
eight strip packing heuristics [Coffman et al., 1984; Baker and Schwarz,
1980; Sleator, 1980; Golan, 1981] on data sets of various sizes with a
variety of characteristics.

These data sets were generated using a suite of data generation pro-
grams developed in [Wang and Valenzuela, 2001] that produce data sets
with optimal guillotine packings of zero waste. The software allows a
set of basic rectangles to be cut from a large enclosing rectangle of given
dimensions, and options are available which allow the user to control
various characteristics: the number of pieces in the data set, the maxi-
mum and minimum height–to–width ratios of the pieces, and the ratio
of the area of the largest piece to that of the smallest piece.

Several recent comparative studies on strip packing have reported
superior performances for metaheuristic algorithms over simple heuristic
approaches (for examples see [Hopper and Turton, 2001; Hwang et al.,
1994; Kröger, 1995]). We note, however, that in most of these cases, the
problem sizes are restricted to 100 rectangles or less. Our interests lie
in examining a larger range of problem sizes and types.

2. Simple Heuristic Algorithms for Guillotine
Packing

In this section, we review the heuristic algorithms used for our com-
parative study. The sets of rectangles to be packed may first be pre-
sequenced by arranging them in order of non-increasing height or width.
They are then placed in the bin, one at a time, in a deterministic fashion.
Pre-sequencing is employed by four of the heuristic algorithms we use:

Simple Heuristic Algorithms for Guillotine Packing 3

those based on the level oriented approach introduced by [Coffman et al.,
1980]. To avoid pre-sequencing, two similar approaches utilize shelves
for packing the rectangles and were proposed by [Baker and Schwarz,
1980]. A seventh algorithm was formulated by [Sleator, 1980] and splits
the rectangular bin vertically into two sub-bins after packing some initial
pieces. This idea is further extended by [Golan, 1981] who repeatedly
splits the bin into smaller sub-bins and packs the pieces, sorted by de-
creasing width, into ever narrower bins as the algorithm progresses. All
eight heuristic algorithms produce guillotine patterns. Other algorithms
which produce non-guillotine patterns are reviewed in [Coffman et al.,
1984].

The Level Oriented Algorithms

To implement a level oriented algorithm, the items are first pre-
sequenced by non–increasing height, and then the packing is constructed
as a series of levels, each rectangle being placed so that its bottom rests
on one of these levels. The first level is simply the bottom of the bin.
Each subsequent level is defined by a horizontal line drawn through the
top of the tallest rectangle on the previous level.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

NFDH FFDH

1 1

2 2

3 3

4

4 5 5 6

6

Figure 24.1. Some NFDH and FFDH packings

In the Next Fit Decreasing Height (NFDH) algorithm, rectangles are
packed left justified on a level until the next rectangle will not fit, in
which case it is used to start a new level above the previous one, on
which packing proceeds. The run time complexity of NFDH (excluding

4

the sort) is linear, just placing one rectangle after another in sequence.
The First Fit Decreasing Height (FFDH) algorithm places each rectangle
left justified on the first (i.e. lowest) level in which it will fit. If none of
the current levels has room, then a new level is started.

The FFDH heuristic can be easily modified into a Best Fit Decreasing
Height (BFDH) and a Worst Fit Decreasing Height (WFDH) heuristic.
BFDH packs each piece onto the best level (i.e. the one with least
remaining horizontal space) on which it will fit. WFDH packs the piece
into the largest remaining horizontal space where it will fit. These four
approaches are two-dimensional analogues of classical one-dimensional
packing heuristics. The run time complexity for FFDH, BFDH and
WFDH is O(n lg n) where n is the number of rectangles being packed.
Figure 24.1 illustrates the NFDH and FFDH packings for the same six
rectangles.

For the level packing algorithms, the asymptotic worst case perfor-
mance has been shown to be twice the optimum height for the NFDH
algorithm and 1.7 times the optimum height for the FFDH algorithm.
The asymptotic worst case performance bounds for BFDH and WFDH
are, respectively, at least twice and 1.7 times the optimum height. These
are the asymptotic bounds for their one-dimensional analogues and easily
serve as lower bounds on their worst case performance in two dimensions
as level-oriented algorithms.

The Shelf Algorithms

The on-line packing heuristics proposed by [Baker and Schwarz, 1980]
can be used when pre-ordering of the input data is to be avoided. These
heuristics are modifications of the Next-Fit and First-Fit approaches.
Rectangles whose dimensions are between 0 and 1 are packed on shelves
whose heights are set by a parameter r where 0 < r < 1. Shelf sizes have
the form rk and each rectangle of height h, rk+1 ≤ h ≤ rk is packed into
a shelf having height rk. Thus, the motivation for the use of r is to limit
the amount of vertical wasted space which is allowed on each shelf.

Using the Next-Fit approach, the Next-Fit Shelf (NFSr) algorithm
packs each piece as far to the left as possible on the highest shelf with
height rk where the rectangle height h, rk+1 ≤ h ≤ rk. If there is no
room on this shelf, a new one is created having height rk. In the First-Fit
Shelf (FFSr) algorithm, the lowest shelf of the correct height on which
the rectangles will fit is chosen. Examples of NFSr and FFSr packing
are shown in Figure 24.2.

For the on-line shelf packing algorithms, the asymptotic worst case
performance has been shown to be 2

r of the optimum height for the NFSr

Simple Heuristic Algorithms for Guillotine Packing 5

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

5

4
7 8

62

1 3 1

2 6

3 7

4

5

8

NFS

shelf 4

shelf 3

shelf 2

shelf 1

shelf 4

shelf 3

shelf 2

shelf 1

FFSr r

Figure 24.2. Two shelf packing algorithms

algorithm and 1.7
r times the optimum height for the FFSr algorithm.

These bounds are higher than for the level-oriented heuristics, but no
pre-sequencing of the rectangles is required.

Sleator’s Algorithm

Unlike the shelf heuristics, the heuristic proposed by [Sleator, 1980]
is not an on-line algorithm. It also packs rectangles having width at
most one. Initially, the rectangles with width greater than 1

2 are stacked
vertically beginning at the bottom left corner of the bin. A horizontal
line (h0) is then drawn through the top of the last packed rectangle. The
area of the rectangles below this line is denoted by A0.

Next, the remaining rectangles of the list are sorted by decreasing
height. They are placed along the h0 line until a piece is encountered
which won’t fit, or until no more rectangles remain in the list. In the
first case, the bin is next split in half vertically into two open-ended bins
with width exactly 1

2 . We let A1 be the area of the rectangles in the
left half-bin. All remaining packed and unpacked rectangles have area
designated as A2. Notice that one rectangle may be “split” in two, with
part of it residing in the left half bin and the other part in the right half
bin.

The remaining unpacked rectangles are packed into the two half-bins
using a level approach: the half-bin with the current lowest level (defined
by the tallest piece) is packed from left to right by placing rectangles

6

along the level until a half-bin edge is reached. The first rectangle packed
this way defines a new level in this half-bin. If it is lower than the
current level in the other half-bin, then packing resumes on this level in
this half-bin. Otherwise, packing proceeds using the current level of the
other half-bin as the site where the remaining pieces should be placed.
An illustration of this process is shown in Figure 24.3.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2

3

1

4

5
6

8

13 14

9 10

7

11 12

A

A

A

0

1

2
0.5

Figure 24.3. The Sleator packing algorithm

[Sleator, 1980] was able to prove that the absolute worst case error
bound for the packing height of this heuristic was 2.5 times the optimal
height and that this is a tight bound.

The Split Algorithm

The Split algorithm is an extension of Sleator’s approach. It packs
the pieces in order of non–increasing width. We can imagine that for
each piece that is packed the original bin is split into two, and then into
two again when the next piece is packed, and so on. As the rectangles to
be packed are sequenced according to width, after packing some pieces,
those left to be packed are narrower and thus easy to fit into one of
newly created bins. If possible, we pack pieces side by side with previ-
ously packed pieces. When this is not possible, we pack pieces on top
of previously packed pieces. When bins are split, closed bins (M) are
created below in which no further pieces can be packed.

Simple Heuristic Algorithms for Guillotine Packing 7

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

5

4

1
2

9.510

8

9

50
8.5

20

6.5

7.5

6

15

32

7

7
12

28

1
18

30
3

8

T
hi

rd
 S

pl
it

Se
co

nd
 S

pl
it

F
ir

st
 S

pl
it

Figure 24.4. The Split algorithm packing process

A brief example is shown above where the seven rectangles are to be
packed. Rectangle 1 is packed first. Then rectangle 2 is placed to its
right, splitting the open-ended bin into two sub-bins. (There is no M in
this case.) Rectangle 3 is placed in the right sub-bin (it can’t fit next
to piece 1 in the left sub-bin), causing another split of the right sub-bin.
When the fourth piece is packed, it will not fit to the right of the last
piece packed in any sub-bin. Hence it is stacked on top of rectangle 2
in the middle sub-bin because that is the lowest position where a piece
can be stacked in the three sub-bins. Similarly pieces 5 and 6 will be
stacked in the first and third sub-bins.

Subsequent to this, the heuristic checks the three sub-bins to see if
piece 7 can be packed next to the last pieced packed into each sub-bin.
Piece 7 can be placed next to piece 6 in the third sub-bin but is too wide
to be placed next to either piece 5 or 4 in the first and second sub-bins.
Thus, the placement of piece 7 splits the third sub-bin into three parts:
two narrower sub-bins and a lower rectangle. Finally, piece 8 could be
placed to the right of either piece 5, 4, or 7. However, the second choice
reflects the sub-bin with the lowest current level and so piece 8 is packed
there which causes another split.

8

Figure 24.4 illustrates the splitting process that is encountered when
packing a bin using this approach. The worst–case performance of the
Split algorithm is three times the optimum height. Full details of the
Split algorithm are given in [Golan, 1981].

3. Our Genetic Algorithm

Our genetic approach to solving packing and placement problems is
based on a normalized postfix representation which offers a unique en-
coding for each guillotine pattern and covers the search space efficiently.
Our postfix representation provides a blueprint for a recursive bottom-
up construction of a packing or placement by combining rectangles to-
gether in pairs. The general technique that we use has proven effective
for the VLSI floorplanning problem [Valenzuela and Wang, 2001; Valen-
zuela and Wang, 2000]. However, that problem is more complex than
the strip packing problem of the present study: although the individual
rectangular components for VLSI placement have fixed areas, it is possi-
ble to vary their height and width dimensions to obtain closer packings.
The GA that we developed for VLSI floorplanning incorporates a so-
phisticated area optimization routine that is not needed for the present
strip packing study.

The Representation and Decoder

The postfix expressions that we use to encode placements for our GA
utilize the binary operators ‘+’ and ‘∗’ which signal that one rectangle
should be placed on top of the other (+), or by the side of the other
(∗). Alternatively, + and ∗ represent horizontal and vertical cuts, when
viewed from a top-down, cutting perspective. By repeatedly combining
pairs of rectangles or sub-assemblies together, a complete layout can be
generated. Wasted space will be created in the combining process when
rectangles or sub-assemblies have different height or width dimensions.
The objective of the GA is to pack the rectangles into a given fixed width
bin as tightly as possible.

Note that a complete postfix expression of n rectangles will contain
exactly n − 1 operators. Also, at any point during the evaluation of a
postfix expression, the cumulative total of operators must be less than
the cumulative total of rectangles. The integers 1 . . . n represent the n
rectangles in a problem. Normalized postfix expressions are character-
ized by strings of alternating ∗ and + operators separating the rectangle
IDs. Figure 24.5 illustrates a slicing floorplan, its slicing tree represen-
tation, and the corresponding normalized postfix expression.

Our Genetic Algorithm 9

1

6

3

4

2

7

8
5

* +

+

+ + 8 7

*1 4

3 6 2 5

*

3 6 + 1 + 2 5 * 4 + * 8 7 + *

Figure 24.5. Slicing Trees and Normalized Postfix Strings

The representation used for our GA is order based and consists of an
array of records, with one record for each of the basic rectangles of the
data set. Each record contains three fields:

a rectangle ID field: this identifies one of the basic rectangles from
the set {1, 2, 3,..., n}

an op-type flag: this boolean flag distinguishes two types of nor-
malized postfix chains, + = +∗+∗+∗+. . . and ∗ = ∗+∗+∗+∗. . .

a chain length field: this field specifies the maximum length of the
operator chain consecutive with the rectangle identified in the first
field.

Starting with a given array of records produced by the GA, our de-
coder will construct a legal normalized postfix expression. It does this by
transcribing the rectangular IDs given in the first field of each record in
the sequence specified, while at the same time inserting chains of alter-
nating operators following each rectangle ID, as specified in the second
field of each record (i.e., either + ∗ + ∗ + . . . or ∗ + ∗ + ∗ . . .). The
length of each individual chain of alternating operators is determined by
examining the third field of each record which specifies chain length.

The chain lengths specified in the records are adopted whenever possi-
ble. If such an adoption produces an illegal postfix expression or partial
expression, however, the decoder steps in to correct it, either by adding
operators to, or subtracting operators from, an offending chain. Be-
low is an example showing an encoded string and its normalized postfix
interpretation:

rectangle 5 rectangle 2 rectangle 4 rectangle 1 rectangle 3
op-type ∗ op-type + op-type ∗ op-type ∗ op-type +
length 2 length 1 length 0 length 2 length 0

10

Postfix expression generated: 5 2 + 4 1 ∗ + 3 +

The Genetic Algorithm

Procedure GA
begin

Generate N random permutations {N is the population size}
Evaluate the objective function (i.e. bin height)for each structure and store it
Store best-so-far
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to the offspring
Evaluate the objective function produced by offspring
If offspring is a duplicate, delete it
else

If offspring better than weaker parent then it replaces it in
population

If offspring better than best-so-far then it replaces best-so-far
Endfor

Until stopping condition satisfied
Print best-so-far

End

Figure 24.6. Algorithm 2 A simple steady state genetic algorithm

Figure 24.6 gives the simple genetic algorithm (GA) which we use.
It is an example of a steady state GA, and it uses the weaker parent
replacement strategy first described in [Cavicchio, 1970]. In this scheme,
a newly generated offspring will replace the weaker of its two parents if
it has a better fitness value than that parent. The current GA is similar
to the GAs used in [Valenzuela and Wang, 2000; Valenzuela and Wang,
2001], but differs in the following important ways:

The area optimization routine designed for rectangles with fixed
area but flexible height and width dimensions is not needed here
because all rectangles have fixed dimensions (as mentioned earlier).

Duplicates in the population are deleted.

Selection based on fitness values has been abandoned in favour of
simple uniform selection. The weaker parent replacement strategy
seems to be sufficient to advance the genetic search, thus reducing
the computational requirement of the GA.

Our Genetic Algorithm 11

A rotation heuristic has been added which will rotate rectangles
through 90 degrees when this is locally effective.

In the current GA population, duplicates are deleted as soon as they
arise. To save computation time, we delete phenotypic duplicates i.e.,
new offspring are deleted if they duplicate a current population mem-
ber’s height (within sampling error). Ideally we should delete genotypic
duplicates, but this would involve performing time consuming pairwise
comparisons on the genetic array of records encoding the postfix expres-
sions.

Each time the GA iterates through its inner loop, it selects two parents
and applies cycle crossover, CX [Oliver et al., 1987] to the permutations
of records to produce a single offspring. A single mutation is then applied
which is selected from three alternatives M1, M2 or M3: M1 swaps the
position of two rectangles, M2 switches the op-type flag from + to ∗ or
vice versa, and M3 increments or decrements (with equal probability)
the length field. The pairs of parents are selected in the following way:
the first parent is selected deterministically in sequence, but the second
parent is selected uniformly, at random.

Once decoded, the postfix expression is evaluated, the corresponding
slicing layout generated, and the bin height calculated and recorded.

For the present study, we have incorporated a rotation heuristic into
our GA. This performs 90 degree rotations when it is locally effective
during the construction of the layout from the postfix expression. This
means that individual rectangles and sub-assemblies can be rotated when
they are combined in pairs, if this results (locally) in a reduction of
wasted space. For each pairwise combination of rectangles A and B,
there are four alternative configurations: A combined with B, ‘A ro-
tated’ combined with B, A combined with ‘B rotated’, and ‘A rotated’
combined with ‘B rotated’. All four alternatives are tried each time a
pair or rectangles or sub-assemblies are combined, and the best config-
uration selected.

The GA handles the fixed width constraint in the strip packing prob-
lem (i.e. we are packing rectangles into a bin of fixed width and infinite
height) by rejecting packings that are too wide, and repeatedly generat-
ing new ones until the width constraint is satisfied.

Our current goal is to compare the performance of a good genetic
algorithm with the classical strip packing heuristics on a range of data
sets of different sizes with different characteristics. We do not claim that
our GA is the best in existence; we do not know whether it is or not.
Evidence that our genetic packing techniques are good, however, was
provided first by the results obtained for VLSI floorplanning in [Valen-
zuela and Wang, 2000; Valenzuela and Wang, 2001], and more directly

12

1

21

4

9

18

5

16

25

3

2

23

17

19 13 6 8 11 12
22

20

7 15

14 10 24

Figure 24.7. GA packing for the 25 rectangle problem from (Jakobs, 1996):
width = 40, height = 16

for some small strip packing results: we matched the best solutions ob-
tained by Liu and Teng in a recent paper [Liu and Teng, 1999].

2 1 16

5

25

50

46

8

45

49

11
6

12

32

38 22 27 21 19

7

41

30 20 4 3 36
14

24 18 40 39 17 10 9 28
29

15 34 23 48 31 33 35
26

47 43 42
44

13
37

Figure 24.8. GA packings for the 50 rectangle problem from (Jakobs, 1996):
width = 40, height = 16

For these strip packing experiments, the 25 and 50 rectangle problems
from [Jakobs, 1996] were used. We were able to match the results of Liu
and Teng, despite our use of a much more restrictive search engine: in
[Liu and Teng, 1999], a non-guillotine Bottom Left placement heuristic is
used; our search space was confined to guillotine patterns. Figures 24.7
and 24.8 shows some typical packings obtained by our GA for these
problems.

Experimental Results 13

4. Experimental Results

In this section, we present results for the eight strip packing heuristics
and our GA when they are applied to two different types of data sets.
In one type of data set, the rectangles are all similar in shape and size.
These are referred to as the Nice data. In the other type of data set,
the variation in rectangle shape and size is more extreme; these are the
pathological or Path data sets.

All of the data sets that were employed for our experiments were gen-
erated using the techniques described in [Wang and Valenzuela, 2001]
which produce sets of rectangles by applying guillotine cuts at appropri-
ate locations within a 100×100 rectangle. Data sets of size n are created
by making n−1 guillotine cuts, and each resulting data set can be packed
into a strip of width 100 with an optimum height of 100 (and zero waste).
Simple constraints may be applied during the cutting process to guar-
antee that the data sets have the different shape and size characteristics
that were mentioned above. For the majority of our experiments, we
used data sets with sizes n = 25, 50, 100, 200 and 500 for both the Nice
and Path types, but in a final set of experiments, we applied only the
most successful of the heuristics to some larger problems.

Comparing the Eight Heuristics

In the first set of experiments, the eight packing heuristics (NFDH,
FFDH, BFDH, WFDH, NFSr,FFSr, Split and Sleator) were applied to
50 Nice.n and 50 Path.n data sets having sizes n = 25, 50, 100, and
200. In addition, ten data sets of each type with n = 500 rectangles
were tested. For the Nice.n data sets, the height-to-width ratio of all n
rectangles fell in the range 1/4 ≤ H/W ≤ 4, and the maximum ratio of
the areas of any two rectangles in the set was 7. For the Path.n data,
the H/W ratio lay in the range 1/100 ≤ H/W ≤ 100, and the maximum
area ratio was 100.

Figure 24.9 illustrates the packings produced by FFDH, FFS (with
r = 0.5), Sleator’s, and the Split heuristic for a sample Nice.50 data set,
and Figure 24.10 shows the results of applying the same heuristics to a
sample Path.50 data set.

The mean heights of the packings generated by all eight strip pack-
ing heuristics were calculated and are shown in Tables 24.1–24.6. The
runtimes of each of the eight algorithms took less than one second when
applied to each data set on a Toshiba Tecra computer with a 1.2 GHz
Pentium III processor and 256 MBytes RAM.

Tables 24.1 and 24.2 give mean packing heights for both Nice and
Path data sets. Recall that the rectangles in a data set are reordered by

14

1

2

3

4

5 6

7

8

910

11

12

13 14 15

16

17

18

19

20

21 22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37 38

39

4041

42

43

44

45

46

4748

49

50

1

2 3

4

5 6 7

8

9

10

11 12

13

14

15
16

17

18

19

20 21

22 23 24

25 26

27 28

29 31 34

35

37 38 39 43 49

FFDH FFS (r = 0.5)

1

2

3

4

5

6

7

8

910

11

12

13 14 15

16

17

18

19

20
21

22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37 38

39

404142

43

44

45

46

47

48

49

50

Sleator Split

Figure 24.9. Packings of a Nice.50 data set

Experimental Results 15

2

4

5

7

8

10

12

14 15

18

19

20

21

22

24

25

27

2829

30

31

3233

35

36

37

3839 42434445

46

47 48

49 50

2

4

5

7

8

9 10
11

12

13 14

15

1617

18 19

20

21

22

23

24

25

26

27

2829

30

31

32

33

34

35

36

37

3839

4041

42

4344

45

46

47

48

49 50

FFDH FFS (r = 0.5)

1 3

4

5

6

7

8

9

10

11

12

13

14 15

1617

18

19

20

21

22

23

24

25

26

27

28

29

30

31

3233

34

35

36

37

3839

4041

42434445

46

47

48

4950

Sleator Split

Figure 24.10. Packings of a Path.50 data set

16

Table 24.1. Mean packing heights for eight heuristics applied to Nice.n data sets.
Optimum height is 100.

Heuristic Nice.25 Nice.50 Nice.100 Nice.200 Nice.500
(50 sets) (50 sets) (50 sets) (50 sets) (10 sets)

NFDH 134.2 125.9 120.4 115.0 109.0
FFDH 130.4 121.9 117.7 113.1 108.2
BFDH 130.4 121.9 117.7 113.1 108.2
WFDH 132.6 123.6 119.0 114.0 109.0

NFS 0.5 210.8 195.7 193.3 173.4 168.2
NFS 0.6 210.2 189.9 181.3 165.3 154.7
NFS 0.7 211.5 192.3 176.5 165.3 151.2

FFS 0.5 206.5 189.1 189.4 169.8 167.4
FFS 0.6 207.8 185.5 176.9 162.8 151.7
FFS 0.7 209.4 190.1 174.9 163.2 150.2

Split 141.8 140.4 138.1 138.6 138.0
Sleator 133.8 125.5 119.2 113.9 108.5

Table 24.2. Mean packing heights for eight heuristics applied to Path.n data sets.
Optimum height is 100.

Heuristic Path.25 Path.50 Path.100 Path.200 Path.500
(50 sets) (50 sets) (50 sets) (50 sets) (10 sets)

NFDH 152.9 157.0 154.9 152.4 144.7
FFDH 149.4 149.9 149.6 147.8 142.0
BFDH 149.4 149.9 149.6 147.8 142.0
WFDH 150.4 152.3 151.6 148.8 142.8

NFS 0.5 223.1 241.3 250.7 255.8 246.7
NFS 0.6 241.9 266.8 268.4 269.1 280.0
NFS 0.7 290.5 310.6 316.3 308.8 294.0

FFS 0.5 219.4 238.7 245.8 252.6 242.0
FFS 0.6 240.7 265.9 266.1 266.1 276.5
FFS 0.7 289.7 309.4 314.9 307.8 293.2

Split 169.4 170.2 168.3 165.1 158.6
Sleator 145.7 139.4 137.9 134.3 125.4

Experimental Results 17

Table 24.3. Mean packing heights for eight heuristics applied to preprocessed
(W ≥ H) Nice.n data sets. Optimum height is 100.

Heuristic Nice.25 Nice.50 Nice.100 Nice.200 Nice.500
(50 sets) (50 sets) (50 sets) (50 sets) (10 sets)

NFDH 126.1 120.5 114.9 110.9 105.4
FFDH 118.9 115.5 110.7 108.2 105.4
BFDH 118.9 115.5 110.7 108.3 105.4
WFDH 121.4 117.3 111.7 109.2 105.7

NFS 0.5 193.2 175.2 172.4 161.8 163.3
NFS 0.6 177.2 170.7 160.8 150.0 144.0
NFS 0.7 167.4 160.2 150.9 144.5 134.0

FFS 0.5 184.8 168.6 167.7 158.4 160.2
FFS 0.6 168.6 164.0 157.3 146.5 141.5
FFS 0.7 163.4 155.9 148.0 141.6 132.2

Split 138.3 137.1 137.4 138.2 138.9
Sleator 138.0 127.7 119.3 113.6 108.6

Table 24.4. Mean packing heights for eight heuristics applied to preprocessed
(W ≥ H) Path.n data sets. Optimum height is 100.

Heuristic Path.25 Path.50 Path.100 Path.200 Path.500
(50 sets) (50 sets) (50 sets) (50 sets) (10 sets)

NFDH 132.2 131.2 130.7 125.8 118.0
FFDH 121.4 120.6 118.1 115.3 110.6
BFDH 121.1 120.3 118.0 115.2 110.6
WFDH 123.0 117.3 120.8 117.5 112.6

NFS 0.5 193.7 197.5 199.9 191.3 174.0
NFS 0.6 180.9 183.8 184.0 179.2 159.2
NFS 0.7 174.2 183.7 179.0 172.6 166.7

FFS 0.5 187.2 188.5 187.6 180.0 166.0
FFS 0.6 177.5 177.7 174.0 170.5 153.0
FFS 0.7 172.5 181.0 173.8 167.7 159.9

Split 129.6 134.3 136.4 137.4 137.9
Sleator 131.3 134.8 133.7 130.0 122.8

18

decreasing height in the level algorithms and by decreasing width in the
Split algorithm. Tables 24.3 and 24.4 show the mean packing heights
when a preprocessing of the sets of rectangles is applied so that tall
rectangles are rotated through 90o, i.e. the rectangles are reoriented so
that their width W is greater than or equal to their height H for each
rectangle. Tables 24.5 and 24.6 show the mean packing heights when
rectangles are first preprocessed by rotating wide rectangles through 90o.
Following the preprocessing in the two later cases, the level-oriented,
Sleator, and Split algorithms will again sort the rectangles by decreasing
height or width as before.

Table 24.5. Mean packing heights for eight heuristics applied to preprocessed
(H ≥ W) Nice.n data sets. Optimum height is 100.

Heuristic Nice.25 Nice.50 Nice.100 Nice.200 Nice.500
(50 sets) (50 sets) (50 sets) (50 sets) (10 sets)

NFDH 131.5 124.7 118.9 113.5 109.2
FFDH 125.9 123.8 117.3 112.5 108.5
BFDH 125.9 123.8 117.3 112.5 108.5
WFDH 127.7 124.3 117.8 112.8 108.7

NFS 0.5 212.4 188.9 196.9 174.6 168.5
NFS 0.6 198.6 192.0 178.2 163.6 158.8
NFS 0.7 202.4 191.4 181.8 161.0 149.9

FFS 0.5 208.5 187.0 194.8 171.8 167.2
FFS 0.6 197.2 190.2 176.2 161.8 157.3
FFS 0.7 202.4 191.0 180.5 160.2 148.1

Split 137.4 136.6 136.5 137.0 138.6
Sleator 127.8 121.7 116.5 112.1 108.1

From the tables, we can see that for the unrotated data sets, the
NFDH, FFDH, BFDH and WFDH level heuristics and Sleator’s heuris-
tic tend to perform the best. Since the shelf heuristics are on-line algo-
rithms, they are expected to do worse than the others. The shelf heuris-
tics perform less effectively when there are larger variations of rectangle
shapes in the pathological data sets as compared to the Nice.n sets.

It is also clear from examining Tables 24.3 and 24.4, that preprocess-
ing the data by rotating the rectangles to ensure that W ≥ H will im-
prove the results significantly for the level-oriented and shelf heuristics.
Sleator’s algorithm produces consistent solutions despite the changes in
orientation for both types of data sets.

In addition, one can observe that the level-oriented, shelf, and Sleator’s
heuristics become more effective as the problem size increases, but the

Experimental Results 19

Table 24.6. Mean packing heights for eight heuristics applied to preprocessed
(H ≥ W) Path.n data sets. Optimum height is 100.

Heuristic Path.25 Path.50 Path.100 Path.200 Path.500
(50 sets) (50 sets) (50 sets) (50 sets) (10 sets)

NFDH 151.6 151.9 153.6 150.6 147.3
FFDH 149.1 149.3 150.3 148.9 146.5
BFDH 149.1 149.3 150.3 148.9 146.5
WFDH 149.5 149.7 151.0 149.3 146.8

NFS 0.5 209.5 226.6 241.1 261.6 251.0
NFS 0.6 240.1 259.2 252.8 264.5 272.0
NFS 0.7 300.9 313.8 304.1 301.8 301.8

FFS 0.5 209.5 224.6 239.6 260.9 251.1
FFS 0.6 240.1 259.2 252.2 264.4 270.1
FFS 0.7 300.9 313.8 304.1 301.8 301.8

Split 163.4 162.2 160.2 155.6 153.7
Sleator 143.1 135.0 131.7 126.8 124.1

Split algorithm performs consistently throughout the range of problem
instances tested. Overall, the best solutions to the problems were ob-
tained when the rectangles were rotated so that W ≥ H and the FFDH
or BFDH heuristic is used. They produced very similar packings.

Comparing the Best Heuristics with our GA

Table 24.7 compares the results of our GA to the best packings ob-
tained by the simple heuristic algorithms for the test data sets. For each
category of data, single runs of the GA were applied to each problem,
and the means and standard deviations calculated. In each case, the
GA was allowed to run until no improvement to the best solution had
been observed for 100 generations. Using a population size of 1,000, the
runtimes for the GA took only a few minutes for the smaller problems of
up to 100 rectangles, but for the larger problems, runtimes were unpre-
dictable because of our flexible stopping condition and could take several
hours.

Parameters such as the population size and stopping criterion were
arrived at after some initial experimentation with our GA, with the
aim of producing good quality solutions in a reasonable amount of time.
These settings could be viewed as somewhat arbitrary and better results
can certainly be obtained if longer run times are used. However, in our
view it was difficult to justify the vast computing resources that would

20

be required to lift the solution by a small percentage when considering
that the simple heuristics ran in a fraction of a second.

Table 24.7. Comparison of GA with results from the eight heuristics on rotated
(W ≥ H) data sets. Optimum height is 100.

Data set
type

No. of
sets

GA
mean (std)

Heuristic
mean (std)

Heuristic
used

sig at

0.1%

Nice.25 50 107.3 (1.6248) 118.9 (4.085) F/BFDH yes
Nice.50 50 107.8 (2.0806) 115.5 (2.9384) F/BFDH yes
Nice.100 50 108.6 (1.6111) 110.7 (2.1615) F/BFDH yes
Nice.200 50 111.3 (2.2485) 108.2 (1.1170) FFDH yes
Nice.500 10 120.8 (2.7234) 105.4 (0.5788) N/F/BFDH yes

Path.25 50 104.4 (1.6950) 121.1 (7.8641) BFDH yes
Path.50 50 108.5 (3.9577) 120.3 (6.6813) BFDH yes
Path.100 50 112.6 (7.4351) 118.0 (5.4290) BFDH yes
Path.200 50 116.7 (7.6316) 115.2 (4.0875) BFDH no
Path.500 10 120.8 (4.3667) 110.6 (1.6088) F/BFDH yes

Each row of Table 24.7 compares the GA with the best performing
heuristic for a particular category of problem. A Student’s t-test reveals
highly significant (0.1 %) differences between the mean packing heights
of the GA and the best performing heuristic in all cases except for the
Path.200 data sets. The GA outperforms the heuristics for the smaller
problems up to and including Nice.100 and Path.100 (although its run-
time is very much longer), while the heuristics do better on the larger
problems. The best performing heuristics are usually FFDH and BFDH,
as mentioned previously.

Applying the Heuristics to Some Really Large
Problems

To complete our study, the best performing heuristics (FFDH and
BFDH) were applied to some very large data sets containing 1,000–5,000
rectangles. Ten data sets were generated for each size and type category.
The resulting packing heights are presented in Table 24.8. The heuristics
were each applied to the unrotated and rotated data sets (W ≥ H and
H ≥ W) as before.

It is clear from Table 24.8 that the results for the FFDH and BFDH
heuristics continue to improve (i.e. get closer to the optimum of 100)
as the data sets get larger. Furthermore, better packing results are
observed when the data sets are first preprocessed so that W ≥ H for
each rectangle, although the preprocessing appears to have much more

Summary and Future Work 21

Table 24.8. Results for heuristics on large data sets. Means are tabulated for 10 data
sets in each category. Optimum height is 100.

Data set Unrotated W ≥ H H ≥ W
type FFDH BFDH FFDH BFDH FFDH BFDH

Nice.1000 106.1 106.1 104.2 104.2 105.8 105.8
Nice.2000 104.5 104.5 103.0 103.0 104.2 104.2
Nice.5000 103.5 103.5 101.9 101.9 103.4 103.4

Path.1000 141.9 141.9 109.4 109.4 141.3 141.3
Path.2000 134.4 134.4 107.2 107.2 135.2 135.2
Path.5000 130.5 130.5 105.1 105.1 131.9 131.9

effect on the Path.n data sets than it does on the Nice.n data sets.
Preprocessing the data set to make H ≥ W for each rectangle produces
results very similar to those obtained when the heuristics are applied
directly to the unrotated data.

5. Summary and Future Work

In this paper, we have tested a number of well-known classical on-line
and off-line strip packing heuristics on a range of data sets for which
the optimum is known, and we have compared these results with those
produced by a good genetic algorithm (GA). Although the GA found
better solutions to these problems for the data set sizes up to about n =
100 rectangles, some of the classical strip packing heuristics, particularly
Best Fit Decreasing Height and First Fit Decreasing Height, performed
much better than the GA on these types of data sets as the size of the
set increased. Furthermore, the simple heuristics run in a fraction of
the time that it takes the GA. We also discovered that the performance
of many of the simple heuristics could be enhanced if the data sets
undergo a simple preprocessing routine involving the rotation of some
of the rectangles by 90o.

Probablistic studies have been performed, e.g. [Karp et al., 1984]
which analyze the expected wasted space of some of these heuristic al-
gorithms when n gets large. As an example, it is known [Coffman and
Shor, 1993] that the asymptotic packing efficiency of BFDH approaches
100% for data sets whose rectangles have uniformly distributed heights
and widths. Our experiments appear to confirm this predicted asymp-
totic behavior. A larger study is currently underway to determine if
the individual characteristics of these Nice.n and Path.n data sets have
any impact upon the observed performance of the strip heuristics in the

22

average and worst cases. We also plan to experiment with techniques
for seeding an initial population with packings produced using simple
heuristics, and then applying our GA with a view to improving upon
the heuristic output. In order to do this effectively, however, we may
have to remove the locally applied rotation heuristic used by our current
GA, as this will probably change the orientations of some of the rectan-
gles packed by the simple strip packing heuristics and produce different
results. We also need to investigate suitable methods for injecting the
small number of seeded individuals that can be produced using the sim-
ple strip packing heuristics into a larger and varied population.

References

Baker, B.S. and Schwarz J.S. Shelf Algorithms for Two-Dimensional
Packing Problems. SIAM Journal of Computing, 12:508–525, 1983.

Coffman Jr., E. G., Garey, M. R. and Johnson, D. S. Performance
Bounds for Level-Oriented Two-Dimensional Packing Algorithms. SIAM
Journal of Computing, 9:808–826, 1980.

Coffman Jr, E. G., Garey, M. R. and Johnson, D. S. Approximation
Algorithms for Bin Packing – An Updated Survey In G. Ausiello and
N. Lucertini and P. Serafini, editors, Algorithm Design for Computer
Systems Design, pages 49–106, Springer-Verlag, Vienna, 1984.

Cavicchio, D. J. Adaptive Search Using Simulated Evolution. PhD dis-
sertation, University of Michigan, Ann Arbor, 1970.

Coffman Jr., E.G. and Shor P.W. Packings in Two Dimensions: Asymp-
totic Average-Case Analysis of Algorithms. Algorithmica, 9: 253–277,
1993.

Golan, I. Two Orthogonal Oriented Algorithms for Packing in Two Di-
mensions. Computer Center M.O.D, 1979/311/MHM, P.O. Box 2250,
Haifi, Israel, 1979

Golan, I. Performance Bounds for Orthogonal, Oriented Two-Dimensional
Packing Algorithms. SIAM J. Comput, 10(3):571–582, 1981.

Hopper, E. and Turton, B. C. H. An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem. European
Journal of Operational Research, 128:34–57, 2001.

Hwang, S. M., Kao, C. Y. and Horng, J. T. On solving rectangle bin
packing problems using genetic algorithms. In Proceedings of the 1994
IEEE International Conference on Systems, Man and Cybernetics,
pages 1583–1590, 1994.

Jakobs, S. On Genetic Algorithms for the Packing of Polygons. European
Journal of Operational Research, 88:165–181, 1996.

Summary and Future Work 23

Karp, R. M., Luby M., and Marchetti-Spaccamela, A. Probabilistic anal-
ysis of multi-dimensional bin-packing problems. In Proceedings of the
16th ACM Symposium on the Theory of Computing, pages 289–298,
1984.

Kröger, B. Guillotineable bin packing: A genetic approach. European
Journal of Operational Research, 84:645–661, 1995.

Liu, D. and Teng, H. An improved BL-algorithm for genetic algorithm of
the orthogonal packing of rectangles. European Journal of Operational
Research, 112:413–420, 1999.

Oliver, I. M., Smith, D J. and Holland, J. R. C. A study of permutation
crossover operators on the traveling salesman problem. In Genetic
Algorithms and their Applications: Proceedings of the Second Inter-
national Conference on Genetic Algorithms, pages 224–230, 1987.

Sleator, D. A 2.5 Times Optimal Algorithm for Packing in Two Dimen-
sions. Information Processing Letters , 1:37–40, 1980.

Valenzuela, C. L. and Wang, P. Y. A Genetic Algorithm for VLSI Floor-
planning. In Parallel Problem Solving from Nature — PPSN VI, Lec-
ture Notes in Computer Science 1917, pages 671–680, Springer, 2000.

Valenzuela, C. L. and Wang, P. Y. VLSI Placement and Area Optimiza-
tion Using a Genetic Algorithm to Breed Normalized Postfix Expres-
sions. IEEE Transactions on Evolutionary Computation, Vol. 6, No.
4, pages 390–401, August 2002.

Wang, P. Y and Valenzuela, C. L. Data Set Generation for Rectangu-
lar Placement Problems. European Journal of Operational Research,
134(2):150–163, 2001.

