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ERK 1,2 pathway mediates experience-dependent gene transcription in neurons and sev-
eral studies have identified its pivotal role in experience-dependent synaptic plasticity and
in forms of long term memory involving hippocampus, amygdala, or striatum. The perirhi-
nal cortex (PRHC) plays an essential role in familiarity-based object recognition memory.
It is still unknown whether ERK activation in PRHC is necessary for recognition mem-
ory consolidation. Most important, it is unknown whether by modulating the gain of the
ERK pathway it is possible to bidirectionally affect visual recognition memory and PRHC
synaptic plasticity. We have first pharmacologically blocked ERK activation in the PRHC of
adult mice and found that this was sufficient to impair long term recognition memory in a
familiarity-based task, the object recognition task (ORT). We have then tested performance
in the ORT in Ras-GRF1 knock-out (KO) mice, which exhibit a reduced activation of ERK
by neuronal activity, and in ERK1 KO mice, which have an increased activation of ERK2
and exhibit enhanced striatal plasticity and striatal mediated memory. We found that Ras-
GRF1 KO mice have normal short term memory but display a long term memory deficit;
memory reconsolidation is also impaired. On the contrary, ERK1 KO mice exhibit a better
performance than WT mice at 72 h retention interval, suggesting a longer lasting recog-
nition memory. In parallel with behavioral data, LTD was strongly reduced and LTP was
significantly smaller in PRHC slices from Ras-GRF1 KO than in WT mice while enhanced
LTP and LTD were found in PRHC slices from ERK1 KO mice.
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INTRODUCTION
Activation of synapse to nucleus signaling and regulation of gene
transcription have been found to be crucial both for long term
synaptic plasticity and memory consolidation (Davis and Squire,
1984; Mayford and Kandel, 1999; McGaugh, 2000; Abel and Lattal,
2001).

The ERK 1,2 (also called p42/44 mitogen-activated protein
kinase) pathway mediates experience-dependent gene transcrip-
tion and translational processes in neurons and several studies
have identified its pivotal role in experience-dependent synaptic
plasticity and in LTM consolidation involving cortex, hippocam-
pus, amygdala, or striatum (Brambilla et al., 1997; Atkins et al.,
1998; Blum et al., 1999; Mazzucchelli and Brambilla, 2000; Schafe
et al., 2000; Di Cristo et al., 2001; Adams and Sweatt, 2002; Maz-
zucchelli et al., 2002; Cancedda et al., 2003; Kelleher et al., 2004;
Thomas and Huganir, 2004; Doyère et al., 2007; Tsokas et al., 2007;
Cohen-Matsliah et al., 2008; Leon et al., 2010; Lin et al., 2010;
Dupont et al., 2011).

Many evidences indicate that the perirhinal cortex (PRHC)
plays an essential role in familiarity-based object recognition
(Suzuki et al., 1993; Zhu et al., 1995; Brown and Xiang, 1998;

Murray and Bussey, 1999; Wan et al., 1999; Brown and Aggleton,
2001; Murray et al., 2007) and PRHC long term synaptic plastic-
ity has been implicated in recognition memory (Warburton et al.,
2003; Barker et al., 2006; Griffiths et al., 2008; Massey et al., 2008;
Seoane et al., 2009).

Involvement of ERK pathway in recognition memory consol-
idation and reconsolidation has been suggested by two studies
employing intraventricular or systemic administration of block-
ers of ERK1,2 activation (Kelly et al., 2003; Goeldner et al., 2008).
It is still unknown whether ERK activation in PRHC is necessary
for recognition memory consolidation and whether activation of
the ERK pathway affects PRHC synaptic plasticity. Most impor-
tant, it is unknown whether by modulating the gain of the ERK
pathway it is possible to bidirectionally affect recognition mem-
ory and PRHC synaptic plasticity, not only causing an impair-
ment by decreasing the gain, but also causing an enhancement by
increasing it.

To assess the role of ERK activation in PRHC for recognition
memory consolidation we performed a pharmacological block of
ERK activation in the PRHC of adult mice and tested long term
recognition memory in the object recognition task (ORT).
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To assess the possibility that ERK can bidirectionally regulate
visual recognition memory and PRHC plasticity we employed
two mutant mouse lines. The first, Ras-GRF1 knock-out (KO)
mice, has genetic deletion of Ras-GRF1, a guanine exchange factor
which catalyzes the exchange of GDP for GTP on Ras, resulting
in a reduced activation of ERK by neuronal activity (Brambilla
et al., 1997; Fasano et al., 2009). The use of these mice allows
to assess both the role of Ras-GRF1 signaling and the effects of
reducing ERK activation in visual recognition memory and PRHC
synaptic plasticity. The second, ERK1 KO mice (Mazzucchelli et al.,
2002), has an increased activation of ERK2 in response to gluta-
mate and exhibit enhanced striatal plasticity and striatal mediated
memory. The use of these mice allows to assess both the relative
role of ERK 1 and ERK 2 and the effects of increasing ERK 2
activation in visual recognition memory and in PRHC synaptic
plasticity.

MATERIALS AND METHODS
ANIMALS
All mice used were aged between 3 and 6 months of age and
were born and housed in our animal house. Lighting conditions
were12 h light:12 h dark; animals were housed in standard labora-
tory cages, groups from five to seven animals per cage, according
to the cage size and the animal house regulations. Housing and
all experiments were performed in accordance with the Italian
Ministry of Health guidelines for care and use of laboratory
animals.

We have backcrossed both ERK1 (Mazzucchelli et al., 2002) and
Ras-GRF1 KO (Brambilla et al., 1997) mice at least nine times in
the C57BL6J mice line present in our animal house. Animals used
for this experiments were at least F10 generation. Therefore, dif-
ferences between the two transgenic lines cannot be ascribed to
the genetic background, which is the same.

The breeding scheme for the ERK1 line was to use heterozygous
male and female mice for breeding, so that in each litter there were
homozygous pups for the deletion of ERK1 (ERK1 KO mice used
in this study), heterozygous littermates, and wt littermates (ERK1
WT mice used in this study).

The breeding scheme for Ras-GRF1 KO mice, since this gene
shows maternal imprinting (Brambilla et al., 1997) and only
the paternal allele is expressed, was the following: we bred het-
erozygous males with WT females; half of the offsprings are wt
(Ras-GRF1 WT used in this study) and half phenotypically KO
(Ras-GRF1 KO used in this study).

We have used a total of 23 C57BL6J mice (13 males and 10
females) for the study on the effects of blocking ERK activa-
tion in the PRHC on recognition memory (16 mice, 9 males and
7 females) and for the immunohistochemistry of phospho-ERK
(pERK; seven mice, four males and three females).

We have used a total of 100 Ras-GRF1 KO mice (54 males and
46 females) for the behavioral tests, 32 (20 males and 12 females)
for the ORT test at 1 and 12 h interval and 68 (34 males and 34
females) for the reconsolidation experiments. As controls, 74 Ras-
GRF1 WT mice have been used (41 males and 33 females), 29 (15
males and 14 females) for the ORT test at 1 and 12 h interval and
45 (26 males and 19 females) for the reconsolidation experiments.
In addition, 20 Ras-GRF1 KO mice (12 males, 8 females) and 18

Ras-GRF1 WT mice (11 males, 7 females) have been used for the
electrophysiology.

A total of 52 ERK1 KO mice have been used (22 females, 30
males), 23 for the behavioral experiments (14 males and 9 females),
18 for the electrophysiology (11 males, 7 females), and 11 for bio-
chemistry (6 females and 5 males); as control, 47 ERK1 WT mice
have been used (25 males, 22 females), 21 for the behavioral studies
(11 males and 10 females), 16 for the electrophysiology (9 males,
7 females), and 10 for biochemistry (5 females and 5 males).

OBJECT RECOGNITION TASK
The apparatus consisted of a square arena (60 cm × 60 cm × 30 cm)
constructed in PVC with black walls and white floor. The objects
were either three-dimensional metal, plastic, glass, or china objects
of different shapes, or cubes (15 cm wide) made of transparent
Plexiglas that differed for the visual patterns lining the walls. Box
and objects were cleaned up between trials to stop the build-up of
olfactory cues (De Rosa et al., 2005).

The experimental protocol was modified from Ennaceur and
Delacour (1988). Briefly, mice received one session of 5 min dura-
tion in the empty arena to help them habituate to the apparatus
and test room (habituation phase). Twenty-four hours later, each
mouse was placed in the arena and exposed to two identical objects
(sample phase) for 5 min and returned to its cage. After a variable
delay (1, 12, 48, 72, or 96 h), mice were placed back in the arena
and exposed to a familiar object (object identical to those in sam-
ple phase) and to a novel object for 5 min (test phase). Objects
were placed in the same locations as in sample phase. Time spent
exploring each object was recorded for each animal and for each
condition and a discrimination index was calculated:

Discrimination Index =
[(Exploration time of New object)
−(Exploration time of Old object)]
[(Exploration time of New object)
+(Exploration time of Old object)]

.

Exploration of an object was defined as directing the nose to the
object at a distance of ≤3 cm and/or touching it with the nose or
forepaws; time spent turning around the object was not included.

We have used in this study pairs of objects previously validated
by us in a large group of wt and mutant animals for not giving dif-
ferential exploration times. For each retention time interval, the
new object for half of the animals, wt, or mutants, was the familiar
object for the other half; also the position of the novel and the
familiar object (left–right) was balanced. When the same animals
performed more than one ORT test, different pairs of objects were
used. When different groups of animals performed the same ORT
test we used the same pairs of objects.

Reconsolidation protocol
Mice were first habituated to the open arena in the absence of
objects for 20 min a day for two consecutive days (“habituation
phase”). Twenty-four hours after the second habituation phase,
mice were reintroduced in the arena and exposed to two identical
objects for either a single familiarization trial of 5 min duration
(single sample phase) or eight familiarization trials,duration 5 min
each and distributed in four blocks of two sessions each (multiple
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sample phase); the interval between blocks was 90 min and the
interval between sessions within each block was 5 min. During the
intersession intervals mice were placed into an holding cage in the
experimental room.

Forty-eight hours after the single or the multiple sample phase
mice were exposed to a familiar object (identical to those in the
sample phase) and to a novel object for 5 min (“test phase”). To
test reconsolidation, 24 h after the multiple sample phase mice
were exposed again to the same two sample objects explored dur-
ing the sample phase for a single 5 min period to reactivate the
memory trace (reactivation phase). Memory retention after reac-
tivation was tested with novel and familiar objects (test phase)
either 10 min, to test post-reactivation short term memory (PR-
STM), or 24 h later, to test post-reactivation long term memory
(PR-LTM).

CANNULAE IMPLANTATION AND DRUG DELIVERY
Surgery
Mice were anesthetized (avertin 2 ml/100 g), placed in a stereotaxic
apparatus and implanted bilaterally with 22 gage indwelling guide
cannulae according to the following procedure: two holes were
made in the skull through which the guide cannulae were inserted,
perpendicular to the horizontal plane, according to the following
coordinates: AP −3.05 mm (relative to bregma), L ±4.55 mm (rel-
ative to midline), V −1.5 mm (relative to surface of the brain).
Cannulae were then fixed to the skull with dental cement. In order
to prevent accidental blockage and keep the guide cannulae clear,
obdurators cut to extend 1.1 mm beyond the tip of the guide can-
nulas and with an outer diameter of 0.36 mm were inserted into
the guides and remained there except during infusions. Animals
were allowed to recover from the surgery for at least a week before
the beginning of behavioral testing.

Drug delivery
Immediately after the ORT’s sample phase animals were gen-
tly restrained by the experimenter and the infusion process was
started. The obdurators were removed, and the 28 gage infusion
cannulas, which were cut to extend 1 mm beyond the tip of the
guides, were inserted into the guides. ERK inhibitor UO126 (5 mM
in 50% DMSO) or vehicle (saline in 50% DMSO) was injected
bilaterally (0.5 μl on each side given over 2 min) by means of
a 25-μl Hamilton syringe; the infusion cannula was left for an
additional minute to allow the full deployment of the drug. The
whole process required a total of 10 min for each animal, approx-
imately. Recognition memory was assessed in the test phase 12 h
later. Administration of the drug immediately after the sample
phase (and not before) should ensure that it affects memory con-
solidation rather than information encoding (Winters and Bussey,
2005).

IMMUNOHISTOCHEMICAL PROCEDURES
Phospho-ERK immunostaining
Thirty minutes after learning mice were sacrificed and transcar-
dial perfusion was executed with 4% paraformaldehyde in 0.1 M
phosphate buffer (pH 7.4). Brains were quickly removed, post-
fixed for 12 h and cryoprotected in 30% sucrose overnight, and
40 μm coronal sections were cut on cryostat and processed for

pERK immunohistochemistry. Free-floating sections were sub-
jected to a 2-h block (PBS containing 10% BSA and 0.4% Triton
X-100 at room temperature) followed by overnight incubation
with pERK monoclonal antibody (1:1000, Sigma, St. Louis, MO,
USA; in PBS containing 1% BSA and 0.1% Triton X-100, at 4˚C).
pERK was revealed using Alexa 568 labeled secondary antibod-
ies (1:200 Vector Laboratories, Burlingame, CA, USA; diluted in
1% BSA and 0.4% Triton X-100 in PBS). Slices were coded and,
for each animal, confocal images (Olympus FV-300) of at least
three representative fields (706 μm × 706 μm) for each PRHC
were acquired.

After immunohistochemistry for pERK, the staining of
inhibitory cells was performed using 1:500 mouse anti GAD67
(Chemicon, USA) monoclonal primary antibody (4˚C overnight)
followed by 1:200 goat anti-mouse secondary antibody conjugated
to Alexa Fluor 488 fluorophore.

WESTERN BLOTTING
After decapitation, brains were removed rapidly and frozen on
dry ice. A cortical area corresponding to PRHC was bilaterally
dissected and homogenized in lysis buffer.

Tissue homogenates were centrifuged at 13000 g for 30 min
at 4˚C. The supernatant (cytoplasmic fraction) was aspirated,
and protein concentration was determined in each sample by
the Bradford method (Bio-Rad, Milan, Italy). Each sample was
boiled, and 25 μg/lane of protein was loaded into 12% acry-
lamide gels using the Precast Gel System (Bio-Rad). Samples were
blotted onto nitrocellulose membrane (Amersham, Bucks, UK).
Membranes were blocked in 4% BSA in Tris-buffered saline for
1 h and then incubated overnight at 4˚C with antibodies against
either Phospho-p42/44 Map Kinase (1:1000, Sigma) or α-Tubulin
(1:5000, Sigma). Blots were then rinsed in TTBS and TBS, incu-
bated for 1 h in HRP-conjugated anti-mouse (1:3000 Bio-rad, Italy,
in 2% BSA and TTBS), rinsed, incubated in enhanced chemilu-
minescent substrate (Bio-rad, Italy) and acquired by ChemiDoc
(Bio-rad). The immunoblots were analyzed with ImageJ software
to measure the optical density of the bands, using α-tubulin as
loading control. To minimize variability each sample was loaded
in parallel in two lanes and two gels were run simultaneously on
the same apparatus.

IN VITRO ELECTROPHYSIOLOGY
Slices of the perirhinal and surrounding cortex were prepared
from adult (P60–120) mutant mice and their WT littermates. All
efforts were made to minimize animal suffering and the number of
animals. All experiments were performed in accordance with the
Italian Ministry of Health guidelines for care and use of laboratory
animals. Animals were anesthetized by isoflurane inhalation and
decapitated. The brain was rapidly removed and immersed in ice-
cold modified artificial cerebrospinal fluid (composition in mM:
NaCl, 132.80; KCl, 3.10; HEPES, 10.00; NaHCO3, 4.00; ascorbic
acid, 1.00; myo inositol, 0.50; sodium pyruvate, 2.00; K2HPO4,
1.00; glucose, 5.00; MgCl2, 2.00; and CaCl2, 1.00) bubbled with
oxygen (Di Cristo et al., 2001).

A mid-sagittal section was made through the brain, the ros-
tral and caudal parts of the brain were removed by single scalpel
cuts made at approximately 45˚ to the dorsoventral axis (Massey
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et al., 2001), and each remaining half was glued by its rostral
end onto a vibroslice stage Leica VT 1000S microslicer (Leica
Microsystems; Nussloch, Germany). Slices (340 μm thick) which
included the perirhinal, entorhinal, and temporal cortices were
cut and allowed to recover for at least 1 h at 30˚C in a submersion
chamber containing oxygenated modified artificial cerebrospinal
fluid.

A single slice was placed in a submerged recording cham-
ber filled with artificial cerebrospinal fluid (composition in mM
132.80 NaCl, 3.10 KCl, 1.00 K2HPO4, 10.00 HEPES, 1.00 ascor-
bic acid, 0.50 myo inositol, 2.00 sodium pyruvate, 4.00 NaHCO3, 1
MgCl2, 2 CaCl2, and 5.00 glucose), 30–31˚C, flow rate, 1.5 ml/min.

Standard extracellular recording electrodes (1.0 MΩ glass elec-
trodes filled with artificial cerebrospinal fluid) were approximately
positioned in layer II, beneath the rhinal fissure, and were used to
record field potentials. A stimulating tungsten bipolar electrode
was placed in intermediate layers II/III, 0.16–0.36 mm laterally
with respect to the recording electrode. Pulses of 100 μs duration
were delivered every 30 s (0.033 Hz) to the stimulating electrode.
Recorded field potentials were filtered between 0.1 and 3 kHz,
amplified 1000 times (Axon CyberAmp), sampled at 10 kHz and
fed to a computer using LabVIEW software (National instruments,
USA). Stimulation intensity was adjusted to evoke a field potential
amplitude 50% of the maximal value. After 15 min of stable base-
line obtained with the 0.033-Hz stimulation, either TBS to evoke
LTP or charbacol administration to evoke LTD (Massey et al., 2001)
were delivered.

Theta burst stimulation protocol consisted in four repetitions,
15 s apart, of 10 trains of 4 pulses at 100 Hz, with an intertrain
interval of 200 ms. Field potential amplitudes were recorded every
30 s for 60 min following the cessation of the TBS stimulation
protocol. Data from different slices were normalized to baseline
amplitudes, averaged, and reported as means ± SEM as a func-
tion of time. To assess the final level of potentiation, the mean
normalized EPSP amplitude over the last 15′ of recordings was
used.

Carbachol (50 μM, Sigma) was applied for 10′ (Massey et al.,
2001). Field potential amplitudes were recorded every 30 s for
60 min following the initiation of Carbachol application. Data
from different slices were normalized to baseline amplitudes, aver-
aged, and reported as means ± SEM as a function of time. To assess
the final level of depression, the mean normalized EPSP amplitude
over the last 20′ of recordings was used.

STATISTICS
All data were analyzed with SigmaStat statistical package. Differ-
ences in object exploration times between KO and WT mice were
analyzed with the unpaired Student’s t -test or Mann–Whitney U -
test, depending to the result of the test for Normal distribution
of the data. Differences between the exploration time of the new
and that of the familiar object in the test phase was analyzed, for
each group of KO or WT mice, with the paired Student’s t -test
or the Wilcoxon Signed Rank test, depending to the result of the
test for Normal distribution of the data. Differences between the
discrimination indexes were analyzed with the Wilcoxon Signed
Rank test (for paired groups) or the Mann–Whitney U -test (for
unpaired groups).

Field potential amplitudes in LTP and LTD experiments were
analyzed by means of repeated measures analysis of variance and
appropriate post hoc analysis. p Values less than 0.05 were taken to
indicate statistically significant differences.

RESULTS
ACTIVATION OF ERK IN THE PRHC IS NECESSARY FOR RECOGNITION
MEMORY CONSOLIDATION
To assess whether activation of the MAP kinase pathway in the
PRHC is necessary for visual recognition memory consolidation,
we injected into the PRHC an inhibitor of MEK (the ERK acti-
vating kinase) UO126, or vehicle for control, immediately after
(3 min) the sample (learning) phase of the ORT. UO126 (5 mM
in 50% DMSO) or vehicle (saline in 50% DMSO) were injected
(0.5 μl) bilaterally through guide cannulae previously implanted
into the PRHC (Figures 1A,B).

To control that U0126 injections were effective in blocking ERK
activation, we performed an immunohistochemistry for pERK 30′
after the sample phase in animals (n = 3) injected with U0126 in
one PRHC and with vehicle in the contralateral PRHC. We found
that pERK immunopositive cells were clearly present in the PRHC
treated with vehicle but were significantly reduced from the cortex
treated with U0126, showing that U0126 effectively diffused from
the injection cannula and blocked ERK activation (Figure 1C).
pERK was localized in the superficial and deep layers of the PRHC
(Figure 1D). In the visual cortex, pERK immunostaining after
visual stimulation is present mainly in excitatory neurons (Can-
cedda et al., 2003) and evident in dendrites and cell bodies (Boggio
et al., 2007); a similar pattern of dendritic and somatic pERK
immunostaining was found in the PRHC (Figures 1E,F).

A total of 16 C57BL/6J mice was employed and each animal per-
formed the ORT twice, with an interval of at least 3 days between
the two tests. For both ORT trials, the retention interval between
the sample phase and the test phase was 12 h. Half of the animals
received vehicle injection during the first ORT and U0126 injec-
tions during the second one. The other half of the animals was
injected with U0126 during the first ORT and with vehicle during
the second one. There was no difference between the total explo-
ration time during sample phase in the second ORT trial between
mice treated with U0126 (30.83 ± 7.42 s) at the first ORT trial
and those treated with vehicle (25.75 ± 6.06 s; p = 0.222; paired
t -test). Also total object exploration time during the test phase
did not differ between vehicle (28.73 ± 3.09 s) and UO126 treated
mice (24.23 ± 5.25 s), (p = 0.234, paired t -test). This suggests that
blockade of ERK activity has no effect on exploratory behavior
and locomotor activity.

In the test phase,mice injected with vehicle showed the expected
preferential exploration of the novel object (Figure 1G, paired
t -test, exploration time of the novel versus the familiar object
p = 0.029) while mice injected with U0126 did not (Figure 1G,
paired t -test, exploration time of the novel versus the familiar
object p = 0.303). As a consequence, the discrimination index in
the group treated with UO126 was significantly lower than in the
group treated with vehicle (Wilcoxon Signed Rank test, p = 0.011;
Figure 1G).

These data suggest that activation of ERK pathway in the PRHC
is necessary for consolidation of long term recognition memory.
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FIGURE 1 | Activation of ERK in the Perirhinal Cortex is necessary for

recognition memory consolidation. (A) Location of the perirhinal cortex
(PRHC) in a schematic lateral view of the mouse brain. Shading indicates
the location of the hippocampal formation (HC) and the perirhinal (PRHC),
enthorinal (EC), and postrhinal cortices (POR); rs indicates the rhinal sulcus.
(B) Photomicrograph of a coronal brain section showing the track (indicated
by red arrow) left by a cannula inserted into the PRHC. The PRHC is also
indicated. (C) U0126 infusion is effective in blocking ERK activation in the
perirhinal cortex. Example of immunohistochemistry for phospho-ERK 30′

after the sample phase in one animal injected with U0126 in one PRHC and
with vehicle in the contralateral PRHC. Phospho-ERK immunopositive cells
are clearly present in the PRHC treated with vehicle (right) but are absent
from the cortex treated with U0126 (left), showing that U0126 effectively
diffused from the injection cannula and blocked ERK activation in the PRHC.
In the inset, the mean number of phospho-ERK immunopositive cells per
square millimeter counted in the U0126 treated PRHC (7 ± 2.6) and in the
vehicle treated PRHC (38 ± 5.7; n = 4 animals) is reported. The difference
between U0126 and vehicle treated side is significant (paired t -test,

(Continued)

FIGURE 1 | Continued

p = 0.035). Calibration bar: 50 μm. (D) Localization of cells immunopositive
for phospho-ERK 30′ after exploration of the ORT arena with two new
objects. Ect, ectorhinal cortex; Prhc, perirhinal cortex; Ent, entorhinal
cortex; RhS, rhinal sulcus. Calibration bar 100 μm. (E) High power image of
phospho-ERK immunopositive neurons in the perirhinal cortex. Calibration
bar 15 μm. (F) Example of a double staining for phospho-ERK and GAD 67
in the perirhinal cortex. Left, cells immunopositive for phospho-ERK in the
PRHC. Arrows point to two stained neurons; center, immunostaining for
GAD67. Arrows point to two stained neurons; right, merge of the two
images. Calibration bar 80 μm. (G) Perirhinal focal infusion of MAPK blocker
UO126 impairs long term (12 h) object recognition memory. UO126 (5 mM
in 50% DMSO, n = 16) or vehicle (saline in 50% DMSO, n = 16) were
injected (0.5 μl bilaterally) immediately (3 min) after the sample phase of the
ORT. Recognition memory was tested (test phase) 12 h after the sample
phase. Left: Exploration of novel compared to familiar objects during the
test phase. Vehicle injected mice explore the novel object significantly more
than the familiar object (asterisk, p < 0.05, paired t -test) while UO126
injected mice do not (paired t -test, p > 0.05). Right: discrimination index in
the test phase for vehicle and U0126 injected mice. The latter exhibit a
significantly lower discrimination index with respect to vehicle injected
mice (Wilcoxon Signed Rank test, p < 0.05, asterisk).

RAS-GRF1 KO MICE SHOW DEFICITS IN CONSOLIDATION OF VISUAL
RECOGNITION MEMORY
ERK1 and ERK2 activation is the result of the integration of mul-
tiple signals deriving from neuronal activity and neurotrophin
signaling, such as Ca2+ influx, activation of G-protein coupled
receptors, and trk receptor signaling. Central to ERK activation is
the increase in the active, GTP bound form of the small G-Protein
Ras, which causes MEK phosphorylation. Ras activation, in its
turn, is under control of guanine exchange factors, GEF, which
catalyze the exchange of GDP for GTP on Ras, such as the Sos and
the Ras-GRF families. Ras-GRFs activate Ras in response to Ca2+
signaling and muscarinic receptor activation (Farnsworth et al.,
1995; Mattingly and Macara, 1996).To investigate the specific role
of Ras-GRF1 signaling and the effects of reducing only the com-
ponent of ERK activation resulting by Ras-GRF1 on recognition
memory, we evaluated the performance in the ORT of Ras-GRF1
KO mice (n = 32) compared to their WT littermates (n = 29).

One group of Ras-GRF1 KO (n = 15) and Ras-GRF1 WT
(n = 14) mice performed the ORT with a retention interval of
1 h; a second group of Ras-GRF1 KO (n = 17) and Ras-GRF1 WT
mice (n = 15) performed the ORT with a retention interval of 12 h.
Total object exploration time during the sample phase was never
significantly different between Ras-GRF1 KO and WT mice.

In WT mice, preferential exploration of the novel object during
the test phase is present at 1 and 12 h after familiarization (paired
t -test, p < 0.001 at 1 h and p < 0.01 at 12 h; Figure 2A); in KO mice
preferential exploration of the novel object during the test phase
is present only 1 h after familiarization (paired t -test, p < 0.001 at
1 h interval, p = 0.690 at 12 h; Figure 2A), showing a lack of long
term retention.

For both Ras-GRF1 KO and WT mice the discrimination index
significantly decreases with increasing retention interval (discrim-
ination index at 12 h significantly lower than at 1 h, p < 0.001 both
for WT and Ras-GRF1 KO mice). However, the decrease is faster
for KO mice; indeed, the discrimination index of KO mice is signif-
icantly lower compared with WT mice after the retention interval
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FIGURE 2 | Ras-GRF1 KO mice show long term visual recognition

memory deficits. (A) Mean exploration times for the 1- and 12-h interval
experiment in Ras-GRF1 KO mice and their WT littermates. The exploration
time of the familiar object, tF, and the exploration time of the novel object,
tN, in the test phase significantly differ (asterisk) for WT mice both at 1 h
(n = 14) and at 12 h interval (n = 15; paired t -test, p < 0.001 at 1 h and
p < 0.01 at 12 h) but for KO mice only at 1 h (n = 15) there is a significant
difference (paired t -test, p < 0.001). At 12 h KO mice (n = 17) do not show
any differential exploration of the new with respect to the familiar object
(paired t -test, p = 0.69), suggesting a consolidation deficit. (B) Memory
retention curve for ORT in Ras-GRF1 KO mice and their WT littermates.
Discrimination index is plotted against time interval between familiarization
and test. Asterisk denotes significant difference between WT and KO mice
(two-way ANOVA, time × genotype, post hoc Holm–Sidak method).

of 12 h (p < 0.023; two-way ANOVA, time × genotype, post hoc
Holm–Sidak method; Figure 2B).

Thus Ras-GRF1 KO mice have normal memory at 1 h reten-
tion interval but exhibit a deficit at 12 h, suggesting that lack of
Ras-GRF1 activation of the ERK pathway results in a defect in
recognition memory consolidation.

RAS-GRF1 KO MICE HAVE DEFICITS IN VISUAL RECOGNITION MEMORY
RECONSOLIDATION
According to the memory reconsolidation hypothesis each time
a memory is reactivated/retrieved it becomes labile and must
undergo a process of consolidation to be maintained to fur-
ther long term (see Lee, 2009; Nader and Hardt, 2009). We
examined then the possibility that consolidated visual recogni-
tion memory traces, after being reactivated by re-exposure to the
learning situation, undergo a process of reconsolidation requiring
Ras-GRF1.

The consolidation deficit exhibited by Ras-GRF1 KO mice
might represent a difficulty, as determining the role of Ras-GRF1
in reconsolidation after retrieval requires that mice form a con-
solidated long term memory of the objects. However, it has been
shown that deficits in visual recognition memory consolidation
can be overcome by extended and distributed training in zif 268
KO mice (Bozon et al., 2003). Thus, we first examined whether Ras-
GRF1 KO mice could form a long term visual recognition memory

if given additional exposures to the objects in a distributed train-
ing paradigm. To do so, we compared the performance in the
test phase at 48 h after the sample phase in two groups of KO mice,
one (n = 20) undergoing the ORT procedure previously employed
(one familiarization trial of 5 min during the sample phase) and
one (n = 16) receiving extended training, eight familiarization ses-
sions of 5 min each during the sample phase. The eight familiariza-
tion sessions were distributed in four blocks of two sessions each;
the interval between blocks was 90 min and the interval between
sessions within each block was 5 min (Figure 3A). We found that
the discrimination index for the group exposed to the extended
training was significantly greater than that of the group exposed
to a single familiarization session (Mann–Whitney, p = 0.012;
Figure 3B). Preferential exploration of the novel object during
the test phase was clearly present in Ras-GRF1 KO mice exposed
to eight familiarizations (paired t -test, p < 0.001) while it was
absent in the group not exposed to extended training (p = 0.252).
The discrimination index of Ras-GRF1 KO mice subjected to
extended training did not differ from that of Ras-GRF1 WT mice
subjected to the same extended training (Figure 3C; p = 0.494
Mann–Whitney). These data indicate that extended training
can counteract memory consolidation deficits in Ras-GRF1
KO mice.

Being able to provide both genotypes with long lasting mem-
ories, we evaluated the effect of memory reactivation on PR-LTM
traces. To do so, mice of both genotypes were provided with the
extended training during the sample phase and then, 48 h later,
performance in the test phase was assessed with or without inter-
vening memory reactivation, performed 24 h after the sample
phase by re-exposing the animals for 5 min to the same objects
used in the sample phase (Figure 3A).

As shown in Figure 3C, memory reactivation did not affect
subsequent PR-LTM in WT mice (Figure 3C): the discrim-
ination index in the test phase with (0.241 ± 0.064 n = 16)
or without (0.214 ± 0.093, n = 20) memory reactivation did
not differ, (Mann–Whitney, p = 0.430). In KO mice mem-
ory reactivation resulted in a significant reduction of the dis-
crimination index, compared to the condition without reac-
tivation (discrimination index with reactivation 0.062 ± 0.076,
n = 17; without reactivation 0.302 ± 0.1, n = 15, Mann–Whitney,
p = 0.026; Figure 3C). Accordingly, preferential exploration
of the novel object during the test phase for Ras-GRF1
KO mice was only present if memory had not been reacti-
vated (exploration time of new versus familiar object, paired
t -test, p < 0.001 in the condition of no reactivation and
p = 0.212 in the condition of reactivation; Figure 3D), suggest-
ing that reactivation had canceled the visual recognition memory
trace.

In order to ascribe the deficit shown by Ras-GRF1 KO mice
24 h after reactivation to a defect in memory consolidation rather
then to an aspecific effect of reactivation we assessed PR-STM.
The experimental protocol for the sample and the reactivation
phase was as described above but in this case visual recognition
memory was assessed 10 min after reactivation. We found that
discrimination index in KO and WT mice was not significantly
different (Mann–Whitney, p = 0.427; Figure 3E), suggesting that
reactivation does not affect PR-STM of KO mice.
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FIGURE 3 | Ras-GRF1 KO mice exhibit a reconsolidation deficit. (A)

Protocols for repeated familiarizations (top) and for memory reconsolidation
test (bottom). Top: mice are introduced into the arena in the presence of two
identical objects for one (single familiarization phase) or eight consecutive
sessions of 5 min (multiple familiarization phase). After a delay of 48 h the test
phase is performed. Bottom: mice are introduced into the arena in presence
of two identical objects for eight consecutive sessions of 5 min each.
Twenty-four hours later mice memory trace is reactivated by re-exposing the
mice to the same two familiar objects. After a delay of 10 min or of 24 h the
test phase is performed. (B) Discrimination index of Ras-GRF1 KO mice 48 h
after a single familiarization session or after repeated familiarization sessions.
Asterisk denotes significant difference between Ras-GRF1 KO mice (n = 16
for the repeated familiarization, n = 20 for the single familiarization) in the two
conditions (Mann–Whitney p = 0.012). Repeated exposure to the stimuli is
sufficient to compensate for the deficit of visual recognition memory of

Ras-GRF1 KO mice. (C) Discrimination index of Ras-GRF1 KO and WT mice
48 h after repeated familiarization sessions and 24 h after memory
reactivation. In wt, re-exposure of the animals to the stimuli did not interfere
with recognition of the familiar stimulus 24 h later (control n = 20, reactivated
n = 16; p = 0.43 Mann–Whitney). By contrast a single exposure to the familiar
stimulus 24 h after its memorization makes the memory trace labile in
Ras-GRF1 KO mice: 24 h after reactivation, discrimination index was
significantly decreased with respect to that found without reactivation
(control n = 15, reactivated n = 17; p = 0.026 Mann–Whitney). (D) Exploration
time of novel and familiar object of Ras-GRF1 KO mice 24 h after reactivation:
there is no preferential exploration of the novel object (time of exploration of
new object, tN versus time exploration familiar object, tF, control p < 0.001;
reactivated p = 0.212 paired t -test). Asterisks denote significant differences.
(E) Discrimination index 10 min after reactivation; the deficit in Ras-GRF1 KO
mice was not present 10 min after reactivation.

These findings suggest the presence of a deficit in memory
reconsolidation in Ras-GRF1 KO mice, and imply a critical role
for ERK activation by the Ras-GRF1 pathway in this process.

ERK1 KO MICE HAVE A LONGER-LASTING VISUAL RECOGNITION
MEMORY
To investigate the effects of an enhancement of ERK activation
on visual recognition memory, we evaluated the memory per-
formance in a group of 23 ERK1 KO mice compared to their
littermates WT (n = 21). ERK1 KO mice present an enhanced acti-
vation of ERK2 by glutamate as assessed in vitro (Mazzucchelli
et al., 2002). Recently, it has been shown that ERK2 phosphoryla-
tion is enhanced in vivo in dorsal hippocampus of ERK1 KO mice
with respect to WT mice (Tronson et al., 2008). In line with these

results, we found a significantly higher level of ERK2 phosphory-
lation in the PRHC of ERK1 KO (n = 11) with respect to WT mice
(n = 10, t -test, p = 0.039; Figure 4A).

To assess the time span of retention in the ORT, each animal
performed the ORT with a different retention intervals between
sample and test phase. For each ORT session, mice went through
a new sample phase with two equal objects never used before and
then a test phase after the appropriate time interval.

We found that discrimination index in ERK1 KO mice did
not differ from that of ERK1 WT mice at 1 or 48 h retention
interval but was significantly higher than that of WT for the reten-
tion interval of 72 h (two-way ANOVA for repeated measures,
time × genotype, genotype, time, and interaction all significant
p < 0.001, post hoc Tukey’s test; Figure 4B). In KO mice, but
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FIGURE 4 | Longer lasting visual recognition memory in ERK1 KO

mice. (A) Left, quantification of phospho-ERK2 optical density, normalized
to tubulin, in the perirhinal cortex of ERK1 KO (n = 11) and ERK1 WT (n = 10)
mice. The difference is statistically significant (t -test, p = 0.039). Right,
example of immunoblotting. (B) Memory retention curve for ORT in ERK1
KO mice (n = 23) and their WT littermates (n = 21). Discrimination index is
plotted against time interval between familiarization and test. Asterisks
denote significant difference between WT and KO mice (two-way ANOVA
for repeated measures, time × genotype, genotype, time, and interaction
all significant p < 0.001, post hoc Tukey’s test). Performance differs at 72 h.
(C) Exploration times in the ORT for ERK1 KO mice (n = 23) and their WT
littermates (n = 21). At 1 and 72 h intervals. Asterisks denote significant
difference between tF and tN. At 1 h there is a significant difference for
both groups but at 72 h only KO mice show a differential exploration of the
new with respect to the familiar object (paired t -test, p < 0.001 for KO and
p < 0.112 for WT mice).

not in WT, preferential exploration of the novel object during
the test phase is found up to 72 h from sample phase (paired
t -test, exploration time of novel versus familiar object at 72 h
p < 0.001 for KO mice and p = 0.112 for WT mice; Figure 4C),
indicating that the memory trace persisted for a longer in time.
Thus ERK1 KO mice show a longer lasting visual recognition
memory.

GENETIC MODULATION OF ERK2 ACTIVATION BIDIRECTIONALLY
AFFECTS SYNAPTIC PLASTICITY IN THE PRHC
In the previous sections we have shown that the performance in
a visual recognition memory task can be enhanced or impaired
by genetically interfering with ERK pathway activity. To assess
whether the behavioral phenotype of Ras-GRF1 and ERK1 KO was
associated with an alteration of synaptic plasticity in the PRHC,
we studied LTP and LTD in PRHC of mice belonging to both
genetically mutated groups.

LTP was induced in layer II/III horizontal connections using
a standard TBS protocol. We found a stable and persistent LTP

in all the three mice groups, WT, (littermates of ERK1 KO, and
Ras-GRF1 KO, pooled together since there was no statistical differ-
ence between the two), ERK1 KO, Ras-GRF1 KO (Figure 5). How-
ever, in accordance with the hypothesis of a dependence of synaptic
plasticity from genetic modulation of ERK pathway activation, we
found that layer II/III PRHC LTP was significantly lower in Ras-
GRF1 KO mice [median increase 107.7% of baseline (interquartile
ranges 96–115), n = 12] than WT [median increase 136% of base-
line (interquartiles 119–149), n = 21], while LTP induced in ERK1
KO [median increase 155.8% ± of baseline (interquartiles 149–
169), n = 7] was significantly higher compared with WT (ANOVA,
genotype × time, factor genotype: p < 0.001, all three groups
differ one from each other, post hoc Student–Newman–Keuls
Method).

In another group of animals from the three genotypes LTD was
pharmacologically induced by 10 min administration of 50 μM
carbachol as in Massey et al. (2001). We found that Ras-GRF1
mutants had a significantly impaired LTD (95.5 ± 3.8% of base-
line, n = 8) while ERK1 mutants showed a significantly enhanced
LTD (70 ± 3.3% of baseline, n = 11) when compared with WT
animals, littermates of ERK1KO and Ras-GRF1 KO, (80.75 ± 3%
of baseline, n = 13; ANOVA, genotype × time, factor genotype
p < 0.001, all three groups differ one from each other, post hoc
Holm–Sidak Method, p < 0.050).

Thus, synaptic plasticity in PRHC can be bidirectionally regu-
lated by genetic manipulating the activation of the ERK pathway.
The differences found in PRHC synaptic plasticity of Ras-GRF1
and ERK1 KO mice reflect the differences in behavioral perfor-
mance observed in the visual recognition memory task: reduced
LTP and strongly impaired LTD in Ras-GRF1 KO mice, which
have a reduced ERK activation; enhanced LTP and LTD in ERK1
KO mice, which have enhanced ERK2 activation.

DISCUSSION
ERK ACTIVATION IN THE PRHC IS NECESSARY FOR LONG TERM
RECOGNITION MEMORY
ERK involvement in recognition memory had been already sug-
gested by Kelly et al. (2003), showing that intraventricular injec-
tion before the ORT learning phase of U0126, a blocker of the
ERK kinase MEK, impaired consolidation and reconsolidation of
recognition memory. This has been subsequently confirmed by
Goeldner et al. (2008), employing systemic treatment with SL327,
another MEK blocker. These two papers do not allow to assess
the role of ERK activation in the PRHC in recognition memory
consolidation, since the treatment with blockers of ERK activation
was not specifically directed to the PRHC.

Our results show that it is sufficient to block ERK activation
in the PRHC after the learning phase to impair long term recog-
nition memory in the ORT. This suggests that ERK activation in
the PRHC is necessary for recognition memory consolidation. It
also suggests that ERK activation in other medial temporal lobe
structures possibly involved in recognition memory, such as the
hippocampus, (see Kelly et al., 2003) is not sufficient to mediate
the formation of a long term recognition memory. This strength-
ens the importance of the PRHC and of the plasticity processes
triggered within its circuits by learning in the formation of long
term, familiarity-based, recognition memory (Warburton et al.,
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FIGURE 5 |Top: Average time course of field EPSP amplitude

recorded from PRHC. The final level attained for LTP is significantly
lower in Ras-GRF1 KO mice while it is higher in ERK1 KO mice with
respect to WT mice (ANOVA, genotype × time, genotype p < 0.001,
post hoc Student–Newman–Keuls Method). Bottom: Average time

course of field EPSP amplitude recorded from PRHC. The final level
attained for LTD in Ras-GRF1 KO mice is significantly lower than in
WT mice; the latter is significantly lower than in ERK1 KO mice
(ANOVA, genotype × time, genotype p < 0.001, post hoc
Holm–Sidak method).
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2003; Aggleton and Brown, 2005; Winters and Bussey, 2005; Mur-
ray et al., 2007; Griffiths et al., 2008; Massey et al., 2008; Winters
et al., 2008).

RAS-GRF1 SIGNALING IS NECESSARY FOR RECOGNITION MEMORY
CONSOLIDATION AND RECONSOLIDATION
ERK1 and ERK2 activation is the result of the integration of mul-
tiple signals deriving from neuronal activity and neurotrophin
signaling, such as Ca2+ influx, activation of G-protein coupled
receptors and trk receptor signaling (Weeber et al., 2002; Sweatt,
2004). Central to ERK activation is the increase in the active,
GTP bound form of the small G-Protein Ras, which causes MEK
phosphorylation. Ras activation, in its turn, is under control of
guanine exchange factors, GEF, which catalyze the exchange of
GDP for GTP on Ras, such as the Sos and the Ras-GRF families.
Ras-GRFs activate Ras in response to Ca2+ signaling and mus-
carinic receptor activation (Farnsworth et al., 1995; Mattingly and
Macara, 1996). Brambilla et al. (1997) have shown that mice with
genetic deletion of Ras-GRF1, a guanine exchange factor which
catalyzes the exchange of GDP for GTP on Ras (Ras-GRF1 KO
mice) exhibit a reduced activation of ERK by neuronal activity and
show deficits in amygdala dependent tasks such as active avoid-
ance, inhibitory avoidance, and cued fear conditioning and also in
contextual fear conditioning, which depends both on the amyg-
dala and hippocampus. Giese et al. (2001), in a different mouse line
with Ras-GRF1 inactivation (Ras-GRF1 deficient mice), found a
clear deficit in spatial memory, which is hippocampus dependent.
Nothing was known on the specific role of Ras-GRF1 signaling
in visual recognition memory. Our results in Ras-GRF1 KO mice
show that these mice have normal short term memory, as tested at
1 h delay from the learning session, but display a long term mem-
ory deficit; indeed, their performance differs from that of WT mice
at the 12-h interval. This is indicative of a consolidation deficit.
Thus the activation of ERK in the PRHC, which our data sug-
gest to be necessary for the consolidation of long term recognition
memory, has a crucial component in the Ras-GRF1 signaling.

Since our KO mice are not conditional, we cannot exclude
developmental effects, although gross alterations have never been
described in these mice (Brambilla et al., 1997; Mazzucchelli et al.,
2002) and a recent paper (Tian and Feig, 2005) shows that Ras-
GRF signaling is not involved in activating the Ras/ERK pathway
in pubescent mice but only in adult mice. However, in absence
of an acute interference/rescue of RAS-GRF1 or of ERK1 KO we
cannot completely exclude developmental effects.

The consolidation deficit in Ras-GRF1 mice could be rescued
by extended training. This suggests that it is possible to compen-
sate for the lack of Ras-GRF1 mediated activation of the Ras-ERK
pathway by Ras-GRF2 mediated activation of Ras-ERK (Li et al.,
2006), thus preserving the action of neural activity on the Ras-ERK
pathway; alternatively, or in addition, in mice subjected to repeated
training other ERK activating pathways could be recruited, either
impinging on Ras, such as the tyrosine kinase receptors pathways,
or independent from Ras, such as the PKA pathway (Weeber et al.,
2002; Sweatt, 2004).

It is important to note that also the process of reconsolidation
is impaired in Ras-GRF1 KO mice, as shown by the lack of prefer-
ential exploration of the novel object 24 h after the reactivation of

the memory trace in mice subjected to extended training, which,
in absence of the intervening reactivation, would be able to recog-
nize the familiar object up to 48 h after learning. ERK activation
was known to be crucial both for consolidation and reconsoli-
dation of recognition memory (Kelly et al., 2003); we now show
that ERK activation needs the Ras-GRF1 mediated component
to allow learned visual recognition memories to be consolidated
and, if recalled, reconsolidated. It has been suggested that consol-
idation and reconsolidation might involve the activation of both
shared pathways and specific pathways: indeed, Lee et al. (2004)
found that BDNF and zif 268 were independently required in the
hippocampus for consolidation and reconsolidation of contextual
fear conditioning. Ras-GRF1 is evidently one of those molecules
crucial for both processes, at least as far as recognition memory is
concerned.

LONG TERM SYNAPTIC PLASTICITY DEFICITS IN THE PRHC OF
RAS-GRF1 KO MICE
In very good correlation with the behavioral deficits, long term
synaptic plasticity in the PRHC of Ras-GRF1 KO mice was defec-
tive. This lends further support to the role of PRHC plasticity in
visual recognition memory (Warburton et al., 2003; Griffiths et al.,
2008; Massey et al., 2008) and shows for the first time that ERK
activation by Ras-GRF1 is crucial both for the LTD and the LTP
type synaptic plasticity in the PRHC.

The LTD induction protocol we employed is dependent on
cholinergic activity and it is known that Ras-GRF1 mediates the
effects of muscarinic receptor activation (Farnsworth et al., 1995;
Mattingly and Macara, 1996). The deleterious effects of Ras-GRF1
deletion on perirhinal LTD and on familiarity-based visual recog-
nition memory are in good agreement with the crucial role of the
cholinergic input to the PRHC via muscarinic receptors in this
type of memory and in synaptic plasticity of the LTD type in the
PRHC (Massey et al., 2001; Warburton et al., 2003).

In addition to the impairment in PRHC LTD type plasticity
Ras-GRF1 KO mice also exhibit a deficit in perirhinal LTP. The
combined effect on LTP and LTD we have found in Ras-GRF1 KO
is reminiscent of the effects of NMDAR block shown by Barker
et al. (2006): infusion of the NMDA receptor antagonist AP5 in the
PRHC impairs recognition memory and both LTP and LTD. This
is consistent with the role of Ras-GRF in mediating the effects of
neuronal activity and in particular of Ca++ calcium signaling. Ras-
GRF1 function has been indeed linked to Ca++ inflow through
NMDA receptors (Li et al., 2006); interestingly, in the Barker et al.
(2006) paper, blocking separately NMDA2A or 2B had effects on
only one type of plasticity (LTP for the 2A block and LTD for the
2B block) and did not significantly impair recognition memory at
the 24-h delay.

Ras-GRF1 could also mediate the effects of Ca++ influx via
voltage dependent calcium channels (Farnsworth et al., 1995;
Brambilla et al., 1997; Li et al., 2006), which, in a very recent
study (Seoane et al., 2009), have been implied in recognition
memory: block of a class of voltage dependent Ca++ channels
in the PRHC impaired familiarity-based recognition memory and
disrupted perirhinal LTD.

The importance of the Ras-GRF1 mediated ERK activation in
PRHC plasticity both of the LTP and the LTD type is therefore
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likely to rest on the integrative action Ras-GRF1 exerts with respect
to intracellular signaling in perirhinal neurons. Thus, reduction
of ERK activation by neural activity (Fasano et al., 2009) via Ras-
GRF1 is sufficient to disrupt both the process of consolidation and
reconsolidation of visual recognition memory, and PRHC synaptic
plasticity both of the LTP and the LTD type.

INCREASED ERK2 ACTIVATION ENHANCES PERFORMANCE IN
RECOGNITION MEMORY AND SYNAPTIC PLASTICITY IN PRHC
ERK1 KO mice might be considered an in vivo model of an
enhanced susceptibility of ERK activation by the many pathways
converging on MEK. ERK1 KO mice exhibit a stronger ERK2 acti-
vation (Mazzucchelli et al., 2002 and our results); this is explained
in terms of the enhanced ERK2 phosphorylation by MEK due to
the absence of the competing presence of ERK1. We have shown
that this enhanced ERK2 activation is paralleled by an enhanced
performance in visual recognition memory and by an enhanced
synaptic plasticity in the PRHC. This is in accordance with Maz-
zucchelli et al. (2002), who found a superior performance of ERK1
KO with respect to wt mice in striatal dependent memory tasks
(passive and active avoidance) and an enhanced striatal LTP. Thus,
just as reducing ERK activation impairs visual recognition mem-
ory and synaptic plasticity in the PRHC, enhancing ERK activation
produces the opposite effects.

ERK 1 and ERK 2 have been recently suggested to play dif-
ferent roles in intracellular signaling; in particular, it has been
suggested that it is ERK2 which play the major role in ERK signal-
ing (Mazzucchelli et al., 2002; Fremin et al., 2007; Bessard et al.,
2008; Samuels et al., 2008). Our data confirm the importance of
ERK2 signaling in synaptic plasticity and memory processes. We
cannot exclude that in ERK1 KO mice there is a change in other
pathways that contributes to recognition memory enhancement.
However, intrahippocampal infusion of U0126 prevented contex-
tual fear extinction in ERK1 KOs and their wild-type littermates

(Tronson et al., 2008). It appears, therefore, that overactivation
of the hippocampal ERK2 isoform by MEK predominantly con-
tributed to the enhanced fear extinction phenotype of ERK1 KOs.
In addition, in another recent paper in ERK1 KO mice, it has
been shown (Alter et al., 2010) that systemic MEK inhibition
with SL327 attenuated pain induced spontaneous behaviors sim-
ilarly in wild-type and ERK1 KO mice, indicating that unrelated
signaling pathways do not functionally compensate for the loss
of ERK1.

We are aware that the relation between potentiating a signaling
pathway and enhancing a memory process is not straightforward
and may depend upon the type of memory or the type and site
of intervention on the molecular cascade. For instance, mutation
in NF1 (Costa et al., 2001, 2002) causes a constitutive hyperacti-
vation of the Ras pathway which does not produce positive effects
on memory. It has to be underlined that the Ras hyperactivation
resulting from lack of a GAP protein (NF1) is, in fact, a disregu-
lation of the Ras-ERK pathway and, in terms of ERK activation, it
is very much different from the enhanced ERK2 phosphorylation
caused by the physiological activation of MEK.

In conclusion, our results contribute to unravel the molecular
basis of visual recognition memory, suggesting a pivotal role for
Ras-GRF1 activation of ERK in the PRHC in both consolidation
and reconsolidation processes and showing that modifying the
gain in the ERK activation pathway bidirectionally affects visual
recognition memory and synaptic plasticity in the PRHC, produc-
ing non-only an impairment, when the gain is reduced, but also
an enhancement when the gain is increased.
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